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Abstract

We develop a theory of crossed products by actions of Hecke pairs (G,Γ),
motivated by applications in non-abelian C∗-duality. Our approach gives back the
usual crossed product construction whenever G/Γ is a group and retains many of
the aspects of crossed products by groups. We start by laying the ∗-algebraic foun-
dations of these crossed products by Hecke pairs and exploring their representation
theory, and then proceed to study their different C∗-completions. We establish that
our construction coincides with that of Laca, Larsen and Neshveyev [15] whenever
they are both definable and, as an application of our theory, we prove a Stone-
von Neumann theorem for Hecke pairs which encompasses the work of an Huef,
Kaliszewski and Raeburn [9].
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Introduction

The goal of the present work is to develop a theory of crossed products by
Hecke pairs with a view towards applications in non-abelian C∗-duality.

A Hecke pair (G,Γ) consists of a group G and a subgroup Γ ⊆ G for which
every double coset ΓgΓ is the union of finitely many left cosets. In this case Γ is
also said to be a Hecke subgroup of G. Examples of Hecke subgroups include finite
subgroups, finite-index subgroups and normal subgroups. It is in fact many times
insightful to think of this definition as a generalization of the notion of normality
of a subgroup.

Given a Hecke pair (G,Γ) the Hecke algebra H(G,Γ) is a ∗-algebra of functions
over the set of double cosets Γ\G/Γ, with a suitable convolution product and in-
volution. It generalizes the definition of the group algebra C(G/Γ) of the quotient
group when Γ is a normal subgroup.

Heuristically, a crossed product of an algebra A by a Hecke pair (G,Γ) should
be thought of as a crossed product (in the usual sense) of A by an “action” of G/Γ.
The quest for a sound definition of crossed products by Hecke pairs may seem
hopelessly flawed since G/Γ is not necessarily a group and thus it is unclear how it
should “act” on A. It is the goal of this article to show that in some circumstances
such a definition can be given in a meaningful way, recovering the original one
whenever G/Γ is a group.

The term “crossed product by a Hecke pair” was first used by Tzanev [22] in
order to give another perspective on the work of Connes and Marcolli [3]. This
point of view was later formalized by Laca, Larsen and Neshveyev in [15], where
they defined a C∗-algebra which can be interpreted as a reduced C∗-crossed product
of a commutative C∗-algebra by a Hecke pair.

It seems to be a very difficult task to define crossed products of any given
algebra A by a Hecke pair, and for this reason we set as our goal to define a crossed
product by a Hecke pair in a generality that will cover the following aspects:

• existence of a canonical spanning set of elements in the crossed product;
• possibility of defining covariant representations;
• the Hecke algebra must be a trivial example of a crossed product by a

Hecke pair;
• the classical definition of a crossed product must be recovered whenever
G/Γ is a group;
• our construction should agree with that of Laca, Larsen and Neshveyev,

whenever they are both definable;
• our definition should be suitable for applications in non-abelian C∗-duality.

We develop a theory of crossed products of certain algebras A by Hecke pairs
which takes into account the above requirements. Our approach makes sense when
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2 INTRODUCTION

A is a certain algebra of sections of a Fell bundle over a discrete groupoid. To
summarize our set up: we start with a Hecke pair (G,Γ), a Fell bundle A over a
discrete groupoid X and an action α of G on A satisfying some “nice” properties.
From this we naturally give the space A/Γ of Γ-orbits of A a Fell bundle structure
over the orbit space X/Γ, which under our assumptions on the action α is in fact
a groupoid. We can then define a ∗-algebra

Cc(A/Γ)×algα G/Γ ,

which can be thought of as the crossed product of Cc(A/Γ) by the Hecke pair
(G,Γ). We should point out that a crossed product for us is simply a ∗-algebra,
which we can then complete with different C∗-norms or an L1-norm. Hence, and so
that no confusion arises, the symbol ×alg will always be used when talking about
the (uncompleted) ∗-algebraic crossed product.

Our construction gives back the usual crossed product construction when Γ is
a normal subgroup of G. Moreover, given any action of the group G/Γ on a Fell
bundle B over a groupoid Y , the usual crossed product Cc(B) ×alg G/Γ can be
obtained via our setup as a crossed product by the Hecke pair (G,Γ).

Many of the features present in crossed products by discrete groups carry over
to our setting. For instance, the role of the groupG/Γ is played by the Hecke algebra
H(G,Γ), which embeds in a natural way in the multiplier algebra of Cc(A/Γ)×alg
G/Γ. Additionally, just like a crossed product A×G by a discrete group is spanned
by elements of the form a∗g, with a ∈ A and g ∈ G, our crossed products by Hecke
pairs also admit a canonical spanning set of elements.

The representation theory of crossed products by Hecke pairs also has many
similarities with the group case, but some distinctive new features arise. For in-
stance, as it is well-known in the group case, there is a bijective correspondence
between nondegenerate representations of a crossed product A × G and the so-
called covariant representations of A and G, which are certain pairs of unitary
representations of G and representations of A. We will show that something com-
pletely analogous occurs for Hecke pairs, but in this case one is obliged to consider
pre-representations of the Hecke algebra, i.e. representations of H(G,Γ) as (possi-
bly) unbounded operators. This consideration was unnecessary in the group case
because unitary operators are automatically bounded.

In the second half of the present article we will study the different C∗-completions
of our ∗-algebraic crossed products by Hecke pairs, with special emphasis on the
reduced case which is technically more challenging to define, and explore some
connections with non-abelian C∗-duality.

Reduced C∗-crossed products by groups are defined via the so-called regular
representations. We will introduce a notion of a regular representation in the Hecke
pair case by using the regular representation of the Hecke algebra on `2(G/Γ). The
main novelty here is that we will have to start with a representation of a certain
direct limit of algebras of the form Cc(A/H), where H is a finite intersection of
conjugates of the Hecke subgroup Γ. In case Γ is normal, this direct limit is simply
Cc(A/Γ) itself and we recover the usual notion of a covariant representation.

From regular representations it is then possible to define reduced C∗-crossed
products. Since the algebra Cc(A/Γ) admits several C∗-completions there are sev-
eral reduced C∗-crossed products that one can form, as for example C∗r (A/Γ)×α,r
G/Γ and C∗(A)×α,rG/Γ, each of these thought of as the reduced C∗-crossed prod-
uct of C∗r (A/Γ), respectively C∗(A/Γ), by the Hecke pair (G,Γ). These reduced
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C∗-crossed products have always a faithful conditional expectation onto C∗r (A/Γ)
(respectively, C∗(A/Γ)), a property that determines the reduced crossed product
uniquely, just like in the case of groups.

Our construction of reduced C∗-crossed products by Hecke pairs is different
from that of Laca, Larsen and Neshveyev in [15], being more particular in some
sense (since we treat only discrete spectrum), but also more general (since it makes
sense for certain non-commutative C∗-algebras). What we are going to show is that
both constructions agree whenever they are both definable.

Complementing the reduced setting, one would like to form different full C∗-
crossed products, as for example C∗r (A/Γ) ×α G/Γ and C∗(A/Γ) ×α G/Γ, but in
general their existence is not assured. They will always exist, however, if the Hecke
algebra is a BG∗-algebra, which is a property that is satisfied by several classes of
Hecke pairs, including most of those studied in the literature for which a full Hecke
C∗-algebra is known to exist (see [17]).

This theory of crossed products by Hecke pairs is intended for applications in
non-abelian duality theory. We develop completely a Stone-von Neumann type
theorem for Hecke pairs which encompasses the work of an Huef, Kaliszewski and
Raeburn [9], and we envisage for future work a form of Katayama duality with
respect to Echterhoff-Quigg’s “crossed product” [5].

The Stone-von Neumann theorem, in the language of crossed products by
groups, states that for the action of translation of G on C0(G) we have

C0(G)×G ∼= C0(G)×r G ∼= K(`2(G)) .

In [9] an Huef, Kaliszweski and Raeburn introduced the notion of covariant pairs of
representations of C0(G/Γ) andH(G,Γ), for a Hecke pair (G,Γ), and proved that all
covariant pairs are amplifications of a certain “regular” covariant pair. Their result
was proven without using or defining crossed products, and can also be thought
of as a Stone-von Neumann theorem for Hecke pairs. Using our construction we
express their result in the language of crossed products. We will show that the full
crossed product C0(G/Γ)×G/Γ always exists and one has

C0(G/Γ)×G/Γ ∼= C0(G/Γ)×r G/Γ ∼= K(`2(G/Γ)) .

Moreover, our notion of a covariant representation coincides with the notion of a
covariant pair of [9], and an Huef, Kaliszewski and Raeburn’s result follows as a
direct corollary of the above isomorphisms.

Our construction was very much influenced and developed with the wish of
obtaining a form of Katayama duality for homogeneous spaces (those arising from
Hecke pairs). Even though this has been left for future work, we shall nevertheless
explain in Chapter 8 what we have in mind and how our set up is suitable for
tackling this problem.

Katayama’s duality theorem [12] is an analogue for coactions of the duality
theorem of Imai and Takai. One version of it states the following: given a coaction
δ of a group G on a C∗-algebra A and denoting by A×δG the corresponding crossed
product, we have a canonical isomorphism A×δG×δ̂,ωG ∼= A⊗K(`2(G)), for some
crossed product by the dual action δ̂ of G. We would like to extend this result
to homogeneous spaces coming from Hecke pairs. In spirit we hope to obtain an
isomorphism of the type:

A×δ G/Γ×δ̂,ω G/Γ ∼= A⊗K(`2(G/Γ)) .



4 INTRODUCTION

The C∗-algebra A ×δ G/Γ should be a crossed product by a coaction of the ho-
mogeneous space G/Γ, while the second crossed product should be by the “dual
action” of the Hecke pair (G,Γ) in our sense. It does not make sense in general
for a homogeneous space to coact on a C∗-algebra, but it is many times possible
to define C∗-algebras which can be thought of as crossed products by coactions of
homogeneous spaces ([4], [5]).

It is our point of view that A ×δ G/Γ should be a certain C∗-completion of
the ∗-algebra Cc(A×G/Γ) defined by Echterhoff and Quigg [5], which we dub the
Echterhoff and Quigg’s crossed product (a terminology used in [9] for C∗(A×G/Γ)
in case of a maximal coaction). We explain in Chapter 8 how our set up for defining
crossed products by Hecke pairs is suitable for achieving such a Katayama duality
result for Echterhoff and Quigg’s crossed product, and can therefore bring insight
into the emerging theory of crossed products by coactions of homogeneous spaces.

This article is organized as follows. In Chapter 1 we set up the conventions and
preliminary results to be used in the rest of the article.

Chapter 2 is dedicated to the development of the required set up for defining
crossed products by Hecke pairs. Here we explain what type of actions are involved,
how to define the orbit space groupoids X/H and the orbit bundles A/H out of
A, and how all the algebras Cc(A/H) are related with each other for different
subgroups H ⊆ G.

In Chapter 3 we introduce the notion of a crossed product by a Hecke pair,
explore some of its algebraic aspects and develop its representation theory. In the
last part of this chapter we show how many of the formulas become much simpler
in the case of free actions.

The direct limits of sectional algebras, crucial for defining regular representa-
tions, are defined in Chapter 4.

In Chapter 5 we define regular representations and reduced C∗-crossed products
by Hecke pairs. The comparison between our approach and that of Laca, Larsen
and Neshveyev is done in Section 5.4.

Full C∗-crossed products and other C∗-completions are discussed in detail in
Chapter 6.

The last two chapters of the present article are devoted to the applications in
non-abelian C∗-duality. In Chapter 7 we establish the Stone-von Neumann theorem
for Hecke pairs and relate it to the work of an Heuf, Kaliszewski and Raeburn, while
in Chapter 8 we explain how our setup is well adapted for establishing a Katayama
duality result for Hecke pairs.

The present work is based on the author’s Ph.D. thesis [16] written at the
University of Oslo. There are a few differences between the present work and [16],
notably the greater generality of the types of actions involved. This improvement
follows a suggestion of Dana Williams and John Quigg.

The author would like to thank his advisor Nadia Larsen for the very helpful
discussions, suggestions and comments during the elaboration of this work. A word
of appreciation goes also to John Quigg, Dana Williams and Erik Bédos for some
very helpful comments. Lastly, the author would like to thank the referee for having
raised interesting questions on some of the assumptions we make in this work, and
also for the various comments directed at improving this work both in content and
presentation.



CHAPTER 1

Preliminaries

In this chapter we set up the conventions, notation, and background results
which will be used throughout this work. We indicate the references where the
reader can find more details, but we also provide proofs for those results which we
could not find in the literature.

Convention. The following convention for displayed equations will be used
throughout this work: if a displayed formula starts with the equality sign, it should
be read as a continuation of the previously displayed formula.

A typical example takes the following form:

(expression 1) = (expression 2)

= (expression 3) .

By Theorem A and Lemma B it then follows that

= (expression 4)

= (expression 5) .

Under our convention starting with the equality sign in the second array of
equations simply means that (expression 3) is equal to (expression 4).

1.1. ∗-Algebras and (pre-)∗-representations

Let V be an inner product space over C. Recall that a function T : V → V is
said to be adjointable if there exists a function T ∗ : V → V such that

〈Tξ , η〉 = 〈ξ , T ∗η〉 ,

for all ξ, η ∈ V . Recall also that every adjointable operator T is necessarily linear
and that T ∗ is unique and adjointable with T ∗∗ = T . We will use the following
notation:

• L(V ) denotes the ∗-algebra of all adjointable operators in V
• B(V ) denotes the ∗-algebra of all bounded adjointable operators in V .

Of course, we always have B(V ) ⊆ L(V ), with both ∗-algebras coinciding when V
is a Hilbert space (see, for example, [19, Proposition 9.1.11]).

Following Palmer ([18],[19]) we will use the following definitions:

5



6 1. PRELIMINARIES

Definition 1.1.1 ([19], Def. 9.2.1). A pre-∗-representation of a ∗-algebra A on
an inner product space V is a ∗-homomorphism π : A→ L(V ). A ∗-representation
of A on a Hilbert space H is a ∗-homomorphism π : A→ B(H ).

Definition 1.1.2 ([18], Def. 4.2.1). A pre-∗-representation π : A → L(V ) is
said to be normed if π(A) ⊆ B(V ), i.e. if π(a) is a bounded operator for all a ∈ A.

Definition 1.1.3 ([19], Def. 10.1.17). A ∗-algebra A is called a BG∗-algebra
if all pre-∗-representations of A are normed.

We now introduce our notion of an essential ideal. Our definition is not the
usual one, but this choice of terminology will be justified in what follows.

Definition 1.1.4. Let A be a ∗-algebra. An ideal I ⊆ A is said to be essential
if aI 6= {0} for all a ∈ A \ {0}.

The usual definition of an essential ideal states that I is essential if it has
nonzero intersection with every other nonzero ideal. Our definition is stronger, but
coincides with the usual one for the general class of semiprime ∗-algebras. Before
we prove this result we recall the definition of this class of ∗-algebras:

Definition 1.1.5 ([18], Definition 4.4.1). A ∗-algebra is said to be semiprime
if aAa = {0} implies a = 0, where a ∈ A.

The class of semiprime ∗-algebras is quite large, containing all ∗-algebras that
have a faithful ∗-representation on a Hilbert space (in particular, all C∗-algebras)
and many other classes of ∗-algebras (see [19, Theorem 9.7.21]).

Proposition 1.1.6. Let A be an algebra and I ⊆ A a nonzero ideal. We have
i) If I is essential, then I has a nonzero intersection with every other nonzero

ideal of A.
ii) The converse of i) is true in case A is semiprime.

Proof: i) Let I be an essential ideal of A. Let J ⊆ A be a nonzero ideal and
a ∈ J \ {0}. Since a is nonzero, then aI 6= {0}. Hence, J · I 6= {0}, and since
J · I ⊆ J ∩ I, we have J ∩ I 6= {0}.

ii) Suppose A is semiprime. Suppose also that I is not essential. Thus, there
is a ∈ A \ {0} such that aI = {0}. Let Ja ⊆ A be the ideal generated by a. We
have Ja · I = {0}. Since (Ja ∩ I)2 ⊆ Ja · I we have (Ja ∩ I)2 = {0}. Since A is
semiprime this implies that Ja ∩ I = {0} (see [18, Theorem 4.4.3]). Hence, I has
zero intersection with a nonzero ideal. �

For C∗-algebras the focus is mostly on closed ideals. In this setting we still see
that our definition is equivalent to the usual one ([21, Definition 2.35]):
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Proposition 1.1.7. Let A be a C∗-algebra and I ⊆ A a closed ideal. The
following are equivalent:

i) I is essential.
ii) I has nonzero intersection with every other nonzero ideal of A.
iii) I has nonzero intersection with every other nonzero closed ideal of A.

Proof: i)⇐⇒ ii) This was established in Proposition 1.1.6, since C∗-algebras
are automatically semiprime.

ii) =⇒ iii) This is obvious.
ii) ⇐= iii) Let J be a nonzero ideal of A and J its closure. From iii) we

have I ∩ J 6= {0}. Since I and J are both closed, and A is a C∗-algebra, we have
I · J = I ∩ J . Now, it is clear that I · J = {0} if and only if I · J = {0}. Hence, we
necessarily have I · J 6= {0}, which implies I ∩ J 6= {0}. �

We now introduce the notion of an essential ∗-algebra. The class of essential
∗-algebras seems to be the appropriate class of ∗-algebras for which one can a define
a multiplier algebra (as we shall see in Section 1.2).

Definition 1.1.8. A ∗-algebra A is said to be essential if A is an essential
ideal of itself, i.e. if aA 6= {0} for all a ∈ A \ {0}.

Any unital ∗-algebra is obviously essential. Also, it is easy to see that a
semiprime ∗-algebra is essential. The converse is false, so that essential ∗-algebras
form a more general class than that of semiprime ∗-algebras:

Example 1.1.9. Let C[X] be the polynomial algebra in one selfadjoint variable
X. For any n ≥ 2 the algebra C[X]/〈Xn〉 is essential, because it is unital, but it is
not semiprime because [Xn−1]

(
C[X]/〈Xn〉

)
[Xn−1] = {0}.

1.2. ∗-Algebraic multiplier algebras

Every C∗-algebra can be embedded in a unital C∗-algebra in a “maximal” way.
These maximal unitizations of C∗-algebras enjoy a number of useful properties and
certain concrete realizations of these algebras are commonly referred to as multiplier
algebras. The reader is referred to [21] for an account.

The definition of a multiplier algebra is quite standard in C∗-algebra theory,
but this notion is in fact more general and applicable for more general types of
rings and algebras. For example, in [1, Section 1.1] it is explained how multiplier
algebras can be defined for semiprime algebras.

In this section we are going to generalize this notion to the context of essential
∗-algebras and derive their basic properties. We believe that essential ∗-algebras
are the appropriate class of ∗-algebras for which one can define multiplier algebras,
since the property aA = {0} ⇒ a = 0, which characterizes an essential ∗-algebra,
is constantly used in proofs.
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Multiplier algebras are many times defined via the so-called double centralizers
(see for example [1]), but since we are only interested in algebras with an involu-
tion a slightly simpler and more convenient approach can be given, analogue to the
Hilbert C∗-module approach to C∗-multiplier algebras (presented in [21, Section
2.3]). This is the approach we follow.

Definition 1.2.1. Let C be a subclass of ∗-algebras. A ∗-algebra A ∈ C is said
to have a maximal unitization in C if there exists a unital ∗-algebra B ∈ C (called
the maximal unitization of A) and a ∗-embedding i : A ↪→ B for which i(A) is an
essential ideal of B and such that for every other ∗-embedding j of A as an essential
ideal of a unital ∗-algebra C ∈ C, there is a unique ∗-homomorphism φ : C → B
such that

B

A

i

??

j
// C

φ

OO

commutes.

Lemma 1.2.2. In the above diagram the ∗-homomorphism φ is always injective
(even if C was not unital).

Proof: We have that j(A)∩Kerφ = {0}, because if j(a) ∈ j(A)∩Kerφ, then
0 = φ(j(a)) = i(a) and hence a = 0 and therefore j(a) = 0. Hence, since j(A) is an
essential ideal of C, it follows from Proposition 1.1.6 i) that Kerφ = {0}. �

For C∗-algebras, one might expect to replace “ideal” by “closed ideal”, in Def-
inition 1.2.1. This condition, however, follows automatically since i(A) and j(A)
are automatically closed. Hence, this definition encompasses the usual definition of
a maximal unitization for a C∗-algebra.

Definition 1.2.3. Let A be a ∗-algebra. By a right A-module we mean a vector
space X together with a mapping X×A→ X satisfying the usual consistency con-
ditions. An A-linear mapping T : X → Y between A-modules is a linear mapping
between the underlying vector spaces such that T (xa) = T (x)a, for all x ∈ X and
a ∈ A. We will often use the notation Tx, instead of T (x).

Every ∗-algebra A is canonically a right A-module, with the action of right
multiplication. This is the example we will use thoroughly in what follows.

Let 〈·, ·〉A : A×A→ A be the function

〈a, b〉A := a∗b .

The function 〈·, ·〉A is an A-linear form, in the sense that the following properties
are satisfied:

a) 〈a , λ1b1 + λ2b2〉A = λ1〈a, b1〉A + λ2〈a, b2〉A ,
b) 〈λ1a1 + λ2a2 , b〉A = λ1〈a1, b〉A + λ2〈a2, b〉A ,
c) 〈a, bc〉A = 〈a, b〉A c ,
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d) 〈ac, b〉A = c∗〈a, b〉A ,
e) 〈a, b〉∗A = 〈b, a〉A ,

for all a, a1, a2, b, b1, b2 ∈ A and λ1, λ2 ∈ C.

If the ∗-algebra A is essential we also have:
f) If 〈a , b〉A = 0 for all b ∈ A, then a = 0 .

Definition 1.2.4. Let A be a ∗-algebra. A function T : A → A is called
adjointable if there is a function T ∗ : A→ A such that

〈T (a), b〉A = 〈a, T ∗(b)〉A ,

for all a, b ∈ A.

Proposition 1.2.5. If A is an essential ∗-algebra, then every adjointable map
T : A → A is A-linear. Moreover, the adjoint T ∗ is unique and adjointable with
T ∗∗ = T .

Proof: Let T be an adjointable map in A and x1, x2, y ∈ A. We have

〈T (λ1x1 + λ2x2) , y〉A = 〈λ1x1 + λ2x2 , T
∗(y)〉A

= λ1 〈x1 , T
∗(y)〉A + λ2 〈x2 , T

∗(y)〉A
= λ1 〈T (x1) , y〉A + λ2 〈T (x2) , y〉A
= 〈λ1T (x1) + λ2T (x2) , y〉A .

Hence, we have 〈T (λ1x1 + λ2x2) − λ1T (x1) + λ2T (x2) , y〉A = 0. We can then
conclude from f) that

T (λ1x1 + λ2x2)− λ1T (x1) + λ2T (x2) = 0 ,

i.e. T is a linear map.
Let us now check that T is A-linear. For any x, y, a ∈ A we have

〈T (xa) , y〉A = 〈xa , T ∗(y)〉A = a∗〈x , T ∗(y)〉A
= a∗〈T (x) , y〉A = 〈T (x)a , y〉A .

Hence, we have 〈T (xa) − T (x)a , y〉A = 0. We can then conclude from f) that
T (xa)− T (x)a = 0, i.e. T is A-linear.

Let us now prove the uniqueness of the adjoint T ∗. Suppose there was a function
S : A→ A such that

〈x , T ∗(y)〉A = 〈x , S(y)〉A .

for all x, y ∈ A. Then, 〈T ∗(y)−S(y) , x〉A = 0. We can then conclude from f) that
T ∗(y)− S(y) = 0, i.e. T ∗ = S.

It remains to prove that T ∗ is adjointable with T ∗∗ = T . This follows easily
from the equality

〈T ∗x , y〉A = 〈y , T ∗x〉∗A = 〈Ty , x〉∗A = 〈x, Ty〉A .

�
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Definition 1.2.6. Let A be an essential ∗-algebra. The set of all adjointable
maps on A is called the multiplier algebra of A and is denoted by M(A).

The multiplier algebra is in fact a ∗-algebra, and the proof of this fact is stan-
dard.

Proposition 1.2.7. Let A be an essential ∗-algebra. The multiplier algebra of
A is a unital ∗-algebra with the sum and multiplication given by pointwise sum and
composition (respectively), and the involution given by the adjoint.

Proposition 1.2.8. Let A be an essential ∗-algebra. There is a ∗-embedding
L : A→M(A) of A as an essential ideal of M(A), given by

a 7→ La

where La : A→ A is the left multiplication by a, i.e. La(b) := ab.

Proof: It is easy to see that, for every a ∈ A, La is adjointable with adjoint
La∗ , thus the mapping L is well-defined. Also clear is the fact that L is a ∗-
homomorphism. Let us prove that it is injective: suppose La = 0 for some a ∈ A.
Then, for all b ∈ A we have ab = Lab = 0 and since A is essential this implies a = 0.
Thus, L is injective.

It remains to prove that L(A) is an essential ideal of M(A). Let us begin by
proving that it is an ideal. Let T ∈M(A). For every a, b ∈ A we have

TLa(b) = T (ab) = T (a)b = LTa(b) ,

and also

LaT (b) = aT (b) = 〈a∗, T (b)〉
= 〈T ∗(a∗), b〉 = (T ∗(a∗))∗b

= L(T∗a∗)∗(b) .

Hence we have

TLa = LTa and LaT = L(T∗a∗)∗ ,(1.1)

from which it follows easily that L(A) is an ideal of M(A).
Let us now prove that this ideal is essential. Let T ∈ M(A) be such that

TL(A) = {0}. Then, in particular, TLa = 0 for all a ∈ A, but as we have seen
before TLa = LTa, and since L is injective we must have Ta = 0 for all a ∈ A, i.e
T = 0. �

Remark 1.2.9. According to Proposition 1.2.8, an essential ∗-algebra A is
canonically embedded in its multiplier algebra M(A). We will often make no dis-
tinction of notation between A and its embedded image in M(A), i.e. we will often
just write a to denote an element of A and to denote the element L(a) of M(A).
No confusion will arise from this because the left equality in (1.1) simply means, in
this notation, that T · a = T (a).
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Theorem 1.2.10. Let A be an essential ∗-algebra and L : A → M(A) the
canonical ∗-embedding of A in M(A). If j : A → C is a ∗-embedding of A as an
ideal of a ∗-algebra C, then there exists a unique ∗-homomorphism φ : C → M(A)
such that the following diagram commutes

M(A)

A

L
<<

j
// C

φ

OO

Moreover, if j(A) is essential then φ is injective.

Proof: For simplicity of notation let us assume, without any loss of generality,
that A itself is an ideal of a ∗-algebra C, so that we avoid any reference to j (or its
inverse). Let φ : C →M(A) be the function defined by

φ(c) : A→ A

φ(c)a := ca ,

for every c ∈ C. It is a straightforward computation to check that φ(c) ∈ M(A)
and that φ itself is a ∗-homomorphism. It is also easy to see that φ(a) = La, for
every a ∈ A. Hence, φ ◦ j = L. Let us now prove the uniqueness of φ relatively
to this property. Suppose φ̃ : C → M(A) is another ∗-homomorphism such that
φ̃ ◦ j = L. Then, for all c ∈ C and a ∈ A we have(

φ̃(c)− φ(c)
)
La = φ̃(c)La − φ(c)La

= φ̃(c)φ̃(a)− φ(c)φ(a)

= φ̃(ca)− φ(ca)

= Lca − Lca
= 0 .

Since L(A) is an essential ideal of M(A) it follows that φ̃(c) = φ(c) for all c ∈ C,
i.e. φ̃ = φ.

The last claim of the theorem, concerning injectivity of φ, was proven in Lemma
1.2.2. �

Corollary 1.2.11. The multiplier algebra M(A) is a maximal unitization of
A in the class of: essential ∗-algebras, semiprime ∗-algebras and C∗-algebras.

Proof: By Theorem 1.2.10 we only need to check that if A is an essential
∗-algebra (respectively, semiprime ∗-algebra or C∗-algebra), then the multiplier
algebra has the same property.

Suppose A is an essential ∗-algebra. Let T ∈M(A) be such that TM(A) = {0}.
Then, by the embedding of A in M(A) we have Ta = 0 for all a ∈ A, i.e. T = 0.
Hence, M(A) is also an essential ∗-algebra.

Suppose A is a semiprime ∗-algebra. Let T ∈ M(A) be such that TM(A)T =
{0}. Then, we also have that TLaM(A)TLa = {0} for any a ∈ A, and therefore
LT (a)M(A)LT (a) = {0}. Thus, in particular, LT (a)L(A)LT (a) = {0}, and since L
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is injective this means that T (a)AT (a) = {0}. Since A is semiprime we conclude
that T (a) = 0, and therefore T = 0. Hence, M(A) is semiprime.

It is well-known that M(A) is a C∗-algebra when A is a C∗-algebra. �

Example 1.2.12. If X is a locally compact space and Cc(X) is the ∗-algebra
of compactly supported continuous functions on X, then the multiplier algebra
M(Cc(X)) is the ∗-algebra C(X) of continuous (possibly unbounded) functions on
X.

An important feature of C∗-multiplier algebras is that a nondegenerate ∗-
representation of A extends uniquely to M(A). This result does not hold in gen-
eral for essential ∗-algebras. Nevertheless we can still extend a nondegenerate ∗-
representation of A to a unique pre-∗-representation of M(A):

Theorem 1.2.13. Let A be an essential ∗-algebra, π : A→ B(H ) a nondegen-
erate ∗-representation of A on a Hilbert space H and V ⊆H the dense subspace

V := π(A)H = span {π(a)ξ : a ∈ A , ξ ∈H } .

Then there is a unique pre-∗-representation

π̃ : M(A)→ L(V )

such that π̃(a) = π(a)|V for every a ∈ A.

Proof: We define the pre-∗-representation π̃ : M(A)→ L(V ) by

π̃(T )
[ n∑
i=1

π(ai)ξi
]

:=

n∑
i=1

π(Tai)ξi ,

for n ∈ N, a1, . . . , an ∈ A and ξ1, . . . , ξn ∈ H . Let us first check that π̃ is well-
defined. Suppose

∑n
i=1 π(ai)ξi =

∑m
j=1 π(bj)ηj . Then, for every z ∈ A we have

π(z)
( n∑
i=1

π(Tai)ξi −
m∑
j=1

π(Tbi)ηj

)
=

n∑
i=1

π(zTai)ξi −
m∑
j=1

π(zTbi)ηj

= π(zT )
( n∑
i=1

π(ai)ξi −
m∑
j=1

π(bi)ηj

)
= 0 .

Since the ∗-representation π is nondegenerate we necessarily have
n∑
i=1

π(Tai)ξi −
m∑
j=1

π(Tbi)ηj = 0 ,

which means that π̃(T ) is well-defined.
Let us now check that π̃(T ) ∈ L(V ), i.e. that π̃(T ) is indeed an adjointable

operator in V . We will in fact prove that π̃(T )∗ = π̃(T ∗), which follows from the
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following equality〈
π̃(T )

n∑
i=1

π(ai)ξi ,

m∑
j=1

π(bi)ηj

〉
=

n∑
i=1

m∑
j=1

〈π(Tai)ξi , π(bj)ηj〉

=

n∑
i=1

m∑
j=1

〈ξi , π(a∗i T
∗)π(bj)ηj〉

=

n∑
i=1

m∑
j=1

〈ξi , π(a∗i T
∗bj)ηj〉

=

n∑
i=1

m∑
j=1

〈π(ai)ξi , π(T ∗bj)ηj〉

=
〈 n∑
i=1

π(ai)ξi , π̃(T ∗)

m∑
j=1

π(bi)ηj

〉
.

It is straightforward to see that π̃ is linear, multiplicative and, as we have seen,
π̃(T ∗) = π̃(T )∗, hence π̃ is a pre-∗-representation of M(A) on V .

It is also clear that, for any a ∈ A, π̃(a) is just π(a) restricted to V , because of
the equality

π̃(a)

n∑
i=1

π(ai)ξi =

n∑
i=1

π(aai)ξi = π(a)

n∑
i=1

π(ai)ξi .

Let us now prove the uniqueness of π̃. Suppose φ : M(A) → L(V ) is a pre-∗-
representation such that φ(a) = π(a)|V . Then, for every z ∈ A and v ∈ V we
have

π(z)(φ(T )v − π̃(T )v) = π(z)φ(T )v − π(z)π̃(T )v

= φ(z)φ(T )v − π̃(z)π̃(T )v

= φ(zT )v − π̃(zT )v

= π(zT )v − π(zT )v

= 0 .

Since the ∗-representation π is nondegenerate, we necessarily have

φ(T )v − π̃(T )v = 0 ,

which means that φ(T ) = π̃(T ), i.e. φ = π̃. �

Remark 1.2.14. Theorem 1.2.13 can be interpreted in the following way: ev-
ery nondegenerate ∗-representation π : A → B(H ) can be extended to M(A) by
possibly unbounded operators, defined on the dense subspace π(A)H .

Definition 1.2.15. Let A be an essential ∗-algebra. We will denote byMB(A)
the subset ofM(A) consisting of all the elements T ∈M(A) such that π̃(T ) ∈ B(V )
for all nondegenerate ∗-representations π : A→ B(H ), where V := π(A)H and π̃
is the unique pre-∗-representation extending π as in Proposition 1.2.13.
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As stated in the next result, MB(A) is a ∗-subalgebra ofM(A). The advantage
of working with MB(A) over M(A) is that nondegenerate ∗-representations of A
always extend to ∗-representations ofMB(A). Easy examples of elements ofMB(A)
that might not belong to A are the projections and unitaries of M(A).

Proposition 1.2.16. Let A be an essential ∗-algebra. The set MB(A) is a ∗-
subalgebra of M(A) containing A. Moreover, if π : A→ B(H ) is a nondegenerate
∗-representation of A, then there exists a unique ∗-representation of MB(A) on H
that extends π.

Proof: Let T, S ∈ MB(A). Let π : A → B(H ) be any nondegenerate ∗-
representation of A and π̃ its extension to L(V ), in the sense of Theorem 1.2.13,
where V := π(A)H . By definition, π̃(T ), π̃(S) ∈ B(V ), and therefore π̃(T +
S), π̃(TS), π̃(T ∗) ∈ B(V ), since B(V ) is a ∗-algebra. Hence, MB(A) is a ∗-
subalgebra of M(A). Moreover, A ⊆MB(A) since π̃(a) = π(a)|V ∈ B(V ).

Let us now prove the last claim of this proposition. Let π : A → B(H ) be a
nondegenerate ∗-representation and π̃ : M(A)→ L(V ) its extension as in Theorem
1.2.13. Then we obtain by restriction a pre-∗-representation π̃ : MB(A) → L(V ).
By definition of MB(A) we actually have π̃(MB(A)) ⊆ B(V ). Hence π̃ gives rise
to a ∗-representation π̃ : MB(A)→ B(H ), since V is dense in H .

Let us now prove the uniqueness claim. Suppose ϕ is another representation of
MB(A) that extends π. For T ∈MB(A), a ∈ A and ξ ∈H we have

ϕ(T )π(a)ξ = ϕ(T )ϕ(a)ξ = ϕ(Ta)ξ

= π(Ta)ξ = π̃(T )π(a)ξ .

By linearity and density it follows that ϕ(T ) = π̃(T ), i.e. ϕ = π̃. �

The above result is a generalization of the well-known result for C∗-algebras
which states that any nondegenerate ∗-representation can be extended to the mul-
tiplier algebra (see for example [21, Corollary 2.51]), because M(A) = MB(A) for
any C∗-algebra A.

Example 1.2.17. If X is a locally compact space then MB(Cc(X)) is the ∗-
algebra Cb(X) of bounded continuous functions on X.

1.3. Hecke algebras

We start by establishing some notation and conventions concerning left coset
spaces and double coset spaces and we prove two results which will be useful later
on.

Let G be a group, B,C subgroups of G and e ∈ G the identity element. The
double coset space B\G/C is the set

B\G/C := {BgC ⊆ G : g ∈ G} .(1.2)

It is easy to see that the sets of the form BgC are either equal or disjoint, or in
other words, we have an equivalence relation defined in G whose equivalence classes
are precisely the sets BgC.
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The left coset space G/C is the set

G/C := {e}\G/C = {gC ⊆ G : g ∈ G} .(1.3)

Given an element g ∈ G and a double coset space B\G/C (which can in
particular be a left coset space by taking B = {e}) we will denote by [g] the
double coset BgC. Thus, [g] denotes the whole equivalence class for which g ∈ G
is a representative.

If A is a subset of G we define the double coset space B\A/C as the set of
double cosets in B\G/C which have a representative in A, i.e.

B\A/C := {BaC ⊆ G : a ∈ A} .(1.4)

Proposition 1.3.1. Let A,B and C be subgroups of a group G. If C ⊆ A, then
the following map is a bijective correspondence between the double coset spaces:

B\A/C −→ (B ∩A)\A/C(1.5)
[a] 7→ [a] .

Similarly, if B ⊆ A, then the following map is a bijective correspondence:

B\A/C −→ B\A/(A ∩ C)(1.6)
[a] 7→ [a] .

Proof: We first need to show that the map (1.5) is well defined, i.e. if Ba1C =
Ba2C, for some a1, a2 ∈ A, then (B ∩ A)a1C = (B ∩ A)a2C. If Ba1C = Ba2C
then there exist b ∈ B and c ∈ C such that a1 = ba2c, from which it follows that
b = a1c

−1a−1
2 . Since A is a subgroup and C ⊆ A, it follows readily that b ∈ B ∩A,

and therefore a1 ∈ (B ∩A)a2C, i.e. (B ∩A)a1C = (B ∩A)a2C.
The map defined in (1.5) is clearly surjective. It is also injective because if

(B ∩A)a1C = (B ∩A)a2C, then clearly Ba1C = Ba2C.
A completely analogous argument shows that map defined in (1.6) is a bijec-

tion. �

Suppose a group G acts (on the right) on a set X and let x ∈ X. We will
henceforward denote by Sx the stabilizer of the point x, i.e.

Sx := {g ∈ G : xg = x} .(1.7)

Given a subset Z ⊆ X and a subgroupH ⊆ G we denote by Z/H the set ofH-orbits
which have representatives in Z, i.e.

Z/H := {zH : z ∈ Z} .
Suppose now that H,K ⊆ G are subgroups and let x ∈ X be a point. The following
result establishes a correspondence between the set of H-orbits (xK)/H and the
double coset space Sx\K/H:

Proposition 1.3.2. Let G be a group which acts (on the right) on a set X.
Let x ∈ X be a point and H,K ⊆ G be subgroups. We have a bijection

(xK)/H −→ Sx\K/H ,
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given by xgH 7→ SxgH, where g ∈ K.

Proof: Let us first prove that the map xgH 7→ SxgH is well defined, i.e. if
xg1H = xg2H, then Sxg1H = Sxg2H. If xg1H = xg2H, then there exists h ∈ h
such that xg1 = xg2h, which implies that x = xg2hg

−1
1 , from which it follows that

g2hg
−1
1 ∈ Sx. Thus we see that

Sxg1H = Sxg2hg
−1
1 g1H = Sxg2H .

We conclude that the map is well-defined. The map is obviously surjective. It is
also injective because if Sxg1H = Sxg2H, then there exists r ∈ Sx and h ∈ H such
that g1 = rg2h, from which it follows that xg1H = xrg2hH = xg2H. �

We will mostly follow [13] and [10] in what regards Hecke pairs and Hecke
algebras and refer to these references for more details.

We start by establishing some notation which will be useful later on. Given a
group G, a subgroup Γ ⊆ G and g ∈ G, we will denote by Γg the subgroup

Γg := Γ ∩ gΓg−1 .(1.8)

We now recall the definition of a Hecke pair:

Definition 1.3.3. Let G be a group and Γ a subgroup. The pair (G,Γ) is
called a Hecke pair if every double coset ΓgΓ is the union of finitely many right
(and left) cosets. In this case, Γ is also called a Hecke subgroup of G.

Given a Hecke pair (G,Γ) we will denote by L and R, respectively, the left and
right coset counting functions, i.e.

L(g) := |ΓgΓ/Γ| = [Γ : Γg] <∞(1.9)

R(g) := |Γ\ΓgΓ| = [Γ : Γg
−1

] <∞ .(1.10)

We recall that L and R are Γ-biinvariant functions which satisfy L(g) = R(g−1) for
all g ∈ G. Moreover, the function ∆ : G→ Q+ given by

∆(g) :=
L(g)

R(g)
,(1.11)

is a group homomorphism ([23, Proposition 2.1]), usually called the modular func-
tion of (G,Γ).

Definition 1.3.4. Given a Hecke pair (G,Γ), the Hecke algebra H(G,Γ) is the
∗-algebra of finitely supported C-valued functions on the double coset space Γ\G/Γ
with the product and involution defined by

(f1 ∗ f2)(ΓgΓ) :=
∑

hΓ∈G/Γ

f1(ΓhΓ)f2(Γh−1gΓ) ,(1.12)

f∗(ΓgΓ) := ∆(g−1)f(Γg−1Γ) .(1.13)
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Equivalently, we can define H(G,Γ) as the ∗-algebra of finitely supported Γ-left
invariant functions f : G/Γ→ C with the product and involution operations given
by

(f1 ∗ f2)(gΓ) :=
∑

hΓ∈G/Γ

f1(hΓ)f2(h−1gΓ) ,(1.14)

f∗(gΓ) := ∆(g−1)f(g−1Γ) .(1.15)

Remark 1.3.5. Some authors, including Krieg [13], do not include the factor
∆ in the involution. Here we adopt the convention of Kaliszewski, Landstad and
Quigg [10] in doing so, as it gives rise to a more natural L1-norm. We note, nev-
ertheless, that there is no loss (or gain) in doing so, because these two different
involutions give rise to ∗-isomorphic Hecke algebras.

The Hecke algebra has a natural basis, as a vector space, given by the charac-
teristic functions of double cosets. We will henceforward identify a characteristic
function of a double coset 1ΓgΓ with the double coset ΓgΓ itself.

The way in which a product of two double cosets is represented as sum of dou-
ble cosets is well understood:

Proposition 1.3.6. Let (G,Γ) be a Hecke pair and g, h ∈ G. We have that

ΓgΓ ∗ ΓhΓ =
∑

[v]∈ΓhΓ/Γ

L(g)

L(gv)
ΓgvΓ =

∑
[u]∈Γg−1Γ/Γ

[v]∈ΓhΓ/Γ

∆(g)

L(u−1v)
Γu−1vΓ .

Proof: The proof of the first equality can be found in [10, page 660]. Let us
now prove the second equality. We have∑

[u]∈Γg−1Γ/Γ
[v]∈ΓhΓ/Γ

∆(g)

L(u−1v)
Γu−1vΓ =

∑
[γ]∈Γg−1/Γ

∑
[v]∈ΓhΓ/Γ

∆(g)

L(gγ−1v)
Γgγ−1vΓ .

For any γ ∈ Γ the mapping [v] 7→ [γv] is a bijection of ΓhΓ/Γ. Hence

=
∑

[γ]∈Γg−1/Γ

∑
[v]∈ΓhΓ/Γ

∆(g)

L(gv)
ΓgvΓ =

∑
[v]∈ΓhΓ/Γ

∆(g)L(g−1)

L(gv)
ΓgvΓ

=
∑

[v]∈ΓhΓ/Γ

L(g)

L(gv)
ΓgvΓ .

This proves the second equality. �

As it is known, group algebras have two canonical C∗-completions, the reduced
group C∗-algebra C∗r (G) and the full group C∗-algebra C∗(G). For Hecke algebras
the situation becomes more complicated, there being essentially four canonical C∗-
completions. We will briefly review these completions in this subsection, but first
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we need to recall the definitions and basic facts about regular representations of
Hecke algebras and L1-norms.

Definition 1.3.7. Let (G,Γ) be a Hecke pair. The mapping ρ : H(G,Γ) →
B(`2(G/Γ)) defined, for f ∈ H(G,Γ), ξ ∈ `2(G/Γ) and gΓ ∈ G/Γ, by

(ρ(f)ξ) (gΓ) :=
∑

[h]∈G/Γ

∆(h)
1
2 f(ΓhΓ)ξ(ghΓ) ,(1.16)

is called the right regular representation of H(G,Γ).

It can be checked that ρ does define a ∗-representation of H(G,Γ). For the
canonical vectors δrΓ ∈ `2(G/Γ), expression (1.16) becomes:

ρ(f)δrΓ =
∑

[g]∈G/Γ

∆(g−1r)
1
2 f(Γg−1rΓ)δgΓ ,(1.17)

and furthermore for f of the form f := ΓdΓ we obtain:

ρ(ΓdΓ)δrΓ =
∑

tΓ⊆Γd−1Γ

∆(d)
1
2 δrtΓ = ∆(d)

1
2 δrΓd−1Γ .(1.18)

It can be easily checked, applying (1.17) to the vector δΓ for example, that ρ
always defines a faithful ∗-representation.

One could in a similar fashion define a left regular representation of H(G,Γ),
but in this work, however, it is the right regular representation the one that will
play a central role.

We now recall the definition of the L1-norm in a Hecke algebra (from [10]):

Definition 1.3.8. The L1-norm on H(G,Γ), denoted ‖ · ‖L1 , is given by

‖f‖L1 :=
∑

ΓgΓ∈Γ\G/Γ

|f(ΓgΓ)|L(g) =
∑

gΓ∈G/Γ

|f(ΓgΓ)| .(1.19)

We will denote by L1(G,Γ) the completion of H(G,Γ) under this norm, which is a
Banach ∗-algebra.

The fact that the L1-norm is ∗-preserving can be easily seen on the basis ele-
ments ΓgΓ of H(G,Γ) and then extended by conjugate-linearity for all elements of
the Hecke algebra:

‖(ΓgΓ)∗‖L1 = ∆(g)‖Γg−1Γ‖L1 = ∆(g)L(g−1) =
L(g)

R(g)
R(g)

= L(g) = ‖ΓgΓ‖L1 .

There are several canonical C∗-completions of H(G,Γ) ([10], [23]) These are:
• C∗r (G,Γ) - Called the reduced Hecke C∗-algebra, it is the completion of
H(G,Γ) under the C∗-norm arising from the right regular representation.
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• pC∗(G)p - The corner of the full group C∗-algebra C∗(G) of the Schlichting
completion (G,Γ) of the pair (G,Γ), by the projection p := 1Γ. We will not
describe this construction here since it is well documented in the literature
(see [23] and [10], for example) and because we will not make use of this
C∗-completion in this work.

• C∗(L1(G,Γ)) - The enveloping C∗-algebra of L1(G,Γ).
• C∗(G,Γ) - The enveloping C∗-algebra (if it exists!) of H(G,Γ). When it

exists, it is usually called the full Hecke C∗-algebra.
The various C∗-completions ofH(G,Γ) are related in the following way, through

canonical surjective maps:

C∗(G,Γ) 99K C∗(L1(G,Γ)) −→ pC∗(G)p −→ C∗r (G,Γ) .

As was pointed out by Hall in [8, Proposition 2.21], the full Hecke C∗-algebra
C∗(G,Γ) does not have to exist in general, with the Hecke algebra of the pair
(SL2(Qp), SL2(Zp)) being one such example, where p is a prime number and Qp,
Zp denote respectively the field of p-adic numbers and the ring of p-adic integers.

1.4. Fell bundles over discrete groupoids

Let X be a discrete groupoid. We will denote by X0 the unit space of X and
by s and r the source and range functions X → X0, respectively.

We will essentially follow [14] when it comes to Fell bundles over groupoids.
All the groupoids in this work are assumed to be discrete, so that the theory of
Fell bundles admits a few simplifications. Basically a Fell bundle over a discrete
groupoid X consists of:

• a space A together with a surjective map p : A → X, such that each fiber
Ax := p−1(x) is a Banach space, for every x ∈ X;

• a multiplication operation between fibers over composable elements of the
groupoid, which we suggestively write as Ax · Ay ⊆ Axy;

• an involution a 7→ a∗ which takes Ax onto Ax−1 .

These operations and norms satisfy some consistency properties which we now
describe (see [14, Section 2]):

• The multiplication operation Ax×Ay −→ Axy is bilinear, for all compos-
able elements of the groupoid x, y ∈ X.

• Multiplication is associative whenever it is defined.
• ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A where multiplication is defined.
• The involution map Ax −→ Ax−1 is conjugate linear, and satisfies a∗∗ = a

and (ab)∗ = b∗a∗, for every a, b ∈ A where multiplication is defined.
• ‖a∗a‖ = ‖a‖2 for any a ∈ A.
• a∗a ≥ 0 for all a ∈ A.

As it is well-known, it follows from the above conditions (without the last one)
that each fiber over a unit element is naturally a C∗-algebra. This is why the last
condition regarding positivity makes sense and that is how it should be interpreted.

Standing Assumption 1.4.1. Given a Fell bundle A over a discrete groupoid
X we will always assume that the fibers over units are non-trivial, i.e. Au 6= {0}
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for all u ∈ X0.

Assumption 1.4.1 is not very restrictive. In fact, removing from the groupoid
X all the units u ∈ X0 for which Au = {0} and also all the elements x ∈ X such
that s(x) or r(x) is u, we obtain a subgroupoid Y for which the assumption holds
(relatively to the restriction A|Y of A to Y ). Moreover, and this is the important
fact, the algebras of finitely supported sections (see Definition 1.4.4) are canonically
isomorphic, i.e. Cc(A|Y ) ∼= Cc(A).

The reason for us to follow Assumption 1.4.1 is because it will make our the-
ory slightly simpler. Since we are interested mostly in algebras of sections, this
assumption does not reduce the generality of the work in any way, as we observed
in the previous paragraph.

Definition 1.4.2. Let A be a Fell bundle over a discrete groupoid X. An
automorphism of A is a bijective map β : A → A which preserves the bundle
structure, i.e. such that

i) β takes any fiber onto another fiber;
ii) β takes fibers over composable elements of X to fibers over composable

elements;
iii) As a map between (two) fibers, β is a linear map;
iv) β(a · b) = β(a) · β(b), whenever multiplication is defined;
v) β(a∗) = β(a)∗.

The set of all automorphisms of A forms a group under composition and will be
denoted by Aut(A).

It follows easily from i) and ii) above that every automorphism β of A entails a
groupoid automorphism β0 of X such that β0

(
p(a)

)
= p(β(a)). We also note that,

by being a groupoid automorphism, β0 takes units into units.

Remark 1.4.3. The restricted map β : Ax → Aβ0(x) is an isometric linear map.
Linearity was required in condition iii), but the fact that the map is an isometry
follows from the other axioms. To see this we note that

‖β(a)‖ = ‖β(a)∗β(a)‖ 1
2 = ‖β(a∗a)‖ 1

2 .

Now a∗a ∈ As(x) and s(x) ∈ X0. Thus, we also have β0(s(x)) ∈ X0 and therefore
both As(x) and Aβ0(s(x)) are C∗-algebras. It follows from iii), iv) and v) that the
restricted map β : As(x) → Aβ0(s(x)) is a C∗-isomorphism and is therefore isometric.
Hence we have

‖β(a)‖ = ‖β(a∗a)‖ 1
2 = ‖a∗a‖ 1

2 = ‖a‖ ,
which shows that β : Ax → Aβ0(x) is an isometry.

Definition 1.4.4. Given a Fell bundle A over a discrete groupoid X its ∗-
algebra of finitely supported sections Cc(A) is the space of functions f : X −→ A
such that f(x) ∈ Ax for every x ∈ X and f(x) = 0 for all but finitely many points
x ∈ X.
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The ∗-algebra of finitely supported sections Cc(A) is indeed a ∗-algebra for the
operations of pointwise sum and multiplication by scalars, and with multiplication
and involution given by:

f ∗ g(z) =
∑
x,y∈X
xy=z

f(x)g(y) ,

f∗(z) = (f(z−1))∗ .

The following notation will be used throughout the rest of this work: for x ∈ X
and a ∈ Ax the symbol ax will always denote the element of Cc(A) such that

ax(y) :=

{
a , if y = x

0, otherwise .
(1.20)

According to the notation above we can then write any f ∈ Cc(A) uniquely as
a sum of the form

f =
∑
x∈X

(f(x))x .(1.21)

For the elements of the form ax in Cc(A) the multiplication and involution
operations are determined by:

ax · by =

{
(ab)xy , if s(x) = r(y)

0, otherwise ,

(ax)∗ = (a∗)x−1 ,

where x, y ∈ X and a ∈ Ax, b ∈ Ay.
When a groupoid X is just a set, the fibers of a Fell bundle A over X are

C∗-algebras. In this case we will frequently use the following terminology, which is
standard in the literature, in order to stress the fact that the underlying groupoid
is nothing but a set:

Definition 1.4.5. When a groupoid X is just a set, a Fell bundle A over X
will be referred to as a C∗-bundle over X.

Given a Fell bundle A over a groupoid X we will denote by A0 the restricted
bundle A|X0 over the unit space X0. Naturally, A0 is a C∗-bundle over X0.

We will now briefly recall how the full and the reduced cross sectional algebras
of a Fell bundle A over a groupoid X are defined.

Definition 1.4.6. The full cross sectional algebra of A, denoted C∗(A), is
defined as the enveloping C∗-algebra of Cc(A). If the groupoid X is just a set, in
which case A is a C∗-bundle, we will use the notation C0(A) instead of C∗(A).

The full cross sectional algebra C∗(A) is known to exist always (see for example
[5, Proposition 2.1]).
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We now recall, from [14], how the reduced cross sectional algebra C∗r (A) is
defined. We see Cc(A) as a pre-Hilbert C0(A0)-module, where the inner product is
defined by

〈f1, f2〉Cc(A0) := (f∗1 · f2)|X0 , f1, f2 ∈ Cc(A) .

Its completion is a full Hilbert C0(A0)-module, which we denote by L2(A). Now,
the algebra Cc(A) acts on itself by left multiplication, and moreover this action is
continuous with respect to the norm induced by the inner product above, hence we
get an injective ∗-homomorphism

Cc(A)→ L(L2(A)) .(1.22)

Definition 1.4.7. The reduced cross sectional algebra C∗r (A) is defined as the
completion of Cc(A) with respect to the operator norm in L(L2(A)).

In this way we get a right-Hilbert bimodule C∗r (A)L
2(A)C0(A0).

Since C∗r (A) is a completion of Cc(A) we immediately get a canonical map
Λ : C∗(A)→ C∗r (A). Also, the ∗-homomorphism above in (1.22) always completes
to a ∗-homomorphism C∗(A) → L(L2(A)), and therefore gives rise to a right-
Hilbert bimodule C∗(A)L

2(A)C0(A0). The image of C∗(A) on L(L2(A)) is then
isomorphic to C∗r (B), or in other words, the kernel of the map C∗(A)→ L(L2(A))
is the same as the kernel of the canonical map Λ : C∗(A)→ C∗r (A).



CHAPTER 2

Orbit space groupoids and Fell bundles

In this chapter we present the basic set up which will enable us to define crossed
products by Hecke pairs later in Chapter 3.

Our construction of a (∗-algebraic) crossed product A ×alg G/Γ of an algebra
A by a Hecke pair (G,Γ) will make sense when A is a certain algebra of sections of
a Fell bundle over a discrete groupoid. In this chapter we show in detail what type
of algebras A are involved in the crossed product and how they are obtained.

2.1. Group actions on Fell bundles

Throughout this section G will denote a discrete group. One of our ingredients
for defining crossed products by Hecke pairs consists of a group action on a Fell
bundle over a groupoid (a concept we borrow from [11, Section 6]). Such actions
always carry an associated action on the corresponding groupoid (by groupoid au-
tomorphisms). Since we are primarily interested in right actions on groupoids, we
start by recalling what they are:

Definition 2.1.1. Let X be a groupoid. A right action of G on X is a mapping

X ×G→ X

(x, g) 7→ xg ,

which is a right action of G on the underlying set of X, meaning that
1) xe = x, for all x ∈ X,
2) x(g1g2) = (xg1)g2, for all x ∈ X, g1, g2 ∈ G,

which is compatible with the groupoid operations, meaning that
3) if x and y are composable in X, then so are xg and yg, for all g ∈ G, and

moreover

(xg)(yg) = (xy)g ,

4) (xg)−1 = x−1g, for all x ∈ X and g ∈ G.
In other words, a right action of G on X is a right action on the set X performed
by groupoid automorphisms.

Lemma 2.1.2. Let X be a groupoid endowed with a right G-action. For every
x ∈ X and g ∈ G we have

s(xg) = s(x)g and r(xg) = r(x)g .

In particular, G restricts to an action on the unit space X0.

23
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Proof: It follows easily from the definition of a right G-action that

s(x)g = (x−1x)g = (x−1g)(xg) = (xg)−1(xg) = s(xg) ,

and similarly for the range function. �

Remark 2.1.3. Given elements x, y in a groupoid X endowed with a right
G-action and given g ∈ G, we will often drop the brackets in expressions like (xg)y
and simply use the notation xgy. No confusion arises from this since G is only
assumed to act on the right. On the other hand, we will never write an expression
like xyg without brackets, since it can be confusing whether it means x(yg) or (xy)g.

Definition 2.1.4. [11, Section 6] Let G be a group and A a Fell bundle
over a discrete groupoid X. An action of G on A consists of a homomorphism
α : G→ Aut(A).

As observed in Section 1.4, each automorphism ofA carries with it an associated
automorphism of the underlying groupoid X. Hence, an action of a group G on A
entails an action of G on X by groupoid automorphisms. Since we are interested
only in right actions on groupoids, we just ensure that these associated actions are
on the right simply by taking inverses. Moreover, even though we will typically
denote by α the action of G on A, we will simply write (x, g) 7→ xg to denote its
associated action on X and it will be always assumed that this action comes from
α. To summarize what we have said so far: given an action α of G on a Fell bundle
A over a groupoid X, there is an associated right G-action (x, g) 7→ xg on X such
that

p(αg(a)) = p(a)g−1 .(2.1)

Remark 2.1.5. Typically one would require the mapping (a, g) 7→ αg(a) to be
continuous, but this is not necessary here since both G and X are discrete.

Proposition 2.1.6. Let α be an action of a group G on a Fell bundle A over
a groupoid X. We have an associated action α : G → Aut(Cc(A)) of G on Cc(A)
given by

αg(f) (x) := αg(f(xg)) ,

for g ∈ G, f ∈ Cc(A) and x ∈ X.

Proof: Let us first prove that the action is well-defined, i.e. αg(f) ∈ Cc(A).
The fact that αg(f) is finitely supported is obvious, so the only thing one needs to
check is that αg(f) is indeed a section of the bundle, i.e. αg(f(xg)) ∈ Ax for all
x ∈ X, which is clear because αg(Ay) = Ayg−1 .
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Let us now check that αg is indeed a ∗-homomorphism for all g ∈ G. Linearity
of αg is obvious. Let f, f1, f2 ∈ Cc(A). We have

αg(f1 · f2) (x) = αg((f1 · f2) (xg))

=
∑
y,z∈X
yz=xg

αg(f1(y)f2(z))

=
∑
y,z∈X

(yg−1)(zg−1)=x

αg(f1(y))αg(f2(z))

=
∑
y,z∈X
yz=x

αg(f1(yg))αg(f2(zg))

=
∑
y,z∈X
yz=x

αg(f1)(y)αg(f2)(z)

=
(
αg(f1) · αg(f2)

)
(x) .

Hence, αg(f1 · f2) = αg(f1) · αg(f2). Also,

αg(f
∗) (x) = αg(f

∗(xg)) = αg(f(x−1g))∗

=
(
αg(f) (x−1)

)∗
=
(
αg(f)

)∗
(x) .

Hence, αg(f∗) = (αg(f))∗. The fact that αg1g2 = αg1 ◦ αg2 for every g1, g2 ∈ G is
also easily checked. �

Definition 2.1.7. Let α be a group action of G on a Fell bundle A over a
groupoid X and let H be a subgroup of G. We will say that the G-action is H-good
if for any x ∈ X and h ∈ H we have

s(x)h = s(x) =⇒ αh−1(a) = a ∀a ∈ Ax .(2.2)

Also, a right G-action on a groupoid X is said to be H-good if for any x ∈ X and
h ∈ H we have

s(x)h = s(x) =⇒ xh = x .(2.3)

It is clear from the definitions that if the action α of G on A is H-good, then
its associated right G-action on the underlying groupoid X is also H-good. We
will mostly use actions on Fell bundles. However, some of our results (namely
Proposition 2.1.10) are about groupoids only, and this is the reason for defining
H-good actions for groupoids as well.

We now give equivalent definitions of a H-good action. For that we recall from
(1.7) that given an action of G on a set X we denote by Sx the stabilizer of the
point x ∈ X. We will also denote by S(Ax) the set S(Ax) := {g ∈ G : αg−1(a) =
a ,∀a ∈ Ax}.

Proposition 2.1.8. Let α be an action of G on a Fell bundle A over a groupoid
X. The following statements are equivalent:

i) The action α is H-good.
ii) For every x ∈ X we have that Ss(x) ∩H = S(Ax) ∩H.
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iii) For any x ∈ X we have

Ss(x) ∩H = Sx ∩H = Sr(x) ∩H =(2.4)
= S(As(x)) ∩H = S(Ax) ∩H = S(Ar(x)) ∩H .

iv) The stabilizers of the H-actions on X and on the fibers of A are the same
on composable pairs, i.e. if x ∈ X and y ∈ Y are composable, then

Sx ∩H = Sy ∩H =

= S(Ax) ∩H = S(Ay) ∩H .

Proof: i) =⇒ ii) Since the action is H-good we have, by definition, that
Ss(x) ∩H ⊆ S(Ax) ∩H. Also, if h ∈ S(Ax) ∩H, then we necessarily have xh = x,
and therefore by Lemma 2.1.2 we get s(x) = s(xh) = s(x)h, from which we conclude
that h ∈ Ss(x) ∩H. Hence we have Ss(x) ∩H = S(Ax) ∩H.

ii) =⇒ iii) Repeating a little bit of what we did above: if h ∈ S(Ax)∩H, then
we necessarily have that xh = h, and therefore h ∈ Sx∩H. Moreover, if h ∈ Sx∩H,
then it follows that by Lemma 2.1.2 that h ∈ Ss(x) ∩H. Thus, we have that

S(Ax) ∩H = Sx ∩H = Ss(x) ∩H .

Since s(s(x)) = s(x), we also have, directly by our assumption of ii), that
Ss(x) ∩H = S(As(x)) ∩H.

Since we have (xg)−1 = x−1g, it follows easily that Sx = Sx−1 . Similarly,
since αg(a)∗ = αg(a

∗), it follows easily that S(Ax) = S(Ax−1). Observing that
s(x−1) = r(x), equality (2.4) follows directly from what we proved above.

iii) =⇒ iv) Suppose x ∈ X and y ∈ X are composable. Then, s(x) = r(y) and
equality (2.4) immediately yelds that

Sx ∩H = Sy ∩H =

= S(Ax) ∩H = S(Ay) ∩H .

iv) =⇒ i) Let h ∈ H and x ∈ X be such that s(x)h = s(x). From iv) it follows
that h ∈ S(Ax) ∩H. This means that the action is H-good. �

It is easy to see that any H-good action is also gHg−1-good for any conjugate
gHg−1, and also K-good for any subgroup K ⊆ H.

The following property will also be important for defining crossed products by
Hecke pairs:

Definition 2.1.9. Let X be a groupoid endowed with a right G-action and let
H be a subgroup of G. We will say that the action has the H-intersection property
if

uH ∩ ugHg−1 = uHg ,(2.5)

for every unit u ∈ X0 and g ∈ G.
An action of G on a Fell bundle A is said to have the H-intersection property

if its associated right G-action on the underlying groupoid has the H-intersection
property.
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We defer examples of H-good actions and actions with the H-intersection prop-
erty for the next section. We now introduce one of the important ingredients for
our definition of crossed products by Hecke pairs: the orbit space groupoid .

Let G be a group, H ⊆ G a subgroup and X a groupoid endowed with a H-
good right G-action. Then, the orbit space X/H becomes a groupoid in a canonical
way which we will now describe. For that, and throughout this text, we will use
the following notation: given elements x, y we define the set

Hx,y := {h ∈ H : s(x)h = r(y)} .(2.6)

The groupoid structure on X/H is described as follows:
• A pair (xH, yH) ∈ (X/H)2 is composable if and only if Hx,y 6= ∅, or

equivalently, r(y) ∈ s(x)H. This property is easily seen not to depend on
the choice of representatives x, y from the orbits xH, yH respectively.
• Given a composable pair (xH, yH) ∈ (X/H)2, their product is

xH yH := xh̃yH ,(2.7)

where h̃ is any element of Hx,y. It will follow from the fact the action
is H-good that xh̃ does not depend on the representative h̃ chosen from
Hx,y. The result of the product xH yH also does not depend on the choice
of representatives x, y. We will prove this in the next result.
• The inverse of the element xH is simply the element x−1H. It is also easy

to see that this does not depend on the choice of representative x.

Proposition 2.1.10. Let G be a group, H ⊆ G a subgroup and X a groupoid
endowed with a H-good right G-action. The operations above give the orbit space
X/H the structure of a groupoid. Moreover, the unit space (X/H)0 of this groupoid
is X0/H = {uH : u ∈ X0}, where X0 is the unit space of X, and the range and
source functions satisfy

s(xH) = s(x)H and r(xH) = r(x)H .

Proof: Let us first prove that the product is well-defined. Let (xH, yH) ∈
(X/H)2 be a composable pair. The fact that xh̃ does not depend on the represen-
tative h̃ chosen from Hx,y follows from the assumption that the action is H-good,
since if h1, h2 ∈ Hx,y then we have

s(x)h1 = r(y) = s(x)h2 ,

and therefore s(x)h1h
−1
2 = s(x), and because the action is H-good xh1h

−1
2 = x, i.e.

xh1 = xh2.
Let us now prove that X/H is a groupoid with the operations above. We

check associativity first. Suppose xH, yH, zH ∈ X/H are such that (xH, yH) is
composable and (yH, zH) is composable. We want to prove that (xHyH, zH) and
(xH, yHzH) are also composable and moreover (xHyH)zH = xH(yHzH). We
have by definition that xHyH = xh̃1yH and yHzH = yh̃2zH, where h̃1 is any
element of Hx,y and h̃2 is any element of Hy,z. We now notice that

H
xh̃1y,z

= {h ∈ H : s(xh̃1y)h = r(z)} = {h ∈ H : s(y)h = r(z)} = Hy,z .
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Since Hy,z 6= ∅ it follows that H
xh̃1y,z

6= ∅, and therefore (xh̃1yH, zH) is compos-
able. Similarly,

H
x,yh̃2z

= {h ∈ H : s(x)h = r(yh̃2z)}

= {h ∈ H : s(x)h = r(y)h̃2}

= {h ∈ H : s(x)hh̃2

−1
= r(y)}

= Hx,y h̃2 .

Hence, since Hx,y 6= ∅ it follows that H
x,yh̃2z

6= ∅, and therefore (xH, yh̃2zH) is
composable.

As we saw above H
xh̃1y,z

= Hy,z, and since h̃2 ∈ Hy,z, we can write

(xHyH)zH = xh̃1yHzH = (xh̃1y)h̃2zH

= xh̃1h̃2yh̃2zH .

Also seen above, we have that H
x,yh̃2z

= Hx,y h̃2, so that h̃1h̃2 ∈ Hx,yh̃2z
. Hence,

we conclude that

(xHyH)zH = xH(yHzH) .

We now check that for any element xH ∈ X/H we have that (xH, x−1H) and
(x−1H,xH) are composable pairs. We have that

Hx,x−1 = {h ∈ H : s(x)h = r(x−1)} = {h ∈ H : s(x)h = s(x)} ,

and the identity element e obviously belongs to the latter set. Hence we conclude
that Hx,x−1 6= ∅, and therefore (xH, x−1H) is composable. A similar observation
shows that (x−1H,xH) is also composable.

To prove that X/H is a groupoid it now remains to prove the inverse identities
xHyHy−1H = xH and y−1HyHxH = xH, in case (xH, yH) is composable (for
the first identity) and (yH, xH) is composable (for the second identity). We first
show that yHy−1H = r(y)H. We have that yHy−1H = yh̃y−1H for any element
h̃ ∈ Hy,y−1 . Since, as we observed above, we always have e ∈ Hy,y−1 , it follows that
we can take h̃ as e. Thus, we get

yHy−1H = yy−1H = r(y)H .(2.8)

From this it follows that

xHyHy−1H = xHr(y)H = xh̃1r(y)H ,

where h̃1 is any element of Hx,r(y). By definition, h̃1 is such that r(y) = s(x)h̃1 =

s(xh̃1). Hence we have that xh̃1r(y) = xh̃1, and therefore

xHyHy−1H = xh̃1H = xH .

The other identity y−1HyHxH = xH is proven in a similar fashion. Hence, we
conclude that X/H is a groupoid.

From equality (2.8) it follows easily that the units of X/H are precisely the
elements of the form uH where u ∈ X0, so that we can write (X/H)0 = X0/H.
Also from (2.8) it follows that the range function in X/H satisfies:

r(xH) = r(x)H .
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The analogous result for the source function is proven in a similar fashion. �

The condition that the action is H-good is in fact necessary to define a “rea-
sonable” groupoid structure on the orbit space X/H, for a given right G-action
on X (by groupoid homomorphisms). In fact, if on X/H we require the product
of elements xH and yH to be the product of the classes (xH)(yH) = {xh1yh2 ∈
X : h1, h2 ∈ H, (xh1, yh2) is composable}, and in particular that the product
(xH)(yH) consists of only one class, then it follows that the action is H-good:

Proposition 2.1.11. Let X be a groupoid endowed with a right G-action. Let
us assume that for every x, y ∈ X and h1, h2 ∈ H such that (xh1, y) and (xh2, y)
are composable, there exists h3 ∈ H such that

xh1y = (xh2y)h3 .

Then the action is H-good.

Proof: Let x ∈ X and h ∈ H be such that s(x)h = s(x). The pair (xh, x−1)
is then composable, and by our assumption there is h3 ∈ H such that

xhx−1 = (xex−1)h3 = r(x)h3 .(2.9)

However, s(xhx−1) = s(x−1) = r(x) and also s(r(x)h3) = r(x)h3, since r(x)h3

is a unit. Thus, we have that r(x) = r(x)h3. Hence, expression (2.9) now reads
xhx−1 = r(x), which means xh = x. This shows that action is H-good. �

Remark 2.1.12. A key ingredient in this proof is the fact that we assume that
the action of G on X is by groupoid homomorphisms (what we called a G-action),
as seen in the statement that r(x)h3 is a unit. The condition that the action is
H-good is not necessary to form a groupoid X/H if one does not assume an action
by groupoid homomorphisms. For example, G is a group and therefore it is also
a groupoid, and when H is normal, with the action of right translation, G/H has
a natural groupoid structure (the quotient group). The only H-good actions on
G are the trivial ones, since there is only one unit, so right translation is not H-
good. However, right translation is also easily seen not to be an action by groupoid
homomorphisms.

In conclusion, a “reasonable” groupoid structure can be defined on X/H under
milder assumptions than G-actions by groupoid homomorphisms and H-good ac-
tions. We will not need a result in greater generality though, as the only actions of
interest to us here are by groupoid homomorphisms.

Let α be an action of G on a Fell bundle A over a groupoid X. Assume that
the action is H-good, where H is a subgroup of G. We will now define a new
Fell bundle A/H over the groupoid X/H. First we set some notation. The set of
H-orbits of the action α on A gives us a partition of A into equivalence classes. We
will denote by [a] the equivalence class of the element a ∈ A, i.e.

[a] := {αh(a)}h∈H .
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Definition 2.1.13. We define A/H as the set of all the H-orbits in A, i.e.
A/H := {[a] : a ∈ A} .(2.10)

As we will now see, A/H is a Fell bundle over X/H in a natural way.

Proposition 2.1.14. Let α be an action of a group G on a Fell bundle A over
a groupoid X and H ⊆ G be a subgroup for which the G-action is H-good. The set
of H-orbits A/H forms a Fell bundle over the groupoid X/H in the following way:

• The associated projection pH : A/H → X/H is defined by pH([a]) :=
p(a)H, where p is the associated projection of the bundle A.

• The vector space structure on each fiber
(
A/H

)
xH

is defined in the fol-
lowing way: if a, b ∈ Ax then [a] + [b] := [a + b], and if λ ∈ C then
λ[a] := [λa].

• The norm on A/H is defined by ‖[a]‖ := ‖a‖.
• The multiplication maps

(
A/H

)
xH
×
(
A/H

)
yH
→
(
A/H

)
xH·yH , for a

composable pair (xH, yH), are defined in the following way: if a ∈ Ax
and b ∈ Ay, then

[a][b] = [αh̃−1(a)b] ,(2.11)

where h̃ is any element of Hx,y.
• The involution map is defined by [a]∗ := [a∗].

Lemma 2.1.15. Let α be an action of G on a Fell bundle A over a groupoid
X and H ⊆ G be a subgroup for which the G-action is H-good. Let x ∈ X and
a ∈ Ax. Given any y ∈ xH there exists a unique representative b of [a] such that
b ∈ Ay.

Proof: Given an element y ∈ xH we have that y = xh for some h ∈ H. The
element αh−1(a) is then a representative of [a] such that αh−1(a) ∈ Axh = Ay, thus
existence is established.

The uniqueness claim follows from the fact the action is H-good. Suppose we
have two representatives b and c of [a] such that both b and c belong to Ay. Being
representatives of [a] means that there are elements h1, h2 ∈ H such that b = αh1

(a)
and c = αh2

(a). Hence we have that

αh2h
−1
1

(b) = c ,

and therefore h2h
−1
1 takes Ay into Ay. This means that yh1h

−1
2 = y and therefore

s(y)h1h
−1
2 = s(y). Since the action is H-good it follows that αh2h

−1
1

(b) = b, and
therefore b = c. �

Proof of Proposition 2.1.14: First, it is clear that the vector space structure
on each fiber

(
A/H

)
xH

is well-defined. By this we mean two things: first, given
two elements [a], [b] ∈

(
A/H

)
xH

there exist unique representatives a, b such that
a, b ∈ Ax for a given representative x of the orbit xH (Lemma 2.1.15); second, the
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sum [a+b] still lies in
(
A/H

)
xH

and does not depend on the choice of representatives
a and b (provided only that a and b are in the same fiber).

The norm on A/H is also easily seen to be well-defined, i.e. independent of
the choice of representative. This is true because any other representative of [a] is
of the form αh(a) for some h ∈ H, and by Remark 1.4.3 we know that αh gives
an isometry between fibers. It is also clear that each fiber

(
A/H

)
xH

is a Banach
space under this norm.

The multiplication map is also easily seen to be well-defined: using the fact that
the G-action on A is H-good we know that αh̃−1(a)b does not depend on the choice
of element h̃ ∈ Hx,y. Moreover, αh̃−1(a)b ∈ Axh̃y and therefore [αh̃−1(a)b] ∈ Axh̃yH .
The fact that the multiplication map does not depend on the chosen representatives
of the orbits [a] and [b] is also easily checked.

It follows from a routine computation that map
(
A/H

)
xH
×
(
A/H

)
yH
→(

A/H
)
xH·yH is bilinear. Moreover, for [a] ∈

(
A/H

)
xH

and [b] ∈
(
A/H

)
yH

, where
we assume without loss of generality that a ∈ Ax and b ∈ Ay, we have that

‖[a][b]‖ = ‖αh̃−1(a)b‖ ≤ ‖αh̃−1(a)‖‖b‖
= ‖a‖‖b‖ = ‖[a]‖‖[b]‖ .

We will now check associativity of the multiplication maps. Let (xH, yH) and
(yH, zH) be two composable pairs in X/H, and let [a] ∈ (A/H)xH , [b] ∈ (A/H)yH
and [c] ∈ (A/H)zH , where we assume without loss of generality that a ∈ Ax, b ∈ Ay
and c ∈ Az. By definition, we have [a][b] = [α

h̃1
−1(a)b], where h̃1 is any element of

Hx,y. Thus, we have(
[a][b]

)
[c] = [α

h̃1
−1(a)b][c] = [α

h̃2
−1

(
α
h̃1
−1(a)b

)
c]

= [α
h̃2
−1
h̃1
−1(a)α

h̃2
−1(b)c] ,

where h̃2 is any element of H
xh̃1y,z

. One can easily check (or see the proof of
Proposition 2.1.10 where this is done) that H

xh̃1y,z
= Hy,z and moreover that

h̃1h̃2 ∈ Hx,yh̃2z
. From this observations it follows that(

[a][b]
)
[c] = [α

h̃2
−1
h̃1
−1(a)α

h̃2
−1(b)c] = [a][α

h̃2
−1(b)c]

= [a]
(
[b][c]) .

Hence, the multiplication maps are associative.
The involution on A/H is also easily seen not to depend on choice of represen-

tative of the orbit, since the maps αh preserve the involution of A. Moreover, it is
easily checked that: if [a] ∈

(
A/H

)
xH

then [a]∗ ∈
(
A/H

)
x−1H

, the associated map(
A/H

)
xH
→
(
A/H

)
x−1H

is conjugate linear, and [a]∗∗ = [a]. Let us now check
that

(
[a][b]

)∗
= [b]∗[a]∗, whenever the multiplication is defined. Let us assume that

a ∈ Ax and b ∈ Ay and that (xH, yH) is composable. We have that(
[a][b]

)∗
= [αh̃−1(a)b]∗ = [b∗αh̃−1(a∗)] = [αh̃(b∗)a∗] ,

where h̃ is any element of Hx,y. It is easily seen that h̃−1 ∈ Hy−1,x−1 , so that(
[a][b]

)∗
= [αh̃(b∗)a∗] = [b∗][a∗] = [b]∗[a]∗ .
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We also need to prove that ‖[a]∗[a]‖ = ‖[a]‖2. This is also easy because

‖[a]∗[a]‖ = ‖[a∗][a]‖ = ‖[a∗a]‖ = ‖a∗a‖ = ‖a‖2 = ‖[a]‖2 .

The last thing we need to check is that if [a] ∈ (A/H)xH , then [a]∗[a] is a positive
element of (A/H)s(x)H (seen as a C∗-algebra). We have that [a]∗[a] = [a∗a]. We
can assume without loss of generality that a ∈ Ax, so that a∗a ∈ As(x). Since
A is a Fell bundle we have that a∗a is a positive element of As(x) (seen as a C∗-
algebra). Hence, there exists an element b ∈ As(x) such that a∗a = b∗b. Moreover,
[b] ∈ (A/H)s(x) and it is now clear that

[a]∗[a] = [a∗a] = [b∗b] = [b]∗[b] ,

i.e. [a]∗[a] is a positive element of (A/H)s(x). This finishes our proof that A/H is
a Fell bundle. �

Convention. For simplicity we will henceforward make the following conven-
tion. Given an orbit Fell bundle A/H as described in Proposition 2.1.14, if we
write that an element [a] belongs to some fiber (A/H)xH , we will always assume
that the representative a of [a] belongs to the fiber over the representative x of xH.
In other words, if we write that [a] ∈ (A/H)xH , then we are implicitly assuming
that a ∈ Ax. This is possible and unambiguous by Lemma 2.1.15.

We apply this convention also for elements of Cc(A/H), meaning that a canoni-
cal element [a]xH ∈ Cc(A/H) is always assumed to be written in a way that a ∈ Ax.

It is a straightforward fact that any function in Cc(X/H) can also be seen as
a complex-valued (H-invariant) function on X. This function on X is in general
no longer finitely supported, but it still makes sense as a function in C(X), the
vector space of all complex-valued functions on X. We will now see that something
analogous can be said for the elements of Cc(A/H).

Given an element f ∈ Cc(A/H) we define a function ι(f) ∈ C(A), where C(A)
is the vector space of all sections of A, by the following rule:

ι(f)(x) := Rx(f(xH)) ,(2.12)

where Rx(f(xH)) is the unique representative of f(xH) such that Rx(f(xH)) ∈ Ax,
which is well-defined according to Lemma 2.1.15. It is then easy to see that the
map ι is an injective linear map from Cc(A/H) to C(A).

For ease of reading we will henceforward drop the symbol ι and use the same
notation both for elements of Cc(A/H) and for their correspondents in C(A). It
will then be clear from context which one we are using.

Under this convention we can then write, for any f ∈ Cc(A/H) and x ∈ X,
that [f(x)] = f(xH). Moreover, the decomposition (1.21) of f ∈ Cc(A/H) as a
sum of elements of the form [a]xH can now be written as:

f =
∑

xH∈X/H

(
f(xH)

)
xH

=
∑

xH∈X/H

[f(x)]xH .(2.13)
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2.2. Examples

In this section we give some examples of H-good actions and actions satisfying
the H-intersection property. For the rest of the section we assume that A is a Fell
bundle over a groupoid X where a group G acts and H ⊆ G denotes a subgroup.

The first two examples (2.2.1 and 2.2.2) show that H-good actions that satisfy
the H-intersection property are present in actions that have completely opposite
behaviours, such as free actions and actions that fix every point.

Example 2.2.1. If the restricted action of H on the unit space X0 is free, then
the action is H-good and satisfies the H-intersection property.

Example 2.2.2. If the restricted action of H on A fixes every point, then the
action is H-good and satisfies the H-intersection property.

The following example is one of the examples that motivated the development
of this theory of crossed products by Hecke pairs. This example, and the study
of the crossed products associated to it, seems to be valuable for obtaining a form
of Katayama duality with respect to crossed products by “coactions” of discrete
homogeneous spaces.

Example 2.2.3. Suppose X is the transformation groupoid G×G. We recall
that the multiplication and inversion operations on this groupoid are given by:

(s, tr)(t, r) = (st, r) and (s, t)−1 = (s−1, st) .

Recall also that the source and range functions on G×G are defined by

s(s, t) = (e, t) and r(s, t) = (e, st) .

We observe that there is a natural right G-action on G×G, given by

(s, t)g := (s, tg) .(2.14)

Let δ be a coaction of G on a C∗-algebra B and B the associated Fell bundle.
Following [6, Section 3], we will denote by A := B×G the corresponding Fell bundle
over the groupoid G ×G. Elements of A have the form (bs, t), where bs ∈ Bs and
s, t ∈ G. Any such element lies in the fiber A(s,t) over (s, t).

It is easy to see that there is a canonical action α of G on A, given by

αg(bs, t) := (bs, tg
−1) .

This action of G on A entails the natural right action of G on G×G, as described
in (2.14). This G-action on G×G is free and therefore the action α is H-good and
satisfies the H-intersection property with respect to any subgroup H ⊆ G.

The orbit space groupoid (G × G)/H can be canonically identified with the
groupoid G×G/H of [5], whose operations are given by:

(s, trH)(t, rH) = (st, rH) and (s, tH)−1 = (s−1, stH) .

Moreover, the orbit Fell bundle A/H is canonically identified with the Fell bundle
B × G/H over G × G/H defined in [5], and in this way Cc(A/H) is canonically
isomorphic with the Echterhoff-Quigg algebra Cc(B ×G/H), also from [5].
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Example 2.2.4. Here we give an example of a G-action on a groupoid X which
is not H-good. Let X be again the transformation groupoid G × G, but now we
consider the G-action given by conjugation:

(s, t)g := (g−1sg, g−1tg) .(2.15)

A routine computation shows that (2.15) does indeed define a right action of G on
X.

If a subgroup H is not in the center of G, then the action is not H-good.
To see this, take two elements h ∈ H and g ∈ G that do not commute. We
have that s(g, e) = (e, e), and therefore s(g, e)h = (e, e)h = (e, e) = s(g, e), but
(g, e)h = (h−1gh, e) 6= (g, e), so the action cannot be H-good.

2.3. The algebra M(Cc(A))

We will assume for the rest of this section that G is a group, H ⊆ G is a
subgroup and A is a Fell bundle over a groupoid X endowed with a G-action α.
We also assume that the action α is H-good. We recall that A/H stands for the
orbit Fell bundle over the groupoid X/H, as defined in (2.10).

For the purpose of defining crossed products by Hecke pairs it is convenient to
have a “large” algebra which contains the algebras Cc(A/H) for different subgroups
H ⊆ G. In this way we are allowed to multiply elements of Cc(A/H) and Cc(A/K),
for different subgroups H,K ⊆ G, in a meaningful way. This large algebra will be
the multiplier algebraM(Cc(A)). This section is thus devoted to show how algebras
such as Cc(A/H) and Cc(X0/H) embed in M(Cc(A)) in a canonical way.

Our first result shows that there is a natural inclusion Cc(A/H) ⊆M(Cc(A)).

Theorem 2.3.1. There is an embedding ι of Cc(A/H) into M(Cc(A)) deter-
mined by the following rule: for any x, y ∈ X, a ∈ Ax and b ∈ Ay we have

ι([a]xH)by :=

{
(αh̃−1(a)b)xh̃y , if Hx,y 6= ∅
0, otherwise,

(2.16)

where h̃ is any element of Hx,y.

Remark 2.3.2. The above result allows us to see Cc(A/H) as a ∗-subalgebra
of M(Cc(A)). We shall henceforward drop the symbol ι and make no distinction
of notation between an element of Cc(A/H) and its correspondent multiplier in
M(Cc(A)).

Proof of Theorem 2.3.1: Let us first show that expression (2.16) does indeed
define an element ofM(Cc(A)). For this it is enough to check that 〈ι([a]xH)by, cz〉 =
〈by, ι([a]∗x−1H) cz〉, for all b ∈ Ay and c ∈ Az, with y, z ∈ X. For ι([a]xH)by to
be non-zero, we must necessarily have Hx,y 6= ∅, and in this case ι([a]xH)by =

(αh̃−1(a)b)xh̃y, where h̃ ∈ Hx,y. Now,

〈ι([a]xH)by, cz〉 = 〈(αh̃−1(a)b)xh̃y, cz〉 = (b∗αh̃−1(a)∗)y−1(x−1h̃)cz

= b∗y−1αh̃−1(a)∗
x−1h̃

cz
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For αh̃−1(a)∗
x−1h̃

cz to be non-zero we must necessarily have r(z) = s(x−1)h̃, i.e.

h̃ ∈ Hx−1,z. So, to summarize, for 〈[a]xHby, cz〉 to be non-zero we must have
Hx,y ∩Hx−1,z 6= ∅ and in this case we obtain

〈ι([a]xH)by, cz〉 = b∗y−1αh̃−1(a)∗
x−1h̃

cz ,

where h̃ is any element ofHx,y∩Hx−1,z. A similar computation for 〈by, ι([a]∗x−1H) cz〉
yelds the exact same result.

Recall from (1.21) that any f ∈ Cc(A/H) can be written as

f =
∑

xH∈X/H

(
f(xH)

)
xH

.

From this we are able to define a multiplier ι(f) ∈M(Cc(A)), simply by extending
expression (2.16) by linearity.

We want to show that ι is an injective ∗-homomorphism. First, we claim that
given [a]xH , [b]yH ∈ Cc(A/H) we have

ι([a]xH)ι([b]yH) = ι([a]xH [b]yH) .

This amounts to proving that

ι([a]xH)ι([b]yH) =

{
ι([αh̃−1(a)b]xh̃yH) , if Hx,y 6= ∅
0, otherwise

with h̃ being any element of Hx,y. To see this, let cz ∈ Az, with z ∈ X. We have

ι([a]xH)ι([b]yH)cz =

{
ι([a]xH)(αh−1

0
(b)c)yh0z , if Hy,z 6= ∅

0, otherwise

=

{
(αh−1

1
(a)αh−1

0
(b)c)xh1yh0z , if Hy,z 6= ∅ and Hx,yh0z 6= ∅

0, otherwise

with h0 ∈ Hy,z and h1 ∈ Hx,yh0z. But Hx,yh0z = Hx,yh0
= Hx,y h0, hence the

above can be written as

=

{
(αh−1

0 h̃−1(a)αh−1
0

(b)c)xh̃h0yh0z
, if Hy,z 6= ∅ and Hx,y 6= ∅

0, otherwise

=

{(
αh−1

0
(αh̃−1(a)b)c

)
(xh̃y)h0z

, if Hy,z 6= ∅ and Hx,y 6= ∅
0, otherwise

where h̃ ∈ Hx,y. Also, Hy,z = Hxh̃y,z. Thus, we obtain

=

{(
αh−1

0
(αh̃−1(a)b)c

)
(xh̃y)h0z

, if Hxh̃y,z 6= ∅ and Hx,y 6= ∅
0, otherwise

=

{
ι([αh̃−1(a)b]xh̃yH) cz , if Hx,y 6= ∅
0, otherwise

Since ι is linear and multiplicative on the elements of the form [a]xH , it is nec-
essarily a homomorphism. Now the fact that ι([a]xH)∗ = ι(([a]xH)∗) = ι([a]∗x−1H)
follows directly from the computations in the beginning of this proof. Hence, ι is a
∗-homomorphism.
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Let us now prove injectivity of ι. Suppose f ∈ Cc(A/H) is such that ι(f) = 0.
Decomposing f as a sum of elements of the form [a]xH , following (2.13), we get

0 = ι(f) =
∑

xH∈X/H

ι
((
f(xH)

)
xH

)
=

∑
xH∈X/H

ι
(
[f(x)]xH

)
.

For any y ∈ X we then have

0 =
∑

xH∈X/H

ι
(
[f(x)]xH

)
(f(y)∗)y−1

=
∑

xH∈X/H
s(y)∈s(x)H

ι
(
[f(x)]xH

)
(f(y)∗)y−1

=
∑

xH∈X/H
s(y)∈s(x)H

(
α
h̃x
−1(f(x))f(y)∗

)
xh̃xy−1 ,

where h̃x is any element of Hx,y−1 . Now the elements xh̃xy−1 in the sum above
are all different, because if we had x1h̃x1y

−1 = x2h̃x2y
−1, then we would have

x1h̃x1 = x2h̃x2 and therefore x1H = x2H. Therefore each of the summands in the
above sum is zero, and in particular we must have

0 =
(
α
h̃y
−1(f(y))f(y)∗

)
yh̃yy−1

=
(
f(y)f(y)∗

)
r(y)

,

and therefore f(y)f(y)∗ = 0. Hence we get f(y) = 0, and since this is true for any
y ∈ X, we have f = 0, i.e. ι is injective. �

Proposition 2.3.3. There is an embedding ι of Cb(X0) intoM(Cc(A)) defined
by

ι(f) by := f(r(y))by .(2.17)

for every f ∈ Cb(X0), y ∈ X and b ∈ Ay.

Remark 2.3.4. The above result allows us to see Cb(X0) as a ∗-subalgebra of
M(Cc(A)). We shall henceforward drop the symbol ι and make no distinction of no-
tation between an element of Cb(X0) and its correspondent multiplier inM(Cc(A)).

Proof of Proposition 2.3.3 : It is easy to see that 〈ι(f)by , cz〉 = 〈by , ι(f∗)cz〉
for any y, z ∈ X, b ∈ Ay and c ∈ Az, so that the expression (2.17) does define an
element of M(Cc(A)).

Hence we get a linear map ι : Cb(X
0) → M(Cc(A)). Given two elements

f1, f2 ∈ Cb(X0), we have that

ι(f1)ι(f2)by = f1(r(y))f2(r(y))by = ι(f1f2)by

for any y ∈ X andb ∈ Ay, so that ι is a ∗-homomorphism. Hence, we only need to
prove that ι is injective. This is not difficult to see: given f ∈ Cb(X0) such that
ι(f) = 0 we have, for any unit u ∈ X0 and b ∈ Au, that

0 = ι(f)bu = f(u)bu .
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Hence, f(u) = 0 because each fiber Au is non-zero by our assumption on Fell bun-
dles (see Assumption 1.4.1). Since this is true for any u ∈ X0 we get f = 0, i.e. ι
is injective. �

Recall, from Lemma 2.1.2, that the action of G on X restricts to an action of
G on the set X0. Thus it makes sense to talk about the commutative ∗-algebra

Cc(X
0/H) ⊆ Cb(X0) .

Since there is a canonical embedding, given by Proposition 2.3.3, of Cb(X0) into
M(Cc(A)), we have in particular an embedding of Cc(X0/H) intoM(Cc(A)) which
identifies an element f ∈ Cc(X0/H) with the multiplier f ∈M(Cc(A)) given by:

fby := f(r(y)H)by .

Moreover Proposition 2.3.3 applied to the groupoid X/H and the Fell bundle A/H
shows that there is a canonical embedding of Cb(X0/H) into M(Cc(A/H)), which
identifies an element f ∈ Cb(X0/H) with the multiplier f ∈ M(Cc(A/H)) given
by

f [b]yH := f(r(y)H)[b]yH .(2.18)

Since both Cc(X
0/H) and Cc(A/H) are canonically embedded in M(Cc(A)), it

is convenient to understand what happens (inside M(Cc(A))) when one multiplies
an element of Cc(X0/H) by an element Cc(A/H). Perhaps unsurprisingly, this
product is given exactly by expression (2.18), which models the action of Cc(X0/H)
on Cc(A/H) as multipliers of the latter algebra. In other words, it makes no
difference to view Cc(X

0/H) inside M(Cc(A/H)) or inside M(Cc(A)) when it
comes to multiplication by elements of Cc(A/H).

We will now show how the multiplication of elements of Cc(A/H) by elements
of Cc(X0) is determined (inside M(Cc(A))). Before we proceed we will first intro-
duce some notation that will be used throughout this work: Given a set A ⊂ X0

we will denote by 1A ∈ Cb(X
0) the characteristic function of A. In case A is a

singleton {u} we will simply write 1u.

Proposition 2.3.5. Inside M(Cc(A)) we have that, for x ∈ X, a ∈ Ax and
u ∈ X0,

[a]xH1u =

{
αh̃−1(a)xh̃ , if Hx,u 6= ∅
0, otherwise,

where h̃ is any element of Hx,u.

Proof: Let y ∈ X and b ∈ Ay. For the product [a]xH1u by to be non-zero we
must necessarily have u = r(y) (from (2.17)), and in this case we obtain

[a]xH1u by = [a]xHby = (αh̃−1(a)b)xh̃y = αh̃−1(a)xh̃by ,

where h̃ is any element of Hx,y. Since u = r(y), we have Hx,y = Hx,u, and this
concludes the proof. �
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It will be of particular importance to know how to multiply, inside M(Cc(A)),
elements of Cc(A/H) with elements of Cc(A/K) when K ⊆ H is an arbitrary sub-
group. It turns out that the algebra Cc(A/K) is preserved by multiplication by
elements of Cc(A/H), as we show in the next result:

Proposition 2.3.6. Let K ⊆ H be any subgroup. We have that

[a]xH [b]yK =

{
[αh̃−1(a)b]xh̃yK , if Hx,y 6= ∅
0, otherwise,

(2.19)

where x, y ∈ X, a ∈ Ax and b ∈ Ay. In particular Cc(A/K) is invariant under
multiplication by elements of Cc(A/H).

Proof: First we observe that since the action is assumed to be H-good, it is
automatically K-good, so that we can form the groupoid X/K and the Fell bundle
A/K.

Let z ∈ X and c ∈ Az. We have that

[a]xH [b]yKcz =

{
[a]xH(αk̃−1(b)c)yk̃z , if Ky,z 6= ∅
0, otherwise,

=

{
(αh̃−1(a)αk̃−1(b)c)xh̃yk̃z , if Hx,yk̃z 6= ∅ and Ky,z 6= ∅
0, otherwise,

=

{
(αh̃−1(a)αk̃−1(b)c)(

xh̃k̃−1y
)
k̃z
, if Hx,yk̃z 6= ∅ and Ky,z 6= ∅

0, otherwise,

where k̃ is any element of Ky,z and h̃ is any element of Hx,yk̃z. Now, since Hx,yk̃z =

Hx,yk̃ = Hx,yk̃, it follows that h̃k̃−1 ∈ Hx,y, and moreover since Ky,z = Kxh̃k̃−1y,z,
we conclude that

=

{
(αk̃−1(αk̃h̃−1(a)b)c)(

xh̃k̃−1y
)
k̃z
, if Hx,y 6= ∅ and Kxh̃k̃−1y,z 6= ∅

0, otherwise,

=

{
[αk̃h̃−1(a)b]xh̃k̃−1yKcz , if Hx,y 6= ∅
0, otherwise.

Thus (2.19) follows immediately (the element h̃ in (2.19) is simply the element de-
noted by h̃k̃−1 above). �

In case the subgroup K has finite index in H we can strengthen Proposition
2.3.6 in the following way:

Proposition 2.3.7. Let K ⊆ H be a subgroup such that [H : K] <∞. Inside
M(Cc(A)) we have that

[a]xH =
∑

[h]∈Sx\H/K

[αh−1(a)]xhK ,(2.20)
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for any x ∈ X and a ∈ Ax. In particular, inside M(Cc(A)) we have that Cc(A/H)
is a ∗-subalgebra of Cc(A/K).

Proof: First we notice that since [H : K] <∞ we have that the right hand side
of (2.20) is a finite sum and therefore does indeed define an element of Cc(A/K).
To prove this result it suffices to show that

[a]xHby =
∑

[h]∈Sx\H/K

[αh−1(a)]xhKby ,(2.21)

for all y ∈ X and b ∈ Ay. First we notice that both the right and left hand sides of
(2.21) are zero unless r(y) ∈ s(x)H. In case r(y) ∈ s(x)H we have

[a]xHby = (αh̃−1(a)b)xh̃y ,

where h̃ is any element of Hx,y.
Recall from Proposition 1.3.2 that there is a bijective correspondence between

the set of K-orbits (xH)/K and the double coset space Sx\H/K. It is clear that
[a]xh̃Kby = (αh̃−1(a)b)xh̃y. Moreover, for all the classes [h] 6= [h̃] in Sx\H/K we
have r(y) /∈ s(x)hK, because r(y) ∈ s(x)h̃K. Hence, for all the classes [h] 6= [h̃] in
Sx\H/K we have [αh−1(a)]xhKby = 0. We conclude that∑

[h]∈Sx\H/K

[αh−1(a)]xhKby = [αh̃−1(a)]xh̃Kby = (αh̃−1(a)b)xh̃y ,

and equality (2.21) is proven. �

Remark 2.3.8. In Proposition 2.3.7 the fact that [H : K] <∞ was only used
to ensure that the sum on the right hand side of (2.20) was finite. One could more
generally just require that the sets Sx\H/K are finite for all x ∈ X, but this gen-
erality will not be used here.

As we saw in Proposition 2.1.6 we have an action α of G on Cc(A). This action
can be extended in a unique way to an action on M(Cc(A)), which we will still
denote by α, by the following formula:

αg(T )f := αg
(
Tαg−1(f)

)
,(2.22)

where g ∈ G, T ∈ M(Cc(A)) and f ∈ Cc(A). We will now show what this action
on M(Cc(A)) does to the algebras Cb(X0), Cc(A/H) and Cc(X0/H).

Proposition 2.3.9. The extension of the action α to M(Cc(A)), also denoted
by α, satisfies the following properties:

(i) The restriction of α to Cb(X0) is precisely the action that comes from the
G-action on X0.

(ii) For any g ∈ G the automorphism αg takes Cc(X0/H) to Cc(X0/gHg−1),
by

αg(1xH) = 1(xg−1)(gHg−1) .(2.23)

(iii) For any g ∈ G the automorphism αg takes Cc(A/H) to Cc(A/gHg−1), by

αg([a]xH) = [αg(a)](xg−1)(gHg−1) .(2.24)
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(iv) Both Cc(A/H) and Cc(X0/H) are contained in M(Cc(A))H , the algebra
of H-fixed points.

Proof: (i) Let y ∈ X, b ∈ Ay and f ∈ Cb(X0). For any g ∈ G let us denote by
fg ∈ Cb(X0) the function defined by fg(x) = f(xg). By definition of the extension
of α to M(Cc(A)), we have

αg(f) by = αg(f · α−1
g (by)) = αg(f · αg−1(b)yg)

= αg(f(r(yg))αg−1(b)yg) = αg(f(r(y)g)αg−1(b)yg)

= f(r(y)g)by = fg(r(y))by

= fg · by .

Hence we conclude that αg(f) = fg and therefore the action α on Cb(X0) is just
the action that comes from the G-action on X0.

(ii) This follows directly from (i).
(iii) Let y ∈ X and b ∈ Ay. By definition of the extension of α to M(Cc(A)),

we have

αg([a]xH) by = αg([a]xHα
−1
g (by)) = αg([a]xHαg−1(b)yg) .

Also, we can see that

αg([a]xHαg−1(b)yg) =

{
αg
(
(αh̃−1(a)αg−1(b))xh̃(yg)

)
, if Hx,yg 6= ∅

0, otherwise

=

{
(αgh̃−1(a)b)xh̃g−1y , if Hx,yg 6= ∅
0, otherwise

=

{
(αgh̃−1(a)b)xg−1gh̃g−1y , if Hx,yg 6= ∅
0, otherwise

where h̃ ∈ Hx,yg. Now an easy computation shows that we have

Hx,yg = g−1
(
gHg−1

)
xg−1,y

g ,

and thereby we obtain, for t ∈
(
gHg−1

)
xg−1,y

,

αg([a]xH) by =

{
(αgg−1t−1g(a)b)xg−1ty , if

(
gHg−1

)
xg−1,y

6= ∅
0, otherwise

=

{
(αt−1g(a)b)xg−1ty , if

(
gHg−1

)
xg−1,y

6= ∅
0, otherwise

= [αg(a)](xg−1)(gHg−1) by .

(iv) This follows directly from (ii) and (iii). �

It is important to know how to multiply an element of Cc(A/H) with an element
of Cc(X0/gHg−1) inside M(Cc(A)). This is easy if we are under the assumption
that G-action satisfies the H-intersection property. We recall from (1.8) that Hg

stands for the subgroup H ∩ gHg−1.
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Proposition 2.3.10. If the G-action moreover satisfies the H-intersection
property, then for every x ∈ X and g ∈ G the following equality holds in M(Cc(A)):

[a]xH 1s(x)gHg−1 = [a]xHg .

Proof: For any y ∈ X and b ∈ Ay we have

[a]xH 1s(x)gHg−1 by =

=

{
[a]xHby , if r(y) ∈ s(x)gHg−1

0, otherwise

=

{
(αh̃−1(a)b)xh̃y , if r(y) ∈ s(x)gHg−1 and r(y) ∈ s(x)H

0, otherwise

=

{
(αh̃−1(a)b)xh̃y , if r(y) ∈ s(x)H ∩ s(x)gHg−1

0, otherwise

where h̃ ∈ Hx,y. Now, by the H-intersection property, we obtain

=

{
(αh̃−1(a)b)xh̃y , if r(y) ∈ s(x)Hg

0, otherwise .

Of course, we have (Hg)x,y ⊆ Hx,y, and hence we can choose h̃ as an element of
(Hg)x,y, thereby obtaining

= [a]xHg by ,

which finishes the proof. �





CHAPTER 3

∗-Algebraic crossed product by a Hecke pair

In this chapter we introduce our notion of a (∗-algebraic) crossed product by
a Hecke pair and we explore its basic properties and its representation theory.
Throughout the rest of this work we impose the following standing assumption,
based on the tools developed in Section 2.1.

Standing Assumption 3.0.1. We assume from now on that (G,Γ) is a Hecke
pair, A is a Fell bundle over a groupoid X endowed with a Γ-good right G-action
α satisfying the Γ-intersection property.

3.1. Definition of the crossed product and basic properties

In this section we aim at defining the (∗-algebraic) crossed product of Cc(A/Γ)
by the Hecke pair (G,Γ). For that we are going to define some sort of a bundle over
G/Γ, where the fiber over each gΓ is precisely Cc(A/Γg). Recall that we denote by
α the associated action of G on Cc(A) and also its extension to M(Cc(A)).

Definition 3.1.1. Let B(A, G,Γ) be the vector space of finitely supported
functions f : G/Γ→M(Cc(A)) satisfying the following compatibility condition

f(γgΓ) = αγ(f(gΓ)) ,(3.1)

for all γ ∈ Γ and gΓ ∈ G/Γ.

Lemma 3.1.2. For every f ∈ B(A, G,Γ) and gΓ ∈ G/Γ we have

f(gΓ) ∈M(Cc(A))Γg .

Proof : This follows directly from the compatibility condition (3.1), since for
every γ ∈ Γg we have αγ(f(gΓ)) = f(γgΓ) = f(gΓ). �

Definition 3.1.3. The vector subspace of B(A, G,Γ) consisting of the func-
tions f : G/Γ → M(Cc(A)) satisfying the compatibility condition (3.1) and the
property

f(gΓ) ∈ Cc(A/Γg) ,(3.2)

will be denoted by Cc(A/Γ) ×algα G/Γ and will be called the ∗-algebraic crossed
product of Cc(A/Γ) by the Hecke pair (G,Γ).

43
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It is relevant to point out that the definitions of the spaces B(A, G,Γ) and
Cc(A/Γ)×algα G/Γ seem more suitable for Hecke pairs (G,Γ), as in general a function
in B(A, G,Γ) could only have support on those elements gΓ ∈ G/Γ such that
|ΓgΓ/Γ| <∞.

We now define a product and an involution in B(A, G,Γ) by:

(f1 ∗ f2)(gΓ) :=
∑

[h]∈G/Γ

f1(hΓ)αh(f2(h−1gΓ)) ,(3.3)

(f∗) (gΓ) := ∆(g−1)αg(f(g−1Γ))∗ .(3.4)

Proposition 3.1.4. B(A, G,Γ) becomes a unital ∗-algebra under the product
and involution defined above, whose identity element is the function f such that
f(Γ) = 1 and is zero in the remaining points of G/Γ.

Proof: First, we claim that the expression for the product defined above is
well-defined in B(A, G,Γ), i.e. for f1, f2 ∈ B(A, G,Γ) the expression

(f1 ∗ f2)(gΓ) :=
∑

[h]∈G/Γ

f1(hΓ)αh(f2(h−1gΓ))

is independent from the choice of the representatives [h] and also that it has finitely
many summands. Independence from the choice of the representatives [h] ∈ G/Γ
follows directly from the compatibility condition (3.1) and the fact that the sum is
finite follows simply from the fact that f1 has finite support.

Now we claim that f1 ∗ f2 has also finite support, for f1, f2 ∈ B(A, G,Γ). Let
S1, S2 ⊆ G/Γ be the supports of the functions f1 and f2 respectively. We will
regard S1 and S2 as subsets of G (being finite unions of left cosets). It is easy to
check that the function G×G→M(Cc(A))

(h, g) 7→ f1(hΓ)αh(f2(h−1gΓ))

has support contained in S1 × (S1 · S2). Since (G,Γ) is a Hecke pair, the product
S1 · S2 is also a finite union of left cosets. Hence, f1 ∗ f2 has finite support.

We also notice that f1 ∗ f2 satisfies the compatibility condition (3.1), thus
defining an element of B(A, G,Γ), since for any γ ∈ Γ we have

(f1 ∗ f2)(γgΓ) =
∑

[h]∈G/Γ

f1(hΓ)αh(f2(h−1γgΓ))

=
∑

[h]∈G/Γ

f1(γhΓ)αγh(f2(h−1gΓ))

=
∑

[h]∈G/Γ

αγ(f1(hΓ))αγ ◦ αh(f2(h−1gΓ))

= αγ
(
(f1 ∗ f2)(gΓ)

)
.

In a similar way we can see that the expression that defines the involution is
well-defined in B(A, G,Γ). There are now a few things that need to be checked
before we can say that B(A, G,Γ) is a ∗-algebra, namely that the product is as-
sociative and the involution is indeed an involution relatively to this product (the
fact that the product is distributive and the properties concerning multiplication
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by scalars are obvious). The proofs of these facts are essentially just a mimic of the
corresponding proofs for “classical” crossed products by groups. Thus, we can say
that B(A, G,Γ) is ∗-algebra under this product and involution. �

Theorem 3.1.5. Cc(A/Γ)×algα G/Γ is a ∗-ideal of B(A, G,Γ). In particular it
is a ∗-algebra for the above operations.

Proof: It is easy to see that the space Cc(A/Γ) ×algα G/Γ is invariant for the
involution, i.e.

f ∈ Cc(A/Γ)×algα G/Γ =⇒ f∗ ∈ Cc(A/Γ)×algα G/Γ .

Thus, to prove that Cc(A/Γ)×algα G/Γ is a (two-sided) ∗-ideal of B(A, G,Γ) it is
enough to prove that it is a right ideal, i.e. if f1 ∈ B(A, G,Γ) and f2 ∈ Cc(A/Γ)×algα
G/Γ then f1 ∗ f2 ∈ Cc(A/Γ) ×algα G/Γ, because any right ∗-ideal is automatically
two-sided. Hence, all we need to prove is that (f1 ∗ f2)(gΓ) ∈ Cc(A/Γg), for every
f1 ∈ B(A, G,Γ) and f2 ∈ Cc(A/Γ)×algα G/Γ. The proof of this fact will follow the
following steps:

1) Prove that: given a subgroup H ⊆ G, f ∈ Cc(A/H) and a unit u ∈ X0,
we have f · 1u ∈ Cc(A).

2) Let T := (f1 ∗ f2)(gΓ) =
∑

[h]∈G/Γ f1(hΓ)αh(f2(h−1gΓ)). Use 1) to show
that T · 1u ∈ Cc(A) for any unit u ∈ X0.

3) Fix a unit u ∈ X0. By 2) we have T 1u =
∑
i(ai)xi , where the elements

xi ∈ X are such that s(xi) = u. Show that T 1uΓg =
∑
i[ai]xiΓg , and

conclude that T 1uΓg ∈ Cc(A/Γg).
4) Prove that there exists a finite set of units {u1, . . . , un} ⊆ X0 such that

T =
∑n
i=1 T 1uiΓg . Conclude that T ∈ Cc(A/Γg).

• Proof of 1) : This follows immediately from Proposition 2.3.5.
• Proof of 2) : We know that f2(h−1gΓ) ∈ Cc(A/Γh

−1g). Thus, from
Proposition 2.3.9, we conclude that αh(f2(h−1g)) ∈ Cc

(
A/hΓh−1∩gΓg−1

)
.

Now, using 1), we see that αh(f2(h−1g)) 1u ∈ Cc(A) and consequently
f1(hΓ)αh(f2(h−1g)) 1u ∈ Cc(A). Hence, T 1u ∈ Cc(A).

• Proof of 3) : For any γ ∈ Γg we have, using Lemma 3.1.2,

T 1uγ = αγ−1(T ) 1uγ = αγ−1

(
Tαγ(1uγ)

)
= αγ−1

(
T 1u

)
=
∑
i

αγ−1(ai)xiγ .

Let y ∈ X and b ∈ Ay. We have

T 1uΓg by =

{
Tby , if r(y) ∈ uΓg

0, otherwise .

Assume now that r(y) ∈ uΓg and let γ̃ ∈ Γg be such that r(y) = uγ̃. We
then have

Tby = T 1uγ̃ by =
∑
i

αγ̃−1(ai)xiγ̃ by .
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Since s(xi) = u, we have s(xiγ̃) = uγ̃ = r(y). Hence,

Tby =
∑
i

(αγ̃−1(ai)b)xiγ̃y .

We conclude that

T 1uΓg by =

{∑
i(αγ̃−1(ai)b)xiγ̃y , if r(y) ∈ uΓg

0, otherwise .

=
∑
i

[ai]xiΓg by .

Thus, T 1uΓg =
∑
i[ai]xiΓg ∈ Cc(A/Γg).

• Proof of 4) : For easiness of reading of this last part of the proof we
introduce the following definition: given F ∈ M(Cc(A)) we define the
support of F to be the set {u ∈ X0 : F 1u 6= 0}. Notice in particular that
the support of an element [a]xH , with a 6= 0, is the set s(x)H.

Since αh(f2(h−1gΓ)) ∈ Cc(A/hΓh−1 ∩ gΓg−1), there exists a finite
number of units v1, . . . , vk ∈ X0 such that αh(f2(h−1gΓ)) has support in

k⋃
i=1

vi
(
hΓh−1 ∩ gΓg−1

)
⊆

k⋃
i=1

vigΓg−1 .

Hence, there is a finite number of units w1, . . . , wl ∈ X0 such that T has
support contained in

l⋃
i=1

wigΓg−1 .

Therefore, T has support contained in
l⋃
i=1

m⋃
j=1

wiθjΓ
g ,

where θ1, . . . , θm are representatives of the classes of gΓg−1/Γg (being a
finite number because (G,Γ) is a Hecke pair). Thus, we have proven that
there is a finite number of units u1, . . . , un ∈ X0 such that T has support
inside

⋃n
i=1 uiΓ

g. Moreover, we can suppose we have chosen the units
u1, . . . , un such that the corresponding orbits uiΓg are mutually disjoint.
It is now easy to see that we have T =

∑n
i=1 T 1uiΓg . Indeed, given y ∈ X

and b ∈ Ay, if r(y) /∈
⋃n
i=1 uiΓ

g, then

Tby = T 1r(y) by = 0 =

n∑
i=1

T 1uiΓg by ,

and if r(y) ∈
⋃n
i=1 uiΓ

g, then r(y) belongs to precisely one of the orbits,
say ui0Γg, and we have

n∑
i=1

T 1uiΓg by = T1ui0Γg by = Tby .

Hence, we must have T =
∑n
i=1 T 1uiΓg , and by 3) we conclude that

T ∈ Cc(A/Γg). �
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As it is well-known, when working with crossed products A × G by discrete
groups, one always has an embedded copy of A inside the crossed product. Some-
thing analogous happens in the case of crossed products by Hecke pairs, where
Cc(A/Γ) is canonically embedded in Cc(A/Γ) ×algα G/Γ, as is stated in the next
result (whose proof amounts to routine verification).

Proposition 3.1.6. There is a natural embedding of the ∗-algebra Cc(A/Γ)
in Cc(A/Γ) ×algα G/Γ, which identifies an element f ∈ Cc(A/Γ) with the function
ι(f) ∈ Cc(A/Γ)×algα G/Γ such that

ι(f)(Γ) = f and ι(f) is zero elsewhere .

Remark 3.1.7. The above result says that we can identify Cc(A/Γ) with the
functions of Cc(A/Γ) ×algα G/Γ with support in Γ. We shall, henceforward, make
no distinctions in notation between an element of Cc(A/Γ) and its correspondent
in Cc(A/Γ)×algα G/Γ.

Theorem 3.1.8. Cc(A/Γ) ×algα G/Γ is an essential ∗-ideal of B(A, G,Γ). In
particular, Cc(A/Γ)×algα G/Γ is an essential ∗-algebra. Moreover, there are natural
embeddings

Cc(A/Γ)×algα G/Γ ↪→ B(A, G,Γ) ↪→M(Cc(A/Γ)×algα G/Γ) ,

that make the following diagram commute

M(Cc(A/Γ)×algα G/Γ)

Cc(A/Γ)×algα G/Γ

L

44

// B(A, G,Γ) .

OO

Proof: We have already proven that Cc(A/Γ)×algα G/Γ is a ∗-ideal ofB(A, G,Γ),
thus we only need to check that this ideal is in fact essential. Suppose f ∈
B(A, G,Γ) is such that f ∗

(
Cc(A/Γ) ×algα G/Γ

)
= {0}. Then, in particular, us-

ing Proposition 3.1.6, we must have f ∗
(
Cc(A/Γ)

)
= {0}. Let g ∈ G and take

[a]xΓ ∈ Cc(A/Γ), we then have

0 =
(
f ∗ [a]xΓ

)
(gΓ) = f(gΓ)αg([a]xΓ) = f(gΓ)[αg(a)]xg−1gΓg−1 .

Thus, multiplying by 1s(x)g−1 ∈M(Cc(A)) we get

0 = f(gΓ)[αg(a)]xg−1gΓg−11s(x)g−1 = f(gΓ)αg(a)xg−1 = f(gΓ)αg(ax) .

Since this true for all a ∈ Ax and x ∈ X and given that α takes fibers ofA bijectively
into fibers of A, we must have f(gΓ)by = 0 for all b ∈ Ay and y ∈ X. Hence, we
must have f(gΓ) = 0. Thus, f = 0 and we conclude that Cc(A/Γ) ×algα G/Γ is an
essential ∗-ideal of B(A, G,Γ).

Since Cc(A/Γ)×algα G/Γ is a ∗-subalgebra of B(A, G,Γ), we immediately con-
clude that Cc(A/Γ)×algα G/Γ is an essential ∗-algebra.
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The embedding of B(A, G,Γ) in M(Cc(A/Γ)×algα G/Γ) then follows from the
universal property of multiplier algebras, Theorem 1.2.10. �

In the theory of crossed products A × G by groups, one always has an em-
bedded copy of the group algebra C(G) inside the multiplier algebra M(A × G).
Something analogous happens in the case of crossed products by Hecke pairs,
where the Hecke algebra H(G,Γ) is canonically embedded in the multiplier al-
gebra M(Cc(A/Γ)×algα G/Γ), as is stated in the next result (whose proof amounts
to routine verification).

Proposition 3.1.9. The Hecke ∗-algebra H(G,Γ) embeds in B(A, G,Γ) in the
following way: an element f ∈ H(G,Γ) is identified with the element f̃ ∈ B(A, G,Γ)
given by

f̃(gΓ) := f(gΓ)1 ,

where 1 is the unit of M(Cc(A)).

The next result does not typically play an essential role in the case of crossed
products by groups, but will be extremely important for us in case of crossed prod-
ucts by Hecke pairs. The proof is also just routine verification.

Proposition 3.1.10. The algebra Cc(X0/Γ) embeds in B(A, G,Γ) in the fol-
lowing way: an element f ∈ Cc(X

0/Γ) is identified with the function ι(f) ∈
B(A, G,Γ) given by

ι(f)(Γ) = f and ι(f) is zero elsewhere .

Remark 3.1.11. Propositions 3.1.9 and 3.1.10 allow us to view both the Hecke
∗-algebraH(G,Γ) and Cc(X0/Γ) as ∗-subalgebras of B(A, G,Γ). We shall hencefor-
ward make no distinctions in notation between an element of H(G,Γ) or Cc(X0/Γ)
and its correspondent in B(A, G,Γ).

The purpose of the following diagram is to illustrate, in a more condensed form,
all the canonical embeddings we have been considering so far:

Cc(A/Γ) // Cc(A/Γ)×algα G/Γ

((
H(G,Γ) // B(A, G,Γ) // M(Cc(A/Γ)×algα G/Γ))

Cc(X
0/Γ)

33
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Remark 3.1.12. The reason for considering the algebra B(A, G,Γ) is two-fold.
On one side B(A, G,Γ) made it easier to make sure the convolution product (3.3)
was well-defined in Cc(A/Γ)×algα G/Γ. On the other (perhaps more important) side,
the fact that both H(G,Γ) and Cc(X0/Γ) are canonically embedded in B(A, G,Γ)
allows us to treat the elements of H(G,Γ) and Cc(X

0/Γ) both as multipliers in
M(Cc(A/Γ)×algα G/Γ)), but also allows us to operate these elements with the con-
volution product and involution expressions (3.3) and (3.4), as these are defined in
B(A, G,Γ).

As it is well-known in the theory of crossed products by discrete groups, a
(∗-algebraic) crossed product A × G is spanned by elements of the form a ∗ g,
where a ∈ A and g ∈ G (here g is seen as an element of the group algebra
C(G) ⊆ M(A × G)). We will now explore something analogous in the case of
crossed products by Hecke pairs. It turns out that Cc(A/Γ) ×algα G/Γ is spanned
by elements of the form [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ, where x ∈ X, a ∈ Ax and gΓ ∈ G/Γ,
as we show in the next result.

Theorem 3.1.13. For any f ∈ Cc(A/Γ)×algα G/Γ we have

f =
∑

[g]∈Γ\G/Γ

∑
xΓg∈X/Γg

[
f(gΓ)(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)gΓ .(3.5)

In particular, Cc(A/Γ)×algα G/Γ is spanned by elements of the form

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ ,

with x ∈ X, a ∈ Ax and gΓ ∈ G/Γ.

The following lemma is needed in order to prove the above result:

Lemma 3.1.14. Let x ∈ X, a ∈ Ax and gΓ ∈ G/Γ. We have

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ (hΓ) =

{
[αγ(a)]xγ−1Γγg , if hΓ = γgΓ, with γ ∈ Γ

0, otherwise .

In particular,

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ (gΓ) = [a]xΓg .

Proof: An easy computation yields

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ (hΓ) = [a]xΓ · ΓgΓ(hΓ) · αh(1s(x)gΓ) ,

from which we conclude that [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ is supported in the double coset
ΓgΓ. Now, evaluating at the point gΓ ∈ G/Γ we get

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ (gΓ) = [a]xΓ · ΓgΓ(gΓ) · αg(1s(x)gΓ)

= [a]xΓ · αg(1s(x)gΓ)

= [a]xΓ · 1s(x)gΓg−1

= [a]xΓg ,
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where the last equality comes from Proposition 2.3.10. From the compatibility
condition (3.1) and Proposition 2.3.9 it then follows that, for γ ∈ Γ,

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ (γgΓ) = αγ([a]xΓg )

= [αγ(a)]xγ−1Γγg .

�

Proof of Theorem 3.1.13: Let us first prove that the expression on the
right hand side of (3.5) is well-defined. It is easy to see that for every g ∈ G, the
expression ∑

xΓg∈X/Γg

[
f(gΓ)(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)gΓ

does not depend on the choice of the representative x of xΓg. Now, let us see that
it also does not depend on the choice of the representative g in ΓgΓ. Let γgθ, with
γ, θ ∈ Γ, be any other representative. We have∑

xΓγgθ∈X/Γγgθ

[
f(γgθΓ)(x)

]
xΓ
∗ ΓγgθΓ ∗ 1s(x)γgθΓ =

=
∑

xΓγg∈X/Γγg

[
f(γgΓ)(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)γgΓ

=
∑

xΓγg∈X/Γγg

[
αγ(f(gΓ))(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)γgΓ

=
∑

xΓγg∈X/Γγg

[
αγ(f(gΓ)(xγ))

]
xΓ
∗ ΓgΓ ∗ 1s(x)γgΓ

We notice that there is a well-defined bijective correspondence X/Γg → X/Γγg

given by xΓg 7→ xγ−1Γγg. Thus, we get

=
∑

xΓg∈X/Γg

[
αγ(f(gΓ)(x))

]
xγ−1Γ

∗ ΓgΓ ∗ 1s(xγ−1)γgΓ

=
∑

xΓg∈X/Γg

[
f(gΓ)(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)gΓ .

Hence, the expression in (3.5) is well-defined. Let us now prove the decomposition
in question. For any tΓ ∈ G/Γ we have∑

[g]∈Γ\G/Γ

∑
xΓg∈X/Γg

[
f(gΓ)(x)

]
xΓ
∗ ΓgΓ ∗ 1s(x)gΓ (tΓ) =

=
∑

xΓt∈X/Γt

[
f(tΓ)(x)

]
xΓ
∗ ΓtΓ ∗ 1s(x)tΓ (tΓ) .

By Lemma 3.1.14 it follows that

=
∑

xΓt∈X/Γt

[
f(tΓ)(x)

]
xΓt

= f(tΓ) ,

and this finishes the proof. �
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In the following result we collect some useful equalities concerning products
in Cc(A/Γ) ×algα G/Γ, which will be useful later on. One should observe the sim-
ilarities between the equalities (3.8) and (3.9) and the equalities obtained by an
Huef, Kaliszewski and Raeburn in [9, Lemma 1.3 (i) and (ii)] if in their setting one
was allowed to somehow “drop” the representations. The similarity is more than a
coincidence as we will see later in Chapter ??.

Proposition 3.1.15. In Cc(A/Γ)×algα G/Γ the following equalities hold:(
[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ

)∗
= ∆(g) [αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1s(x−1)Γ ,(3.6)

1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ = [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ ,(3.7)

[a]xΓ ∗ ΓgΓ =
∑

[γ]∈Sx\Γ/Γg
[a]xΓ ∗ ΓgΓ ∗ 1s(x)γgΓ .(3.8)

ΓgΓ ∗ [a]xΓ =
∑

[γ]∈Sx\Γ/Γg−1

1r(x)γg−1Γ ∗ ΓgΓ ∗ [a]xΓ .(3.9)

In particular, from (3.7) we see that Cc(A/Γ)×algα G/Γ is also spanned by all ele-
ments of the form 1r(x)Γ ∗ ΓgΓ ∗ [a]xgΓ, with g ∈ G, x ∈ X and a ∈ Ax.

Proof: Let us first prove equality (3.6). First we notice that(
[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ

)∗
= ∆(g) 1s(x)gΓ ∗ Γg−1Γ ∗ [a∗]x−1Γ ,

which means that
(
[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ

)∗ has support in the double coset Γg−1Γ.
Now evaluating this element on g−1Γ we get,(

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ

)∗
(g−1Γ) =

= ∆(g) αg−1

(
([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ) (gΓ)

)∗
= ∆(g) αg−1([a]xΓg )∗

= ∆(g) [αg−1(a∗)]x−1gΓg−1

= ∆(g)
(
[αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1s(x−1)Γ

)
(g−1Γ) .

Let us now prove equality (3.7). We have

1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ = ∆(g)
(
[αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1r(x)Γ

)∗
= ∆(g)

(
[αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1s(x−1g)g−1Γ

)∗
,

which together with (3.6) yields

= ∆(g)∆(g−1) [a]xΓ ∗ ΓgΓ ∗ 1s(xg)Γ

= [a]xΓ ∗ ΓgΓ ∗ 1s(xg)Γ .

Let us now prove (3.8). An easy computation yields

[a]xΓ ∗ ΓgΓ (hΓ) = [a]xΓ · ΓgΓ(hΓ) ,

from which we conclude that [a]xΓ ∗ ΓgΓ has support in ΓgΓ. Evaluating this
element on the point gΓ we get

[a]xΓ ∗ ΓgΓ (gΓ) = [a]xΓ · ΓgΓ(gΓ) = [a]xΓ .
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From Proposition 2.3.7 one always has the following decomposition

[a]xΓ =
∑

[γ]∈Sx\Γ/Γg
[αγ−1(a)]xγΓg .

Together with Lemma 3.1.14 we get

[a]xΓ ∗ ΓgΓ (gΓ) = [a]xΓ

=
∑

[γ]∈Sx\Γ/Γg
[αγ−1(a)]xγΓg

=
∑

[γ]∈Sx\Γ/Γg
[αγ−1(a)]xγΓ ∗ ΓgΓ ∗ 1s(x)γgΓ (gΓ)

=
∑

[γ]∈Sx\Γ/Γg
[a]xΓ ∗ ΓgΓ ∗ 1s(x)γgΓ (gΓ) ,

and equality (3.8) is proven.
Equality (3.9) follows easily from (3.8) by taking the involution and using the

fact that Sx = Sx−1 .
The last claim of this proposition follows simply from (3.7) and Proposition

3.1.13. �

In the theory of crossed products A×G by discrete groups one has a “covariance
relation” of the form g ∗ a ∗ g−1 = αg(a). This relation is essential in the passage
from covariant representations of the system (A,G, α) to representations of the
crossed product. More generally, the following relation holds in A×G:

g ∗ a ∗ h = αg(a) ∗ gh .

We will now explore how this generalizes to the setting of crossed products by
Hecke pairs. What we are aiming for is a description of how products of the form
ΓgΓ ∗ [a]xΓ ∗ ΓsΓ can be expressed by the canonical spanning set of elements of
the form [b]yΓ ∗ ΓhΓ ∗ 1s(x)hΓ (according to Theorem 3.1.13). This will be achieved
in Corollary 3.1.18 below and will play an important role in the representation
theory of crossed products by Hecke pairs, particularly in the definition of covariant
representations. One should observe the similarities between the expressions we
obtain both in Theorem 3.1.16 and Corollary 3.1.18 and the expression provided
by an Huef, Kaliszewski and Raeburn in [9, Definition 1.1] (if one “forgets” the
representations in their setting). Once again, this is more than a coincidence as
we will see in Chapter ??. In fact, an Huef, Kaliszewski and Raeburn’s definition
served as a guiding line for our results below and for the definition of a covariant
representation (Definition 3.3.1) which we shall present in the next section.

Before we establish the results we are aiming for we need to establish some
notation, which will be used throughout this work. For w, v ∈ G and a unit y ∈ X0

we define the sets

nyw,v :=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1 ∈ yΓr−1
}
,(3.10)

dyw,v :=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1 ∈ yΓr−1Γwv
}
.(3.11)
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and the numbers

nyw,v := # nyw,v ,(3.12)
dyw,v := # dyw,v ,(3.13)

Ny
w,v :=

nyw,v
dyw,v

.(3.14)

We will also denote by Eyu,v the double coset space

Eyu,v := Sy\Γ/(uΓu−1 ∩ vΓv−1) .(3.15)

Theorem 3.1.16. Let g, s ∈ G and y ∈ X0. We have that

ΓgΓ ∗ 1yΓ ∗ ΓsΓ =
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)

=
∑

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

L(g)Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Eyu,v

∆(g)Nyγ
u−1,v

L(u−1v)

(
1yγuΓ ∗ Γu−1vΓ ∗ 1yγvΓ

)
.

In order to prove the above result we will need the following lemma, which
gives some properties of the numbers nyw,v and dyw,v.

Lemma 3.1.17. Let w, v,∈ G, θ ∈ Γ and y ∈ X0. The numbers nyw,v and dyw,v
satisfy the following properties:

i) nyw,vθ = nyw,v i′) dyw,vθ = dyw,v
ii) nyθw,v = nyw,v ii′) dyθw,v = dyw,v

iii) nyθw,θ−1v = nywθ−1,v iii′) dyθw,θ−1v = dywθ−1,v

More generally, if w̃, ṽ ∈ G and ỹ ∈ X0 are such that Γw̃Γ = ΓwΓ, ΓṽΓ = ΓvΓ,
ỹΓ = yΓ, w̃ṽΓ = wvΓ and ỹw̃−1Γwv = yw−1Γwv, then

iv) nyw,v = nỹw̃,ṽ iv′) dyw,v = dỹw̃,ṽ

Proof: Assertions i) and i′) are obvious.
Assertion ii) follows from the observation that [r] 7→ [θ−1r] establishes a bijec-

tion between the sets nyw,v and nyθw,v.
Assertion ii′) is proven in a similar fashion as assertion ii).
To prove assertion iv), let θ ∈ Γwv be such that ỹw̃−1 = yw−1θ. We have

nỹw̃,ṽ =
{

[r] ∈ Γw̃Γ/Γ : r−1w̃ṽΓ ⊆ ΓṽΓ and ỹw̃−1 ∈ ỹΓr−1
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1θ ∈ yΓr−1
}
.
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Since θ ∈ Γwv we have θwvΓ = wvΓ, so that

=
{

[r] ∈ Γθ−1wΓ/Γ : r−1θ−1wvΓ ⊆ ΓvΓ and yw−1θ ∈ yΓr−1
}

= nyθ−1w,v .

Now, from assertion ii), it follows that nỹw̃,ṽ = nyθ−1w,v = nyw,v.
As for assertion iv′), taking θ ∈ Γwv again as such that ỹw̃−1 = yw−1θ, we

notice that

dỹw̃,ṽ =
{

[r] ∈ Γw̃Γ/Γ : r−1w̃ṽΓ ⊆ ΓṽΓ and ỹw̃−1 ∈ ỹΓr−1Γw̃ṽ
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1θ ∈ yΓr−1Γwv
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1 ∈ yΓr−1Γwv
}

= dyw,v .

Assertions iii) and iii′) are a direct consequence of iv) and iv′). �

Proof of Theorem 3.1.16: We have

ΓgΓ ∗ 1yΓ ∗ ΓsΓ (tΓ) =
∑

[w]∈G/Γ

ΓgΓ(wΓ)αw
(
(1yΓ ∗ ΓsΓ) (w−1tΓ)

)
=

∑
[w]∈ΓgΓ/Γ

αw
(
(1yΓ ∗ ΓsΓ) (w−1tΓ)

)
=

∑
[w]∈ΓgΓ/Γ

αw
(
1yΓ · ΓsΓ(w−1tΓ)

)
=

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

αw(1yΓ)

=
∑

[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

1yΓw−1

We now claim that

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

1yΓw−1 =
∑

[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

Nyγ
w,w−1t 1yγw−1Γt .(3.16)

To see this, we will evaluate both the right and left expressions above on all
points x ∈ X0 and see that we obtain the same value. First, we note that if x ∈ X0

is not of the form yθw̃−1, for some θ ∈ Γ and w̃ ∈ ΓgΓ such that w̃−1tΓ ⊆ ΓsΓ,
then both expressions are zero. Suppose now that x = yθw̃−1 for some w̃ ∈ ΓgΓ
such that w̃−1tΓ ⊆ ΓsΓ. Evaluating the left expression we get∑

[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

1yΓw−1(yθw̃−1) =
∑

[w]∈Γw̃Γ/Γ

w−1w̃w̃−1tΓ⊆Γw̃−1tΓ

1yΓw−1(yθw̃−1) = nyθw̃,w̃−1t .

As for the right expression, first we observe that if yθw̃−1 ∈ yγw−1Γt, then by
Lemma 3.1.17 iv) and iv′) we have Nyθ

w̃,w̃−1t = Nyγ
w,w−1t. Thus, evaluating the right
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expression we get

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

Nyγ
w,w−1t 1yγw−1Γt (yθw̃−1) =

=
∑

[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

Nyθ
w̃,w̃−1t 1yγw−1Γt (yθw̃−1)

= Nyθ
w̃,w̃−1t

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

1yγw−1Γt (yθw̃−1)

Using Proposition 1.3.2 we notice that

∑
[γ]∈Ey

w−1,w−1t

1yγw−1Γt =
∑

[γ]∈Ey
w−1,w−1t

1yγ(w−1Γw∩w−1tΓt−1w)w−1

= 1yΓw−1Γt ,

from which we obtain that,

Nyθ
w̃,w̃−1t

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

1yγw−1Γt (yθw̃−1) =

= Nyθ
w̃,w̃−1t

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

1yΓw−1Γt (yθw̃−1)

= Nyθ
w̃,w̃−1t

∑
[w]∈Γw̃Γ/Γ

w−1w̃w̃−1tΓ⊆Γw̃−1tΓ

1yΓw−1Γt (yθw̃−1)

= Nyθ
w̃,w̃−1t d

yθ
w̃,w̃−1t

= nyθw̃,w̃−1t .

So, equality (3.16) is established.
Now, by Proposition 3.1.14, we see that

∑
[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

Nyγ
w,w−1t 1yγw−1Γt =

=
∑

[w]∈ΓgΓ/Γ

w−1tΓ⊆ΓsΓ

∑
[γ]∈Ey

w−1,w−1t

Nyγ
w,w−1t

(
1yγw−1Γ ∗ ΓtΓ ∗ 1yγw−1tΓ

)
(tΓ)

Now, using the fact that condition w−1tΓ ⊆ ΓsΓ means that there exists a (necessar-
ily unique) element [v] ∈ ΓsΓ/Γ such that w−1tΓ = vΓ, or equivalently, tΓ = wvΓ,
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we obtain

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,w−1t

Nyγ
w,w−1t

(
1yγw−1Γ ∗ ΓtΓ ∗ 1yγw−1tΓ

)
(tΓ)

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ) .

We now claim that

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ) =

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

To prove this we note that, given any [w] ∈ ΓgΓ/Γ and [v] ∈ ΓsΓ/Γ, the element(
1yγw−1Γ ∗ΓwvΓ ∗ 1yγvΓ

)
(tΓ) is nonzero if and only if ΓtΓ = ΓwvΓ, so that we can

write

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ) =

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ⊆ΓtΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

=
∑

[θ]∈Γ/Γt

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=θtΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

=
∑

[θ]∈Γ/Γt

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
θwvΓ=θtΓ

∑
[γ]∈Ey

w−1θ−1,v

Nyγ
θw,v

L(θwv)

(
1yγw−1θ−1Γ ∗ ΓθwvΓ ∗ 1yγvΓ

)
(tΓ)

=
∑

[θ]∈Γ/Γt

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
θw,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

By Lemma 3.1.17 ii) and ii′) we know that Nyγ
θw,v = Nyγ

w,v, hence
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=
∑

[θ]∈Γ/Γt

∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

= L(t)
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ)

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ
wvΓ=tΓ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
(tΓ) .

Hence, we have proven that

ΓgΓ ∗ 1yΓ ∗ ΓsΓ =
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)
.

Also, ∑
[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

w−1,v

Nyγ
w,v

L(wv)

(
1yγw−1Γ ∗ ΓwvΓ ∗ 1yγvΓ

)

=
∑

[θ]∈Γ/Γg

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1θ−1,v

Nyγ
θg,v

L(θgv)

(
1yγg−1θ−1Γ ∗ ΓθgvΓ ∗ 1yγvΓ

)

=
∑

[θ]∈Γ/Γg

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)

=
∑

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

L(g)Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)
.

Moreover, we also have∑
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

L(g)Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)
= L(g−1)

∑
[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

∆(g)Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)
=

∑
[θ]∈Γ/Γg

−1

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,v

∆(g)Nyγ
g,v

L(gv)

(
1yγg−1Γ ∗ ΓgvΓ ∗ 1yγvΓ

)

=
∑

[θ]∈Γ/Γg
−1

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

g−1,θ−1v

∆(g)Nyγ
g,θ−1v

L(gθ−1v)

(
1yγg−1Γ ∗ Γgθ−1vΓ ∗ 1yγθ−1vΓ

)
,
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but since there is a well-defined bijection Eyθg−1,v → Eyg−1,θ−1v given by [γ] 7→ [γθ],
we obtain

=
∑

[θ]∈Γ/Γg
−1

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

θg−1,v

∆(g)Nyγθ
g,θ−1v

L(gθ−1v)

(
1yγθg−1Γ ∗ Γgθ−1vΓ ∗ 1yγθθ−1vΓ

)

and from Lemma 3.1.17 we get Nyγθ
g,θ−1v = Nyγ

gθ−1,v, thus

=
∑

[θ]∈Γ/Γg
−1

[v]∈ΓsΓ/Γ

∑
[γ]∈Ey

θg−1,v

∆(g)Nyγ
gθ−1,v

L(gθ−1v)

(
1yγθg−1Γ ∗ Γgθ−1vΓ ∗ 1yγvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Eyu,v

∆(g)Nyγ
u−1,v

L(u−1v)

(
1yγuΓ ∗ Γu−1vΓ ∗ 1yγvΓ

)
.

�

Corollary 3.1.18. Similarly, for a ∈ Ax with x ∈ X, we have

ΓgΓ ∗ [a]xΓ ∗ ΓsΓ =

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

w−1,v

N
s(x)γ
w,v

L(wv)

(
[αwγ−1(a)]xγw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ

)

=
∑

[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

g−1,v

L(g)N
s(x)γ
g,v

L(gv)

(
[αgγ−1(a)]xγg−1Γ ∗ ΓgvΓ ∗ 1s(x)γvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)

(
[αu−1γ−1(a)]xγuΓ ∗ Γu−1vΓ ∗ 1s(x)γvΓ

)
.

Proof: According to equality (3.9) in Proposition 3.1.15 we have

ΓgΓ ∗ [a]xΓ ∗ ΓsΓ =

=
∑

[θ]∈Sx\Γ/Γg−1

1r(x)θg−1Γ ∗ ΓgΓ ∗ [a]xΓ ∗ ΓsΓ

=
∑

[θ]∈Sx\Γ/Γg−1

1r(x)θg−1Γ ∗ ΓgΓ ∗ [αg−1(αgθ−1(a))]xθg−1gΓ ∗ ΓsΓ

and by (3.7) in the same proposition we get

=
∑

[θ]∈Sx\Γ/Γg−1

[αgθ−1(a)]xθg−1Γ ∗ ΓgΓ ∗ 1s(x)Γ ∗ ΓsΓ ,
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and by Theorem 3.1.16 we obtain

=
∑

[θ]∈Sx\Γ/Γg
−1

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(x)

w−1,v

N
s(x)γ
w,v

L(wv)
[αgθ−1(a)]xθg−1Γ ∗ 1s(x)γw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ .

For each fixed w, v and γ all the summands in the expression∑
[θ]∈Sx\Γ/Γg−1

N
s(x)γ
w,v

L(wv)
[αgθ−1(a)]xθg−1Γ ∗ 1s(x)γw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ ,

are zero except precisely for one summand and we have∑
[θ]∈Sx\Γ/Γg−1

N
s(x)γ
w,v

L(wv)
[αgθ−1(a)]xθg−1Γ ∗ 1s(x)γw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ

=
N

s(x)γ
w,v

L(wv)
[αwγ−1(a)]xγw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ .

Hence we obtain

ΓgΓ ∗ axΓ ∗ ΓsΓ =

=
∑

[w]∈ΓgΓ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

w−1,v

N
s(x)γ
w,v

L(wv)
[αwγ−1(a)]xγw−1Γ ∗ ΓwvΓ ∗ 1s(x)γvΓ .

The remaining equalities in the statement of this corollary are proven in a similar
fashion. �

3.2. Basic Examples

Example 3.2.1. We will now show that when Γ is a normal subgroup of G our
notion of a crossed product by the Hecke pair (G,Γ) is precisely the usual crossed
product by the group G/Γ. Normality of the subgroup Γ implies that the G-action α
onM(Cc(A)) gives rise to an action of G/Γ on Cc(A/Γ). Moreover, we have Γg = Γ
for all g ∈ G, and it follows easily from the definitions that Cc(A/Γ) ×alg G/Γ is
nothing but the usual crossed product by the action of the group G/Γ.

It is also interesting to observe that any usual crossed product Cc(B)×alg G/Γ
coming from an action of the group G/Γ on a Fell bundle B over a groupoid Y is
actually a crossed product by the Hecke pair (G,Γ) in our sense. To see this we
note that the action of G/Γ on B lifts to an action of G on B. In this lifted action
the subgroup Γ acts trivially, so that the action is Γ-good. Moreover, since Γ is
normal in G, the Γ-intersection property is also trivially satisfied. It is clear that
Y/Γ is just Y and B/Γ coincides with B. Thus, forming the crossed product by
the Hecke pair (G,Γ) will give nothing but the usual crossed product by G/Γ, i.e.
Cc(B/Γ)×alg G/Γ ∼= Cc(B)×alg G/Γ.
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Example 3.2.2. We will now explain how the Hecke algebra H(G,Γ) is an
example of a crossed product by a Hecke pair, namely H(G,Γ) ∼= C×alg G/Γ, just
like group algebras are examples of crossed products by groups.

We start with a groupoid X consisting of only one element, i.e. X = {∗}, and
we take C as the Fell A bundle over X, i.e. A∗ = C. We take also the trivial
G-action α on A. Since the G-action fixes every element of A, it is indeed Γ-good
and in this case we have X/Γ = X = {∗}. For the orbit bundle we have that
A/Γ = A, and moreover

Cc(A/Γ) ∼= Cc(X/Γ) ∼= Cc(X) ∼= C .

Hence, we are in the conditions of the Standing Assumption 3.0.1 and we can form
the crossed product Cc(A/Γ)×algα G/Γ, which we will simply write as C×algα G/Γ.

Since C is unital the definitions of B(A, G,Γ) and C ×algα G/Γ coincide in
this case. Moreover Definition 3.1.3 reads that C ×algα G/Γ is the set of functions
f : G/Γ → C satisfying the compatibility condition (3.1). Since the action α is
trivial, the compatibility condition simply says that C×algα G/Γ consists of all the
functions f : G/Γ → C which are left Γ-invariant. Morever, the product and
involution expressions become respectively

(f1 ∗ f2)(gΓ) :=
∑

[h]∈G/Γ

f1(hΓ) f2(h−1gΓ) ,

(f∗) (gΓ) := ∆(g−1) f(g−1Γ) .

Hence, it is clear that C×algα G/Γ is nothing but the Hecke algebra H(G,Γ).
It follows from this that the product ΓgΓ ∗ 1∗Γ ∗ ΓsΓ is just the product of

the double cosets ΓgΓ and ΓsΓ inside the Hecke algebra, since 1∗Γ is the identity
element. It is interesting to note in this regard that the expression for this product
described in Theorem 3.1.16 is a familiar expression for the product ΓgΓ ∗ ΓsΓ in
H(G,Γ). To see this, we note that the stabilizer S∗ of ∗ is the whole group G,
and therefore E∗u,v consists only of the class [e]. Moreover, the numbers n∗u−1,v

and d∗u−1,v, defined in (3.12) and (3.13), are equal, so that N∗u−1,v = 1. Thus,
the expression described in Theorem 3.1.16 is just the familiar expression from
Proposition 1.3.6

ΓgΓ ∗ ΓsΓ =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∆(g)

L(u−1v)
Γu−1vΓ ,

Example 3.2.3. As a generalization of Example 3.2.2 we will now show that
if the G-action fixes every element of the bundle A, then Cc(A/Γ) ×algα G/Γ is
isomorphic to the ∗-algebraic tensor product of Cc(A/Γ) and H(G,Γ). This result
also has a known analogue in the theory of crossed products by groups.

Proposition 3.2.4. If the G-action fixes every element of A, then we have

Cc(A/Γ)×algα G/Γ ∼= Cc(A/Γ)�H(G,Γ) ,

where � is the symbol that denotes the ∗-algebraic tensor product.
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Proof: Given that we have canonical embeddings of Cc(A/Γ) andH(G,Γ) into
M(Cc(A/Γ)×algα G/Γ) we have a canonical linear map from Cc(A/Γ)�H(G,Γ) to
M(Cc(A/Γ)×algα G/Γ) determined by

f1 ⊗ f2 7→ f1 ∗ f2 ,(3.17)

where f1 ∈ Cc(A/Γ) and f2 ∈ H(G,Γ). Standard arguments can be used to show
that this mapping is injective (since the mappings from both Cc(A/Γ) and H(G,Γ)
into the multiplier algebra of the crossed product are injections). It is also clear that
the image of the map determined by (3.17) is contained in Cc(A/Γ)×algα G/Γ. Let
us now check that this mapping is surjective. First we will show that the elements
of Cc(A/Γ) commute with elements of H(G,Γ) inside M(Cc(A/Γ) ×algα G/Γ). It
follows from expressions (3.8) and (3.7) that

[a]xΓ ∗ ΓgΓ =
∑

[γ]∈Sx\Γ/Γg
[a]xΓ ∗ ΓgΓ ∗ 1s(x)γgΓ

=
∑

[γ]∈Sx\Γ/Γg
1r(x)Γ ∗ ΓgΓ ∗ [αg−1γ−1(a)]xγgΓ .

Since every point of X is fixed by the associated G-action on X, we have that
Sx = G, and therefore Sx\Γ/Γg consists only of the class [e], so that we can write

= 1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ .

Moreover, since the G-actions on A and X are trivial we can furthermore write

= 1r(x)g−1Γ ∗ ΓgΓ ∗ [a]xΓ .

Now, by the same reasoning as above and using expression (3.9) we have

=
∑

[γ]∈Sx\Γ/Γg−1

1r(x)γg−1Γ ∗ ΓgΓ ∗ [a]xΓ

= ΓgΓ ∗ [a]xΓ .

Thus we conclude that [a]xΓ ∗ΓgΓ = ΓgΓ ∗ [a]xΓ. By Theorem 3.1.13 we know that
elements of the form [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ span Cc(A/Γ) ×algα G/Γ, and from the
commutation relation we just proved it follows that

[a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ = ΓgΓ ∗ [a]xΓ ∗ 1s(x)gΓ

= ΓgΓ ∗ [a]xΓ ∗ 1s(x)Γ

= ΓgΓ ∗ [a]xΓ

= [a]xΓ ∗ ΓgΓ ,

so that Cc(A/Γ)×algα G/Γ is spanned by elements of the form axΓ ∗ ΓgΓ. We now
conclude that the image of the map (3.17) is the whole Cc(A/Γ)×algα G/Γ.

The fact that this map is a ∗-homomorphism also follows directly from the
commutation relation proved above. �

3.3. Representation theory

In this section we develop the representation theory of crossed products by
Hecke pairs. We will introduce the notion of a covariant pre-representation and
show that there is a bijective correspondence between covariant pre-representations
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and representations of the crossed product, in a similar fashion to the theory of
crossed products by groups.

Recall from Proposition 1.2.16 that every nondegenerate ∗-representation π :
Cc(A/Γ)→ B(H ) extends uniquely to a ∗-representation

π̃ : MB(Cc(A/Γ))→ B(H ) .

We will use the notation π̃ to denote this extension throughout this section, many
times without any reference. Since Cc(X0/Γ) is spanned by projections, it is a
BG∗-algebra (recall Definition 1.1.3) and therefore we naturally have Cc(X0/Γ) ⊆
MB(Cc(A/Γ)).

Definition 3.3.1. Let π be a nondegenerate ∗-representation of Cc(A/Γ) on a
Hilbert space H and π̃ its unique extension to a ∗-representation ofMB(Cc(A/Γ)).
Let µ be a unital pre-∗-representation of H(G,Γ) on the inner product space
W := π(Cc(A/Γ))H . We say that (π, µ) is a covariant pre-∗-representation if
the following equality

µ(ΓgΓ)π([a]xΓ)µ(ΓsΓ) =(3.18)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
π̃([αu−1γ−1(a)]xγuΓ)µ(Γu−1vΓ) π̃(1s(x)γvΓ) ,

holds on L(W ), for all g, s ∈ G and x ∈ X.

Condition (3.18) simply says that the pair (π, µ) must preserve the structure
of products of the form ΓgΓ ∗ [a]xΓ ∗ΓsΓ, when expressed in terms of the canonical
spanning set of elements of the form [b]yΓ ∗ ΓdΓ ∗ 1s(y)dΓ, as explicitly described in
Corollary 3.1.18.

The reader should note the similarity between our definition of a covariant pre-
∗-representation and the covariant pairs of an Huef, Kaliszewski and Raeburn in
[9, Definition 1.1]. Their notion of covariant pairs served as a motivation for us and
is actually a particular case of our Definition 3.3.1, as we shall see in Chapter ??.

The operators π̃([αu−1γ−1(a)]xγuΓ)µ(Γu−1vΓ) π̃(1s(x)γvΓ) in expression (3.18)
are all bounded, as we will now show, and are therefore defined in the whole Hilbert
space H .

Theorem 3.3.2. Let π : C(A/Γ)→ B(H ) be a nondegenerate ∗-representation
and µ : H(G,Γ) → L(W ) a pre-∗-representation on the inner product space W :=
π(Cc(A/Γ)). Every element of the form

π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) ,

is a bounded operator on W and therefore extends uniquely to the whole Hilbert
space H .

We will need some preliminary facts and lemmas in order to prove Theorem
3.3.2. These auxiliary results will also be useful later in this section.

Let π : Cc(A/Γ) → B(H ) be a nondegenerate ∗-representation and π̃ its
extension to MB(Cc(A/Γ)). For any unit u ∈ X0 the operator π̃(1uΓ) ∈ B(H ) is
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a projection, and therefore π̃(1uΓ)H is a Hilbert subspace. The fiber (A/Γ)uΓ is a
C∗-algebra which we can naturally identify with the ∗-subalgebra

{[a]uΓ ∈ Cc(A/Γ) : [a] ∈ (A/Γ)uΓ} ⊆ Cc(A/Γ) ,

under the identification given by

(A/Γ)uΓ 3 [a] ←→ [a]uΓ ∈ Cc(A/Γ) .

The ∗-representation π̃ when restricted to (A/Γ)uΓ, under the above identification,
leaves the subspace π̃(1uΓ)H invariant, because

π̃([a]uΓ)π̃(1uΓ)ξ = π̃([a]uΓ)ξ = π̃(1uΓ)π̃([a]uΓ)ξ .

The following lemma assures that this restriction is nondegenerate.

Lemma 3.3.3. Let π : Cc(A/Γ) → B(H ) be a nondegenerate ∗-representation
and π̃ its unique extension to MB(Cc(A/Γ)). The ∗-representation of (A/Γ)uΓ on
the Hilbert space π̃(1uΓ)H , as above, is nondegenerate.

Proof: Let π̃(1uΓ)ξ be an element of π̃(1uΓ)H such that

π̃([a]uΓ)π̃(1uΓ)ξ = 0 ,

for all [a] ∈ (A/Γ)uΓ. We want to prove that π̃(1uΓ)ξ = 0. To see this, let x ∈ X
and [b] ∈ (A/Γ)xΓ. We have two alternatives: either s(x)Γ 6= uΓ or s(x)Γ = uΓ. In
the first case we see that

π̃([b]xΓ)π̃(1uΓ)ξ = π̃([b]xΓ · 1uΓ)ξ = 0 ,

whereas for the second we see that

‖π̃([b]xΓ)π̃(1uΓ)ξ‖2 = 〈π̃([b]xΓ)π̃(1uΓ)ξ , π̃([b]xΓ)π̃(1uΓ)ξ〉
= 〈π̃([b∗b]s(x)Γ)π̃(1uΓ)ξ , π̃(1uΓ)ξ〉
= 〈π̃([b∗b]uΓ)π̃(1uΓ)ξ , π̃(1uΓ)ξ〉
= 0 ,

by assumption. Thus, in any case we have π̃([b]xΓ)π̃(1uΓ)ξ = 0 for all x ∈ X and
[b] ∈ (A/Γ)xΓ. By nondegeneracy of π, this implies that π̃(1uΓ)ξ = 0, as we wanted
to prove. �

Lemma 3.3.4. Let π be a nondegenerate ∗-representation of Cc(A/Γ) on a
Hilbert space H . We have that π(Cc(A/Γ))H = π̃(Cc(X

0/Γ))H .

Proof: It is clear that π(Cc(A/Γ))H ⊆ π̃(Cc(X
0/Γ))H since for any element

of the form [a]xΓ in Cc(A/Γ) and ξ ∈ H we have π([a]xΓ)ξ = π(1r(x)Γ[a]xΓ)ξ =
π̃(1r(x)Γ)π([a]xΓ)ξ.

Let us now prove that π̃(Cc(X
0/Γ))H ⊆ π(Cc(A/Γ))H . Let uΓ ∈ X0/Γ and

ξ ∈H . We know, by Lemma 3.3.3, that π gives a nondegenerate ∗-representation
of (A/Γ)uΓ on π̃(1uΓ)H . Since (A/Γ)uΓ is a C∗-algebra we have, by the general
version of Cohen’s factorization theorem ([18, Theorem 5.2.2]), that there exists
[c] ∈ (A/Γ)uΓ and η ∈ π̃(1uΓ)H such that

π̃(1uΓ)ξ = π([c]uΓ)η ,
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which means that π̃(1uΓ)ξ ∈ π(Cc(A/Γ))H . This finishes the proof. �

Proof of Theorem 3.3.2: The operator π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) is clearly
defined on the inner product space π(Cc(A/Γ))H . By Lemma 3.3.4 this operator
is then defined on the space π̃(Cc(X

0/Γ))H . Since

π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) = π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ)π̃(1s(x)gΓ) ,

it follows that the operator π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) is actually defined in the whole
Hilbert space H (or in other words, it extends canonically to H ).

A similar argument shows that π̃(1s(x)gΓ)µ((ΓgΓ)∗)π([a∗]x−1Γ) is also defined
in the whole Hilbert space H and it is easy to see that π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ)
is an adjointable operator on H , whose adjoint is π̃(1s(x)gΓ)µ((ΓgΓ)∗)π([a∗]x−1Γ).
Since adjointable operators on a Hilbert space are necessarily bounded (see [19,
Proposition 9.1.11]), it follows that π([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) is a bounded opera-
tor. �

The striking feature that we actually have to consider pre-representations of
H(G,Γ), and not just representations, was not present in the theory of crossed
products by groups because a group algebra C(G) of a discrete group is always a
BG∗-algebra and therefore all of its pre-representations come from true represen-
tations (see further Remark 3.3.8).

It will be useful to distinguish between covariant pre-∗-representations and co-
variant ∗-representations, so we will treat them in separate definitions. As will be
discussed below we will see covariant ∗-representations as a particular type of co-
variant pre-∗-representations.

Definition 3.3.5. Let π be a nondegenerate ∗-representation of Cc(A/Γ) on
a Hilbert space H and µ a unital ∗-representation of H(G,Γ) on H . We say
that (π, µ) is a covariant ∗-representation if equality (3.18) holds in B(H ) for all
g, s ∈ G and x ∈ X.

Lemma 3.3.6. Let (π, µ) be a covariant ∗-representation on a Hilbert space H .
Then µ leaves the subspace W := π(Cc(A/Γ))H invariant.

Proof: Consider elements of the form π([a]xΓ)ξ, whose span gives W . Using
the fact that µ is unital and the covariance relation (3.18) we see that

µ(ΓgΓ)π([a]xΓ)ξ =

= µ(ΓgΓ)π([a]xΓ)µ(Γ)ξ

=
∑

[u]∈Γg−1Γ/Γ

∑
[γ]∈Es(x)

u,e

∆(g)N
s(x)γ
u−1,e

L(u−1)
π̃([αu−1γ−1(a)]xγuΓ)µ(Γu−1Γ) π̃(1s(x)γΓ)ξ .

Hence, µ(ΓgΓ)π([a]xΓ)ξ ∈ W , and consequently µ(ΓgΓ) leaves W invariant. This
finishes the proof. �

From a covariant ∗-representation (π, µ) one can obtain canonically a covari-
ant pre-∗-representation (π, µ), just by restricting µ to the dense subspace W :=
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π(Cc(A/Γ))H (which is an invariant subspace by Lemma 3.3.6). So we can regard
covariant ∗-representations as a special kind of covariant pre-∗-representations: they
are exactly those for which µ is normed. As we shall see later in Example 3.4.1,
there are covariant pre-∗-representations which are not covariant ∗-representations,
thus in general the latter form a proper subclass of the former. We shall also see
examples where they actually coincide.

Remark 3.3.7. Equivalently, one could define covariant (pre-)∗-representation
using any other of the equalities in Corollary 3.1.18 and substituting with the ap-
propriate (pre-)∗-representations. It is easy to see, using completely analogous
arguments as in the proof of Corollary 3.1.18 or Theorem 3.1.16, that all three
expressions yield the same result.

Remark 3.3.8. Even though it might not be entirely clear from the start, when
Γ is a normal subgroup of G the definition of a covariant pre-representation is noth-
ing but the usual definition of covariant representation of the system (Cc(A/Γ), G/Γ).
We recall that a covariant representation of (Cc(A/Γ), G/Γ) is a pair (π, U) consist-
ing of a nondegenerate ∗-representation π of Cc(A/Γ) and a unitary representation
U of G/Γ satisfying the relation

π(αgΓ(f)) = UgΓπ(f)Ug−1Γ ,

for all f ∈ Cc(A/Γ) and gΓ ∈ G/Γ. Now, as it is well known, every unitary
representation U of G/Γ is associated in a canonical way to a unital ∗-representation
µ of the group algebra C(G/Γ), so that we can write the covariance condition as
π(αgΓ(f)) = µ(gΓ)π(f)µ(g−1Γ). As a consequence we have that for any gΓ, sΓ ∈
G/Γ, x ∈ X and a ∈ Ax:

µ(gΓ)π([a]xΓ)µ(sΓ) = π([αg(a)]xg−1Γ)µ(g−1sΓ) .

We want to check that covariant representations of the system (Cc(A/Γ), G/Γ) are
the same as covariant pre-∗-representations as in Definition 3.3.1.

Given a covariant pre-∗-representation (π, µ) on some Hilbert space H in the
sense of Definition 3.3.1, we have that µ is a pre-∗-representation of C(G/Γ), which
is normed since any group algebra of a discrete group is a BG∗-algebra, and thus
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we can see µ as a true ∗-representation on H . We then have that

µ(gΓ)π([a]xΓ)µ(g−1Γ)

= µ(ΓgΓ)π([a]xΓ)µ(Γg−1Γ)

=
∑

[u]∈Γg−1Γ/Γ

[v]∈Γg−1Γ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
π̃([αu−1γ−1(a)]xγuΓ)µ(Γu−1vΓ) π̃(1s(x)γvΓ)

=
∑

[γ]∈Es(x)

g−1,g−1

N
s(x)γ
g,g−1 π̃([αg(a)]xg−1Γ)µ(gg−1Γ) π̃(1s(x)g−1Γ)

=
∑

[γ]∈Es(x)

g−1,g−1

N
s(x)γ
g,g−1 π̃([αg(a)]xg−1Γ · 1s(x)g−1Γ)

=
∑

[γ]∈Es(x)

g−1,g−1

N
s(x)γ
g,g−1 π([αg(a)]xg−1Γ) .

It is clear from the normality of Γ that Es(x)
g−1,g−1 consists only of the class [e] and

moreover N s(x)
g,g−1 = 1, so that

µ(gΓ)π([a]xΓ)µ(g−1Γ) = π([αg(a)]xg−1Γ) .

By linearity it follows that µ(gΓ)π(f)µ(g−1Γ) = π(αgΓ(f)) for any f ∈ Cc(A/Γ).
Thus, with U being the unitary representation of G/Γ associated to µ, we see that
(π, U) is covariant representation of the system (Cc(A/Γ), G/Γ).

For the other direction, let (π, U) be a covariant representation of the system
(Cc(A/Γ), G/Γ) and let µ be the ∗-representation of C(G/Γ) associated to U , which
we restrict to the inner product space π(Cc(A/Γ))H . We want to prove that (π, µ)
is a covariant pre-∗-representation in the sense of Definition 3.3.1. We have

µ(gΓ)π([a]xΓ)µ(sΓ)

= µ(gΓ)π([a]xΓ)µ(g−1Γ)µ(gsΓ)

= π([αg(a)]xg−1Γ)µ(gsΓ)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
π̃([αu−1γ−1(a)]xγuΓ)µ(Γu−1vΓ) π̃(1s(x)γvΓ) ,

where the last equality is obtained following analogous computations as those above.
Thus, (π, µ) is a covariant pre-∗-representation in the sense of Definition 3.3.1.

The following result makes it clear that some of the relations we have inside
the crossed product (see Proposition 3.1.15) are preserved upon taking covariant
pre-∗-representations. This is expected since, as we stated before, we will prove
that covariant pre-representations give rise to representations of the crossed prod-
uct, and this result is the first step in that direction:
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Proposition 3.3.9. Let (π, µ) be a covariant pre-∗-representation. The follow-
ing two equalities hold:

π̃(1r(x)Γ)µ(ΓgΓ)π̃([αg−1(a)]xgΓ) = π̃([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) .(3.19)

µ(ΓgΓ)π̃([a]xΓ) =
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)γg−1Γ)µ(ΓgΓ)π̃([a]xΓ) .(3.20)

Proof: Since (π, µ) is a covariant pre-∗-representation we have

µ(ΓgΓ)π̃([a]xΓ) = µ(ΓgΓ)π̃([a]xΓ)µ(Γ)

=
∑

[γ]∈Es(x)

g−1,e

N s(x)γ
g,e π̃([αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(x)γΓ)

=
∑

[γ]∈Es(x)

g−1,e

π̃([αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ) ,

where the last equality comes from the fact that ns(x)γ
g,e = 1 = d

s(x)γ
g,e , and thus

N
s(x)γ
g,e = 1. From this it follows that

π̃(1r(x)g−1Γ)µ(ΓgΓ)π̃([a]xΓ) =

=
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)g−1Γ)π̃([αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ)

=
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)g−1Γ · [αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ) .

Now the product 1r(x)g−1Γ · [αgγ−1(a)]xγg−1Γ is nonzero only when r(x)g−1Γ =

r(x)γg−1Γ, from which one readily concludes that r(x)γ ∈ r(x)g−1Γg. Since one
trivially has r(x)γ ∈ r(x)Γ we conclude that

r(x)γ ∈ r(x)Γ ∩ r(x)g−1Γg ,

and by the Γ-intersection property we have r(x)γ ∈ r(x)Γg
−1

. From Proposition
1.3.2 this means that [γ] = [e] in E

r(x)
g−1,e. We recall that Er(x)

g−1,e = Sr(x)\Γ/Γg
−1

,

and since Γg
−1 ⊆ Γ we have by Proposition 1.3.1 that [γ]→ [γ] defines a canonical

bijection between Er(x)
g−1,e and (Sr(x) ∩ Γ)\Γ/Γg−1

. Since the G-action is Γ-good we
necessarily have Ss(x)∩Γ = Sx∩Γ = Sr(x)∩Γ, and therefore using Proposition 1.3.1
one more time we can say that Er(x)

g−1,e = E
s(x)
g−1,e. Hence, we can say that [γ] = [e]

in Es(x)
g−1,e. We conclude that

π̃(1r(x)g−1Γ)µ(ΓgΓ)π̃([a]xΓ) = π̃(1r(x)g−1Γ · [αg(a)]xg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ)

= π̃([αg(a)]xg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ) .

Since the last expression is valid for any x ∈ X and [a] ∈ (A/Γ)xΓ, if we take x to
be xg and [a] to be [αg−1(a)] we obtain the desired equality (3.19):

π̃(1r(x)Γ)µ(ΓgΓ)π̃([αg−1(a)]xgΓ) = π̃([a]xΓ)µ(ΓgΓ)π̃(1s(x)gΓ) .
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Let us now prove equality (3.20). Using the equality in beginning of this proof and
equality (3.19) which we have just proven, we get precisely

µ(ΓgΓ)π̃([a]xΓ) =
∑

[γ]∈Es(x)

g−1,e

π̃([αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(x)Γ)

=
∑

[γ]∈Es(x)

g−1,e

π̃([αgγ−1(a)]xγg−1Γ)µ(ΓgΓ)π̃(1s(xγg−1)gΓ)

=
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)γg−1Γ)µ(ΓgΓ)π̃([αγ−1(a)]xγΓ)

=
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)γg−1Γ)µ(ΓgΓ)π̃([a]xΓ) .

This finishes the proof. �

The passage from a covariant pre-representation (π, µ) to a representation of
Cc(A/Γ) ×algα G/Γ is done via the so-called integrated form π × µ, which we now
describe:

Definition 3.3.10. Let (π, µ) be a covariant pre-∗-representation on a Hilbert
space H . We define the integrated form of (π, µ) as the function π×µ : Cc(A/Γ)×algα
G/Γ→ B(H ) defined by

[π × µ](f) :=
∑

[g]∈Γ\G/Γ

∑
xΓg∈X/Γg

π̃
([
f(gΓ)(x)

]
xΓ

)
µ(ΓgΓ) π̃(1s(x)gΓ) .

Remark 3.3.11. For f of the form f = axΓ ∗ ΓgΓ ∗ 1s(x)gΓ we have

[π × µ](f) = π̃([a]xΓ)µ(ΓgΓ) π̃(1s(x)gΓ) .

Moreover, from equality (3.19), for f ′ of the form f ′ = 1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ

we have

[π × µ](f ′) = π̃(1r(x)Γ)µ(ΓgΓ) π̃([αg−1(a)]xgΓ) .

Proposition 3.3.12. The integrated form π×µ of a covariant pre-∗-representation
(π, µ) is a well-defined nondegenerate ∗-representation.

Proof: First we need to check that the expression that defines [π×µ](f) for a
given f ∈ Cc(A/Γ)×algα G/Γ is well-defined. This is proven in an entirely analogous
way as in the proof that the expression (3.5) in Proposition 3.1.13 is well-defined.
Secondly, we need to show that [π × µ](f) makes sense as an element of B(H ).
From Theorem 3.3.2 we have that

π̃
([
f(gΓ)(x)

]
xΓ

)
µ(ΓgΓ)π̃(1s(x)gΓ) ∈ B(W ) ,

thus, it follows that [π × µ](f) ∈ B(W ), and therefore [π × µ](f) admits a unique
extension to B(H ).
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Now, it is obvious that π × µ is a linear transformation. Let us check that
it preserves the involution. It is then enough to check it for elements of the form
f = [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ. Since (π, µ) is a covariant pre-∗-representation we have,
by Propositions 3.3.9 and 3.1.15,(

[π × µ](f)
)∗

= ∆(g) π̃(1s(x)gΓ)µ(Γg−1Γ) π̃([a∗]x−1Γ)

= ∆(g) π̃(1r(x−1)gΓ)µ(Γg−1Γ) π̃([a∗]x−1gg−1Γ)

= ∆(g) π̃([αg−1(a∗)]x−1gΓ)µ(Γg−1Γ) π̃(1s(x−1)gg−1Γ)

= ∆(g) π̃([αg−1(a∗)]x−1gΓ)µ(Γg−1Γ) π̃(1s(x−1)Γ)

= [π × µ] (∆(g) [αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1s(x−1)Γ)

= [π × µ] (f∗) .

Let us now prove that π× µ preserves products. We will start by proving that

[π × µ](f1 ∗ f2) = [π × µ](f1) [π × µ](f2) ,(3.21)

for f1 := [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ and f2 := [b]yΓ ∗ ΓsΓ ∗ 1s(y)sΓ. Let us compute the
expression on the left side of (3.21). First, we notice that for the product f1 ∗ f2 to
be non-zero one must have r(y) ∈ s(x)gΓ, and in this case we obtain

f1 ∗ f2 = [a]xΓ ∗ ΓgΓ ∗ [b]yΓ ∗ ΓsΓ ∗ 1s(y)sΓ

which by Corollary 3.1.18 gives

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

∆(g)N
s(y)γ
u−1,v

L(u−1v)
[a]xΓ ∗ [αu−1γ−1(b)]yγuΓ ∗ Γu−1vΓ ∗ 1s(y)γvΓ ∗ 1s(y)sΓ

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

s(y)sΓ=s(y)γvΓ

∆(g)N
s(y)γ
u−1,v

L(u−1v)
[a]xΓ ∗ [αu−1γ−1(b)]yγuΓ ∗ Γu−1vΓ ∗ 1s(y)γvΓ

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

s(y)sΓ=s(y)γvΓ

∆(g)N
s(y)γ
u−1,v

L(u−1v)
[a]xΓ ∗ [αu−1γ−1(b)]yγuΓ ∗ Γu−1vΓ ∗ 1s(yγu)u−1vΓ

The product [a]xΓ∗[αu−1γ−1(b)]yγuΓ is always either zero or of the form [c](xθ)(yγu)Γ,
for some θ ∈ Γ and c ∈ A(xθ)(yγu). The point is that s

(
(xθ)(yγu)

)
= s(yγu), so

that each non-zero summand in the last sum above is actually of the form

[c]zΓ ∗ ΓdΓ ∗ 1s(z)dΓ ,
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for appropriate [c] ∈ (A/Γ)zΓ, z ∈ X and d ∈ G. Thus, by linearity of π × µ and
Remark 3.3.11 we obtain

[π × µ](f1 ∗ f2) =

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

s(y)sΓ=s(y)γvΓ

∆(g)N
s(y)γ
u−1,v

L(u−1v)
π̃([a]xΓ · [αu−1γ−1(b)]yγuΓ)µ(Γu−1vΓ) π̃(1s(y)γvΓ) .

Let us now compute the expression on the right side of (3.21). We have

[π × µ](f1) [π × µ](f2) = π̃([a]xΓ)µ(ΓgΓ) π̃(1s(x)gΓ) π̃([b]yΓ)µ(ΓsΓ) π̃(1s(y)sΓ) .

For 1s(x)gΓ · [b]yΓ to be non-zero we must have r(y) ∈ s(x)gΓ, and in this case
we obtain, using the definition of a covariant pre-∗-representation,

[π × µ](f1) [π × µ](f2) =

= π̃([a]xΓ)µ(ΓgΓ) π̃([b]yΓ)µ(ΓsΓ) π̃(1s(y)sΓ)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

∆(g)N
s(y)γ
u−1,v

L(u−1v)
π̃([a]xΓ[αu−1γ−1(b)]yγuΓ)µ(Γu−1vΓ)π̃(1s(y)γvΓ)π̃(1s(y)sΓ)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[γ]∈Es(y)
u,v

s(y)sΓ=s(y)γvΓ

∆(g)N
s(y)γ
u−1,v

L(u−1v)
π̃([a]xΓ · [αu−1γ−1(b)]yγuΓ)µ(Γu−1vΓ) π̃(1s(y)γvΓ) .

Hence, we have proven equality (3.21) for the special case of f1 and f2 being f1 :=
[a]xΓ ∗ΓgΓ∗1s(x)gΓ and f2 := [b]yΓ ∗ΓsΓ∗1s(y)sΓ. Using this we will now show that
equality (3.21) holds for any f1, f2 ∈ Cc(A/Γ) ×algα G/Γ. In fact, by Proposition
3.1.13, f1 and f2 can be written as sums

f1 =
∑
i

vi , f2 =
∑
j

wj ,

where each vi and wj is of the form [a]xΓ ∗ΓgΓ∗1s(x)gΓ, for some gΓ ∈ G/Γ, x ∈ X
and a ∈ Ax. Since π × µ is a linear mapping we have

[π × µ](f1 ∗ f2) = [π × µ]
((∑

i

vi
)
∗
(∑

j

wj
))

= [π × µ]
(∑
i,j

vi ∗ wj
)

=
∑
i,j

[π × µ](vi ∗ wj) ,
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and by the special case of equality (3.21) we have just proven we get

[π × µ](f1 ∗ f2) =
∑
i,j

[π × µ](vi)[π × µ](wj)

=
(∑

i

[π × µ](vi)
)(∑

j

[π × µ](wj)
)

= [π × µ]
(∑

i

vi
)
[π × µ]

(∑
j

wj
)

= [π × µ](f1)[π × µ](f2) .

Hence, π × µ is a ∗-representation. To finish the proof we now only need to show
that π× µ is nondegenerate. The restriction of π× µ to the ∗-subalgebra Cc(A/Γ)
is precisely the representation π. Since π is assumed to be nondegenerate it follows
that π × µ must be nondegenerate as well. �

The next result shows how from a representation of the crossed product one
can naturally form a covariant pre-representation.

Proposition 3.3.13. Let Φ : Cc(A/Γ)×algα G/Γ→ B(H ) be a nondegenerate
∗-representation. Consider the pair (Φ|, ωΦ) defined by

• Φ| is the restriction of Φ to Cc(A/Γ).
• Let Φ̃ be the extension of Φ to a pre-∗-representation (via Proposition
1.2.13) ofM(Cc(A/Γ)×algα G/Γ) on the inner product space Φ(Cc(A/Γ)×algα
G/Γ)H . We define ωΦ to be the restriction of Φ̃ to H(G,Γ).

The pair (Φ|, ωΦ) is a covariant pre-∗-representation.

We will need some preliminary lemmas in order to prove Proposition 3.3.13.

Lemma 3.3.14. If Φ : Cc(A/Γ) ×algα G/Γ → B(H ) is a nondegenerate ∗-
representation, then its restriction to Cc(A/Γ) is also nondegenerate.

Proof: Let ξ ∈ H be such that Φ(Cc(A/Γ)) ξ = {0}. We want to show that
ξ = 0. Since Φ is nondegenerate, it is then enough to prove that Φ(Cc(A/Γ) ×algα
G/Γ) ξ = {0}. Thus, by virtue of Proposition 3.1.15, it suffices to prove that
Φ(1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ)ξ = 0 for all g ∈ G, x ∈ X, a ∈ Ax. We have

‖Φ(1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ)ξ‖2 =

= ∆(g)〈Φ([αg−1(a∗)]x−1gΓ ∗ Γg−1Γ ∗ 1r(x)Γ ∗ 1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ)ξ , ξ〉
= ∆(g)〈Φ([αg−1(a∗)]x−1gΓ)Φ(Γg−1Γ ∗ 1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ)ξ , ξ〉
= ∆(g)〈Φ(Γg−1Γ ∗ 1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ)ξ , Φ([αg−1(a)]xgΓ)ξ〉
= 0 .

Hence ξ = 0 and therefore Φ restricted to Cc(A/Γ) is nondegenerate. �

Lemma 3.3.15. Let Φ : Cc(A/Γ) ×algα G/Γ → B(H ) be a nondegenerate ∗-
representation and Φ̃ its unique extension to MB(Cc(A/Γ)×algα G/Γ) (via Proposi-
tion 1.2.16). Let Φ| be the restriction of Φ to Cc(A/Γ) and Φ̃| its unique extension
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to MB(Cc(A/Γ)). We have that

Φ̃(f) = Φ̃|(f) ,

for all f ∈ Cc(X0/Γ). In other words, the two ∗-representations Φ̃ and Φ̃| are the
same in Cc(X0/Γ).

Proof: By Lemma 3.3.14 the subspace Φ(Cc(A/Γ))H is dense in H , so that
it is enough to check that Φ̃(f)Φ(f2)ξ = Φ̃|(f)Φ(f2)ξ, for all f2 ∈ Cc(A/Γ) and
ξ ∈H . By definition of the extension Φ̃ (see Proposition 1.2.16) we have

Φ̃(f)Φ(f2)ξ = Φ(f ∗ f2)ξ ,

where f ∗ f2 is the product of f and f2, which lies inside Cc(A/Γ)×algα G/Γ. Since
both f and f2 are elements of B(A, G,Γ) we see the product f ∗ f2 as taking
place in B(A, G,Γ). By definition of the embeddings of Cc(X0/Γ) and Cc(A/Γ) in
B(A, G,Γ) we have that f ∗ f2 is nothing but the element f · f2, where the product
is just the product of f and f2 inside M(Cc(A)). As we observed in Section 2.3,
this product is exactly same as the product of f and f2 in M(Cc(A/Γ)). Thus, the
following computation makes sense:

Φ̃(f)Φ(f2)ξ = Φ(f ∗ f2)ξ = Φ(f · f2)ξ

= Φ|(f · f2)ξ = Φ̃|(f)Φ|(f2)ξ .

This finishes the proof. �

Lemma 3.3.16. Let Φ : Cc(A/Γ) ×algα G/Γ → B(H ) be a nondegenerate ∗-
representation. We have that

Φ(Cc(A/Γ))H = Φ(Cc(A/Γ)×algα G/Γ)H .

Proof: The inclusion Φ(Cc(A/Γ))H ⊆ Φ(Cc(A/Γ) ×algα G/Γ)H is obvious.
To check the converse inclusion it is enough to prove that

Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)Γ)ξ ∈ Φ(Cc(A/Γ))H ,

for all x ∈ X, a ∈ Ax, g ∈ G and ξ ∈H . Let Φ̃ : MB(Cc(A/Γ)×algα G/Γ)→ B(H )
be the unique extension of Φ to a ∗-representation of MB(Cc(A/Γ) ×algα G/Γ), as
in Proposition 1.2.16. We then get

Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ = Φ(1r(x)Γ ∗ [a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ

= Φ̃(1r(x)Γ)Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ .

Denoting by Φ| the restriction of Φ to Cc(A/Γ) we have, by Lemma 3.3.15, that

= Φ̃|(1r(x)Γ)Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ ,

i.e. Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ ∈ Φ̃|(Cc(X/Γ))H . By Lemma 3.3.4 it then follows
that Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)ξ ∈ Φ|(Cc(A/Γ))H . �
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Proof of Proposition 3.3.13: First of all, by Lemma 3.3.14, Φ| is indeed
a nondegenerate ∗-representation of Cc(A/Γ). Secondly, from Lemma 3.3.16, we
have

Φ(Cc(A/Γ))H = Φ(Cc(A/Γ)×algα G/Γ)H .

Thus, ωΦ is a pre-∗-representation of H(G,Γ) on W := Φ(Cc(A/Γ))H . We now
only need to check covariance. We have

ωΦ(ΓgΓ)Φ|([a]xΓ)ωΦ(ΓsΓ) =

= Φ̃(ΓgΓ)Φ̃([a]xΓ)Φ̃(ΓsΓ)

= Φ̃(ΓgΓ ∗ [a]xΓ ∗ ΓsΓ)

= Φ̃
( ∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
[αu−1γ−1(a)]xγuΓ ∗ Γu−1vΓ ∗ 1s(x)γvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
Φ̃([αu−1γ−1(a)]xγuΓ)Φ̃(Γu−1vΓ)Φ̃(1s(x)γvΓ) .

Denoting by Φ̃| the unique extension of Φ| to MB(Cc(A/Γ)) we have, by Lemma
3.3.15, that

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
Φ̃|([αu−1γ−1(a)]xγuΓ)ωΦ(Γu−1vΓ)Φ̃|(1s(x)γvΓ) .

This finishes the proof. �

Theorem 3.3.17. There is a bijective correspondence between nondegenerate
∗-representations of Cc(A/Γ) ×algα G/Γ and covariant pre-∗-representations. This
bijection is given by (π, µ) 7−→ π × µ, with inverse given by Φ 7−→ (Φ|, ωΦ).

Proof: We have to prove that the composition of these maps, in both orders,
is the identity.

Let (π, µ) be a covariant pre-∗-representation and π × µ its integrated form.
We want to show that (

(π × µ)|, ωπ×µ
)

= (π, µ) .

By definition of the integrated form we readily have (π×µ)| = π. This also implies,
via Lemma 3.3.14, that the inner product spaces on which µ and ωπ×µ are defined
are actually the same. Thus, it remains to be checked that ωπ×µ = µ. Let π([a]xΓ)ξ
be one of the generators of π(Cc(A/Γ))H . We have

ωπ×µ(ΓgΓ)π([a]xΓ)ξ =

= ˜[π × µ](ΓgΓ)π([a]xΓ)ξ

= [π × µ](ΓgΓ ∗ [a]xΓ)ξ ,
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and using Proposition 3.1.15, Remark 3.3.11 and Proposition 3.3.9 we obtain

= [π × µ]
( ∑

[γ]∈Es(x)

g−1,e

1r(x)γgΓ ∗ ΓgΓ ∗ [a]xΓ

)
ξ

=
∑

[γ]∈Es(x)

g−1,e

π̃(1r(x)γgΓ)µ(ΓgΓ)π̃([a]xΓ)ξ

= µ(ΓgΓ)π([a]xΓ)ξ

Hence, we conclude that ωπ×µ = µ.
Now let Φ be a ∗-representation of Cc(A/Γ) ×algα G/Γ and (Φ|, ωΦ) its corre-

sponding covariant pre-∗-representation. We want to prove that

Φ| × ωΦ = Φ .

Let 1r(x)Γ ∗ΓgΓ∗ [αg−1(a)]xgΓ be one of the spanning elements of Cc(A/Γ)×algα G/Γ
and ξ ∈H . We have

[Φ| × ωΦ] (1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ) ξ = Φ̃|(1r(x)Γ)ωΦ(ΓgΓ)Φ̃|([αg−1(a)]xgΓ) ξ ,

which by Lemma 3.3.15 gives that

= Φ̃(1r(x)Γ)Φ̃(ΓgΓ)Φ̃([αg−1(a)]xgΓ) ξ

= Φ(1r(x)Γ ∗ ΓgΓ ∗ [αg−1(a)]xgΓ) ξ .

Thus, Φ| × ωΦ = Φ. �

We will now show that the bijective correspondence between covariant pre-∗-
representations and nondegenerate ∗-representations of the crossed product behaves
as expected regarding unitary equivalence. First however we make the following
remark/definition:

Remark 3.3.18. Let (π, µ) be a covariant pre-∗-representation on a Hilbert
space H . If H0 is another Hilbert space and U : H → H0 is a unitary, then
it is easily seen that (UπU∗, UµU∗) is also a covariant pre-∗-representation. We
will henceforward say that two covariant pre-∗-representations (π1, µ1) and (π2, µ2)
are unitarily equivalent if there exists a unitary U between the underlying Hilbert
spaces such that (π1, µ1) = (Uπ2U

∗, Uµ2U
∗).

Proposition 3.3.19. Suppose that (π1, µ1) and (π2, µ2) are two covariant pre-
∗-representations. Then (π1, µ1) is unitarily equivalent to (π2, µ2) if and only if
π1 × µ1 is unitarily equivalent to π2 × µ2.

Proof: (=⇒) This direction is straightforward from the definition of the in-
tegrated form and from the following computation, where U is a unitary which
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establishes an equivalence between (π1, µ1) and (π2, µ2) :

[U(π1 × µ1)U∗]([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ) =

= Uπ1([a]xΓ)µ1(ΓgΓ)π̃1(1s(x)gΓ)U∗

= Uπ1([a]xΓ)U∗Uµ1(ΓgΓ)U∗Uπ̃1(1s(x)gΓ)U∗

= [Uπ1U
∗ × Uµ1U

∗]([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)

= [π2 × µ2]([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ) .

(⇐=) Suppose that π1×µ1 and π2×µ2 are unitarily equivalent and let U be a unitary
which establishes this equivalence. Then, since π1 and π2 are just the restrictions
of, respectively, π1×µ1 and π2×µ2 we automatically have that Uπ1U

∗ = π2. To see
that Uµ1U

∗ = µ2 we just note that U canonically establishes a unitary equivalence
between the associated pre-∗-representations π̃1 × µ1 and π̃2 × µ2 of the multiplier
algebra M(Cc(A/Γ)×algα G/Γ). �

3.4. More on covariant pre-∗-representations

In the previous section we introduced the notion of covariant pre-∗-representations
of Cc(A/Γ)×algα G/Γ (Definition 3.3.1) and a particular instance of these which we
called covariant ∗-representations (Definition 3.3.5).

In this section we will see that the class of covariant pre-∗-representations is
in general strictly larger than the class of covariant ∗-representations. It is thus
unavoidable, in general, to consider pre-representations of the Hecke algebra in the
representation theory of crossed products by Hecke pairs. We shall also see, never-
theless, that in many interesting situations every covariant pre-∗-representation is
actually a covariant ∗-representation.

Example 3.4.1. Let (G,Γ) be a Hecke pair such that its corresponding Hecke
algebra H(G,Γ) does not have an enveloping C∗-algebra (it is well known that
such pairs exist, as for example (G,Γ) = (SL2(Qp), SL2(Zp)) as discussed in [8]).
The fact that the Hecke algebra does not have an enveloping C∗-algebra implies
that there is a sequence of ∗-representations {µn}n∈N of H(G,Γ) on Hilbert spaces
{Hn}n∈N and an element f ∈ H(G,Γ) such that ‖µn(f)‖ → ∞. Let V be the
inner product space V :=

⊕
n∈N Hn and µ : H(G,Γ) → L(V ) the diagonal pre-∗-

representation

µ :=
⊕
n∈N

µn ,

which of course is not normed. Let X = {x1, x2, . . . } be an infinite countable set,
with the trivial groupoid structure, i.e. X is just a set. We consider the Fell bundle
A over X whose fibers are the complex numbers, i.e. Ax = C for every x ∈ X, and
we consider the trivial action of G on A, i.e. the action that fixes every element of
A. Thus, the action is Γ-good and has the Γ-intersection property. We also have
that

Cc(A/Γ) = Cc(X) = Cc(X
0/Γ) .

Let π : Cc(X)→ B(V ) be the ∗-representation on the Hilbert space completion
V of V such that π(1xn) is the projection onto the subspace Hn.
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We claim that (π, µ) is a covariant pre-∗-representation of Cc(X)×algα G/Γ. To
see this, first we notice that π is obviously nondegenerate and moreover π(Cc(X))V =
V , which is the inner product space where µ is defined. Next we notice that for
every xn ∈ X and g ∈ G, the operators π(1xn) and µ(ΓgΓ) commute. Moreover,
we have

π(1xn)µ(ΓgΓ)π(1xn) = µn(ΓgΓ) ,

on the subspace Hn. Also we have

µ(ΓgΓ)π(1xn)µ(ΓsΓ) =

= µ(ΓgΓ)µ(ΓsΓ)π(1xn)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∆(g)

L(u−1v)
µ(Γu−1vΓ)π(1xn)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∆(g)

L(u−1v)
π(1xn)µ(Γu−1vΓ)π(1xn)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Exnu,v

∆(g)Nxnγ
u−1,v

L(u−1v)
π(1xnγu)µ(Γu−1vΓ)π(1xnγv) ,

where the last equality comes from the fact that since Sxn = G we must have that
Exnu,v consists only of the class [e], Nxn

u−1,v = 1 and also that 1xnγu = 1xn = 1xnγv.
So we have established that (π, µ) is indeed a covariant pre-∗-representation.

Nevertheless, µ is not normed, so that (π, µ) is not a covariant ∗-representation.
It is worth noting that here we are in the conditions of Example 3.2.3, so that

Cc(X)×algα G/Γ ∼= Cc(X)�H(G,Γ).

Example 3.4.1 shows that there can be more covariant pre-∗-representations
than covariant ∗-representations. Nevertheless, the two classes actually coincide in
many cases. One such case is when Cc(A/Γ) has an identity element:

Proposition 3.4.2. If the crossed product Cc(A/Γ) ×algα G/Γ has an identity
element (equivalently, if Cc(A/Γ) has an identity element), then every covariant
pre-∗-representation is a covariant ∗-representation.

Proof: Let us assume that Cc(A/Γ)×algα G/Γ has an identity element (equiv-
alently, Cc(A/Γ) has an identity element).

Let (π, µ) be a covariant pre-∗-representation. As it was shown in Theorem
3.3.17, the integrated form π×µ is a ∗-representation of Cc(A/Γ)×algα G/Γ such that
µ = ωπ×µ, where ωπ×µ is the pre-∗-representation which is obtained by extending
π × µ to the multiplier algebra M(Cc(A/Γ) ×algα G/Γ) and then restricting it to
H(G,Γ). Since the crossed product Cc(A/Γ)×algα G/Γ has an identity element, we
have

M(Cc(A/Γ)×algα G/Γ) = Cc(A/Γ)×algα G/Γ ,
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and therefore ωπ×µ is just the restriction of π×µ to the the Hecke algebra H(G,Γ).
Hence, µ = ωπ×µ is a true ∗-representation. �

Another interesting situation where covariant pre-∗-representations coincide
with covariant ∗-representations is when H(G,Γ) is a BG∗-algebra. This is known
to be the case for many classes of Hecke pairs (G,Γ) as we proved in [17]. Actu-
ally, the author does not know of any Hecke pair (G,Γ) for which the full Hecke
C∗-algebra exists but H(G,Γ) is not BG∗-algebra. It would be interesting to know
if a counter-example exists (as was already asked in [17, Section 7, point 4]).

Proposition 3.4.3. If H(G,Γ) is a BG∗-algebra, then every covariant pre-∗-
representation is a covariant ∗-representation.

Proof: IfH(G,Γ) is a BG∗-algebra, then every pre-∗-representation ofH(G,Γ)
is automatically normed and hence arises from a true ∗-representation. �

3.5. Crossed product in the case of free actions

In this section we will see that when the associated G-action on X is free the
expressions for the products of the form ΓgΓ ∗ [a]xΓ ∗ ΓsΓ, described in Corollary
3.1.18, as well as the definition of a covariant pre-∗-representation become much
simpler and even more similar to the notion of covariant pairs of [9].

Theorem 3.5.1. If the action of G on X is free, then

ΓgΓ ∗ 1yΓ ∗ ΓsΓ =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

1yuΓ ∗ Γu−1vΓ ∗ 1yvΓ(3.22)

and similarly,

ΓgΓ ∗ [a]xΓ ∗ ΓsΓ =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[αu−1(a)]xuΓ ∗ Γu−1vΓ ∗ 1s(x)vΓ .(3.23)

We recall from (3.10) and (3.11) the definitions of the sets nyw,v and dyw,v, and
from (3.12) and (3.13) the definitions of the numbers nyw,v and dyw,v.

Lemma 3.5.2. If the action of G on X is free, then

nyw,v = 1 and dyw,v = [Γwv : Γwv ∩ wΓw−1] .

Proof: We have

nyw,v =
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1 ∈ yΓr−1
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and w−1 ∈ Γr−1
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and rΓ = wΓ
}

= {wΓ} .
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Thus, nyw,v = 1. Also,

dyw,v =
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and yw−1 ∈ yΓr−1Γwv
}

=
{

[r] ∈ ΓwΓ/Γ : r−1wvΓ ⊆ ΓvΓ and w−1 ∈ Γr−1Γwv
}
.

Now we notice that in the above set the condition r−1wvΓ ⊆ ΓvΓ is automatically
satisfied from the second condition w−1 ∈ Γr−1Γwv, because the latter means that
r−1 = θ1w

−1θ2 for some θ1 ∈ Γ and θ2 ∈ Γwv. Thus, we get

dyw,v =
{

[r] ∈ ΓwΓ/Γ : w−1 ∈ Γr−1Γwv
}

=
{

[r] ∈ ΓwΓ/Γ : r ∈ ΓwvwΓ
}

= ΓwvwΓ/Γ .

Thus, we obtain dyw,v =
∣∣ΓwvwΓ/Γ

∣∣ = [Γwv : Γwv ∩ wΓw−1]. �

Proof of Theorem 3.5.1: We have seen in Theorem 3.1.16 that

ΓgΓ ∗ 1yΓ ∗ ΓsΓ =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Eyu,v

∆(g)Nyγ
u−1,v

L(u−1v)

(
1yγuΓ ∗ Γu−1vΓ ∗ 1yγvΓ

)

It follows from Lemma 3.5.2 that

Nyγ
u−1,v =

1

[Γu−1v : Γu−1v ∩ u−1Γu]
.

Moreover, freeness of the action also implies that

Eyu,v = Sy\Γ/(vΓv−1 ∩ uΓu−1)

= Γ/(vΓv−1 ∩ uΓu−1) .

Now, we have the following well-defined bijective correspondence

Γ/(Γu ∩ Γv) −→ Γ/(vΓv−1 ∩ uΓu−1)

[θ] 7→ [θ] ,

given by Proposition 1.3.1. Note that Γu ∩ Γv is simply the subgroup uΓu−1 ∩
vΓv−1 ∩ Γ, but in the following we will take preference on the notation Γu ∩ Γv for
being shorter.

Consider now the action of Γ on G/Γ×G/Γ by left multiplication and denote
by Oh1,h2 the orbit of the element (h1Γ, h2Γ) ∈ G/Γ×G/Γ. It is easy to see that
the map

Γ/(Γh1 ∩ Γh2) −→ Oh1,h2

[θ] 7→ (θh1Γ, θh2Γ)

is also well-defined and is a bijection. We will denote by C the set of all orbits
contained in Γg−1Γ/Γ × ΓsΓ/Γ (note that this set is Γ-invariant, so that it is a
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union of orbits). We then have

ΓgΓ ∗ 1yΓ ∗ ΓsΓ =

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Eyu,v

∆(g)Nyγ
u−1,v

L(u−1v)

(
1yγuΓ ∗ Γu−1vΓ ∗ 1yγvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Γ/(Γu∩Γv)

∆(g)Nyγ
u−1,v

L(u−1v)

(
1yγuΓ ∗ Γu−1vΓ ∗ 1yγvΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
[γ]∈Γ/(Γu∩Γv)

∆(g)Ny
u−1γ−1,γv

L(u−1γ−1γv)

(
1yγuΓ ∗ Γu−1γ−1γvΓ ∗ 1yγvΓ

)

where the last equality comes from the fact that Nyγ
u−1,v = Ny

u−1γ−1,γv, which is
a consequence of Lemma 3.1.17 iii), or simply by Lemma 3.5.2. Using now the
bijection between Γ/(Γu ∩ Γv) and the orbit space Ou,v as described above, we
obtain

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

∑
([r],[t])∈Ou,v

∆(g)Ny
r−1,t

L(r−1t)

(
1yrΓ ∗ Γr−1tΓ ∗ 1ytΓ

)

=
∑
O∈C

∑
([u],[v])∈O

∑
([r],[t])∈Ou,v

∆(g)Ny
r−1,t

L(r−1t)

(
1yrΓ ∗ Γr−1tΓ ∗ 1ytΓ

)
=

∑
O∈C

∑
([u],[v])∈O

∑
([r],[t])∈O

∆(g)Ny
r−1,t

L(r−1t)

(
1yrΓ ∗ Γr−1tΓ ∗ 1ytΓ

)
=

∑
O∈C

∑
([r],[t])∈O

#O∆(g)Ny
r−1,t

L(r−1t)

(
1yrΓ ∗ Γr−1tΓ ∗ 1ytΓ

)
,

where #O denotes the total number of elements of the given orbit O. Changing
the names of the variables (r to u and t to v) we get

=
∑
O∈C

∑
([u],[v])∈O

#O∆(g)Ny
u−1,v

L(u−1v)

(
1yuΓ ∗ Γu−1vΓ ∗ 1yvΓ

)
=

∑
[u]∈Γg−1Γ/Γ

[v]∈ΓsΓ/Γ

#Ou,v ∆(g)Ny
u−1,v

L(u−1v)

(
1yuΓ ∗ Γu−1vΓ ∗ 1yvΓ

)
.

We are now going to prove that the coefficients satisfy

#Ou,v ∆(g)Ny
u−1,v

L(u−1v)
= 1 .
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This follows from the following computation:

#Ou,v
L(u−1v)

Ny
u−1,v ∆(g) =

[Γ : Γu ∩ Γv]

[Γ : Γu−1v]
· 1

[Γu−1v : Γu−1v ∩ u−1Γu]
· [Γ : Γu

−1

]

[Γ : Γu]

=
[Γ : Γu ∩ Γv] [Γ : Γu

−1

]

[Γ : Γu−1v ∩ u−1Γu][Γ : Γu]

=
[Γu : Γu ∩ Γv] [Γ : Γu

−1

]

[Γ : Γu−1v ∩ u−1Γu]

=
[Γu : Γu ∩ Γv] [uΓu−1 : Γu]

[Γ : Γu−1v ∩ u−1Γu]

=
[uΓu−1 : Γu ∩ Γv]

[Γ : Γu−1v ∩ u−1Γu]

=
[uΓu−1 : Γu ∩ Γv]

[uΓu−1 : Γu ∩ Γv]

= 1 .

This finishes the first claim of the theorem. The second claim, concerning the
product ΓgΓ ∗ [a]xΓ ∗ ΓsΓ, is proven in a completely similar fashion. �

Proposition 3.5.3. Let π : Cc(A/Γ)→ B(H ) be a nondegenerate ∗-representation,
µ : H(G,Γ) → L(π(Cc(A/Γ)H ) a unital pre-∗-representation, and let us assume
that the associated G-action on X is free. The pair (π, µ) is a covariant pre-∗-
representation if and only if the following equality

µ(ΓgΓ)π([a]xΓ)µ(ΓsΓ) =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

π([αu−1(a)]xuΓ)µ(Γu−1vΓ)π̃(1s(x)vΓ) .(3.24)

holds for all g, s ∈ G, x ∈ X and a ∈ Ax.

Proof: (=⇒) Assume that (π, µ) is a covariant pre-∗-representation. Then we
have

µ(ΓgΓ)π([a]xΓ)µ(ΓsΓ) = [π × µ](ΓgΓ ∗ [a]xΓ ∗ ΓsΓ)

= [π × µ]
( ∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

[αu−1(a)]xuΓ ∗ Γu−1vΓ ∗ 1s(x)vΓ

)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

π([αu−1(a)]xuΓ)µ(Γu−1vΓ)π̃(1s(x)vΓ) .

(⇐=) In order to prove equality (3.18) one just needs to show that∑
[u]∈Γg−1Γ/Γ

[v]∈ΓsΓ/Γ

∑
[γ]∈Es(x)

u,v

∆(g)N
s(x)γ
u−1,v

L(u−1v)
π̃([αu−1(a)]xγuΓ)µ(Γu−1vΓ) π̃(1s(x)γvΓ)

=
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

π̃([αu−1(a)]xuΓ)µ(Γu−1vΓ)π̃(1s(x)vΓ) ,
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and this is proven in a completely analogous way as in the proof of Theorem
3.5.1. �





CHAPTER 4

Direct limits of sectional algebras

Having defined ∗-algebraic crossed products by Hecke pairs in the previous
chapter, the goal is now to complete them with appropriate C∗-norms and the
current chapter contains the preliminary ideas and results to achieve that goal.

In this chapter we will see how, for a finite index subgroup inclusion K ⊆ H,
the algebra Cc(A/H) embeds canonically inside Cc(A/K). All these inclusions are
compatible with each other, so that we are able to form a certain direct limit D(A)
which will play an essential role for defining C∗-crossed products by Hecke pairs.

Throughout this chapter A denotes a Fell bundle over a discrete groupoid X,
endowed with an action α of a group G. We will always assume in every statement
of this chapter that the subgroup denoted by H ⊆ G is such that the action α is
H-good.

Proposition 4.0.1. Suppose K ⊆ H ⊆ G are subgroups such that [H : K] <
∞. Then, there is an embedding of Cc(A/H) into Cc(A/K) determined by

[a]xH 7−→
∑

[h]∈Sx\H/K

[αh−1(a)]xhK .

Remark 4.0.2. We have shown in Proposition 2.3.7 that inside the multiplier
algebra M(Cc(A)) the element [a]xH decomposes as a sum of elements of Cc(A/K)
as above. The point of Proposition 4.0.1 is that this decomposition really defines an
embedding of Cc(A/H) into Cc(A/K). Moreover, here we are not working inside
M(Cc(A)) anymore. Nevertheless this embedding of Cc(A/H) into Cc(A/K) is
compatible with the embeddings of these algebras into M(Cc(A)) as we will see at
the end of this chapter.

Proof of Propostion 4.0.1: It is clear that the expression above is well-
defined, since [H : K] < ∞, and it determines a linear map Φ : Cc(A/H) →
Cc(A/K). Moreover, it follows directly from Proposition1.3.2 that this map is
injective. The fact that Φ preserves the involution follows from the following com-
putation

Φ(([a]xH)∗) = Φ([a∗]x−1H) =
∑

[h]∈Sx−1\H/K

[αh−1(a∗)]x−1hK

=
∑

[h]∈Sx\H/K

[αh−1(a∗)]x−1hK =
( ∑

[h]∈Sx\H/K

[αh−1(a)]xhK
)∗

= Φ([a]xH)∗ .

Let us now check that Φ preserves products. If the pair (xH, yH) is not composable,
then no pair of the form (xuK, ytK), with u, t ∈ H, is composable. Hence, in this

83
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case we have

Φ([a]xH [b]yH) = 0 = Φ([a]xH)Φ([b]yH) .

Suppose now the pair (xH, yH) is composable, and let h̃ ∈ Hx,y. We have

Φ([a]xH)Φ([b]yH) =
( ∑

[u]∈Sx\H/K

[αu−1(a)]xuK

)( ∑
[t]∈Sy\H/K

[αt−1(b)]ytK

)
=

∑
[t]∈Sy\H/K

∑
[u]∈Sx\H/K

[αu−1(a)]xuK [αt−1(b)]ytK .

We now claim that∑
[u]∈Sx\H/K

[αu−1(a)]xuK [αt−1(b)]ytK = [αt−1h̃−1(a)αt−1(b)](xh̃t)(yt)K .

To see this we notice that for u = h̃t we do have that the pair (xh̃tK, ytK) is
composable and [αt−1h̃−1(a)]xh̃tK [αt−1(b)]ytK = [αt−1h̃−1(a)αt−1(b)](xh̃t)(yt)K . Now
if [u] ∈ Sx\H/K is such that the pair (xuK, ytK) is composable, then s(x)uK =

r(y)tK. Since the pair (xh̃tK, ytK) is composable we also have s(x)h̃tK = r(y)tK.
Thus, s(x)uK = s(x)h̃tK, i.e. [u] = [h̃t] by Proposition 1.3.2. This proves our
claim and therefore we get

Φ([a]xH)Φ([b]yH) =
∑

[t]∈Sy\H/K

∑
[u]∈Sx\H/K

[αu−1(a)]xuK [αt−1(b)]ytK

=
∑

[t]∈Sy\H/K

[αt−1h̃−1(a)αt−1(b)](xh̃t)(yt)K

=
∑

[t]∈Sy\H/K

[αt−1(αh̃−1(a)b)](xh̃y)tK .

Recall that since the G-action on A is H-good we have

Sy ∩H = Ss(y) ∩H = Sxh̃y ∩H .

Hence, using Proposition 1.3.1, we have bijections

Sy\H/K ∼= (Sy ∩H)\H/K ∼= (Sxh̃y ∩H)\H/K ∼= Sxh̃y\H/K ,

determined by the maps [t]→ [t], where [t] denotes the double coset with represen-
tative t in the appropriate double coset space. Therefore we get

Φ([a]xH)Φ([b]yH) =
∑

[t]∈S
xh̃y
\H/K

[αt−1(αh̃−1(a)b)](xh̃y)tK

= Φ([αh̃−1(a)b]xh̃yH)

= Φ([a]xH [b]yH) .

Hence, Φ is an embedding of Cc(A/H) into Cc(A/K). �

The canonical embeddings described in Proposition 4.0.1 are all compatible, as
the following result shows:
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Proposition 4.0.3. Suppose that L ⊆ K ⊆ H are subgroups of G such that
[H : L] <∞. The canonical embedding of Cc(A/H) into Cc(A/L) factors through
the canonical embeddings of Cc(A/H) into Cc(A/K), and Cc(A/K) into Cc(A/L).
In other words, the following diagram of canonical embeddings commutes:

Cc(A/H) //
55

Cc(A/K) // Cc(A/L) .

Proof: Let us denote by Φ1 : Cc(A/H) → Cc(A/K), Φ2 : Cc(A/K) →
Cc(A/L) and Φ3 : Cc(A/H) → Cc(A/L) the canonical embeddings. We want to
prove that Φ3 = Φ2 ◦ Φ1. For this it is enough to check this equality on elements
of the form [a]xH . We have

Φ2 ◦ Φ1([a]xH) =
∑

[h]∈Sx\H/K

Φ2([αh−1(a)]xhK)

=
∑

[h]∈Sx\H/K

∑
[k]∈Sxh\K/L

[αk−1h−1(a)]xhkL .

We claim that if h1, . . . , hn ∈ H is a set of representatives for Sx\H/K, and if
ki1, . . . , k

i
ri is a set of representatives of Sxhi\K/L for each i = 1, . . . , n, then the

set of all products of the form hik
i
j is a set of representatives for Sx\H/L. Let us

start by proving that every two such products correspond to distinct elements of
Sx\H/L. In other words, we want to show that if [hik

i
j ] = [hlk

l
p] in Sx\H/L, then

hi = hl and kij = klp. To see this we notice that the equality [hik
i
j ] = [hlk

l
p] means

that xhikijL = xhlk
l
pL (see Proposition 1.3.2), and therefore xhiK = xhlK, i.e.

[hi] = [hl] in Sx\H/K, hence hi = hl because these form a set a of representatives
of Sx\H/K. Now, the equality xhik

i
jL = xhik

i
pL means that kij = kip for the

same reasons. Now it remains to prove that any element of [h] ∈ Sx\H/L has a
representative of the form hikij . To see this, first we take hi such that xhK = xhiK,
and we consider an element k ∈ K such that xh = xhik, obtaining xhL = xhikL.
Now we take kij such that xhikL = xhik

i
jL, and the result follows.

After proving the above claim we can now write

Φ2 ◦ Φ1([a]xH) =
∑

[h]∈Sx\H/K

∑
[k]∈Sxh\K/L

[αk−1h−1(a)]xhkL

=
∑

[h̃]∈Sx\H/L

[αh̃−1(a)]xh̃L

= Φ3([a]xH) .

This finishes the proof. �

Suppose now that (G,Γ) is a Hecke pair for which the G-action on the Fell
bundle A is Γ-good. We define the set C as the set of all finite intersections of
conjugates of Γ, i.e.

C :=
{ n⋂
i=1

giΓg
−1
i : n ∈ N, g1, . . . , gn ∈ G

}
.(4.1)

The set C becomes a directed set with respect to the partial order given by reverse
inclusion of subgroups, i.e. H1 ≤ H2 ⇔ H1 ⊇ H2, for any H1, H2 ∈ C.
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Since we are assuming that (G,Γ) is a Hecke pair it is not difficult to see that
for any H1, H2 ∈ C we have

H1 ≤ H2 =⇒ [H1 : H2] <∞ .

Also, since we are assuming that the G-action on A is Γ-good and this property
passes to conjugates and subgroups, it follows automatically that the action is also
H-good, for any H ∈ C.

The observations in the previous paragraph together with Proposition 4.0.3
imply that {Cc(A/H)}H∈C is a directed system of ∗-algebras. Let us denote by
D(A) the ∗-algebraic direct limit of this directed system, i.e.

D(A) := lim
H∈C

Cc(A/H) .(4.2)

There is an equivalent way of defining the algebra D(A), by viewing it as the
∗-subalgebra of M(Cc(A)) generated by all the Cc(A/H) with H ∈ C, as we prove
in the next result. This characterization of D(A) is also a very useful one.

Proposition 4.0.4. Let K ⊆ H be subgroups of G such that [H : K] < ∞.
Then the following diagram of canonical embeddings commutes:

Cc(A/H) //

''

Cc(A/K)

��
M(Cc(A)) .

(4.3)

As a consequence, D(A) is ∗-isomorphic to the ∗-subalgebra of M(Cc(A)) generated
by all the Cc(A/H) with H ∈ C.

Proof: We have to show that, inside M(Cc(A)), we have

[a]xH =
∑

[h]∈Sx\H/K

[αh−1(a)]xhK ,

for all x, y ∈ X, a ∈ Ax and b ∈ Ay. This was proven in Proposition 2.3.7.
Commutativity of the diagram (4.3) then implies, by universal properties, that

there exists a ∗-homomorphism from D(A) to M(Cc(A)) whose image is precisely
the ∗-subalgebra generated by all Cc(A/H), with H ∈ C. This ∗-homomorphism is
injective since all the maps in the diagram (4.3) are injective. �

It is clear that the action α gives rise to an action of G on D(A), which we
will still denote by α. This can be seen either directly, or simply by noticing that
the action α on M(Cc(A)) takes D(A) to itself (since for a given g ∈ G it takes
Cc(A/H) to Cc(A/gHg−1)).

The algebra D(A) will play an essential role in the definition of the various
C∗-crossed products by Hecke pairs, particularly the reduced ones. There are two
reduced C∗-crossed products by Hecke pairs which are of particular interest to us,
and these are C∗r (A/Γ)×α,rG/Γ and C∗(A/Γ)×α,rG/Γ. These will be defined and
studied, in a single approach, in Section 5.2, but for that we need first to understand
how the canonical embeddings

Cc(A/H)→ Cc(A/K) ,(4.4)
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defined in Proposition 4.0.1 for K ⊆ H such that [H : K] <∞, behave with respect
to the full and reduced C∗-completions. The goal of next subsections is exactly to
show that these embeddings always give rise to embeddings in the two canonical
C∗-completions

C∗r (A/H)→ C∗r (A/K) and C∗(A/H)→ C∗(A/K) ,

so that we are able to form the useful C∗-direct limits limH∈C C
∗
r (A/H) and

limH∈C C
∗(A/H).

4.1. Reduced completions C∗r (A/H)

The purpose of this subsection is to prove the following result:

Theorem 4.1.1. Let K ⊆ H ⊆ G be subgroups such that [H : K] < ∞.
The canonical embedding of Cc(A/H) into Cc(A/K) completes to an embedding of
C∗r (A/H) into C∗r (A/K).

In order to prove this result we need to establish some notation and some
lemmas first. Even though Theorem 4.1.1 is stated for subgroups K ⊆ H for which
we have a finite index [H : K] we will state and prove the two following lemmas in
greater generality, as it will be convenient later on.

Recall, from Proposition 2.3.7, that for any two subgroups K ⊆ H of G for
which the G-action is H-good we have that, insideM(Cc(A)), the algebra Cc(A/H)
acts on Cc(A/K) in the following way:

[a]xH [b]yK =

{
[αh̃−1(a)b]xh̃yK , if Hx,y 6= ∅
0, otherwise,

where h̃ is any element of Hx,y. As a consequence, this action of Cc(A/H) on
Cc(A/K) defines a ∗-homomorphism

Cc(A/H)→M(Cc(A/K)) .

It could be proven (in the same fashion as Theorem 2.3.1) that the ∗-homomorphism
above is in fact an embedding, but we will not need this fact here. We now make
the following definition:

Definition 4.1.2. Suppose A is ∗-algebra and B is a C∗-algebra. A right A−B
bimodule X is a (right) inner product B-module (in the sense of [21, Definition 2.1])
which is also a left A-module satisfying:

a(xb) = (ax)b ,

〈ax, y〉B = 〈x, a∗y〉B ,

for all x, y ∈ X, a ∈ A and b ∈ B.
Given a right A−B bimodule X we will say that A acts by bounded operators

on X if for any a ∈ A there exists C > 0 such that

‖ax‖B ≤ C‖x‖B ,
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for every x ∈ X, where ‖ · ‖B is the norm induced by 〈· , ·〉B .

If A is a ∗-algebra which has an enveloping C∗-algebra C∗(A), then any right
A− B bimodule where A acts by bounded operators can be completed to a right-
Hilbert C∗(A)−B bimodule.

Lemma 4.1.3. Let K ⊆ H be subgroups of G and let D be a C∗-algebra. Sup-
pose Cc(A/K) is an inner product D-module, denoted by Cc(A/K)D. Assume
furthermore that Cc(A/K)D is a right Cc(A/K) − D bimodule and also a right
Cc(A/H)−D bimodule, where Cc(A/K) acts on itself by right multiplication and
Cc(A/H) acts on Cc(A/K) in the canonical way.

If Cc(A/K) acts on Cc(A/K)D by bounded operators, then Cc(A/H) also acts
on Cc(A/K)D by bounded operators.

Proof: Suppose that Cc(A/K) acts on Cc(A/K)D by bounded operators. We
need to show that Cc(A/H) also acts on Cc(A/K)D by bounded operators, with
respect to the norm ‖ · ‖D induced by the D-valued inner product in Cc(A/K)D.
For this it is enough to prove that the maps

[a]xH : Cc(A/K)→ Cc(A/K) ,

are bounded with respect to the norm ‖ · ‖D. Moreover, from the fact that
([a]xH)∗[a]xH = ([a∗a])s(x)H it actually suffices to show that for any unit u ∈ X0

the mapping [a]uH : Cc(A/K) → Cc(A/K) is bounded with respect to the norm
‖ · ‖D, .

As we have seen at the end of Section 2.1 we can write any element f ∈
Cc(A/K) as a sum of the form f =

∑
yK∈X/K [f(y)]yK . Furthermore, we can split

the sum according to the ranges of elements, i.e.

f =
∑

yK∈X/K

[f(y)]yK =
∑

vK∈X0/K

∑
yK∈X/K
r(y)K=vK

[f(y)]yK .

Applying the multiplier [a]uH to this element we get

[a]uHf = [a]uH
∑

vK∈X0/K

∑
yK∈X/K
r(y)K=vK

[f(y)]yK

=
∑

vK∈X0/K

∑
yK∈X/K
r(y)K=vK

[a]uH [f(y)]yK

=
∑

vK∈X0/K

∑
yK∈X/K
r(y)K=vK

[α
h̃v
−1(a)]vH [f(y)]yK ,
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where hv is any element of Hu,v. Hence, if kv,y is any element of Kv,y ⊆ Hv,y we
get

=
∑

vK⊆uH

∑
yK∈X/K
r(y)K=vK

[α
k̃v,y

−1(α
h̃v
−1(a))f(y)]yK

=
∑

vK⊆uH

∑
yK∈X/K
r(y)K=vK

[α
h̃v
−1(a)]vK [f(y)]yK .

Since f has compact support, there are a finite number of elements v1K, . . . , vnK ⊆
uH such that

[a]uHf =

n∑
i=1

∑
yK∈X/K

r(y)K=viK

[α
h̃vi
−1(a)]viK [f(y)]yK

=
( n∑
i=1

[α
h̃vi
−1(a)]viK

)( ∑
yK∈X/K

[f(y)]yK
)

=
( n∑
i=1

[α
h̃vi
−1(a)]viK

)
f .

Our assumptions say that left multiplication by elements of Cc(A/K) is contin-
uous with respect to ‖ · ‖D. Denoting by Cc(A/K)D the completion of Cc(A/K)D
as a Hilbert D-module, we have that every element of Cc(A/K) uniquely defines
an element of L

(
Cc(A/K)D

)
. Denoting by ‖ · ‖

L
(
Cc(A/K)D

) the operator norm in

L
(
Cc(A/K)D

)
, we have

‖[a]uHf ‖D = ‖
( n∑
i=1

[α
h̃vi
−1(a)]viK

)
f‖D

≤ ‖
n∑
i=1

[α
h̃vi
−1(a)]viK‖L

(
Cc(A/K)D

) ‖f‖D ,
Now we notice that we can canonically see

∑n
i=1[α

h̃vi
−1(a)]viK as an element

of the direct sum of C∗-algebras (A/K)v1K ⊕· · ·⊕ (A/K)vnK , from which we must
have, by uniqueness of C∗-norms on C∗-algebras,

‖
n∑
i=1

[α
h̃vi
−1(a)]viK‖L

(
Cc(A/K)D

) = max
i
‖[α

h̃vi
−1(a)]‖ = max

i
‖α

h̃vi
−1(a)‖ = ‖a‖ .

Hence we conclude that ‖[a]uHf‖D ≤ ‖a‖ ‖f‖D, i.e. [a]uH is bounded. �

Let us now consider Cc(A/K) as the right Cc(A/K) − C0(A0/K) bimodule
whose completion is the right-Hilbert bimodule C∗(A/K)L

2(A/K)C0(A0/K). We
claim that the canonical action of Cc(A/H) on Cc(A/K) makes Cc(A/K) into a
right Cc(A/H) − C0(A/K) bimodule. The fact that f1(ξf2) = (f1ξ)f2, for any
f1 ∈ Cc(A/H), ξ ∈ Cc(A/K) and f2 ∈ C0(A0/K), is obvious. Thus, we only
need to check that 〈fξ , η〉C0(A0/K) = 〈ξ , f∗η〉C0(A0/K), for any f ∈ Cc(A/H) and
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ξ, η ∈ Cc(A/K). This is also easy to see because, by definition,

〈fξ , η〉C0(A0/K) = ((fξ)∗η)|C0(A/K)

= (ξ∗(f∗η))|C0(A/K)

= 〈ξ , f∗η〉C0(A0/K) .

Hence, we are under the conditions of Lemma 4.1.3, and therefore the action
of Cc(A/H) on Cc(A/K)C0(A0/K) is by bounded operators. Hence, the right
Cc(A/H) − C0(A0/K) bimodule Cc(A/K) can be completed to a right-Hilbert
bimodule C∗(A/H)L

2(A/K)C0(A0/K).

Lemma 4.1.4. The ∗-homomorphism Φ : C∗(A/H)→ L(L2(A/K)) associated
with the right-Hilbert bimodule C∗(A/H)L

2(A/K)C0(A0/K) has the same kernel as
the canonical map Λ : C∗(A/H)→ C∗r (A/H).

Proof: The proof of this fact is essentially an adaptation of the proof of
[5, Proposition 2.10], and is achieved by exhibiting two isomorphic right-Hilbert
C∗(A/H) − C0(A0/K) bimodules Y and Z such that the ∗-homomorphisms from
C∗(A/H) into L(Y ) and L(Z) have the same kernels as Λ and Φ respectively.

We naturally have a right-Hilbert bimodule C0(A0/H)C0(A0/K)C0(A0/K), where
the action of C0(A0/H) on C0(A0/K) extends the action of Cc(A0/H) on Cc(A0/K).
We define Y as the balanced tensor product of the right-Hilbert bimodules C∗(A/H)L

2(A/H)C0(A0/H)

and C0(A0/H)C0(A0/K)C0(A0)/K , i.e.

Y := L2(A/H)⊗C0(A0/H) C0(A0/K) .

Since C0(A0/H) acts faithfully on C0(A0/K), the associated ∗-homomorphism of
C∗(A/H) to L(Y ) has the same kernel as Λ. We define Z simply as

C∗(A/H)ZC0(A0/K) := C∗(A/H)L
2(A/K)C0(A0/K) .

We now want to define an isomorphism Ψ : L2(A/H)⊗C0(A0/H) C0(A0/K)→
L2(A/K) of Hilbert C∗(A/H)− C0(A0/K) bimodules. We start by defining

Ψ0 : Cc(A/H)⊗Cc(A0/H) Cc(A0/K) −→ L2(A/K) ,

Ψ0(f1 ⊗ f2) := f1 · f2 .

It is easy to see that Ψ0 is well-defined. To see that Ψ0 preserves the inner prod-
ucts it is enough to check on the generators. So let [a]xH , [b]yH ∈ Cc(A/H) and
[c]uK , [d]vK ∈ Cc(A0/K), with u, v ∈ X0. We have

〈Ψ0([a]xH ⊗ [c]uK) , Ψ0([b]yH ⊗ [d]vK)〉C0(A0/K) =

= 〈[a]xH [c]uK , [b]yH [d]vK〉C0(A0/K)

= ([c∗]uK [a∗]x−1H [b]yH [d]vK)|C0(A0/K) .

Now the product ([c∗]uK [a∗]x−1H [b]yH [d]vK)|C0(A0/K) is automatically zero unless
vK = uK, xH = yH and vK ⊆ s(y)H, in which case we necessarily have that
([c∗]uK [a∗]x−1H [b]yH [d]vK)|C0(A0/K) = [c∗]uK [a∗]x−1H [b]yH [d]vK . On the other hand,

〈[a]xH ⊗ [c]uK , [b]yH ⊗ [d]vK〉C0(A0/K) =

= 〈[c]uK , 〈[a]xH , [b]yH〉C0(A0/H) [d]vK〉C0(A0/K)

= [c∗]uK([a∗]x−1H [b]yH)|C0(A0/H) [d]vK
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Now the product [c∗]uK([a∗]x−1H [b]yH)|C0(A0/H) [d]vK is automatically zero unless
vK = uK, xH = yH and vK ⊆ s(y)H, in which case we necessarily have that
[c∗]uK([a∗]x−1H [b]yH)|C0(A0/H) [d]vK = [c∗]uK [a∗]x−1H [b]yH [d]vK . Hence, we con-
clude that Ψ0 preserves the inner products.

Now, if f1, f2 ∈ Cc(A/H) and f3 ∈ Cc(A0/K) we have

Ψ0(f1(f2 ⊗ f3)) = Ψ0(f1f2 ⊗ f3) = f1f2f3 = f1Ψ0(f2 ⊗ f3) .

Thus, Ψ0 preserves the left module actions. Let us now check that Ψ0 has a dense
image in L2(A/K). It is enough to prove that all generators [a]xK ∈ Cc(A/K) are
in closure of the image of Ψ0, since their span is dense in L2(A/K). To see this,
let {eλ}λ be an approximate identity of As(x). We have

Ψ0([a]xH ⊗ [eλ]s(x)K) = [a]xH [eλ]s(x)K = [aeλ]xK .

We then get

‖[aeλ]xK − [a]xK‖2L2(A/K) = ‖[aeλ − a]xK‖2L2(A/K)

= ‖
(
[aeλ − a]∗[aeλ − a]

)
s(x)K

‖C0(A0/K)

= ‖[aeλ − a]∗[aeλ − a]‖
= ‖eλa∗aeλ − eλa∗a− a∗aeλ + a∗a‖ .

Noticing that a∗a ∈ As(x), we then have that

≤ ‖eλa∗aeλ − eλa∗a‖+ ‖ − a∗aeλ + a∗a‖
≤ ‖a∗aeλ − a∗a‖+ ‖ − a∗aeλ + a∗a‖
−→ 0 .

Thus, we conclude that Ψ0 has dense range. Hence, from [5, Lemma 2.9], it fol-
lows that Ψ0 extends to an isomorphism of the right-Hilbert C∗(A/H)−C0(A0/K)
bimodules Y and Z. �

Proof of Theorem 4.1.1: The image of C∗(A/H) in L(L2(A/K)) is isomor-
phic to C∗r (A/H) by Lemma 4.1.4. On the other hand, the image of C∗(A/H) in
L(L2(A/K)) is simply the completion of Cc(A/H) as a subalgebra of C∗r (A/K).
Hence, we conclude that the canonical embedding of Cc(A/H) into Cc(A/K) com-
pletes to an embedding of C∗r (A/H) into C∗r (A/K). �

It follows from Theorem 4.1.1 and Proposition 4.0.3 that for any subgroups
L ⊆ K ⊆ H such that [H : L] <∞ the following diagram of canonical embeddings
commutes

C∗r (A/H) //
55

C∗r (A/K) // C∗r (A/L) .

Hence, we have a direct system of C∗-algebras {C∗r (A/H)}H∈C . Let us denote
by Dr(A) its corresponding C∗-algebraic direct limit

Dr(A) := lim
H∈C

C∗r (A/H) .(4.5)

We notice that the algebra D(A) is a dense ∗-subalgebra of Dr(A). We now want
to show that the action α of G on D(A) extends to Dr(A).
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Theorem 4.1.5. The action α of G on D(A) extends uniquely to an action of
G on Dr(A) and is such that αg takes C∗r (A/H) to C∗r (A/gHg−1), for any g ∈ G.

Proof: We have a canonical isomorphism between the right-Hilbert bimodules
C∗(A/H)L

2(A/H)C0(A0/H) and C∗(A/gHg−1)L
2(A/gHg−1)C0(A0/gHg−1), that is de-

termined by the canonical isomorphisms Cc(A/H)→ Cc(A/gHg−1) and Cc(A0/H)→
Cc(A0/gHg−1) defined by αg, i.e. defined respectively by

[a]xH 7→ [αg(a)]xg−1gHg−1 , and [b]uH 7→ [αg(b)]ug−1gHg−1 ,

where x ∈ X, u ∈ X0, a ∈ Ax and b ∈ Au. Since C∗r (A/H) is the image of
C∗(A/H) inside L(L2(A/H)), and similarly for C∗r (A/gHg−1), we conclude that
the isomorphism Cc(A/H) ∼= Cc(A/gHg−1) defined by αg extends to an isomor-
phism C∗r (A/H) ∼= C∗r (A/gHg−1). Since C∗r (A/gHg−1) is embedded in Dr(A), we
can see αg as an injective ∗-homomorphism from C∗r (A/H) into Dr(A).

A routine computation shows that the following diagram of canonical injections
commutes:

C∗r (A/H) //

αg &&

C∗r (A/K)

αg

��
Dr(A) .

Hence, we obtain an injective ∗-homomorphism from Dr(A) to itself, which we still
denote by αg, and which extends the usual map αg from D(A) to itself. It is also
clear that this map is surjective, and that for g, h ∈ G we have αgh = αg ◦ αh,
so that we get an action of G on Dr(A) which extends the usual action of G on
D(A). �

4.2. Maximal completions C∗(A/H)

The purpose of this subsection is to prove the following result:

Theorem 4.2.1. Let K ⊆ H be subgroups of G such that [H : K] < ∞. The
canonical embedding of Cc(A/H) into Cc(A/K) completes to a nondegenerate em-
bedding of C∗(A/H) into C∗(A/K).

In order to prove this result we will need to know how to “extend" a represen-
tation of Cc(A/H) to a representation of Cc(A/K) on a larger Hilbert space.

Definition 4.2.2. Let K ⊆ H be subgroups of G such that [H : K] <∞. Let
π : Cc(A/H)→ B(H ) be a ∗-representation. We define the map πK : Cc(A/K)→
B(H ⊗ `2(X0/K)) by

πK([a]xK) (ξ ⊗ δuK) :=

{
π([a]xH)ξ ⊗ δr(x)K , if uK = s(x)K

0, otherwise.
(4.6)
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Proposition 4.2.3. The map πK is a well-defined ∗-representation.

Proof: It is clear that the expression that defines πK([a]xH) defines a linear
operator in the inner product space H ⊗ Cc(X0/K), which is easily observed to
be bounded. Thus, πK([a]xH) ∈ B(H ⊗ `2(X0/K)).

It is clear that expression (4.6) defines a linear mapping πK on Cc(A/K), so
that we only need to see that it preserves products and the involution. To see that
it preserves products, consider two elements of the form [a]xK and [b]yK . There are
two cases to consider: either r(y) ∈ s(x)K or r(y) /∈ s(x)K.

In the second case, we have [a]xK [b]yK = 0 and thus πK([a]xK [b]yK) = 0.
But also πK([a]xK)πK([b]yK) = 0, because for any vector ξ ⊗ δuK we have that
πK([b]yK)(ξ ⊗ δuK) is either zero or equal to π([b]yK)ξ ⊗ δr(y)K , and therefore we
always have πK([a]xK)πK([b]yK)(ξ ⊗ δuK) = 0.

In the first case we have

πK([a]xK [b]yK) (ξ ⊗ δuK) =

= πK([αk̃−1(a)b]xk̃yK) (ξ ⊗ δuK)

=

{
π([αk̃−1(a)b]xk̃yH)ξ ⊗ δr(xk̃y)K , if uK = s(xk̃y)K

0, otherwise.

=

{
π([a]xH)π([b]yH)ξ ⊗ δr(x)K , if uK = s(y)K

0, otherwise.

=

{
πK([a]xK) (π([b]yH)ξ ⊗ δs(x)K) , if uK = s(y)K

0, otherwise.

=

{
πK([a]xK) (π([b]yH)ξ ⊗ δr(y)K) , if uK = s(y)K

0, otherwise.

= πK([a]xK)πK([b]yK) (ξ ⊗ δuK) .

In both cases we have πK([a]xK [b]yK) = πK([a]xK)πK([b]yK), hence πK pre-
serves products. Let us now check that it preserves the involution. We have

〈πK([a]xK) (ξ ⊗ δuK) , η ⊗ δvK〉 =

=

{
〈π([a]xH)ξ ⊗ δr(x)K , η ⊗ δvK〉 , if uK = s(x)K

0, otherwise.

=

{
〈π([a]xH)ξ , η〉 , if uK = s(x)K and vK = r(x)K

0, otherwise.

=

{
〈ξ , π([a∗]x−1H)η〉 , if uK = s(x)K and vK = r(x)K

0, otherwise.

=

{
〈ξ ⊗ δuK , π([a∗]x−1H)η ⊗ δs(x)K〉 , if vK = r(x)K

0, otherwise.

= 〈ξ ⊗ δuK , πK([a∗]x−1K) (η ⊗ δvK)〉 .
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Hence, we conclude that πK([a]xK)∗ = πK(([a]xK)∗), and therefore πK preserves
the involution. Hence, πK is a ∗-representation. �

Lemma 4.2.4. Let us denote by δuH ∈ `2(X0/K) the vector

δuH :=
∑

[h]∈Su\H/K

δuhK .(4.7)

The map πK satisfies

πK([a]xH) (ξ ⊗ δuH) :=

{
π([a]xH)ξ ⊗ δr(x)H , if uH = s(x)H,

0, otherwise.

Proof: We have

πK([a]xH) (ξ ⊗ δuH) =
∑

[h]∈Sx\H/K

∑
[h′]∈Su\H/K

πK([αh−1(a)]xhK) (ξ ⊗ δuh′K) ,

from which we see that, if uH 6= s(x)H then πK([a]xH) (ξ⊗δuH) = 0. On the other
hand, if uH = s(x)H, then we have

πK([a]xH) (ξ ⊗ δs(x)H) =

=
∑

[h]∈Sx\H/K

∑
[h′]∈Ss(x)\H/K

πK([αh−1(a)]xhK) (ξ ⊗ δs(x)h′K)

=
∑

[h]∈Ss(x)\H/K

∑
[h′]∈Ss(x)\H/K

πK([αh−1(a)]xhK) (ξ ⊗ δs(x)h′K)

=
∑

[h]∈Ss(x)\H/K

π([αh−1(a)]xhH)ξ ⊗ δr(x)hK

=
∑

[h]∈Ss(x)\H/K

π([a]xH)ξ ⊗ δr(x)hK

=
∑

[h]∈Sr(x)\H/K

π([a]xH)ξ ⊗ δr(x)hK

= π([a]xH)ξ ⊗ δr(x)H .

This finishes the proof. �

Proof of Theorem 4.2.1: In order to prove this statement we have to show
that for any f ∈ Cc(A/H) we have ‖f‖C∗(A/K) = ‖f‖C∗(A/H). Since we are viewing
Cc(A/H) as a ∗-subalgebra of Cc(A/K) we automatically have the inequality

‖f‖C∗(A/K) ≤ ‖f‖C∗(A/H) .

In order to prove the converse inequality, it suffices to prove that

‖π(f)‖ ≤ ‖πK(f)‖ ,(4.8)

for any nondegenerate ∗-representation π of Cc(A/H), because, since π is arbitrary,
this clearly implies that ‖f‖C∗(A/H) ≤ ‖f‖C∗(A/K). Let us then prove inequality
(4.8).
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We can write any element f ∈ Cc(A/H) as f =
∑
xH∈X/H [f(x)]xH . Further-

more we can split this sum according to the ranges of elements, i.e.

f =
∑

xH∈X/H

[f(x)]xH =
∑

vH∈X0/H

∑
xH∈X/H
r(x)H=vH

[f(x)]xH .

Suppose π : Cc(A/H) → B(H ) is a ∗-representation and ξ ∈ H is a vector of
norm one. We have

‖π
( ∑
xH∈X/H

[f(x)]xH

)
ξ‖2 = ‖

∑
vH∈X0/H

π
( ∑
xH∈X/H
r(x)H=vH

[f(x)]xH

)
ξ‖2 .

For different units vH ∈ X0/H, the elements π
(∑

xH∈X/H
r(x)H=vH

[f(x)]xH
)
ξ are easily

seen to be orthogonal, so that

=
∑

vH∈X0/H

‖π
( ∑
xH∈X/H
r(x)H=vH

[f(x)]xH

)
ξ‖2

=
∑

vH∈X0/H

‖
∑

xH∈X/H
r(x)H=vH

π([f(x)]xH)ξ‖2

In the notation of (4.7), let δuH :=
∑

[h]∈Su\H/K δuhK . Let us denote by Cu the
number of elements of Su\H/K. It is not difficult to check that for any r ∈ H the
map [h] 7→ [r−1h] is a well-defined bijection between Su\H/K and Sur\H/K, so
that Cu = Cur. We have

=
∑

vH∈X0/H

1

Cv
‖

∑
xH∈X/H
r(x)H=vH

π([f(x)]xH)ξ ⊗ δvH‖2

= ‖
∑

vH∈X0/H

∑
xH∈X/H
r(x)H=vH

1

Cv
π([f(x)]xH)ξ ⊗ δvH‖2

= ‖
∑

vH∈X0/H

∑
xH∈X/H
r(x)H=vH

1

Cr(x)
π([f(x)]xH)ξ ⊗ δr(x)H‖2

= ‖
∑

xH∈X/H

1

Cr(x)
π([f(x)]xH)π̃(1s(x)H)ξ ⊗ δr(x)H‖2 .

By Lemma 4.2.4 we have that

= ‖
∑

xH∈X/H

1

Cr(x)
πK([f(x)]xH)

(
π̃(1s(x)H)ξ ⊗ δs(x)H

)
‖2 ,
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and since Ss(x)\H/K = Sr(x)\H/K, we get that Cs(x) = Cr(x). Thus,

= ‖
∑

xH∈X/H

1

Cs(x)
πK([f(x)]xH)

(
π̃(1s(x)H)ξ ⊗ δs(x)H

)
‖2

= ‖
∑

xH∈X/H

1

Cs(x)
πK([f(x)]xH)

(
π̃(1s(x)H)ξ ⊗ δs(x)H

)
‖2

= ‖
∑

xH∈X/H

πK([f(x)]xH)
( 1

Cs(x)
π̃(1s(x)H)ξ ⊗ δs(x)H

)
‖2 .

Similarly as we did for ranges, we can split the sum
∑
xH∈X/H [f(x)]xH according

to sources. In this way, since this sum is finite, there is a finite number of units
u1H, . . . , unH ∈ X0/H, which we assume to be pairwise different, such that we can
write ∑

xH∈X/H

[f(x)]xH =

n∑
i=1

∑
xH∈X/H

s(x)H=uiH

[f(x)]xH .

By Lemma 4.2.4 we see that πK([f(x)]xH)
(
π̃(1uiH)ξ ⊗ δuiH

)
= 0 unless s(x)H =

uiH. Hence we get

‖
∑

xH∈X/H

πK([f(x)]xH)
( 1

Cs(x)
π̃(1s(x)H)ξ ⊗ δs(x)H

)
‖2

= ‖
∑

xH∈X/H

πK([f(x)]xH)
( n∑
i=1

1

Cui
π̃(1uiH)ξ ⊗ δuiH

)
‖2

= ‖πK
( ∑
xH∈X/H

[f(x)]xH

)( n∑
i=1

1

Cui
π̃(1uiH)ξ ⊗ δuiH

)
‖2 .

We now notice that, since we are assuming ξ to be of norm one, it follows that the
vector

n∑
i=1

1

Cui
π̃(1uiH)ξ ⊗ δuiH ,

also has norm less or equal to one, because

‖
n∑
i=1

1

Cui
π̃(1uiH)ξ ⊗ δuiH‖2 =

n∑
i=1

‖ 1

Cui
π̃(1uiH)ξ ⊗ δuiH‖2

=

n∑
i=1

‖π̃(1uiH)ξ‖2

= ‖π̃
( n∑
i=1

1uiH

)
ξ‖2

≤ ‖ξ‖2

= 1 .
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Hence, taking the supremum over vectors ξ of norm one, we immediately get
the inequality

‖π(f)‖ ≤ ‖πK(f)‖ .
As we explained earlier, this proves that we get an embedding of C∗(A/H) into
C∗(A/K). �

It follows from 4.2.1 that {C∗(A/H)}H∈C is a direct system of C∗-algebras.
Let us denote by Dmax(A) its corresponding C∗-algebraic direct limit

Dmax(A) := lim
H∈C

C∗(A/H) ,(4.9)

We notice that the algebra D(A) is a dense ∗-subalgebra of Dmax(A). We now want
to show that the action α of G on D(A) extends to Dmax(A).

Theorem 4.2.5. The action α of G on D(A) extends uniquely to an action of
G on Dmax(A) and is such that αg takes C∗(A/H) to C∗(A/gHg−1), for any g ∈ G.

Proof: Since αg is a ∗-isomorphism between Cc(A/H) and Cc(A/gHg−1), it
necessarily extends to a ∗-isomorphism between the enveloping C∗-algebras C∗(A/H)
and C∗(A/gHg−1). Since C∗(A/gHg−1) is embedded in Dmax(A), we can see αg
as an injective ∗-homomorphism from C∗(A/H) into Dmax(A).

A routine computation shows that the following diagram of canonical injections
commutes:

C∗(A/H) //

αg &&

C∗(A/K)

αg

��
Dmax(A) .

Hence, we obtain an injective ∗-homomorphism from Dmax(A) to itself, which we
still denote by αg, and which extends the usual map αg from D(A) to itself. It is
also clear that this map is surjective, and that for g, h ∈ G we have αgh = αg ◦ αh,
so that we get an action of G on Dmax(A) which extends the usual action of G on
D(A). �





CHAPTER 5

Reduced C∗-crossed products

In this chapter we define reduced C∗-crossed products by Hecke pairs and study
some of their properties. Since the algebra Cc(A/Γ) admits several possible C∗-
completions, we will be able to form several reduced C∗-crossed products, such as
C∗r (A/Γ) ×α,r G/Γ and C∗(A/Γ) ×α,r G/Γ. As we shall see, many of the main
properties of reduced C∗-crossed products by groups hold also in the Hecke pair
case.

In Section 5.4 we also compare our construction of a reduced crossed product
by a Hecke pair with that of Laca, Larsen and Neshveyev in [15], and show that
they agree whenever they are both definable.

5.1. Regular representations

In this subsection we introduce the notion of regular representations in the
context of crossed products by Hecke pairs. These are concrete ∗-representations of
Cc(A/Γ)×algα G/Γ involving the regular representation of the Hecke algebraH(G,Γ)
and are indispensable for defining reduced C∗-crossed products.

In the theory of crossed products by groups A × G, regular representations
are the integrated forms of certain covariant representations involving the regular
representation of G. They are defined in the following way: one starts with a
nondegenerate representation π of A on some Hilbert space H and constructs a
new representation πα of A on the Hilbert H ⊗ `2(G), defined in an appropriate
way, such that πα together with the regular representation of G form a covariant
representation. Their integrated form is then called a regular representation.

We are now going to make an analogous construction in the case of Hecke pairs.
The main novelty here is that we have to start with a representation π of D(A), in-
stead of Cc(A/Γ), so that we can construct the new representation πα of Cc(A/Γ).
This is because we need to take into account all algebras of the form Cc(A/H),
where H = g1Γg−1

1 ∩ · · · ∩ gnΓg−1
n is a finite intersection of conjugates of Γ. Nat-

urally, when Γ is a normal subgroup, D(A) is nothing but the algebra Cc(A/Γ)
itself, so that we will recover the original definition of a regular representation for
crossed products by groups.

Definition 5.1.1. Let π : D(A)→ B(H ) be a nondegenerate ∗-representation.
We define the map πα : Cc(A/Γ)→ B(H ⊗ `2(G/Γ)) by

πα(f) (ξ ⊗ δhΓ) := π(αh(f))ξ ⊗ δhΓ .

99
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Proposition 5.1.2. Let π : D(A)→ B(H ) be a nondegenerate ∗-representation.
Then, the map πα is a nondegenerate ∗-representation of Cc(A/Γ).

Lemma 5.1.3. Let π : D(A) → B(H ) be a nondegenerate ∗-representation.
Then the restriction of π to Cc(A/H) is nondegenerate, for any H ∈ C.

Proof: Let ξ ∈ H be such that π(Cc(A/H))ξ = 0. Take any x ∈ X, a ∈ Ax
and K ∈ C such that K ⊆ H. We have that

‖π([a]xK)ξ‖2 = 〈π([a∗a]s(x)K)ξ , ξ〉
= 〈π([a∗]x−1K · [a]xH)ξ , ξ〉
= 〈π([a∗]x−1K)π([a]xH)ξ , ξ〉
= 0 .

From this we conclude that π(Cc(A/K))ξ = 0, for any K ∈ C such that K ⊆ H.
Since for any subgroup L ∈ C we have Cc(A/L) ⊆ Cc(A/(L ∩H)), and obviously
L ∩H ⊆ H, we can in fact conclude that π(Cc(A/L))ξ = 0 for all L ∈ C. In other
words, we have proven that π(D(A))ξ = 0, which by nondegeneracy of π implies
that ξ = 0. �

Proof of Proposition 5.1.2: It is clear that the expression that defines
πα(f), for f ∈ Cc(A/Γ), defines a linear operator on the inner product space
H ⊗ Cc(G/Γ). Let us first check that this operator is indeed bounded. We have

‖πα(f)
( ∑

[h]∈G/Γ

ξhΓ ⊗ δhΓ

)
‖2 = ‖

∑
[h]∈G/Γ

π(αh(f))ξhΓ ⊗ δhΓ‖2

=
∑

[h]∈G/Γ

‖π(αh(f))ξhΓ‖2

≤
∑

[h]∈G/Γ

‖π(αh(f))‖2‖ξhΓ‖2

≤
∑

[h]∈G/Γ

‖αh(f)‖2C∗(A/hΓh−1)‖ξhΓ‖2 .

Since αh gives an isomorphism between C∗(A/Γ) and C∗(A/hΓh−1) we get

=
∑

[h]∈G/Γ

‖f‖2C∗(A/Γ)‖ξhΓ‖2

= ‖f‖2C∗(A/Γ) ‖
∑

[h]∈G/Γ

ξhΓ ⊗ δhΓ‖2 .

Hence, πα(f) is bounded and thus defines uniquely an operator in B(H ⊗`2(G/Γ)).
It is simple to check that π is linear and preserves products. Let us then see that
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it preserves the involution. We have

〈πα(f) (ξ ⊗ δhΓ) , η ⊗ δgΓ〉 = 〈π(αh(f))ξ ⊗ δhΓ , η ⊗ δgΓ〉
= 〈π(αh(f))ξ , η〉〈δhΓ , δgΓ〉
= 〈ξ , π(αh(f∗))η〉〈δhΓ , δgΓ〉
= 〈ξ , π(αg(f

∗))η〉〈δhΓ , δgΓ〉
= 〈ξ ⊗ δhΓ , πα(f∗) (η ⊗ δgΓ)〉 .

Thus, πα(f)∗ = πα(f∗), and therefore πα defines a ∗-representation. It remains to
check that this ∗-representation is nondegenerate. To see this, we start by canoni-
cally identifying H ⊗ `2(G/Γ) with the Hilbert space `2(G/Γ,H ). On this Hilbert
space, it is easy to see that πα(f) is given by

[πα(f) (ζ)] (hΓ) = π(αh(f)) ζ(hΓ)

for ζ ∈ `2(G/Γ,H ). Suppose now that ζ ∈ `2(G/Γ,H ) is such that πα(f) ζ = 0
for all f ∈ Cc(A/Γ). Thus, for each hΓ ∈ G/Γ we have π(αh(f)) ζ(hΓ) = 0 for
all f ∈ Cc(A/Γ). This can be expressed equivalently as π(f) ζ(hΓ) = 0 for all
f ∈ Cc(A/hΓh−1). By Lemma 5.1.3 the restriction of π to Cc(A/hΓh−1) is nonde-
generate and therefore we have ζ(hΓ) = 0. Thus, πα is nondegenerate. �

Definition 5.1.4. Let π : D(A)→ B(H ) be a nondegenerate ∗-representation
and ρ : H(G,Γ) → B(`2(G/Γ)) the right regular representation of the Hecke alge-
bra. The pair (πα, 1⊗ ρ) is called a regular covariant representation.

Remark 5.1.5. We observe that when Γ is a normal subgroup of G we have
gΓg−1 = Γ for all g ∈ G, so that the algebra D(A) coincides with Cc(A/Γ). For
this reason our notion of a regular representation coincides with the usual notion
of a regular covariant representation of the system (Cc(A/Γ), G/Γ, α).

Theorem 5.1.6. Every regular covariant representation (πα, 1⊗ρ) is a covari-
ant ∗-representation. Moreover, its integrated form is given by

[πα × (1⊗ ρ)](f) (ξ ⊗ δhΓ) =
∑

[g]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f(g−1hΓ))

)
ξ ⊗ δgΓ ,(5.1)

for every f ∈ Cc(A/Γ)×algα G/Γ.

Proof: We shall first check that the expression (5.1) does indeed define a ∗-
representation of Cc(A/Γ) ×algα G/Γ. Afterwards we will show that the covariant
pre-∗-representation associated to it is precisely (πα, 1⊗ ρ).

Let πreg : Cc(A/Γ)×algα G/Γ→ B(H ⊗ `2(G/Γ)) be defined by

πreg(f) (ξ ⊗ δhΓ) :=
∑

[g]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f(g−1hΓ))

)
ξ ⊗ δgΓ .

It is not evident that πreg is a bounded operator for all f ∈ Cc(A/Γ) ×algα G/Γ,
but it is clear that πreg(f) is well-defined as a linear operator on the inner product
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space H ⊗Cc(G/Γ). Under the identification of H ⊗Cc(G/Γ) with Cc(G/Γ,H ),
it is easy to see that πreg(f) is given by

[πreg(f) η] (gΓ) =
∑

[h]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f(g−1hΓ))

)
η(hΓ) ,

for any η ∈ Cc(G/Γ,H ). Let us now check that πreg(f) is indeed bounded. For
any vector η ∈ Cc(G/Γ,H ) we have

‖πreg(f) η‖2 =
∑

[g]∈G/Γ

‖[πreg(f) η](gΓ)‖2

=
∑

[g]∈G/Γ

‖
∑

[h]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f(g−1hΓ))

)
η(hΓ) ‖2

≤
∑

[g]∈G/Γ

( ∑
[h]∈G/Γ

∆(g−1h)
1
2 ‖π

(
αg(f(g−1hΓ))

)
‖‖η(hΓ)‖

)2

.

For each hΓ ∈ G/Γ let us define ThΓ ∈ Cc(G/Γ) by

ThΓ(gΓ) := ∆(g−1h)
1
2 ‖π

(
αg(f(g−1hΓ))

)
‖‖η(hΓ)‖ ,

and T ∈ Cc(G/Γ) by T :=
∑

[h]∈G/Γ T
hΓ, which is clearly a finite sum since η has

finite support. Thus, we have

‖πreg(f) η‖2 ≤
∑

[g]∈G/Γ

( ∑
[h]∈G/Γ

ThΓ(gΓ)
)2

=
∑

[g]∈G/Γ

(T (gΓ))2

= ‖T‖2`2(G/Γ)

= ‖
∑

[h]∈G/Γ

ThΓ ‖2`2(G/Γ)

≤
( ∑

[h]∈G/Γ

‖ThΓ‖`2(G/Γ)

)2

=

( ∑
[h]∈G/Γ

√ ∑
[g]∈G/Γ

∆(g−1h) ‖π
(
αg(f(g−1hΓ))

)
‖2‖η(hΓ)‖2

)2

=

( ∑
[h]∈G/Γ

‖η(hΓ)‖
√ ∑

[g]∈G/Γ

∆(g−1h) ‖π
(
αg(f(g−1hΓ))

)
‖2
)2

.

By the Cauchy-Schwarz inequality in `2(G/Γ) we get

≤
( ∑

[h]∈G/Γ

‖η(hΓ)‖2
) ( ∑

[h]∈G/Γ

∑
[g]∈G/Γ

∆(g−1h) ‖π
(
αg(f(g−1hΓ))

)
‖2
)

=
( ∑

[h]∈G/Γ

∑
[g]∈G/Γ

∆(g−1h)
1
2 ‖π

(
αg(f(g−1hΓ))

)
‖2
)
‖η‖2 ,

which shows that πreg(f) is bounded.



5.1. REGULAR REPRESENTATIONS 103

Let us now check that πreg preserves products and the involution. Let f1, f2 ∈
Cc(A/Γ)×α G/Γ. We have

πreg(f1 ∗ f2)
(
ξ ⊗ δhΓ

)
=

=
∑

[g]∈G/Γ

∆(g−1h)
1
2 π
(
αg
(
(f1 ∗ f2)(g−1hΓ)

))
ξ ⊗ δgΓ

=
∑

[g]∈G/Γ

∑
[s]∈G/Γ

∆(g−1h)
1
2 π
(
αg
(
(f1(sΓ)αs(f2(s−1g−1hΓ))

))
ξ ⊗ δgΓ

=
∑

[g]∈G/Γ

∑
[s]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f1(sΓ))αgs(f2(s−1g−1hΓ))

)
ξ ⊗ δgΓ

=
∑

[g]∈G/Γ

∑
[s]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f1(g−1sΓ))αs(f2(s−1hΓ))

)
ξ ⊗ δgΓ

=
∑

[s]∈G/Γ

∑
[g]∈G/Γ

∆(g−1s)
1
2 ∆(s−1h)

1
2π
(
αg(f1(g−1sΓ))

)
π
(
αs(f2(s−1hΓ))

)
ξ ⊗ δgΓ

=
∑

[s]∈G/Γ

πreg(f1)
(

∆(s−1h)
1
2 π
(
αs(f2(s−1hΓ))

)
ξ ⊗ δsΓ

)
=πreg(f1)πreg(f2)

(
ξ ⊗ δhΓ

)
.

Hence we conclude that πreg(f1 ∗f2) = πreg(f1)πreg(f2). Let us now check that
πreg preserves the involution. For f ∈ Cc(A/Γ)×α G/Γ we have

〈
πreg(f

∗)
(
ξ ⊗ δhΓ

)
, η ⊗ δsΓ

〉
=

=
∑

[g]∈G/Γ

〈
∆(g−1h)

1
2 π
(
αg(f

∗(g−1hΓ))
)
ξ ⊗ δgΓ , η ⊗ δsΓ

〉
=

∑
[g]∈G/Γ

〈
∆(g−1h)

1
2 ∆(h−1g)π

(
αg(αg−1h(f(h−1gΓ))∗)

)
ξ ⊗ δgΓ , η ⊗ δsΓ

〉
=

∑
[g]∈G/Γ

〈
∆(h−1g)

1
2 π
(
αh(f(h−1gΓ))

)∗
ξ , η

〉 〈
δgΓ , δsΓ

〉
=

〈
ξ , ∆(h−1s)

1
2 π
(
αh(f(h−1sΓ))

)
η
〉
.

On the other side we also have〈
ξ ⊗ δhΓ , πreg(f)

(
η ⊗ δsΓ

)〉
=

=
∑

[g]∈G/Γ

〈
ξ ⊗ δhΓ , ∆(g−1s)

1
2 π
(
αg(f(g−1sΓ))

)
η ⊗ δgΓ

〉
=

∑
[g]∈G/Γ

〈
ξ , ∆(g−1s)

1
2 π
(
αg(f(g−1sΓ))

)
η
〉 〈
δhΓ , δgΓ

〉
=

〈
ξ , ∆(h−1s)

1
2 π
(
αh(f(h−1sΓ))

)
η
〉
.

Therefore we can conclude that πreg(f∗) = πreg(f)∗. Hence, πreg is a ∗-
representation.

The restriction of πreg to Cc(A/Γ) is precisely πα, and since πα is nonde-
generate, then so is πreg. Hence, it follows from Theorem 3.3.17 that πreg is
the integrated form of a covariant pre-∗-representation (πreg|, ωπreg ), as defined
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in Proposition 3.3.13. As we pointed out above, πreg| = πα. Thus, to finish
the proof we only need to prove that ωπreg = 1 ⊗ ρ. For a vector of the form
πα([a]xΓ)(ξ ⊗ δhΓ) ∈ πα(Cc(A/Γ))(H ⊗ `2(G/Γ)) and a double coset ΓgΓ we have

ωπreg (ΓgΓ)πα([a]xΓ)(ξ ⊗ δhΓ) = π̃reg(ΓgΓ)πα([a]xΓ)(ξ ⊗ δhΓ)

= π̃reg(ΓgΓ)πreg([a]xΓ)(ξ ⊗ δhΓ)

= πreg(ΓgΓ ∗ [a]xΓ)(ξ ⊗ δhΓ) .

Let us now compute πreg(f)(ξ ⊗ δhΓ) for f := ΓgΓ ∗ [a]xΓ. By definition

πreg(f) (ξ ⊗ δhΓ) =
∑

[s]∈G/Γ

∆(s−1h)
1
2 π
(
αs(f(s−1hΓ))

)
ξ ⊗ δsΓ .

It is clear that f(s−1hΓ) is nonzero if and only if s−1hΓ ⊆ ΓgΓ, which is equivalent
to sΓ ⊆ hΓg−1Γ. Hence,

=
∑

[s]∈ hΓg−1Γ/Γ

∆(s−1h)
1
2 π
(
αs(f(s−1hΓ))

)
ξ ⊗ δsΓ .

It is easy to see that [θ] 7→ [hθg−1] establishes a well-defined bijection between
Γ/Γg

−1

and hΓg−1Γ/Γ, so that

=
∑

[θ]∈Γ/Γg−1

∆(gθ−1h−1h)
1
2 π
(
αhθg−1(f(gθ−1h−1hΓ))

)
ξ ⊗ δhθg−1Γ

=
∑

[θ]∈Γ/Γg−1

∆(g)
1
2 π
(
αhθg−1(f(gΓ))

)
ξ ⊗ δhθg−1Γ .

Now, it is easily seen that f(gΓ) = [αg(a)]xg−1gΓg−1 . Hence, we get

=
∑

[θ]∈Γ/Γg−1

∆(g)
1
2 π
(
αhθg−1([αg(a)]xg−1gΓg−1)

)
ξ ⊗ δhθg−1Γ

=
∑

[θ]∈Γ/Γg−1

∆(g)
1
2 π
(
αh([a]xΓ)

)
ξ ⊗ δhθg−1Γ

= (1⊗ ρ)(ΓgΓ)
(
π
(
αh([a]xΓ)

)
ξ ⊗ δhΓ

)
= (1⊗ ρ)(ΓgΓ)πα([a]xΓ)

(
ξ ⊗ δhΓ

)
.

This shows that ωπreg = 1⊗ ρ in πα(Cc(A/Γ))(H ⊗ `2(G/Γ)) and finishes the
proof. �

Remark 5.1.7. The proof of Theorem 5.1.6 may seem odd, since we did not
first prove that the pair (πα, 1⊗ ρ) is a covariant ∗-representation and then deduce
that its integrated form πα × (1 ⊗ ρ) is a ∗-representation and is given by (5.1).
Instead we followed the opposite approach. This is because we do not know how
to prove directly that (πα, 1⊗ ρ) is a covariant ∗-representation, due to the several
difficult technicalities that arise in the computations.

5.2. Reduced C∗-crossed products

We now want to define reduced C∗-norms in the ∗-algebraic crossed product
Cc(A/Γ) ×algα G/Γ. Since Cc(A/Γ) admits several canonical C∗-completions one
should expect that there are several reduced C∗-norms we can give to Cc(A/Γ)×algα
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G/Γ, which give rise to different reduced C∗-crossed products, as for example
C∗r (A/Γ) ×α,r G/Γ and C∗(A/Γ) ×α,r G/Γ. We will treat in this section all these
different reduced C∗-norms (and reduced C∗-crossed products) in a single approach,
and for that the notion we need is that of a α-permissible C∗-norm on D(A):

Definition 5.2.1. A C∗-norm ‖ · ‖τ in D(A) is said to be α-permissible if the
action α of G on D(A) extends to Dτ (A), the completion of D(A) with respect to
the norm ‖ · ‖τ . In other words, if for every g ∈ G the automorphism αg of D(A)
is continuous with respect to ‖ · ‖τ .

Definition 5.2.2. Let ‖ · ‖τ be an α-permissible C∗-norm in D(A) and let us
denote by Dτ (A) and C∗τ (A/Γ) the completions of D(A) and Cc(A/Γ), respectively,
with respect to the norm ‖ · ‖τ . We define the norm ‖ · ‖τ,r in Cc(A/Γ)×algα G/Γ by

‖f‖τ,r := sup
π∈R(Dτ (A))

‖[πα × (1⊗ ρ)](f)‖ ,

where the supremum is taken over the class R(Dτ (A)) of all nondegenerate ∗-
representations of Dτ (A). The completion of Cc(A/Γ) ×algα G/Γ with respect to
this norm shall be denoted by C∗τ (A/Γ) ×α,r G/Γ and referred to as the reduced
crossed product of C∗τ (A/Γ) by the Hecke pair (G,Γ).

Before we prove that ‖·‖τ is indeed a C∗-norm, let us first look at the two main
instances we have in mind, which arise when C∗τ (A/Γ) is C∗r (A/Γ) or C∗(A/Γ). It
is not obvious from the start that there exists a C∗-norm ‖ · ‖τ in D(A) whose
restriction to Cc(A/Γ) will give the reduced or the maximal C∗-norm in Cc(A/Γ),
but this is indeed the case from what we proved in the preliminary sections 4.1 and
4.2:

• For C∗r (A/Γ):
As described in Section 4.1, we can form the C∗-algebraic direct limit

Dr(A) = limH∈C C
∗
r (A/H), which contains D(A) as a dense ∗-subalgebra.

Taking ‖ · ‖τ to be the C∗-norm ‖ · ‖r of Dr(A), we see that C∗τ (A/Γ) =
C∗r (A/Γ). The norm ‖ · ‖r is α-permissible because of Theorem 4.1.5.
• For C∗(A/Γ):

As described in Section 4.2, we can form the C∗-algebraic direct
limit Dmax(A) = limH∈C C

∗(A/H), which contains D(A) as a dense ∗-
subalgebra. Taking ‖ · ‖τ to be the C∗-norm ‖ · ‖max of Dmax(A), we see
that C∗τ (A/Γ) = C∗(A/Γ). The norm ‖ · ‖max is α-permissible because of
Theorem 4.2.5.

Lemma 5.2.3. If π : D(A)→ B(H ) is a nondegenerate ∗-representation which
is continuous with respect to an α-permissible norm ‖ · ‖τ in D(A), then πα is a
representation of Cc(A/Γ) which is continuous with respect to the norm ‖·‖τ as well.
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Proof: Let f ∈ Cc(A/Γ). We have

‖πα(f)
( ∑

[h]∈G/Γ

ξhΓ ⊗ δhΓ

)
‖2 = ‖

∑
[h]∈G/Γ

π(αh(f))ξhΓ ⊗ δhΓ‖2

=
∑

[h]∈G/Γ

‖π(αh(f))ξhΓ‖2

≤
∑

[h]∈G/Γ

‖π(αh(f))‖2‖ξhΓ‖2

≤
∑

[h]∈G/Γ

‖αh(f)‖2τ ‖ξhΓ‖2 .

Since ‖ · ‖τ is α-permissible we have that ‖αh(f)‖τ = ‖f‖τ . Hence we have

‖πα(f)
( ∑

[h]∈G/Γ

ξhΓ ⊗ δhΓ

)
‖2 ≤

∑
[h]∈G/Γ

‖f‖2τ‖ξhΓ‖2

= ‖f‖2τ ‖
∑

[h]∈G/Γ

ξhΓ ⊗ δhΓ‖2 .

Hence, πα is continuous with respect to the norm ‖ · ‖τ . �

Proposition 5.2.4. ‖ · ‖τ,r is a well-defined C∗-norm on Cc(A/Γ)×algα G/Γ.

Proof: First we must show that the supremum in the definition of ‖ · ‖τ,r is
bounded. Given a ∗-representation π of Dτ we have, by Lemma 5.2.3, that

‖[πα × (1⊗ ρ)](f)‖ ≤
≤

∑
[g]∈Γ\G/Γ

∑
xΓg∈X/Γg

‖πα
([
f(gΓ)(x)

]
xΓ

)
‖‖(1⊗ ρ) (ΓgΓ)‖‖π̃α(1xgΓ)‖

≤
∑

[g]∈Γ\G/Γ

∑
xΓg∈X/Γg

‖
[
f(gΓ)(x)

]
xΓ
‖τ ‖ΓgΓ‖C∗r (G,Γ) .

Thus, since ‖[πα × (1 ⊗ ρ)](f)‖ is finite and bounded by a number that does not
depend on π, we conclude that ‖f‖τ,r is bounded by this same number.

It is clear from the definition and the above paragraph that ‖ · ‖τ,r is C∗-
seminorm. To prove that it is actually a C∗-norm it is enough to prove that if π is
a faithful nondegenerate ∗-representation of Dτ (A), then πα × (1⊗ ρ) is a faithful
∗-representation of Cc(A/Γ) ×algα G/Γ. Let us then prove this claim. Suppose
f ∈ Cc(A/Γ)×algα G/Γ is such that [πα× (1⊗ ρ)](f) = 0. Then, for every ξ⊗ δhΓ ∈
H ⊗ `2(G/Γ) we have

0 = [πα × (1⊗ ρ)](f)(ξ ⊗ δhΓ) =
∑

[g]∈G/Γ

∆(g−1h)
1
2 π
(
αg(f(g−1hΓ))

)
ξ ⊗ δgΓ .

In particular, for gΓ = Γ, we have π(f(hΓ))ξ = 0, and since this holds for every
ξ ∈H we have π(f(hΓ)) = 0. Now, since π is a faithful ∗-representation, it follows
that f(hΓ) = 0. Since this holds for every hΓ ∈ G/Γ, we have f = 0, i.e. πα×(1⊗ρ)
is injective. �

The next result explains why we call the completion of Cc(A/Γ)×algα G/Γ under
the norm ‖ · ‖τ,r the reduced crossed product of C∗τ (A/Γ) by the Hecke pair (G,Γ)
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and justifies also the notation C∗τ (A/Γ)×α,rG/Γ chosen to denote this completion.

Proposition 5.2.5. The restriction of the norm ‖·‖τ,r of Cc(A/Γ)×algα G/Γ to
Cc(A/Γ) is precisely the norm ‖·‖τ . Hence, the embedding Cc(A/Γ)→ Cc(A/Γ)×algα
G/Γ completes to an embedding C∗τ (A/Γ)→ C∗τ (A/Γ)×α,r G/Γ.

Proof: Let π : Dτ (A) → B(H ) be a nondegenerate ∗-representation. From
Lemma 5.2.3 we have, for every f ∈ Cc(A/Γ),

‖[πα × (1⊗ ρ)](f)‖ = ‖πα(f)‖ ≤ ‖f‖τ ,
and therefore

‖f‖τ,r ≤ ‖f‖τ .
We now wish to prove the converse inequality. Let π : Dτ (A)→ B(H ) be a faithful
nondegenerate ∗-representation. For any f ∈ Cc(A/Γ) we have

‖f‖τ = ‖π(f)‖ = sup
‖ξ‖=1

‖π(f)ξ‖

= sup
‖ξ‖=1

‖πα(f)(ξ ⊗ δΓ)‖

≤ sup
‖ζ‖=1

‖πα(f)ζ‖ = ‖πα(f)‖

= ‖[πα × (1⊗ ρ)](f)‖ ≤ ‖f‖τ,r ,
thus proving the converse inequality. We conclude that

‖f‖τ,r = ‖f‖τ ,
for any f ∈ Cc(A/Γ) and this finishes the proof. �

An important feature of reduced crossed products by groups A×r G is the ex-
istence of a faithful conditional expectation onto A. We will now explain how this
holds as well for reduced crossed products by Hecke pairs, with somewhat analogous
proofs. The goal is to prove Theorem 5.2.7 bellow, and for that we follow closely
the approach presented in [20] in the case of groups.

Proposition 5.2.6. For every gΓ ∈ G/Γ the map EgΓ defined by

EgΓ : Cc(A/Γ)×algα G/Γ −→ C∗τ (A/Γg)
EgΓ(f) := f(gΓ) .

is linear and continuous with respect to the norm ‖ · ‖τ,r.

Before we give a proof of the result above we need to set some notation. For
each element gΓ ∈ G/Γ we will denote by σgΓ the Hilbert space isometry σgΓ :
H →H ⊗ `2(G/Γ) defined by

σgΓ(ξ) := ξ ⊗ δgΓ .(5.2)
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Proof of Proposition 5.2.6: Let π be a faithful nondegenerate ∗-represen-
tation of Dτ (A). It is easily seen that σ∗Γ [π × (1 ⊗ ρ)](f)σgΓ = ∆(g)

1
2 π(f(gΓ)).

Hence we have

‖EgΓ(f)‖τ = ‖f(gΓ)‖τ = ‖π(f(gΓ))‖
= ‖∆(g−1)

1
2 σ∗Γ [πα × (1⊗ ρ)](f)σgΓ‖

≤ ∆(g−1)
1
2 ‖[πα × (1⊗ ρ)](f)‖

≤ ∆(g−1)
1
2 ‖f‖τ,r .

This finishes the proof. �

We shall henceforward make no distinction of notation between the maps EgΓ
defined on Cc(A/Γ)×algα G/Γ and their extension to C∗τ (A/Γ)×α,r G/Γ.

The following result is of particular importance in theory of reduced C∗-crossed
products. Analogously to the case of groups, it reveals two important features of
reduced C∗-crossed products by Hecke pairs: the fact that every element of a re-
duced crossed product is uniquely described in terms of its coefficients (determined
by the EgΓ maps); and the fact that EΓ is a faithful conditional expectation.

Theorem 5.2.7. We have

i) If f ∈ C∗τ (A/Γ)×α,r G/Γ and EgΓ(f) = 0 for all gΓ ∈ G/Γ, then f = 0.
ii) EΓ is a faithful conditional expectation of C∗τ (A/Γ)×α,rG/Γ onto C∗τ (A/Γ).

We start with the following auxiliary result:

Lemma 5.2.8. Let π be a nondegenerate ∗-representation of Dτ (A). For all
f ∈ C∗τ (A/Γ)×α,r G/Γ we have

σ∗gΓ [π × (1⊗ ρ)](f)σhΓ = ∆(g−1h)
1
2 π(αg(Eg−1hΓ(f))) .(5.3)

Proof: We notice that equality (5.3) above holds for any f ∈ Cc(A/Γ) ×algα
G/Γ, following the definitions of the maps EtΓ, [πα × (1 ⊗ ρ)](f) and σtΓ, with
tΓ ∈ G/Γ. By continuity, it follows readily that the equality must hold for every
f ∈ C∗τ (A/Γ)×α,r G/Γ. �

Proof of Theorem 5.2.7: i) Let f ∈ C∗τ (A/Γ)×α,rG/Γ. Suppose EgΓ(f) =
0 for all gΓ ∈ G/Γ. Then, for any given nondegenerate ∗-representation π of Dτ (A)
we have, by Lemma 5.2.8, that σ∗gΓ [πα × (1⊗ ρ)](f)σhΓ = 0 for all gΓ, hΓ ∈ G/Γ.
Hence, [πα× (1⊗ρ)](f) = 0. Since, this is true for any π, we must have ‖f‖τ,r = 0,
i.e. f = 0.

ii) Let us first prove that EΓ is a conditional expectation, i.e. EΓ is an idem-
potent, positive, C∗τ (A/Γ)-linear map.

If f ∈ Cc(A/Γ) then it is clear that EΓ(f) = f . By continuity and Proposition
5.2.5 it follows that EΓ(f) = f for all f ∈ C∗τ (A/Γ). Thus, EΓ is idempotent.
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Suppose now that f ∈ Cc(A/Γ)×algα G/Γ. We have

EΓ(f∗ ∗ f) = (f∗ ∗ f)(Γ) =
∑

[h]∈G/Γ

f∗(hΓ)αh(f(h−1Γ))

=
∑

[h]∈G/Γ

∆(h−1)αh(f(h−1Γ))∗αh(f(h−1Γ)) ≥ 0

By continuity it follows that EΓ(f∗ ∗ f) ≥ 0 for all f ∈ C∗τ (A/Γ)×α,r G/Γ, i.e. EΓ

is positive. It remains to show that EΓ is C∗τ (A/Γ)-linear. We recall that we see
Cc(A/Γ) as a ∗-subalgebra of Cc(A/Γ)×algα G/Γ in the following way: an element
f ∈ Cc(A/Γ) is identified with the element F ∈ Cc(A/Γ)×algα G/Γ with support in
Γ and such that F (Γ) = f . For any f ∈ Cc(A/Γ) and f2 ∈ Cc(A/Γ) ×algα G/Γ we
have

EΓ(f ∗ f2) = (F ∗ f2)(Γ) =
∑

[h]∈G/Γ

F (hΓ)αh(f2(h−1Γ))

= F (Γ)f2(Γ) = f EΓ(f2) ,

and similarly we get EΓ(f2 ∗ f) = EΓ(f2) f . Once again by continuity we conclude
that the same equalities hold for f ∈ C∗τ (A/Γ) and f2 ∈ C∗τ (A/Γ)×α,r G/Γ. Thus,
EΓ is a conditional expectation.

Let us now prove that EΓ is faithful. For any f ∈ Cc(A/Γ)×algα G/Γ we have
(where the first equality was computed above):

EΓ(f∗ ∗ f) =
∑

[h]∈G/Γ

∆(h−1)αh(f(h−1Γ))∗αh(f(h−1Γ))

=
∑

[h]∈G/Γ

∆(h−1)αh(Eh−1Γ(f))∗αh(Eh−1Γ(f)) .

Hence, we have EΓ(f∗ ∗ f) ≥ ∆(h−1)αh(Eh−1Γ(f))∗αh(Eh−1Γ(f)) for each hΓ ∈
G/Γ,. By continuity this inequality holds for every f ∈ C∗τ (A/Γ) ×α,r G/Γ, and
therefore if f ∈ C∗τ (A/Γ)×α,rG/Γ is such that EΓ(f∗ ∗f) = 0, then EgΓ(f) = 0 for
all gΓ ∈ G/Γ. Hence, by part i), we conclude that f = 0. Thus, EΓ is faithful. �

The next result shows, like in crossed products by groups, that to define the
norm ‖ · ‖τ,r of the reduced crossed product C∗τ (A/Γ) ×α,r G/Γ we only need to
start with a faithful nondegenerate ∗-representation of Dτ (A), instead of taking the
supremum over all nondegenerate ∗-representations of Dτ (A).

Theorem 5.2.9. Let π : Dτ (A)→ B(H ) be a nondegenerate ∗-representation.
We have that

i) If πα : C∗τ (A/Γ) → B(H ⊗ `2(G/Γ)) is faithful, then [πα × (1 ⊗ ρ)] is a
faithful ∗-representation of C∗τ (A/Γ)×α,r G/Γ. Consequently,

‖f‖τ,r = ‖[πα × (1⊗ ρ)](f)‖ ,

for all f ∈ C∗τ (A/Γ)×α,r G/Γ.
ii) If π is faithful, then πα is faithful.
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Proof: Let us prove i) first. Suppose πα is faithful as a ∗-representation of
C∗τ (A/Γ). Let f ∈ C∗τ (A/Γ)×α,r G/Γ be such that [π × (1⊗ ρ)](f) = 0. Then, of
course, [πα × (1⊗ ρ)](f∗ ∗ f) = 0 and we have

0 = σ∗gΓ [πα × (1⊗ ρ)](f∗ ∗ f)σgΓ = π(αg(EΓ(f∗ ∗ f)))

= σ∗gΓ πα(EΓ(f∗ ∗ f))σgΓ .

This implies that πα(EΓ(f∗ ∗f)) = 0, i.e. EΓ(f∗ ∗f) = 0, and since EΓ is a faithful
conditional expectation we have f∗ ∗f = 0, i.e. f = 0. Thus, πα×(1⊗ρ) is faithful.

Let us now prove claim ii). We know that πα, as a ∗-representation of Cc(A/Γ),
is given by

πα(f) (ξ ⊗ δgΓ) = π(αg(f))ξ ⊗ δgΓ ,

By continuity the same expression holds for f ∈ C∗τ (A/Γ). Now suppose that
πα(f) = 0 for some f ∈ C∗τ (A/Γ). Then, by the above expression, we have π(f) = 0.
Since π is faithful we must have f = 0. Thus, πα is faithful. �

Another feature of reduced C∗-crossed products by groups A ×r G is the fact
that the reduced C∗-algebra of the group is always canonically embedded in the
multiplier algebra M(A×r G). The same is true in the Hecke pair case as we now
show:

Proposition 5.2.10. There is a unique embedding of the reduced Hecke C∗-
algebra C∗r (G,Γ) into M(C∗τ (A/Γ) ×α,r G/Γ) extending the action of H(G,Γ) on
Cc(A/Γ)×algα G/Γ.

Proof: Let us first see that the action of H(G,Γ) on Cc(A/Γ) ×algα G/Γ is
continuous with respect to the norm ‖ · ‖τ,r, so that it extends uniquely to an
action of H(G,Γ) on C∗τ (A/Γ)×α,r G/Γ.

Let π be a faithful nondegenerate ∗-representation of Dτ (A). From Theorem
5.2.9 we know that πα × (1 ⊗ ρ) is also faithful. For f1 ∈ H(G,Γ) and f2 ∈
Cc(A/Γ)×algα G/Γ, we have

‖f1 ∗ f2‖τ,r = ‖[πα × (1⊗ ρ)](f1 ∗ f2)‖
≤ ‖(1⊗ ρ)(f1)‖‖[πα × (1⊗ ρ)](f2)‖
= ‖ρ(f1)‖‖f2‖τ,r .

Thus, the action of H(G,Γ) on Cc(A/Γ) ×algα G/Γ extends uniquely to an action
on C∗τ (A/Γ) ×α,r G/Γ, or in other words, we have an embedding of H(G,Γ) into
M(C∗τ (A/Γ)×α,r G/Γ). We now want to prove that this embedding extends to an
embedding of C∗r (G,Γ) into the same multiplier algebra. For that it is enough to
prove that, for any f ∈ H(G,Γ), we have

‖f‖M(C∗τ (A/Γ)×α,rG/Γ) = ‖f‖C∗r (G,Γ) .

Let ˜πα × (1⊗ ρ) denote the extension of πα × (1 ⊗ ρ) to M(C∗τ (A/Γ) ×α,r G/Γ),
which is faithful since πα × (1 ⊗ ρ) is faithful on C∗τ (A/Γ) ×α,r G/Γ. We have

that ˜πα × (1⊗ ρ) and (1⊗ ρ) coincide in H(G,Γ) since they are given by the same
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expression on the dense subspace [πα × (1 ⊗ ρ)](Cc(A/Γ) ×algα G/Γ)H . Thus, we
have

˜[πα × (1⊗ ρ)](f) = (1⊗ ρ)(f) ,

for any f ∈ H(G,Γ). It then follows that

‖f‖M(C∗τ (A/Γ)×α,rG/Γ) = ‖ ˜[πα × (1⊗ ρ)](f)‖ = ‖(1⊗ ρ)(f)‖
= ‖ρ(f)‖ = ‖f‖C∗r (G,Γ) .

This finishes the proof. �

As it is known, reduced C∗-crossed products by discrete groups satisfy a univer-
sal property among all the C∗-completions of the ∗-algebraic crossed product that
have a certain conditional expectation. This universal property says that every such
completion has a canonical surjective map onto the reduced C∗-crossed product.
As a consequence, the reduced C∗-crossed product is the only C∗-completion of the
∗-algebraic crossed product that has a certain faithful conditional expectation.

The next result explains how this holds in the Hecke pair case.

Theorem 5.2.11. Let ‖ · ‖τ be an α-permissible C∗-norm on D(A) and ‖ · ‖ω
a C∗-norm on Cc(A/Γ) ×algα G/Γ whose restriction to Cc(A/Γ) is just the norm
‖ · ‖τ . Let us denote by C∗τ (A/Γ) ×α,ω G/Γ the completion of Cc(A/Γ) ×algα G/Γ
under the norm ‖ · ‖ω.

If there exists a bounded linear map F : C∗τ (A/Γ) ×α,ω G/Γ → C∗τ (A/Γ) such
that

F (f) = f(Γ) ,

for all f ∈ Cc(A/Γ)×algα G/Γ, then:
a) There exists a surjective ∗-homomorphism

Λ : C∗τ (A/Γ)×α,ω G/Γ→ C∗τ (A/Γ)×α,r G/Γ ,

such that Λ is the identity on Cc(A/Γ)×algα G/Γ.
b) F is a conditional expectation.
c) F is faithful if and only if Λ is an isomorphism.

Proof: Let X0 be the space Cc(A/Γ) ×algα G/Γ. It is easily seen that X0

is a (right) inner product Cc(A/Γ)-module, where Cc(A/Γ) acts on X0 by right
multiplication and the inner product is given by

〈f1 , f2〉 := (f∗1 ∗ f2)(Γ) .

Since for any f ∈ X0 and f1 ∈ Cc(A/Γ) we have

‖〈f ∗ f1 , f ∗ f1〉‖τ = ‖((f ∗ f1)∗ ∗ (f ∗ f1))(Γ)‖τ
= ‖(f∗1 ∗ f∗ ∗ f ∗ f1)(Γ)‖τ
= ‖f∗1 ((f∗ ∗ f)(Γ))f1‖τ
= ‖f1‖2τ‖〈f , f〉‖τ ,

it follows that we can complete X0 to a (right) Hilbert C∗τ (A/Γ)-module, which we
will denote by X. The inner product on X, which extends the inner product 〈· , ·〉
above, will be denoted by 〈· , ·〉C∗τ (A/Γ).
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The ∗-algebra Cc(A/Γ) ×algα G/Γ acts on X0 by left multiplication and there-
fore it is easily seen that this action is compatible with the right module structure.
Moreover, Cc(A/Γ) ×algα G/Γ acts on X0 by bounded operators, relatively to the
norm induced by the inner product 〈· , ·〉C∗τ (A/Γ), as we now show. For this we
recall the conditional expectation EΓ of C∗τ (A/Γ) ×α,r G/Γ onto C∗τ (A/Γ) as de-
fined in Proposition 5.2.6. For any f, f1 ∈ Cc(A/Γ) ×algα G/Γ we have that inside
C∗τ (A/Γ)×α,r G/Γ the following holds:

〈f ∗ f1 , f ∗ f1〉C∗τ (A/Γ) = ((f ∗ f1)∗ ∗ (f ∗ f1))(Γ)

= EΓ((f ∗ f1)∗ ∗ (f ∗ f1))

= EΓ(f∗1 ∗ f∗ ∗ f ∗ f1)

≤ ‖f‖2τ,rEΓ(f∗1 ∗ f1)

= ‖f‖2τ,r〈f1 , f1〉C∗τ (A/Γ) ,

where we used the positivity of EΓ in C∗τ (A/Γ)×α,r G/Γ. Since the norm ‖ · ‖τ is
just the restriction of the norm ‖ · ‖τ,r we get

‖〈f ∗ f1 , f ∗ f1〉C∗τ (A/Γ)‖τ ≤ ‖f‖2τ,r‖〈f1 , f1〉C∗τ (A/Γ)‖τ ,(5.4)

which shows that Cc(A/Γ)×algα G/Γ acts on X0 by bounded operators. Moreover,
inequality (5.4) shows that this action extends to an action of C∗τ (A/Γ) ×α,r G/Γ
on X and thus gives rise to a ∗-homomorphism Φ : C∗τ (A/Γ) ×α,r G/Γ → L(X).
We will now show that Φ is injective. Firstly, we will prove that Φ is injective on
C∗τ (A/Γ), which is the same as to show that

‖Φ(f)‖L(X) = ‖f‖τ ,(5.5)

for all f ∈ Cc(A/Γ). It is clear from inequality (5.4) that ‖Φ(f)‖L(X) ≤ ‖f‖τ . The
converse inequality follows from the fact that, for any f, f1 ∈ Cc(A/Γ), we have

‖〈f ∗ f1 , f ∗ f1〉C∗τ (A/Γ)‖τ = ‖f · f1‖
1
2
τ .

Before we prove that Φ is injective in the whole of C∗τ (A/Γ) ×α,r G/Γ we need to
establish some notation and results.

As usual, Y := C∗τ (A/Γ) is a Hilbert module over itself. We define the map
jΓ : Y → X simply by inclusion, i.e. jΓ(f) := f . It is then easy to see that jΓ is
adjointable with adjoint j∗Γ : X → Y given by jΓ(f) = f(Γ), for any f ∈ X0. It is
also easy to see that, for any f ∈ Cc(A/Γ) we have

〈jΓ(f) , jΓ(f)〉C∗τ (A/Γ) = 〈f , f〉C∗τ (A/Γ) ,

where the inner product on the left (respectively, right) hand side corresponds to
the inner product in X (respectively, in Y ). Thus, jΓ is an isometry between Y
and X and has therefore norm 1.

Let Ê : Φ(Cc(A/Γ)×algα G/Γ)→ C∗τ (A/Γ) be the map defined by

Ê(Φ(f)) := Φ(f(Γ)) .

First let us say a few words about why Ê is well-defined. This is the case because Φ is
injective on Cc(A/Γ)×algα G/Γ, which is easily seen to be true because Cc(A/Γ)×algα
G/Γ is an essential ∗-algebra (Theorem 3.1.8).
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We claim that Ê is continuous with respect to the norm of L(X). First we
notice that for any f ∈ Cc(A/Γ) we have that (as elements of L(Y ))

f = j∗ΓΦ(f)jΓ .

Let f ∈ Cc(A/Γ)×algα G/Γ. We have

‖Ê(Φ(f))‖L(X) = ‖Φ(f(Γ))‖L(X) .

As we proved in (5.5), the norm ‖ · ‖L(X) when restricted to Φ(Cc(A/Γ)) is such
that ‖Φ(g)‖L(X) = ‖g‖τ , and moreover the norm ‖ · ‖τ coincides with the norm
‖ · ‖L(Y ), since L(Y ) = M(C∗τ (A/Γ)). Hence we have:

‖Ê(Φ(f))‖L(X) = ‖Φ(f(Γ))‖L(X) = ‖f(Γ)‖L(Y )

= ‖j∗ΓΦ(f)jΓ‖L(Y ) ≤ ‖Φ(f)‖L(X) ,

which shows that Ê is continuous with respect to the norm of L(X).
We can now prove that Φ is injective. First we notice that for any f ∈

Cc(A/Γ)×algα G/Γ we have Ê(Φ(f)) = Φ(EΓ(f)). By continuity, this equality then
holds for any f ∈ C∗τ (A/Γ)×α,r G/Γ. Suppose now that f ∈ C∗τ (A/Γ)×α,r G/Γ is
such that Φ(f) = 0. Then we have

0 = Ê(Φ(f∗ ∗ f)) = Φ(EΓ(f∗ ∗ f)) .

Since Φ is faithful on C∗τ (A/Γ), it then follows that EΓ(f∗ ∗ f) = 0, and since EΓ

is faithful this implies that f∗ ∗ f = 0, i.e. f = 0. Thus, Φ is injective.
We will first prove part b) of the theorem and only afterwards prove part a).

For that we need to show that F is an idempotent, positive, C∗τ (A/Γ)-linear map.
The fact that F is idempotent is obvious. Now, let f ∈ Cc(A/Γ) ×algα G/Γ. We
have that

F (f∗ ∗ f) = (f∗ ∗ f)(Γ)

=
∑

[h]∈G/Γ

f∗(hΓ)αh(f(h−1Γ))

=
∑

[h]∈G/Γ

∆(h−1)αh(f(h−1Γ))∗αh(f(h−1Γ)) ,

which by continuity means that F is positive. Moreover, for f1 ∈ Cc(A/Γ) we have
that

F (f1 ∗ f) = (f1 ∗ f)(Γ) = f1 · f(Γ)

= f1 · F (f) ,

and similarly F (f ∗ f1) = F (f) · f1. By continuity of F , it follows that F (f1 ∗ f) =
f1 ·F (f) and F (f ∗f1) = F (f)·f1 for any f ∈ C∗τ (A/Γ)×α,ωG/Γ and f1 ∈ C∗τ (A/Γ).
Hence we have shown that F is a conditional expectation, and therefore b) is proven.

Now, let f, g ∈ Cc(A/Γ)×algα G/Γ. We have that inside C∗τ (A/Γ)×α,ωG/Γ the
following holds:

〈f ∗ g , f ∗ g〉C∗τ (A/Γ) = ((f ∗ g)∗ ∗ (f ∗ g))(Γ)

= F ((f ∗ g)∗ ∗ (f ∗ g))

= F (g∗ ∗ f∗ ∗ f ∗ g)

≤ ‖f‖2ωF (g∗ ∗ g)

= ‖f‖2ω〈g , g〉C∗τ (A/Γ) ,
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where we have used to the positivity of F . Since the norm ‖·‖τ is just the restriction
of the norm ‖ · ‖ω we get

‖〈f ∗ g , f ∗ g〉C∗τ (A/Γ)‖τ ≤ ‖f‖2ω‖〈g , g〉C∗τ (A/Γ)‖τ ,(5.6)

which shows that the action of Cc(A/Γ) ×algα G/Γ on X0 extends to an action of
C∗τ (A/Γ)×α,ωG/Γ onX and thus gives rise to a ∗-homomorphism from C∗τ (A/Γ)×α,ω
G/Γ to L(X). As the injectivity of Φ shows, the closure of the image of Cc(A/Γ)×algα
G/Γ in L(X) is isomorphic to C∗τ (A/Γ) ×α,r G/Γ. Hence, we conclude that there
is a map Λ : C∗τ (A/Γ) ×α,ω G/Γ → C∗τ (A/Γ) ×α,r G/Γ such that Λ(f) = f , for
f ∈ Cc(A/Γ)×algα G/Γ, and so part a) is proven.

Let us now prove c). The direction (⇐=) is clear, because F is then noth-
ing but the conditional expectation EΓ, which is faithful. Let us now prove the
direction (=⇒). For any f ∈ Cc(A/Γ) ×algα G/Γ we have that EΓ ◦ Λ(f∗ ∗ f) =
F (f∗ ∗ f). By continuity this formula holds for any f ∈ C∗τ (A/Γ) ×α,ω G/Γ. Let
f ∈ C∗τ (A/Γ) ×α,ω G/Γ be such that Λ(f) = 0. Then we necessarily have that
0 = EΓ ◦Λ(f∗ ∗ f) = F (f∗ ∗ f), and since F is faithful we have that f∗ ∗ f = 0, i.e.
f = 0. �

5.3. Alternative definition of C∗r (A/Γ)×α,r G/Γ

The C∗-direct limit Dr(A) played a key role in the definition of the reduced
crossed product C∗r (A/Γ)oα,rG/Γ. In this section we will see that instead ofDr(A)
one can use the more natural C∗-algebra C∗r (A) to define the reduced crossed prod-
uct C∗r (A/Γ)oα,rG/Γ. The algebra C∗r (A) has several advantages over Dr(A). For
instance C∗r (A) appears more naturally in the setup for defining crossed products
(recall that we start with the bundle A and then we form the various bundles A/Γg
from it). Also, C∗r (A), being a cross sectional algebra of a Fell bundle, seems to be
structurally simpler than Dr(A), which is a direct limit of cross sectional algebras
of Fell bundles.

The question one might ask at this point is: can one similarly use C∗(A)
instead of Dmax(A) in order to define C∗(A/Γ) oα,r G/Γ ? As we shall also see in
this section, this is not possible in general. At the core of this problem lies the fact
that one has always an embedding

C∗r (A/H)→M(C∗r (A)) ,

extending the natural embedding of Cc(A/H) into M(Cc(A)), whereas the analo-
gous map

C∗(A/H)→M(C∗(A)) ,

is not always injective. This implies that the while the algebra Dr(A) embeds
naturally in M(Cr(A)), the analogous map from Dmax(A) to M(C∗(A)) is not an
embedding in general.

We start with the following general result:

Proposition 5.3.1. Let ‖·‖τ be any C∗-norm on Cc(A) and C∗τ (A) its comple-
tion. There is a unique mapping C∗(A/H)→M(C∗τ (A)) which extends the action
of Cc(A/H) on Cc(A).
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Proof: As is known C∗τ (A) is naturally a Hilbert C∗τ (A)-module, whose algebra
of adjointable operators L(C∗τ (A)) is precisely the multiplier algebraM(C∗τ (A)). In
particular X := Cc(A) is an inner product C∗τ (A)-module. Moreover, X is also a
right Cc(A) − C∗τ (A) bimodule and a right Cc(A/H) − C∗τ (A) bimodule (in the
sense of Definition 4.1.2), under the canonical actions of Cc(A) and Cc(A/H) on
X. Since Cc(A) acts on X by bounded operators, it then follows from Lemma
4.1.3 (taking K = {e}) that Cc(A/H) acts on X by bounded operators. Thus, by
completion, we obtain a right-Hilbert bimodule C∗(A/H)C

∗
τ (A)C∗τ (A). Hence obtain

a unique map C∗(A/H) → M(C∗τ (A)) which extends the action of Cc(A/H) on
Cc(A). �

As shall see later in this section the map C∗(A/H)→M(C∗τ (A)) is not an em-
bedding in general, not even when C∗τ (A) = C∗(A). Nevertheless for the reduced
norms we have the following result:

Theorem 5.3.2. There is a unique embedding of C∗r (A/H) into M(C∗r (A))
which extends the action of Cc(A/H) on Cc(A).

Proof: From Proposition 5.3.1 we know that there exists a unique ∗-homo-
morphism from C∗(A/H) to M(C∗r (A)), which extends the action of Cc(A/H) on
Cc(A). Thus, we have a right-Hilbert bimodule C∗(A/H)C

∗
r (A)C∗r (A). Taking the

balanced tensor product of this right-Hilbert bimodule with C∗r (A)L
2(A)C0(A0) we

get a C∗(A/H)− C0(A0) right-Hilbert bimodule

C∗(A/H)

(
C∗r (A)⊗C∗r (A) L

2(A)
)
C0(A0) .

Since the action of C∗r (A) on L2(A) is faithful, the kernels of the maps from
C∗(A/H) to M(C∗r (A)) and L

(
C∗r (A)⊗C∗r (A) L

2(A)
)
are the same.

Now, C∗r (A) ⊗C∗r (A) L
2(A) is isomorphic to L2(A) as a Hilbert C∗(A/H) −

C0(A0) bimodule. Hence, it follows that the kernel of the map from C∗(A/H) to
M(C∗r (A)) is the same as the kernel of the map from C∗(A/H) to L(L2(A)). Now,
the latter map has the same kernel as the canonical map Λ : C∗(A/H)→ C∗r (A/H),
by Lemma 4.1.4 applied when K is the trivial subgroup. Thus, this gives an em-
bedding of C∗r (A/H) into M(C∗r (A)). �

The next result is a generalization of [5, Proposition 2.10] (see Example 2.2.3).
Its proof relies ultimately on Lemma 4.1.4, whose proof, we recall, was essentially
an adaptation of the proof [5, Proposition 2.10] itself.

Corollary 5.3.3. Suppose A is amenable. Then, the kernel of the canoni-
cal map C∗(A/H) → M(C∗(A)) is the same as the kernel of the canonical map
Λ : C∗(A/H)→ C∗r (A/H).

Proof: In the proof of Proposition 5.3.2 we established that the kernel of the
canonnical map Λ : C∗(A/H) → C∗r (A/H) is the same as the kernel of the map
C∗(A/H)→M(C∗r (A)), which is the same as the map C∗(A/H)→M(C∗(A)) by
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amenability of A. �

We now give an example where the map C∗(A/H) → M(C∗(A)) is not injec-
tive:

Example 5.3.4. Let B be a non-amenable Fell bundle over the group G, and let
A := B×G be the associated Fell bundle over the transformation groupoid G×G.
Following Example 2.2.3, we have a right G-action on A which entails the action on
the groupoid G×G, given by (s, t)g := (s, tg). Moreover, since the G-action is free,
it is H-good and satisfies the H-intersection property, for any subgroup H ⊆ G. In
this example we will consider H to be the whole group G. In this case the orbit
groupoid (G × G)/G can be naturally identified with the group G, and moreover,
the Fell bundle A/G is naturally identified with B.

It is known that the bundle A is always amenable (see [5, Remark 2.11]),
and therefore by Corollary 5.3.3 we have that the kernel of the map C∗(A/G) →
M(C∗(A)) is the same as the kernel of the canonical map C∗(A/G) → C∗r (A/G).
As we pointed out above, the bundle A/G is just B, which is non-amenable by
assumption. Hence, the canonical map C∗(A/G) → C∗r (A/G) has a non-trivial
kernel, and therefore the map C∗(A/G)→M(C∗(A)) is not injective.

We will now see that Dr(A) is canonically embedded in M(C∗r (A)), being the
C∗-algebra generated by all the images of C∗r (A/H) insideM(C∗r (A)), as in Propo-
sition 5.3.2, with H ∈ C.

Proposition 5.3.5. Let K ⊆ H be subgroups of G such that [H : K] < ∞.
Then, the following diagram of canonical embeddings commutes:

C∗r (A/H) //

''

C∗r (A/K)

��
M(C∗r (A)) .

(5.7)

As a consequence Dr(A) embedds in M(C∗r (A)), being ∗-isomorphic to the subalge-
bra of M(C∗r (A)) generated by all the C∗r (A/H), with H ∈ C.

Proof: We have already proven in Proposition 4.0.4 that

[a]xHby =
∑

[h]∈Sx\H/K

[αh−1(a)]xhKby ,(5.8)

for any x, y ∈ X, a ∈ Ax and b ∈ Ay. Hence, by linearity, density and conti-
nuity, we conclude that diagram (5.7) commutes. By the universal property of
Dr(A) we then have a ∗-homomorphism from Dr(A) to M(C∗r (A)), whose image
is generated by all the images of C∗r (A/H) inside M(C∗r (A)), for any H ∈ C. This
∗-homomorphism from Dr(A) to M(C∗r (A)) is injective because all the maps in
diagram (5.7) are injective. �



5.4. COMPARISON WITH LACA-LARSEN-NESHVEYEV CONSTRUCTION 117

We can now give an equivalent definition for the reduced crossed product
C∗r (A/Γ) ×r,α G/Γ, using the algebra C∗r (A) instead of D∗r(A). This can be ad-
vantageous as we observed in the opening paragraph of this subsection. Also, this
equivalence of definitions will make the connection between our definition of a re-
duced crossed product by a Hecke pair and that of Laca, Larsen and Neshveyev in
[15] more clear, as we shall see in the next subsection.

Theorem 5.3.6. Let π : C∗r (A)→ B(H ) be a nondegenerate ∗-representation,
and π̃ its extension to M(C∗r (A)). We have that

i) If π̃α : C∗r (A/Γ) → B(H ⊗ `2(G/Γ)) is faithful, then π̃α × (1 ⊗ ρ) is a
faithful representation of C∗r (A/Γ)×r,α G/Γ. Consequently,

‖f‖r,r := ‖[π̃α × (1⊗ ρ)](f)‖ ,

for all f ∈ C∗r (A/Γ)×r,α G/Γ.
ii) If π is faithful, then π̃α is faithful.

Proof: By Proposition 5.3.5 Dr(A) is canonically embedded in M(C∗r (A)), so
that π̃ restricts to a ∗-representation of Dr(A). This restriction is nondegenerate,
because the restriction to C∗r (A/Γ) is already nondegenerate, as follows from the
following argument. Let ξ ∈ H be such that π̃(C∗r (A/Γ))ξ = 0. For any x ∈ X
and a ∈ Ax we have

‖π(ax)ξ‖2 = 〈π((a∗a)s(x))ξ , ξ〉
= 〈π(a∗x−1 · [a]xΓ)ξ , ξ〉
= 〈π(a∗x−1)π̃([a]xΓ)ξ , ξ〉
= 0 .

Thus, by nondegeneracy of π we get that ξ = 0, and therefore π̃ restricted to
C∗r (A/Γ), and hence also Dr(A), is nondegenerate. We are now in the conditions
of Theorem 5.2.9.

Claim ii) also follows from Theorem 5.2.9, given the fact that a faithfull non-
degenerate ∗-representation of C∗r (A) extends faithfully to M(C∗r (A)). �

5.4. Comparison with Laca-Larsen-Neshveyev construction

In [15], Laca, Larsen and Neshveyev, based on the work of Connes-Marcolli
[3] and Tzanev [22], introduced an algebra which can be thought of as a reduced
crossed product of an abelian algebra by an action of a Hecke pair.

The construction introduced by Laca, Larsen and Neshveyev was one of the
motivations behind our definition of a crossed product by a Hecke pair. However,
the setup for their construction in [15] is slightly different from ours, being on one
side more particular, as it only allows one to take a crossed product by an abelian
algebra, but also more general, as the underlying space is not assumed in [15] to
be discrete. We will show in this section that when both setups agree, our crossed
product is canonically isomorphic to the crossed product of [15].

We will first briefly recall the setup and construction presented in [15, Section
1]. In order to make a coherent and more meaningful comparison between our
construction and that of [15] we will have to make a few simple modifications in
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the latter. Essentially, we will consider right actions of G instead of left ones, and
make the appropriate changes in the construction of [15] according to this.

Let G be a group acting on the right on a locally compact space X. Let Γ ⊆ G
be a Hecke subgroup and consider the (right) action of Γ× Γ on X ×G, given by:

(x, g)(γ1, γ2) := (xγ1, γ
−1
1 gγ2) .(5.9)

Define X ×Γ G/Γ to be the quotient space of X × G by the action of Γ × Γ. We
assume that the space X ×Γ G/Γ is Hausdorff.

Remark 5.4.1. In [15] the original assumption was that the action of Γ on X
was proper (hence implying that X ×Γ G/Γ is Hausdorff), but as it was observed
in [15, Remark 1.4], requiring that X ×Γ G/Γ is Hausdorff was actually enough for
the construction to make sense, and this is an important detail for us as the actions
we consider are not proper in general (see Remark 5.4.2).

Remark 5.4.2. Let X = {∗} be a space with just one point and (G,Γ) a Hecke
pair where Γ is infinite. We consider the trivial action of G on X. In this case
X×ΓG/Γ is the space Γ\G/Γ with the discrete topology, which is Hausdorff. Nev-
ertheless, since Γ is infinite, neither the action of Γ on X, nor the action of Γ × Γ
on X ×G, is proper. To see this, notice that the pre-image of the compact sets {∗}
and {(∗, e)}, in X × Γ and X ×G× Γ× Γ repectively, are infinite.

Let Cc(X×ΓG/Γ) be the space of compactly supported continuous functions on
X×ΓG/Γ. We will view the elements of Cc(X×ΓG/Γ) as (Γ×Γ)-invariant functions
on X ×G. One can define a convolution product and involution in Cc(X ×Γ G/Γ)
according to the following formulas:

(f1 ∗ f2)(x, g) :=
∑

[h]∈G/Γ

f1(x, h)f2(xh, h−1g) ,(5.10)

f∗(x, g) := f(xg, g−1) .(5.11)

For each given x ∈ X we can define a ∗-representation πx : Cc(X ×Γ G/Γ) →
B(`2(G/Γ)) by

πx(f)δhΓ :=
∑
g∈G/Γ

f(xg, g−1h)δgΓ .(5.12)

The C∗-algebra C∗r (X ×Γ G/Γ) is defined as the completion of Cc(X ×Γ G/Γ) in
the norm

‖f‖ := sup
x∈X
‖πx(f)‖ .(5.13)

The setup behind this construction differs slightly from our own, so we will
compare both constructions under the following assumptions:

• (G,Γ) is a Hecke pair;
• X is a set (seen as both a discrete space and a discrete groupoid);
• There is a right action of G on X;
• The G-action satisfies the Γ-intersection property.
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We notice that since X and G are discrete the space X ×Γ G/Γ is also discrete
and therefore Hausdorff, so that the necessary assumptions for the construction of
[15] are satisfied. Also, since X is just a set, the action G on X is necessarily
Γ-good. Thus, the assumptions for our construction (Standing Assumption 3.0.1)
are satisfied with respect to the trivial Fell bundle A over X in which every fiber
Ax is just C. Recall that in this case Cc(A) = Cc(X) and Cc(A/Γ) = Cc(X/Γ).

Theorem 5.4.3. Let (G,Γ) be a Hecke pair and X a set. Assume that there is
a right G-action on X which satisfies the Γ-intersection property. Then, the map
Φ : Cc(X/Γ)×algα G/Γ→ Cc(X ×Γ G/Γ) given by

Φ(f) (x, g) := ∆(g)
1
2 f(gΓ)(x) ,

is a ∗-isomorphism. This map extends to a ∗-isomorphism between the reduced
completions Φ : C0(X/Γ) ×α,r G/Γ → C∗r (X ×Γ G/Γ). Moreover, under the
∗-isomorphism Φ, the ∗-representation πx is just (ϕ̃x)α × ρ, where ϕx is the ∗-
representation of C0(X) given by evaluation at x, i.e. ϕx(f) = f(x).

Proof: Let us first check that Φ is well-defined, i.e. Φ(f) is a (Γ×Γ)-invariant
function in G × X, with compact support (as a function on X ×Γ G/Γ). To see
this, let γ1, γ2 ∈ Γ. We have that

Φ(f) (xγ1, γ
−1
1 gγ2) = ∆(γ−1

1 gγ2)
1
2 f(γ−1

1 gγ2Γ)(xγ1)

= ∆(g)
1
2 αγ−1

1
(f(gΓ)) (xγ1)

= ∆(g)
1
2 f(gΓ) (x)

= Φ(f) (x, g) ,

so that Φ(f) is Γ × Γ-invariant. It is easy to see that Φ(f) has compact support
(as a function on X ×Γ G/Γ). Thus, Φ is well-defined.

Let us now prove that Φ is a ∗-homomorphism. It is clear that Φ is linear,
so that we only need to check that Φ preserves products and the involution. For
f1, f2 ∈ Cc(X/Γ)×algα G/Γ we have that

Φ(f1 ∗ f2) (x, g) =

= ∆(g)
1
2 (f1 ∗ f2)(gΓ) (x)

=
∑

[h]∈G/Γ

∆(g)
1
2 f1(hΓ)αh(f2(h−1gΓ)) (x)

=
∑

[h]∈G/Γ

(
∆(h)

1
2 f1(hΓ) (x)

)(
∆(h−1g)

1
2 αh(f2(h−1gΓ)) (x)

)
=

∑
[h]∈G/Γ

(
Φ(f1) (x, h)

)(
∆(h−1g)

1
2 f2(h−1gΓ) (xh)

)
=

∑
[h]∈G/Γ

(
Φ(f1) (x, h)

)(
Φ(f2)(xh, h−1g)

)
= Φ(f1) ∗ Φ(f2) (x, g) .
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Also for f ∈ Cc(X/Γ)×algα G/Γ we have

Φ(f∗) (x, g) = ∆(g)
1
2 f∗(gΓ) (x) = ∆(g)

1
2 ∆(g−1)αg(f(g−1Γ)) (x)

= ∆(g−1)
1
2 f(g−1Γ) (xg) = Φ(f) (xg, g−1)

= (Φ(f))∗ (x, g) .

Hence, Φ is a ∗-homomorphism. Let us now prove that Φ is injective. Suppose
Φ(f) = 0. Then for every g ∈ G and x ∈ X we have

0 = Φ(f) (x, g) = ∆(g)
1
2 f(gΓ) (x) .

Hence, we conclude that f(gΓ) = 0 for all g ∈ G, and therefore f = 0, i.e. Φ is
injective.

Let us now prove the surjectivity of Φ. The elements of Cc(X ×Γ G/Γ) are
simply linear combinations of characteristic functions of elements of X ×Γ G/Γ,
so in order to prove that Φ is surjective we only need to check that each of these
characteristic functions belongs the image of Φ. Let [(x, g)] ∈ X×ΓG/Γ. We claim
that Φ(∆(g)−

1
2 1xΓ ∗ΓgΓ∗1xgΓ) = 1[(x,g)]. To see this, we recall Lemma 3.1.14 and

notice that

Φ(1xΓ ∗ ΓgΓ ∗ 1xgΓ) (x, g) = ∆(g)
1
2 .

It is not difficult to see that Φ(1xΓ ∗ ΓgΓ ∗ 1xgΓ) (y, h) = 0 if (y, h) does not belong
to the Γ×Γ-orbit of (x, g), so that Φ(∆(g)−

1
2 1xΓ ∗ΓgΓ∗1xgΓ) = 1[(x,g)]. Hence, we

can conclude that Φ is surjective and therefore establishes a ∗-isomorphism between
Cc(X/Γ)×algα G/Γ and Cc(X ×Γ G/Γ).

We will now see that under the ∗-isomorphism Φ, the ∗-representation πx is
just (ϕ̃x)α × ρ, in other words πx ◦Φ = (ϕ̃x)α × ρ. This follows from the following
computation:

πx ◦ Φ(f) δhΓ =
∑

gΓ∈G/Γ

Φ(f)(xg, g−1h) δgΓ

=
∑

gΓ∈G/Γ

∆(g−1h)
1
2 f(g−1hΓ)(xg) δgΓ

=
∑

gΓ∈G/Γ

∆(g−1h)
1
2 αg(f(g−1hΓ))(x) δgΓ

=
∑

gΓ∈G/Γ

∆(g−1h)
1
2 ϕ̃x

(
αg(f(g−1hΓ))

)
δgΓ

= [(ϕ̃x)α × ρ](f) δgΓ .

Let us now prove that the ∗-isomorphism Φ extends to a ∗-isomorphism between
C0(X/Γ)×α,rG/Γ and C∗r (X×ΓG/Γ). Let π : Cc(X×ΓG/Γ) −→ B(`2(X)) be the
direct sum ∗-representation π :=

⊕
x∈X πx on the Hilbert space

⊕
x∈X C ∼= `2(X).
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We then have that

π ◦ Φ(f) =
⊕
x∈X

πx(Φ(f))

=
⊕
x∈X

[(ϕ̃x)α × ρ](f)

= [(
⊕
x∈X

ϕ̃x)α × ρ](f)

= [(
⊕̃
x∈X

ϕx)α × ρ](f) .

Now the ∗-representation
⊕

x∈X ϕx of C0(X) is obviously injective. Hence, by
Theorem 5.3.6 ii), it follows that π ◦ Φ extends to a faithful ∗-representation
of C0(X/Γ) ×α,r G/Γ. This implies that Φ extends to an isomorphism between
C0(X/Γ)×α,r G/Γ and C∗r (X ×Γ G/Γ), because

‖Φ(f)‖ = sup
x∈X
‖πx(Φ(f))‖ = ‖π ◦ Φ(f)‖

= ‖f‖r,r .
�





CHAPTER 6

Other completions

Just like there are several canonical C∗-completions of a Hecke algebra, one
can also consider different C∗-completions of crossed products by Hecke pairs. Es-
pecially interesting for this work are full C∗-crossed products, but we will also take
a look at C∗-completions arising from a L1-norm.

6.1. Full C∗-crossed products

In this section we define and study full C∗-crossed products by Hecke pairs.
Just like in the reduced case, several full C∗-crossed products can be considered,
such as C∗r (A/Γ)×αG/Γ and C∗(A/Γ)×αG/Γ where each of these is thought of as
the full C∗-crossed product of C∗r (A/Γ), respectively C∗(A/Γ), by the Hecke pair
(G,Γ). As is the case for Hecke algebras, full crossed products by Hecke pairs do
not have to exist in general.

Definition 6.1.1. Let ‖ · ‖τ be an α-permissible C∗-norm in D(A). We will
denote by ‖ · ‖τ,u : Cc(A/Γ)×algα G/Γ −→ R+

0 ∪ {∞} the function defined by

‖f‖τ,u := sup
Φ∈Rτ

‖Φ(f)‖ ,(6.1)

where the supremum is taken over the class Rτ of ∗-representations of Cc(A/Γ)×algα
G/Γ whose restrictions to Cc(A/Γ) are continuous with respect to ‖ · ‖τ .

Proposition 6.1.2. We have that ‖ · ‖τ,u is a C∗-norm in Cc(A/Γ)×algα G/Γ
if and only if ‖f‖τ,u <∞ for all f ∈ Cc(A/Γ)×algα G/Γ.

Proof: (=⇒) : This direction is trivial since a norm must take values in R+
0 .

(⇐=) : It is clear in this case that ‖ · ‖τ,u defines a C∗-seminorm. To check
that it is a true C∗-norm it is enough to find a faithful ∗-representation Φ ∈ Rτ .
This is easy because since ‖ · ‖τ is α-permissible we can take any nondegenerate
faithful ∗-representation π of Dτ (A) and take Φ := πα× (1⊗ ρ), which is a faithful
∗-representation by Theorem 5.2.9. We have that Φ ∈ Rτ because its restriction
to Cc(A/Γ) is just πα, which is continuous with respect to ‖·‖τ by Lemma 5.2.3. �

Definition 6.1.3. Let ‖ · ‖τ be an α-permissible C∗-norm in D(A). When
‖ · ‖τ,u is a C∗-norm we will call it the universal norm associated to ‖ · ‖τ . The
completion of Cc(A/Γ) ×algα G/Γ with respect to this norm will be denoted by
C∗τ (A/Γ) ×α G/Γ and referred to as the full crossed product of C∗τ (A/Γ) by the
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Hecke pair (G,Γ).

It is clear that ‖ · ‖τ,r ≤ ‖ · ‖τ,u so that the identity map on Cc(A/Γ)×algα G/Γ
extends to a surjective ∗-homomorphism

C∗τ (A/Γ)×α G/Γ −→ C∗τ (A/Γ)×α,r G/Γ ,(6.2)

in case ‖ · ‖τ,u is a norm.
In general, full crossed products do not necessarily exist, as it is already clear

from the fact that a Hecke algebra (which is a particular case of crossed product
by a Hecke pair) does not need to have an enveloping C∗-algebra. Nevertheless,
for Hecke pairs whose Hecke algebras are BG∗-algebras one can always assure the
existence of full C∗-crossed products, as we show below. We recall that a ∗-algebra
is called a BG∗-algebra if all of its pre-∗-representations are normed. Most Hecke
algebras for which it is known that a full Hecke C∗-algebra exists are known to be
BG∗-algebras, as we discussed in [17].

Theorem 6.1.4. If H(G,Γ) is a BG∗-algebra, then the full crossed product
C∗τ (A/Γ)×α G/Γ always exists, for any α-permissible norm ‖ · ‖τ .

Proof: We will prove that when H(G,Γ) is a BG∗-algebra we have

sup
Φ
‖Φ(f)‖ <∞ ,(6.3)

where the supremum runs over the class of all ∗-representations of Cc(A/Γ) ×algα
G/Γ. To see this we first notice that it is enough to consider nondegenerate ∗-
representations. Secondly, from Theorem 3.3.17, any nondegenerate ∗-representation
Φ of Cc(A/Γ) ×algα G/Γ is the integrated form of a covariant pre-∗-representation
(Φ|, ωΦ), so that we can write Φ = Φ|×ωΦ. Taking any element [a]xΓ ∗ΓgΓ∗1s(x)gΓ

of the canonical spanning set of elements of the crossed product we then have

‖Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)‖ = ‖Φ|([a]xΓ)ωΦ(ΓgΓ)Φ̃|(1s(x)gΓ)‖
≤ ‖Φ|([a]xΓ)ωΦ(ΓgΓ)‖ .

Now, since H(G,Γ) is a BG∗-algebra we have that ωΦ is normed, i.e. ωΦ(ΓgΓ)
is a bounded operator. Moreover, because it is a BG∗-algebra, H(G,Γ) has an
enveloping C∗-algebra. Hence, we conclude that

≤ ‖Φ|([a]xΓ)‖‖ωΦ(ΓgΓ)‖
≤ ‖[a]xΓ‖C∗(A/Γ)‖ΓgΓ‖C∗(G,Γ) .

Thus, it is clear that

sup
Φ
‖Φ([a]xΓ ∗ ΓgΓ ∗ 1s(x)gΓ)‖ <∞ .

Since this is true for the elements of the canonical spanning set, it follows that (6.3)
holds for any f ∈ Cc(A/Γ)×algα G/Γ. �

Any BG∗-algebra necessarily has an enveloping C∗-algebra. Is it then possible
to weaken the assumptions on Theorem 6.1.4 to cover all Hecke algebras with an
enveloping C∗-algebra? In other words:
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Open Question 6.1.5. If H(G,Γ) has an enveloping C∗-algebra, do the full
crossed products C∗τ (A/Γ)×α G/Γ always exist?

We do not know the answer to this question. In fact we do not even have
an example of a Hecke algebra which has an enveloping C∗-algebra and is not a
BG∗-algebra. More generally even, the author does not know any example of a ∗-
algebra that can be faithfully represented on a Hilbert space and has an enveloping
C∗-algebra, but which is not a BG∗-algebra.

Regarding the existence of full crossed products we will show, in the next
chapter, that they can exist for Hecke pairs for which the Hecke algebra does not
have an enveloping C∗-algebra. Namely, the full crossed product C0(G/Γ)×αG/Γ,
arising from the action of G on itself by translation, exists for all Hecke pairs (G,Γ).

6.2. L1-norm and associated C∗-completion

We now define a L1-norm on Cc(A/Γ)×algα G/Γ, whose corresponding envelop-
ing C∗-algebra can still be understood as a crossed product of C∗τ (A/Γ) by the
Hecke pair (G,Γ), for a α-permissible norm ‖ · ‖τ .

Definition 6.2.1. Let ‖ · ‖τ be an α-permissible C∗-norm on D(A). We define
the norm ‖ · ‖τ,L1 in Cc(A/Γ)×algα G/Γ by:

‖f‖τ,L1 :=
∑

[g]∈Γ\G/Γ

L(g) ‖f(gΓ)‖τ .(6.4)

Before we prove that ‖ · ‖τ,L1 is a norm we observe that ‖ · ‖τ,L1 is well-defined,
i.e. it does not depend on the chosen representative g of [g], because for any γ ∈ Γ
we have, using the fact that the ‖ · ‖τ is α-permissible,

‖f(γgΓ)‖τ = ‖αγ(f(gΓ))‖τ = ‖f(gΓ)‖τ .

With this observation at hand we can easily derive another formula for ‖ · ‖τ,L1 , for
which we have

‖f‖τ,L1 =
∑

[g]∈G/Γ

‖f(gΓ)‖τ .(6.5)

Proposition 6.2.2. The function ‖ · ‖τ,L1 is a norm for which

‖f1 ∗ f2‖τ,L1 ≤ ‖f1‖τ,L1‖f2‖τ,L1 and ‖f∗‖τ,L1 = ‖f‖τ,L1 .

Thus, under this norm Cc(A/Γ)×algα G/Γ becomes a normed ∗-algebra.
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Proof: It is easy to check that ‖ · ‖τ,L1 is a vector space norm in Cc(A/Γ)×algα
G/Γ. Let us prove first that ‖f∗‖τ,L1 = ‖f‖τ,L1 . We have

‖f∗‖τ,L1 =
∑

[g]∈Γ\G/Γ

L(g) ‖f∗(gΓ)‖τ

=
∑

[g]∈Γ\G/Γ

L(g)∆(g−1) ‖αg(f(g−1Γ))∗‖τ

=
∑

[g]∈Γ\G/Γ

L(g−1) ‖f(g−1Γ)‖τ .

Since [g] 7→ [g−1] is a bijection of the set Γ\G/Γ, we get

=
∑

[g]∈Γ\G/Γ

L(g) ‖f(gΓ)‖τ

= ‖f‖τ,L1 .

Let us now prove that ‖f1 ∗ f2‖τ,L1 ≤ ‖f1‖τ,L1‖f2‖τ,L1 . For this we will use
the formula for ‖ · ‖τ,L1 given by (6.5). We have that

‖f1 ∗ f2‖τ,L1 =
∑

[g]∈G/Γ

‖(f1 ∗ f2)(gΓ)‖τ

≤
∑

[g]∈G/Γ

∑
[h]∈G/Γ

‖f1(hΓ)‖τ‖αh(f2(h−1gΓ))‖τ .

Using the fact that ‖ · ‖τ is α-permissible we have

=
∑

[g]∈G/Γ

∑
[h]∈G/Γ

‖f1(hΓ)‖τ‖f2(h−1gΓ)‖τ

=
∑

[h]∈G/Γ

∑
[g]∈G/Γ

‖f1(hΓ)‖τ‖f2(h−1gΓ)‖τ

=
∑

[h]∈G/Γ

∑
[g]∈G/Γ

‖f1(hΓ)‖τ‖f2(gΓ)‖τ

=
( ∑

[h]∈G/Γ

‖f1(hΓ)‖τ
)( ∑

[g]∈G/Γ

‖f2(gΓ)‖τ
)

= ‖f1‖τ,L1‖f2‖τ,L1 .

�

Completing Cc(A/Γ) ×algα G/Γ in the norm ‖ · ‖τ,L1 we obtain a Banach ∗-
algebra, and taking the enveloping C∗-algebra of this Banach ∗-algebra we obtain a
C∗-completion of Cc(A/Γ)×algα G/Γ, which we denote by C∗τ (A/Γ)×α,L1 G/Γ. We
notice that the restriction of the norm ‖ · ‖τ,L1 to Cc(A/Γ) is precisely the norm
‖ · ‖τ , from which we can conclude that ‖ · ‖τ,u is always greater or equal to the
C∗-norm of C∗τ (A/Γ) ×α,L1 G/Γ. This means that, if ‖ · ‖τ,u is a norm, there is
canonical map

C∗τ (A/Γ)×α G/Γ→ C∗τ (A/Γ)×α,L1 G/Γ .(6.6)
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In case the crossed product is just the Hecke algebra itself, the map (6.6) is just
the usual map

C∗(G,Γ)→ C∗(L1(G,Γ)) .

So far we have seen three canonical C∗-crossed products of C∗τ (A/Γ) by the
Hecke pair (G,Γ), and these are C∗τ (A/Γ) ×α,r G/Γ, C∗τ (A/Γ) ×α,L1 G/Γ and
C∗τ (A/Γ) ×α G/Γ if it exists. Each one of these corresponds respectively, in the
Hecke algebra case, to the completions C∗r (G,Γ), C∗(L1(G,Γ)) and C∗(G,Γ). It
is an interesting problem, which we will not explore here, to understand how the
Schlichting completion construction and the remaining Hecke C∗-algebra pC∗(G)p
carry over to the setting of crossed products by Hecke pairs.





CHAPTER 7

Stone-von Neumann theorem for Hecke pairs

Amodern version of the Stone-von Neumann theorem in the language of crossed
products by groups states that (see [21, Theorem C.34])

C0(G)×α G ∼= C0(G)×α,r G ∼= K(`2(G)) .

More precisely, if α is the action of G on C0(G) by right translation, M : C0(G)→
B(`2(G)) the ∗-representation by pointwise multiplication and ρ the right regular
representation of G on `2(G), then (M,ρ) is a covariant representation of the system
(C0(G), G) and M × ρ is a faithful ∗-representation of C0(G) ×α G with range
K(`2(G)).

It follows from this result that any covariant representation of (C0(G), G) is
unitarily equivalent to an amplification (1⊗M, 1⊗ ρ) of (M,ρ), since the algebra
of compact operators has a trivial representation theory ([21, Remark C.35]).

The goal of this chapter is to show how the Stone-von Neumann theorem gen-
eralizes to the setting of Hecke pairs and their crossed products. In the process we
recover an Huef, Kaliszewski and Raeburn’s notion of a covariant pair [9] and their
version of the Stone-von Neumann theorem for Hecke pairs, which did not make
use of crossed products and which we will now recall.

In [9, Definition 1.1], an Huef, Kaliszewski and Raeburn introduced the no-
tion of a covariant pair (π, µ) consisting of a nondegenerate ∗-representation π :
C0(G/Γ)→ B(H ) and a unital ∗-representation µ : H(G,Γ)→ B(H ) satisfying

µ(ΓgΓ)π(1xΓ)µ(ΓsΓ) =
∑

[u]∈Γg−1Γ/Γ
[v]∈ΓsΓ/Γ

π(1xuΓ)µ(Γu−1vΓ)π(1xvΓ) .(7.1)

The basic example of a covariant pair, computed in [9, Example 1.5], is that
of (M,ρ) where M : C0(G/Γ) → B(`2(G/Γ)) is the ∗-representation by pointwise
multiplication and ρ is the right regular representation of H(G,Γ).

Remark 7.0.1. One should note that the definition of the right regular rep-
resentation ρ used in [9] differs from ours, since in [9] the factor ∆

1
2 is absent.

Nevertheless, (M,ρ) is still a covariant pair with our definition of ρ. Moreover, the
results of [9] remain valid for our ρ as well, up to multiplication by some factor in
some of them.

It was proven in [9, Theorem 1.6] that all covariant pairs are unitarily equivalent
to an amplification (1⊗M, 1⊗ ρ) of (M,ρ), which can be seen as an analogue for
Hecke pairs of the Stone-von Neumann theorem. It should be noted that this result
was proven without any crossed product construction behind it.

129



130 7. STONE-VON NEUMANN THEOREM FOR HECKE PAIRS

In the following we will prove a Stone-von Neumann theorem for Hecke pairs
in the language of crossed products, stating that

C0(G/Γ)×G/Γ ∼= C0(G/Γ)×r G/Γ ∼= K(`2(G/Γ)) .

We will also show that the covariant pairs of [9] coincide with our notion of a
covariant ∗-representation and we will recover an Huef, Kaliszewski and Raeburn’s
version of the Stone-von Neumann theorem ([9, Theorem 1.6]) as a consequence of
the above isomorphisms.

The case under consideration now is that when the groupoid X is the set G
and A is the Fell bundle over (the set) G whose fibers are C. In this case we have
Cc(A) = Cc(G) and, naturally, C∗r (A) = C∗(A) = C0(G). We consider the action
α of G on A induced by the right multiplication of G on itself. Since this action
is free, it is Γ-good and satisfies the Γ-intersection property. Moreover the induced
action α of G on Cc(G) is simply the action by right translation. In this setting
the groupoid X/Γ is then nothing but the orbit set G/Γ, and Cc(A/Γ) = Cc(G/Γ).
Moreover, C∗r (A/Γ) = C∗(A/Γ) = C0(G/Γ).

Proposition 7.0.2. Let TgΓ,hΓ ∈ Cc(G/Γ)×algα G/Γ be the element

TgΓ,hΓ := 1gΓ ∗ Γg−1hΓ ∗ 1hΓ .

Then {TgΓ,hΓ}gΓ,hΓ∈G/Γ is a set of matrix units that span Cc(G/Γ)×algα G/Γ.

Proof: It is clear that T ∗gΓ,hΓ = ThΓ,gΓ. Let us now compute the product
TgΓ,hΓ ∗ TsΓ,tΓ. If hΓ 6= sΓ, then TgΓ,hΓ ∗ TsΓ,tΓ = 0. In case hΓ = sΓ, we get

TgΓ,hΓ ∗ ThΓ,tΓ = 1gΓ ∗ Γg−1hΓ ∗ 1hΓ ∗ Γh−1tΓ ∗ 1tΓ

= 1gΓ ∗
( ∑

[u]∈Γh−1gΓ/Γ

[v]∈Γh−1tΓ/Γ

1huΓ ∗ Γu−1vΓ ∗ 1hvΓ

)
∗ 1tΓ .

Now for the product 1gΓ1huΓ to be non-zero, we must have huΓ = gΓ, i.e. uΓ =
h−1gΓ. Similarly, for the product 1hvΓ1tΓ to be non-zero we must have hvΓ = tΓ,
i.e. vΓ = h−1tΓ. Thus,

TgΓ,hΓ ∗ ThΓ,tΓ = 1gΓ ∗ 1hh−1gΓ ∗ Γ(h−1g)−1h−1tΓ ∗ 1hh−1tΓ ∗ 1tΓ

= 1gΓ ∗ Γg−1tΓ ∗ 1tΓ

= TgΓ,tΓ .

Hence, {TgΓ,hΓ}gΓ,hΓ is a set of matrix units. The fact that this set spans Cc(G/Γ)×algα
G/Γ follows readily from Theorem 3.1.13, noting that for x ∈ G and gΓ ∈ G/Γ we
have

1xΓ ∗ ΓgΓ ∗ 1xgΓ = TxΓ,xgΓ .

This finishes the proof. �

Theorem 7.0.3. The full crossed product C0(G/Γ)×αG/Γ exists and moreover

C0(G/Γ)×α G/Γ ∼= C0(G/Γ)×α,r G/Γ ∼= K(`2(G/Γ)) .
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Denoting by M : C0(G/Γ) → B(`2(G)) the ∗-representation by pointwise multipli-
cation, we have that (M,ρ) is a covariant ∗-representation and M × ρ is a faithful
∗-representation of C0(G/Γ)×α G/Γ with range K(`2(G/Γ)).

Proof: By Proposition 7.0.2 we have that {TgΓ,hΓ}gΓ,hΓ is a set of matrix units
that span Cc(G/Γ)×algα G/Γ. Hence, the enveloping C∗-algebra of Cc(G/Γ)×algα G/Γ
must exist. As it is known, there exists only one C∗-algebra, up to isomorphism,
generated by a set of matrix units indexed by G/Γ, and that is K(`2(G/Γ)). Hence,
we necessarily have

C0(G/Γ)×α G/Γ ∼= C0(G/Γ)×α,r G/Γ ∼= K(`2(G/Γ)) .

It has been shown in [9, Example 1.5] that (M,ρ) is a covariant pair, so that
equality (7.1) holds. Since the action of G on itself is free, it follows readily from
Proposition 3.5.3 that this means that (M,ρ) is a covariant ∗-representation.

Let us denote by φ : C0(G) → C the ∗-representation given by evaluation at
the identity element, i.e.

φ(f) := f(e) ,

and let φ̃ be its extension to M(C0(G)) ∼= Cb(G). We claim that φ̃α restricted to
Cc(G/Γ) is nothing but the representation by multiplication, i.e. φ̃α = M , and this
follows from the following computation, where f ∈ Cc(G/Γ):

φ̃α(f)δhΓ = φ̃(αh(f))δhΓ = αh(f) (e) δhΓ

= f(hΓ)δhΓ = M(f)δhΓ .

SinceM = φ̃α is faithful, it now follows from Theorem 5.3.6 thatM×ρ is a faithful
∗-representation of C0(G/Γ) ×α,r G/Γ ∼= C0(G/Γ) ×α G/Γ in B(`2(G/Γ)), whose
image must necessarily be K(`2(G/Γ)). �

As a corollary of our Stone-von-Neumann theorem we recover [9, Theorem 1.6]
and we show that the covariant pre-∗-representations of Cc(G/Γ)×algα G/Γ coincide
with the covariant pairs of [9].

Corollary 7.0.4. Let (G,Γ) be a Hecke pair, π : C0(G/Γ) → B(H ) a non-
degenerate ∗-representation and µ : H(G,Γ) → L(π(Cc(G/Γ))H ) a unital pre-∗-
representation. Then (π, µ) is a covariant pre-∗-representation if and only if it is
unitarily equivalent to an amplification (1 ⊗M, 1 ⊗ ρ) of (M,ρ). In particular we
have

i) All covariant pre-∗-representation are covariant ∗-representations, and
these are the same as the covariant pairs of [9].

ii) A ∗-representation π is equivalent to an amplification of M if and only if
there exists a ∗-representation µ of H(G,Γ) such that (π, µ) is a covariant
∗-representation.

Proof: Let (π, µ) be a covariant pre-∗-representation of Cc(G/Γ) ×algα G/Γ.
Then its integrated form π × µ extends to a nondegenerate ∗-representation of
C0(G/Γ)×αG/Γ. By Theorem 7.0.3M×ρ is a ∗-isomorphism between C0(G/Γ)×α
G/Γ and K(`2(G/Γ)), so that (π×µ)◦(M×ρ)−1 is a nondegenerate ∗-representation
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of K(`2(G/Γ)). Since the algebra of compact operators has a trivial representation
theory (see for example [21, Lemma B.34]) there exists a Hilbert space H such
that (π × µ) ◦ (M × ρ)−1 is unitarily equivalent to the representation 1 ⊗ id in
H ⊗ `2(G/Γ). Hence, (π × µ) is unitarily equivalent to 1 ⊗ (M × ρ). Now given
the fact that (M,ρ) is a covariant ∗-representation, it is not difficult to see that
(1⊗M, 1⊗ ρ) is also a covariant ∗-representation and moreover

1⊗ (M × ρ) = (1⊗M)× (1⊗ ρ) .

By Proposition 3.3.19 it follows that (π, µ) is unitarily equivalent to (1⊗M, 1⊗ ρ).
The converse is easier: suppose now that (π, µ) is equivalent ot an amplification

(1 ⊗M, 1 ⊗ ρ) of (M,ρ). Since (1 ⊗M, 1 ⊗ ρ) is a covariant ∗-representation, it
follows that (π, µ) must also be a covariant ∗-representation.

Let us now check i). As we have just proven, every covariant pre-∗-represen-
tation is unitarily equivalent to an amplification (1 ⊗M, 1 ⊗ ρ) of (M,ρ). Since,
(1⊗M, 1⊗ ρ) is a covariant ∗-representation it follows that every covariant pre-∗-
representation is actually a covariant ∗-representation.

Let us now prove ii). Suppose π : C0(G/Γ) → B(H ) is equivalent to an am-
plification of M , i.e. there exists a Hilbert space H0 and a unitary U : H →
H0 ⊗ `2(G/Γ) such that π = U(1 ⊗M)U∗. As (U(1 ⊗M)U∗, U(1 ⊗ ρ)U∗) is a
covariant ∗-representation, we conclude that there exists a ∗-representation µ such
that (π, µ) is a covariant ∗-representation. The converse follows easily from what
we proved above: if there exists a ∗-representation µ of H(G,Γ) such that (π, µ) is
a covariant ∗-representation, then (π, µ) is unitarily equivalent to an amplification
(1⊗M, 1⊗ ρ) of (M,ρ), and therefore π is unitarily equivalent to an amplification
of M . �



CHAPTER 8

Towards Katayama duality

The theory of crossed products by Hecke pairs we have developed is intended
for applications in non-abelian crossed product duality. We have already taken the
first step in this direction, having established a Stone-von Neumann theorem for
Hecke pairs which reflects the results of an Huef, Kaliszewski and Raeburn [9]. We
believe that this theory of crossed products by Hecke pairs can be further applied
and bring insight into the emerging theory of crossed products by coactions of
homogeneous spaces ([5], [4]). The basic idea here is to obtain duality results for
“actions” and “coactions” of homogeneous spaces (those coming from Hecke pairs).

In this chapter we will explain how our construction of a crossed product of
a Hecke pair seems very suitable for obtaining a form of Katayama duality for
homogeneous spaces arising from Hecke pairs, with respect to what we would call
the Echterhoff-Quigg crossed product. This is work in progress and we have nearly
finished a paper where we show this duality. The goal of this chapter is merely to
show that our setup is suitable for obtaining such a duality result.

Let δ be a coaction of a discrete group G on a C∗-algebra B and B ×δ G the
corresponding crossed product. We follow the conventions and notation of [5] for
coactions and their crossed products. As it is known, there is an action δ̂ of G on
B ×δ G, called the dual action, determined by

δ̂s
(
jB(a)jG(f)

)
:= jB(a)jG(σs(f)) , ∀a ∈ B, f ∈ C0(G), s ∈ G ,

where σ denotes the action of right translation on C0(G), i.e. σs(f)(t) := f(ts).
Katayama’s duality theorem (the original version comes from [12, Theorem 8])

is an analogue for coactions of the duality theorem of Imai and Takai. A general
version of it states that we have a canonical isomorphism

(B ×δ G)×δ̂,ω G ∼= B ⊗K(`2(G)) ,(8.1)

for some C∗-completion of the ∗-algebraic crossed product (B ×δ G) ×alg
δ̂

G. This
C∗-completion (B ×δ G) ×δ̂,ω G lies in between the full and the reduced crossed
products, and the coaction δ is called maximal (respectively, normal) if this C∗-
crossed product is the full (respectively, the reduced) crossed product.

We would like to extend this duality result for coactions of homogeneous spaces
G/Γ. In this spirit we should obtain an isomorphism of the type

(B ×δ G/Γ)×δ̂,ω G/Γ ∼= B ⊗K(`2(G/Γ)) .(8.2)

Of course, the expression on the left hand side makes no sense unless Γ is normal in
G (in which case, the above is just Katayama’s result), and there are a few reasons
for that. First, it does not make sense in general for a homogeneous space to coact
on a C∗-algebra, which consequently makes it difficult to give meaning to B×δG/Γ.
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Secondly, it also does not make sense in general for a homogeneous space G/Γ to
act (namely, by δ̂) on a C∗-algebra.

The second objection can be overcome by simply using our definition of a
crossed product by (an “action” of) a Hecke pair (G,Γ). The first objection can be
overcomed because, even though there is no definition of a coaction of a homoge-
neous space, it is possible to define C∗-algebras B×δ G/Γ which can be thought of
as crossed products of B by a coaction of G/Γ ([5], [4]). In this way the iterated
crossed product in expression (8.2) may have a true meaning. This is the approach
we suggest towards a generalization of Katayama’s result.

It is our point of view that such a Katayama duality result can hold when B×δ
G/Γ is a certain C∗-completion of the algebra Cc(B ×G/Γ) defined by Echterhoff
and Quigg in [5]. The full completion C∗(B × G/Γ) has already been dubbed the
Echterhoff and Quigg’s crossed product by the restricted coaction of G/Γ in [9] (in
case we start with a maximal coaction of G on B).

In the remaining part of this chapter we will show that the Echterhoff and
Quigg’s algebra Cc(B × G/Γ) falls in our set up for defining crossed products by
Hecke pairs. In other words, we will show that it makes sense to define the crossed
product Cc(B ×G/Γ)×alg

δ̂
G/Γ by the dual action δ̂ of the Hecke pair (G,Γ).

We recall briefly the construction of Echterhoff and Quigg, and the reader is
advised to read our Example 2.2.3 again. We start with a coaction δ of a discrete
group G on a C∗-algebra B, and we denote by B its associated Fell bundle. Fol-
lowing [6, Section 3] we denote by B × G the corresponding Fell bundle over the
groupoid G×G. Elements of B×G have the form (bs, t), with bs ∈ Bs and s, t ∈ G.
Any such element lies in the fiber (B ×G)(s,t) over (s, t) ∈ G×G.

We recall that the multiplication and inversion in G×G are given by

(s, tr)(t, r) = (st, r) and (s, t)−1 = (s−1, st) ,

and the corresponding multiplication and involution on B ×G are given by

(bs, tr)(ct, r) = ((bc)st, r) and (bs, t)
−1 = (b∗s−1 , st) .

An important property of Cc(B × G/Γ) is that it embeds densely in the coaction
crossed product B ×δ G, by identifying (as, t) with jB(a)jG(1t). In this setting we
have that B ×δ G ∼= C∗(B ×G) ∼= C∗r (B ×G), as stated in [6, Corollary 3.4].

The dual action δ̂ ofG onB×δG is determined by δ̂g(jB(a)jG(1t)) = jB(a)jG(1tg−1),
which on the generators of Cc(B ×G) means

δ̂g(as, t) := (as, tg
−1) .(8.3)

Now let H ⊆ G be a subgroup. Following [5], one can define a Fell bundle
B × G/H over the groupoid G × G/H. We recall from [5] that the operations on
the groupoid G×G/H are defined by

(s, trH)(t, rH) = (st, rH) and (s, tH)−1 = (s−1, stH) ,

and the corresponding operations on the Fell bundle B ×G/H are defined by

(bs, trH)(ct, rH) = ((bc)st, rH) and (bs, tH)−1 = (bs−1 , stH) .

The Echterhoff and Quigg algebra is defined as the algebra Cc(B×G/H) of finitely
supported sections of this Fell bundle.
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Let us now consider the case of a Hecke pair (G,Γ) to see that the conditions
of our definition of crossed products by Hecke pairs are met, and see that it makes
sense to define Cc(B ×G/Γ)×alg

δ̂
G/Γ.

For this we take the bundle A := B × G over the groupoid X := G × G, as
above. We observe that there is a natural G-action δ̂ on A given by (8.3), which of
course gives precisely the dual action of G on Cc(A). This action also entails the
canonical right action of G on the groupoid X, given by

(s, t)g := (s, tg) .(8.4)

Since this action is free, it is H-good and satisfies the H-intersection property for
any subgroup H ⊆ G. Moreover, the orbit groupoid X/H is canonically identified
with the groupoid G × G/H, simply by (s, t)H 7→ (s, tH). This canonical identi-
fication is easily seen to be a groupoid isomorphism, so that X/H and G × G/H
are “the same” groupoid. Under this identification, the Fell bundle A/H is just
the Fell bundle B×G/H, and therefore we can canonically identify Cc(A/H) with
Cc(B ×G/H).

We can now conclude that all our conditions are met and therefore we can
define the ∗-algebraic crossed product Cc(B×G/Γ)×alg

δ̂
G/Γ. We expect that there

is a C∗-completion of the Echterhoff and Quigg algebra Cc(B × G/Γ), which we
would like to call the Echterhoff and Quigg’s crossed product, for which a form of
Katayama duality as in (8.2) holds.
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