
Real-Time Person
Re-Identification for Mobile

Robots to Improve Human-Robot
Interaction

Per Antoine Carlsen

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019





Real-Time Person
Re-Identification for Mobile

Robots to Improve
Human-Robot Interaction

Per Antoine Carlsen



© 2019 Per Antoine Carlsen

Real-Time Person Re-Identification for Mobile Robots to Improve
Human-Robot Interaction

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

Mobile robots operating in seniors’ homes can serve as social companions
and assist with daily tasks, thus enhancing the seniors’ quality of life [104].
In order for robots to assist seniors, it is crucial that they are equipped
with sets of social and interactive skills to enable them to have natural
and personalized interactions. Personalized interactions, such as using
patients’ proper names or remembering personal preferences, is necessary
to establish strong social relationships [4, 45], and is a key factor to improve
trust in human-robot interaction [37]. A prerequisite for robots to achieve
personalized interactions, however, is the ability to automatically recognize
and re-identify people around them [4]. Existing person re-identification
systems for mobile robots are highly restricted in terms of where robots
can operate, and do not stimulate natural and personalized interactions
because they need preliminary knowledge about the robot’s users [12, 18],
rely on facial cues [113, 115], or use data collected from external sensors
[45]. This thesis introduces two lightweight Siamese convolutional neural
networks, LuNet Light and LuNet Lightest, designed for the problem of person
re-identification in a robotic setting without relying on the aforementioned
restrictions. Despite being significantly more lightweight than other person
re-identification systems [3, 120], LuNet Lightest achieves near state-of-
the-art results on the MARS dataset evaluation protocols [135]. This thesis
additionally presents a set of evaluation measures tailored to evaluate re-
identification systems for robots operating in various environments. When
simulating crowded environments, LuNet Lightest reaches 92.4% balanced
accuracy on the proposed evaluation protocol. As a result of the lightweight
architecture, LuNet Lightest achieves real-time frame-rates of 71.6 frames
per second when using a GPU, 33.9 frames per second when using a CPU
without GPU, and 15.7 frames per second when using only one core of
the same CPU, rendering the proposed system highly suitable for low-cost,
hardware-constrained robots. The proposed person re-identification system
will enable assistive mobile robots to robustly and accurately identify their
users, and is a preliminary step to improve trust and attain natural and
personalized interaction between robots and patients.
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Chapter 1

Introduction

1.1 Motivation

The healthcare sector is not sustainable for the rapid aging of the world’s
population both in terms of cost and in terms of the demand of health aid
[44, 48, 55]. Nearly 90% of the American population over the age of 65
wish to live in their homes for as long as possible rather than in assisted
living communities [98]. These seniors will, however, require assistance, and
with the shortage of professional caretakers, this may imply heavy burdens
on non-professional caretakers such as family and friends. Furthermore,
in many cases these seniors live alone, which can result in loneliness and
reduced quality of life [98].

Many research projects are devoted to investigating how robots can
reduce the workload applied to both professional and non-professional
caretakers [26, 35, 36, 104, 106, 108, 117]. A possible solution is to develop
mobile household robots that can be placed in the homes of the elderly
patients who wish to live in their own homes for as long as possible.
Household robots can for instance assist in simple daily tasks or serve
as social companions [104]. This could save a significant amount of valuable
time and workload for healthcare workers, as they would not have to
commute to the patients’ homes as frequently.

The Multimodal Elderly Care Systems (MECS) [104] is a project that
investigates how a robot companion can assist seniors that want to stay
in their current homes. Companion robots, such as the MECS robot, will
be expected to take on social roles, and it will be crucial that they possess
adequate social and communication skills. In order for the companion
robots to fulfill their social obligations it is essential that the interactions
between robots and humans are natural and personalized [4, 43]. To achieve
personalized interactions, it is crucial that robots can automatically recognize
and identify people around them [4]. Moreover, robots need the ability to
recall people whom they have previously interacted with (acquaintances),
as well as remember new individuals for possible future interactions.

Enabling companion and household robots with the skill of identifying
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people will allow them to store personalized information from previous
encounters to generate more complex and rich interactions (see Figure 1.1).
Patient information such as name, culture, age, personal preferences, and
communication patterns will permit robots to have engaging conversations
and improve human-robot teamwork in cooperative tasks. For instance,
instead of using general greetings, identity recognition can enable robots
to call people by their proper names, which is necessary to establish strong
social relationships [4, 45]. Furthermore, using personal names during
interaction is important because robot personality and adaptability are key
factors to improve trust in human-robot interaction (HRI) [37]. Trust is
arguably one of the most important factors when it comes to acceptance of
having an autonomous robot in your private home, especially amongst the
elderly population who often have limited experience with and knowledge
about new technology.

Figure 1.1: Person identification promotes trust, politeness, and good
human-robot interaction by enabling robots to use personal names and
information acquired from previous interactions. The Mobile robot depicted
is from Adept MobileRobots [89].

However, mobile robots are not yet equipped with systems that can
automatically and robustly identify people without strictly relying on facial
cues [56, 105, 113, 115], information from external sensors [45], or appearance
information given in advance [12, 18]. Face recognition and identification
requires people to situate themselves in such a way that their faces are
clearly visible to the robot, which is often unnatural and inconvenient.
Data from external sensors, such as wearable radio-frequency identification
(RFID) tags or surveillance cameras, and requiring appearance information
in advance highly restricts where and with whom a mobile robot can operate.
Furthermore, relying on external sensors mounted in patients’ homes can
be a severe privacy threat and should be avoided.
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1.2 Research Goals

This work aims at developing a person re-identification system specifically
tailored for mobile robots. This project investigates whether a person re-
identification system achieving state-of-the-art results on public dataset
benchmarks can have any practical value for mobile robots.

To that end, the proposed person re-identification system is evaluated
using:

1. A public person re-identification dataset benchmarks that is popularly
used amongst computer vision (CV) researchers in the field of person
re-identification.

2. A new set of evaluation metrics that are developed in this research
project. These metrics are specifically designed to evaluate person
re-identification in a realistic robotic scenario.

3. Time measurements to investigate whether a top-performing person
re-identification system can achieve the high frame rate required
by robots that are expected to operate in real-time in dynamic
environments.

1.3 Contributions

The contributions of this thesis are threefold:

First, this thesis proves that a shallow and lightweight person re-
identification system can obtain results comparable to state-of-the-art
systems on one of the largest existing person re-identification benchmarks.
This shows that the complex and resource-consuming architectures that most
state-of-the-art re-identification systems use are not necessary to achieve
high performance. Amongst all top-performing re-identification systems,
the proposed architecture is, to our knowledge, the most lightweight person
re-identification system.

Second, this thesis investigates common assumptions in the CV field
of person re-identification and why these hinder state-of-the-art person
re-identification systems from being deployed on mobile robots. To that
end, a new set of evaluation metrics that more realistically reflect the typical
environment of a mobile robot are presented. While it is shown that this
makes the person re-identification problem more challenging, the proposed
system achieves up to 92.4% balanced accuracy score on the newly proposed
evaluation metrics.

Finally, time measurements in terms of frames per second (FPS) are
measured to analyze whether the proposed system is capable of handling
the high efficiency requirements even on the low-cost hardware components
that are typically found on mobile robots. To evaluate the system efficiency
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for robots with different hardware, the frame rate is measured using three
different settings:

• GPU: a 33MHz Intel GeForce GTX is used, which may be representa-
tive for high-end mobile robots.

• CPU: a 2.60 GHz Intel Core i7 with eight cores and no GPU is used,
which may be representative for the majority of mobile robots.

• single core CPU: only one of the eight core on the same CPU with
no GPU is used, which may be representative for lightweight and
low-cost mobile robots.

These definitions will be used throughout this thesis. Full details regarding
hardware and software specifications used may be found in the appendix
Section 8.1.

The measures show that with a GPU, the system greatly exceeds the real-
time frame rate requirement of 30 FPS. With the CPU, the proposed system
can process 33.9 FPS, which also fulfills the real-time requirements. With
the single core CPU, the proposed system achieves 15.7 FPS. This is, to our
knowledge, the first research within the CV field of person re-identification
that reports system efficiency in terms of frame rate. The efficiency results
show that it is possible to achieve state-of-the-art accuracy on public
benchmarks without neglecting the real-time frame-rate requirement of
robots.

To summarize, this thesis presents a fully automated person identifica-
tion framework for a mobile robot. It is shown that robot perception systems
can draw inspiration from state-of-the-art CV person re-identification to
enhance robot performance. The proposed framework is a foundation for
designing robots with personalized behavior and more sophisticated social
skills.

1.4 Structure of the Thesis

This thesis is structured in a manner that chronologically provides insight
into the topic of person re-identification and common application areas,
details about the proposed system, and finally introducing the newly
proposed evaluation metrics along with the obtained results. The chapters
are structured as follows:

• Chapter 2 describes various robotic applications that take use of person
re-identification systems, and additionally provides insight into the
CV research field of person re-identification. Various shortcomings,
restrictive assumptions and research gaps are identified and discussed.

• Chapter 3 summarizes the public datasets popularly used for person
re-identification research, along with discussing aspects considered
when selecting an appropriate dataset for this work.
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• Chapter 4 looks into the details of the proposed person re-identification
pipelines, LuNet Light and LuNet Lightest.

• Chapter 5 first presents the results obtained on a public person re-
identification benchmarks. Then, the newly proposed evaluation
metrics are described along with the results obtained. Finally, the
system efficiency of the proposed models are discussed.

• Chapter 6 presents the conclusions that can be drawn from this
research project.

• Chapter 7 discusses some unexplored aspects and possible topics for
future research.
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Chapter 2

Background

People re-identification, commonly known as re-identification or simply re-
ID, is an important topic that relates to robotics, HRI, and CV. In robotics,
perceiving and re-identifying people is necessary in order for robots to
understand their surroundings. In HRI, people re-identification is an
essential component in order to give robots the social skills needed for
natural and personalized interaction. In CV, the challenging problem of
re-identifying people is of high interest due to its significance in many
applications including surveillance and robotics.

This chapter is divided into four parts. The first section (Section 2.1)
gives an overview regarding the problem of person re-identification in
the context of robotics. The second section (Section 2.2) discusses why
person re-identification is essential in HRI and how researchers have used
re-identification on various mobile robots to improve HRI. The third section
(Section 2.3) looks into how person re-identification is approached amongst
researchers in the CV community. Finally, Section 2.4 concludes this chapter
by summarizing shortcomings of the discussed re-identification systems.

7



2.1 Overview

Within the context of robotics, re-identification is the task of re-identifying
people that leave the robot’s field of view and return at a later point in time.
This thesis identifies six criteria that need to be met when designing such a
system.

1. Robots should not need to be explicitly told to re-identify one
or multiple specific people, but should instead perform the re-
identification in an automated manner. In other words, the re-
identification system needs to operate without requiring preliminary
knowledge about the specific individual(s) to be re-identified.

2. The robot needs to keep a database of people whom it has encountered
before and may re-encounter during future interactions. This database
needs to be able to expand in order to collect information about new
people as the robot encounters them.

3. The robot needs to automatically distinguish between acquaintances
(previously recognized individuals) and those it has not interacted
with before. If the robot recognizes an acquaintance, it needs to
perform the re-identification task to associate this person with the
correct identity. The robot needs to automatically store memory of
people it has not encountered before, so that they can be re-identified
the next time they encounter the robot.

4. The robot needs to perform re-identification naturalistically and
candidly, without interfering with activities of humans.

5. The re-ID system needs to be as lightweight as possible to meet the
real-time constraint of mobile robots. Real-time feedback is crucial
if robots are to reach our high expectations and ensure smooth and
efficient operation.

6. Finally, the re-identification needs to be robust towards factors that
may change over time. Such factors include varying light conditions,
changes in human pose and changes in sensor orientation (viewpoint).

2.2 Human-Robot Interaction

Human-Robot Interaction (HRI) is a multidisciplinary field combining the-
ory from robotics, social science, and artificial intelligence, which aims to
give robots socially appropriate interaction skills. As robots are transitioning
from closed industrial environments to dynamic, human-centered environ-
ments, many settings require robots to interact, communicate, and cooperate
closely with humans. In the healthcare sector, for example, mobile robots
can function as socially assistive coaches for rehabilitative walking and ori-
entation training, where they work closely alongside patients [36]. Natural
and socially appropriate interaction between humans and robots is essential
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to ensure that these human-robot environments are pleasant and safe. HRI
focuses on understanding how perception, verbal and nonverbal commu-
nication, and emotions affect human interactions and how this knowledge
can be used to improve interaction between humans and robots [103].

In order for robots to understand and achieve social interaction, it is
necessary that they first perceive people in their environment. Perceiving
people is needed in order to navigate efficiently and safely [7], to approach
people in an appropriate manner [106] and to initiate and maintain social
interaction [103]. In other words, robustly and reliably perceiving people
will enhance the interactive skills and overall performance of robots
operating in human-centered environments. Furthermore, performance
is known to be a great factor when it comes to the trustworthiness of
the robot [37], allowing them to more seamlessly fit in to human-centered
environments.

In addition to solely perceiving people, robots have to distinguish
between acquaintances and strangers [103]. Recognizing people’s identities
is an essential skill to establish and maintain social relationships between
humans and robots [46]. For instance, people re-identification can enable
robots to interact and communicate in a polite and appropriate manner
by using personal names in greetings. It additionally enables robots to
establish long-term relationships with people whom they interact with
frequently. This is important for assistive robots as they often have to
learn and remember personal attributes and preferences of long-term users.
Furthermore, robots can use identity information to keep their attention and
resources to specific people of interest.

2.2.1 Person re-ID on Robotic Platforms to Improve HRI

For robots operating in human-centered environments, people perception is
typically achieved through an end-to-end system consisting of three steps:
people detection, people tracking, and people re-identification. Detection
is the task of locating individual people in video, without association to
the person’s identity. The detected people are represented by bounding
boxes (BBs), which are rectangles representing their position and size in
image coordinates (an example is shown in Figure 2.3). Tracking uses the
BBs and aims at keeping track of people over time [97]. While both tasks
of detection and tracking are well-defined, re-identification is often treated
differently depending on the robotic application and the task the robot is
designed for. Re-identification is most commonly used to recognize the
identity of people as they leave and re-enter the robot’s environment, which
is typically achieved by keeping a database of one or multiple people of
interest. However, as robots meet and interact with new people, the re-
identification system should also automatically register new identities in
order to recognize these people during future interactions.

Although the detection and tracking steps are commonly seen on human-
centered mobile robots [29], considerably fewer works include the re-
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identification step. Since people re-identification on mobile robots is the
main topic of this thesis, this section will only consider mobile robots that
are implemented with people re-identification as a part of their perception
system.

Service and Social Robots

Service robots and social robots are autonomous, and often mobile, robots
that can interact socially with people. Service robots are additionally
designed to help people by performing various useful tasks [88]. To ensure
that the robots interact in a natural manner, it is crucial that they can identify
people in their environment [4].

There are several different ways to approach the re-identification
problem. Some researchers explore using wearable technology to identify
people [4, 45, 86]. Kanda et al. [45] use RFID (radio frequency identification)
tags to identify people from a shopping mall information robot. Alonso-
Martin et al. [4] use electronic beacons to develop an interactive robot
capable of identifying multiple people. Ramirez et al. [86] examine how
mobile robots should approach people. They use detectable helmets to
identify the target to approach. Using external sensors, including wearable
technology, simplifies the re-identification problem, but it is also impractical
and highly restricts the operational area of the robot. To overcome these
restrictions, robots should preferably only rely upon data gathered by ego-
centric sensors (i.e. sensors mounted on the robot itself).

Another common approach is to perform re-identification using face
cues. Wang et al. [113] created TritonBot, a tour guide and receptionist
robot in a building at UC San Diego. It keeps a database of known faces,
and automatically attempts to re-identify acquaintances and register new
people it meets. This enables TritonBot to use personalized greetings
whenever it meets acquaintances. Similarly, Wang et al. [115] developed
a perception system for a service robot that automatically detects faces,
extracts discriminative features using convolutional neural networks
(CNNs) and register them in a database. Their system uses these features to
re-identify previously seen people in addition to automatically registering
new people on-the-fly. Other researchers have used face recognition to
recognize users on interactive, educational robots that asks science questions
[56], and on a mobile security robot [105].

Biometrics, such as face cues, provide good features for both short-term
and long-term re-identification. However, face recognition also requires
users to directly face the robot at a certain optimal distance. This is
undesirable because it heavily restricts how people position and orient
themselves in interactive and cooperative human-robot tasks. Wang et al.
[113] reported that people facing sideways often resulted in misclassification,
confirming that it is desirable to avoid the heavy positional and orientational
restrictions.
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Belletto and Hu [11, 12] combine biometric face features with person
height and a color histogram of the human torso to perform person re-
identification from a mobile service robot. The authors observe that during
close interaction, the upper part of the human torso is the only body-part
visible to their robot. A color histogram of the torso is therefore combined
with person height and face features to create an appearance model used
for re-identification. They match the detected people against a small, pre-
recorded database of 13 subjects, and the robot cannot create appearance
models of new people on the fly. Furthermore, they allegedly evaluate the
system on video recorded in a office space with good light conditions and
people wearing very distinguishable colors on their upper-body, favoring
the color-based feature extraction approach. Zhang et al. [130] create a
similar system that additionally can register new people. They do however
only rely on color features and are more concerned about addressing
difficulties caused by short occlusions than person re-identification over a
longer time span.

An et al. [6] propose a person re-identification and action recognition
algorithm for a mobile service robot. They argue that it is impractical for
service robots to require a registration phase in order to identify people. By
combining 3D body part information with color histograms, the authors
propose a re-identification algorithm that learns on the fly without the need
of an enrollment phase or pre-recorded datasets. Like the majority of the
research methods discussed in this section, their system is only capable
of identifying one "person under service", and can therefore not identify
multiple people at once.

Cosar et al. [19] combine the person re-identification module of Li et
al. [65] with calculation of dimension of various body parts to create a
person re-identification system for mobile robots. They do however train
their model on videos of the very same individuals used for evaluation,
meaning that their system is unsuitable for robots that continuously meet
new people.

2.2.2 Person-Following Robots

Robots that can follow people are highly useful in several situations. They
can be used as personal assistants in rehabilitation [26, 35, 36, 106, 108, 117],
as automatic push-carts in shopping malls [81], and for various tasks in the
service sector [5, 14, 50, 53, 54, 60, 91]. A system that identifies people is
essential for all of these robots because they have to distinguish between
the person they follow and other people in their environment. Figure 2.1
depicts a challenging situation for a person-following robot due to highly
similar person appearances.

The ROREAS project [26, 35, 36, 117] and the ROGER project [106,
108] both develop rehabilitation robots with person-following behavior
to accompany patients in walking exercises. These robots have systems
to identify the person to follow. They do however require an "enrollment
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Figure 2.1: Left: a person-following robot. Right: the robot’s field of view
with the target to follow in the middle. Similar appearances due to clothing
and hair color can make it challenging to distinguish between the target to
follow and other people. Image from [53].

phase" (see Figure 2.2) where a person appearance model is built beforehand,
and can thus only identify one specific individual, which is substantially
easier than identifying multiple people. Although their approach may be
suitable for the intended use case, a more general robot application should
be able to identify multiple people without the need of any enrollment
phase.

Figure 2.2: The ROREAS patient and walking coach during interaction with
a patient. Image from [36].

Service robots often need the ability to follow people [5, 14, 50, 53, 54, 60,
91]. These robots are incorporated with re-identification systems very similar
to the ones in the ROREAS and ROGER projects. With the exception of the
project by Satake et al. [91], which can identify five individuals, the rest of
these systems are only designed to identify one specific person. In all cases
these individuals have to be either known in advance, or manually identified
in the first video frame, which does not allow the robot to automatically
register new people on the fly.
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Other researchers incorporate people re-identification in automated
push-carts for shopping malls [81], and to give social robots the ability
to follow people [15]. These do however only identify one pre-defined
person, and are more concerned about addressing short-term occlusion for
people tracking [15] and the task of keeping a safe physical distance between
the robot and the target [81].

2.3 Computer Vision Person Re-Identification

2.3.1 Definitions

Amongst CV researchers, person re-ID is the task of re-identifying a given
person of interest in a collection of images or videos. The person of interest
is known as a probe person, and its identity is unknown. The collection
of images or videos is known as the gallery. The gallery is a potentially
large database of persons whose identities are known. The underlying
assumption in re-ID is that there is guaranteed to exist at least one image or
video of the probe person in the gallery. The objective of the re-ID system is
to correctly match the probe person with this image or video in the gallery.

More formally, given a query person, or probe p, and a database, or gallery
G, containing gN

i=0 unique identities, the goal is to find

px = arg maxn∈1,2,...,N sim(p, gn) (2.1)

where px is the person in the gallery that matches the probe p (same identity),
and sim(pa, pb) is a similarity function that returns high values for similar
input pairs (person a = person b) and low values for dissimilar input pairs
(person a 6= person b). In the re-ID literature, the database is commonly referred
to as the gallery, and the query as the probe, and this notation will therefore
be subsequently used in this thesis. In CV, re-identification is performed by
using visual features derived from the entire human body. The probe and
gallery therefore consist of BBs that are cropped tightly around pedestrians.
Figure 2.3 is an example of BBs typically found in the probe and gallery. The
left hand side depicts a BB in an image, and the right hand side depicts BBs
in video (consecutive images).

Figure 2.4 depicts the components in a typical re-ID system. Re-ID
systems need two essential components, namely a person feature vector (also
known as a appearance model or a person descriptor) and a distance metric used
to match the feature vectors. The appearance model is a collection of visual,
and, in some cases, temporal attributes, or features, that describe a person.
Good appearance models are discriminative, meaning that the appearance
models of any two different identities should be as dissimilar as possible,
while two appearance models of the same person should be as similar as
possible. The distance metric is used to measure how similar or dissimilar
two appearance models are, and it highly depends on good appearance
models to perform well.
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Figure 2.3: Example of bounding boxes around probe/gallery image (left)
and probe/gallery image sequence (right). Images are extracted from the
PRID-2011 re-ID dataset [41].

Figure 2.4: The components in a classical re-ID system. The feature extractor
extracts features which are used to create an appearance mode of each
gallery and probe image/video. The matching component compares the
probe appearance model with the appearance models in the gallery, and
uses a distance metric to decide which instances in the gallery are most
similar to the probe. The matches are sorted by similarity and returned as a
ranked list.

For each incoming probe, features are extracted to build an appearance
model of this person. Then, the distance metric is used to match the probe
appearance model towards each appearance models in the gallery. These
matches are sorted by similarity before they are finally returned as a ranked
list of identities. In a perfect re-ID system, the true match is found at the
top of the ranked list, which describes the match with the highest similarity
(known as rank 1).

There are numerous factors that differentiate CV re-ID research from the
re-ID modules found in the perception systems discussed in the previous
section (Section 2.2). While re-ID in a robotic context is a problem of
identifying people at different points in time, CV re-ID studies mostly
focus on identifying people in networks of two or more surveillance
cameras recording data simultaneously or with only short differences in time.
Furthermore, robot perception systems integrate person detection, tracking,
and re-identification, whereas the majority of CV re-ID research focus solely
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on the task of person re-identification. Consequently, they commonly
assume that the probe and gallery images are perfectly drawn BBs (that is,
they are cropped tightly around people containing little background clutter)
and that these are readily available beforehand.

2.3.2 Brief History

The term "person re-identification" was introduced in 2005 by Zajdel et al.
[129]. The authors developed a mobile robotic vision system that, in addition
to performing people tracking, could re-identify people that exited and later
re-entered the robot’s field-of-view. They used features manually extracted
based on the colors of people’s clothes and calculated the average of these
over time to re-identify people that left and re-entered the field-of-view.
Even though they tested their algorithms in a well-lit indoor environment
with few people wearing distinctive colors, their algorithms could not
adequately handle even slight changes in light conditions (which is bound to
happen as robots move around). Their work did however grab the attention
of the CV community, which lead to numerous research studies devoted to
address the problem of re-ID [134].

Following the approach of the preliminary re-ID work by Zajdel et al.
[129], the traditional way to design re-ID systems has been to manually
extract features to create person descriptors followed by learning a distance
metric to tell them apart. These systems are commonly referred to as hand-
crafted systems, meaning that features are designed beforehand to retrieve
certain data characteristics (as opposed to generic features which will be
discussed in Section 2.3.3). After these features are extracted, a distance
metric is learned to to tell them apart.

Person Descriptors Based on Hand-Crafted Features

All classification problems rely on good and distinctive features to perform
well. In image and video classification, features are derived from the
image(s) on the pixel level. In re-ID, features are needed to build person
descriptors describing visual properties of people.

Good person descriptors should minimize the intraclass differences (i.e.
how much variation there is in the descriptors representing the same
identity) and simultaneously maximize the interclass differences (i.e. how
much variation there is between descriptors representing different identities).
Having person descriptors with these attributes is important because it
directly facilitates the task of learning a distance metric that can distinguish
between the different person identities.

Hand-crafted features are derived directly from the pixel values of color
images, which are typically represented by the RGB color model. In this
model, each pixel is represented by three integers, one for the color red (R),
one for green (G), and one for blue (B). These integers typically range from 0
to 255. For example, a blue pixel is represented by [0, 0, 255], a black pixel by
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[0, 0, 0], and a white pixel by [255, 255, 255]. Although less frequently used
in re-ID, other image representations, such as HSV or YUV encoding, can
also be used.

Color is the most commonly used feature for pedestrian descriptors [134].
Color is typically used to create a color histogram of the R, G, and B channels
in the entire BB, which provides information of the global color distribution.
Alternatively, instead of describing the color distribution in the entire BB,
histograms can also describe more local areas by for instance segmenting
out the person foreground from the background clutter in the BB [27] or
specific body parts [21, 67] before creating the histogram. The background
clutter in the BB does not provide any discriminative information, and local
histograms computed after the background has been segmented out are
therefore usually more descriptive. Local histograms do however require
more computational resources due to the segmentation and/or body part
detection overhead.

Texture features, which aim at describing discriminative edges and
patterns in images, can also be derived from the pixel values. The
SIFT descriptor [73] is a robust texture-based feature descriptor that is
sometimes used in re-ID [133]. However, color features are far more
common, presumably because texture features are less suitable to create
good appearance models.

Distance Metric Learning

The distance metric is used to determine which person appearance models
depict the same identity and which do not. The objective of distance metric
learning is to learn a metric that groups data points representing the same
class (or person, in this case) close together, while pushing data points
representing different classes further apart from each other. In the context
of re-ID, the further apart different classes are from each other, the easier it
gets to accurately decide the correct identity of incoming probes.

The most common distance metric is perhaps the Euclidean distance
which is defined as:

dEuclidean(p, q) =

√
n

∑
i=0

(qi − pi)2 (2.2)

where p and q are two feature vectors of length n and dEuclidean is the
Euclidean distance between them. From our three-dimensional world, we
intuitively think of Euclidean distance between two points as the distance
along the straight line that connects them. Although this is the shortest
distance in three dimensions, our intuition fails in higher dimensional spaces
[25]. Since image features can have a dimensionality of tens or hundreds,
more complex distance metrics are necessary. The challenges of dealing
with high-dimensional data is known as the curse of dimensionality.

Several distance metric learning algorithms have been developed to
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address higher dimensional data. These often learn a Mahalanobis metric,
where the goal is to reduce the dimensionality of the feature space such that
relevant, discriminate dimensions are kept while less significant dimensions
are removed [52]. In the context of re-ID, the KISSME metric learning
method [52], which learns a Mahalanobis metric, is the most widely used
one [134] because it at least matches the generalization performance of other
methods while being significantly faster to train [52]. Although less common
in re-ID, support vector machines (SVM) and boosting can also be used to
distinguish between different appearance models [34, 132].

Transitioning to Deeply Learned Systems

Deep learning (DL) and convolutional neural networks (CNNs) have gained
widespread attention ever since Krizhevsky et al. [57] won the ImageNet[59]
image classification challenge by a large margin by using a CNN for feature
extraction (see Section 2.3.3 for more details about DL). Following their
success, Yi et al. [128] and Li et al. [65] proposed using DL and artificial
neural networks (ANNs) for re-ID in 2014. Yi et al. [128] and Li et al. [65]
both reported superior performance in terms of accuracy compared to the
existing hand-crafted systems. Re-ID systems combining DL and ANNs,
which are commonly referred to as deeply learned re-ID systems, have been
the dominant approach in the re-ID literature ever since [40, 102, 134, 143].

There are mainly two reasons why deeply learned re-ID systems
outperform the traditional hand-crafted re-ID systems. First, the deep
learning network architectures can learn to extract image and video features
that are more robust towards changes in illumination, camera angle and
variation in human pose compared to the hand-crafted features. Second,
whereas creating person descriptors and learning a distance metric is treated
as two separate tasks in the hand-crafted systems, deeply learned systems
can jointly extract discriminative features and map the appearance models to
a feature space where they are more easily distinguishable. This approach of
extracting features and learning a distance metric in an end-to-end manner
has shown to be superior compared to treating them as two separate tasks
[134]. Deeply learned systems will therefore be the main focus for this thesis.

2.3.3 Deeply Learned Network Architectures for Re-ID

This section presents the fundamental aspects of different DL network
architectures (also known as DL models) and techniques commonly found in
re-ID research. Topics discussed in this section will be put in the context of
re-ID starting from Section 2.3.4. Readers may therefore skip to this section
if DL for image and video analysis is familiar ground.

Traditional computer algorithms are explicitly programmed with a set
of manually constructed instructions, or rules, about how to do a specific
task [25]. In some cases, however, manually programming these rules is
sub-optimal, and perhaps not not even feasible, and it would be desirable
to instead have the algorithm automatically learn them. This is exactly
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what DL algorithms are responsible for. By looking at data examples, DL
algorithms use a training process to observe data patterns that provide
useful information for the given task. The more data the DL algorithm
is presented with, the more complex models it can potentially learn. The
ultimate goal of any DL algorithm is to generalize to new, unseen data [25].

There are numerous different types of DL network architectures. Which
one to use is problem-dependent, and choosing the correct one is essential
to achieve good results. In the domain of image and video analysis, CNNs
and recurrent neural networks (RNNs), which are both types of ANNs, are
most broadly used. These networks require a learning method. In re-ID,
supervised learning and semi-supervised learning are the most widely used
learning methods, but some recent work also explore using unsupervised
learning methods.

The Learning Process

The learning process is an iterative procedure that adjusts the DL model
parameters based on the difference between the predicted classification
values and the correct classification values. The combination of all the
model parameters is called the hypothesis function, and the objective of the
learning procedure is to guide the hypothesis function toward a local (or
preferably global) optimal solution (also known as a global/local minimum).

Learning can be performed either in a supervised, unsupervised or
semi-supervised manner [92]. Supervised learning is the task of learning a
hypothesis function that maps input to output by training on known input-
output pairs [90], and therefore requires labeled datasets. Unsupervised
learning uses uncategorized data to learn common data patterns, and is
often used when there is no labeled data available. Semi-supervised learning
can be placed in-between supervised and unsupervised learning, because it
takes use of both labeled and unlabeled data to learn.

The process of learning consists of two steps, the forward pass and the
backward pass. During the forward pass, the data is fed into the network
input layer. The values in the input layer are then multiplied with the
weights connecting it with the first hidden layer. Then, the data passes
through an activation function before it gets multiplied with the next weights.
This procedure is repeated until the output layer has been reached. The
values in the output layer should ideally be as close to the ground truth as
possible.

In the backward pass, the network parameters are updated according
to an optimization algorithm whose goal is to minimize the error between
the actual output value and the desired output value. The optimizer often
uses a method known as backpropagation to compute the gradient of the
network. By updating the weights in a manner that follows the gradient
in a negative direction, the hypothesis function is guided toward a local or
global minimum.
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Artificial Neural Networks

ANNs are computing systems whose design draw inspiration from the
biological neural networks found in animal and human brains. ANNs
consist of nodes that are organized in layers. The layers are interconnected
by weights that allow data to flow through the network. These weights are
trainable parameters whose values form the hypothesis function. The weights
are typically randomly initialized following a normal distribution, and
multiplied by a factor depending on the size of the layer. As the network is
trained following one of the aforementioned learning methods, the weights
are adjusted, leading the hypothesis function towards producing more
optimal outputs.

Figure 2.5: A shallow ANN (depth = 3) with a fully connected network
structure. The network contains an input layer with three nodes (red), two
hidden layers with four nodes each (yellow), and finally an output layer
with two nodes (blue).

Image 2.5 depicts a fully connected (FC) ANN with two hidden layers.
(Fully connected means that all nodes in any layer are densely connected to
all nodes in the previous and next layer.) In this case, the data is represented
by three values (hence three input nodes), and the network outputs two
values (hence two output nodes), which typically reflect the number of
total classes in a classification problem. The number of hidden layers,
known as the network depth, along with the width of each hidden layer,
are hyperparameters that must be specified in advance. In general, more
complex problems require deeper and wider network architectures. Deeper
and wider networks do however have more trainable parameters, which
increases the training time and run time in addition to the risk of overfitting
to the training data. Overfitting means that the network learns the training
data perfectly, but is unable to generalize to new, unseen data. It is therefore
often desirable to keep the network structure as shallow as possible without
neglecting accuracy.
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Convolutional Neural Networks

Although FC ANNs are powerful for certain tasks, they are not capable of
picking up the spatial information in images and videos. Images typically
contain hundreds of pixels in the vertical (H) and horizontal (W) directions,
each of them consisting of three RGB values. This consequently results in a
high amount of input values to the neural network (3 · H ·W). Traditional
FC networks are not well-suited for this type of data because 1) the high
amount of input nodes results in a lot of trainable parameters and 2) the
one-dimensional layer structure is unable to pick up the three-dimensional
spatial information that images contain. As a result, a more appropriate
network structure for analyzing images are CNNs.

CNNs differ from traditional FC ANNs in that each layer in the network
is built up of filters, or kernels, instead of fixed weights, and the nodes
are replaced by three-dimensional feature maps. These layers are known as
convolutional layers, and contain most of the learnable network parameters.
The kernels slide across the feature maps of the previous layer (or across
the input image in the first layer), performing a convolution at each location,
which creates the feature maps for the next layer. One single convolutional
layer takes a three-dimensional volume as the input and produces a three-
dimensional volume as the output [47]. The number of kernels and their
sizes control the depth, and to some degree the height and width, of the
output volume. It is common to have fewer, but larger, kernels in the first
layers, and more, but smaller, kernels in the final layers [38, 57, 96, 101].
As can be seen in Figure 2.6, the depth of the feature maps often increases
throughout the network while the width and height decreases.

Figure 2.6: An example of a CNN architecture with convolutional layers for
feature extraction, ReLU activation function for non-linear mapping, pooling
layers to reduce spatial dimensionality and the amount of parameters, and
finally a flattened fully connected classification network using the softmax
activation function to perform the classification [84].

In CNNs, the convolutional layers contain most of the learnable network
parameters, and are therefore arguably the most essential part of the
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network. The convolution is however simply a linear operation. A network
only consisting of linear operations would only be able to learn a linear
mapping from input to output, which would highly restrict network’s
learning ability, especially in complex problems.

To introduce non-linearity to the model, an activation function is applied
on the feature maps immediately after the convolutional layer. This converts
the feature maps to activation maps, though these two terms often are used
interchangeably. Many different activation functions exist, and which to use
highly depends on the network architecture and the problem the network is
used for.

In addition to the convolutional layers and activation functions, CNNs
contain pooling layers that are commonly inserted periodically between
convolutional layers. Pooling layers reduce the spatial size of the network,
which reduces the amount of parameters and number of computations
[47]. Equivalently with the convolutional layers, pooling layers consist of
filters that perform local operations on the input volume. Pooling layers
do however not contain any trainable parameters. Furthermore, pooling-
layers operate on each depth of the activation maps independently instead
of operating across the entire depth at once.

Although a variety of different pooling layers exist, the max-pooling layer
is most frequently used [47]. As the kernel slides over the activation maps,
the max-pooling operation keeps the highest value and discards all other
values. Parameters such as kernel height, kernel width and stride (how many
pixels the filter is moved after each pooling operation) need to be specified
in advance. An illustration of the max-pooling operation can be seen in
Figure 2.7.

Figure 2.7: Max-pool operation with stride = 2 and a 3× 3 filter sliding over
a 5× 5 activation map (left), resulting in a 2× 2 output volume (right). Best
seen in color.

In a classification problem, a shallow FC ANN is often inserted after the
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final convolutional layers. There are mainly two reasons for using FC layers
in CNNs. First, the fact that FC layers have connections to all neurons in the
previous layer enables the network to mix features from all image regions
when making decisions. Second, FC layers can efficiently reduce the feature
dimensionality to a one-dimensional output vector, rendering well-suited
for training classifiers. The right-hand side of Figure 2.5 depicts two FC
layers that are connected after all convolutional layers.

Recurrent Neural Networks

While CNNs are excellent to extract spatial features in single images, they
are not designed to discover temporal features found in sequential data
such as text strings, speech or video. RNNs, however, are another type
of neural networks more suited to extract temporal features. RNNs can
discover these temporal cues because the network architecture unfurls over
time, keeping connections to the node found at the previous time step. In
contrast to CNNs, RNNs can thus combine information from the current
and previous time steps to make decisions. RNNs are also trained in a
supervised manner using gradient descent to minimize the network error.
To update the weight parameters, backpropagation through time (BPTT),
which is a modification of the backpropagation algorithm used in FC ANNs
and CNNs, is commonly used.

Deep Learning for Classification

Classification is a problem that often can be approached using ANNs. The
goal is to learn a hypothesis that can assign the correct class (or label) to
the input data. Classes are commonly represented by a one-hot encoded
vector that contains the number one at the position representing the correct
class, and zero at all other positions. Given any input data, the hypothesis
should output a value close to one at the correct index, and values close to
zero at all other indexes. The classification problem goes hand in hand with
supervised learning when a one-hot labeled training dataset is available. As
an example, a dataset with four classes: car, truck, van, and bicycle, can be
represented as a four-dimensional vector [′car′, ′truck′, ′van′, ′bicycle′]. A
data point belonging to the class truck would then have the ground truth
values [0, 1, 0, 0], and a good hypothesis should output values as close to
this as possible.

One important observation to make is that the number of different classes
has to be known when designing the network structure. For instance, a
network with two output nodes, such as the network depicted in Figure
2.5, is only suitable for a classification problem where there are two classes.
Furthermore, the number of different classes has to be static and decided in
advance, because changing the amount of classes would require a different
network structure.
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Siamese Network Structure

In some cases, due to the nature of the problem or the lack of labeled data,
using the one-hot classification approach may not be feasible. An alternative
approach is to train the network by presenting pairs of similar or dissimilar
data points. This allows the network to learn discriminative features that
can be used to decide whether two new data points represent the same class
or not.

A common approach to train on pairwise data is to use the Siamese
network architecture. A Siamese network consists of two or more separate
but identical neural networks that share the same weight parameters. These
networks could in theory be of any kind, but in re-ID they are usually CNNs
[2, 79, 85, 95, 110, 112, 128, 143] or sometimes CNNs and RNNs combined
[8, 78, 107]. The key point, however, is that the networks do not have the
final FC classification layers. Instead, the features generated by the CNN or
RNN can be pairwise compared in order to separate the similar identities
from the dissimilar ones. The Siamese network learns an embedding that
pulls similar data close together and pushes dissimilar people further apart
in the feature space.

Instead of directly using class information to train, the network
only needs to know if the input data depicts the same person or not.
Consequently, the Siamese model can handle an arbitrary amount of classes.
This is a huge advantage when the number of classes is either very large, of
unknown size or when it varies over time.

The backpropagation algorithm is applicable to train a Siamese network,
but instead of comparing the network output against a ground truth vector,
the loss function is based upon how similar or dissimilar the two output
feature vectors are. This training method does not take full advantage of the
available labels, and is therefore known as semi-supervised learning.

2.3.4 Image-Based Re-ID

Re-ID research is often divided into two different categories, namely image-
based re-ID and video-based re-ID (see Section 2.3.5). In an image-based re-ID
approach, the probe p is an image of a person and the gallery G is a collection
containing one image of every person in the model. The majority of current
re-ID research and available dataset fall into the image-based category. The
image-based problem can either be treated as a classification problem or as
a matching problem.

The Classification Approach

In the classification model, each person in the gallery is treated as a separate
class, and the objective is to assign the correct class to each and every probe
image. The ground truth is one-hot encoded, thus it highly resembles the
problem of image classification. However, the fact that datasets contain
many identities (ranging from tens to over a thousand), contain few images
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of each identity (often as little as two) captured from different perspectives,
makes it a challenging classification task.

Variations of CNNs with FC classification layers are commonly used in
the classification approach [61, 64, 99, 124, 141]. Su et al. [99] and Li et al.
[61] detect body parts in separate sub-networks that are fused together to
generate the combined classification output. Li et al. [64] have a somewhat
similar approach, and derive both local features from selected image patches
in addition to global features from the entire BB. Xiao et al. [124] combine
data from six datasets to form a large gallery of identities allowing their
network to learn features from the different domains. Zheng et al. [141]
combine a classification CNN with a Siamese model, resulting in a network
that can simultaneously classify each identity and compute similarity scores
between image pairs.

The major drawback with the classification approach is that the number
of different classes depends on how many identities there are in the gallery.
These networks are therefore only suitable for the specific dataset they
were trained on, and are unable to tackle the dynamic gallery size in
real-world applications. This drawback can be overcome by replacing
the final classification layer with a distance metric during inference time.
The distance metric would then essentially use the features learned by the
classification network during training to decide if two features represent
the same person or not. This approach is however sub-optimal because
the network and the distance function are two completely separate blocks,
meaning that it is challenging to find the distance metric best suitable for
these specific feature representations.

The Pairwise and Triplet-Wise Matching Approach

Rather than assigning one class to every person, the matching approach
uses a Siamese network to compare pairs or triplets of images to decide if
these images depict the same person or not. The only information needed to
train such an architecture is whether the two images depict the same person
or not, which leaves it as an attractive option for the re-ID problem.

The major advantage of this approach is that it does not rely on a fixed
number of classes. The Siamese architecture can thus handle a dynamic
person gallery of arbitrary size both during training and run-time. In most
cases, this network attribute makes it a much more viable option for real-
world applications compared to the classification approach. The downside
is that the number of comparisons needed during run-time grows linearly
with the gallery size. This disadvantage is however arguably negligible
unless the gallery is very large.

Many researchers have studied re-ID using the pairwise [2, 79, 85, 95,
107, 110, 112, 128, 143] or triplet-wise [8, 16, 40, 69, 70, 102, 110] matching
approach. These works use a Siamese architecture consisting of CNNs or
a combination of CNNs and RNNs to distinguish similar from dissimilar
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identities.

Although these works report promising performance on datasets, none
of them are tested on real-world applications. These systems commonly
assume that the query person is guaranteed to be found in the gallery,
whereas a re-ID system in the context of robotics will have to deal with
a dynamic amount of both known and unknown individuals. This
assumptions leave them unable to meet the requirements of a re-ID system
for a mobile robotic platform.

Motivation for Video-Based Re-ID

Practical applications both in surveillance and robotics mostly use video
cameras instead of still images. Using only images for re-ID is suboptimal
because it does not take advantage of the rich temporal information found
in videos. The upcoming section looks into the advantage of exploiting
temporal cues in the re-ID problem.

2.3.5 Video-Based Re-ID

Video-based re-ID systems utilize videos (or multiple consecutive image
frames) rather than single images to identify people. Equation 2.1 still
applies, but now the probe p is a video sequence and the gallery G contains
one or several image sequences, rather than single images, of each person.
This distinction is illustrated in Figure 2.3.

Video data provides richer information than single images. Character-
istic temporal cues, such as gait patterns, can supplement spatial features
to disambiguate difficult cases. Combining spatial and temporal (spatio-
temporal) features, is known to perform better than system solely relying
on spatial features [134]. Additionally, video re-ID is more relevant for real-
world applications as people will typically be observed in video cameras
[78].

One approach is to use the Siamese model from image-based re-ID and
pooling the results to obtain one feature vector per video sequence [40, 61].
This approach is fairly straightforward with little overhead compared to the
purely image-based counterparts, but still shows promising performance on
various benchmarks.

Other researchers incorporate RNNs in the Siamese pipeline [71, 78, 82,
119, 125]. As expected, the RNN’s superior ability to pick up temporal
features result in better performance. Although not reported, this is likely
to reduce efficiency somewhat due to the added system overhead.

In an effort of avoiding the need of large-scale datasets, some researchers
attempt at training in a more unsupervised manner by using only one
labeled video per identity [72, 120, 127]. While this approach has the
potential to save a lot of manual labeling work, the re-ID accuracy is
currently significantly worse than the supervised counterparts.

25



Despite the fact that the majority of video-based re-ID systems report
better accuracy than the image-based approaches, they all assume that the
gallery size is fixed and known in advance, which leaves them unsuitable
for mobile robotic applications.

2.3.6 Toward More Practical Re-ID Systems

Some works attempt to minimize restrictive assumptions that separate
re-ID research from real-world applications. These can be divided into
two categories: open-world re-ID and end-to-end re-ID. Open-world re-ID
approaches the re-ID problem in a setting where the probe identities are no
longer guaranteed to exist in the gallery. End-to-end re-ID aim at combining
automatic person detection and re-identification to one system instead of
relying on the labeled BBs given in the datasets.

Open-World Re-ID

In an open-world re-ID setting, the identities of the probe persons are no
longer guaranteed to be present in the gallery. As can be seen in Figure
2.8, the open-world setting requires an extra component to determine if the
probe and the top gallery matches are more similar than a given threshold.
This setting was initially studied by Liao et al. [68], where the performance
of several metric learning algorithms were evaluated. The authors’ best
reported identification rate was as low as 17% on their newly proposed
evaluation metrics for the open-world re-ID setting, indicating that the
open-world scenario is significantly more challenging than traditional re-ID.
While Zheng et al. [140] reported slightly better performance on public
datasets, their experiments confirmed the challenging nature of open-world
re-ID.

More recently, Zhu et al. [144] investigated the open-world problem
in a large-scale setting. They exploit positive identity pairs to extract
discriminative features, and use hashing to group similar people together in
the search space. Their experiments show significant improvements in terms
of accuracy compared to the previous works [68, 140]. Although efficiency
is not reported in terms of seconds or FPS, the hashing function reportedly
allow for a search time of at least a order of two magnitudes faster than
non-hashing re-ID methods.

Efficient search is crucial in any surveillance system, especially when
mounted in public places, as the cameras continuously produce large
amounts of data. This is however slightly less relevant for a mobile robotic
application as the robot is likely to encounter fewer, and often the same,
people.

All re-ID research in the open-world setting to date currently falls in
the image-based category [68, 140, 144], and is therefore not adequate for
mobile robotic applications.
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Figure 2.8: The components in an open-world re-ID system. In addition
building and matching appearance models (traditional re-ID), the open-
world re-ID systems additionally check whether or not the probe identity
exists in the gallery.

End-To-End Re-ID

By combining person detection and re-ID, end-to-end systems aim at making
re-ID more applicable for real-world applications. As depicted in Figure
2.9, these methods typically rely on automatic people detection algorithms,
which makes the re-ID problem harder for two reasons. First, the people
detection accuracy directly impacts the re-ID accuracy [123, 126, 136]. More
accurate detectors will detect less outliers, i.e. various objects wrongly
classified as people, but this typically requires more computational resources.
Second, since the gallery is formed by the detected pedestrians, the detection
accuracy directly impacts the gallery size. Due to the dynamic gallery size,
Equation 2.1 (where it was assumed that p is guaranteed to be found in G)
no longer applies.

Figure 2.9: The components in an end-to-end re-ID system. In addition
to the feature extraction and matching blocks found in the classic re-ID
approach, an automatic person detector is used to form the gallery.

There are only a handful of projects that focus on end-to-end re-ID. Xiao
et al. [123] and Zheng et al. [136] both developed end-to-end re-ID systems
along with releasing large-scale datasets (see Chapter 3 for an overview
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of public dataset). Both projects rely on automatic pedestrian detection to
generate the gallery, and Zheng et al. [136] additionally rely on detectors to
generate probe images. Both methods report that the the detector quality
has a high impact on re-ID accuracy.

Even though end-to-end re-ID pushes traditional (and also open-world)
re-ID closer to real-world scenarios, the projects by Xiao et al. [123] and
Zheng et al. [136] fall under the image-based re-ID category, and are thus
not adequate for real-world robotic applications.

2.3.7 Multiple Object Tracking

Multiple Object Tracking (MOT)1 is a separate CV research domain
concerned about tracking multiple objects and people simultaneously. Every
tracked person is assigned an identity, and one objective of the tracker is
to re-assign the correct identity after a person has been temporarily out of
sight. Temporary occlusions, which are frequently caused by foreground
objects and crowded scenes, make the tracking problem very challenging.
To handle the challenging scenarios caused by occlusion, many recent
trackers use deeply learned networks trained on re-ID datasets to assign a
person appearance model to each tracked person [109, 111, 118, 122]. The
appearance model is used to reassign the correct identity to people after
they have been occluded.

Nevertheless, these projects are only concerned with short periods of
occlusions typically lasting for less than a second. Very short-term occlusions
induces little variation in the background and light conditions, changes
in human pose and varying camera angles, and identification systems
designed for these situations are likely to perform poorly on mobile robotic
applications.

2.3.8 Long-Term Re-ID

Most state-of-the-art re-ID research only considers very short-term re-ID.
On a real-world application, however, people are likely to be absent for
minutes, hours, or even days before re-entering a surveilled area or a mobile
robot’s environment. This implies further complications such as drastic
illumination changes, pose variations, and different colored and styles of
clothing.

Zhang et al. [131] recently took the initial step towards studying re-ID in
a long-term setting. Arguing that color features alone are not sufficient due
to the added challenges, their approach belongs to the video re-ID category,
exploiting temporal information extracted from people’s trajectories.

While their long-term re-ID study is more applicable for most real
scenarios, Zhang et al. [131] rely on the same restrictive assumptions
as many of the other re-ID projects. They use hand-drawn BBs, static

1MOT has its own yearly tracking challenge: https://motchallenge.net/
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surveillance cameras, and assume that the gallery contains the query
person. None of these assumptions are reasonable for most mobile robot
applications, leaving longer-term re-ID for real-world applications an open
problem.

2.3.9 System Efficiency

System efficiency in terms of FPS is of high priority for any robotic system
that need to operate in real-time. In the CV community, which includes
research in re-ID, efficiency is however often neglected to achieve higher
accuracy. In re-ID, few papers mention efficiency, meaning that most re-ID
systems are likely to be of little practical value for robotics.

A popular trend in re-ID is to apply metric learning on deep, pretrained
networks, such as AlexNet [57], VGG-16 [96], GoogLeNet [101], or ResNet
[38]. These networks have typically been trained on large-scale image
datasets and later fine-tuned on re-ID dataset. While this approach has
proven to be promising on re-ID benchmarks, networks with deeper
architectures require more computational resources, and are therefore likely
to exceed the real-time requirement found in robotics.

2.4 Summary

There have been many efforts in addressing the challenging problem of
people re-identification in the fields of HRI, robotics, and CV. In CV re-ID
systems, the assumptions of fixed (and known) gallery size and perfectly
hand-drawn pedestrian BBs are the main factors that hinder adaptation to
real-world robotic applications. Furthermore, the majority of these re-ID
systems create appearance models based on images, leaving them unsuitable
to re-identify people in video data. The lack of documented system efficiency
also gives reason to believe that many re-ID systems do not reach the real-
time requirements in robotics.

In HRI and robotics, most systems require having person appearance
models available in advance and are often limited to identifying only one
individual at a time. While some robotic re-identification systems can re-
identify multiple people without prior appearance knowledge [113, 115],
they use biometric features which requires people to directly face the robot
at an appropriate distance. This is not convenient because it requires robots
to interfere with the activities of the humans and may result in very artificial
and unnatural interaction between humans and robots.

Furthermore, with the exception of systems relying on biometrics (such
as face cues), re-identification is mostly done over a very short time span.
To adapt to dynamic human-centered environments and build personal
relationships, robots need to be able to re-identify people over longer time
periods [58]. Re-identification over several minutes, hours, or even days is
more challenging because it implies large variances both in light conditions
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and person appearances.

To overcome these shortcomings in CV re-ID, the proposed models are
trained using a dataset whose BBs are not perfectly hand-drawn, but rather
detected in an automated manner (see Section 3.2 for details about the
selected dataset), meaning that the re-ID system developed in this thesis
is tailored for a robotic context. Experiments are conducted with varying
gallery sizes to simulate various real-world robotic scenarios (Section 5.3.3),
and various ways of using video data instead of images are examined
(Section 5.2.2), which renders the re-ID model compatible to process video
data captured by mobile robots. Finally, the processing speed is evaluated
in terms of frame rate (Section 5.3.4), where it is shown that it is possible to
obtain real-time performance without neglecting accuracy.

Furthermore, the proposed re-ID system does not require having person
appearance models available in advance and is not limited to only re-
identifying a small amount of people. The model does not rely on biometric
features and can re-identify people under large changes in camera angles
and lighting conditions, meaning that this work develops a system that
is capable of re-identifying people in a manner that promotes natural and
pleasant interactions between humans and robots.
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Chapter 3

Datasets

This chapter presents an overview and comparison of publicly available
re-ID datasets. Important factors to take into consideration when selecting
appropriate datasets are examined. Finally, various aspects of the dataset
selected to evaluate the proposed re-ID system are discussed.
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3.1 Dataset Considerations

There is a large amount of publicly available labeled re-ID datasets. Table
3.1 shows an overview of the most popular datasets along with some of
their attributes [31].

Labeled datasets are required to train any deep ANN in a supervised
manner. There are multiple factors that need to be taken into consideration
when selecting an appropriate dataset. For a robotic application, a dataset
that reflects the typical circumstances of a mobile robot is required. This
thesis therefore identifies and assesses three dataset attributes that are of
high importance for the re-ID model: dataset size (Section 3.1.1), data type
(Section 3.1.2), and data labeling method (Section 3.1.3). Furthermore, an
appropriate dataset needs to contain video sequences of entire persons
(not only their faces) and have large variation in people appearances.
Additionally, the data needs to be captured from multiple angles with
ego-centric points of view to mimic the data captured from sensor mounted
on mobile robots.

3.1.1 Dataset Size

Complex classification problems with many classes require larger datasets
to train a deeply learned model. A large amount of data is needed to learn
more discriminative features that can better represent each person. If the
dataset is too small, on the other hand, the model will not have enough data
to train, leaving it unable to learn discriminative features and to generalize
to unseen data.

In 2014, Li et al. [66] published the CUHK03 dataset, which was the first
re-ID dataset that was large enough to train a deeply learned classification
model. The CUHK03 dataset contains over 13 000 BBs of 1 467 different
people. DL for image analysis became the dominating approach in re-ID
after Li et al. [65] and Yi et al. [128] successfully trained deep CNNs
using the CUHK03 dataset. Consequently, as can also be seen in Table 3.1,
re-ID datasets published after 2014 are significantly larger both in terms
of the number of people and the number of image frames compared to
older datasets. The increase in re-ID dataset size and the ever-progressing
performance of ANNs for image classification and feature extraction has
lead to the integration of ANNs in re-ID algorithms being the primary
approach in recent research.

3.1.2 Data Type

In re-ID, there is a clear distinction between image-based datasets and video-
based datasets. Image-based datasets typically consist of two or more images
of each person captured at different times and/or from different camera
angles (see Figure 3.2). Video-based datasets, on the other hand, consist
of two or more videos (often of varying length) of each person captured at
different times and/or from different camera angles (see Figure 3.3). Using
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Dataset Year #people #BB Detection Tracking Data type FP? Environ-
ment

Evaluation

VIPeR [33] 2007 632 1 264 hand n/a RGB image no - CMC

ETHZ [94] 2007 148 8 580 hand hand RGB video no city/
street

CMC

iLIDS [139] 2009 119 476 hand n/a RGB image no airport CMC

GRID [74] 2009 250 1 275 hand n/a RGB image yes subway CMC

CAVIAR
[17]

2011 72 610 hand n/a RGB image yes mall CMC

PRID2011
[41]

2011 200 24 543 hand hand RGB video yes campus CMC

3DPES [9] 2011 200 1 011 hand hand RGB video no campus CMC

PAVIS [10] 2012 79 - Microsoft
Kinect
SDK

n/a RGB-D &
skeleton
image

no indoor -

WARD [77] 2012 70 4 786 hand n/a RGB image no - CMC

CUHK01
[63]

2012 971 3 884 hand n/a RGB image no campus CMC

CUHK02
[62]

2013 1 816 7 264 hand n/a RGB image no campus CMC

CUHK03
[66]

2014 1 467 13 164 hand/
DPM
[28]

n/a RGB image no campus CMC

RAiD [22] 2014 43 1 264 hand n/a RGB image no campus CMC

BIWI [80] 2014 50 - Microsoft
Kinect
SDK

- RGB-D &
skeleton
video

no indoors -

iLIDS-VID
[114]

2014 300 42 495 hand hand RGB video no airport CMC

Market-
1501 [137]

2015 1 501 322 010 hand/
DPM
[28]

n/a RGB image yes campus mAP&CMC

MARS [135] 2016 1 261 1 191 003 DPM
[28]

GMMCP [23] RGB video yes campus mAP&CMC

LSPS [123] 2016 11 934 34 574 hand n/a RGB image - city &
movies

mAP&CMC

PRW [136] 2016 932 34 304 hand n/a RGB image yes campus mAP&CMC

DukeMTMC-
reID [142]

2017 1 812 34 441 hand n/a RGB image yes campus CMC

DukeMTMC-
4ReID [32]

2017 1 852 46 261 Doppia n/a RGB image yes campus CMC

Florence 3D
[83]

2018 16 39 315 - - RGB-D &
skeleton
video

no - CMC

RPIfield
[138]

2018 112 601 581 ACF [24] IoU RGB video yes campus -

MSMT17
[116]

2018 4 101 126 441 Faster
RCNN
[87]

n/a RGB image no campus mAP&CMC

Table 3.1: Some statistics of popular re-ID datasets that have been taken into
consideration for this project. A hyphen (-) means unspecified or unknown.

video sequences opens the possibility to exploit both temporal and spatial
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features, such as gait and various motion patterns.

Some datasets consist of color images/video (RGB) combined with
depth images/video (RGB-D). RGB-D data is captured by cameras with an
additional sensor that produces depth images where each pixel represents
the physical distance between the camera and the object it depicts. Depth
data is typically used to supplement RGB data in image and video analysis.

The Microsoft Kinect 1 is a popular RGB-D camera that is frequently
used in robotics. Skeleton data, which is information about position and
length of various limbs and body parts, is often provided along with the
RGB-D data because the Microsoft Kinect Software Development Kit (SDK)
allows for easily extracted skeleton data. Figure 3.1 depicts the RGB picture,
depth picture and the corresponding skeleton data from the BIWI re-ID
dataset [80].

Figure 3.1: Images from the BIWI re-ID dataset [80] with RGB images (top
row) and corresponding depth images with visualization of the extracted
skeleton information (bottom row).

Since mobile robots typically have RGB or RGB-D video sensors, a model
trained on a video-based dataset is likely to generalize better than a model
trained on still images. While depth data can provide useful information
that may simplify or improve the re-identification accuracy, current RGB-D
re-ID datasets, the PAVIS dataset [10] depicting 79 people, the BIWI dataset
depicting 50 people [80] and the Florence 3D dataset [83] depicting 16 people,
are not large enough to train a deeply learned model. Furthermore, depth
sensors often only work indoors, and the depth data can only be measured
accurately in a certain distance range (50cm to 5m for the Microsoft Kinect)
[1]. Processing depth data also requires a fair amount of computational
resources, which are usually limited on mobile robots, and processing depth
images should therefore only be used if it significantly improves efficiency
or accuracy.

1https://developer.microsoft.com/en-us/windows/kinect
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Figure 3.2: Typical image re-ID dataset containing pairs of bounding boxes
of each person. Images are taken from CUHK01 [63] (four left) and CUHK02
[62] (four right). Vertically aligned images represent the same person.

Figure 3.3: Typical video re-ID dataset containing multiple consecutive
frames for each person. Images are taken from the MARS dataset [135].
Vertically aligned sequences represent the same person.

3.1.3 Labeling Method

In re-ID datasets, each image is commonly labeled with a detected BB
around the depicted person along with the person’s unique identification
number. In video-based datasets, tracking is an additional labeling step that
associates the BBs of each person in consecutive frames. In the context of
re-ID, the labeled BBs are directly used to train the model, which means
that the method used to annotate the dataset will affect how well the model
generalizes to new data.

Labeling is most commonly performed by manually drawing the outline
of the BBs around each person. Manual hand-labeling techniques are very
time consuming, but typically result in accurate annotations. An alternative
to manual labeling is to use off-the-shelf algorithms to produce the dataset
annotations. This approach is more efficient, but often results in poorer
labeling quality in terms of accuracy. For instance, automatic detectors and
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trackers will produce false positives (FPs), also known as distractors, which
is background clutter or other objects wrongly detected/labeled as people.
Furthermore, BBs produced by automatic detectors and trackers are not
perfect, and will often either be slightly too small, too large, or skewed
towards one side.

Any real-world re-ID system will need to rely on automatic person
detectors and trackers to produce the BBs, meaning that FPs and inaccuracies
are guaranteed to occur. Despite the presence of BB inaccuracies in datasets
that have been labeled following an automated fashion, these datasets
have a closer resemblance to the data in any real-world re-ID system. It is
therefore argued that training a model on a dataset whose BBs have been
automatically labeled is likely to perform better than a model trained on
a hand-labeled dataset when deployed on a mobile robot. Datasets with
hand-drawn BBs have therefore been excluded for this project. Note that
even though the BBs have been produced by an automatic person detector,
the ground truth person identity still needs to be manually annotated.

3.1.4 Conclusions

After evaluating the different datasets by taking dataset size, data type, and
labeling method into account, the Motion Analysis and Re-identification
Set (MARS) [135] was selected as the most appropriate dataset to train and
evaluate the re-ID model. While it would have been desirable to have a
dataset with depth data, there are currently no depth datasets sufficiently
large to train a deeply learned re-ID model. The following section (Section
3.2) looks into the details of the MARS dataset.

3.2 The MARS Dataset

3.2.1 Dataset Attributes

The MARS dataset [135] is the largest existing video re-ID dataset. MARS
has a total of 1 191 003 video frames depicting 1 261 different people. There
are on average 13 video sequences, or tracklets, per person, each of them
averaging 59 video frames. These sequences are captured by six cameras at
a university campus in Beijing. Figure 3.3 depicts four video sequences of
two different people in the dataset.

Instead of manually annotating the BBs around each person, which is
the most commonly used annotation method in re-ID datasets, the creators
of MARS have done the annotation in an automated manner by using the
Deformable Part Model (DPM) [28] person detector and the GMMCP [23]
person tracker. Automatic labeling generally introduces more error than
hand-labeled datasets, making the re-ID problem more challenging. On
the other hand, automated annotation is likely to be similar to what can be
expected to be available on a mobile robotic application, as robots also rely
on automatic person detection and tracking. Furthermore, as depicted in
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Figure 3.4: An example of a distractor sequence from the MARS dataset
[135]. While some distractors are video sequences that only depict a small
part of a person, other distractors may be videos of the background or other
objects.

Figure 3.5: Two sequences from the MARS dataset [135] depicting the same
person. The change of clothes and high difference in camera angles makes
this a challenging re-identification case. The image second to the right
in the upper row illustrates how automatic person detectors can result in
inaccurate BBs.

Figure 3.4, MARS includes distractor sequences, which makes the dataset
more realistic because distractors are bound to be found in any real-world
application.

Although the height of the mounted cameras is not reported by the
authors, it seems to be slightly above head-height, which is similar to the
perspective of a vision sensor mounted on a typical mobile robot. The fact
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that there are six different cameras recording at different points in time
results in high variation in viewpoint and lighting conditions. Additionally,
people are performing different activities (e.g. walking, running, and
bicycling) and some people even change clothing across sequences (e.g.
wearing t-shirt in one sequence and a sweater or jacket in another sequence).
An example of two challenging re-ID video sequences can be seen in Figure
3.5.

3.2.2 Generalizability

Along with the release of MARS, the authors trained a CNN with three
different distance metrics on their dataset and evaluated the models on two
other well-known video-based re-ID datasets, PRID-2011 [41] and iLIDS-
VID [114]. They report the cumulative matching characteristics (CMC)
curves (see Section 5.2.1), and show that the model performs relatively well
on a completely separate dataset. When fine-tuning the weights of the CNN
using the target datasets, the performance is near the state-of-the-art. The
results as reported in their paper can be seen in Figure 3.6.

A robotic re-ID algorithm trained on a dataset that do not realistically
depict real-world data is likely to generalize poorly when deployed on a
mobile robot. The aforementioned observations do, however, indicate that
the MARS dataset may have a smaller reality gap compared to other re-ID
datasets. This may mean that a re-ID model trained on MARS can yield
good performance when introduced to new, unseen data, i.e. video captured
from a mobile robot. This dataset attribute is important for this project as
the goal is to create a re-ID system that can be deployed on a mobile robot
and perform well on real-world data.

Figure 3.6: CMC curves (see Section 5.2.1) on three video re-ID datasets. In
(a) and (b), "CNN(mars)" and "CNN(mars→PRID/iLIDS)" show the model
performance of the respective datasets when the CNN is trained solely on
MARS and when the CNN is trained on MARS and fine-tuned on PRID-2011
or iLIDS-VID, respectively. This figure is from the MARS paper [135].
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3.2.3 Unexplored Aspects

Although numerous re-ID research has been conducted on the MARS dataset
since its release [3, 20, 71, 72, 100, 120, 121, 127], these projects mainly
focus on improving benchmark results, which are measured by CMC and
mAP (see Section 5.2.1), or exploring the use of semi-supervised or fully
unsupervised learning methods to reduce the need of labeled datasets. These
benchmark evaluations are done in a closed-world environment where all
probe persons are known in advance, which, as discussed in Chapter 2, is
an unrealistic assumption in a robotics context.

Additionally, algorithm efficiency is rarely prioritized or reported in
existing re-ID research. While a surveillance application, which is the main
target application for re-ID systems, may not necessarily always require
high efficiency, mobile robots rely on algorithms that run in real-time in
order to operate smoothly. Algorithm efficiency is therefor a crucial aspect
of any re-ID system for mobile robots.

In light of these observations, the MARS dataset is used to evaluate the
developed model without assuming that every probe identity is known
in advance (Section 5.3.3). Furthermore, the model efficiency is evaluated
in terms of FPS, showing that it is possible to achieve benchmark results
comparable to state-of-the-art re-ID systems while preserving the high frame
rate requirement in the field of robotics (Section 5.3.4).
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Chapter 4

Real-Time Person
Re-identification System Using
a Siamese Neural Network

This chapter presents an in-depth description of the essential modules in
the proposed person re-ID pipeline. Various aspects regarding details of the
system architecture are discussed along with some encountered challenges.
This chapter is divided into three sections: Section 4.1 briefly presents the
overall re-ID pipeline, Section 4.2 describes how the feature extraction is
performed, and Section 4.3 discusses how the raw features are used to
determine a person’s identity.
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4.1 System Overview

Figure 4.1: The proposed re-ID pipeline consisting of a Siamese CNN. Note
that this figure only depicts one gallery person and one probe person, while
in reality there are multiple probe and gallery persons.

The objective of the re-ID system is to assign a person identity, which
is referred to as a person ID (pID), to all probe, or query, persons (see
Background Section 2.3.1 for a definition of a probe person and other re-ID
terminology). Robotics requirements are taken into account when designing
the re-ID pipeline to ensure that the model developed in this work is suitable
for a mobile robotics application. These requirements include that the model
can tackle an arbitrary, and potentially large, amount of different probe
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and gallery people, without having any preliminary knowledge about these
individuals. The model also needs to be robust against changes in camera
viewpoint, varying lighting conditions, and changes in human pose and
orientation. Most importantly, the re-ID system needs to be as lightweight
as possible and run at a high frame rate to ensure good performance on
low-cost hardware components and to operate efficiently in real-time.

Figure 4.1 depicts the proposed re-ID pipeline consisting of a Siamese
CNN. First, features are extracted from the query and gallery images.
Secondly, a feature combination module combines all features of a video
sequence. Finally, a matching module computes a distance score between
the feature representing the probe video and all features representing the
gallery videos. The probe person is assigned the identity corresponding
to the identity of the gallery person with the smallest distance score (most
similarity).

In order to predict the pID of every probe person, the proposed re-ID
system relies on two essential components, namely a feature extraction
component and a feature matching component. The objective of feature
extraction is to find and extract discriminative features from the input data.
These features are used to create person descriptors of the probe person
and of all gallery persons. Then, once the person descriptors have been
created, the feature matching component compares the person descriptor
of the probe person against the person descriptors of each person in the
gallery, computing a numeric distance for each comparison. A shorter
distance means higher similarity, while a longer distance represents higher
dissimilarity. Finally, the pID of the gallery person with the highest similarity
to the probe person is assigned as the probe person’s ID.

4.2 Feature Extraction

Figure 4.2 depicts how the network extracts a feature vector from one video
frame. Following the recent trends in re-ID research, and the CNNs superior
ability to extract features from image data, the developed re-ID system uses
a CNN to learn and extract discriminative and useful features. The CNN
processes one video frame at a time and produces a 128-dimensional feature
vector from each frame. Each video will therefore have N 128-dimensional
feature vector, N being the length (number of frames) of a video.

4.2.1 Network Architecture

The majority of state-of-the-art CNN-based feature extractors in re-ID are
based on very deep CNNs such as AlexNet [57], VGG-16 [96], GoogLeNet
[101], or ResNet [38]. These networks are trained on large-scale image
datasets and thereafter fine-tuned on re-ID datasets. While this approach
yields good results on dataset benchmarks, it has two major drawbacks.
First, training very deep CNNs is time-consuming and requires a larger
amount of training data compared to shallower CNNs with fewer learnable
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Figure 4.2: The CNN outputs a feature vector, or feature embedding, (F)
with 128 float values that together represent the characteristics of the input
image. The feature vectors are later compared to match similar people.

parameters. It is therefore common that very deep CNNs are trained on
large-scale datasets, such as ImageNet [59], before they are trained for a
specific application, such as person re-ID. Second, the deeper the CNN, the
more memory and time is required to process the data when the model
is deployed on a real application. Both memory and time are limited and
critical resources in robotics, and it is therefore necessary to keep CNNs as
lightweight as possible.

Based on this observation roboticists typically develop shallow and
lightweight CNNs to better fit the needs of mobile robotics. Hermans et
al. [40] recently developed a shallow Siamese CNN, which they coined
LuNet, for re-ID. Despite being very lightweight, their network achieved
near state-of-the-art results on the Market-1501 dataset [137] and the MARS
dataset [135] . However, the authors did not report any results in terms
of processing speed (frame rate), which is crucial for robots that require
real-time performance.

This thesis considers three different network architectures. Inspired
by the performance of LuNet [40], the LuNet network architecture was
reproduced. Next, it is experimented with developing shallower and more
lightweight architectures that are more suitable for robotics. To that end,
two other networks, LuNet Light and LuNet Lightest are implemented. LuNet
Light contains three fewer layers than LuNet. LuNet Lightest contains five
fewer layers than LuNet, and is the most lightweight network presented in
this thesis. Table 4.1 provides an overview of the three network architectures.

LuNet Light and LuNet Lightest were built using architectures similar
to that of LuNet. There are two reasons to experiment with shallower
architectures. First, shallower networks are generally more efficient, which
means they are more suitable for robotics. Second, manipulating the number
of layers affects the number of learnable parameters. More learnable
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LuNet [40] LuNet Light LuNet Lightest
conv #1 conv #1 conv #1
res #1 res #1 res #1
pool #1 pool #1 pool #1
res #2 res #2 -
res #3 res #3 -
res #4 res #4 res #4
pool #2 pool #2 pool #2
res #5 - -
res #6 - res #6
pool #3 - pool #3
res #7 res #7 -
res #8 res #8 res #8
res #9 res #9 res #9
pool #4 pool #4 pool #4
res #10 res #10 res #10
res #11 res #11 -
pool #5 pool #5 pool #5
res #12 res #12 res #12
FC #1 FC #1 FC #1
batch-norm #1 batch-norm #1 batch-norm #1
LReLU #1 LReLU #1 LReLU #1
FC #2 FC #2 FC #2

Table 4.1: The architecture of the three networks that are considered for this
project, LuNet, LuNet Light, and LuNet Lightest. A hyphen (-) indicates that
this layer exists in LuNet but has been removed in the respective network.
"res" is a residual block [38], "pool" is a max-pooling layer, "conv" is a single
convolutional layer, "FC" is a fully connected layer, and "LReLU" is the leaky
rectified linear unit activation function [75]. The uppermost row is the first
layers and the last row is the final output layer.

parameters generally means that the network can learn more complex
problems. However, this also requires more system memory and CPU or
GPU resources, and it is therefore desirable to keep the number of learnable
parameters to a minimum.

For the most part, LuNet consists of two or three residual blocks followed
by a pooling layer. In LuNet Light, the same structure is kept, but with
one less "res→ res→ pool" combination. Since this change is rather small,
LuNet Light is expected to perform comparably to LuNet. However, since
LuNet Light consists of fewer layers, it should be somewhat more efficient
than LuNet. In LuNet Lightest, a different approach is taken by only
reducing the number of residual blocks and keeping all pooling layers.
Since pooling layers reduce data dimensionality, thus also reducing the
number of learnable parameters, it is expected that LuNet Lightest is likely
to be the most efficient of the three. However, chances are that removing
four residual blocks may have a negative effect on the network performance
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in terms of accuracy.

Table 4.2 provides an overview of the number of learnable parameters
in each network architecture. Somewhat surprisingly, LuNet Light contains
significantly more learnable parameters than LuNet and LuNet Lightest,
despite having fewer layers than LuNet. This is due to the removal of one
pooling layer (pool #3), which affects the data dimensionality and number
of learnable parameters in all consecutive layers. LuNet Lightest has 16%
fewer learnable parameters than the original LuNet, which is a significant
reduction for any light-weight application.

LuNet [40] LuNet Light LuNet Lightest
2 897 158 4 329 222 2 440 710

Table 4.2: The number of learnable parameters in each network.

As can be seen in Table 4.1, all three architectures consist of six essential
building blocks, namely convolutional layers, FC layers, Batch Normalization,
activation functions, pooling layers, and residual blocks.

Convolutional Layers

All LuNets commence with one convolutional layer (conv #1). This layer
takes RGB images with three channels as the input and performs 128
convolutions with kernels of size [7 × 7]. This layer serves as an initial
step to reduce the width and height of the data, while increasing the depth
from 3 channels to 128 channels. The first layer typically learns to extract
low-level features such as edges, corners, and lines (see Section 5.1.3 in the
Experiments chapter for visualization of the activation maps).

Recent successful CNNs commonly increase the number of kernels in
each convolutional layer while decreasing the kernel size throughout the
network [38, 57, 96, 101]. This technique is applied to all three versions of
LuNet. The depth is increased from three channels in the input image to
512 channels in the final convolution, and the width and height is decreased
from 64× 128 in the input image to 4× 2 after the final convolution. An
overview over the number of kernels in each convolutional layer may be
seen in Table 8.1 in the appendix. In all versions of LuNet, all convolutional
layers, except for res #1, are found inside the residual blocks which will be
discussed shortly.

Fully Connected Layers

Two FC layers (FC #1 and FC #2) are applied at the very end of all LuNets.
There are mainly two reasons why it is useful to include FC layers at the
end of all LuNets. First, since the layers are fully connected, they can merge
features that have been extracted in local areas by the convolutional layers.
This enables the networks to mix visual features from the entire human
body when creating the final feature vector.
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Second, FC layers can be used to efficiently reduce the feature
dimensionality to a small, one-dimensional vector. For instance, the first FC
layer (FC #1) reduces the dimensionality from 1 024 to 512 dimension. FC #2
further reduces it to 128 dimensions, producing the output feature vector
that is eventually used to compare and match person identities.

Activation Functions

Activation functions are commonly applied right after the convolutional
and FC layers, and are needed to introduce non-linearity to the network.
Without activation functions, the network would simply perform a linear
transformation between input and output, which would highly restrict the
network’s learning ability, especially in complex problems.

Many different activation functions exist. Factors such as data type,
network architecture, and the nature of the problem to solve (e.g. regression,
classification, verification etc.) should be taken into account to select an
appropriate activation function. In all versions of LuNet, all convolutional
layers along with the first FC layer (FC #1 in Table 4.1) are followed by a
leaky rectified linear unit [75] activation function, commonly referred to as
leaky ReLU or LReLU. The final FC layer (FC #2 in Table 4.1) is linear and is
not followed by any activation function.

Figure 4.3: Plot of the leaky ReLU activation function with the negative
slope constant α = 0.3. The x-axis is the value before the LReLU operation
and the plotted line, LReLU(x), is the activated value.

Leaky ReLU is a popular activation function because it enables the
network to converge faster during training compared to other activation
functions, such as the sigmoid or the tanh activation functions [47]. Leaky
ReLU is also very simple to implement and does not involve any heavy
mathematical operations, meaning it adds a minimal CPU processing
overhead on the network. Furthermore, leaky ReLU does not suffer from
the vanishing or exploding gradient problem, a phenomenon that, in worst case,
can leave the network unable to learn.
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Leaky ReLU is defined as follows:

LReLU(x) = max(αx, x) =
{

αx i f x < 0
x i f x ≥ 0

(4.1)

where x is the value in any given neuron and α is a hyperparameter that
decides the slope of the activation function when x < 0 (see Figure 4.3 for
a plot of the activation function). Following the recommendations of [40],
α = 0.3 was used in all versions of LuNet.

Pooling Layers

To reduce the spatial size of the data (width and height), pooling layers
are inserted periodically between the residual blocks. More specifically, all
LuNets leverage the max-pooling operation to control the data volume. The
pooling operation is always performed after convolutional layers or residual
blocks, and operates on each depth of the activation maps individually. Both
LuNet and LuNet Lightest have five max-pooling layers, while LuNet Light
has four max-pooling layers.

In all versions of LuNet, all pooling layers have a kernel size of 3× 3
and a stride of 2. This means that for each 3× 3 patch in the input volume,
the highest number is kept and the rest are discarded. Stride of 2 means that
the filter slides by a step of 2 pixels before repeating the operation. Figure
4.4 illustrates the max-pooling operation on a 5× 5 volume using the same
kernel size, 3× 3, and stride, 2, as the pooling layers in all LuNets.

Figure 4.4: Max-pool operation with stride = 2 and a 3× 3 filter sliding over
a 5× 5 activation map (left), resulting in a 2× 2 output volume (right). Best
seen in color.

Batch Normalization

Batch Normalization [42] is an important algorithm that is commonly used
in deep neural networks. Batch Normalization allows for training of deeper
network architectures, reduces training time, and makes the model less
sensitive about small changes in hyperparameter values [42].

48



Batch Normalization works by reducing the covariance shift in each
network layer. Covariance shift is the change in the distribution of the
input data. This effect is problematic because each layer in the network
continuously has to adapt to the new data distribution. Even a small change
in the input data’s distribution can negatively affect the learning capability
of NNs, especially those networks that are very deep. This is because
as the data passes through the different layers and operations, such as
convolutions and pooling operations, the potentially small change in the
input data distribution is amplified in every layer. If no measures are taken
to counteract the shift in data distribution, the network will probably train
slowly and learn a sub-optimal function.

To reduce the covariance shift, Batch Normalization normalizes the
data in each layer of the network. During training, Batch Normalization
normalizes the batch mean (µB) and the batch variance (σ2

B) of each node
in the activation maps. µB and σ2

B are estimated during training, and these
estimated values are used to normalize the data during inference time.
Since the mathematical operations that Batch Normalization performs differ
during training and testing, it is crucial to specify when the network is
training and when it is being tested to ensure that Batch Normalization
works correctly. In all versions of LuNet, Batch Normalization is applied
subsequent too every convolutional operation, including those inside each
residual block.

Residual Blocks

Generally speaking, deep networks are capable of learning more complex
functions than shallower networks. However, as networks get very deep,
they are unable to learn simple functions, and the performance will saturate;
furthermore, at some point it will start degrading (known as the degradation
problem) [38].

Residual blocks were designed to overcome the degradation problem. The
residual block was initially proposed by He et al. [38] in a 2016 paper where
the authors presented ResNet, a very deep CNN for image classification.
The authors designed a CNN consisting of many consecutive residual
blocks instead of naively stacking many convolutional layers to increase the
network depth. Figure 4.5 depicts the difference between a regular CNN
architecture and an architecture consisting of residual blocks.

One residual block is a stack of two or three convolutional layers with
an activation function after each layer. The difference between a residual
block and a regular stack of convolutions, however, is that residual blocks
contain a skip connection, or identity shortcut, which is a connection from
the start of the residual block that is added at the end of the residual block
(see Figure 4.6 for a visualization of the skip connection in one residual
block). In a regular series of convolutional layers, each layer attempts to
learn the ground truth value. In a residual block, however, each block tries
to learn the residual between the input and the ground truth. He et al. [38]
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Figure 4.5: The difference between a residual CNN and a plain CNN. The
curved arrows in the residual CNN are "skip connections". 3× 3 and 7× 7
are filter sizes, while 64 indicates the number of filter banks (depth). This
figure is a slightly modified excerpt from [38].

observe that it is easier to learn the residual of output− input than directly
learning the output. Furthermore, the skip connection helps overcoming
the vanishing or exploding gradient problem, allowing for faster learning in
deeper networks.

Figure 4.6: A "bottleneck" residual block from [38].

All residual blocks in the three LuNets are of the "bottleneck" type
as depicted in Figure 4.6. Bottleneck residual blocks are built up from
na 1 × 1 convolutions, followed by nb 3 × 3 convolutions, and finally
nc 1× 1 convolutions. The first 1× 1 convolution in the bottleneck residual
blocks reduces the data dimensionality, meaning that the following 3× 3
convolution can be performed more efficiently. The efficiency aspect of the
bottleneck residual blocks leaves it as an excellent option for networks that
need to process the data fast. After the 3× 3 convolution there is a final set
of 1× 1 convolution that normally restores the dimensionality from before
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the residual block. In some cases, the last convolution increases the depth
of the data. In that case, the depth of the identity, X, is increased to match
the new dimensionality to make the final addition F(x) + X possible. The
dimensionality increase is done by using 1× 1 convolutions.

The parameters na, nbandnc regulate the depth of the activation maps. In
the first residual block, the activation maps have 128 channels. This depth
is periodically increased, first to 256 channels and finally to 512 channels
before the first FC layer (FC #1). Table 8.1 in the appendix specifies the
values of na, nbandnc in each residual block.

Weight Initialization

All kernel values in the convolutional layers and the weights in the FC layers
need to be assigned an initial value. The variance scaled initialization [39]
is commonly used with the LReLU activation function, and was used to
initialize all kernels in the convolutional layers. For both FC layers, Xavier
initialization [30] was used.

4.2.2 The Triplet Loss

By comparing predictions by the CNN with the ground truth, the loss
function tells the network how well it performed. A loss function is essential
to train any CNN, and is arguably one of the most important design aspects
to consider in order to design successful network architectures.

The loss value is typically calculated once for each batch. One batch
is the collection of all images that are fed through the network before the
loss value is computed. After the loss value is calculated, the optimization
algorithm (see Section 4.2.3) updates the learnable parameters before a new
batch is fed through the network.

Many loss functions exist for binary and multi-class classification
problems. However, as discussed in the background chapter (see Section
2.3.4), classification networks can be problematic in the field of re-ID due
to a large amount of classes (pIDs) that differ between the training and test
set (the pIDs in the training set are not the same as the pIDs in the test set).
To avoid these complications, all three LuNets are Siamese CNNs instead
of traditional classification CNNs. Siamese CNNs differ from traditional
CNNs in that instead of learning a mapping from an input image to a class,
the Siamese networks learn a feature vector, or feature embedding for each
input, and tries to predict whether two feature embeddings depict the same
person or not. A Siamese network structure is better suitable for a robotic
re-ID system because it removes the need of a distance metric learning
function, and it allows us to easily and efficiently handle a possibly large
and arbitrary amount of different people identities.

To allow the Siamese CNN to learn similarities between input images, the
batch hard triplet loss proposed by Hermans et al. [40] is used in all versions
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of LuNet. The triplet loss function first became popular after Schroff et al.
[93] successfully used it in their neural network for face recognition, coined
FaceNet, that improved state-of-the-art results by a large margin. Hermans
et al. [40] modified the original triplet loss and achieved impressive results
when they applied it to LuNet and the re-ID problem.

In the batch hard triplet loss, each loss value is calculated using the
distances between the feature embeddings of three input images, known as
triplets. These triplets consist of an anchor, a positive instance, and a negative
instance. The anchor and the positive instance are feature embeddings that
represent the same identity (two images of the same person), while the
negative instance is a feature embedding representing a dissimilar identity
(the image does not depict the same person as the anchor). The batch hard
triplet loss is defined as

L(θ; X) =
P

∑
i=1

K

∑
a=1

[
ln
(

1 + exp
( hardest positive︷ ︸︸ ︷

max
p=1→K

( fθ(xi
a), fθ(xi

p))−

min
j=1→P
n=1→K

j 6=i

( fθ(xi
a), fθ(xj

n))

︸ ︷︷ ︸
hardest negative

))]
+

(4.2)

where X is the collection of all images in a batch, θ is the collection of all
network parameters, P is the number of different identities in the batch,
K is the number of images of each identity, fθ(x) is the feature vector of
one image as produced by LuNet (θ) and max and min are functions that
respectively return the maximum and minimum distance between the two
feature vectors. Following the recommendations by Hermans et al. [40], the
Euclidean distance is used to measure the distance between feature vectors.

Figure 4.7: a) Anchor with three positive samples. b) Anchor with three
negative samples. The hardest positive is the sample with the same identity
as the anchor (A), but with least similarity (p3 in the figure). The hardest
negative is the sample with a different identity than the anchor (A) that has
the highest similarity (n1 in the figure). Longer arrow represents higher
distance (dissimilarity) between the feature vectors. Best seen in color.
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For each image, or anchor, in a batch, the first term in Equation 4.2
(max(a, b)) returns the hardest positive and the second term (min(a, b)) returns
the hardest negative. Of all possible image pairs for each image in a batch,
the hardest positive is the image pair that depicts the same person, but also
has the greatest measure of dissimilarity (i.e., largest distance, see Figure
4.8). Similarly, out of all possible image pairs for each image in a batch,
the hardest negative is the image pair that depicts different persons but
has the highest measure of similarity (i.e., shortest distance, see Figure 4.9).
In other words, hard positives are image pairs of the same person that
are hard for the network, possibly because of high variance in viewpoint,
challenging lighting conditions, or occlusions. Hard negatives are image
pairs of different people that the network believe depict the same person,
possibly due to similar clothing style or clothing color. Figure 4.7 provides
a visualization of hard positives and hard negatives represented in a two-
dimensional space.

Figure 4.8: An example of a hard positive image pair. Both images depict
the same person, but a largely inaccurate BB in the right image along with
with a highly different camera angle makes difficult to tell that both images
depict the same person.

Figure 4.10a) depicts a hard triplet with a high loss value, and Figure
4.10b) depicts an easier triplet with a smaller loss value. As the network
is presented with many hard triplets during training, it learns to push the
negative instance further apart from the anchor and at the same time pulling
the positive instance closer to the anchor, i.e. more triplets like Figure 4.10b)
and less triplets like 4.10a).

Hard triplets can cause the training to be very slow, or even stagnate
early in the training phase if the triplets are too hard for the network to learn.
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Figure 4.9: An example of a hard negative image pair. The images depict
different persons, but similarity in terms of clothing, hair color, and camera
angle, along with and the presence of bikes in both images, makes it
challenging, even to the human eye, to tell that the two images do not
depict the same person.

Shallower networks are especially prone to this issue because they cannot
learn as complex functions as deeper networks. Hermans et al. [40] did not
encounter this issue with LuNet, however, it may become problematic for
networks that have less convolutional layers. In light of this, the developed
system avoids this potential problem by removing constraints regarding
which images are selected when creating the batches. This means that
there may be two images of the same person from the same video. Two
images from the same video are likely to have less variance than images
from different videos, because there is a high similarity in camera angle,
clothing color, and light conditions. Intuitively, this should yield slightly
easier triplets, which again reduces the chance of having little or no progress
early in the training phase. This differs from the implementation of Hermans
et al. [40], which selected images from different videos.

Batch Size for the Triplet Loss

To ensure proper functioning of the batch hard triplet loss, it is important
to carefully select the size of the batches and which pIDs are included in
each batch [40]. Each batch (B) needs to contain K images of P different
persons, resulting in a batch size of B = P · K. Hence, every batch contains
P · K unique triplets, where each image in the batch is used as an anchor
once, but may be used as the hard positive or hard negative either zero
or multiple times in the other triplets. The batch hard loss value is then
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Figure 4.10: Visualization of a hard triplet where the anchor is closer to the
negative instance (a) and an easier case where the anchor is closer to the
positive instance (b). In re-ID, a positive instance (blue circle with a "+") is
a person with the same ID as the anchor (green circle with "A"), while the
negative instance (red circle with a "-") is an other person. Shorter arrows
(distance) represent more similarity. Best seen in color.

calculated on each triplet, such that the loss function is made up by the sum
of a total of P · K float values. P and K are hyperparameters that are more
closely discussed in Section 5.1.1.

4.2.3 Optimization Algorithm

As briefly discussed in background Section 2.3.3, optimization algorithms
are commonly used to train CNNs. The optimization algorithm is a
mathematical function whose goal is to find the combination of learnable
parameters that minimize the loss function. In CNNs, the filters in the
convolutional layers and the weights in the FC layers are the learnable
parameters, and in all LuNets the batch hard triplet loss function [40]
(Section 4.2.2) is the loss that the optimization algorithm aims at minimizing.

The Adam optimization algorithm [51] was used to optimize the network
parameters in all three versions of LuNet. Adam is a first-order optimization
algorithm, meaning that it uses the gradient values of the loss function with
respect to the trainable parameters to update the network parameters in a
manner that minimizes the triplet loss. It has been shown to be excel to train
networks that have many trainable parameters and when the network is
trained on large datasets [51]. Furthermore, Adam was used by Hermans et
al. [40] to train LuNet, where the authors showed that it is well-suited to
optimize Siamese network architectures and the triplet loss.

As with most optimization algorithms, Adam requires a set of specified
hyperparameters: 1) the learning rate αlr (not to be confused with the slope
parameter α in the leaky ReLU function), 2) the decay rates β1 and β2, and
3) a numeric stability constant ε. The learning rate decides how quickly the
network learns, i.e. how much the weights are updated in each backward
pass. The decay rates are used to control the gradients’ moving average.
The numeric stability constant is needed simply to avoid division by zero.
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Values for the decay rates and the numeric stability constant are less critical
than the learning rate, and the authors’ recommended default values [51]
are therefore used. The specific hyperparameter values used for training are
are discussed in Section 5.1.1.

4.2.4 Data Preprocessing

Before the network can be implemented and trained, the data needs to be
preprocessed. The data preprocessing is a composition various operations that
are applied to the dataset before the data is used to train the model.

The first aspect to consider when it comes to data preprocessing is the
dataset size. The MARS data set, with its almost 1.2 million images that
necessitates 6.8 GB of storage space, requires some careful considerations
when it comes to how the data is processed to ensure efficient training.
When feeding the dataset to the network, the easiest option is to load the
entire dataset to memory before starting the training process. While this is a
simple and feasible approach for small datasets, the size of MARS and the
hardware available for this thesis (see appendix Section 8.1 for hardware
details) makes it unsuitable for this work. Instead of loading the entire
dataset to memory at once, only parts of the dataset are loaded at a time.
When a new batch is needed, only the images of P different pIDs are loaded
to memory, leaving enough memory available to train the network.

Loading the dataset to memory is a time-consuming task, especially
when the data consists of larger files, such as images. If the dataset is loaded
to memory all at once, this time-consuming task is only performed once, and
is therefore less critical. When the dataset is loaded in an on-line manner
when the data is needed, however, this process is repeated frequently and
can become the bottleneck during training. To minimize this bottleneck, the
dataset is converted to Tensorflow Records1, or TFRecords, which is a simple
file format to store sequences of binary files, or records. It was found that
converting the MARS dataset to TFRecords sped up the LuNet training time
by at least a factor of ten.

In DL, it is common and good practice to shuffle the input data before
training the network. Randomizing the order of the training data ensures
that the network is presented with a greater variety of classes, or pIDs, in
each batch, making it easier to minimize the loss function. When the entire
dataset is stored in memory, it can easily be shuffled with one simple line
of code. When only a portion of the dataset is stored in memory at a time,
however, shuffling this portion will only randomize a potentially small
subset of the data. In many cases, this will lead to very poor randomization,
for instance if most of the data loaded is from the same class, and is therefore
not an applicable approach for this thesis. Another possibility is to shuffle
the entire dataset and store the shuffled version on disk. This is however a
time-consuming operation that should be avoided when possible.

1https://www.tensorflow.org/tutorials/load_data/tf_records
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To overcome issues related to randomizing the data, shuffling is
performed in two steps. The first step is to randomly sample P pIDs
(remember that a pID is simply an integer that represent one individual,
not the actual images or videos of this individual) and load all images
corresponding to these pIDs to memory. Instead of having all images of the
625 persons in the MARS dataset loaded in memory, only the subset of P
images that are needed are stored in memory at any given time. The second
step is to randomly select K images of each of the pIDs currently stored in
memory. Since this is a very small subset of the training data, it can easily be
shuffled in memory without any operations that are very time-consuming.
This was considered to be the least computationally expensive way to fully
randomize the data while keeping the requirement of having K images of P
pIDs in each batch.

After loading and randomizing the dataset appropriately, the data is
augmented by resizing all images and applying random flips and crops
which is common practice when training CNNs [57]. Random crops and
flips ensures that the network sees a greater variety of input images, meaning
it will be more robust towards inaccurate BBs and changes in camera point
of view. Following the procedure by Hermans et al. [40], the images are
first converted to a size of H = 144, W = 77, D = 3, where H is the height, W
is the width and D is the depth. Then, the images are randomly cropped
to a size of H = 128, W = 64, D = 3. D is kept constant to keep the three
color channels in RGB images. The cropping is followed by a 50% chance
of horizontally flipping the image. Figure 4.11 illustrates the cropping and
flipping operations.

The original size of all MARS images is H = 256, W = 128, D = 3,
meaning that the cropping has reduced the image size by 75% while keeping
the same aspect ratio. Smaller images allow for a larger batch size without
running out of memory because passing each image through the network
requires less memory.
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Figure 4.11: Example of one image from the MARS dataset (left), after
random crop is applied (middle), and the horizontally flipped version (right).
This specific image has been cropped by 10 pixels from the left, 6 pixels
from the right, 25 pixels from the top, and 7 pixels from the bottom. The red
area marks the image portion that has been cropped away. Horizontal flip
is applied after the crop, which is why the cropped margins at the left and
right hand side are swapped.

4.3 Feature Matching

4.3.1 From Feature Embeddings to Person Identities

This far the method used to extract the 128-dimensional feature vectors from
each person image has been discussed. What a re-ID system is tasked at
finding, however, is the actual identities of the persons depicted in the probe
images. To achieve this, a function that compares the feature vectors of
people with an unknown pID (Fknown) against feature vectors of people with
a known pIDs (Funknown) is needed. As can be seen in Figure 4.12, all gallery
persons have a unique identity number and are therefore in the category
Fknown, whereas the identity of all probe persons is unknown, Funknown, and
to be determined by the re-ID system. The objective of the feature matching
component is to compare the feature vectors of all the probe persons against
the feature vectors of all gallery persons, and assign the correct identity
number to all the probes.

Figure 4.13 depicts the feature matching component in the re-ID pipeline.
The matching component requires two inputs, namely the feature vector
that represents the probe person, and the feature vectors and pIDs of all
gallery persons. The feature vectors of all gallery persons are extracted in
advance and stored in a database, while the feature vector of the probes
need to be extracted in an online manner as the robot perceives people.

The output of the matching component is a vector containing the
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Figure 4.12: Example images extracted from videos in MARS. Left: one
probe person with an unknown identity (Funknown). Right: three gallery
people with known identity (Fknown).

Figure 4.13: The feature matching function compares the probe feature
vector against all gallery feature vectors and assigns an ID based on the ID
of the best match.

identification number of all gallery persons sorted according to their
similarity with the probe person. For instance, if the matching component
outputs the result R = [5, 8, 5, 1, 4, 2], the gallery person with ID number = 5
(first/leftmost position in R) has the highest similarity to the probe person.
Furthermore, there are 5 unique numbers in R, meaning that there is a total
of five different person identities in the gallery. Note that person ID = 5
is found twice in R. This means that the gallery contains feature vectors
representing two different videos of the same person. Variables such as
varying camera viewpoint, challenging lighting conditions, and change of
clothes are plausible reasons why person ID = 8 has a higher resemblance to
the probe person than one of the feature representation of person ID = 9.
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4.3.2 Combining Features

Section 4.2 only discussed how to extract the feature vectors for each image
individually. In this thesis, however, re-ID is considered on the video
level, meaning that features need to describe entire video sequences instead
of single images. To obtain features that represent video sequences, the
individual feature vectors from each image frame in a video need to be
combined.

There are several different ways to combine feature vectors. Zheng et
al. [135] evaluated three different feature combination methods along with
the publication of the MARS dataset. For example, consider a very short
video sequence of three image frames with four numeric values per feature
vector (in reality the video sequences are longer and of arbitrary length, and
the feature vectors produced by LuNet each consist of 128 numeric values,
but the idea is the same). Each image frame has been processed by LuNet
and converted to a feature vector representation. These feature vectors are:
f1 = [1, 4, 3, 2], f2 = [6, 3, 4, 2], f3 = [3, 5, 9, 0], where f1, f2, and f3 each
represent one consecutive frame in the video.

This thesis considers three different strategies to combine features.
First, only the feature vector of the first frame, f1 is used to represent
the entire video sequence. In our example, the feature vector describing
the entire video would then be F = f1 = [1, 4, 3, 2]. Second, the element-
wise mean is computed across all feature vectors in the video sequence.
Referring back to our example, the resulting feature vector would be
F = ( f1 + f2 + f3)/3 = [3.3, 4, 5.3, 1.3]. Third, the element-wise max-pooling
operation is used. This resembles the max-pooling operation described
in Figure 4.4, but instead of pooling across the height and width of the
activation maps, the pooling operations is done by selecting the highest
activation value at each index in the feature vectors. In our example, the
max-pooled feature vector would be F = maxpool( f1, f2, f3) = [6, 5, 9, 2]. In
this thesis, these three three methods of combining features are referred to
as single-image feature, mean feature, and max-pool feature, respectively.

A clear difference between combining features by calculating the mean
or the max-pool and using the single-image feature is that the latter
only considers one image while the mean and max-pooling features
consider the entire video sequence. Using single-image features is therefore
essentially equivalent to doing image-based re-ID instead of video-based
re-ID, meaning that the temporal information found in video sequences is
omitted. It is argued that this is suboptimal because temporal data contains
rich information that may contribute to extract more unique features, thus
improving the re-ID performance. Single-image features are however less
computationally expensive to use because the re-ID model only has to
process one image, instead of an entire video sequence, to produce the
feature vector. A comparative result of the three feature combination
methods applied both on the probe and gallery data may be found in Section
5.2.2 in the Experiment chapter.
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4.3.3 Distance Metrics

Once the feature vectors have been combined to form representations of
video sequences instead of still images, a distance metric is used to compute
the similarity of the vectors. In re-ID systems where features are hand-
computed or extracted by a classification-style CNN, this block in the re-ID
pipeline requires a distance metric learning algorithm (Section 2.3.2) to learn
a metric appropriate for the feature space. In the proposed Siamese CNN
architecture, however, the batch hard triplet loss [40] function specifically
minimizes the Euclidean distance between feature vectors. Instead of
applying a distance metric learning step, the Euclidean distance (as defined
in Equation 2.2 in the background chapter) is used to assign distances
between the probe feature and all gallery features. A short Euclidean
distance between two feature vectors mean that the network has produced
similar feature vectors for the two inputs, indicating that they are more
likely to depict the same person. A long Euclidean distance between two
feature vectors mean that the network believe these two people to be highly
dissimilar.

61



62



Chapter 5

Experiments

This chapter discusses the various experiments conducted on the three
network architectures: the reproduced LuNet, LuNet Light, and LuNet
Lightest. The three network architectures are first evaluated using the
MARS evaluation protocol [135]. Then, the proposed evaluation measures
that are more relevant to a robotic re-ID system are presented along with
the results obtained by LuNet, LuNet Light, and LuNet Lightest.
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5.1 The Training Process

Training deep CNNs is an iterative process that consist of feeding batches
through the network, computing the error, or loss, of the given batch, and
finally updating the trainable weights according to the loss function. There
are multiple aspects that need to be considered before and while training
the network, such as hyperparameter selection, variable monitoring, and
visualization of the activation maps and embedding space.

5.1.1 Hyperparameters

There are two types of different parameters in CNNs. The first are
the learnable parameters, which are mostly found in the convolutional
kernels, whose optimal values are learned during training. The second are
hyperparameters whose values cannot be learned while training the model,
but instead have to be determined in advance. The process of finding a
combination of good hyperparameters is known as hyperparameter tuning.
Selecting correct hyperparameter values is crucial to train any network [47].

The collection of hyperparameters needed to train all versions of LuNet
are listed in Table 5.1. Note that all hyperparameters except for the batch
size, B, have the same values when training all three networks, allowing
for a fair comparison of the performance of each architecture. This section
discusses the selection of each hyperparameter value.

LuNet
(reproduced)

LuNet Light LuNet Lightest

α 10−3 10−3 10−3

αlr Eq. 5.1 Eq. 5.1 Eq. 5.1
smax 45 000 45 000 45 000
sdecay 0.6smax = 27 000 0.6smax = 27 000 0.6smax = 27 000

β1 0.9 0.9 0.9
β2 0.999 0.999 0.999
ε 10−8 10−8 10−8

B = P · K B = 18 · 4 = 72 B = 18 · 4 = 72 B = 20 · 4 = 80
Crop+flip? yes yes yes

Table 5.1: Hyperparameter values used to train each network. α is the
negative slope constant in the leaky ReLU activation function, αlr is the
learning rate, smax is the max number of training steps, or iterations, sdecay is
the iteration where αlr starts decaying, and B is the batch size.

Learning Rate

The learning rate (αlr) is the most important hyperparameter in the optimizer
function, regulating how fast the network learns, i.e. how much the trainable
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parameters are updated in each backward pass. High learning rate reduces
training time, but can hinder the network from finding the global minimum.
On the other side, a low learning rate restricts the network’s ability to
overcome local minimum, and requires more time to train. Therefore, there
is a tradeoff between a low and high learning rate that need to be taken into
consideration for experiments.

To address this tradeoff, a common approach is to have a high learning
rate early in the training phase, before reducing it to allow the network to
find an optimal minimum. Following the values used in [40], the following
dynamic learning rate was used in all experiments:

αlr(s) =

{
10−3 i f s < sdecay

10−3 · 001
s−sdecay

smax−sdecay i f s ≥ sdecay

(5.1)

where s is the current training step (i.e. number of epochs thus far), sdecay
is the training step where the learning rate starts decaying, and smax is the
final training step. Table 5.1 summarizes values used for sdecay and smax.

The Adam optimizer function also requires three additional parameters:
two decay rates β1 and β2, and a numeric stability constant ε. For these
parameters, the authors provide recommended default values that they
show work well for a large range of optimization problems [51]. To limit the
amount of hyperparameters, and thereby reduce the hyperparameter search
space, the parameter setting consistent with the recommended default
values [51] were used in all experiments: β1 = 0.9, β2 = 0.999, and ε = 10−8

[51] in all experiments.

Stopping Criteria

The stopping criteria decides when to terminate the training process. A
common way to decide when to stop training is to split the training data in
two, one part for training and one for validation. The network is evaluated
on the validation set at a periodic interval while training. Training stops
when the accuracy on the validation set starts decreasing. This is known
as overfitting the network to the training set; in other words, it refers to
the network’s ability to generalize to new, unseen data, which becomes
challenging to achieve if training continues.

While many classification-style CNNs are very prone to overfitting,
none of the training runs in the conducted experiments showed any signs
of overfitting. This is because during training, the Siamese architecture
combined with the batch hard triplet loss [40] learns to group similar
people together in a cluster and simultaneously push different people apart.
Training for a longer period will only decrease the distances within each
cluster (resulting in shorter distances between similar people) and increase
the distances between clusters (resulting in longer distances between
dissimilar people). In fact, long training times on Siamese networks that use
the batch hard triplet loss [40] does not contribute to overfitting, but can
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on the contrary have a positive effect on the networks ability to generalize
to unseen data due to the more optimized distances within and between
clusters.

Since the architectures of all three LuNets are not prone to overfitting,
the data was not split into training and validation sets. Instead, the official
MARS dataset that consists of 625 pIDs for training and 636 pIDs for testing
[135] was used. The entire training set was used to train, and training
was simply stopped after a fixed amount of iterations, or steps, (smax).
Although no training runs showed the tendency to overfit the training
data, experiments with very long training times (smax = 100 000) did not
show any significant improvements on the test set. To keep the training
times to a minimum, smax = 45 000 was used as this was observed to be the
point where the accuracy saturated.

Batch Size

In all experiments, mini-batches of size B = P · K, where P is the number
of pIDs in a batch, and K is the number of images of each person, were
used. Selecting an appropriate batch size is important because it affects
the networks learning capability and training time. Mini-batches of sizes
between B = 32 and B = 512 are known to improve the network’s ability
to generalize to unseen data compared to batches of size B > 512 [49]. On
the other hand, smaller batches require more training steps (higher smax)
to reach the same amount of passes through the network. Finally, larger
batches require more memory; therefore, the maximum batch size is limited
by the hardware available.

Taking the aforementioned variables into considerations, it was decided
to use the largest possible mini-batch size, meaning that the limitations are
B ≤ 512 and memory needed < total memory available. For LuNet and LuNet
Light, B = 18 · 4 = 72 was the largest possible batch size. For LuNet Lightest,
whose architecture requires less memory due to fewer learnable parameters,
B = 20 · 4 = 80 was used.

The batches are selected without replacement, which means that the P
classes (pIDs) used in each mini batch are selected randomly. While this can
give greater variety in the batches, it may result in some pIDs being used
more often than others. To ensure that there is not too much variance in the
distribution between the pIDs during training, the pIDs used in each batch
were tracked and plotted after training. The statistics can be seen in Figure
5.1, where each plotted point shows how often the respective pID has been
used in a batch. Since the pIDs are randomly selected, some spread is to be
expected. There are no extreme values and the distribution is fairly even,
indicating that the network is given a high variety of different combinations
of pIDs in the batches during training.

66



Figure 5.1: Distribution of how often each of the 625 individual persons
were used during training of LuNet Light.

5.1.2 Variable Monitoring

Training deep and complex CNNs can be a challenging process. Errors
are likely to occur and often difficult to debug without the correct tools.
To ease debugging and the process of finding good hyperparameters, it
can be useful to plot certain parameters during training. In this thesis,
Tensorflow’s tensorboard 1 was used for the purpose of monitoring variables
during training and Matplotlib’s pyplot 2 library was used to plot statistics.

The loss function is arguably the most useful variable to carefully
monitor. A loss that decreases as the network trains is a good indication
that the learning process runs correctly. Figures 5.2, 5.4, and 5.3 respectively
show how the batch hard triplet loss [40], the train-set accuracy, and the
learning rate evolve over time as the network trains. Figure 5.2 shows that
the loss value decreases as the network trains, which indicates that the
training is progressing as desired. The steepest decrease in the loss happens
early in the training phase as the network is introduced to new triplets. After
roughly 1

3 of the training time (s = 15 000), the steepness of the loss curve
starts decreasing. This indicates that the network has seen most of the easier
triplets, while some harder triplets still need to be learned. Furthermore, the
loss is very close to zero once the learning rate starts decaying. In this phase
of the training, the learning is slower, meaning that the network fine tunes its

1https://www.tensorflow.org/guide/summaries_and_tensorboard
2https://matplotlib.org/api/pyplot_api.html
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learnable parameters to reach a local minimum. Along with the decreasing
loss function, the accuracy on the training set rapidly increases early in the
training before stabilizing right below 100 % accuracy, which also indicates
that the network is training correctly. Note that the model accuracy during
training is measured on the same data that is used to train, meaning that
it does not precisely represent how well the model will perform on new,
unseen data, but rather indicates that the training evolves as expected.

Figure 5.2: The batch hard triplet loss [40] decreasing over time during
training of LuNet Lightest. The y-axis is the loss value and the x-axis is the
training step. Light shade of orange is the actual score, while the dark shade
of orange is the smoothened score that is easier to interpret.

Figure 5.3: The learning rate starts decreasing after 60% of the total number
of training iterations. The y-axis is the learning rate value and the x-axis is
training step.
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Figure 5.4: The CMC rank-1 score increasing during training. The y-axis
is the CMC rank-1 score and the x-axis is the training step. Light shade of
orange is the actual score, while the dark shade of orange is the smoothened
score that is easier to interpret.

The evolution of the Euclidean distances between all feature vectors in a
batch, as depicted in Figure 5.5, also provide information that can be useful
during training. It can be observed that the maximum Euclidean distance
between feature vectors is around five in the first batch and increases to a
maximum value of approximately 30 towards the end of the training period.
The increase in distance suggests that the network learns an embedding
space where clusters of different pIDs are pushed increasingly further apart
from each other. This is a positive trend because it indicates that the network
can more easily distinguish between different people. During the longer
training run (smax = 100 000) experiments showed that the distances stopped
increasing and instead stayed constant when s > 45 000. The same trend
can be seen in the loss function (Figure 5.2), which were the reasons why
the training period was limited to 45 000 iterations.
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Figure 5.5: The distribution of the Euclidean distances between all feature
vectors in a batch depicted in a three-dimensional figure. Each depth (y-axis,
horizontal line) is one training step, the x-axis is the Euclidean distance and
the height and width of each peak is the distance distribution. The upper
left corner show the short distances early in the training phase, and the
lower right corner shows the longer Euclidean distances towards the end of
the training.

LuNet (reproduced) LuNet Light LuNet Lightest
Train time (h) 11.04 6.92 10.03

Table 5.2: Number of hours needed to reach the 45 000th training iteration
for each architecture.

Table 5.2 shows the time required to train each network when smax =
45 000. The training time for LuNet Lightest is one hour less than for the
reproduced LuNet. LuNet Light can, somewhat surprisingly, complete the
training stage four hours faster than the reproduced LuNet and three hours
faster than LuNet Lightest. Although the exact reason for the noticeably
lower training time was not investigated more closely, it is apparent that
the reduced amount of both convolutional and pooling layers can have a
significant impact on training times.

5.1.3 Visualization

The process of training an ANN can be very abstract. Visualizing certain
network components can supplement variable monitoring by giving a visual
representation of what the network learns.
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Visualizing the Activation Maps

Visualizing the activation maps can provide useful insight into what the
individual filters in each layer learn. It additionally provides insight into
which characteristics of the input data are important when the network
make its decision.

The plots of 18 randomly selected feature maps from the first, second,
and final residual block in LuNet Lightest are depicted in Figures 5.6, 5.7,
and 5.8, respectively. The feature maps are extracted during a forward pass
in the network after the training process is completed. In CNNs in general,
the early convolutional layers learn low level features, such as colors and
edges, and the layers deeper in the network gradually learn higher level
features that are useful for the specific problem.

This also applies for the convolutional layers in LuNet Lightest. In
the first residual block, 5.6, the filters seem to have learned to differentiate
between dark and light colors. In the next residual block, 5.7, the features are
slightly more advanced. The filter that produced feature #14, for instance,
looks to have learned to distinguish between upper-body and lower-body,
which apparently (and intuitively) is a feature that is useful for the re-ID
system. Feature #16, on the other hand, seems to detect the entire body.
Feature #4 and feature #18 seem to represent the contour of the body. The
low activation map dimension of 4× 2 pixels in the final residual block
(Figure 5.8) makes it impossible to extract any useful visual information. It
is however likely that each of these feature maps represent a certain low-
level feature that is useful to differentiate between people. Figures 8.1 and
8.2 in the appendix provide visualization of the feature maps in all residual
blocks in LuNet Light.

Figure 5.6: Visualization of 18 randomly selected activation maps produced
by the 3× 3 convolution in the first residual block (res #1) in LuNet Lightest.
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Figure 5.7: Visualization of 18 randomly selected activation maps produced
by the 3 × 3 convolution in the second residual block (res #4) in LuNet
Lightest.

Figure 5.8: Visualization of 18 randomly selected activation maps produced
by the 3× 3 convolution in the seventh residual block (res #12) in LuNet
Lightest.

Visualizing the Feature Embedding Space

It can be useful to plot the feature vectors to get a visual idea of how good
the network is able to separate between the different pIDs. The network
should group feature vectors representing the same pID close together while
separating feature vectors that represent different pIDs.

Directly plotting the feature vectors in a 128-dimensional space would
give little visual value. Instead, the t-SNE [76] technique was used to map
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the embeddings to a three-dimensional space. t-SNE is a non-linear and
iterative algorithm that reduces the feature dimensionality.

Figure 5.9 shows the three-dimensional t-SNE plot of the 636 gallery
persons in the MARS dataset [135] represented by their pID. Each data point
is a feature vector representing one video of a person, and data points with
the same color and pID are videos of the same person, whereas data points
with dissimilar colors and pID are videos of different persons. It can be
observed that the network consistently groups feature vectors belonging
to the same person close together (e.g. the dark blue cluster of pID 272 on
the right hand side). In addition to clustering feature vectors from the same
persons together, there is a good amount of inter-class distance between most
clusters, which indicates that the network has learned to separate videos
of different persons. There are, however, some pIDs that are more difficult
for the network to tell apart, such as the dark green cluster of pID 466 in
the top right corner that seem to contain at least one pink feature vector
depicting pID 468. Note that this figure was created in the three-dimensional
space, meaning that the two-dimensional depiction is somewhat difficult to
interpret accurately.

Figure 5.9: Visualization of the 128-dimensional feature embeddings using
t-SNE [76]. Each data point is a video sequence of a gallery person in the
MARS dataset.
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5.2 Evaluation Using the MARS Evaluation Protocol

All versions of LuNet are evaluated in accordance to the MARS evaluation
protocol [135]. Although this evaluation protocol is arguably not the
most suitable for robotic applications, it allows us to fairly compare the
performance of the three different versions of LuNet (Section 5.2.2). This
evaluation protocol is additionally used to compare the results obtained by
the proposed re-ID models to the results of the state-of-the-art re-ID systems
(Section 5.2.3).

5.2.1 The MARS Evaluation Protocol

In the MARS evaluation protocol [135], the dataset is split into three parts:
1) the training set, 2) the gallery set, and 3) the probe set. The training data,
which consists of 8 298 videos of 625 different people, is used solely for
training. The gallery set, which is also referred to as the database, consists
of 12 180 videos of 636 different people. It is important to note that there is
no data overlap between the training set and the gallery set, which means
that no person identities in the gallery have been used to train the network.
The probe set contains 1 952 videos of 620 different people, an average of 3.1
videos per person. All identities in the probe set are also in the gallery set,
but the videos in the probe set are unique (i.e. in terms of pIDs, the gallery
and probe sets fully overlaps, but they contain different videos of each pID).

The MARS evaluation protocol uses two measures to evaluate perfor-
mance: cumulative matching characteristics (CMC) and mean average pre-
cision (mAP).

Cumulative Matching Characteristics

Recall that given a set of probe videos, a re-ID system returns a list of the
gallery identities that are believed to match the probe identities. This list is
sorted by similarity, meaning that for each probe video, the pID at the first
index of the output list is the closest match, while the pID at the end of the
output list resembles the probe person the least.

CMC measures how frequently the correct match is found amongst the
top n results, which is commonly noted as the top-n or rank-n score. A rank-1
score of 100% means that the re-ID systems assigned the correct identity to
all probe persons. A rank-5 score of 100% means that the correct identity
was always within the five best results. The rank-N score, N being the
gallery size, will always be 100%.

CMC can be interpreted either as a single score or as a graph. The single
score is measured by looking at one specific rank. In re-ID, it is common to
evaluate rank-1 and rank-5 score, though reporting rank-10, rank-20 and
rank-50 is also occasionally seen. The plotted CMC score, known as the
CMC curve, is the plot of each rank, and is also commonly found in re-ID
research.
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Mean Average Precision

Since the gallery contains multiple videos of each person, the CMC score
does not fully describe the system performance. For instance, a true match
may be found at the top of the rank list, but there may be another true match
at rank 40. mAP is the average of precision values at the ranks where there
is a correct match, averaged across the number of probes. It is defined as:

mAP =
∑P

p=1 AP(p)

P
(5.2)

where P is the total number of probes and AP(p) is the average precision
at rank p. The closer all the true matches are to rank-1, the higher the mAP
score. A mAP score of 100% means that all g gallery instances that match
the probe pID are always found amongst the top g scores. Unlike the CMC
curve, mAP only provides one single score and cannot be seen as a graph.

5.2.2 Comparing LuNet (reproduced), LuNet Light, and LuNet
Lightest

Table 5.3 lists the results obtained by the reproduced LuNet, LuNet Light,
and LuNet Lightest using the MARS evaluation protocol. The three scores
in each column correspond to [mAP, rank-1 CMC, rank-5 CMC]. Experiments
are conducted with single-image features, mean features, and max-pool
features (Section 4.3.2) for both the probe and gallery, resulting in 3 · 3 = 9
different configurations. It can be observed that using the mean features
on both the gallery and probe outperforms the other combinations by a
significant margin in all three network architectures, which corresponds to
the results obtained by Hermans et al. [40].

The scores of the reproduced LuNet, LuNet Light, and LuNet Lightest
are consistently highly similar both in terms of mAP, rank-1, and rank-5,
with a deviation of only a few percentage points at most. Despite having the
least convolutional layers, LuNet Lightest obtains slightly higher scores than
LuNet Light on all configurations of feature combinations. The reproduced
LuNet and LuNet Lightest are highly similar, deviating with less than one
percent most of the time. Since the combination of using the mean feature on
both the query and gallery yielded the best scores, all remaining experiments
are conducted with the mean features unless otherwise is noted.

Figure 5.10 shows the CMC curve of the three network architectures in
one plot. In accordance to the scores in Table 5.3, it can be observed that
LuNet (reproduced) and LuNet Lightest obtain very similar results, while
LuNet Light scores slightly lower.
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Pool method
probe→gallery

LuNet (re-
produced)

LuNet
Light

LuNet
Lightest

single→single 51.3 69.9 86.0 47.7 67.9 83.9 50.5 70.7 85.8
single→max 38.7 62.1 76.4 34.7 56.6 73.8 37.5 59.8 77.4
single→mean 61.7 78.4 87.8 58.8 77.1 87.1 60.9 78.8 88.5

max→single 47.6 65.5 80.9 43.7 61.5 79.5 46.2 65.3 80.7
max→max 56.4 77.5 88.7 54.4 76.5 88.6 56.1 76.7 88.8
max→mean 57.8 73.6 84.8 54.6 71.3 83.4 56.7 73.8 85.0

mean→single 56.8 76.5 89.8 53.7 74.1 89.5 56.2 77.1 89.7
mean→max 42.1 66.9 82.4 38.9 63.2 80.6 41.4 65.0 82.1
mean→mean 67.8 84.9 93.8 65.8 83.7 88.7 67.2 84.9 92.9

Table 5.3: Evaluation of the three CNNs using different feature combination
methods. "single" is the single-image feature, "mean" is the mean feature,
and "max" is the max-pooled feature. The three numbers in each row
correspond to [mAP(%), rank-1 CMC(%), rank-5 CMC(%)]. Higher numbers
are better. Best and worst result for each CNN are marked in bold and
underlined, respectively. Cyan colored rows highlights experiments where
the pooling method is the same in the probe images and the gallery images.
Test time augmentation was used in all experiments.

Figure 5.10: Top 50 CMC scores (rank-1 to rank-50) of the reproduced LuNet,
LuNet Light, and LuNet Lightest using the mean features both on the probe
and gallery data.
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Test-Time Data Augmentation

Test-time data augmentation was used to produce the results in Table 5.3
and Figure 5.10. Before being fed to the network, the center crop and four
corner crops of all images, along with the horizontally flipped versions are
extracted (see Figure 5.11). This converts every input image into ten different
images. After these have been processed by the network, the average of all
ten feature vectors is used. Since the network was presented with similar
crops during training (Section 4.2.4), intuitively using the average of ten
crops should give better results than simply using the original image.

Figure 5.11: Illustration of the test-time crop and flip augmentation. The top
row shows the five different crops used and the bottom row shows their
horizontally flipped equivalents. The red background illustrates the area
that has been removed in each crop.

The downside with test-time data augmentation, however, is that it
requires a tenfold increase in the number of forward passes through the
network. This will severely reduce the overall system efficiency. In this
thesis it is therefore argued that test-time data augmentation should not be
applied for a robotic re-ID system.

To investigate the impact of test-time augmentation on the performance
of the re-ID model, the same experiments are reproduced without using
the ten crops. Instead, only the center crop is passed through the network.
Table 5.4 summarizes the scores obtained using only the center along with
the relative difference between experiments with and without test-time
augmentation. The results show that the scores have only decrease by
a small margin, mostly by less than one percent. This small decrease in
performance is arguably neglectable when considering how much it impacts
efficiency. Remaining experiments where test-time data augmentation was
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used are indicated by "augtt".

mAP (%) ↑ rank-1 (%) ↑ rank-5 (%) ↑
LuNet (reproduced) 67.1 (-0.7) 83.7 (-1.2) 92.8 (-1.0)
LuNet Light 65.3 (-0.5) 83.3 (-0.4) 92.6 (+0.1)
LuNet Lightest 66.3 (-0.9) 84.2 (-0.7) 93.0 (-0.1)

Table 5.4: Evaluation of the three networks without test-time data
augmentation. Numbers in parentheses is the difference between the relative
difference in score compared to the runs where test-time data augmentation
was used (scores from table 5.3). Mean features was used in all experiments.
"↑" indicates greater number is better.

5.2.3 Comparing With the State-Of-The-Art

Using the MARS evaluation protocol, the reproduced LuNet, LuNet Light,
and LuNet Lightest are compared to the top-performing re-ID models and
the scores are summarized in Table 5.5. Except for the benchmark score
[135], only the re-ID systems achieving equal or better scores than any of
the three LuNets are considered. Multiple observations can be made from
these results. First, all versions of LuNet perform significantly better than
the original implementation by Hermans et al. [40]. This is likely due to
the different approach in building the batches (see Section 5.1.1), which
appears to have significantly improved the training process. It may also
be caused by differences in the amount of training iterations, which was
set to smax = 25 000 by Hermans et al. [40], whereas all experiments in this
thesis use smax = 45 000. This suggests that the network can continue to
learn better feature representations after the 25 000th training iteration.

Second, the scores of both the reproduced LuNet, LuNet Light, and
LuNet Lightest are competitive with the leading state-of-the-art results.
Despite this, the architectures of all LuNets, especially LuNet Lightest, are
significantly shallower and more lightweight than the top-performing re-ID
systems developed by Zheng et al. [135], Almazán et al. [3], and Wu et al.
[120]. These results suggest that it is not always necessary to use very deep
architectures in order to obtain state-of-the-art performance. It is also a good
indication that re-ID models possibly can be designed lightweight enough
to suit the needs of mobile robots.
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mAP (%) ↑ rank-1 (%) ↑ rank-5 (%) ↑
Baseline [135] 49.3 68.3 82.6
Almazán et al. [3] 79.7 85.8 96.5
Wu et al. [120] 67.4 80.8 92.1
TriNet [40] 67.7 79.8 94.1
LuNet [40] 60.5 75.6 89.7

LuNet (reproduced) (augtt) 67.8 84.9 93.8
LuNet Light (augtt) 65.3 83.3 92.6
LuNet Lightest (augtt) 67.2 84.9 92.2

Table 5.5: State-of-the-art scores on the MARS dataset evaluation protocol.
Baseline is the results Zheng et al. [135] obtained along with the release of the
MARS dataset. "↑" indicates greater number is better. Best result is marked
in bold, results obtained in this thesis are marked by cyan background.

5.3 Evaluation in an Open-World Setting

5.3.1 Common Restrictive Assumptions in Re-ID

Most re-ID evaluation protocols, including the MARS evaluation protocol,
make several assumptions that are highly unrealistic for a robotic re-ID
system. First, it is assumed that every probe person is guaranteed to
be present in the gallery. This assumption does not hold for robots that
are expected to operate in dynamic,real-world environments where there
may be multiple people that the robot has not seen before. Removing
this assumption increases the problem difficulty because, in addition to
performing regular re-ID (matching pIDs), the system has to separate
strangers from acquaintances and learn on-the-fly. Second, re-ID is always
performed with a gallery of fixed size. This assumption is also unrealistic
for robotic applications because robots will need to automatically register
people it interacts with. A thorough description of common assumptions in
re-ID may be found in Background Chapter 2.3.

5.3.2 Open-World Evaluation Metrics

Open-world re-ID, as discussed in the background (Section 2.3.6), investi-
gates the re-ID problem in a setting where the probe person’s identities are
not guaranteed to be present in the gallery. In an open-world re-ID problem,
the CMC and mAP metrics that are normally used in re-ID are not capable of
adequately evaluating performance because they do not take the unknown
identities into account. Therefore, Zheng et al. [140] introduced the fol-
lowing set of evaluation metrics specifically designed for the open-world
setting:

True Target Recognition(TTR) =
#TTQ
#TQ

(5.3)
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False Target Recognition(FTR) =
#FNTQ
#NTQ

(5.4)

where the authors define target people as people amongst the probes that
are also present in the gallery and non-target people as people amongst
the probes that are not present in the gallery. Finally, TQ, NTQ, TTQ and
FNTQ are defined as:

TQ = {probe target images f rom target people},
NTQ = {probe non-target images f rom non-target people},
TTQ = {probe target images that are veri f ied as one

o f the target people},
FNTQ = {probe non-target images that are veri f ied as one

o f the target people}.

Although TTR and FTR are adequate measures for the open-world reID
problem, these metrics’ relevancy for a mobile robotic re-ID application are
very limited for two reasons. First, these open-world evaluation metrics
are applied in a setting where the number of probes, which consists of
both targets and non-targets, is much larger than the gallery, which consists
of targets only [68, 140, 144]. This is a common scenario in surveillance,
where there are typically only a few gallery persons of interest (targets),
but the potentially large network of surveillance cameras can result in a
large collection of probe people (both targets and non-targets). In robotics,
however, it is likely that the gallery, which contains information about all
individuals the robot has had an interaction with, is large, whereas the
number of probes, which is the collection of all people currently present in
the robot’s environment, is likely to only contain a few people. For example,
a companion robot that operates in people’s homes, will have a gallery
consisting of the person(s) living in that home, and the gallery will grow
slowly as relatives and friends visit. It is arguably likely that the robot will
meet only one or very few strangers (new people visiting) at a time, which is
the opposite scenario compared to what the open-world evaluation metrics
are designed for [140]. Mobile robots that operate outdoors or amongst
larger crowds, such as in shopping malls [45], will certainly meet more
strangers compared to companion robots, but the amount is arguably not
comparable to surveillance systems that may have weeks or months worth
of surveillance video captured by multiple cameras.

Second, the open-world evaluation metrics are reported as the True
Target (Equation 5.3) Rate in percent against the False Target Rate (Equation
5.4). In other words, these metrics represent how accurately targets are
verified when a varying amount of non-targets are allowed amongst the
retrieved persons (i.e. how many non-targets are acceptable for each target
retrieved). This is useful in a surveillance application where such a system
could guarantee to find target(s) along with a pool of n non-targets. A
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person could then manually examine the pool of n person identities instead
of the full collection of probes. On a mobile robot that needs to perform
re-identification in real-time, relying on a human agent is certainly not a
feasible option. Instead, to better depict a realistic situation for a mobile
robots, the evaluation metrics need to represent how accurately the robot
can distinguish between acquaintances and strangers, and how precisely the
acquaintances can be correctly identified. To that end, this thesis proposes a
new set of evaluation metrics specifically designed to evaluate re-ID systems
intended for robotic applications.

5.3.3 Approaching Evaluation From a Robotic Perspective

This thesis presents a set of evaluation metrics for a re-ID system in a robotic
setting. The proposed evaluation protocol is based on evaluation metrics
commonly used for binary classifiers.

Defining Binary Evaluation Metrics for Robotic Re-ID

In a binary classification problem, the true value of each data point can be
either a positive instance or a negative instance, and the classifier’s objective is
to assign the correct value, either positive or negative, to each data point. As
depicted in Figure 5.12, this yields four different possibilities; true positive (TP,
positive instance correctly classified as positive), false positive (FP, negative
instance incorrectly classified as positive), false negative (FN, positive instance
incorrectly classified as negative), and true negative (TN, negative instance
correctly classified as negative). The sum of TPs and FNs is always equal to
the total amount of positive data points, whereas the sum of FPs and TNs is
always equal to the total amount of negative data points. In a perfect binary
classifier, all outputs are either TPs or TNs.

A robotic re-ID system classifies each probe person as either a) an
acquaintance (positive) or b) a stranger (negative). If a person is an
acquaintance, the system additionally has to determine the person’s identity,
which can either be:

• a+: the reID system correctly determined the person’s identity (TP), or

• a−: the re-ID system incorrectly determined the person’s identity (FP).

Note that only considering a is equivalent to the regular re-ID problem
that has been have examined thus far; whereas, adding b is the additional
objective of an open-world robotic re-ID system.

Using these possible outcomes, the binary conditions for the proposed
evaluation protocol are defined as follows:
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Figure 5.12: Evaluation metrics for binary classifiers are commonly derived
based on four data attributes: True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN).

TP = {acquaintance classi f ied as an acquaintance with correct pID},
TN = {stranger classi f ied as a stranger},
FP = {stranger classi f ied as an acquaintance},
FN = {acquaintance classi f ied as a stranger or as an acquaintance but

with incorrect pID}.

Threshold Values

A threshold value, t, is used to control whether the re-ID system classifies
a probe person as an acquaintance or a stranger. When the probe person’s
feature vector is compared to all gallery feature vectors, the probe person is
classified as a stranger if the distance between the probe feature vector and
the best matching gallery feature vector is larger than t. If this distance is
less or equal to t, however, the pID of the best matching gallery person is
assigned to the probe person. In other words, for each probe person:

p =
{

stranger i f sim(p, gn) > t
acquaintance i f sim(p, gn) ≤ t (5.5)

where p is one probe person, gn is the gallery person that has been assigned
the shortest distance (highest similarity) to p by the re-ID model, and
sim(p, gn) is the distance as returned by the re-ID system. If p is classified as
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an acquaintance, the additional step of deciding the correct pID is performed.
This procedure is done according to:

pIDp = pIDgn (5.6)

where pIDgn is the person ID of the gallery person with the highest similarity
to the probe person.

Experiment are conducted with threshold values in the range t ∈ [0, 15),
and a step of 0.125, resulting in 120 different values. The selection of this
range is simply based on the fact that the Euclidean distance between
any two feature vectors is always positive, and the observation during
experiments that the re-ID system never assigns a distance greater than 15
to any two feature vectors.

Gallery Size

In addition to experimenting with various threshold values, experiments
are conducted with a varying amount of unique identities present in the
gallery. Varying the gallery size (Gsize) affects the ratio of acquaintances
vs. strangers in the probe set, which simulates different conditions and
scenarios a mobile robot may operate in. In the default setting, Gsize = 100%
(636 unique pIDs), all probe persons are present in the gallery and therefore
all probes are acquaintances. The smaller Gsize, the fewer probes are present
in the gallery, resulting in more probe persons being strangers instead of
acquaintances.

To be more scenario-specific, experiments conducted with a large gallery,
Gsize ≥ 70%, depict the typical scenario for household robots that operate
in relatively closed environments in patients homes, and that therefore do
not meet strangers regularly. Experiments conducted with smaller gallery
sizes, Gsize ≤ 30%, on the other end, realistically represent the environment
of robots that meet strangers very frequently, such as shopping mall robots
[45]. Experiments using gallery sizes in-between, 30% < Gsize < 70%, are
realistic for robots that are regularly surrounded by both strangers and
acquaintances. An example is TritonBot [113] that operated in the entrance
hall in a building at UC San Diego and regularly met the same professors
and alumni that enter and leave the building on a daily basis, but also
frequently interacted with one-time visitors.

In all experiments, the gallery size ranges between Gsize ∈ [10%, 90%]
with a step of 10%, resulting in nine different gallery sizes. The size of
the probe set is kept constant to 620 unique pIDs, as defined by the MARS
train/test data split [135].

Balanced Accuracy

Balanced accuracy is calculated based on the number of TPs and TNs, and
is defined as follows:
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BACC =
( TP

P + TN
N )

2
(5.7)

.
The balanced accuracy measure is the percentage of the data that has been
correctly classified as either TPs or TNs. It is similar to accuracy, but better
suited for datasets where the data is unbalanced. It is a well-suited measure
to evaluate a robotic re-ID system because varying the gallery size results in
different ratio between strangers and acquaintances, i.e. unbalanced data.

Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is a plot that illustrates
the true positive rate (TPR) along the y-axis against the false positive rate
(FPR) along the x-axis as the threshold is varied. TPR and FPR are defined
as follows:

TPR =
TP
P

=
TP

TP + FN
(5.8)

FPR =
FP
N

=
FP

FP + TN
(5.9)

The TPR and FPR measures are similar to TP and FP, but instead of
providing absolute values, TPR and FPR show the percentage of the detected
TPs and FPs. Similarly with TP and FP, a good threshold value should
maximize TPR while simultaneously minimize FPR. Figure 5.13 depicts
three different ROC curves, depicting a) the perfect ROC curve, b) a god
ROC curve and c) a poor ROC curve as the threshold varies. Systems
with ROC curves similar to Figure 5.13b are capable of achieving high
TPR while maintaining low FPR. Note that unlike balanced accuracy that
considers both TPs and TNs, the ROC is only concerned with how well
positives (acquaintances) are classified. Although not used in the proposed
evaluation metrics, the true negative rate TNR = TN

N and the false negative
rate FNR = FN

P may provide useful statistics and are therefore included as
plots in the appendix Section 8.4 along with plots of the TPR and the FPR.
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Figure 5.13: Example of a) a perfect ROC curve, b) a system with a good ROC
curve, and c) a system with a bad ROC curve as a threshold varies. Systems
with good ROC curves can achieve high TPR and low FPR simultaneously.

Results

As previously seen, LuNet Lightest performs comparably to the reproduced
LuNet in terms of CMC and mAP (see Sections 5.2.2 and 5.2.3), and contains
considerably fewer learnable parameters. As a result, LuNet Lightest is most
suitable for robotic applications. Therefore, LuNet Lightest was selected to
be evaluated using the newly proposed evaluation metrics.

Figures 5.14, 5.15, 5.16, and 5.17 respectively show the distributions of
TPs, TNs, FPs, and FNs when varying Gsize and t according to the afore
discussed value ranges. Recall that a robust system should maximize the
amount of TPs and TNs and simultaneously minimize the amount of FPs
and FNs. In this evaluation, the number of correctly classified probes is the
main objective, and discussing the TPs (Figure 5.14) and TNs (Figure 5.15)
is therefore the main focus.

The graphs of the binary conditions show that varying the threshold
value t greatly affect the performance of the re-ID system. When t is close
to zero (left hand side in all figures), the similarity score between any
two feature vectors is greater than t, thus all probes will be classified as
strangers (negative) (see Equation 5.5). All TNs are therefore detected, but
none of the acquaintances, TPs, have been detected. When t is close to its
maximum value, 15, all similarity scores will be smaller than t, meaning
that all acquaintances (TPs) get detected while the system no longer detects
strangers (TNs). For threshold values that are less extreme, say t = 6, for
instance, both strangers and acquaintances will be detected, but there will
also be a certain amount of both FPs and FNs.

Secondly, let us discuss how the gallery size Gsize affects the distribution
of TPs and TNs. Since a smaller gallery is equivalent to having less
acquaintances and more strangers in the probe set, the maximum amount of
TPs is low for a small gallery and greater for a large gallery (see right hand
side of Figure 5.14). Similarly, the maximum amount of TNs is greater for
a small gallery and lower for a large gallery. Furthermore, note from the
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y-axis in Figure 5.14 and 5.15 that the maximum amount of TNs is around
1 750, while the maximum amount of TPs is slightly lower, around 1 500.
This is due to the fact that the system easily can detect all strangers simply
by classifying all probe persons as strangers (which can be achieved by
using low threshold values, see Equation 5.5), but correctly classifying all
acquaintances, however, additionally requires finding the correct pID. In
other words, to reach 1 750 TPs, the re-ID system would need a rank-1 CMC
score of 100%.

Figure 5.14: Total number of TPs (y-axis) for various threshold values (x-axis)
and varying gallery sizes.

The results presented this far show that t greatly affects how many TPs
and TNs the robotic re-ID system is capable of classifying. To find the
optimal threshold values at varying gallery sizes, the balanced accuracy
measure (BACC) was used.

Figure 5.18 shows the balanced accuracy measure for varying gallery size
and threshold values. The peak of each curve corresponds to the threshold
value that yields the highest number of TPs and TNs. Table 5.6 summarizes
the statistics at the peak points of each curve (the same information is
provided as a plot in Figure 8.3 in the appendix). The balanced accuracy
score is higher when the gallery is small. This is because a smaller gallery
is synonymous with more strangers, and correctly detecting strangers
(TNs) is easier than detecting acquaintances and additionally assigning
the correct pID (TPs). However, while the gallery size certainly impacts
the balance accuracy measure, the lowest observed score is BACC = 82.2%
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Figure 5.15: Total number of TNs (y-axis) for various threshold values
(x-axis) and varying gallery sizes.

Figure 5.16: Total number of FPs (y-axis) for various threshold values (x-axis)
and varying gallery sizes.
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Figure 5.17: Total number of FNs (y-axis) for various threshold values (x-
axis) and varying gallery sizes.

when Gsize = 10%, suggesting that the proposed re-ID system is good at
distinguishing strangers from acquaintances and simultaneously assigning
the correct pID to acquaintances.

Gsize 10% 20% 30% 40% 50% 60% 70% 80% 90%
BACC ↑ 92.4 88.4 87.4 86.8 85.4 85.4 83.7 84.3 82.2
t 7.5 7.0 7.125 6.875 7.0 6.75 6.25 6.625 6.25

Table 5.6: The optimal threshold value t that maximizes the balanced
accuracy score BACC(%) at varying gallery size Gsize. "↑" indicates greater
number is better. The highest score is marked in bold and the lowest score
is underlined.

Table 5.6 suggests that 6.250 ≤ t ≤ 7.125 are the optimal threshold values
for the different gallery sizes. This threshold should, however, be tuned
based on the typical environment of the robot. For instance, for a household
robot that is likely to mostly interact with acquaintances it is arguably more
important to correctly classify acquaintances than to detect strangers, and re-
ID systems on such robots could therefore benefit from having a should have
a higher threshold (see Equation 5.5). Robots operating in more crowded
areas, on the other hand, could probably benefit from a re-ID system with a
lower threshold to ensure that strangers are less frequently mislabeled as
acquaintances. In other words, the threshold should be used to adjust the
tradeoff between TPs and TNs based on the robot’s typical environment.

88



Figure 5.18: Balanced accuracy curves at varying gallery sizes and threshold
values.

In addition to analyzing the balanced accuracy, the ROC curve, as seen
in Figure 5.19, is used to investigate the robotic re-ID performance with
the same varying values for t and Gsize. It can be observed that, for all
gallery sizes, the ROC curves look similar to the left hand side of Figure
5.13, indicating that the re-ID system is capable of reaching high TPR
while maintaining low FPR. The curves corresponding to Gsize = 10%
and Gsize = 20% (and to some extent Gsize = 20% and Gsize = 30%) have
somewhat better characteristics which is evident by their curvation that
start at a higher TPR. This supports the results obtained with the balanced
accuracy measure, validating that the re-ID system can more easily detect
strangers than correctly classify acquaintances.
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Figure 5.19: The ROC curve at varying gallery size and threshold values.

5.3.4 System Efficiency

The results discussed this far suggest that the re-ID model performs well
both on the MARS benchmark and on the newly proposed evaluation
metrics in a robotic setting. These metrics do, however, only evaluate
system performance, and are of little importance if the system is unable
to operate efficiently in terms of frame rates. High processing speed is
crucial for mobile robots to operate smoothly in accordance to the users’
expectations. Systems that do not reach real-time requirement may have
to be processed remotely on more powerful hardware, which restricts the
robots to operating in areas with network connection, and can also, in the
worst of cases, lead to increased privacy risks. As discussed in Section
2.3.9, CV re-ID systems rarely report efficiency, resulting in little knowledge
whether or not re-ID systems can operate on robots that require real-time
feedback.

In light of this, the efficiency in terms of frame rate is evaluated for
both the reproduced LuNet, LuNet Light, and LuNet Lightest. First, the
frame rate at which each network could process data is measured. These
measurements were obtained by feeding videos through each network frame
by frame and measuring the average amount of video frames the networks
could process in the course of a second. Next, the frame rate for the entire
re-ID pipeline consisting of the feature extraction and the feature matching
is measured. These measurements were obtained by using the entire MARS
gallery set of 636 unique pIDs, and combining the frame rate of the CNN
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with the frame rate of the feature matching.

LuNet
(reproduced)

LuNet Light LuNet Lightest

GPU ↑ 75.8 (67.4) 109.7 (96.3) 78.8 (71.6)
CPU ↑ 32.8 (30.7) 32.9 (30.8) 36.4 (33.9)
Single core CPU ↑ 13.4 (12.7) 11.9 (11.3) 16.8 (15.7)

Table 5.7: Time efficiency of each network when using GPU, only CPU, and
only one out of eight CPU cores. Numbers in parentheses are the efficiency
of the entire re-ID system (i.e. network processing and feature matching).
All numbers are reported in FPS. "↑" indicates greater number is better. Best
result marked in bold.

Table 5.7 shows the processing time of all three re-ID architectures
measured in FPS. In each column, the leftmost number is the frame rate of
the CNN and the rightmost number inside parentheses is the efficiency of
the entire re-ID pipeline. For each network architecture, the frame rates with
the use of a GPU, with the use of CPU only, and finally with the use of only
one out of the eight CPU cores are evaluated (see the introduction Section
1.3 and appendix Section 8.1 for details regarding hardware and software
specifications). Since mobile robots typically have hardware constraints
due to cost, lack of memory, and limited power resources, it is important
to evaluate the frame rate on a CPU and single core CPU to simulate these
conditions.

The frame rate is often considered to be real-time if it exceeds the frame
rate of the camera sensor, which is typically 30 FPS. When using the GPU,
all three LuNets exceed this requirement by a large margin. Similarly to the
training times (Table 5.2 in Section 5.1.2), LuNet Light is 44.7% more efficient
than LuNet (reproduced) and 40.8% more efficient than LuNet Lightest
despite its higher amount of learnable parameters (see Table 4.2 in Section
4.2.1). This is because it consists of less consecutive operations (fewer layers)
but more operations in each layer (larger input volume), which are very
efficiently calculated by the GPU.

When using CPU and single core CPU, however, LuNet Lightest is
notably more efficient than LuNet (reproduced) and LuNet Light. This
is due to LuNet Lightest containing fewer residual blocks and learnable
parameters. All architectures achieve real-time frame rates with a CPU, but
the efficiency is significantly lower on a single core CPU. However, 15.7 FPS
as obtained by LuNet Lightest on a single core CPU is still relatively high on
considering the hardware limitations. With high camera frame rates, such as
30 FPS, two consecutive image frames are likely to be very similar, meaning
that it could be possible to only perform the re-identification on a subset of
all video frames to retain real-time performance.

In addition to evaluating frame rate, Table 5.8 provides an overview
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Network architecture Memory requirement pr image (MB) ↓
LuNet (reproduced) 33.9
LuNet Light 36.4
LuNet Lightest 29.7

Table 5.8: Memory requirement for one forward pass in the network. "↓"
indicates lower number is better. Best result is marked in bold.

over the amount of memory required by each network to process one video
frame. The table shows that LuNet Lightest is the most lightweight in
terms of memory requirements, requiring 12.4% less memory than the
reproduced LuNet. These results show that a re-ID model with near state-of-
the-art benchmark performance can achieve high frame rates at low memory
requirements, and therefore be suitable for real-time robotic applications.

5.4 Discussion

This chapter has presented various experiments conducted with the
reproduced LuNet, LuNet Light, and LuNet Lightest. First, the comparison
of the three different LuNets and the results obtained by the inventors of
the original LuNet [40] show that it is possible to ease the network training
by slightly modifying the batch selection, which allows for enhanced
performance even with shallower network architectures. It is also shown
that all three versions of LuNet achieve near state-of-the-art performance in
terms of mAP and CMC on the MARS evaluation protocol, despite being
significantly more lightweight than other top-performing systems [3, 120].

Second, this thesis points out why the existing evaluation protocol for
an open-world re-ID setting cannot adequately evaluate a robotic re-ID
system. A new set of evaluation measures to more realistically assess robotic
re-ID systems are therefore proposed. Experiments using these measures
show that the ratio between strangers and acquaintances affects the re-
ID performance. Nevertheless, when using the optimal threshold value,
LuNet Light achieves up to 92.4% balanced accuracy on the newly proposed
evaluation metrics. This indicates that the proposed system is capable of
tackling the re-ID problem also in an open-world, robotic environment.

Finally, the memory requirement and system efficiency is evaluated for
all three LuNets. The results show that all three architectures reach beyond
real-time frame rates both with and without the use of a GPU. With a single
core CPU, which may be representative for more lightweight and hardware-
constrained robots, LuNet Lightest processes 15.7 FPS, which is significantly
more than both the reproduced LuNet and LuNet Light. These efficiency
measurements emphasize the importance of designing lightweight system
architectures to ensure they can perform adequately on mobile robots.
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Chapter 6

Conclusion

This research aimed at creating a person re-identification system for mobile
robots. A lightweight re-ID system has been proposed and compared to
state-of-the-art research. This work shows that it is possible to achieve
near state-of-the-art performance on the MARS dataset benchmark without
using deep CNNs that require large amounts of computational resources.
Furthermore, it has been shown that small modifications in the batch
selection for the batch hard triplet loss can ease network training and
improve re-ID performance on the MARS dataset.

Multiple limitations and assumptions found in CV re-ID and on re-
ID systems for mobile robots have been pointed out in this thesis. These
include strictly relying on facial cues, needing preliminary information
about individuals to re-identify (either by requiring an enrollment phase,
only being able to re-identify a small number of specific individuals, or
assuming that all people are acquaintances), or not meeting requirements
of real-time frame-rates and low memory usage. Evaluation on the MARS
benchmark assumes that all persons to re-identify are acquaintances, and
does therefore not adequately describe how well the re-ID system performs
on a mobile robot.

Therefore, in addition to evaluating the proposed system on the MARS
dataset benchmark, this thesis presented a set of evaluation measures
that are appropriate to assess how well the re-ID system performs when
removing these restrictions. First, evaluations were conducted with a
varying number of strangers and acquaintances. The results show that
the re-ID system largely is capable of distinguishing between strangers and
acquaintances, in addition to associating the correct identification number
to the acquaintances. This demonstrates that the proposed system can
adequately tackle typical unconstrained, open-world environments for a
mobile robot.

Second, additional experiments were conducted to assess the memory
requirements and processing speed of the re-ID system. Measurements
show that the network architecture is sufficiently lightweight to achieve
real-time frame rate requirements, even without the use of a GPU.
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To summarize, this thesis demonstrates that it is possible to design
lightweight person re-identification systems that meet the requirements of
mobile robots. The proposed model is a framework that can be integrated
on mobile robots, thereby providing an enabler for more polite and
personalized robot behavior, and in addition enlargening and enhancing
robots’ repertoire of social skills. It is hoped that the findings of this thesis
may contribute into developing more lightweight and time efficient person
re-ID models to better fit the needs of mobile robotics.
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Chapter 7

Future Work

Two possible directions for future research, namely deployment on a mobile
robot (Section 7.1) and suggestions for potential model improvements
(Section 7.2), are identified and discussed in this chapter.

7.1 Deployment on a Mobile Robot

Although the conducted experiments suggest that the proposed re-ID system
is suitable for mobile robots, deploying and testing the model on a mobile
robot was out of the scope of this project. A natural continuation of this
work would therefore be to integrate the re-ID model with an automatic
person detector and person tracker, and deploy the full system on a mobile
robot. Doing so would allow observing how the system works in real-world
conditions. Furthermore, data could be collected and used to evaluate
the model in accordance with the proposed robotic re-ID measures. A
comparison of results obtained using data recorded from a mobile robot
and results obtained using the MARS dataset [135] would provide valuable
insight into how well the model truly performs in real conditions. Moreover,
combining the re-ID model with an automatic person detector and tracker
adds more computations to the overall system, meaning that the frame rate
is likely to be lower than reported in this work. Therefore, experiments
involving combinations of various detectors and trackers, and possibly
running the re-ID model on only every nth frame in order to achieve desired
frame rate, could be viable paths for further investigation.

Deploying the re-ID system on a mobile robot may require tuning or
adjustments to the matching threshold. The optimal threshold may vary
based on the robot’s environment, and could possibly diverge over time if
the robot operates in a range of various environments. To accommodate
for these changes, a threshold value that dynamically adjusts itself based
on the distances between clusters in the embedding space may be more
appropriate than a naive, static threshold value.
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7.2 Possible Model Extensions and Modifications

To fairly compare the model to the state-of-the-art on the MARS benchmark,
only the training set of the MARS dataset [135] was used to train the model
in all experiments. However, two possible approaches to optimize the
model for a real application instead of benchmark evaluations are identified.
First, training on the entire MARS dataset [135] would double the amount
of training data and arguably improve performance. It is also possible
to combine multiple datasets to form an even larger amount of training
data. Training on multiple datasets require relatively small modifications
to the existing system, but may have a significant impact on the model’s
performance on real applications.

Second, many mobile robots have depth video readily available in
addition to color video. Depth data can, for instance, be used to improve
the frame rate in robot perception systems [13]. However, due to the limited
amount of available depth data in re-ID datasets, an unexplored area of
research is how to optimally combine depth and RGB data in a re-ID pipeline.
Experimenting with depth data recorded from a mobile robot could provide
valuable insight about whether depth data can improve re-ID performance.

Another possible improvement to the model could be using a more
sophisticated way of combining features. For instance, instead of averaging
the feature vectors of all images in a video, an RNN can be added after
the CNN to extract temporal features. However, combining an RNN with
the Siamese architecture could result in higher processing times due to the
added layers, hyperparameters, and learnable parameters. These variables
therefore need to be taken into consideration to preserve real-time frame-
rate.
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Chapter 8

Appendix

8.1 Hardware and Software

• Laptop: Dell Inspiron 15 7000 series (2016)

• CPU: Intel Core i7-6700HQ, 2.60GHz, 8 cores, 64 bit

• GPU: Intel GeForce GTX 960M, 33MHz, 64 bit

• OS: Ubuntu 16.04.5 LTS

• Python 3.5.2

• Tensorflow-GPU 1.11.0

• Tensorflow-tensorboard 0.4.0

• Tensorflow Embedding Projector

• GNU Emacs 24.5.1

• Matplotlib 3.0.0
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8.2 Detailed Network Architectures

Layer type LuNet [40] LuNet Light LuNet Lightest
conv #1 128×7×7×3 128×7×7×3 128×7×7×3
res #1 128,32,128 128,32,128 128,32,128
pool #1 pool 3×3, stride

2, pad 1
pool 3×3, stride
2, pad 1

pool 3×3, stride
2, pad 1

res #2 128,32,128 128,32,128 -
res #3 128,32,128 128,32,128 -
res #4 128,64,256 128,64,256 128,64,256
pool #2 pool 3×3, stride

2, pad 1
pool 3×3, stride
2, pad 1

pool 3×3, stride
2, pad 1

res #5 256,64,256 - -
res #6 256,64,256 - 256,64,256
pool #3 pool 3×3, stride

2, pad 1
- pool 3×3, stride

2, pad 1

res #7 256,64,256 256,64,256 -
res #8 256,64,256 256,64,256 256,64,256
res #9 256,128,512 256,128,512 256,128,512
pool #4 pool 3×3, stride

2, pad 1
pool 3×3, stride
2, pad 1

pool 3×3, stride
2, pad 1

res #10 512,128,512 512,128,512 512,128,512
res #11 512,128,512 512,128,512 -
pool #5 pool 3×3, stride

2, pad 1
pool 3×3, stride
2, pad 1

pool 3×3, stride
2, pad 1

res #12 512×(3×3×512),
128×(3×3×512)

512×(3×3×512),
128×(3×3×512)

512×(3×3×512),
128×(3×3×512)

FC #1 1024×512 1024×512 1024×512
batch-norm #1 512 512 512
LReLU 512 512 512
FC #2 512×128 512×128 512×128

Table 8.1: The architecture of the three networks considered in this project.
"conv" is a single convolutional layer (#in channels, filter height, filter
width, #out channels). "res" is a bottleneck residual block. For each number
(na, nb, nc) in the "res" rows, the operation consists of one 1×1 convolution
from na to nb channels, followed by a 3×3 convolution, and finally a 1×1
convolution from nb to nc channels. "res12" deviates from the standard
bottleneck block, and the filter sizes are given in the table. "pool" are max-
pooling layers. "FC" are fully connected layers (na × nb), which reduce the
embedding dimensionality from na to nb features. "batch-norm" are batch
normalization layers and "LReLU" is the leaky rectified linear unit activation
function [75].
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8.3 Visualization of Activation Maps

a) Input image
(pID: 26)

b) res #1 (128× 64)

c) res #4 (64× 32) d) res #6 (32× 16)

Figure 8.1: One input image (a) and 18 corresponding activation maps from
b) the first residual block, c) the second residual block, and d) the third
residual block. The dimensions of the respective activation maps are on the
format H ×W. Continued in Figure 8.2.
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a) res #8 (16× 8) b) res #9 (16× 8)

c) res #10 (8× 4) d) res #12 (4× 2)

Figure 8.2: Continuation of Figure 8.1. 18 activation maps from a) the fourth
residual block, b) the fifth residual block, c) the sixth residual block, and
d) the seventh and final residual block. The dimensions of the respective
activation maps are on the format H ×W.
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8.4 Additional Results

Figure 8.3: Peak balanced accuracy at varying gallery sizes and threshold
values.
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Figure 8.4: The FNR at varying gallery size and threshold values.

Figure 8.5: The FPR at varying gallery size and threshold values.
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Figure 8.6: The TNR at varying gallery size and threshold values.

Figure 8.7: The TPR at varying gallery size and threshold values.
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