
Swarm airports

Optimizing the airport selection in a
drone swarm system

Anders Rønningstad

Thesis submitted for the degree of
Master in Informatics: Robotics and Intelligent

Systems
60 credits

Department for Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Swarm airports

Optimizing the airport selection in a
drone swarm system

Anders Rønningstad

© 2019 Anders Rønningstad

Swarm airports

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

In this thesis, swarm airports are introduced as a way of obtaining con-
tinuous operation in an autonomous drone swarm. An airport acts as a
service station where the drones can replenish their energy autonomously.
When incorporating several airports in the same system, one can operate a
large drone swarm without the need for human interaction. This simplifies
the use of drone swarms in applications such as surveillance and delivery.

As there is little or no previous research on swarm airports, there are
many issues that could have been addressed. In this thesis, the focus is on
how one can optimize the airport selection when a drone requires a battery
change. The thesis proposes a possible solution using a method inspired by
response threshold, from the field of swarm intelligence. The advantages
of using this method lie in the decentralized control, and ability to operate
with limited communication.

In order to perform experiments with the proposed method, a simula-
tion tool was created. The simulation program provides a framework and
visualization tool in order to better understand the system, as well as mak-
ing it easier to compare methods with the same configurations. In order to
understand how well the proposed method works, it is compared to bench-
mark methods inspired by mathematical optimization and random decision
making.

The main experiments presented in this thesis demonstrate how the dif-
ferent methods perform in terms of active drones in a system consisting of
four swarm airports. The results of the swarm method proved adequate
when the airports are spread out to several locations, but the method still
requires some improvement in order to achieve the same results as the bench-
mark methods. When changing the configurations such that all airports are
at the same location, the method performs well compared to the benchmark
methods, indicating that using swarm optimization can be favorable when
solving airport selection problems.

ii

Acknowledgement

Without the support, weekly discussions, and guidance from my supervisors
the process of writing this thesis would definently not have been the same. I
would therefore express my inmost gratitude to my suporvisors Kyrre Glette
at University of Oslo, Aleksander Simonsen at Norwegian Defence Research
Establishment, and Hans Jonas Fossum Moen at Norwegian Defence Re-
search Establishment. Thank you for your inpiration and everything you
have taught me throughout the whole thesis.

To my fellow students; I thank you for rubber ducking, discussions and
the tips you have shared all the way till the end. I would like to thank family
and friends for the patience, motivation, and support you have shown.

Last but definitely not least, my significant other Ingvild Dalseng Haller-
aker. Thank you for your endless support and all the other help you have
provided.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of thesis . 5

1.3 Outline of thesis . 5

2 Background 7

2.1 Mathematical optimization 7

2.1.1 Linear programming 8

2.1.2 Non-linear programming 9

2.2 Multiagent systems . 10

2.2.1 Game theory . 11

2.2.2 Swarm intelligence . 12

2.3 Performance in swarm robotics 14

3 Method & Implementation 17

3.1 Simulation strategy . 17

3.2 Visualization . 18

3.3 Simulation tool . 18

3.3.1 Simulation core . 19

3.3.2 Control tower . 19

3.3.3 Parameters . 19

3.3.4 Drone . 20

3.3.5 Airport . 21

3.3.6 Battery change . 22

3.3.7 Communication . 24

3.4 Simulation setup . 24

3.4.1 All airports at the same point 26

3.4.2 Airports spread with individual fixed distance 26

3.5 Optimization methods . 27

3.6 Centralized optimization methods 29

3.6.1 Mathematical optimization 30

3.6.2 Centralized control w/several airports 33

3.7 Random methods . 34

v

3.7.1 Random . 34
3.7.2 Distance weighted random selection 34

3.8 Response Threshold . 35
3.8.1 Implementation . 36

3.9 Collecting data . 37

4 Simulation experiments 39
4.1 Simulation setup . 39
4.2 Results with one airport . 40

4.2.1 Setup . 40
4.2.2 Results . 40

4.3 Results with several airports 42
4.3.1 Setup . 42

4.4 All airports at same place . 44
4.4.1 Benchmark methods 44
4.4.2 Swarm methods . 47
4.4.3 Comparing methods 51

4.5 Airports spread . 53
4.5.1 Benchmark methods 53
4.5.2 Swarm methods . 57
4.5.3 Comparing methods 60

5 Discussion 63
5.1 General discussion . 63
5.2 Conclussion . 65
5.3 Future work . 66

References 69

vi

Chapter 1

Introduction

1.1 Motivation

Through the years as technology has become more advanced, drones have
been used in a wider range of applications. With improved technology the
drones can be smarter, which includes stability, improved energy consump-
tion and more data processing onboard. With improved technology drones
can also be made faster, better and cheaper, which results in more people
wanting and affording them. With the drones getting smarter and more
people buying them there is no doubt that the drones will be used in more
advanced systems.

A drone is an unmanned aerial vehicle (UAV) which is either autonomous
or controlled by someone [11]. The first UAV created was manufactured in
1916 by the Americans Lawrence and Sperry. For this UAV they developed
a gyroscope in order to stabilize the aircraft and in order to have altitude
control [27]. Even though the first drone came in 1916 it took several decades
before development impelled. The drone in mind throughout this thesis is
called a quadcopter. The quadcopter is inspired by helicopters and uses four
rotors in order to stay in the air. This gives the quadcopter the ability to
perform vertical takeoffs and landings also called VTOL [18]. The concepts
in this thesis are therefore created for this purpose, but can easily be used
in other applications as well.

One of the main advantages of a drone is the ability to fly. When a
drone gets altitude, there are fewer obstacles blocking for communication,
it is easier to get a good overview and it is faster to travel from point A
to point B. These advantages make a drone very suitable for a wide range
of tasks such as photography, surveillance, transportation, rescue missions,
etc. In all the examples mentioned, more drones operating at the same time
could be beneficial. In a rescue mission, several drones can be sent out with
cameras or other searing equipment and get a good overview a lot faster than
a human search team. Several drones could, therefore, mean the difference

1

between life and death.
Several drones could also be used for surveillance. They could watch a

perimeter instead of guards walking around, or places like California could
use them to look for wildfires. There are approximately 133 million dekars
of forest in California, and their biggest threat is wildfires [31]. By using
several drones with for example infrared cameras, they can fly around and
discover the fires when they are small enough to still be extinguished. With
today’s technologies, operating several drones at a time is possible. But in
order to let the drones be as efficient as possible, they will need to be in
continuous operation. For a drone, this means that it will need to replenish
its energy. If there are only a few drones, this could, in theory, be done by
humans physically changing their battery themselves, but when the number
of drones increases and they have a continuous operation it would be easier
to use a drone airport that changes the battery automatically.

This thesis is written for the Norwegian defense research establishment
(FFI), and in their previous work, they have created what is called a battery
changer robot [29]. The purpose of a battery changer robot is that the
drones will find the robot when it needs to change its battery, land on it
or beside it and the robot will change the battery. When the battery is
changed, the drone can continue its operation. When this thesis talks about
a drone airport, it will be referring to a battery changer robot or something
equivalent. FFI is also working on operating several drones in what they call
a drone swarm. Figure 1.1 shows an image of a test done with their drone
swarm in 2018. The arrows illustrate how the drones can communicate.

Since drone airport is a pretty fresh contribution to any field, there seems
to be no previous work to look at when trying to optimize it. But regular
airports are quite similar and can to a certain extent be used as a reference
system. As a regular airport, a drone airport is a place where the drones
can land and get service performed. Now say that we include several drone
airports. They can be spread out in an area, or be placed side by side. This
system of airports now has several places a drone can land. If this system
now had a centralized control, like a control tower, the system would be very
much the same as a regular airport.

The air traffic control (ATC) is responsible for optimizing the schedul-
ing for a regular airport. They are divided into several teams, illustrated
in figure 1.2, that focus on different areas of a flight [2]. One team focuses
mainly on aircrafts high in the air before a second team is responsible for the
approach to an airport. When the aircraft touches the ground, the control
is handed over to the control-tower stationed at the airport. Their focus is
mainly taxiing the aircraft at the airport [13]. One of the most important
elements for a system like this to work is the communication between the
teams and of course all communication with the aircraft. Without commu-
nication, aircrafts don’t know where to go and when. This type of control
is called centralized control. The ATC acts as the centralization and tells

2

Figure 1.1: Typical FFI swarm (Sondre Engebr̊aten, FFI 2018)

all aircrafts in the system what to do and when. These decisions are based
on information from aircrafts, airports, and radars. As a guidance tool, the
ATC can in some cases use a computer program that takes all information
in hand and calculates a suggested order for which the aircrafts should land
at the airport [37].

When creating a drone airport system, it is desirable to make the system
as robust as possible. When looking at the regular airport there are two
elements that are critical:

1. Centralization

2. Communication

The first point is an issue since all agents depend on this one unit. If
the centralized control unit is removed from the system, especially if it is
unsolicited, the whole system will crash. The drones will no longer know
what to do and when. Centralization also becomes a problem when the
second point above, communication, becomes restricted. Whether reduced
communication is intended or not, it means that information will be diffi-
cult to maintain. Communication can often be the cause of trouble and is,
therefore, together with centralization, the main reasons for looking at other
ways to optimize a drone airport system.

3

Figure 1.2: Illustration of the different ATC teams and where they operate
(page 117 [5]).

In order to find the perfect optimization method for a given problem, it
is important to know what and why the system is optimizing. Therefore we
need to know what is important in a drone airport. As mentioned above the
system will be autonomous, and therefore needs a method that can operate
without needing human assistance. The reason for having an autonomous
system was due to the possibility of having a very large system. With this
large system, it is also beneficial if it is easy to vary the size. It can be either
to add more agents or remove them. Since the system will vary its size, and
as mentioned above that centralization makes the system more vulnerable,
it can be advantages to make the system decentralized. Finally, maybe the
most important, the system cannot be dependent on full communication. It
must be able to work with full, limited and no communication. Summed up
we get a list of attributes that an optimization method needs for it to be
used in the drone airport system:

1. Applicable to autonomous systems.

2. Easy to vary size.

3. Decentralized control.

4. Independent regarding communication.

Since the problem at hand concerns a swarm of drones, it seemed in-
teresting to find an optimization method within the field of swarm intelli-
gence (SI). SI is a field inspired by insect and animal societies, and is used
for distributed problem-solving [8]. SI has several interesting optimization
methods, but in this thesis it is the ”response threshold” method that will
be tested. This method is inspired by how ants react to stimuli from other
ants in terms of performing a task or not [8]. By letting the communication

4

between the drones be the stimuli and the airport selection be the reaction,
this method seem to both fulfill the list above, and be possible to implement.

1.2 Goal of thesis

Since the issue regarding a drone airport is such a new research field the first
goal is to create a good framework for running the experiments, including
creating a good simulation tool to perform experiments. The tool must
include a good way to vary the amount of communication, and it must be
possible to test different optimization methods. This goal also acts as a
prerequisite for being able to achieve any successful attempts on goal 2.

The second goal concerns finding an optimization method in order to op-
timize the airport selection done when a drone needs to change its battery.
Since there are no existing methods to compare the new contribution with,
this goal includes creating good benchmark methods as well as creating a
method which can operate with decentralized control and limited commu-
nication. As mentioned in section 1.1, the method tested in this thesis is
inspired by response threshold.

The two main goals can be summarized by the research questions bellow:

1. Is it possible to develop a suitable simulation tool to the drone swarm
system where it is possible to implement different optimization meth-
ods which vary in degree of centralization and communication?

2. Is is possible to optimize a decentralized set of drone swarm airports
with a method inspired by response threshold?

1.3 Outline of thesis

Chapter 2 gives a brief introduction to the theory of the methods used in
the thesis, while chapter 3 shows how the methods are adapted for the spe-
cific problem at hand and explains how the methods are implemented in
order to simulate, and gives a detailed explanation of how the simulation
program works. Chapter 4 starts with presenting the specific choices regard-
ing parameters and configurations for the simulations, before presenting the
results and analyzing them. In chapter 4 there is also a comparison of the
methods. Chapter 5 contains a discussion and summary of the thesis before
suggesting possible future work.

5

6

Chapter 2

Background

2.1 Mathematical optimization

Even though a regular airport is optimized by humans, the decisions are
often made with help from a computer program like ARAM [37], which
uses all information available to suggest an optimal solution regarding the
scheduling. When trying to solve complex problems it is often beneficial to
look for the optimal solution. The most obvious way of finding the opti-
mal solution is to use a mathematical approach. By using what is called
Mathematical optimization it basically means to find the best solution to
a mathematically defined problem [34]. This way of optimizing is used in
various applications in many research fields. When talking about mathe-
matical optimization of a problem that can be represented as an objective
function, one often thinks of two main methods depending on the problem
to be solved: linear-programming and nonlinear-programming. Since lin-
ear problems are much easier to solve, linear programming is often used
whenever it is possible. Both methods are used in a wide range of applica-
tions in most of mathematics and natural sciences, as well as economics and
statistics [35].

One of the main problems with mathematical optimization is that in
order to find the mathematical best solution, the optimizer needs a lot of
information about all agents. In a drone airport system, this means that
it will need to know where the airports and drones are, how many drones
that are at each airport and the battery status of all drones at all time.
Communication is therefore crucial.

Given that we can look past the fact that communication is needed,
there are two other issues with mathematical optimization. The first is that
it is sensitive to size. It can handle that the size changes, but if the system
becomes too big, the number of calculations needed to evaluate the entire
system fast enough becomes too high for any computer to handle. In other
words, the system doesn’t have time to find the optimal solution before

7

it is too late. The second issue is that mathematical optimization uses
centralized control. All calculations are done centralized in order to find
the optimal solution. When crosschecking our list over attributes wanted in
our preferred optimization method for the drone airport system, there is no
doubt that the mathematical approach is inadvisable.

Even though the mathematical approach seems difficult to use to op-
timize the entire system, it can give a good idea of how well the system
actually can operate. This thesis will therefore use linear programming as a
benchmark to show how strong this optimization method is.

2.1.1 Linear programming

Linear programming saw the day of light in 1947 when George B. Dantzig
was asked by his Pentagon colleagues to figure out a faster way for the
military to plan the deployment of forces and equipment [17]. As a result
Dantzig presented the basic linear-programming problem as we know it to-
day:

Maximize:
n∑

j=1

cjXj (2.1)

Subject to:
n∑

j=1

aijXij = bi (i = 1, ...,m)

Xj ≥ 0 (j = 1, ..., n)

In equation 2.1 the objectiv is to maximize the objective function by
varying the vector variale X. a, b, and c are vectors of known coefficients.

Linear programming can be applied when optimizing a linear objective
function where the constraints are linear equalities or linear inequalities [22].
A linear problem can have as many variables as needed, but the complexity
increases with the number of variables. There is also no upper boundary
for the number of constraints. To easier understand the properties of a
smaller linear problem (three or fewer variables), the constraints can be
visualized in a graph where the variables represent one dimension each.
Each constraint can be represented as a line in the graph and knowing that
this is a linear problem, the lines will always be straight/linear. In both
linear and non-linear programming, the objective is to find the best solution
among all possible. The set of possible solutions is called a feasible region,
and a problem needs to have a feasible region in order to be solved. When
plotting all constraints in the graph, they form the feasible region needed.
This effect can be viewed in figure 2.1. In the problem represented in the
figure, there are at least four constraints since there are four edges to the
yellow feasible region. Since the figure is in 2D, it means that there are

8

Figure 2.1: Illustration of the feasible region of a linear programming prob-
lem [38].

2 variables to the problem. In figure 2.1 there are also four corner points.
In linear programming, the solution will always lie in one of the corners or
vortexes [39]. Therefore drawing the graph as in figure 2.1 is often used as
an effective way of solving the problem.

2.1.2 Non-linear programming

Like in linear programming, non-linear programming also tries to optimize
an objective function. The biggest difference is that non-linear programming
deals with problems where the constraints are nonlinear [4]. Non-linear
programming is often used since it can be difficult to adequately represent
realistic problems as a linear problem [4]. Like done in linear programming,
one can also illustrate the feasible region of a nonlinear problem in a graph.
Figure 2.2 shows a problem with two variables: x and y. To the problem,
there are two visible constraints that have a curve, and form the feasible
region located in between (illustrated in blue). In a nonlinear problem,
the optimal solution does not necessarily lie in a corner or vortex, and can
therefore often be more difficult to find. In figure 2.2, the optimal solution
lies in the tangency between the feasible region and the diagonal tangent
[28]. The tangent is decided by the objective function.

9

Figure 2.2: Illustration of the feasible region of a non-linear programming
problem. [28]

Since the problem related to the drone airport system is possible to
convert into a linear problem, it will be linear programming that will be
used in order to understand how well one airport can be optimized.

2.2 Multiagent systems

Multiagent systems come to mind as a relevant method for solving complex
problems where there are several agents making autonomous decisions re-
garding their own state as well as interacting with one and other. Multiagent
systems have been studied at least since the 1980s [43] and is a collective
term for several systems including game theory and swarm intelligence which
both focus on understanding the effect on a system when agents interact [30]
[6].

The term agent is used in multiagent systems as a player or individual
which affects the system, and figures out itself how to satisfy its design
objective [43]. The agent can vary in terms of complexity. As seen in figure
2.3 a game theory agent often needs to be strategic/complex in order to fully
understand and interpet the game. The swarm intelligence agent is on the
other end of the complexity scale, and is called reactive. This agent usually
react to something in the environment. Stratigic and reactive agents are

10

Figure 2.3: Illustration of how the agents differentiate in terms of complexity
in a Swarm intelligence system and Game theory. (Illustration by: Jonas
Moen, FFI 2019)

only the outer points in figure 2.3. The agents can also be a combination of
the two, and is often created as complex as needed for its use.

2.2.1 Game theory

In game theory the game is a description of strategic interaction between
two or more agents or players as they are called in game theory [30]. When
working with game theory there are usually two assumptions made of the
players: they are rational, and intelligent [26]. When a player is rational
and intelligent it will always pursue the players own objectives by choosing
the best action given their perception of a given state [15].

Game theory is often a theoretical way of understanding what happens
when decision-makers interact and use mathematics to express this [30].
Dantzig, who was the creator of linear programming, explained in 1951 how
linear programming is equivalent to a zero-sum game with two players [12].
In 2012 Adler filled the gaps in Dantzig’s study regarding ”the relationship
between the Minimax Theorem of game theory and the Strong Duality The-
orem of linear programming”(page 1 in [1]), thus completing the connection
between the two.

Though game theory clearly has many of the same advantages as linear
programming when it comes to finding optimal solutions, it will not be used
in this thesis due to the same issues regarding communication in order to
obtain the perception of the whole system.

11

2.2.2 Swarm intelligence

Swarm intelligence, which is considered an artificial intelligence discipline
[6], uses the basic idea that relatively simple individuals, together create a
more advanced system. The individuals make decisions based on the envi-
ronment, which often includes the behavior of other individuals. This has
resulted in many different optimization methods like “ant colony optimiza-
tion” (ACO) and “particle swarm optimization” (PSO). The PSO is based
on bird flocks and fish schools and uses social-psychological principles to find
an optimal region in a search space [20]. The ACO is, as the name states,
inspired by ants. The method is designed to mimic ants’ search for food
and resources and can be used to solve combinatorial optimization problems
[8]. Insects, in general, became a very interesting research topic due to their
incredible division of labor. In Wilsons observations [40] [41] [42], he found
that the ants responded differently to stimuli and therefore divided the labor
based on how they responded to a given stimuli. To easier understand these
observations, Bonabeau et al. [7] developed a model that relies on response
threshold [32] [33]. This model shows that each individual has a response
threshold per task. This way, the ants who are supposed to find food, will
respond on less stimuli associated with this task than other ants [8].

When calculating the response in a response threshold system, bonabeau
et al. [7] [8] present two equations that can be used. Equation 2.2 and 2.3
calculate the probability of responding to stimuli S, given response thresh-
old Θ. In equation 2.2, n > 1 affect the steepness of the probability, and
determines how quickly the probability goes from 0 to 100%. For equation
2.3, the threshold itself (Θ) decides the steepness of the probability.

TΘ(S) =
Sn

Sn + Θn
(2.2)

TΘ(S) = 1− e−s/Θ (2.3)

Figure 2.4 shows equation 2.2 plotted with different values of theta. As
one can see from the plot, the probability goes from 0 and converges towards
1, meaning that the more stimuli present, the greater chance for responding.
By looking at the figure it is also easier to understand that the threshold is
not a boolean determining whether one needs to react or not, but is used
in the calculation to decide when the probability of reacting should exceed
50%.

Response threshold is used in several applications, like feature selection
in mathematics [16], task allocation and search planning on a UAV[21] and
adaptive behavior in robotics [10] to mention a few. There are also many
researchers that have implemented responses based on some threshold with-
out necessarily using the equations mentioned above from the studies from
Bonabeau et al. A few examples are Mann and Poore who uses response

12

Figure 2.4: Semi-log plot of response curves to equation 2.2 where n = 2
and Θ = 1, 5, 10, 20, 50. Figure from Bonabeau et al. [8] page 114.

threshold in the microcontroller of a pacemaker in the field of medicine [23],
or Mansfield et al. who look at how the response threshold adjusts in the
human brain when switching tasks [24].

The idea of responding differently to stimuli or signals based on your
own observation and state is what makes response threshold an interesting
method to use in our drone airport system. Comparing with the list of
attributes wanted for the optimization method, response threshold seems
to be a match. First of all, it is very applicable in an autonomous system,
and secondly it is not sensitive to size nor variable size. Regarding point 3,
decentralized control, a multiagent system is perfect since all agents control
themselves. Last but not least the amount of communication is very scalable
in a response threshold method. Therefore, the method easily checks off
every point on our list over attributes wanted.

13

2.3 Performance in swarm robotics

Even though swarm intelligence is based on insecet and animal behavior,
it is more and more used in engeneering problems [36]. The system at
hand in this thesis which consists of drones and airports can be called a
swarm robotic system. Swarm robotics is basicly the study of how physically
embodied agents with local interaction can create a more intelligent system
then by them selves [14].

The performance in swarm robotics is often dependent on the density
of agents in the swarm [19]. A good example of this is something called
bucket brigades. Bucket brigades is a way of transporting objects from one
point to another using a form of task partitioning [3]. Instead of all agents
traveling back an forth with the objects, they get in a line, and pass the
objects inbetween one another. An illustration can be seen in figure 2.5 (a)
and (b). (a) shows that when there are to few agents they can not create a
bucket brigade, while (b) shows how they create lines when they can.

In figure 2.5, (c) and (d) show the overall performance given the number
of agents. Many swarm robotic systems have this performance funciton, and
can often divide it into the 4 regions shown in (d) [19]. Throughout this
thesis, the term saturation will appear many times when referring to how
many drones that are at an airport. In figure 2.5 (c) and (d) the saturation
point is the maximum value. The point where adding or removing a drone
will decrease the performance. In other cases saturation can be defined as
when a state or quantity is adequate in terms of collecting data [25], but
it also seems that the determination of saturation is in a lack of explicit
guidelines [9].

14

Figure 2.5: Bucket brigade example for swarm performance and typical
swarm performance function over swarm density. (a) Bucket brigade, 4
robots (b) Bucket brigade, 16 robots (c) Bucket brigade, performance. (d)
Swarm performance showing four regions, SUP: super-linear, SUB: sub-
linear, OPT: optimal, INF: inference (Figure and caption from page 10 in
[19])

15

16

Chapter 3

Method & Implementation

This chapter will explain the implementation leading up to the experiments
presented in chapter 5. The chapter will first explain the simulation strategy
and how this affects the simulation, and then give a more detailed explana-
tion of how the simulation works and how the methods are implemented.

3.1 Simulation strategy

A system like a drone airport system is very dependent on time. Time affects
when the drones arrive at and leave an airport, which again is dependent
on the time an airport needs to give service to the drone. The amount of
time a drone needs at an airport combined with how long the drone can
stay airborne, again decides how many drones the system can handle, and
so on. Since time is of such essence it seems natural to create a simulation
system that takes time into accounting. This thesis is therefore built up as
an explicitly time-dependent simulation system, where clicks simulate time.
By doing so it is possible to build up the system as close as possible to a
real-life drone airport system, and therefore minimizing the reality gap.

When finding a suitable programming language for the simulations, there
are several good options. For this thesis, the simulation has been done
in Python due to its powerful packages for mathematical operations and
visualization combined with the ability for object-oriented programing. This
makes Python a powerful tool while still allowing rapid development. In
order to make the system as realistic as possible, the system uses Pythons
object-oriented ability to split the system into smaller parts. The objects
created in the simulation correspond to what they are in real life. The
implementation will be described in detail below.

17

3.2 Visualization

When running simulations, especially click based simulations, it can be ad-
vantages to view the simulation to be sure that everything is doing what it is
supposed to do. As mentioned above, one of the advantages of using Python
is a good visualization package which makes it simple to view the simulation.
The package used in this thesis is called Pygame and provide the drawing
methods necessary. In figure 3.1, an example of a simulation is shown. This
simulation is rather small but illustrates the visualization tool created for
this thesis. The light grey area is the drone workspace. This area specifies
where drones can be. This means that for this thesis the drone workspace
is limited. This decision was made since many of the applications thought
for this system have limited search or surveillance areas. Inside the drone
workspace, there are five green dots. These dots represent the drones. Each
drone has a number and a bar overhead which correspondingly represents
the id and battery level for that drone. In figure 3.1, drone 1 is highlighted,
and it is therefore possible to see all the target points that drone 1 has. The
targets are visualized by flags. The figure also has two airports represented
by circles. There is one far right which is green, meaning it is available,
and a red one far down indicating that it is occupied. One can see that
drone 3 is in the center of the airport furthest down, which again confirmes
that the airport is occupied. A black circle surrounding the occupied air-
port illustrates how far into the battery change the airport is. When this
circle completes around the airport, the drone will take-off and continue its
mission.

Since drawing and rendering the graphical user interface viewed in fig-
ure 3.1 needs a lot of computational power, it slows down the simulation.
Therefore it is implemented a button to turn off the animation, which al-
lows the simulation to run much faster. There are also buttons to add more
airports or drones if it is wanted to adjust the size of the swarm. In the top
left corner, there is a counter for the clicks. This counter is the clock of the
system and shows how far the simulation has come.

3.3 Simulation tool

In order to visualize as in figure 3.1 there need to be objects that can be
drawn. In this case, we have the two objects already mentioned above, a
drone and an airport. Since this is a simulation, centralized control is needed
in order to control the system, and make all the agents move. In this layout,
the centralized control is called “simulation core”. The last object is the
control tower which acts as a control tower in a regular airport.

18

Figure 3.1: Illustration of the graphical user interface created for the thesis.

3.3.1 Simulation core

Although one of the main goals is to decentralize the system, one needs
to centralize the simulation since everything is running on one computer.
This means that the simulaiton core tells all drones to move one timestep,
and then tells all airports to update. The simulation core then runs the
optimization corresponding to the mode it is running, and follows this loop
until the simulation ends.

3.3.2 Control tower

The control tower object operate as the centralized control unit when sim-
ulating benchmark systems. The drones can communicate with the control
tower in order to get infomration reagarding which airport it should go to.

3.3.3 Parameters

To run a simulation like in this thesis there are several parameters that are
important, and that needs to be easy to change in order to find the best
configuration. Therefore, there is a parameter file to the simulation. In
this file, one can find information on how long it takes to change a battery,
how fast the drones should fly, how much communication is possible, etc.
Essentially, all parameters that can be tweaked can be found here.

19

Drone state Description

Active This state is when the drones are active on their
mission. This means that the drones are flying
from target to target simulating waypoints. In
this state, the drone has a given speed and calcu-
lates its heading to be towards the next target.
In this state, the drone also constantly checks if
it has to change the battery and therefore enter
the next state: Approach.

Approach When the drone enters the approach state, it
means that it has calculated that it needs to
approach the airport due to low battery. As a
safety measure, the drone needs to be at the
airport when it has 15 percent battery left. The
approach state has its own speed defined in the
variable file, and the drone calculates the head-
ing towards the airport.

Landed When the drone arrives at the airport, it enters
the landed state. This means that the speed is
set to zero and that the drone enters the ser-
vice queue at the airport. When the service is
finished, the drone again enters the active state.

Table 3.1: Description of the different states a drone can be in.

3.3.4 Drone

There are several parameters that need to be implemented on the drone. The
most obvious is the position. The position corresponds to a GPS coordinate
in the sense of having a latitude and longitude. This parameter decides
where on the map it is, and can therefore easily be used to calculate the
distance to other points. For these simulations altitude has been ignored,
since it is believed to not affect the results. The only time altitude becomes
interesting is when the drone is to land and take-off from the airport. By
saying that these scenarios are time spent at the airport, we can increase
the time it takes to change the battery, and therefore include this time in
the simulations without explicitly including altitude.

In order for the drones to change position, they also have speed and
heading. Both the speed and heading is given by which state it is in. There
are mainly three states which are explained in table 3.1. Figure 3.2 show
the state transition diagram connected to the table.

As mentioned above, the control tower tells the drones when to move.
This is possible since the drone has a function called “drive”. In this func-
tion, the drone always runs a status check, which checks if everything is all

20

Figure 3.2: Illustration of the state transition diagram for the drone.

right with the drone, and updates a boolean referring to the status. The
status check also calculates based on the distance to the airport if the drone
needs to enter the approach state. Given that everything is all right with
the drone, it can then act correspondingly to which state it is in. Depending
on which mode the simulation is running, the drone also has other function-
alities within the drive function. The different modes will be described in a
later subchapter accompanied with how they are implemented.

3.3.5 Airport

Like the drone, the airport also needs several variables in order to operate.
Since the airports are stationary they do not have a speed or heading, but
they need to know their position and how much time they should use on a
battery change. How much time it takes to change a battery decides a lot
in terms of how many drones an airport can handle. Equation 3.1 is the
mathematical way of figuring out how many drones an airport can handle
based on how much time it takes to change a battery, how large the battery
loss per time step is, the average percentage in a battery when a drone
receives it and how much battery the drone has left when landed. If one has
a greater system with several airports, the equation (3.1) can be multiplied
by the number of airports, or calculated for each airport and added together.

21

Nd = 1 +
(b̃D − bA)TL

Tbc
(3.1)

TL =
1

bL

Nd : Number of drones which saturates an airport
b̃D : Average battery percent when departing airport
bA : Battery percent at arrival
bL : Battery loss per click
Tbc : Number of clicks to change battery

By doing this calculation one can quickly find out which state the system
or airport is in when it comes to saturation. The system can either be
under-saturated (N << Nd), saturated (N ' Nd) or over-saturated (N <<
Nd) where N is the number of drones in the system. Each state has both
advantages and disadvantages, which can be viewed in table 3.2.

The airport class also keeps track of which drones are at the airport.
This means that the airport can have several drones at the airport at once.
In the simulations done for this thesis, it is assumed that an airport can
have an infinite number of drones in a landed state, and that the airport
either drives around in a specific area doing service on the drones or picking
the drones up and placing them where the service is being done. In the
simulation, this is simulated by the drones landing at the same place even
though there is another drone present already.

When the control tower tells the airport to update, the control tower
calls a function called “runClick”. This function updates all information
inside the airport. Just like in the drone, the airport also runs a status
check. This check mainly updates whether the airport is occupied or not.
When an airport is occupied, it means that it has drones at the airport that
needs service. After the status check, given that it is occupied, the airport
keeps track of the counter used for the battery change.

3.3.6 Battery change

When a drone has landed at an airport, the airport immediately starts a
counter, given that it is available, which simulates a battery change. When
the counter reaches the amount corresponding to how long time a battery
change takes, the airport creates a new battery and gives it to the drone.
The battery percentage on the drone is randomly chosen between 80 and
100 percent. The randomized pick uses a uniform distribution. This feature
is included to simulate that the batteries have diverse conditions, and often
vary in terms of starting percentage and how fast they empty. By introduc-
ing the unpredictability of how fast the battery empties into the starting
percentage, the thesis assumes that the battery loss per time step is fixed.

22

Pros Cons

Under-
saturated

• No waiting time for
the drones.

• Does not utilize ca-
pacity.

• The airport has a lot
of downtime.

Saturated • The system is very
effective due to little
waste of time both
from the airports’
point of view, and
also the drones (given
that it is optimized).

• Can be very computa-
tionally heavy to op-
timize, and therefore
not very scalable.

Over-
saturated

• No need to optimize,
just need to “pick”
one of the drones that
are waiting.

• You know that the
system is working
100%. No time
where the airport has
nothing to do.

• The drones need to
wait more often.

• System is very vulner-
able to errors, since
the system is always
“overbooked”.

Table 3.2: Advatages and disadvantages regarding the different stages of
saturation.

23

3.3.7 Communication

When it comes to communication, there are two interesting dimensions. The
first dimension is the distance. This corresponds to the strength of commu-
nication. When talking about limited communication in this dimension, it
means that a drone can only talk to other drones within a limited distance.
When achieving full communication, the drones can talk to all other drones
regardless of the distance in between. The second dimension is bandwidth
and determines the amount of communication. With limited communication
in this dimension, it means that a drone can only pass a limited amount of
information to other drones. When talking about full communication in this
dimension, it means that a drone can give all information to other drones.

Since limited communication is one of the reasons why swarm optimiza-
tion is being tested, the simulation also needs to be able to vary the amount
of communication. The first dimension mentioned above is implemented by
creating a grid over the drone workspace. When a drone enters a region of
the grid, the drone is put on a list corresponding to this region. This list
then represents which drones can communicate with each other. When a
drone leaves an area it is then removed from the list. The simulation core is
the object which keeps track of all the lists. Although this way of simulating
communication doesn’t mirror the reality perfectly, it is an effective way of
testing limited communication without having all the drones check the dis-
tance to all the other drones in every time step. By reducing the size of the
regions in the grid, one simulates less communication in terms of distance.
Likewise, the communication distance increases by increasing the size of the
region.

Figure 3.3 illustrates how the grid works. In the figure there are 4 drones.
Drone 2 and 3 are in the same region and can therefore communicate. Even
though drone 1 is very close to drone 2 they can not communicate since they
are not in the same region.

The second dimension is simulated by adding information to the list
mentioned above. When a drone enters a region in the grid and is appended
to the communication list, instead of simply appending the drone id, one
includes the information which is to be shared. All other drones in the same
region can then update their internal database when new information enters.
To simulate limited information in terms of how much information is shared,
the drone only adds limited information to the list.

3.4 Simulation setup

In order to understand why the different optimization methods were chosen,
one must understand what was important to test during the simulations.
There are several parameters to a system like this in terms of setup and
configuration. One of the interesting ones is where the airports are placed.

24

Figure 3.3: Illustration of the communication grid. Each square represents
a region where the drones in the same region can communicate with one
another.

There are several possible strategies when placing the airports: All can be
placed at the same location either inside or outside of the drone workspace,
or they can be spread out both inside or outside the workspace. If they
are spread outside the workspace, they can have a fixed equal distance to
the workspace, or they can have different distance. All the different con-
figurations of the airports have their advantages and will affect the system
in some way. This thesis has focused on two configurations of the airports,
and the methods are therefore tested and created for these configurations.
The first one is the most basic, and have all the airports located at the same
point. In a real-life test, the airports can naturally not be located at exactly
the same point, but they could be so close that they appear to be. The
second configuration tested in this thesis has the airports spread outside the
workspace. In this configuration, the goal is to simulate that the airports
are at different fixed distances outside the workspace. This means that the
time it takes to reach an airport is the same for all drones wherever they
are in the workspace, and that each airport has its own distance.

One of the other interesting parameters to look at when it comes to
setup and configuration is the amount of initial information given to all the
agents. More precisely, how much the drones and airports know about each
other at setup. Especially for the swarm method, the behavior depends on if
the drones initially know where all airports are, or if they only know about
the one they started from. Both these scenarios will be simulated, and the
difference in all the methods will be better explained below.

When it comes to communication there are only one of the dimensions

25

Figure 3.4: Illustration of a simulation where all airports are located at the
same point.

explained earlier, the communication range, which will be varied. This is
because prior to the simulations, tests have been done in order to find the
information which is most important for the drones. This information will,
therefore, be the information given to other drones in all simulations where
limited communication is applicable. The communication range, on the
other hand, will be simulated using the grid system explained above.

3.4.1 All airports at the same point

As explained above, the airports in this configuration are located at the
same point. The reason for including this configuration is to look at the
system where the distance to the airport is negligible. To make sure that
distance has as little to say as possible, the airports are put in the middle
of the drone workspace. Another advantage of this configuration is that
it simulates a real-life application where it can be very difficult to place
airports in different places in the workspace. This can be due to the lack of
roads or lack of open places suitable for drone airports.

3.4.2 Airports spread with individual fixed distance

The second configuration keeps the airports outside of the drone workspace,
and in addition, they have different distances to the drone workspace. The
reason that the distance to an airport is fixed in this configuration is to

26

Figure 3.5: Illustration of fixed distance to each airport.

remove the effect that when a drone moves around it can come closer to
one airport while it moves further away from another. This effect makes
it very hard to calculate which airport the drone should go to without also
calculating exactly where the drone is at any given time. Figure 3.5 shows
the concept of the configuration. In the figure, there are two drones. Both
these drones have distance X to airport 1 even though drone 1 is further
away. The same goes for airport 3; both drones have distance 3X to airport
3. As in figure 3.5, the simulation also uses this spread in the airports.
Meaning that if airport 1 is distance X from the drone workspace, then
airport 2 is double the distance and airport 3 is three times the distance.
For the simulations, the distance X is set to be equal to a half battery
change. This way it will take a whole battery change to travel both to and
from airport 1. Traveling to airport 2 and back will take 2 battery changes
of time.

3.5 Optimization methods

The biggest differences between the methods studied in this thesis concern
communication and centralization. To easier understand difference amoung
the methods, figure 3.7 shows an illustration of all the methods tested in
the simulations, and show how they differentiate when it commes to com-
munication and centralization. In the figure there is a linear line, and, as
illustrated, the area above the line is an area no methods lie. This is because
in order to increase the amount of centralization, it is neccessary to increase
the amount of communication. It is not possible to control something if there
is no communication between the controller and the agent being controlled.

As can be viewed in figure 3.7, the mathematical and centralized method
is, without competition, the one with most communication and centraliza-
tion, and is most likely the best. In the simulations mathematical opti-
mizaiton will only be used for one airport. This desicion was made after
testing and finding how quickely the complexity increased when incresing
the size of the system. Therefore mathematical optimizaiton will only be

27

Figure 3.6: Illustration of a simulation where the airports are outside of the
workspace.

used as a referance to understand how well one airport can be optimized
when looking at the other methods. Instead of the mathematical optimiza-
tion there will be another decision making method which uses the advan-
tages of full communicaiton and centralization, but it is not proved to be
mathematically optimal. This method will be fully explained in section 3.6.
As illustrated, the swarm method can vary when it comes to amount of
communication, but needs to be in a decentralized state.

In a addition to the centralized and swarm methods there is also a ran-
dom method in the illustration. The random method is included due to their
simplicity. The main goal of having a random method is to understand how
well the system works without any form of optimization. This means that
a new contribution to the field will need to be better than random in order
to enhance the system.

There are two things that can be optimized in the drone swarm airport
system. The first which is used when optimizing mathematically is to decide
when the drone should arrive. The second is to decide which airport a
drone should go to. This is only applicable when there are several airports.
The second method is the one looked at when simulating several airports
throughout the thesis.

28

Figure 3.7: Comparison of the methods in terms of the amount of commu-
nication and centrilization.

3.6 Centralized optimization methods

The goal for the centralized optimization methods is to understand how well
the system can perform when all information is available for a centralized
controller. This means that these methods are dependent on full commu-
nication between all agents. In the introduction and background chapters
above, mathematical optimization has been explained in detail since the
method is used in a wide specter of applications, and is proven to give the
optimal solution. The mathematical approach will, therefore, be included as
a reference to see how well one airport can be optimized. When extending
the system with more airports, centralized control will be represented by a
method that uses less computation to optimize, because there are too many
variables for the mathematical optimization method. This method is not
shown to be mathematical optimal, but will be a good reference to how well
the system can perform.

29

3.6.1 Mathematical optimization

The mathematical optimizaiton solution to the problem is a linear program-
ming approach where equation 2.1 is used. As explained in the section for
linear programming (2.1.1), the equation consists of an objective function
and constraints which need to be defined.

Objective funciton

The objective function to this optimization problem is based on maximizing
Ta (air time) and minimizing Td (down time). By combining the two we get
the objective function 3.2. The air time is all time which is not spent at
the airport, while downtime is all time spent at the airport. This includes
waiting till the airport is available and the service time. This can be ex-
tended to include traveling time for the drone in order to optimize based on
where in the drone workspace the drone is as well, but this extention is not
prioritized in this thesis. Both the air time and down time is a result of X,
the variable vector that is to be determined.

max
∑

Ta − Td (3.2)

Constraints

There are only two constraints to this optimization problem. The first con-
straint (equation 3.3) regards the slot size, and prohibits two drones from
getting a time slot too close to each other. In general, this means that a
drone needs to be finished with its battery change before another drone can
get a slot. A slot is the time dedicated to a spesific drone.

| X(i)−X(i− 1) |≥ Tbc(∀i 6= 0) (3.3)

X(i) : Given time slot for drone i.
X(i− 1) : Given time slot for drone i− 1.
Tbc : Time it takes to change a battery.

The second constraint is that the time slot given to a drone can not come
before the drone is able to reach the airport (equaiton 3.4). This constraint
is pretty self explanatory in the fact that a drone needs to be close enough
to the airport in order to reach the slot given.

X(i)− Tr(i) ≥ 0 (3.4)

X(i) : Given time slot for drone i.
Tr(i) : Time for drone i to return to the airport.

30

Implementation

In order to simplify the problem, there is one assumption that has been
made which is believed to not affect the results. This regards the order of
the incoming drones. In section 3.3.4, it was mentioned that the drone has
to land when it has 15% of battery left. This means that for the drone to
waste as little battery as possible it needs to land when it has 15% left.
Landing before this means that battery has been wasted. Therefore, the
assumption made in order to get a linear problem is that the order of the
incoming drones is based on when their optimal landing time is. If drone
1 has optimal landing time 500 clicks from now, while drone 2 has optimal
landing time 501 clicks from now, it means that drone 1 will come before
drone 2, and the mathematical optimization method cannot change this
order. This means that the optimization method only pushes around on the
slot given to a drone for the battery change.

In figure 3.8 the two outer configurations are illustrated. Option 1 shows
what happens if the drones land at their optimal arrival time, and then wait
until the airport is available. As can be seen in the figure, drone 4 has to
wait a long time in order to get its battery change. In option 2 on the other
hand, the drones never wait for their turn, but they need to land earlier than
their optimal arrival time. This means that they change a battery that has
unused energy in it. The idea for the mathematical optimization is to find
the perfect combination of some drones landing too early, and some drones
having to wait in order to achieve the most efficient system.

Figure 3.8: Illustration of the edge cases when distributing time slots to
drones.

The mathematical optimization method is implemented as the linear pro-
gramming problem described earlier. The Python package called “SciPy”
gives a useful library for scientific computing. Within the “SciPy” pack-
age there is a whole package called “optimize” which gives several different
optimization functions that are simple to use. For the simulations where
mathematical optimization is used, it is the function “minimize” from the
“optimization” package which is called. The funciton is shown below, with
a brief explatation of the variables.

31

ret = scipy.optimize.minimize(fun, x0, method=None, bounds=None, constraints=())

- fun: The objective function to be minimized.

- x0: The initial guess which shows the dimensions the optimization problem.

- method: Here it is possible to specify which type of solver to use.

- bounds: a bound for the variables in order to reduce the amount computation.

- constraints: The constraints to the optimization problem.

- ret: The returning optimal solution.

Objective funciton (fun)

The objective function is implemented as explained above with equation
3.2. Ta can simply be found by looking at the last time a drone changed the
battery, and the next time it needs to land for a battery change. Td is equal
to the time it takes to change a battery, plus the waiting time at the airport
before the battery changer is available. Waiting at the airport will only
occur if the time slot given for battery change is later than when a drone
has to land due to low battery. Since the “minimize” function minimizes
the objective function, equation 3.2 is multiplied by −1.

x0

The goal of the x0 argument is to tell the “minimize” function what it is
searching for. In this thesis, x0 is an array of numbers. The size of the
array corresponds to the number of drones in the system. The x0 can also
be used to give an initial guess to what the solution should be. For these
simulations, this initial guess is not in use, and the input is, therefore, an
array of zeros.

Method

Since the problem is being approached by a linear programming method,
it is essential to have constraints. In order to use constraints in the “min-
imize” function, there are only two available methods. The first is called
“COBYLA” which stands for “Constrained Optimization BY Linear Ap-
proximation”.The second method, and the one used for the simulation,
is called “SLSQP” which stands for “Sequential Least SQuares Program-
ming”. The main reason for using ”SLSQP” is that ”COBYLA” can not
have bounds. This becomes a problem since it is not possible to limit the
search space, and resulted in a few test runs that never ended.

32

Bounds

In the bounds argument, the goal is to inform the function of how low and
high values the results can be. They work as a constraint for the calcu-
lation, while the constraints bellow works as constraints for the objective
function. In the simulation, the bounds were set to (0,4000) for each drone,
which means that the “minimize” function only can test solutions within
this boundary.

Constraints

The last argument is for the constraints to the linear programming problem.
The function receives a list of constraints that all have to be true in order to
be a feasible solution. As explained above, there are only two constraints to
this optimization problem (equation 3.3 and 3.4), but in order to implement
them in the simulation, the constraints are created for each drone. This
means that the number of constraints is equal to 2 times the number of
drones.

3.6.2 Centralized control w/several airports

When simulating several airports the problem is no longer optimizing the
arrival, but a question of which airport the drone should go to. When a
drone needs to choose an airport, it asks the control tower/simulation core
where it should go. The control tower asks all airports when they are ready
for a new drone, and then chooses the airport which will be ready first. This
airport is then returned to the drone, and the drone can start its approach
for this airport.

The calculations done at each airport in order to find the next available
service is based on how many drones are at the airport, how many drones
are approaching the airport, and how far into a battery change it is.

1 Next available service = Num drones at airport * time to change a battery
2 Next available service -= progress on current battery change
3 For each drone approaching airport:
4 if drone arrival ≤ next available service:
5 next available service += time to change a battery
6 else:
7 next available service = drone arrival + time to change a battery

The pseudo code above shows how the airports calculate the remaining
time until it is available. First, it adds up the time it takes to change the
battery on the drones currently at the airport. The progress on the current
change is then subtracted, since this is time the airport already has spent.
Finally, the airport goes through all drones that are approaching the airport,

33

and calculate when the last of the approaching drones will be finished with
their battery change. The operation of going through all approaching drones
works as a recursive function. It starts with the one arriving first, and checks
if this drone comes before or after the airport is finished with the previous
one. If it arrives before the airport is ready, it means that the drone will
have to wait and that the battery change for this drone begins as quickly
as it finishes with the previous one. For the total time until the airport
is available it means that it only needs to add the time it takes to change
one battery to the total. The other scenario is that the drone arrives at
the airport after the previous battery change is finished. This means that
the drone can change the battery as soon as it arrives. For the total time
it means that instead of simply adding the time for a battery change, it
also needs to add the time where the airport waits for the drone. Then
the airport can calculate for the second drone approaching, the same way.
When the airport is finished going through all approaching drones, the total
value is returned to the control tower.

3.7 Random methods

There are two interesting ways of looking at a random system. They are
included since they seem to represent the simplest ”optimizer” to implement,
which shows how the system works with a pretty simple solution. The
difference between the methods is whether the distance should affect the
random selection or not.

3.7.1 Random

The basic idea of the random method is that the next airport is chosen
completely random. This means that the airports, and/or drones, must
know from the beginning which airports that are in the system. In the
simulations done for this thesis, it is the airports that know where all other
airports are. Therefore it is the airport that randomly chooses, with a
uniformly spread, the next airport for the drone, and gives information
about the new airport to the drone when changing its battery. Then the
drone flies out and lands at the new airport next time it needs a new battery.
This system simulates what happens when there is no correlation between
the location of airports and where the drones operate, and therefore not
possible to weight the randomness.

3.7.2 Distance weighted random selection

The second random method is some what smarter in the sence that it uses
some of the infromation available to make a descision. The infromation used
is the distance to the airports. If the distance to all airports are the same,

34

the random pick will be uniform as in the random method above (3.7.1).
When the distance is different, the random pick will be weighted in the favor
of the closest one meaning that it is more likely to choose the airports closest.
In order to achive the correct distribution the method is implemented on
each drone. This means that the drone must know where all airports are.
When calculating the distribution, the drone creates an array containing
how much time it loses by changing at the different airports. This means
that all airports have the time it takes to change the battery plus the time it
takes to travel to that airport. This array is then inverted so that the lowest
value is the one furthest away. Finally, the array is divided by the sum of
the array, to achieve the normalized array. The resulting array is then used
as the weighted distribution for the random pick.

3.8 Response Threshold

When creating a swarm optimization method which is inspired by response
threshold, there are mainly two interesting factors. Number one is what
kind of information is distributed and how much, the second is how the
agent figures out its reaction to this information. When it comes to what
kind of information the drones should share, it is important to find the
information that informs the most to other drones with as little information
as possible. In a drone airport problem it seems natural to use information
regarding how busy the airports are so the drones can use this to compare
all the airports.

When one knows how busy the airports are, they can be given a value
based on when they are available. This value represents how long time it is
until the airport can change battery on the drone, and is used as stimuli for
the drones. Since a low stimuli means that the airport is soon ready, while
a large stimuli means that the airport is very busy, equation 2.2 is inverted
compared to the decired probability. The equation is therefore updated in
order to fit the decired inverted form, resulting in equation 3.5. By using
equation 3.5 the probability of reacting is 1 when the stimuli is 0, while the
probability converges towards 0 when the stimuli increases.

TΘ(Si) =
Θn

Sn
i + Θn

(3.5)

In equation 3.5 Si is the stimuli from airport i. For this method to work
in a quickely changing environment, the response threshold Θ is implemented
as a variable dependent on the different stimulis present. By setting Θ as
the average over all stimulis present (as shown in equation 3.6), the method
will always priorities the airports with lowest stimuli. In equation 3.6 n is
the total number of airports in system.

35

Θ =

∑n
i=1 Si

n
(3.6)

3.8.1 Implementation

Like the random methods, the only difference between the two swarm meth-
ods is how much the drones know of the initial state. The first one knows
about all the airports in the system when it starts, and can, therefore, choose
to go to all airports from the start. The second method does not know about
any other airports from the start, and can therefore only chose to go back
to the one it came from, or it must learn about other airports from other
drones. Communication is crucial to get more information about the system.
Communication is done through the grid explained in section 3.3.7.

As explained above, it is important to find the information which is the
most informative with as little information as possible. The information
chosen in these simulations are:

• Drone ID

• Previous airport

• Location of airport

• Number of drones at the airport when departed

• Departure time from the airport

The first item on the list is most important in order to keep track of the
newest information from each drone. Information gets old really quickly and
there is no reason to keep track of all the old information. This means that
every time a drone receives information, it checks if this information has
already been received. If so, it just throws it away. If it is new information,
the drone keeps it. If it has met this drone earlier, it replaces the old
information.

The next four items on the list informs the other drones about the activ-
ity at the previous airport the agent had service. First of all, the information
informs which airport it concerns, and where to find it. The location of the
airport is used to tell the other drones how far away it is. The final two
items informs the other drones how busy the airport was when the agent
left. This information tells a lot to the other drones when the information
is new, but if it’s old it might not tell anything at all.

When knowing which information is available, the method explained
above can be used. For the simulations, a greedy version of the method
has been used. This means that the drones always choose the best solution
based on the stimuli received. This is done as in equation 3.7 where TΘ is
calculated by equation 3.5.

36

next airport: A = max(TΘ(Si) : i = 1, .., n) (3.7)

How this process is implemented can be viewed below.

1 For each airport heard of from other drones:
2 probability = calculateProb(airport)
3 if probability > bestProbability:
4 save new best probability & new best airport

3.9 Collecting data

In order to compare the methods after running the simulations, one must
collect data from the simulations. One simulation contains several runs with
the same method. One run contains one ”lifetime”. This means that one
run consists of creating x number of airports and y number of drones, and
running them for z number of clicks. After z number of clicks, all agents
terminate, and the run is over. For each run, the program calculates the
average number of drones in the air and saves this value. The program also
saves how many battery changes each of the x number of airports perform.
This way it is possible to see which of the airports are the most active. For
most of the simulations, each run is done several times in order to achieve
an average for both the number of drones in the air and the number of
battery changes per airport. By creating an average over several runs with
the same configuration, the result is a better representation of this specific
configuration.

37

38

Chapter 4

Simulation experiments

In this chapter, all experiments will be explained fully, from the specific setup
for the different configurations, to the results and analysis. The first sub-
section will explain assumptions and choice of parameter values in general,
while more details specific for the different configurations, will be presented
at the beginning of their own sections.

4.1 Simulation setup

In order to go from the implementation explained in the previous chapter, to
actually running the experiments, there are several choices to make regarding
parameter values. Table 4.1 sums up the key parameters, and which values
that have been used in all experiments.

Parameter Value

Size of drone work space 900 X 500

Drone speed 1 pixel/click

Battery loss 0.05 %/click

Battery after change 80-100 %

Return percentage 15%

Tbc: Number of clicks it takes to change battery 300

Table 4.1: Summary of the parameter values choosen for the experiments.

All of the parameters listed in 4.1 affect mostly the drones. In some
way, they all decide how long the drone can stay in each of its 3 states
mentioned in table 3.1. The size of the workspace affects how far away
from the airport a drone can fly. Since the targets a drone has are random
throughout the whole workspace, an increasement of the workspace also
increases the average approach time for the drones. The speed, on the other
hand, is the opposite. The more it increases the lower the average approach
time, as it can travel faster.

39

The three next parameters affect how long the drone stays in the air,
while the final one effects how long the drones need to be in its landed state.
When it comes to the airport, the four last parameters affect the saturation
point, as explained for equation 3.1.

4.2 Results with one airport

The first results shown will answer how well it is possible to optimize one
airport. This is done using the mathematical optimization method. This
will also show how many drones will saturate an airport.

4.2.1 Setup

When simulating one airport, it was important that the configuration was
the same as for several airports, except form the fact that there is only one
airport. The placement of the airport is in the middle of the workspace,
which gives the shortest average traveling distance for the drones. To be
sure that the airport is fully saturated, the simulations went from 0 to 14
drones in the swarm. To be sure that the results are good representations,
each configuration of drones has been run 10 times. The average of the 10
runs is what is plotted together with the standard deviation. Based on the
standard deviation it seems that 10 runs is an adaquate number of runs to
represent the results.

To get an understanding of how much the mathematical optimization
actually optimizes, there is also included a random method in the results.
This method only returns the drone to the airport when it needs to change
the battery.

4.2.2 Results

Figure 4.1 shows the average percentage of the swarm which is active. A
drone is active when it is on a ”mission”, meaning not at an airport, or on
its way to an airport. Figure 4.2 shows the average number of active drones
in the swarm. From figure 4.1 we can see that when the system is under-
saturated, about 70% of the swarm is active for both optimization methods.
There is a small decrease in the percentage before the saturation point. For
the mathematically optimized method (blue line) this is most likely a result
of the drones having to either wait because there is another drone at the
airport, or land a little early in order to be done when the next arrives. For
the random method it can only be that the drones are waiting, since they
will never arrive before they have to. Since there isn’t any sudden decrease,
before the saturation point it seems like the drones don’t have to wait for
long.

40

Figure 4.1: Average percentage of drones active with one airport.

Figure 4.2: Average number of drones active with one airports.

41

Moving on to the saturation point it seems to be between 5 and 7 drones
for both methods. By looking at figure 4.2 it seems that the lines flattens
out when it reaches 7 drones. Interestingly, the change between 6 and 7
drones is smaller than between 5 and 6, meaning that the saturation point
is somewhere between 6 and 7 drones. Equation 3.1 from section 3.3.5,
was the equation for calculating the saturation point of an airport. When
entering the configuration of the simulation into this equation, the resulting
saturation point is 6. Since the battery a drone receives when changing
battery is between 80% and 100%, it is assumed in the calculation that the
average battery percent level when departing the airport is 90%. This means
that the experiments and the calculation is rather synchronized.

When moving past the saturation point to the over-saturated state, fig-
ure 4.2 shows that the average number of active drones converge towards
approximately 4.35.

In general there is very little difference between the random method and
the mathematically optimized. In figure 4.1 we can see that it is only in the
area between 2 and 6 drones that the random method lies a little bellow
the mathematical method. This shows that there is very little to gain by
optimizing only the slot as done in the mathematical method.

4.3 Results with several airports

4.3.1 Setup

The results that will be viewed and analyzed in the next sections are col-
lected from several experiments. Table 4.2 gives a quick overview of all
experiments done. As described in previous chapters, the methods of in-
terest are centralized, 2 random methods and 2 swarm methods. Since the
centralized method is dependent on full communication, it is only simulated
in this state. Also, the random methods have no communication and are
therefore only simulated with limited communication, since lack of commu-
nication is a form of limited communication.

The experiments group up in two main groups. One for experiments
where the airports are spread, and one where they are at the same location.
Each group of experiments can again be divided into two groups. The two
undergroups regard the communication range. In table 4.2, full communica-
tion means that all drones can communicate with all other drones wherever
they are. Limited communication means that the drone workspace is di-
vided into 180 equal sized squares which form the grid explained in the
implementation chapter. Mark that the second random method (R2) is not
simulated in the configuration where the airports are at the same place.
This is because in this configuration the random selection is equal to R1.

Within the two undergroups of experiments, lies all methods each rep-
resented as one experiment. When running one experiment, all configu-

42

ration of parameters stays the same except the number of drones in the
system. Each experiment contains 600 runs where the number of drones
varies from 1-60 drones. This range of drones is choosen since it goes from
the most under-saturated stat possible, until the system should be really
over-saturated. Each number of drones is run 10 times before collecting the
average number of drones in air and number of battery changes per air-
port, as explained in section 3.9. As can be viewed in the result plots later,
the standard deviation is very smal confirming that 10 runs is a sufficiant
amount of runs per configuration. One run is defined as a ”life cycle” for
the drones. When starting a new run, all agents are created and simulate
their movements for 100 000 clicks. Each click the drones and airports act
according to the implementation explained in an earlier chapter. All the
parameters above are also choosen as a result from how long time it takes to
run the experiments. In order to run the experiments with the parameters
as above it took 2 weeks of cpu-time. Had one for example increased the
number of clicks to 1 million, the cpu-time would have been increased to
about 20 weeks. This time was unfortunatly not available.

In table 4.2 each experiment i given a code corresponding to what it
is. As an example, AC-FC-C1 means that the airports are centralized, full
communication, and the centralized control method. This code will be used
in all plots when referring to the different methods.

Airports
centralized
(AC)

(FC) Full
communication

Centralized (C1)
Swarm with initial information (S1)
Swarm without initial information (S2)

Limited com-
munication
(LC)

Random (R1)
Swarm with initial information (S1)
Swarm without initial information (S2)

Airports
spread out
(AS)

(FC) Full
communication

Centralized (C1)
Swarm with initial information (S1)
Swarm without initial information (S2)

Limited com-
munication
(LC)

Random (R1)
Distance weighted random selection (R2)
Swarm with initial information (S1)
Swarm without initial information (S2)

Table 4.2: Summary of the different experiments.

43

Figure 4.3: Average percentage of drones active: Benchmark methods.

4.4 All airports at same place

4.4.1 Benchmark methods

The benchmark systems will give a general understanding of how well the
system works before going in depth with in the swarm methods.

Results

Figure 4.3 and 4.4 shows how well the benchmark systems work. Figure 4.4
shows the average number of drones that are active at any given time. When
a drone is active, it is not at an airport or on the way to an airport. Figure
4.3 displays the same data, but shows how many percent of the drone swarm
is active. In both figures, the blue line represents the centralized method,
and the black line represent the random method. The dashed line in figure
4.4 shows the maximum number of active drones that the system converges
towards.

Figure 4.5 and 4.6 shows how the system divides the drones between
the airports. Figure 4.5 shows how the centralized method devides the load
between the airports, and figure 4.6 show the same for random optimization.

44

Figure 4.4: Average number of drones active: Benchmark methods.

Figure 4.5: Number of battery changes per airport. Centralized optimiza-
tion, all airports at the same place.

45

Figure 4.6: Number of battery changes per airport. Random optimization,
all airports at the same place.

Analysis

By looking at figure 4.4, the centralized method has almost a linear increas
from 1 to 20 drones. In this area, the system is not yet saturated, and there-
fore the system can handle additional drones. This is confirmed by looking
at figure 4.3 where the centralized method is almost linear and stable at 70
percent between 1 and 20 drones. From the figures one can also see that
the saturation point is between 20 and 30 drones when both figures show
the transition from under-saturated to over-saturated. Especially in figure
4.4, one can see that somewhere between 20 and 30 drones the system is
no longer able to increase the number of drones active. In fact, the number
of active drones only increases from 17.2 to 17.5 between 30 and 60 drones.
This means that the system converges towards 17.5 drones active which is
marked by the dashed black line. From the experiment with mathematical
optimization on one airport, the results were 4.35 active drones in the sys-
tem. Multiplying this with four airports results in 17.4 which corresponds
quite nicely with the results from several airports.

It is more difficult to find a specific point where the random method
enter a saturated state since the transition between under-saturated and
over-saturated is smoother. Even though the random method does not reach
the 17.5 mark in figure 4.4, one can see that it also converge towards it.

46

Concerning how the system divides the load, it seems that the system
successfully divides the load on all airports from the beginning when using
centralized optimization. This results in a quite linear increas for all drones,
as can be seen in figure 4.5. When looking at the random method, figure 4.6
shows that it devides the load quite similar as the centralized method in the
beginning. When more drones enter the system it seems like it still manages
to divide relativly equal to all airports, but as we saw in figur 4.4 there is no
clear saturation point. Nontheless, figure 4.6 show that the random method
seem to have a uniform distribution.

Figures 4.5 and 4.6 also show the same form as the corresponding meth-
ods in figure 4.4. This confirms the relationship between the number of
battery changes in total and the number of active drones in the swarm. The
more battery changes done by the airports, the more drones stay active in
the swarm. It is also interesting to see that the centralized method quickly
converges towards the max number of battery changes per airport, while
the random method does not entirely reach it at any point. The maximum
possible battery changes for any airport is given by the total number of
clicks simulated divided by the number of clicks it takes to change a bat-
tery: 100000/300 ≈ 333. The maximum number of battery changes actually
performed in any of these experiments is 331. This is due to the initial
battery state on the drones when the experiments start. This is set to a
random percentage between 50 and 100%. Since none of the drones need
battery change before their battery percent reaches 15%, it will take at least
(50−15)%

0.05%/click = 700 clicks before any drone needs a battery change. Taking
this into account, the maximum possible number of battery changes for an
airport is (100000 − 700)/300 = 331, which confirms what the experiments
sometimes experience.

4.4.2 Swarm methods

Results

Figure 4.7 and 4.8 shows how well the swarm methods performed. The four
swarm methods represented vary in terms of communication range and how
much they know about the initial state. As explained in chapter 3.8.1 the
amount of information obtained from the start effects which airports the
drone can choose amongst. Figure 4.9 and 4.10 show the division of labor
between the airports for swarm optimization with limited communication
and swarm optimization with full communication, respectively.

Analysis

By looking at the figures there seems to be no effect on the system whether
the drone initially knows where all airports are or not. The communication
range, on the other hand, seems to affect the system. The swarm methods

47

Figure 4.7: Average percentage of drones active.

Figure 4.8: Average number of drones active.

48

Figure 4.9: Number of battery changes per airport. Swarm optimization,
all airports at the same place and limited communication.

Figure 4.10: Number of battery changes per airport. Swarm optimization,
all airports at the same place and full communication.

49

that have limited communication seem to perform better than the method
which uses full communication. One possible reason for this is that with
full communication all drones have access to the same information, and
will therefore possibly make the same decision regarding airports without
knowing that someone else also selected the same one. This can result in
several drones flying towards the same airport at once, and therefore need
to wait for a long time. In the method with limited communication however,
the drones have different access to information which seems to results in a
more spread distribution.

The experiments where communication was limited (yellow and purple
line) seems to follow a similar form as the centralized communication, where
the increas of the system is quite linear between 1 and 20 drones. The
saturation point appears to come between 20 and 30 drones before it flattens
out in figure 4.8 and converges towards the same 17.5 mark. When it comes
to the experiments with full communication (red and green line), there is a
more smooth transition surrounding the saturation point. Looking at figure
4.7 the average percentage seems to have an almost constant loss when
increasing the number of drones.

By looking at figure 4.10 it seems that the constant loss experienced
with full communication is a result of the division of labor between the
airports. For some reason, the drones are first only using one airport, until
they experience some sort of queue at this airport, at which time the next
one is also used. One explanation for this can be an implementation detail
concerning arrays and how the communication grid works. First of all, when
a drone is created, it is also put into a list for the communication grid square
it is in. Since drone 1 is always the first drone created, it is also the first
drone put into this list. Drone 1 is always assigned to airport 1. When
there is full communication in the system, all drones are put into the same
list since the whole workspace is in the same communication square. This
results in drone 1 always being the first entry to the list. After all drones
are assigned to the list, they start going through it to find new information.
The first new information it finds, which is always drone 1 the first time
it checks, will be the first airport added in the drones overview. When the
drone then needs to find which airport it will go to for its battery change, it
will always check airport 1 first. After checking airport 1, the other airports
will have to be estimated as a better solution than number 1 in order to take
its place as the best solution. If the estimation is equal, the drone will keep
the first one as its best solution. Not only is airport 1 always the first to be
checked, but airport 2 is always number two, since drone 2 is the second to
be created and therefore the second drone assigned to the communication
list. Likewise is airport 3 the third, and airport 4 the fourth.

The problem regarding the order of which the airports are checked, ex-
plains the spread in regards to the airports in figure 4.10, but it does not
alone explain why the results in figure 4.7 and 4.8 are so much worse than for

50

limited communication. In order to fully understand the different results,
one must also understand what is happening throughout the simulation, and
especially how the information is spread. When a drone changes its battery,
it is removed from the communication list mentioned above. When it is
finished it is again assigned to the list with new information regarding its
latest battery change. The information communicated from the drone does
not change until the next time it changes its battery. Since this happens
for all drones, the information regarding an airport is only updated every
time the airport finishes a battery change. Since a battery change takes 300
clicks in these experiments, it will take at least 300 clicks until new infor-
mation about the airport is available. This means that the information can
get rather ”old” by the time the airport has changed the battery on a new
drone. By the time new information enters, several drones can have made a
choice for their next airport, which can potentially have led many of them
to choose the same airport. This effect can happen for all airports, and can
result in sending batches of drones to each airport, resulting in many drones
having to wait in line.

Analyzing figure 4.9, one can see that with limited communication the
same effect occurs, but is not as dominant since the drones cannot commu-
nicate at the beginning. When the drones start, they are spread out over the
workspace and located in different communication grid squares. This means
that they are not listed in the same communication list, and therefore do not
get the same airport as the first one they are informed about. In figure 4.9,
there is almost a stairs phenomenon the first couple of drones. This shows
that when a new drone is included, it will mainly use its origin airport when
changing the battery. It is the same effect explained regarding figure 4.10,
that the drone usually returns to the first airport it hears about. We can
also see in figure 4.9 that when there are enough drones in the system, this
effect slowly decreases, and each airport quickly converges to the maximum
number of battery changes.

4.4.3 Comparing methods

In order to fully understand how well the methods are optimizing, they must
be compared to one another. In figure 4.11, all methods are represented and
they are color separated. The centralized method is the blue and the random
method is in yellow. As for the swarm method, they are divided into two
colors. Green for limited communication, and red for full communication.
As a first remark, the centralized method is, as expected, optimizing the
best. Closest to the centralized, and a very promising result, is the swarm
method with limited communication. It has almost the same performance
as the centralized method and shows that it can be possible to optimize very
well even without full communication or centralized control. An interesting
observation is that the system performs just as well regardless of if the drones

51

Figure 4.11: Average percentage of drones active: All methods.

know about all the other airports from the beginning or not. This means
that communication must work pretty well, and the lack of communication
does not affect the system in a bad way.

When it comes to the random method, the results are actually surpris-
ingly good. It shows that the system can work rather well without any need
for logical/smart drones. The negative part about the random method is
that it needs a lot of time to converge towards the maximum number of
drones active as shown in figure 4.4.

The not so promising results concern the swarm method with full com-
munication. As explained in the analysis earlier the problem with all drones
always prioritizing the same airport seem to affect the optimization badly.
This problem could be fixed by changing the implementation of how the
drone updates its overview information, or by changing the method used to
pick airport. The positive part about this method is how quickly it con-
verges when the number of drones reaches an over-saturated state. Another
possible implementation of the swarm method when there is full communi-
cation could be to make it more like the centralized method. Since there is
full communication in the swarm, each drone can do the same calculations
as done in the centralized unit, only for themselves. This would mean that
the airports must also be connected to the communication grid, which they
are not in the simulated configurations.

52

Figure 4.12: Average percentage of drones active: Benchmark methods.

4.5 Airports spread

4.5.1 Benchmark methods

Results

When looking at the configuration where the airports are spread, the re-
sults look a little different. Figure 4.12 and 4.13 show how the benchmark
methods performed. Again the blue line represents the centralized method,
while the cyan and black lines are the different random methods.

Figure 4.14, 4.15 and 4.16 show how the different methods divides the
battery changes between the airports.

Analysis

The centralized method performs quite well in this configuration as well. It
does not have the same linearity as when all airports had the same location,
but it quickly achieves a relatively high average of drones that are active.
The system clearly reaches a point where it seems to flatten out, but it
needs some time to fully converge towards the maximum number of active
drones (as seen in figure 4.13). Another interesting fact is that the maximum
number of active drones is lower than in the last section. This is most likely
a result of an averagely longer traveling distance to the airports. In figure

53

Figure 4.13: Average number of drones active: Benchmark methods.

Figure 4.14: Number of battery changes per airport. Centralized optimiza-
tion.

54

Figure 4.15: Number of battery changes per airport. Random optimization
with distance weighted selection.

Figure 4.16: Number of battery changes per airport. Random optimization.

55

4.12 one can also see that the centralized method has a more constant loss
to the percentage throughout the simulation compared to the configuration
in the last section.

Figure 4.14 show how well the centralized method divides the drones
in between the airports. It seems that each airport is almost filled to its
saturation point before a new airport is being used. The explanation for
this is a result of the different distances. If a drone goes to airport 2 instead
of airport 1, it will need to use the equivalent of one extra battery change
of time just in transportation. This means that the waiting time at airport
1 must exceed a whole battery change before it is beneficial to go to airport
2. By looking at figure 4.14 it seems that the waiting time can exceed a
whole battery change when there are about 4-5 drones in the swarm since
this is when the second airport is starting to be used. The third starts being
used around 9-11 drones, while the fourth is not used much before 20 drones
are in the system. In figure 4.13 one can actually see a sudden change of
direction for the blue line around 20 drones, which is believed to be when
the fourth airport is starting to be used.

For the random method where the distance to the airport is being ac-
counted for (cyan line in figure 4.12), the performance starts out pretty well,
but quickly decends. This is most likely since it is beneficial to prioritize
airport 1 in the beginning. One can see in figure 4.13 that the method works
best when there are less than 20 drones in the system. This shows that the
weighting of the random pick based on distance is beneficial when the sys-
tem is under-saturated and does not need to use all airports full time. When
the system is over-saturated, one can see from the plots that the weighted
selection is limiting the system, and therefore making it worse.

In figure 4.15, one can see that the weighting works as expected. Due to
the different distances to the airports, the distribution between the airports
is:

Airport Weight

Airport 1 40%

Airport 2 30%

Airport 3 20%

Airport 4 10%

This means that airport 1 on average receives 4 times more drones than
airport 4. As mentioned, this is good when there are few drones in the
system, but when the amount increases all airports other than number 1 are
not able to fully utilize their capacity.

The other random function where the airports are weighted equally
(black line in 4.12 and 4.13), the results are opposite. It starts out pretty
bad, only keeping a relatively small percentage of the swarm active. When
increasing the number of drones in the swarm the percentage loss is rather

56

low. The transition between the under-saturated system and the over-
saturated system is quite smooth with no sudden change in figure 4.13.
The method never fully converges towards the maximum number of active
drones, but is very close when there are 60 drones in the system.

Looking at figure 4.16 it is confirmed that the method works as it should.
There is clearly a random selection done, and all airports are used equally.
When the system is over-saturated, all airports almost converge towards the
maximum number of battery changes possible which again explains why the
black line in figure 4.13 almost converges towards the maximum number of
active drones.

4.5.2 Swarm methods

Results

Figure 4.17 and 4.18 show the results of the swarm methods implemented in
the configuration where airports are spread out with different distances. As
in previous sections, one figure shows how large percentage of the swarm is
active on average (4.17), and one shows the actual number of active drones
(4.18). There are four different swarm methods tested and displayed in
the figures. Two of the swarm methods are with limited communication,
where the difference is if they know about all airports from the beginning
or not. The same applies to the two methods where the drones have full
communication.

Figures 4.19 and 4.20 show the number of battery changes per airport.
4.19 represents the results for limited communicaiton and 4.20 represents
full communicaiton since the amount of initial information did not give any
noticable effect on the plots.

Analysis

By looking at figures 4.17 and 4.18 it is clear that all the swarm meth-
ods perform quite similar. As mention above, it seems that the amount of
initial information does not affect the system. When there is full commu-
nication, all drones immediately communicate with all drones and therefore
know about all the airports. When there is limited communication there
is a visual difference in the figures, but the difference is so small that it is
negligible. This also shows that even though the communication is rather
limited, the drones are able to spread the information pretty well. The dif-
ference between full and limited communication is also very small, but in
general full communication lies a little bit above limited.

The methods seem to perform rather well the first 6-7 drones until there
is a sudden change of direction for all swarm methods. In figure 4.19 and
4.20 one can see that airport 1 is filled up perfectly between 0 and 6 drones,
before airport 2 is being used. Going back to figure 4.18, it can seem like

57

Figure 4.17: Average percentage of drones active.

Figure 4.18: Average number of drones active.

58

Figure 4.19: Number of battery changes per airport. Swarm optimization,
airports with different distances and limited communication.

Figure 4.20: Number of battery changes per airport. Swarm optimization,
airports with different distances and full communication.

59

the change of direction occurs at the same time as airport 1 is filled up. It
seems like the drones priorities the first airport more than they should, and
therefore still choose the first airport even though it would be better to go
to the next. One possible explanation can be the same as in the last section,
that the information gets ”old” by the time a drone uses it to find the next
airport. In 4.20 there is also a dip in the graph right after it reaches the
maximum number of drones for an airport. This could be an effect caused
by the size of the swarm increasing, and information is therefore spread
faster. That way, the drones understand that they should go to airport 2
instead. Another explanation can be, as in the last section where several
drones end up choosing the same airport at the same time, creating a large
queue. When there is a large queue, none of the other drones go to this
airport, and, as a result, the airport can suddenly be without drones. The
drones still think there is a line even though the airport is finished with the
whole queue. A combination of all these effects can be the reason for the
sudden change in figure 4.18 explained above.

From about 6-7 drones and to about 20 drones there is a quite linear
increasement in figure 4.18 for all the swarm methods. When the system
has around 20 drones, the methods with limited communication again have
a change in direction, while the methods with full communication continue
the apparently linear line. Between 30 and 35 drones, both communication
configurations experience a new change of direction in their graph. When
comparing these points with figure 4.20 they match up fairly well with when
airport 3 and 4 starts being used. For figure 4.19 on the other hand, it does
not match as well. It matches with when airport 3 starts being used, but
not airport 4. For some reason airport 4 is not used before there are around
40 drones in the system. This again can be explained by the information
being ”old”.

When the system is very over-saturated (> 40 drones) the full communi-
cation methods (figure 4.20) are able to use all airports increasingly equally,
but struggles to use all the potential, resulting in only airport 1 fully con-
verging towards the maximum number of battery changes. The limited
communication methods, on the other hand (figure 4.19), are not able to
use airport 4 as much, but airport 1, 2 and almost 3 are fully converged
towards the maximum.

4.5.3 Comparing methods

After looking at all the methods individually in this configuration, they all
seem to have there strengths and advantages, but also faults. In figures
4.21 and 4.22, all methods can be seen together. The blue representing the
centralized method, green the swarm methods, yellow the random method
without distance taken into account and red is the random methods where
distance is taken into account. Again, the centralized method had the best

60

results showing that communication often is an advantage. The results are
better in any of the saturation states.

Looking at the methods where there is no centralized control, the ran-
dom methods perform rather impressively. As shown in figure 4.22, the
random method which does not take the distance into acountance follows
the centralized method quite well. It has the same form but has a little
offset towards the worse. When looking at the percentage like in figure 4.21
it is easier to see that this random method is not as good as it looks in the
very under-saturated system, but catches up with the centralized method
to a certain extent when there are more drones in the system.

The other random method seems to perform best between 10 and 23
drones. This is the area where it is either better than the other random
method (yellow line), better than the swarm methods or better than both.
The downside is that it does not handle a over-saturated system well. It
never fully engages all airports, and is therefore not able to get as many
active drones in the air as seen in figure 4.22. This is also the problem for
the swarm methods. Especially the methods with limited communication
are not able to achieve a satisfying number of active drones compared to the
centralized method and the good random method. The swarm method with
full communication, on the other hand, almost achieves the same number of
active drones as the random method in yellow.

The swarm methods are only good when the system is very under-
saturated. Already around 13-14 drones in the system, the random method
in yellow becomes better.

61

Figure 4.21: Average percentage of drones active: All methods.

Figure 4.22: Average number of active drones: All methods.

62

Chapter 5

Discussion

Before addressing the research questions from section 1.2, it is important
to mention a couple of weaknesses in the thesis. Whether they affect the
results in a positive or negative way is hard to say, but they should have
been evaluated in the experiments. For instance, the limited communication
should have been tested with several degrees of limited, in order to fully
understand how the limitation affects the system. This means that the
limited communication used in the experiments have not been tested to see if
it represents this configuration in an adequate way. Other parameter choices
that should have been better tested is the size of the drone workspace, the
drone speed, and general battery parameters. All of them affect how far a
drone can travel, and in real life, all drones have different configurations of
this. Therefore, they should have been better tested before implemented.

It is also important to emphasize that even though the results seem both
satisfying and not satisfying they do not represent neither the best or worst
possible response threshold method. There is most likely an implementation
which can improve the results in both cases and hopefully better defend the
usage of swarm intelligence as a solution to the drone swarm airport problem.
Possible solutions to this will be discussed in the future work section below.

5.1 General discussion

Based on the results presented in chapter 4, this section will try to answer
the research questions asked in the introduction.

1. Is it possible to develop a suitable simulation tool to the drone swarm
system where it is possible to implement different optimization meth-
ods which vary in degree of centralization and communication?

2. Is is possible to optimize a decentralized set of drone swarm airports
with a method inspired by response threshold?

63

As mentioned in chapter 1.2, a simulation tool was a prerequisite in
order to be able to implement and test the optimization methods. The
short answer to the first research question is therefore yes. The tool made it
possible to test different methods and made it possible to vary the amount of
communication and centralization. This makes the simulation tool suitable
in the way that it fulfills the requirements mentioned. Whether the tool is
credible or not is also a question which effects how suitable it is. Based on
the results achived compared with the few analyticly calculated results it
seems as the simulation tool producess adaquate and credible results.

After analyzing the results from chapter 4, the answer to the second
question can be both yes and no. In the experiments where the airports
were located at the same place, the results appear to be satisfying compared
to the benchmark systems in the system. The method is clearly better than
the random method, which means that it improves the performance rather
than make it worse compared to the method representing the lower rank.
The results also confirm the initial assumption that the centralized method
will be better. Moving on to the other configuration where the airports are
spread, the results are almost as good as the random method, but based
on the results presented it is difficult to accentuate the swarm method as a
successful optimization method to the problem.

Since the answer to the research question is based on comparing the
results with the benchmark methods on must also ask if they are adquate
in terms of validating the results of the swarm method. There is no way
to asserain whether the benchmark systems are adequate or not, but it is
possible to present arguments that strengthen the assumptions that they
are. There are two benchmark systems that represent the outer edges of
the solutions. The centralized method, which tries to show how good the
system can work, seem to perform rather well based on the result analyzed
in the previous chapter. Since the goal of the method is for it to be better
than the swarm method, it has indeed achieved this, but whether or not
it is representing the better solution in a good matter can be debated. It
could be the case that the best solution is a lot better resulting in the swarm
method looking even worse, but this would not affect the main research ques-
tion where the more important comparison is against the random method.
Therefore the centralized method is evaluated as an adequate benchmark
method.

When it comes to the random method, it also seems to be adequate. The
goal of the method is to represent a solution that is a realistic lower limit of
what is acceptable performance. If the random method had performed really
bad the sufficiency could have been questioned, but based on the results and
assuming that the implementation is realistic, the method seems adequate.
In fact, the method performed better than expected. The results prove that
a random approach can actually be a good solution.

64

5.2 Conclussion

This thesis has explored possible ways of optimizing a drone airport sys-
tem. Since the system, in general, seem to be a rather new contribution to
any research field, this thesis has also introduced one way of looking at an
autonomous drone airport system. As a result, the thesis has presented 3
different optimization methods where the goal for the methods is to choose
which airport a drone should go to when it needs to change its battery.

A simulation tool was created in order to test the different methods
and being able to compare the methods, knowing that the configuration and
setup are equal. The simulation tool was created in Python with standard
scientific packages. To be sure that the simulation worked as it should, a
visualization tool was created using a package called ”Pygame”. The visual-
ization tool was an extra feature only used when the goal was to understand
what happened in the simulation and was not used when running big exper-
iments, due to the time consumption of rendering the environment.

The swarm method introduced is inspired by the existing response
threshold methods within the science of swarm intelligence. The goal of this
method was to create a solution that is independent of communication and
not in the use of centralized control. The method is implemented in the
simulation tool which resulted in positive and negative results but without
a doubt showing that the method is interesting to study further.

The centralized methods were created as benchmark systems, but are
also new to this specific problem. The first method introduced as centralized
is a mathematical optimization solution inspired by linear programming.
The method implemented was used to show how well one airport could be
optimized, but also confirmed the assumption that it is computational heavy
when increasing the size of the system. Therefore, there was also created
another centralized method that was implemented when simulating several
airports. This method had the same properties regarding centralization and
communication but is not proven to be mathematically optimized. This
method is also a new contribution and shows that it is possible to implement
a rather good solution to the problem of interest.

Finally, the random methods represent the opposite of the centralized
method. The goal of the method was to understand how well the system
works with no logical or smart decision making. The random method was
also implemented in the simulation tool and compared to the other two
methods. The method resulted in performing rather well and showed that
it is a proper challenger to the other methods.

65

5.3 Future work

This thesis contributes to a research field that without a doubt is yet to be
fully explored. The amount of future work can seem endless, but below are
some of the more specific possibilities related to the thesis.

Improve swarm method - The swarm method implemented had am-
biguous results which most certainly have the potential for improvement.
Below is a list of some possible solutions to achieve such an improvement:

1. Tune parameters by running more testes, varying the parameters and
comparing the results. This could improve a little bit, but is not
believed to make any big difference.

2. Update the information flow with a smarter solution. One possible
solution is to let the drones spread more information, not only about
themselves but also the information they have received from other
drones. If the drones always spread their updated overview list, the
receiver could update information for all airports and not only the
single airport information.

3. Including the airport in the communication flow. If the airport is
implemented with the same opportunity for communication as the
drones, the drones closest can always get the newest information. If
this is implemented with the point mentioned above, the newest in-
formation can, in theory, reach all drones even though they are far
away.

4. Change the stimuli for the drones. It is a possibility that one can find
information which is more informative and therefore is a better choice.
One example could be to include how busy an airport has been, and
not only how busy it will be.

5. Update the calculations done when calculating the response. This
point is connected with point 4 and can be forced to change if the
stimuli changes, but it can also be a possible solution to study a better
way of calculating with the same information as in this thesis.

Airports with different efficiency - By implementing either airports
which can take more drones at the same time, or implement diversity in the
efficiency will introduce another dimension when deciding an airport. It is
also more likely in a real-world system that the airports have a more variable
time consumption on a battery change.

More advanced airports - In the existing implementation the airports
are very passive, and do nothing else but change the battery when a drone

66

arrives. Below is a list of possible ways to increase the service and general
flow at the airport:

1. Expanding the service done at the airports. There are more parts of
the drone which needs to be changed, just not as often. This could
be propellors, motors, cameras, other equipment, packages, etc. This
would affect the time consumption for a service considerably, making
it much more difficult to calculate when it is available. This change
would also make the system even more autonomous. The airports
could also have different tasks, meaning that the drones will go to
another airport for a battery change compared with a motor change
and a third for propellor change. The airports could also offer several
services at once, where each airport has its unique combination of
possible services.

2. Prioritizing the drones. Based on what the system is used for the
drones could have different missions, where some missions are more
important than others. If this is the case, the airports could priori-
tize which drones that get service first based on the priority of their
mission.

3. Prioritizing based on payment. This idea is inspired by the priority
idea in the previous point. It could be possible that the airports are
not part of a specific system, but operate as an airport we know today.
This means that drones and airports are not part of the same system
and drones can use airports that are placed at known locations. When
a drone arrives it can pay for a service to be done and the airport
performance. An example of such a system is grocery delivery. If
all the different companies delivering groceries start delivering using
drones, a third party can place service airports at several locations that
all companies can use. The airport could then prioritize the incoming
drones based on who pays the most.

67

68

References

[1] Ilan Adler. “The equivalence of linear programs and zero-sum games”.
In: International Journal of Game Theory 42.1 (Feb. 1, 2013), pp. 165–
177. issn: 1432-1270. doi: 10.1007/s00182-012-0328-8.

[2] A. Agustı´n et al. “On air traffic flow management with rerouting. Part
I: Deterministic case”. In: European Journal of Operational Research
219.1 (May 16, 2012), pp. 156–166. issn: 0377-2217. doi: 10.1016/j.
ejor.2011.12.021.

[3] C. Anderson, J.J. Boomsma, and III Bartholdi J.J. “Task partitioning
in insect societies: bucket brigades”. In: Insectes Sociaux 49.2 (May 1,
2002), pp. 171–180. issn: 1420-9098. doi: 10.1007/s00040- 002-

8298-7.

[4] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear
Programming: Theory and Algorithms. John Wiley & Sons, June 12,
2013. 1122 pp. isbn: 978-1-118-62630-6.

[5] Julia A. Bennell, Mohammad Mesgarpour, and Chris N. Potts. “Air-
port runway scheduling”. In: 4OR 9.2 (June 1, 2011), p. 115. issn:
1619-4500, 1614-2411. doi: 10.1007/s10288-011-0172-x.

[6] Christian Blum and Xiaodong Li. “Swarm Intelligence in Optimiza-
tion”. In: Swarm Intelligence. Ed. by Christian Blum and Daniel Merkle.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 43–85. isbn:
978-3-540-74088-9 978-3-540-74089-6. doi: 10 . 1007 / 978 - 3 - 540 -

74089-6_2.

[7] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. “Quanti-
tative Study of the Fixed Threshold Model for the Regulation of Divi-
sion of Labour in Insect Societies”. In: Proceedings: Biological Sciences
263.1376 (1996), pp. 1565–1569. issn: 0962-8452.

[8] Interval Research Fellow Eric Bonabeau et al. Swarm Intelligence:
From Natural to Artificial Systems. Google-Books-ID: PvTDhzqMr7cC.
OUP USA, 1999. 324 pp. isbn: 978-0-19-513159-8.

[9] Glenn A. Bowen. “Naturalistic inquiry and the saturation concept: a
research note”. In: Qualitative Research 8.1 (Feb. 1, 2008), pp. 137–
152. issn: 1468-7941. doi: 10.1177/1468794107085301.

69

[10] Eduardo Castello et al. “Foraging optimization in swarm robotic sys-
tems based on an adaptive response threshold model”. In: Advanced
Robotics 28.20 (Oct. 18, 2014), pp. 1343–1356. issn: 0169-1864. doi:
10.1080/01691864.2014.939104.

[11] Grégoire Chamayou. Drone Theory. Google-Books-ID: PL8cBAAAQBAJ.
Penguin UK, Jan. 29, 2015. 241 pp. isbn: 978-0-241-97035-5.

[12] GB Dantzig. “A proof of the equivalence of the programming problem
and the game problem”. In: Koopmans TC (ed) Activity analysis of
production and allocation (), pp. 330–335.

[13] Daniel Delahaye and Stéphane Puechmorel. “Air Traffic Control”. In:
Modeling and Optimization of Air Traffic. John Wiley & Sons, Ltd,
2013, pp. 83–90. isbn: 978-1-118-74380-5. doi: 10.1002/9781118743805.
ch4.

[14] Marco Dorigo and Erol Şahin. “Guest Editorial”. In: Autonomous
Robots 17.2 (Sept. 1, 2004), pp. 111–113. issn: 1573-7527. doi: 10.
1023/B:AURO.0000034008.48988.2b.

[15] Jurgen Eichberger. “Review of Game Theory, , ; Game Theory: Anal-
ysis of Conflict”. In: The Economic Journal 103.419 (1993). In collab.
with Drew Fudenberg, Jean Tirole, and Roger B. Myerson, pp. 1065–
1067. issn: 0013-0133. doi: 10.2307/2234726.

[16] Huilian Fan. “A Rough Set Approach to Feature Selection Based on
Wasp Swarm Optimization”. In: 2012.

[17] Saul I. Gass. “George B. Dantzig”. In: Profiles in Operations Research:
Pioneers and Innovators. Ed. by Arjang A. Assad and Saul I. Gass.
International Series in Operations Research & Management Science.
Boston, MA: Springer US, 2011, pp. 217–240. isbn: 978-1-4419-6281-2.
doi: 10.1007/978-1-4419-6281-2_13.

[18] S. Gupte and {and} J. M. Conrad. “A survey of quadrotor Unmanned
Aerial Vehicles”. In: 2012 Proceedings of IEEE Southeastcon. 2012 Pro-
ceedings of IEEE Southeastcon. Mar. 2012, pp. 1–6. doi: 10.1109/
SECon.2012.6196930.

[19] Heiko Hamann. Swarm Robotics: A Formal Approach. Cham: Springer
International Publishing, 2018. isbn: 978-3-319-74526-8 978-3-319-74528-
2. doi: 10.1007/978-3-319-74528-2.

[20] James Kennedy. “Particle Swarm Optimization”. In: Encyclopedia of
Machine Learning. Springer, Boston, MA, 2011, pp. 760–766. doi: 10.
1007/978-0-387-30164-8_630.

[21] Min-Hyuk Kim, Hyeoncheol Baik, and Seokcheon Lee. “Response Thresh-
old Model Based UAV Search Planning and Task Allocation”. In: Jour-
nal of Intelligent & Robotic Systems 75.3 (Sept. 1, 2014), pp. 625–640.
issn: 0921-0296, 1573-0409. doi: 10.1007/s10846-013-9887-6.

70

[22] David G. Luenberger and Yinyu Ye. “Basic Properties of Linear Pro-
grams”. In: Linear and Nonlinear Programming. Ed. by David G. Lu-
enberger and Yinyu Ye. International Series in Operations Research &
Management Science. New York, NY: Springer US, 2008, pp. 11–31.
isbn: 978-0-387-74503-9. doi: 10.1007/978-0-387-74503-9_2.

[23] Brian M. Mann and John W. Poore. “Microprocessor controlled rate-
responsive pacemaker having automatic rate response threshold ad-
justment”. U.S. pat. 4940052A. Pacesetter Inc. July 10, 1990.

[24] Elise L. Mansfield et al. “Adjustments of Response Threshold dur-
ing Task Switching: A Model-Based Functional Magnetic Resonance
Imaging Study”. In: Journal of Neuroscience 31.41 (Oct. 12, 2011),
pp. 14688–14692. issn: 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.
2390-11.2011.

[25] Janice M Morse. The significance of saturation. May 1995.

[26] Roger B. Myerson. GAME THEORY. Harvard University Press, Mar. 1,
2013. 585 pp. isbn: 978-0-674-72861-5.

[27] Kenzo Nonami et al. Autonomous Flying Robots: Unmanned Aerial
Vehicles and Micro Aerial Vehicles. Springer Science & Business Me-
dia, Sept. 15, 2010. 341 pp. isbn: 978-4-431-53856-1.

[28] Nonlinear programming. In: Wikipedia. Page Version ID: 865897558.
Oct. 26, 2018.

[29] Olav Rune Nummedal et al. Development and construction of a low-
cost autonomous battery replacement robot for drones. 2017.

[30] Martin J. Osborne and Ariel Rubinstein. A Course in Game The-
ory. Google-Books-ID: mnv1DAAAQBAJ. MIT Press, July 12, 1994.
369 pp. isbn: 978-0-262-65040-3.

[31] University of California Agriculture {and} Natural Resources. Califor-
nia Forests. url: http://ucanr.edu/sites/forestry/California_
forests (visited on 05/29/2018).

[32] Gene E. Robinson. “Modulation of alarm pheromone perception in
the honey bee: evidence for division of labor based on hormonall reg-
ulated response thresholds”. In: Journal of Comparative Physiology A
160.5 (Sept. 1, 1987), pp. 613–619. issn: 1432-1351. doi: 10.1007/
BF00611934.

[33] Gene E. Robinson. “Regulation of Division of Labor in Insect Soci-
eties”. In: Annual Review of Entomology 37.1 (Jan. 1, 1992), pp. 637–
665. issn: 0066-4170. doi: 10.1146/annurev.en.37.010192.003225.

71

[34] Jan A. Snyman and Daniel N. Wilke. “INTRODUCTION”. In: Practi-
cal Mathematical Optimization: Basic Optimization Theory and Gradient-
Based Algorithms. Ed. by Jan A Snyman and Daniel N Wilke. Springer
Optimization and Its Applications. Cham: Springer International Pub-
lishing, 2018, pp. 3–40. isbn: 978-3-319-77586-9. doi: 10.1007/978-
3-319-77586-9_1.

[35] Daniel Solow. “Linear and Nonlinear Programming”. In: Wiley Ency-
clopedia of Computer Science and Engineering. American Cancer So-
ciety, 2007. isbn: 978-0-470-05011-8. doi: 10.1002/9780470050118.
ecse219.

[36] Ricardo Soto, Eduardo Rodriguez-Tello, and Eric Monfroy. Recent Ad-
vances on Swarm Intelligence for Solving Complex Engineering Prob-
lems. Mathematical Problems in Engineering. 2018. url: https://
www.hindawi.com/journals/mpe/2018/5642786/ (visited on 04/28/2019).

[37] Maarten Tielrooij et al. “Supporting Arrival Management Decisions
by Visualising Uncertainty”. In: (2013), p. 9.

[38] Topic 5: Linear Programming. url: http://jwilson.coe.uga.edu/
emt668/EMAT6680.2002/Jackson/EMAT%206000/topic%205/topic%

205-lin%20program.html (visited on 04/07/2019).

[39] Robert J. Vanderbei. Linear programming: foundations and exten-
sions. New York: Springer, 2013. isbn: 978-1-4614-7629-0.

[40] Edward O. Wilson. “Caste and division of labor in leaf-cutter ants
(Hymenoptera: Formicidae: Atta)”. In: Behavioral Ecology and Socio-
biology 7.2 (July 1, 1980), pp. 143–156. issn: 1432-0762. doi: 10.1007/
BF00299520.

[41] Edward O. Wilson. “Division of Labor in Fire Ants Based on Physi-
cal Castes (Hymenoptera: Formicidae: Solenopsis)”. In: Journal of the
Kansas Entomological Society 51.4 (1978), pp. 615–636. issn: 0022-
8567.

[42] Edward O. Wilson. “The relation between caste ratios and division
of labor in the ant genus Pheidole (Hymenoptera: Formicidae)”. In:
Behavioral Ecology and Sociobiology 16.1 (Nov. 1, 1984), pp. 89–98.
issn: 1432-0762. doi: 10.1007/BF00293108.

[43] Michael Wooldridge. An Introduction to MultiAgent Systems. Google-
Books-ID: X3ZQ7yeDn2IC. John Wiley & Sons, June 22, 2009. 484 pp.
isbn: 978-0-470-51946-2.

72

