Crossed products by Hecke pairs

Rui Palma

Author address:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OsLo, P.O. Box 1053
BLINDERN, NO-0316 OsLO, NORWAY
E-mail address: ruip@math.uio.no






To my parents






Contents

Introduction

Chapter 1. Preliminaries
1.1. *-Algebras and (pre-)*-representations
1.2. *-Algebraic multiplier algebras
1.3. Hecke algebras
1.4. Fell bundles over discrete groupoids

Chapter 2. Orbit space groupoids and Fell bundles
2.1.  Group actions on Fell bundles
2.2. Examples
2.3. The algebra M(C.(A))

Chapter 3. *-Algebraic crossed product by a Hecke pair
3.1. Definition of the crossed product and basic properties
3.2. Basic Examples
3.3. Representation theory
3.4. More on covariant pre-*-representations
3.5.  Crossed product in the case of free actions

Chapter 4. Direct limits of sectional algebras
4.1. Reduced completions C(A/H)
4.2. Maximal completions C*(A/H)

Chapter 5. Reduced C*-crossed products
5.1. Regular representations
5.2. Reduced C*-crossed products
5.3. Alternative definition of C(A/T') X, G/T
5.4. Comparison with Laca-Larsen-Neshveyev construction

Chapter 6. Other completions
6.1. Full C*-crossed products
6.2. L'-norm and associated C*-completion

Chapter 7. Stone-von Neumann theorem for Hecke pairs
Chapter 8. Towards Katayama duality

Bibliography

Symbol Index

Word Index

— =
O = 3 Ut Ut

23

33
34

43
43
99
61
(0]
7

83
87
92

99
99
104
114
117

123
123
125

129
133
137
139
141






Abstract

We develop a theory of crossed products by actions of Hecke pairs (G,T),
motivated by applications in non-abelian C*-duality. Our approach gives back the
usual crossed product construction whenever G/T" is a group and retains many of
the aspects of crossed products by groups. We start by laying the *-algebraic foun-
dations of these crossed products by Hecke pairs and exploring their representation
theory, and then proceed to study their different C*-completions. We establish that
our construction coincides with that of Laca, Larsen and Neshveyev [15] whenever
they are both definable and, as an application of our theory, we prove a Stone-
von Neumann theorem for Hecke pairs which encompasses the work of an Huef,
Kaliszewski and Raeburn [9].
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Introduction

The goal of the present work is to develop a theory of crossed products by
Hecke pairs with a view towards applications in non-abelian C*-duality.

A Hecke pair (G,T) consists of a group G and a subgroup I' C G for which
every double coset I'¢gI" is the union of finitely many left cosets. In this case I' is
also said to be a Hecke subgroup of G. Examples of Hecke subgroups include finite
subgroups, finite-index subgroups and normal subgroups. It is in fact many times
insightful to think of this definition as a generalization of the notion of normality
of a subgroup.

Given a Hecke pair (G,T") the Hecke algebra H(G,T') is a *-algebra of functions
over the set of double cosets I'\G/I', with a suitable convolution product and in-
volution. It generalizes the definition of the group algebra C(G/T') of the quotient
group when I is a normal subgroup.

Heuristically, a crossed product of an algebra A by a Hecke pair (G,T") should
be thought of as a crossed product (in the usual sense) of A by an “action” of G/T.
The quest for a sound definition of crossed products by Hecke pairs may seem
hopelessly flawed since G/T" is not necessarily a group and thus it is unclear how it
should “act” on A. It is the goal of this article to show that in some circumstances
such a definition can be given in a meaningful way, recovering the original one
whenever G/ is a group.

The term “crossed product by a Hecke pair” was first used by Tzanev [22] in
order to give another perspective on the work of Connes and Marcolli [3]. This
point of view was later formalized by Laca, Larsen and Neshveyev in [15], where
they defined a C*-algebra which can be interpreted as a reduced C*-crossed product
of a commutative C*-algebra by a Hecke pair.

It seems to be a very difficult task to define crossed products of any given
algebra A by a Hecke pair, and for this reason we set as our goal to define a crossed
product by a Hecke pair in a generality that will cover the following aspects:

e existence of a canonical spanning set of elements in the crossed product;

e possibility of defining covariant representations;

e the Hecke algebra must be a trivial example of a crossed product by a
Hecke pair;

e the classical definition of a crossed product must be recovered whenever
G/T is a group;

e our construction should agree with that of Laca, Larsen and Neshveyev,
whenever they are both definable;

e our definition should be suitable for applications in non-abelian C*-duality.

We develop a theory of crossed products of certain algebras A by Hecke pairs
which takes into account the above requirements. Our approach makes sense when
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2 INTRODUCTION

A is a certain algebra of sections of a Fell bundle over a discrete groupoid. To
summarize our set up: we start with a Hecke pair (G,T'), a Fell bundle A over a
discrete groupoid X and an action « of G on A satisfying some “nice” properties.
From this we naturally give the space A/T of I'-orbits of A a Fell bundle structure
over the orbit space X/T", which under our assumptions on the action « is in fact
a groupoid. We can then define a *-algebra

C.(A/T) x9 GJT,

which can be thought of as the crossed product of C.(A/T') by the Hecke pair
(G,T). We should point out that a crossed product for us is simply a *-algebra,
which we can then complete with different C*-norms or an L'-norm. Hence, and so
that no confusion arises, the symbol x*9 will always be used when talking about
the (uncompleted) *-algebraic crossed product.

Our construction gives back the usual crossed product construction when I is
a normal subgroup of G. Moreover, given any action of the group G/T" on a Fell
bundle B over a groupoid Y, the usual crossed product C.(B) x%9 G/T' can be
obtained via our setup as a crossed product by the Hecke pair (G,T").

Many of the features present in crossed products by discrete groups carry over
to our setting. For instance, the role of the group G/T is played by the Hecke algebra
H(G,T), which embeds in a natural way in the multiplier algebra of C.(A/T") x4
G/T. Additionally, just like a crossed product A x G by a discrete group is spanned
by elements of the form a* g, with a € A and g € G, our crossed products by Hecke
pairs also admit a canonical spanning set of elements.

The representation theory of crossed products by Hecke pairs also has many
similarities with the group case, but some distinctive new features arise. For in-
stance, as it is well-known in the group case, there is a bijective correspondence
between nondegenerate representations of a crossed product A x G and the so-
called covariant representations of A and G, which are certain pairs of unitary
representations of G and representations of A. We will show that something com-
pletely analogous occurs for Hecke pairs, but in this case one is obliged to consider
pre-representations of the Hecke algebra, i.e. representations of H(G,T') as (possi-
bly) unbounded operators. This consideration was unnecessary in the group case
because unitary operators are automatically bounded.

In the second half of the present article we will study the different C*-completions
of our *-algebraic crossed products by Hecke pairs, with special emphasis on the
reduced case which is technically more challenging to define, and explore some
connections with non-abelian C*-duality.

Reduced C*-crossed products by groups are defined via the so-called regular
representations. We will introduce a notion of a regular representation in the Hecke
pair case by using the regular representation of the Hecke algebra on ¢2(G/T'). The
main novelty here is that we will have to start with a representation of a certain
direct limit of algebras of the form C.(A/H), where H is a finite intersection of
conjugates of the Hecke subgroup I'. In case I' is normal, this direct limit is simply
C.(A/T) itself and we recover the usual notion of a covariant representation.

From regular representations it is then possible to define reduced C*-crossed
products. Since the algebra C.(A/T") admits several C*-completions there are sev-
eral reduced C*-crossed products that one can form, as for example C}(A/T) X,
G/T and C*(A) x4, G/T, each of these thought of as the reduced C*-crossed prod-
uct of C}(A/T), respectively C*(A/T"), by the Hecke pair (G,T"). These reduced
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C*-crossed products have always a faithful conditional expectation onto C}(A/T)
(respectively, C*(A/T)), a property that determines the reduced crossed product
uniquely, just like in the case of groups.

Our construction of reduced C*-crossed products by Hecke pairs is different
from that of Laca, Larsen and Neshveyev in [15], being more particular in some
sense (since we treat only discrete spectrum), but also more general (since it makes
sense for certain non-commutative C*-algebras). What we are going to show is that
both constructions agree whenever they are both definable.

Complementing the reduced setting, one would like to form different full C*-
crossed products, as for example C*(A/T) X, G/T and C*(A/T) x, G/T, but in
general their existence is not assured. They will always exist, however, if the Hecke
algebra is a BG*-algebra, which is a property that is satisfied by several classes of
Hecke pairs, including most of those studied in the literature for which a full Hecke
C*-algebra is known to exist (see [17]).

This theory of crossed products by Hecke pairs is intended for applications in
non-abelian duality theory. We develop completely a Stone-von Neumann type
theorem for Hecke pairs which encompasses the work of an Huef, Kaliszewski and
Raeburn [9], and we envisage for future work a form of Katayama duality with
respect to Echterhoff-Quigg’s “crossed product” [5].

The Stone-von Neumann theorem, in the language of crossed products by
groups, states that for the action of translation of G on Cy(G) we have

Co(G) x G = Co(G) x, G = K(2(G)).

In [9] an Huef, Kaliszweski and Raeburn introduced the notion of covariant pairs of
representations of Cy(G/T") and H(G,T'), for a Hecke pair (G, T"), and proved that all
covariant pairs are amplifications of a certain “regular” covariant pair. Their result
was proven without using or defining crossed products, and can also be thought
of as a Stone-von Neumann theorem for Hecke pairs. Using our construction we
express their result in the language of crossed products. We will show that the full
crossed product Cyo(G/T") x G/T" always exists and one has

Co(G/T) x GJT 22 Co(G/T) x, G/T = K((2(G/T)).

Moreover, our notion of a covariant representation coincides with the notion of a
covariant pair of [9], and an Huef, Kaliszewski and Raeburn’s result follows as a
direct corollary of the above isomorphisms.

Our construction was very much influenced and developed with the wish of
obtaining a form of Katayama duality for homogeneous spaces (those arising from
Hecke pairs). Even though this has been left for future work, we shall nevertheless
explain in Chapter 8 what we have in mind and how our set up is suitable for
tackling this problem.

Katayama’s duality theorem [12] is an analogue for coactions of the duality
theorem of Imai and Takai. One version of it states the following: given a coaction
0 of a group G on a C*-algebra A and denoting by A xsG the corresponding crossed
product, we have a canonical isomorphism A x5 G x5 G = A® K(£3(@)), for some

crossed product by the dual action 5 of G. We would like to extend this result
to homogeneous spaces coming from Hecke pairs. In spirit we hope to obtain an
isomorphism of the type:

AxsGJT x5, GIT = Ao K((G)T)).
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The C*-algebra A x5 G/T should be a crossed product by a coaction of the ho-
mogeneous space G/T", while the second crossed product should be by the “dual
action” of the Hecke pair (G,T") in our sense. It does not make sense in general
for a homogeneous space to coact on a C*-algebra, but it is many times possible
to define C*-algebras which can be thought of as crossed products by coactions of
homogeneous spaces ([4], [5]).

It is our point of view that A x5 G/I' should be a certain C*-completion of
the *-algebra C.(A x G/T") defined by Echterhoff and Quigg [5], which we dub the
Echterhoff and Quigg’s crossed product (a terminology used in [9] for C*(A x G/T)
in case of a maximal coaction). We explain in Chapter 8 how our set up for defining
crossed products by Hecke pairs is suitable for achieving such a Katayama duality
result for Echterhoff and Quigg’s crossed product, and can therefore bring insight
into the emerging theory of crossed products by coactions of homogeneous spaces.

This article is organized as follows. In Chapter 1 we set up the conventions and
preliminary results to be used in the rest of the article.

Chapter 2 is dedicated to the development of the required set up for defining
crossed products by Hecke pairs. Here we explain what type of actions are involved,
how to define the orbit space groupoids X/H and the orbit bundles A/H out of
A, and how all the algebras C.(A/H) are related with each other for different
subgroups H C G.

In Chapter 3 we introduce the notion of a crossed product by a Hecke pair,
explore some of its algebraic aspects and develop its representation theory. In the
last part of this chapter we show how many of the formulas become much simpler
in the case of free actions.

The direct limits of sectional algebras, crucial for defining regular representa-
tions, are defined in Chapter 4.

In Chapter 5 we define regular representations and reduced C*-crossed products
by Hecke pairs. The comparison between our approach and that of Laca, Larsen
and Neshveyev is done in Section 5.4.

Full C*-crossed products and other C*-completions are discussed in detail in
Chapter 6.

The last two chapters of the present article are devoted to the applications in
non-abelian C*-duality. In Chapter 7 we establish the Stone-von Neumann theorem
for Hecke pairs and relate it to the work of an Heuf, Kaliszewski and Raeburn, while
in Chapter 8 we explain how our setup is well adapted for establishing a Katayama
duality result for Hecke pairs.

The present work is based on the author’s Ph.D. thesis [16] written at the
University of Oslo. There are a few differences between the present work and [16],
notably the greater generality of the types of actions involved. This improvement
follows a suggestion of Dana Williams and John Quigg.

The author would like to thank his advisor Nadia Larsen for the very helpful
discussions, suggestions and comments during the elaboration of this work. A word
of appreciation goes also to John Quigg, Dana Williams and Erik Bédos for some
very helpful comments. Lastly, the author would like to thank the referee for having
raised interesting questions on some of the assumptions we make in this work, and
also for the various comments directed at improving this work both in content and
presentation.



CHAPTER 1

Preliminaries

In this chapter we set up the conventions, notation, and background results
which will be used throughout this work. We indicate the references where the
reader can find more details, but we also provide proofs for those results which we
could not find in the literature.

CONVENTION. The following convention for displayed equations will be used
throughout this work: if a displayed formula starts with the equality sign, it should
be read as a continuation of the previously displayed formula.

A typical example takes the following form:

(expression 1) = (expression 2)

= (expression 3).
By Theorem A and Lemma B it then follows that

= (expression 4)

= (expression 5).

Under our convention starting with the equality sign in the second array of
equations simply means that (expression 3) is equal to (expression 4).

1.1. *-Algebras and (pre-)*-representations

Let ¥ be an inner product space over C. Recall that a function T': ¥ — ¥ is
said to be adjointable if there exists a function T7* : ¥ — ¥ such that

(T€, ) = (&, Tn),

for all £, € ¥. Recall also that every adjointable operator T is necessarily linear
and that 7™ is unique and adjointable with T** = T. We will use the following
notation:

e L(7) denotes the *-algebra of all adjointable operators in ¥
e B(7') denotes the *-algebra of all bounded adjointable operators in ¥

Of course, we always have B(¥") C L(¥'), with both *-algebras coinciding when ¥
is a Hilbert space (see, for example, [19, Proposition 9.1.11]).
Following Palmer ([18],[19]) we will use the following definitions:
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DEFINITION 1.1.1 ([19], Def. 9.2.1). A pre-*-representation of a *-algebra A on
an inner product space ¥ is a *-homomorphism 7 : A — L(¥). A *-representation
of A on a Hilbert space % is a *-homomorphism 7 : A — B(J¢).

DEFINITION 1.1.2 ([18], Def. 4.2.1). A pre-*-representation 7 : A — L(¥) is
said to be normed if w(A) C B(¥), i.e. if w(a) is a bounded operator for all a € A.

DEFINITION 1.1.3 ([19], Def. 10.1.17). A *-algebra A is called a BG*-algebra
if all pre-*-representations of A are normed.

We now introduce our notion of an essential ideal. Our definition is not the
usual one, but this choice of terminology will be justified in what follows.

DEFINITION 1.1.4. Let A be a *-algebra. An ideal I C A is said to be essential
if al # {0} for all a € A\ {0}.

The usual definition of an essential ideal states that I is essential if it has
nonzero intersection with every other nonzero ideal. Our definition is stronger, but
coincides with the usual one for the general class of semiprime *-algebras. Before
we prove this result we recall the definition of this class of *-algebras:

DEFINITION 1.1.5 ([18], Definition 4.4.1). A *-algebra is said to be semiprime
if aAa = {0} implies a = 0, where a € A.

The class of semiprime *-algebras is quite large, containing all *-algebras that
have a faithful *-representation on a Hilbert space (in particular, all C*-algebras)
and many other classes of *-algebras (see [19, Theorem 9.7.21]).

PRrROPOSITION 1.1.6. Let A be an algebra and I C A a nonzero ideal. We have

i) If I is essential, then I has a nonzero intersection with every other nonzero
ideal of A.

il) The converse of i) is true in case A is semiprime.

Proof: i) Let I be an essential ideal of A. Let J C A be a nonzero ideal and
a € J\ {0}. Since a is nonzero, then al # {0}. Hence, J I # {0}, and since
J-ICJnNI, wehave JNI # {0}.

i1) Suppose A is semiprime. Suppose also that I is not essential. Thus, there
is a € A\ {0} such that al = {0}. Let J, C A be the ideal generated by a. We
have J, - I = {0}. Since (J,N1)? C J, - I we have (J, N1)? = {0}. Since A is
semiprime this implies that J, NI = {0} (see [18, Theorem 4.4.3]). Hence, I has
zero intersection with a nonzero ideal. (]

For C*-algebras the focus is mostly on closed ideals. In this setting we still see
that our definition is equivalent to the usual one (|21, Definition 2.35]):
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PROPOSITION 1.1.7. Let A be a C*-algebra and I C A a closed ideal. The
following are equivalent:

i) I is essential.
ii) I has nonzero intersection with every other nonzero ideal of A.
ili) I has nonzero intersection with every other nonzero closed ideal of A.

Proof: i) <= ii) This was established in Proposition 1.1.6, since C*-algebras
are automatically semiprime.

1) = i41) This is obvious.

ii) <= iii) Let J be a nonzero ideal of A and J its closure. From iii) we
have I N.J # {0}. Since I and J are both closed, and A is a C*-algebra, we have
I-J=1nJ. Now, it is clear that I - J = {0} if and only if I - J = {0}. Hence, we
necessarily have I -.J # {0}, which implies I N J # {0}. O

We now introduce the notion of an essential *-algebra. The class of essential
*-algebras seems to be the appropriate class of *-algebras for which one can a define
a multiplier algebra (as we shall see in Section 1.2).

DEFINITION 1.1.8. A *-algebra A is said to be essential if A is an essential
ideal of itself, i.e. if aA # {0} for all a € A\ {0}.

Any unital *-algebra is obviously essential. Also, it is easy to see that a
semiprime *-algebra is essential. The converse is false, so that essential *-algebras
form a more general class than that of semiprime *-algebras:

EXAMPLE 1.1.9. Let C[X] be the polynomial algebra in one selfadjoint variable
X. For any n > 2 the algebra C[X]/(X™) is essential, because it is unital, but it is

not semiprime because [ X" 1] ((C[X]/(X”)) [X"=1] = {0}.

1.2. *-Algebraic multiplier algebras

Every C*-algebra can be embedded in a unital C*-algebra in a “maximal” way.
These maximal unitizations of C*-algebras enjoy a number of useful properties and
certain concrete realizations of these algebras are commonly referred to as multiplier
algebras. The reader is referred to [21] for an account.

The definition of a multiplier algebra is quite standard in C*-algebra theory,
but this notion is in fact more general and applicable for more general types of
rings and algebras. For example, in [1, Section 1.1] it is explained how multiplier
algebras can be defined for semiprime algebras.

In this section we are going to generalize this notion to the context of essential
*-algebras and derive their basic properties. We believe that essential *-algebras
are the appropriate class of *-algebras for which one can define multiplier algebras,
since the property aA = {0} = a = 0, which characterizes an essential *-algebra,
is constantly used in proofs.
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Multiplier algebras are many times defined via the so-called double centralizers
(see for example [1]), but since we are only interested in algebras with an involu-
tion a slightly simpler and more convenient approach can be given, analogue to the
Hilbert C*-module approach to C*-multiplier algebras (presented in [21, Section
2.3]). This is the approach we follow.

DEFINITION 1.2.1. Let C be a subclass of *-algebras. A *-algebra A € C is said
to have a mazimal unitization in C if there exists a unital *-algebra B € C (called
the mazimal unitization of A) and a *-embedding i : A — B for which (A) is an
essential ideal of B and such that for every other *-embedding j of A as an essential
ideal of a unital *-algebra C' € C, there is a unique *-homomorphism ¢ : C' — B
such that
B
A

/ ,

comimutes.

LEMMA 1.2.2. In the above diagram the *-homomorphism ¢ is always injective
(even if C was not unital).

Proof: We have that j(A4) NKer ¢ = {0}, because if j(a) € j(A) NKer ¢, then
0 = ¢(j(a)) =i(a) and hence a = 0 and therefore j(a) = 0. Hence, since j(A) is an
essential ideal of C, it follows from Proposition 1.1.6 7) that Ker¢ = {0}. O

For C*-algebras, one might expect to replace “ideal” by “closed ideal”, in Def-
inition 1.2.1. This condition, however, follows automatically since i(A) and j(A)
are automatically closed. Hence, this definition encompasses the usual definition of
a maximal unitization for a C*-algebra.

DEFINITION 1.2.3. Let A be a *-algebra. By a right A-module we mean a vector
space X together with a mapping X x A — X satisfying the usual consistency con-
ditions. An A-linear mapping T : X — Y between A-modules is a linear mapping
between the underlying vector spaces such that T'(za) = T'(z)a, for all z € X and
a € A. We will often use the notation Tz, instead of T'(x).

Every *-algebra A is canonically a right A-module, with the action of right
multiplication. This is the example we will use thoroughly in what follows.
Let {-,-)4 : Ax A — A be the function

(a,bys :=a"b.
The function (-,-)4 is an A-linear form, in the sense that the following properties
are satisfied:
a) (a, AMbi + Asba)a = Ai{a,bi)a + Aa(a, b2) 4,
b) (Aa1 + Az2az, b)a = Ai{a1,b)a + A2(az,b)a,
¢) (a,bc)a = (a,b)ac,



1.2. *~ALGEBRAIC MULTIPLIER ALGEBRAS 9

d) (ac,b)a = c*{a,b)a,
e) (a,0)4 = (b,a)a,
for all a,aq,a92,b,b1,bs € A and A\, Ay € C.

If the *-algebra A is essential we also have:
f) If (a, )4 =0forall b€ A, thena=0.

DEFINITION 1.2.4. Let A be a *-algebra. A function T : A — A is called
adjointable if there is a function T* : A — A such that

(T(a),bya = {a,T*(b))a,
for all a,b € A.

PROPOSITION 1.2.5. If A is an essential *-algebra, then every adjointable map

T: A — Ais A-linear. Moreover, the adjoint T* is unique and adjointable with
T =T.

Proof: Let T be an adjointable map in A and z1,z2,y € A. We have

(T(Mz1 + Xow2), y)a = (Azy + Xz, T7(y))a
= Az, T*(y)a+ A (z2, T"(y))a
A (T (1), y)a+ A2 (T(22) , y)a
= (MT(z1) +XoT(22), y)a .
Hence, we have (T'(A1xz1 + Aexo) — MT(x1) + AT (x2), y)a = 0. We can then

conclude from f) that

T(Mx1 + dexa) — M T (z1) + )\QT(.%'Q) =0,

i.e. T is a linear map.

Let us now check that 7" is A-linear. For any z,y,a € A we have

(T(za), y)a = (za,T*(y))a=a"(x,T"(y))a
a*(T'(x), y)a = (T'(x)a, y)a.

Hence, we have (T'(za) — T'(z)a, y)a = 0. We can then conclude from f) that
T(xa) — T(x)a =0, i.e. T is A-linear.

Let us now prove the uniqueness of the adjoint 7. Suppose there was a function
S : A — A such that

<$= T*(y)>A = <$L’, S(y)>A

for all z,y € A. Then, (T*(y) — S(y), )4 = 0. We can then conclude from f) that
T*(y) — S(y) =0,ie. T*=S.

It remains to prove that 7™ is adjointable with 7** = T. This follows easily
from the equality

(T2, y)a =y, T"x)y = (Ty, x)% = (2, Ty)a .
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DEFINITION 1.2.6. Let A be an essential *-algebra. The set of all adjointable
maps on A is called the multiplier algebra of A and is denoted by M (A).

The multiplier algebra is in fact a *-algebra, and the proof of this fact is stan-
dard.

PROPOSITION 1.2.7. Let A be an essential *-algebra. The multiplier algebra of
A is a unital *-algebra with the sum and multiplication given by pointwise sum and
composition (respectively), and the involution given by the adjoint.

PROPOSITION 1.2.8. Let A be an essential *-algebra. There is a *-embedding
L:A— M(A) of A as an essential ideal of M(A), given by

ar L,

where L, : A — A is the left multiplication by a, i.e. Lo(b) := ab.

Proof: 1t is easy to see that, for every a € A, L, is adjointable with adjoint
Lg«, thus the mapping L is well-defined. Also clear is the fact that L is a *-
homomorphism. Let us prove that it is injective: suppose L, = 0 for some a € A.
Then, for all b € A we have ab = L,b = 0 and since A is essential this implies a = 0.
Thus, L is injective.

It remains to prove that L(A) is an essential ideal of M (A). Let us begin by
proving that it is an ideal. Let T € M(A). For every a,b € A we have

TLa(b) = T(ab) = T(a)b = LTa(b) )

and also
L,T(b) = aT(b)={a*,T(h))
= (T"(a"),b) = (T"(a"))"b
= L(peq~)~(b).

Hence we have
(11) TLa = LTa and LaT = L(T*a*)* R

from which it follows easily that L(A) is an ideal of M (A).

Let us now prove that this ideal is essential. Let T" € M(A) be such that
TL(A) = {0}. Then, in particular, TL, = 0 for all a € A, but as we have seen
before TL, = Lt,, and since L is injective we must have Ta = 0 for all a € A, i.e
T=0. O

REMARK 1.2.9. According to Proposition 1.2.8, an essential *-algebra A is
canonically embedded in its multiplier algebra M (A). We will often make no dis-
tinction of notation between A and its embedded image in M (A), i.e. we will often
just write a to denote an element of A and to denote the element L(a) of M(A).
No confusion will arise from this because the left equality in (1.1) simply means, in
this notation, that T - a = T'(a).
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THEOREM 1.2.10. Let A be an essential *-algebra and L : A — M(A) the
canonical *-embedding of A in M(A). If j : A — C is a *-embedding of A as an
ideal of a *-algebra C, then there exists a unique *-homomorphism ¢ : C — M(A)
such that the following diagram commutes

Moreover, if j(A) is essential then ¢ is injective.

Proof: For simplicity of notation let us assume, without any loss of generality,
that A itself is an ideal of a *-algebra C, so that we avoid any reference to j (or its
inverse). Let ¢ : C'— M (A) be the function defined by

dc): A= A

o(c)a = ca,
for every ¢ € C. It is a straightforward computation to check that ¢(c) € M(A)
and that ¢ itself is a *-homomorphism. It is also easy to see that ¢(a) = L,, for
every a € A. Hence, o j = L. Let us now prove the uniqueness of ¢ relatively

to this property. Suppose ¢ : C — M(A) is another *-homomorphism such that
¢oj= L. Then, for all c € C and a € A we have

(¢(c) = d()La = G(e)La — d(c)Lq

= ¢(c)o(a) — ¢(c)o(a)

= ¢(ca) — ¢(ca)

= Lca - Lca

0.
Since L(A) is an essential ideal of M(A) it follows that ¢(c) = ¢(c) for all ¢ € C,
ie. ¢ = .
The last claim of the theorem, concerning injectivity of ¢, was proven in Lemma

1.2.2. 0

COROLLARY 1.2.11. The multiplier algebra M(A) is a mazimal unitization of
A in the class of: essential *-algebras, semiprime *-algebras and C*-algebras.

Proof: By Theorem 1.2.10 we only need to check that if A is an essential
*-algebra (respectively, semiprime *-algebra or C*-algebra), then the multiplier
algebra has the same property.

Suppose A is an essential *-algebra. Let T' € M (A) be such that TM(A) = {0}.
Then, by the embedding of A in M(A) we have Ta =0 for all a € A, i.e. T =0.
Hence, M (A) is also an essential *-algebra.

Suppose A is a semiprime *-algebra. Let T' € M (A) be such that TM(A)T =
{0}. Then, we also have that TL,M(A)TL, = {0} for any a € A, and therefore
LpayM(A)Lpq) = {0}. Thus, in particular, Ly L(A)Lp) = {0}, and since L
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is injective this means that T'(a)AT(a) = {0}. Since A is semiprime we conclude
that T'(a) = 0, and therefore ' = 0. Hence, M (A) is semiprime.
It is well-known that M (A) is a C*-algebra when A is a C*-algebra. O

EXAMPLE 1.2.12. If X is a locally compact space and C.(X) is the *-algebra
of compactly supported continuous functions on X, then the multiplier algebra
M(C.(X)) is the *-algebra C(X) of continuous (possibly unbounded) functions on
X.

An important feature of C*-multiplier algebras is that a nondegenerate *-

representation of A extends uniquely to M(A). This result does not hold in gen-
eral for essential *-algebras. Nevertheless we can still extend a nondegenerate *-
representation of A to a unique pre-*-representation of M (A):

THEOREM 1.2.13. Let A be an essential *-algebra, m: A — B(H) a nondegen-
erate *-representation of A on a Hilbert space € and ¥V C H the dense subspace

YV :=7(A)H =span{n(a) :a € A, £ € H}.
Then there is a unique pre-*-representation
T M(A) = L(V)

such that 7(a) = w(a)|y for every a € A.

Proof: We define the pre-*-representation 7 : M(A) — L(¥) by

n

Zw (ai)&] = ZW(TGi)fm
i=1

i=1

forn € N, a1,...,a, € Aand &1,...,§, € H. Let us first check that 7 is well-
defined. Suppose ZZ ym(ai)§ =307 m(bj)n;. Then, for every z € A we have

W(Z)(i (Ta;)¢ i ) = i (zTa;)&; i (zT);)
= w(zT) (éﬂ a;)&; i )
= 0.

Since the *-representation 7 is nondegenerate we necessarily have

n m

Y w(Ta)é =Y w(Thin; =0,

i=1 j=1

which means that 7(T') is well-defined.
Let us now check that 7(T) € L(¥), i.e. that m(T) is indeed an adjointable
operator in ¥. We will in fact prove that 7(T)* = 7(T™*), which follows from the
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following equality

n m n m

(FD Eomtadt . Sontboms) = 323 (r(Taés, wlbs)n)
= 33t )
— i:i:g m(alT*b;)n;)
= ii m(ai)& , m(T"b;)n;)
_ <§MZ§Z, éw >

It is straightforward to see that 7 is linear, multiplicative and, as we have seen,
7(T*) = 7(T)*, hence 7 is a pre-*-representation of M(A) on 7.
It is also clear that, for any a € A, 7(a) is just m(a) restricted to ¥, because of

the equality

n n n

w(a) Y _m(ai)éi =Y maa;)éi = m(a) Y m(ai;.

i=1 i=1 i=1
Let us now prove the uniqueness of . Suppose ¢ : M(A) — L(¥) is a pre-*-
representation such that ¢(a) = w(a)|y. Then, for every z € A and v € ¥ we
have

()T —F(T) = =

I
-
/N N /N /N
N
N
= 2

I
3

Since the *-representation 7 is nondegenerate, we necessarily have
¢(T)o —7(T)v =0,
which means that ¢(T) = 7(T), i.e. ¢ =T. O

REMARK 1.2.14. Theorem 1.2.13 can be interpreted in the following way: ev-
ery nondegenerate *-representation 7 : A — B(J#) can be extended to M(A) by
possibly unbounded operators, defined on the dense subspace m(A)s7.

DEFINITION 1.2.15. Let A be an essential *-algebra. We will denote by Mp(A)
the subset of M (A) consisting of all the elements T' € M (A) such that 7(T) € B(¥)
for all nondegenerate *-representations 7 : A — B(J), where ¥ := 7(A)S and 7
is the unique pre-*-representation extending 7 as in Proposition 1.2.13.



14 1. PRELIMINARIES

As stated in the next result, Mp(A) is a *-subalgebra of M (A). The advantage
of working with Mp(A) over M(A) is that nondegenerate *-representations of A
always extend to *-representations of Mp(A). Easy examples of elements of Mpg(A)
that might not belong to A are the projections and unitaries of M (A).

PROPOSITION 1.2.16. Let A be an essential *-algebra. The set Mp(A) is a *-
subalgebra of M(A) containing A. Moreover, if m: A — B(J) is a nondegenerate
*-representation of A, then there exists a unique *-representation of Mp(A) on H
that extends .

Proof: Let T,S € Mp(A). Let m : A — B(J) be any nondegenerate *-
representation of A and 7 its extension to L(¥'), in the sense of Theorem 1.2.13,
where ¥ := w(A)s. By definition, 7(T),7(S) € B(¥), and therefore 7(T +
S),m(TS),7(T*) € B(¥), since B(¥) is a *-algebra. Hence, Mp(A4) is a *-
subalgebra of M(A). Moreover, A C Mp(A) since 7(a) = 7(a)|y € B(¥).

Let us now prove the last claim of this proposition. Let 7 : A — B(J#) be a
nondegenerate *-representation and 7 : M (A) — L(¥) its extension as in Theorem
1.2.13. Then we obtain by restriction a pre-*-representation 7 : Mp(A) — L(¥).
By definition of Mp(A) we actually have m(Mp(A)) C B(¥). Hence 7 gives rise
to a *-representation 7 : Mp(A) — B(J), since ¥ is dense in SZ.

Let us now prove the uniqueness claim. Suppose ¢ is another representation of
Mp(A) that extends 7. For T' € Mp(A), a € A and £ € J we have

p(T)m(a)f = o(T)p(a) = @(Ta)f
= w(Ta) = 7(T)7(a)¢.
By linearity and density it follows that o(T) = 7(T), i.e. p =T. O

The above result is a generalization of the well-known result for C*-algebras
which states that any nondegenerate *-representation can be extended to the mul-
tiplier algebra (see for example [21, Corollary 2.51]), because M (A) = Mp(A) for
any C*-algebra A.

EXAMPLE 1.2.17. If X is a locally compact space then Mp(C.(X)) is the *-
algebra Cy(X) of bounded continuous functions on X.

1.3. Hecke algebras

We start by establishing some notation and conventions concerning left coset
spaces and double coset spaces and we prove two results which will be useful later
on.

Let G be a group, B, C subgroups of G and e € G the identity element. The
double coset space B\G/C' is the set

(1.2) B\G/C :={BgC CG:ge€G}.

It is easy to see that the sets of the form BgC are either equal or disjoint, or in
other words, we have an equivalence relation defined in G whose equivalence classes
are precisely the sets BgC.
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The left coset space G/C' is the set
(1.3) G/C :={e}]\G/C={g9C CG:g€G}.

Given an element ¢ € G and a double coset space B\G/C (which can in
particular be a left coset space by taking B = {e}) we will denote by [g] the
double coset BgC'. Thus, [g] denotes the whole equivalence class for which g € G
is a representative.

If A is a subset of G we define the double coset space B\A/C as the set of
double cosets in B\G/C which have a representative in A, i.e.

(1.4) B\A/C :={BaC C G :a € A}.

PrOPOSITION 1.3.1. Let A, B and C be subgroups of a group G. If C' C A, then
the following map is a bijective correspondence between the double coset spaces:
(1.5) B\A/C — (BN A\A/C

[a] — [a].
Similarly, if B C A, then the following map is a bijective correspondence:
(1.6) B\A/C — B\A/(ANC)

[a] — [a] .

Proof: We first need to show that the map (1.5) is well defined, i.e. if Ba;C =
BasC, for some aj,as € A, then (BN A)a;C = (BN A)axC. If Ba;C = BaxC
then there exist b € B and ¢ € C such that a; = base, from which it follows that
b= alc_lagl. Since A is a subgroup and C C A, it follows readily that b € BN A,
and therefore a1 € (BN A)axC, ie. (BN A)a1C = (BN A)asC.

The map defined in (1.5) is clearly surjective. It is also injective because if
(BN A)a1C = (BN A)axC, then clearly Ba,C = BayC.

A completely analogous argument shows that map defined in (1.6) is a bijec-
tion. (Il

Suppose a group G acts (on the right) on a set X and let x € X. We will
henceforward denote by S, the stabilizer of the point z, i.e.
(1.7) Sy ={9€G:x9g=1x}.
Given a subset Z C X and a subgroup H C G we denote by Z/H the set of H-orbits
which have representatives in Z, i.e.
Z/H:={zH :z¢€ Z}.

Suppose now that H, K C G are subgroups and let z € X be a point. The following
result establishes a correspondence between the set of H-orbits (xK)/H and the
double coset space S, \K/H:

PROPOSITION 1.3.2. Let G be a group which acts (on the right) on a set X.
Let x € X be a point and H, K C G be subgroups. We have a bijection

(zK)/H — S;\K/H ,



16 1. PRELIMINARIES

giwen by xgH — S,gH, where g € K.

Proof: Let us first prove that the map xgH — S,gH is well defined, i.e. if
xqnH = xgoH, then S;1H = S,90H. If xg1 H = xgoH, then there exists h € h
such that xg; = xg2h, which implies that z = zg2hg; L from which it follows that
gzhgfl € S;. Thus we see that

SeqrH = Sygohgy 'giH = S,9.H.

We conclude that the map is well-defined. The map is obviously surjective. It is
also injective because if S,g1H = S92 H, then there exists r € S, and h € H such
that g1 = rgoh, from which it follows that zg1 H = xrgohH = xgo. H. O

We will mostly follow [13] and [10] in what regards Hecke pairs and Hecke
algebras and refer to these references for more details.

We start by establishing some notation which will be useful later on. Given a
group G, a subgroup I' C G and g € G, we will denote by I'? the subgroup

(1.8) M :=Tnglg*.

We now recall the definition of a Hecke pair:

DEFINITION 1.3.3. Let G be a group and T' a subgroup. The pair (G,T) is
called a Hecke pair if every double coset I'gI' is the union of finitely many right
(and left) cosets. In this case, I is also called a Hecke subgroup of G.

Given a Hecke pair (G,T') we will denote by L and R, respectively, the left and
right coset counting functions, i.e.

(1.9) L(g) == [TgT/T| = [T : TY] <
(1.10) R(g) == T\I'gl'| =[[: 1Y '] < 00.

We recall that L and R are I-biinvariant functions which satisfy L(g) = R(g™!) for
all g € G. Moreover, the function A : G — Q™ given by

(1.11) Alg) = f%g

is a group homomorphism ([23, Proposition 2.1]), usually called the modular func-
tion of (G,T).

DEFINITION 1.3.4. Given a Hecke pair (G,T'), the Hecke algebra H(G,T) is the
*-algebra of finitely supported C-valued functions on the double coset space I'\G/T'
with the product and involution defined by

(1.12) (fr* f2)(TgD) := > A(TAD) fo(Th™gT),

hTeG/T
(1.13) fH(Tgl) == A(g™") f(Tg~'T).
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Equivalently, we can define H(G,T') as the *-algebra of finitely supported I'-left
invariant functions f : G/T' — C with the product and involution operations given
by

(1.14) (fr* f2)(gD) == Y fa(hD) fo(h™"gT),
RT'€G/T
(1.15) D) == A(g™ ") f(g~'D).

REMARK 1.3.5. Some authors, including Krieg [13], do not include the factor
A in the involution. Here we adopt the convention of Kaliszewski, Landstad and
Quigg [10] in doing so, as it gives rise to a more natural L!'-norm. We note, nev-
ertheless, that there is no loss (or gain) in doing so, because these two different
involutions give rise to *-isomorphic Hecke algebras.

The Hecke algebra has a natural basis, as a vector space, given by the charac-
teristic functions of double cosets. We will henceforward identify a characteristic
function of a double coset 1pgr with the double coset I'gl itself.

The way in which a product of two double cosets is represented as sum of dou-
ble cosets is well understood:

PRrOPOSITION 1.3.6. Let (G,T") be a Hecke pair and g,h € G. We have that

L(g) Alg) 4
Tgl' *xT'hI’ = E —Tgvl' = E —T I.
gt * L(gv) gv L(u—1v) v
[v]eThT/T [u]erg='r/T
[v]eTAD/T

Proof: The proof of the first equality can be found in [10, page 660]. Let us
now prove the second equality. We have

Z A(g) -1 Z Z A(g) —1
[ulerg~r/T [y]eTe~/T [v]€TAL/T
[v]eThl/T

For any v € T" the mapping [v] — [yv] is a bijection of I'hI'/T". Hence

A A(g)L(g™!
> > L((i))FQ”UF > (gL)((U))ngF
[ylers~t /T [v]€LAL/T [v]eThT/T 9
_ L(9) 1w
- 2 g

[v]eThT/T

This proves the second equality. ([l

As it is known, group algebras have two canonical C*-completions, the reduced
group C*-algebra C(G) and the full group C*-algebra C*(G). For Hecke algebras
the situation becomes more complicated, there being essentially four canonical C*-
completions. We will briefly review these completions in this subsection, but first
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we need to recall the definitions and basic facts about regular representations of
Hecke algebras and L'-norms.

DEFINITION 1.3.7. Let (G,T") be a Hecke pair. The mapping p : H(G,T') —
B(¢*(G)T)) defined, for f € H(G,T), £ € EQ(G/F) and gI' € G/T, by

(1.16) (p(f) = Y A(h)? f(TAT)E(ghT),

[hleG/T

is called the right regular representation of H(G,T).

It can be checked that p does define a *-representation of H(G,I'). For the
canonical vectors §,r € £2(G/T'), expression (1.16) becomes:

(1.17) = > Ay g rD)d,r
lgleG/T

and furthermore for f of the form f := I'd[" we obtain:

(1.18) A = 30 AW@Hr = AW i

tICrd-1

It can be easily checked, applying (1.17) to the vector or for example, that p
always defines a faithful *-representation.

One could in a similar fashion define a left regular representation of H(G,T),
but in this work, however, it is the right regular representation the one that will
play a central role.

We now recall the definition of the L!-norm in a Hecke algebra (from [10]):

DEFINITION 1.3.8. The L!'-norm on H(G,T'), denoted || - ||z, is given by
(1.19) Ifllze = >°  [FTgD)|Llg) = > |f(TgD)].
IgTel\G/T gT'eG/T

We will denote by L!(G,T) the completion of H(G,T') under this norm, which is a
Banach *-algebra.

The fact that the L'-norm is *-preserving can be easily seen on the basis ele-
ments I'gT" of H(G,T') and then extended by conjugate-linearity for all elements of
the Hecke algebra:

I(CgD) e = A9y Tl = A(g)L(g™") = 5= R(9)

= L(g) = Tglllz .

There are several canonical C*-completions of H(G,T") ([10], [23]) These are:

e C*(G,TI) - Called the reduced Hecke C*-algebra, it is the completion of
H(G,T) under the C*-norm arising from the right regular representation.
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e pC*(G)p - The corner of the full group C*-algebra C*(G) of the Schlichting
completion (G,T') of the pair (G,T), by the projection p := 1x. We will not
describe this construction here since it is well documented in the literature
(see [23] and [10], for example) and because we will not make use of this
C*-completion in this work.

e C*(L*(G,T)) - The enveloping C*-algebra of L'(G,T).

e C*(G,T) - The enveloping C*-algebra (if it exists!) of H(G,T'). When it
exists, it is usually called the full Hecke C*-algebra.

The various C*-completions of H(G,T") are related in the following way, through
canonical surjective maps:

C*(G,T) -+ C*(L*(G,T)) — pC*(G)p — C:(G,T).

As was pointed out by Hall in [8, Proposition 2.21], the full Hecke C*-algebra
C*(G,T) does not have to exist in general, with the Hecke algebra of the pair
(SL2(Qp), SL2(Zy)) being one such example, where p is a prime number and Q,,
Z,, denote respectively the field of p-adic numbers and the ring of p-adic integers.

1.4. Fell bundles over discrete groupoids

Let X be a discrete groupoid. We will denote by X° the unit space of X and
by s and r the source and range functions X — X, respectively.

We will essentially follow [14] when it comes to Fell bundles over groupoids.
All the groupoids in this work are assumed to be discrete, so that the theory of
Fell bundles admits a few simplifications. Basically a Fell bundle over a discrete
groupoid X consists of:

e a space A together with a surjective map p : A — X, such that each fiber
A, = p~1(x) is a Banach space, for every x € X;

e a multiplication operation between fibers over composable elements of the
groupoid, which we suggestively write as A, - A, C Agy;

e an involution a — a* which takes A, onto A,-1.

These operations and norms satisfy some consistency properties which we now
describe (see [14, Section 2]):

e The multiplication operation A, x A, — A, is bilinear, for all compos-
able elements of the groupoid z,y € X.
e Multiplication is associative whenever it is defined.
o |[ab]| < |a]|||b]| for all a,b € A where multiplication is defined.
e The involution map A, — A,-1 is conjugate linear, and satisfies a** = a
and (ab)* = b*a*, for every a,b € A where multiplication is defined.
e |la*a| = ||a|? for any a € A.
e a*a>0forall a € A
As it is well-known, it follows from the above conditions (without the last one)
that each fiber over a unit element is naturally a C*-algebra. This is why the last
condition regarding positivity makes sense and that is how it should be interpreted.

STANDING ASSUMPTION 1.4.1. Given a Fell bundle A over a discrete groupoid
X we will always assume that the fibers over units are non-trivial, i.e. A, # {0}
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for all v € XO.

Assumption 1.4.1 is not very restrictive. In fact, removing from the groupoid
X all the units u € X° for which A, = {0} and also all the elements z € X such
that s(z) or r(z) is u, we obtain a subgroupoid Y for which the assumption holds
(relatively to the restriction Aly of A to Y'). Moreover, and this is the important
fact, the algebras of finitely supported sections (see Definition 1.4.4) are canonically
isomorphic, i.e. C.(Aly) =2 C.(A).

The reason for us to follow Assumption 1.4.1 is because it will make our the-
ory slightly simpler. Since we are interested mostly in algebras of sections, this
assumption does not reduce the generality of the work in any way, as we observed
in the previous paragraph.

DEFINITION 1.4.2. Let A be a Fell bundle over a discrete groupoid X. An
automorphism of A is a bijective map 5 : A — A which preserves the bundle
structure, i.e. such that

i) B takes any fiber onto another fiber;

ii) B takes fibers over composable elements of X to fibers over composable

elements;

ili) As a map between (two) fibers, 3 is a linear map;

iv) B(a-b) = B(a) - B(b), whenever multiplication is defined;

v) Ba*) = B(a)"
The set of all automorphisms of A forms a group under composition and will be
denoted by Aut(A).

It follows easily from ¢) and i7) above that every automorphism ( of A4 entails a
groupoid automorphism Sy of X such that Sy (p(a)) = p(B(a)). We also note that,
by being a groupoid automorphism, 8y takes units into units.

REMARK 1.4.3. The restricted map 3 : A, — Apg, () is an isometric linear map.
Linearity was required in condition #ii), but the fact that the map is an isometry
follows from the other axioms. To see this we note that

I8a)]l = 18(a)*B(@)* = [|B(a"a)]* .
Now a*a € Ag() and s(z) € X0, Thus, we also have By(s(r)) € X° and therefore
both Ag,) and Ag(s(z)) are C*-algebras. It follows from #ii), iv) and v) that the
restricted map 3 : Ag(y) — Ag,(s(x)) is @ C*-isomorphism and is therefore isometric.
Hence we have

* 1 % i
1B(a)[l = IB(aa)l|? = [la*al[> = [all,
which shows that 8 : A, — Ag,(s) is an isometry.

DEFINITION 1.4.4. Given a Fell bundle A over a discrete groupoid X its *-
algebra of finitely supported sections C.(A) is the space of functions f : X — A
such that f(x) € A, for every z € X and f(x) = 0 for all but finitely many points
reX.
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The *-algebra of finitely supported sections C.(A) is indeed a *-algebra for the
operations of pointwise sum and multiplication by scalars, and with multiplication
and involution given by:

Frg(z)= > f(@)gy),

z,yeX
TY==2

) =(fz"h)".
The following notation will be used throughout the rest of this work: for x € X
and a € A, the symbol a, will always denote the element of C.(A) such that

(1.20) au(y) == {a’ ify=a

0, otherwise .

According to the notation above we can then write any f € C.(A) uniquely as
a sum of the form

(1.21) =Y (f@)a-
zeX

For the elements of the form a, in C.(A) the multiplication and involution
operations are determined by:

_ ) (ab)ay, if s(z) =r(y)
az - by = .
’ 0, otherwise,
(a2)" = (a")g-1,
where z,y € X and a € A;, be A,.
When a groupoid X is just a set, the fibers of a Fell bundle A over X are
C*-algebras. In this case we will frequently use the following terminology, which is

standard in the literature, in order to stress the fact that the underlying groupoid
is nothing but a set:

DEFINITION 1.4.5. When a groupoid X is just a set, a Fell bundle A over X
will be referred to as a C*-bundle over X.

Given a Fell bundle A over a groupoid X we will denote by A° the restricted
bundle A|xo over the unit space X°. Naturally, A° is a C*-bundle over X°.

We will now briefly recall how the full and the reduced cross sectional algebras
of a Fell bundle A over a groupoid X are defined.

DEFINITION 1.4.6. The full cross sectional algebra of A, denoted C*(A), is
defined as the enveloping C*-algebra of C.(.A). If the groupoid X is just a set, in
which case A is a C*-bundle, we will use the notation Cy(A) instead of C*(A).

The full cross sectional algebra C*(.A) is known to exist always (see for example
[5, Proposition 2.1]).
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We now recall, from [14], how the reduced cross sectional algebra C}(A) is
defined. We see C..(A) as a pre-Hilbert Cy(A®)-module, where the inner product is
defined by

(f1, f2) oo a0y == (fT - f2)|x0, f1, f2 € Ce(A).

Its completion is a full Hilbert Cq(A")-module, which we denote by L?*(A). Now,
the algebra C.(A) acts on itself by left multiplication, and moreover this action is
continuous with respect to the norm induced by the inner product above, hence we
get an injective *~homomorphism

(1.22) C.(A) — L(L*(A)).

DEFINITION 1.4.7. The reduced cross sectional algebra C}(A) is defined as the
completion of C,(.A) with respect to the operator norm in £(L?(A)).

In this way we get a right-Hilbert bimodule ¢ (.4)L*(A)cy(a0)-

Since C}(A) is a completion of C.(A) we immediately get a canonical map
A:C*(A) = C(A). Also, the *-homomorphism above in (1.22) always completes
to a *-homomorphism C*(A) — L(L%*(A)), and therefore gives rise to a right-
Hilbert bimodule ¢« (4)L?(A)cy(a0)- The image of C*(A) on L(L?*(A)) is then
isomorphic to C(B), or in other words, the kernel of the map C*(A) — L(L*(A))
is the same as the kernel of the canonical map A : C*(A) — C}(A).



CHAPTER 2

Orbit space groupoids and Fell bundles

In this chapter we present the basic set up which will enable us to define crossed
products by Hecke pairs later in Chapter 3.

Our construction of a (*-algebraic) crossed product A x%9 G/T" of an algebra
A by a Hecke pair (G, T") will make sense when A is a certain algebra of sections of
a Fell bundle over a discrete groupoid. In this chapter we show in detail what type
of algebras A are involved in the crossed product and how they are obtained.

2.1. Group actions on Fell bundles

Throughout this section G will denote a discrete group. One of our ingredients
for defining crossed products by Hecke pairs consists of a group action on a Fell
bundle over a groupoid (a concept we borrow from [11, Section 6]). Such actions
always carry an associated action on the corresponding groupoid (by groupoid au-
tomorphisms). Since we are primarily interested in right actions on groupoids, we
start by recalling what they are:

DEFINITION 2.1.1. Let X be a groupoid. A right action of G on X is a mapping
XxG— X
(z,9) — 29,
which is a right action of G on the underlying set of X, meaning that
1) ze=xz, for all z € X,
2) z(g9192) = (2g1)g2, forallz € X, g1,92 € G,
which is compatible with the groupoid operations, meaning that
3) if « and y are composable in X, then so are zg and yg, for all g € G, and
moreover
(z9)(yg) = (zy)g.,
4) (rg) ' =a7lg,forallz € X and g € G.

In other words, a right action of G on X is a right action on the set X performed
by groupoid automorphisms.

LEMMA 2.1.2. Let X be a groupoid endowed with a right G-action. For every
xz € X and g € G we have

s(zg) =s(z)g  and  r(zg) =r(z)g.

In particular, G restricts to an action on the unit space X°.

23
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Proof: Tt follows easily from the definition of a right G-action that

s(z)g = (z7'z)g = (37 "g)(zg) = (zg) ' (zg) = s(xg),

and similarly for the range function. O

REMARK 2.1.3. Given elements x,y in a groupoid X endowed with a right
G-action and given g € G, we will often drop the brackets in expressions like (zg)y
and simply use the notation xgy. No confusion arises from this since G is only
assumed to act on the right. On the other hand, we will never write an expression
like zyg without brackets, since it can be confusing whether it means z(yg) or (zy)g.

DEFINITION 2.1.4. [11, Section 6] Let G be a group and A a Fell bundle
over a discrete groupoid X. An action of G on A consists of a homomorphism
a: G — Aut(A).

As observed in Section 1.4, each automorphism of A carries with it an associated
automorphism of the underlying groupoid X. Hence, an action of a group G on A
entails an action of G on X by groupoid automorphisms. Since we are interested
only in right actions on groupoids, we just ensure that these associated actions are
on the right simply by taking inverses. Moreover, even though we will typically
denote by « the action of G on A, we will simply write (x,g) — zg to denote its
associated action on X and it will be always assumed that this action comes from
a. To summarize what we have said so far: given an action « of G on a Fell bundle
A over a groupoid X, there is an associated right G-action (z,g) — xg on X such
that

(2.1) plag(a)) = pla)g™" .

REMARK 2.1.5. Typically one would require the mapping (a, g) — ag4(a) to be
continuous, but this is not necessary here since both G and X are discrete.

PROPOSITION 2.1.6. Let a be an action of a group G on a Fell bundle A over
a groupoid X. We have an associated action @ : G — Aut(C.(A)) of G on C.(A)
given by

ay(f) (z) := ag(f(zg)),

forge G, feC.(A) and z € X.

Proof: Let us first prove that the action is well-defined, i.e. ay(f) € C.(A).
The fact that @,(f) is finitely supported is obvious, so the only thing one needs to
check is that @,(f) is indeed a section of the bundle, i.e. ay(f(zg)) € A, for all

x € X, which is clear because ag(Ay) = Ayg-1.
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Let us now check that @, is indeed a *-homomorphism for all g € G. Linearity
of @, is obvious. Let f, f1, fo € C.(A). We have

(fr-f2) (2) = ag((fi-f2) (zg))
= Y a(ily)fa(2))

y,2z€X
Yyz=xg

= Z ay(f1(y))ag(f2(2))

y,ze€X
(yg~)(zg™ =z

= Z ag(fi1(yg))ag(f2(29))

y,z€X
yz=x

= Y aH) W f))

y,z€X
yz=x

= (@(f1)-ay(f2)) (x).
Hence, @y (f1 - f2) = @4(f1) - @4(f2). Also,
g (f*) (x) = ag(f*(zg)) = ag(f(z~'9))*
(@ (f) (™))" = (@()" (x).

Hence, @,(f*) = (@4(f))*. The fact that a,,4, = a4, © @y, for every g1,92 € G is
also easily checked. (Il

DEFINITION 2.1.7. Let « be a group action of G on a Fell bundle A over a
groupoid X and let H be a subgroup of G. We will say that the G-action is H-good
if for any x € X and h € H we have

(2.2) s(x)h =s(zr) = ap-1(a) =a Va € A, .

Also, a right G-action on a groupoid X is said to be H-good if for any x € X and
h € H we have

(2.3) s(x)h=s(z) = ah==x.

It is clear from the definitions that if the action a of G on A is H-good, then
its associated right G-action on the underlying groupoid X is also H-good. We
will mostly use actions on Fell bundles. However, some of our results (namely
Proposition 2.1.10) are about groupoids only, and this is the reason for defining
H-good actions for groupoids as well.

We now give equivalent definitions of a H-good action. For that we recall from
(1.7) that given an action of G on a set X we denote by S, the stabilizer of the
point z € X. We will also denote by S(A;) the set S(A;) :={g9 € G : ay-1(a) =
a,Va e A}

PROPOSITION 2.1.8. Let v be an action of G on a Fell bundle A over a groupoid
X. The following statements are equivalent:

i) The action « is H-good.
ii) For every x € X we have that Sg;) N H = S(A,) N H.
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iii) For any x € X we have
(2.4) Ss(l.) NH = §,NH = Sr(w) NH =
= S(As(z)>ﬂH = SUA,)NH = S(Ar(m))ﬂH.

iv) The stabilizers of the H-actions on X and on the fibers of A are the same
on composable pairs, i.e. if t € X and y € Y are composable, then

S;NH=8,NH =
= SA,)NH = SA,)NH.

Proof: i) = ii) Since the action is H-good we have, by definition, that
Ss(z) NH C S(Az) N H. Also, if h € S(A;) N H, then we necessarily have zh = x,
and therefore by Lemma 2.1.2 we get s(x) = s(zh) = s(x)h, from which we conclude
that h € Sg(z) N H. Hence we have Sy,) N H = S(A,) N H.

1) = iit) Repeating a little bit of what we did above: if h € S(A,) N H, then
we necessarily have that h = h, and therefore h € S, N H. Moreover, if h € S, N H,
then it follows that by Lemma 2.1.2 that h € Sy,;) N H. Thus, we have that

S(AE)QH:SIQH:SS(I)QH

Since s(s(z)) = s(z), we also have, directly by our assumption of i), that
Ss(w) NH= S(AS(I)) NH.

Since we have (zg)~! = 27 !lg, it follows easily that S, = S,-1. Similarly,
since agy(a)* = ag4(a*), it follows easily that S(A;) = S(A,-1). Observing that
s(z71) = r(z), equality (2.4) follows directly from what we proved above.

i41) = v) Suppose z € X and y € X are composable. Then, s(z) = r(y) and
equality (2.4) immediately yelds that

SsNH=8NH =
= SUA,)NH = S(A,)NH.

iw) => i) Let h € H and z € X be such that s(z)h = s(z). From iv) it follows
that h € S(A,) N H. This means that the action is H-good. O

It is easy to see that any H-good action is also gH g~ '-good for any conjugate
gHg™!, and also K-good for any subgroup K C H.

The following property will also be important for defining crossed products by
Hecke pairs:

DEFINITION 2.1.9. Let X be a groupoid endowed with a right G-action and let
H be a subgroup of G. We will say that the action has the H-intersection property
if
(2.5) uH NugHg™' = uHY

for every unit u € X° and g € G.
An action of G on a Fell bundle A is said to have the H -intersection property
if its associated right G-action on the underlying groupoid has the H-intersection

property.
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We defer examples of H-good actions and actions with the H-intersection prop-
erty for the next section. We now introduce one of the important ingredients for
our definition of crossed products by Hecke pairs: the orbit space groupoid.

Let G be a group, H C G a subgroup and X a groupoid endowed with a H-
good right G-action. Then, the orbit space X/H becomes a groupoid in a canonical
way which we will now describe. For that, and throughout this text, we will use
the following notation: given elements x,y we define the set

(2.6) H,y:={heH:s(x)h=r(y)}.
The groupoid structure on X/H is described as follows:
e A pair (zH,yH) € (X/H)? is composable if and only if H,, # 0, or
equivalently, r(y) € s(z)H. This property is easily seen not to depend on

the choice of representatives x,y from the orbits zH, yH respectively.
e Given a composable pair (zH,yH) € (X/H)?, their product is

(2.7) tHyH = zhyH ,

where h is any element of H, ,. It will follow from the fact the action
is H-good that xh does not depend on the representative h chosen from
H, ,. The result of the product xH yH also does not depend on the choice
of representatives z,y. We will prove this in the next result.

e The inverse of the element xH is simply the element ' H. It is also easy
to see that this does not depend on the choice of representative .

PRrROPOSITION 2.1.10. Let G be a group, H C G a subgroup and X a groupoid
endowed with a H-good right G-action. The operations above give the orbit space
X/H the structure of a groupoid. Moreover, the unit space (X/H)° of this groupoid
is XO/H = {uH : u € X"}, where X° is the unit space of X, and the range and
source functions satisfy

s(zH) =s(x)H and r(zH) =r(x)H .

Proof: Let us first prove that the product is well-defined. Let (zH,yH) €
(X/H)? be a composable pair. The fact that xh does not depend on the represen-

tative h chosen from H, , follows from the assumption that the action is H-good,
since if hq, hy € H, , then we have

s(x)hy = r(y) = s(x)hs,

and therefore s(x)hihy ! = s(x), and because the action is H-good zhihy ' = z, i.e.
xhl = Ihg.

Let us now prove that X/H is a groupoid with the operations above. We
check associativity first. Suppose «H,yH,zH € X/H are such that (zH,yH) is
composable and (yH, zH) is composable. We want to prove that (zHyH, zH) and
(xH,yHzH) are also composable and moreover (tHyH)zH = xH(yHzH). We
have by definition that xHyH = xEyH and yHzH = yﬁ;zH, where 71: is any
element of H, , and hy is any element of H, .. We now notice that
={he H:s(zhiy)h=r(z)} ={he H:s(y)h=r(z)} =H, ..

whiy,z
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Since Hy . # 0 it follows that H # (), and therefore (;viLvlyH, zH) is compos-
able. Similarly,

= {heH:s(@)h=r(yhz)}

= {he H:s(@)h=r(y)hs}

— {heHis@hhy =r(y)}

= Hyyhs.

z,yhaz

Hence, since H,, # () it follows that H_ ez # (), and therefore (zH, yE;zH) is
composable.

As we saw above Hthy = Hy ., and since hy € H, ., we can write

4

(xHyH)zH = x;z\;szH = (l‘;l\;y)jl\;ZH
= zhihoyhozH .
Also seen above, we have that H_ -~ = H,, ;L\;, so that ﬁ;ﬁ; € H,_ -~ . Hence,
z,yhaz . z,yhoz

we conclude that

We now check that for any element xH € X/H we have that (zH,z~'H) and
(r71H,zH) are composable pairs. We have that

H,,+ = {heH:s(@xh=r(")} = {heH:s(x)h=s()},
and the identity element e obviously belongs to the latter set. Hence we conclude
that H, ,-1 # 0, and therefore (xH ,2~'H) is composable. A similar observation
shows that (x='H,zH) is also composable.

To prove that X/H is a groupoid it now remains to prove the inverse identities
rHyHy 'H = zH and y " 'HyHxH = xH, in case (vH,yH) is composable (for
the first identity) and (yH,zH) is composable (for the second identity). We first
show that yHy 'H = r(y)H. We have that yHy 'H = yhy~'H for any element
he H, ,-1. Since, as we observed above, we always have e € H,, ,-1, it follows that
we can take h as e. Thus, we get

(2.8) yHy 'H = yy'H = r(y)H.
From this it follows that
ctHyHy 'H = zHr(y)H = x?tvlr(y)H,

where hy is any element of H ,(,). By definition, Ry is such that r(y) =s(z)hy =
s(zh1). Hence we have that xh;r(y) = xh;, and therefore

ctHyHy 'H = :L‘/EIH =xH.

The other identity y " 'HyHxH = xH is proven in a similar fashion. Hence, we
conclude that X/H is a groupoid.

From equality (2.8) it follows easily that the units of X/H are precisely the
elements of the form uH where u € X, so that we can write (X/H)? = X°/H.
Also from (2.8) it follows that the range function in X/H satisfies:

r(zH) =r(x)H .



2.1. GROUP ACTIONS ON FELL BUNDLES 29
The analogous result for the source function is proven in a similar fashion. (]

The condition that the action is H-good is in fact necessary to define a “rea-
sonable” groupoid structure on the orbit space X/H, for a given right G-action
on X (by groupoid homomorphisms). In fact, if on X/H we require the product
of elements xH and yH to be the product of the classes (xH)(yH) = {xhiyhs €
X : hi,hy € H,(xhy,yhs) is composable}, and in particular that the product
(zH)(yH) consists of only one class, then it follows that the action is H-good:

PRrROPOSITION 2.1.11. Let X be a groupoid endowed with a right G-action. Let
us assume that for every x,y € X and hy,hy € H such that (zhy,y) and (zha,y)
are composable, there exists hy € H such that

zhiy = (zhay)hs .
Then the action is H-good.

Proof: Let x € X and h € H be such that s(z)h = s(z). The pair (zh,z71!)
is then composable, and by our assumption there is hg € H such that

(2.9) che™t = (vex ™ )hz = r(x)hs.

However, s(zhz~!) = s(z7!) = r(z) and also s(r(x)h3) = r(x)hs, since r(z)hs
is a unit. Thus, we have that r(z) = r(x)hs. Hence, expression (2.9) now reads
rhax~! = r(z), which means zh = . This shows that action is H-good. O

REMARK 2.1.12. A key ingredient in this proof is the fact that we assume that
the action of G on X is by groupoid homomorphisms (what we called a G-action),
as seen in the statement that r(x)hs is a unit. The condition that the action is
H-good is not necessary to form a groupoid X/H if one does not assume an action
by groupoid homomorphisms. For example, G is a group and therefore it is also
a groupoid, and when H is normal, with the action of right translation, G/H has
a natural groupoid structure (the quotient group). The only H-good actions on
G are the trivial ones, since there is only one unit, so right translation is not H-
good. However, right translation is also easily seen not to be an action by groupoid
homomorphisms.

In conclusion, a “reasonable” groupoid structure can be defined on X/H under
milder assumptions than G-actions by groupoid homomorphisms and H-good ac-
tions. We will not need a result in greater generality though, as the only actions of
interest to us here are by groupoid homomorphisms.

Let a be an action of G on a Fell bundle A over a groupoid X. Assume that
the action is H-good, where H is a subgroup of G. We will now define a new
Fell bundle A/H over the groupoid X/H. First we set some notation. The set of
H-orbits of the action « on A gives us a partition of 4 into equivalence classes. We
will denote by [a] the equivalence class of the element a € A, i.e.

la] :== {an(a)}hen -
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DEFINITION 2.1.13. We define A/H as the set of all the H-orbits in A, i.e.
(2.10) A/H :={[a] :a € A}.

As we will now see, A/H is a Fell bundle over X/H in a natural way.

PROPOSITION 2.1.14. Let a be an action of a group G on a Fell bundle A over
a groupoid X and H C G be a subgroup for which the G-action is H-good. The set
of H-orbits A/H forms a Fell bundle over the groupoid X/H in the following way:
o The associated projection py : A/H — X/H s defined by pp([a]) =
p(a)H, where p is the associated projection of the bundle A.
o The vector space structure on each fiber (A/H)mH is defined in the fol-
lowing way: if a,b € A, then [a] + [b] := [a + )], and if A € C then
Aa] := [Aa].
o The norm on A/H is defined by ||[a]]| := |la|l.
e The multiplication maps (A/H)xH X (A/H)yH — (.A/H)xH.yH, for a
composable pair (xH,yH), are defined in the following way: if a € A,
and b € Ay, then

(2.11) [a][b] = [ag;-: (@)0],

where h is any element of Hy .
e The involution map is defined by [a]* := [a™].

LEMMA 2.1.15. Let o be an action of G on a Fell bundle A over a groupoid
X and H C G be a subgroup for which the G-action is H-good. Let x € X and
a € A,. Given any y € xH there exists a unique representative b of [a] such that
be A,

Proof: Given an element y € xH we have that y = xh for some h € H. The
element ay,-1(a) is then a representative of [a] such that ay,-1(a) € Ay, = Ay, thus
existence is established.

The uniqueness claim follows from the fact the action is H-good. Suppose we
have two representatives b and ¢ of [a] such that both b and ¢ belong to A,. Being
representatives of [a] means that there are elements hy, hy € H such that b = ap, (a)
and ¢ = ap,(a). Hence we have that

ahzhfl(b) =c,

and therefore hohy ' takes A, into A,. This means that yhih, ' =y and therefore
s(y)hihy ' = s(y). Since the action is H-good it follows that athII(b) = b, and
therefore b = c. O

Proof of Proposition 2.1.14: First, it is clear that the vector space structure
on each fiber (A/ H )w 1 well-defined. By this we mean two things: first, given
two elements [a], [)] € (A/H) _, there exist unique representatives a,b such that
a,b € A, for a given representative x of the orbit zH (Lemma 2.1.15); second, the
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sum [a-+b] still lies in (A/H)_,, and does not depend on the choice of representatives
a and b (provided only that a and b are in the same fiber).

The norm on A/H is also easily seen to be well-defined, i.e. independent of
the choice of representative. This is true because any other representative of [a] is
of the form ay,(a) for some h € H, and by Remark 1.4.3 we know that «;, gives
an isometry between fibers. It is also clear that each fiber (.A/ H ) .z 1s a Banach
space under this norm.

The multiplication map is also easily seen to be well-defined: using the fact that
the G-action on A is H-good we know that aj_, (a)b does not depend on the choice

of element h € H,y. Moreover, aj, . (a)b € A 7 and therefore [a5 . (a)b] € A 5 -
The fact that the multiplication map does not depend on the chosen representatives
of the orbits [a] and [b] is also easily checked.

It follows from a routine computation that map (A/H)_, x (A/H )yH —
(A/H) is bilinear. Moreover, for [a] € (A/H)_,, and [b] € (.A/H)yH7 where

cH-yH
we assume without loss of generality that a € A, and b € A,, we have that
[[a]]l = lloj-1 ()bl < [log_.(a)][o]
= llallliel = Nlalllio]l -

We will now check associativity of the multiplication maps. Let (zH,yH) and
(yH, zH) be two composable pairs in X/H, and let [a] € (A/H)yu, [b] € (A/H)yn
and [c] € (A/H).u, where we assume without loss of generality that a € A, b € A,
and ¢ € A,. By definition, we have [a][b] = [ah~171 (a)b], where hy is any element of
H, ,. Thus, we have

(@)l = log-1 (@bl = [0 (a1 (a)b)c]
= [aﬁg—la—l(a)aﬁz—l(b)c],

where E; is any element of Hzﬁy _- One can easily check (or see the proof of

Proposition 2.1.10 where this is done) that H -, . = Hy. and moreover that

hNJLVQ € H_ _—~_. From this observations it follows that
z,yhaz

(@B)ld = lapmr(@ap(0)d = [allag-+(0)]
= [a)({lle)).

Hence, the multiplication maps are associative.

The involution on A/ H is also easily seen not to depend on choice of represen-
tative of the orbit, since the maps «ay, preserve the involution of A. Moreover, it is
easily checked that: if [a] € (A/H)_,, then [a]* € (A/H) the associated map
that ([a] [b])* = [b]*[a]*, whenever the multiplication is defined. Let us assume that
a€ A, and b € A, and that (xH,yH) is composable. We have that

([ab)” = loga(@p]" = prag.(a’)] = [ag(b7)a"],

where h is any element of H, ,. It is easily seen that hle Hy-1 ;-1, so that

([@e)” = loz(Ma’] = Ba’] = [b0][a]".

x—1H’
is conjugate linear, and [a]** = [a]. Let us now check
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We also need to prove that ||[a]*[a]|| = ||[a]]|?>. This is also easy because

llal*[alll = llla*}{alll = l[[a*all| = lla"al| = [la]|* = || [al||*.

The last thing we need to check is that if [a] € (A/H )z, then [a]*[a] is a positive
element of (A/H)gz)n (seen as a C*-algebra). We have that [a]*[a] = [a*a]. We
can assume without loss of generality that a € A,, so that a*a € Ag,). Since
A is a Fell bundle we have that a*a is a positive element of Ag(,) (seen as a C*-
algebra). Hence, there exists an element b € As(a) such that a*a = b*b. Moreover,
[b] € (A/H)g(y) and it is now clear that

[a]*[a] = [a"a] = [b"0] = [b]"[8],

i.e. [a]*[a] is a positive element of (A/H )s(z). This finishes our proof that A/H is
a Fell bundle. g

CONVENTION. For simplicity we will henceforward make the following conven-
tion. Given an orbit Fell bundle A/H as described in Proposition 2.1.14, if we
write that an element [a] belongs to some fiber (A/H)yu, we will always assume
that the representative a of [a] belongs to the fiber over the representative x of xH.
In other words, if we write that [a] € (A/H)ym, then we are implicitly assuming
that a € A,. This is possible and unambiguous by Lemma 2.1.15.

We apply this convention also for elements of C.(A/H), meaning that a canoni-
cal element [a|,z € C.(A/H) is always assumed to be written in a way that a € A,.

It is a straightforward fact that any function in C.(X/H) can also be seen as
a complex-valued (H-invariant) function on X. This function on X is in general
no longer finitely supported, but it still makes sense as a function in C(X), the
vector space of all complex-valued functions on X. We will now see that something
analogous can be said for the elements of C.(A/H).

Given an element f € C.(A/H) we define a function ¢(f) € C(A), where C(A)
is the vector space of all sections of A, by the following rule:

(2.12) u(f)(x) :== Re(f(zH)),

where R, (f(xH)) is the unique representative of f(xH) such that R, (f(zH)) € A,,
which is well-defined according to Lemma 2.1.15. It is then easy to see that the
map ¢ is an injective linear map from C.(A/H) to C(A).

For ease of reading we will henceforward drop the symbol ¢ and use the same
notation both for elements of C.(A/H) and for their correspondents in C'(A). It
will then be clear from context which one we are using.

Under this convention we can then write, for any f € C.(A/H) and z € X,
that [f(x)] = f(xH). Moreover, the decomposition (1.21) of f € C.(A/H) as a
sum of elements of the form [a],z can now be written as:

(2.13) f= Y (eH),z= > @

zHeX/H zHeX/H
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2.2. Examples

In this section we give some examples of H-good actions and actions satisfying
the H-intersection property. For the rest of the section we assume that A is a Fell
bundle over a groupoid X where a group G acts and H C G denotes a subgroup.

The first two examples (2.2.1 and 2.2.2) show that H-good actions that satisfy
the H-intersection property are present in actions that have completely opposite
behaviours, such as free actions and actions that fix every point.

EXAMPLE 2.2.1. If the restricted action of H on the unit space X° is free, then
the action is H-good and satisfies the H-intersection property.

EXAMPLE 2.2.2. If the restricted action of H on A fixes every point, then the
action is H-good and satisfies the H-intersection property.

The following example is one of the examples that motivated the development
of this theory of crossed products by Hecke pairs. This example, and the study
of the crossed products associated to it, seems to be valuable for obtaining a form
of Katayama duality with respect to crossed products by “coactions” of discrete
homogeneous spaces.

EXAMPLE 2.2.3. Suppose X is the transformation groupoid G x G. We recall
that the multiplication and inversion operations on this groupoid are given by:
(s,tr)(t,r) = (st,r) and (5,6)" = (571, st).
Recall also that the source and range functions on G x G are defined by
s(s,t) = (e, t) and r(s,t) = (e, st).
We observe that there is a natural right G-action on G x G, given by

(2.14) (s,t)g := (s,tg).

Let 6 be a coaction of G on a C*-algebra B and B the associated Fell bundle.
Following [6, Section 3], we will denote by A := Bx G the corresponding Fell bundle
over the groupoid G x G. Elements of A have the form (bs,t), where b; € By and
s,t € G. Any such element lies in the fiber A, ) over (s,1).

It is easy to see that there is a canonical action « of G on A, given by

ag(bs,t) = (bs,tg™ ).
This action of G on A entails the natural right action of G on G x GG, as described
in (2.14). This G-action on G x G is free and therefore the action « is H-good and
satisfies the H-intersection property with respect to any subgroup H C G.

The orbit space groupoid (G x G)/H can be canonically identified with the
groupoid G x G/H of [5], whose operations are given by:

(s,trH)(t,rH) = (st,rH) and (s,tH) ' = (s7',stH).
Moreover, the orbit Fell bundle A/H is canonically identified with the Fell bundle

B x G/H over G x G/H defined in [5], and in this way C.(A/H) is canonically
isomorphic with the Echterhoff-Quigg algebra C.(B x G/H), also from [5].
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EXAMPLE 2.2.4. Here we give an example of a G-action on a groupoid X which
is not H-good. Let X be again the transformation groupoid G x G, but now we
consider the G-action given by conjugation:

(2.15) (s,t)g == (9 'sg.9" 'tg).

A routine computation shows that (2.15) does indeed define a right action of G on
X.

If a subgroup H is not in the center of G, then the action is not H-good.
To see this, take two elements h € H and g € G that do not commute. We
have that s(g,e) = (e, e), and therefore s(g,e)h = (e,e)h = (e,e) = s(g,e), but
(g9,€)h = (h=tgh,e) # (g,e), so the action cannot be H-good.

2.3. The algebra M (C.(A))

We will assume for the rest of this section that G is a group, H C G is a
subgroup and A is a Fell bundle over a groupoid X endowed with a G-action a.
We also assume that the action « is H-good. We recall that A/H stands for the
orbit Fell bundle over the groupoid X/H, as defined in (2.10).

For the purpose of defining crossed products by Hecke pairs it is convenient to
have a “large” algebra which contains the algebras C.(A/H) for different subgroups
H C @. In this way we are allowed to multiply elements of C.(A/H) and C.(A/K),
for different subgroups H, K C G, in a meaningful way. This large algebra will be
the multiplier algebra M (C.(.A)). This section is thus devoted to show how algebras
such as C.(A/H) and C.(X°/H) embed in M(C.(A)) in a canonical way.

Our first result shows that there is a natural inclusion C.(A/H) C M(C.(.A)).

THEOREM 2.3.1. There is an embedding v of C.(A/H) into M(C.(A)) deter-
mined by the following rule: for any x,y € X, a € A, and b € A, we have

(2.16) v([a]ar)by = {(aﬁl(a)b)wﬁy, if Hyy#0

0, otherwise,

where h is any element of Hy .

REMARK 2.3.2. The above result allows us to see C.(A/H) as a *-subalgebra
of M(C.(A)). We shall henceforward drop the symbol ¢ and make no distinction
of notation between an element of C.(A/H) and its correspondent multiplier in

M(C.(A)).

Proof of Theorem 2.3.1: Let us first show that expression (2.16) does indeed
define an element of M (C.(A)). For this it is enough to check that (¢([a]q)by, c2) =
(by,u([a]i-1 ) ce), for all b € Ay and ¢ € A, with y,z € X. For «([a].u)by, to
be non-zero, we must necessarily have H,, # 0, and in this case t([a]lyn)by, =

(aﬁ,l(a)b)w};y, where h € H,,. Now,

(([alam)by;cz) = ((@g-1(a)b) g, c2) = (b7 521 (@)7) o1 (pmrRy 2

bz,laﬁ_l (a):_lz Cy
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Eor aﬁ_l(a);lﬁ c. to be non-zero we must necessarily have r(z) = s(z=1)h, i.e.
h € Hy-1,. So, to summarize, for ([al,zby,c.) to be non-zero we must have
H,,NH,-1, # 0 and in this case we obtain

(t(lalor)by, c.) = b1 (a):._lg Czs

where h is any element of H,  NH,-1 .. Asimilar computation for (by, ¢([a]%_. ) cz)
yelds the exact same result.
Recall from (1.21) that any f € C.(A/H) can be written as

tHEX/H

From this we are able to define a multiplier ¢(f) € M (C.(A)), simply by extending
expression (2.16) by linearity.

We want to show that ¢ is an injective *-homomorphism. First, we claim that
given [al,m, [blya € C.(A/H) we have

lalem)((blyr) = ([a)en [Blyn) -
This amounts to proving that

v([alor)e([blyrr) = {L([azl(a)b]zgy,{), it H,, #0

0, otherwise

with A being any element of H, ,. To see this, let ¢, € A,, with z € X. We have
{an]m)(aho-l(b)c)yhoz, it Hy.#0

laler)u([blym)e: = 0 otherwise

_ (Oéhl—l(a,)aho—l(b)c)xhlyhoz, if Hy.# 0 and Hy yp,. # 0
0, otherwise

with hg € Hy ., and hy € Hy yp,.. But Hyyno. = Hyyn, = Hzy ho, hence the
above can be written as

_ (Oého—l‘ﬁ_l(G)Oéhgl(b)c)aj‘ﬁhoyhoz , if H,,#0 and H,, #0
0, otherwise

_ (ahal(aﬁ,l(a)b)c) (F)hoz ’ if Hy,#0 and H,, #0
0, otherwise

where h € Hyy. Also, H, . = H j . Thus, we obtain

(ozhgl (a_1 (a)b)c) (y)hos if Hy, . #0 and Hyy #0
0, otherwise

_ Wlog-1(a)b] 7y m) 2, if Hy, #0
0, otherwise

Since ¢ is linear and multiplicative on the elements of the form [a],z, it is nec-
essarily a homomorphism. Now the fact that c([a].m)* = t(([a]l.x)*) = c([a]i-1y)
follows directly from the computations in the beginning of this proof. Hence, ¢ is a
*~homomorphism.
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Let us now prove injectivity of ¢. Suppose f € C.(A/H) is such that +(f) = 0.
Decomposing f as a sum of elements of the form [a],x, following (2.13), we get

0=uf)= Y ((em),,)= Y Wlf@hn).

cHeX/H xHeX/H
For any y € X we then have

0 = Z L([f(av)]acH)(f(y)*)f,ﬁ1

cHeX/H

= Y ([ @en) (F@))y

tHEX/H
s(y)es(z)H

= Y (@) )y

tHEX/H
s(y)es(z)H

Lin the sum above

where ZL; is any element of H, ,—1. Now the elements xil;y_
are all different, because if we had z1h,,y~' = z2h,,y~ !, then we would have
Z1hg, = x2hy, and therefore x1H = z9H. Therefore each of the summands in the

above sum is zero, and in particular we must have

0 = (am-(fFOI®)) iy
= (fO®) ) -
and therefore f(y)f(y)* = 0. Hence we get f(y) =0, and since this is true for any
y € X, we have f =0, i.e. ¢ is injective. ([l

PROPOSITION 2.3.3. There is an embedding v of Cy(X°) into M(C.(A)) defined
by
(2.17) t(f)by == f(r(y))by .
for every f € Cp(X°), y € X and b € A,.

REMARK 2.3.4. The above result allows us to see Cj,(X?) as a *-subalgebra of
M (C.(A)). We shall henceforward drop the symbol ¢ and make no distinction of no-
tation between an element of Cj,(X?) and its correspondent multiplier in M (C.(A)).

Proof of Proposition 2.8.3 : It is easy to see that (¢(f)by , c.) = (by, t(f*)cz)
for any y,z € X, b € A, and ¢ € A;, so that the expression (2.17) does define an
element of M (C.(A)).

Hence we get a linear map ¢ : Cp(X°) — M(C.(A)). Given two elements
f1, f2 € Cp(X?), we have that

L(f)e(f2)by = fi(r(y)) f2(r(y))by = t(f1f2)by

for any y € X andb € Ay, so that ¢ is a *-homomorphism. Hence, we only need to
prove that ¢ is injective. This is not difficult to see: given f € Cy(X?) such that
t(f) = 0 we have, for any unit u € X% and b € A, that

0 = uf)by = f(u)b,.
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Hence, f(u) = 0 because each fiber A,, is non-zero by our assumption on Fell bun-
dles (see Assumption 1.4.1). Since this is true for any u € X° we get f =0, i.e. ¢
is injective. O

Recall, from Lemma 2.1.2, that the action of G on X restricts to an action of
G on the set X°. Thus it makes sense to talk about the commutative *-algebra

C.(X°/H) C Cy(XY).

Since there is a canonical embedding, given by Proposition 2.3.3, of Cy(X?°) into
M(C.(A)), we have in particular an embedding of C.(X"/H) into M (C.(.A)) which
identifies an element f € C.(X"/H) with the multiplier f € M(C.(.A)) given by:

foy = f(x(y) H)by .

Moreover Proposition 2.3.3 applied to the groupoid X/H and the Fell bundle A/H
shows that there is a canonical embedding of Cy,(X°/H) into M (C.(.A/H)), which
identifies an element f € C,(X°/H) with the multiplier f € M(C.(A/H)) given
by

(2.18) fllyn = f(x(y)H)[blyn -

Since both C.(X°/H) and C.(A/H) are canonically embedded in M(C.(A)), it
is convenient to understand what happens (inside M (C.(A))) when one multiplies
an element of C.(X°/H) by an element C.(A/H). Perhaps unsurprisingly, this
product is given exactly by expression (2.18), which models the action of C,.(X°/H)
on C.(A/H) as multipliers of the latter algebra. In other words, it makes no
difference to view C.(X°/H) inside M(C.(A/H)) or inside M(C.(A)) when it
comes to multiplication by elements of C.(A/H).

We will now show how the multiplication of elements of C.(A/H) by elements
of C.(X?) is determined (inside M (C,.(A))). Before we proceed we will first intro-
duce some notation that will be used throughout this work: Given a set A ¢ X°
we will denote by 14 € Cy(X°) the characteristic function of A. In case A is a
singleton {u} we will simply write 1,,.

PROPOSITION 2.3.5. Inside M(C.(A)) we have that, for x € X, a € A, and
ue X,

[a]fH]-u = {az‘l(a)ﬂfﬁ’ Zf H:c,u # (Z)

0, otherwise,
where h is any element of Hy ,,.

Proof: Let y € X and b € A,. For the product [a],1, by to be non-zero we
must necessarily have u = r(y) (from (2.17)), and in this case we obtain

[alzm Ly by = [a]way = (O‘ﬁ—l(a)b)ggﬁy = O‘ﬁ—l(a)wﬁby’

where h is any element of H,,. Since u = r(y), we have H, , = H,,, and this
concludes the proof. (I
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It will be of particular importance to know how to multiply, inside M (C.(A)),
elements of C.(A/H) with elements of C.(A/K) when K C H is an arbitrary sub-
group. It turns out that the algebra C.(A/K) is preserved by multiplication by
elements of C.(A/H), as we show in the next result:

PROPOSITION 2.3.6. Let K C H be any subgroup. We have that
-1 (a)b] if Hoy #0
2.19 alenblyx =9 " why ke Y
( ) (@l by {0, otherwise,

where x,y € X, a € Ay and b € Ay. In particular C.(A/K) is invariant under
multiplication by elements of C.(A/H).

Proof: First we observe that since the action is assumed to be H-good, it is
automatically K-good, so that we can form the groupoid X/K and the Fell bundle

A/K.
Let z € X and ¢ € A,. We have that
T 7-1(b %z if K, z
eslthyces = § P OE Oz Kne 20
0, otherwise,
_ (aﬁ_l(a)oz%_l(b)c)ﬁy%z, if Hm,y%z 75 @ and Kyyz 75 @
0, otherwise,

- {(aﬁl(a)%l(b)c) (cFry)ier T Hoyps # 0 and Ky o 20

0, otherwise,

Now, since H

where k is any element of K, ., and his any element of H ez =

z,y%z'
H_ == H,yk, it follows that hk—1 e H, ,, and moreover since K, , = K

T,y zhk—1y,2
we conclude that
- (az,l(aﬁ,l(a)b)c) (wﬁﬁ—ly)ﬁz s if HI’y 75 (Z) and Kz?ﬁéfly,z 75 (Z)
0, otherwise,
_ [aﬁ,l(a)b]mm,lyl(cz s if HLy 7§ @
0, otherwise.

Thus (2.19) follows immediately (the element R in (2.19) is simply the element de-
noted by hk~! above). O

In case the subgroup K has finite index in H we can strengthen Proposition
2.3.6 in the following way:

PROPOSITION 2.3.7. Let K C H be a subgroup such that [H : K| < co. Inside
M(C.(A)) we have that
(2.20) e = Y lon-1(a)]ank

[RlE€S\H/K
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for any x € X and a € A,. In particular, inside M(C.(A)) we have that C.(A/H)
is a *-subalgebra of C.(A/K).

Proof: First we notice that since [H : K] < oo we have that the right hand side
of (2.20) is a finite sum and therefore does indeed define an element of C.(A/K).
To prove this result it suffices to show that

(221) [a]bey = Z [ah—l(a)]mhxby 5
[hl€S\H/K

for all y € X and b € A,. First we notice that both the right and left hand sides of
(2.21) are zero unless r(y) € s(z)H. In case r(y) € s(x)H we have

[a]orby = (05 (a)b)wﬁy )

where & is any element of H,,.
Recall from Proposition 1.3.2 that there is a bijective correspondence between
the set of K-orbits (xH)/K and the double coset space S,\H/K. It is clear that

la],7 by = (05-1(a)b), 5, Moreover, for all the classes [h] # [h] in S;\H/K we
have r(y) ¢ s(z)hK, because r(y) € s(z)hK. Hence, for all the classes [h] # [h] in
S;\H/K we have [oy,-1(a)]znkby = 0. We conclude that

Z [ah—l (a)]Ithy = [aﬁ,l (a)]mszy = (a;ﬁl (a)b)mﬁy ,
[R]eS\H/K

and equality (2.21) is proven. O

REMARK 2.3.8. In Proposition 2.3.7 the fact that [H : K] < co was only used
to ensure that the sum on the right hand side of (2.20) was finite. One could more
generally just require that the sets S, \H/K are finite for all x € X, but this gen-
erality will not be used here.

As we saw in Proposition 2.1.6 we have an action @ of G on C,.(A). This action
can be extended in a unique way to an action on M (C.(A)), which we will still
denote by @, by the following formula:

(2~22) Qg (T)f = Qg (Tagfl (f)) )
where g € G, T € M(C.(A)) and f € C.(A). We will now show what this action
on M(C.(A)) does to the algebras C,(X?), C.(A/H) and C.(X°/H).

PROPOSITION 2.3.9. The extension of the action @ to M(C.(A)), also denoted
by @, satisfies the following properties:
(i) The restriction of @ to Cp(XP) is precisely the action that comes from the
G-action on X°.
(ii) For any g € G the automorphism @, takes C.(XY/H) to Co(X°/gHg™1),
by
(223) ag(le) = 1(wg—1)(gHg—1) .
(iii) For any g € G the automorphism @, takes C.(A/H) to C.(A/gHg™'), by

(2.24) Ag([alerr) = log(a)]wg-1)(grg-1) -
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(iv) Both C.(A/H) and C.(X°/H) are contained in M(C.(A))¥, the algebra
of H-fixed points.

Proof: (i) Let y € X, b€ A, and f € Cp(XY). For any g € G let us denote by
fg € Cp(XP) the function defined by fy(z) = f(zg). By definition of the extension
of a to M(C.(A)), we have

ag(f) by = ag(
= ol g
= fx@gby, = fo(ry)by
= fg : by .
Hence we conclude that @,(f) = f, and therefore the action @ on Cy(X?) is just
the action that comes from the G-action on X°.
(1) This follows directly from (7).
(ii7) Let y € X and b € A,. By definition of the extension of @ to M (C.(.A)),
we have
ag([a}mH) by = ag([a]mHagl(by)) = ag([a}mH@g*1 (b>yg) .

Also, we can see that

_ ay((az_i(a)ag-1(b)) 5 , if Hyyg#0
B ek
_ (agﬁfl(a)b)z}:g—ly ) lf Hm,yg 7& [Z)
0, otherwise

_ (agﬁfl(a)b)mgflgﬁgfly ’ if vayg # (Z)
0, otherwise

where h € H; 4. Now an easy computation shows that we have

Hz’yg = gil (gHgil)wg—l,y g,
i —1
and thereby we obtain, for t € (9Hg )xgﬂ’y,
ay([a)an) by = (agg-1t-1g(a)b)gg—rty,  if (ggg—l)mgﬂ’y £
0, otherwise

_ (a-14(a)b)yg-1ty if (gHg_l)zg,l’y £
0, otherwise
= log(a)](@g=1)(grg—1) by -

(iv) This follows directly from (i7) and (iii). O

It is important to know how to multiply an element of C.(A/H ) with an element
of C.(X%/gHg™") inside M(C.(A)). This is easy if we are under the assumption
that G-action satisfies the H-intersection property. We recall from (1.8) that HY
stands for the subgroup H N gHg~!.
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PropoSITION 2.3.10. If the G-action moreover satisfies the H-intersection
property, then for every x € X and g € G the following equality holds in M(C.(A)):

[a]aﬁH 1s(aﬁ)gHg*l = [a]ng .

Proof: For any y € X and b € A, we have

[a]xH 1S(.’,c)gHg_1 by =

_Jlalemby, if r(y) € s(z)gHg™!
0, otherwise
_ (a5-1(a)b) 7, - if r(y) €s(z)gHg™! and r(y) € s(x)H
0, otherwise
_ [(ega@b)g, . i r() € s(@)H Ns(a)gHg ™
0, otherwise
where & € H, ,. Now, by the H-intersection property, we obtain
_ (ag-1(a)b) 7, - if r(y) € s(z)HY
0, otherwise .

Of course, we have (HY),, C H,,, and hence we can choose h as an element of
(HY9)y,y, thereby obtaining

= [alzmo by

which finishes the proof. (I






CHAPTER 3

*~-Algebraic crossed product by a Hecke pair

In this chapter we introduce our notion of a (*-algebraic) crossed product by
a Hecke pair and we explore its basic properties and its representation theory.
Throughout the rest of this work we impose the following standing assumption,
based on the tools developed in Section 2.1.

STANDING AsSUMPTION 3.0.1. We assume from now on that (G,T') is a Hecke
pair, A is a Fell bundle over a groupoid X endowed with a I'-good right G-action
« satisfying the I'-intersection property.

3.1. Definition of the crossed product and basic properties

In this section we aim at defining the (*-algebraic) crossed product of C.(A/T)
by the Hecke pair (G, T"). For that we are going to define some sort of a bundle over
G/T', where the fiber over each gI is precisely C.(.A/TY). Recall that we denote by
@ the associated action of G on C.(.A) and also its extension to M (C.(.A)).

DEFINITION 3.1.1. Let B(A,G,T') be the vector space of finitely supported
functions f : G/T — M(C.(A)) satisfying the following compatibility condition

(3.1) f(vgl) = (f(g1)),
for all v € " and gI" € G/T.

LEMMA 3.1.2. For every f € B(A,G,T') and gT" € G/T" we have
F(gT) € M(Ce(AD™ .

Proof : This follows directly from the compatibility condition (3.1), since for
every v € I'Y we have @, (f(gI')) = f(vgl') = f(gT). O

DEFINITION 3.1.3. The vector subspace of B(A,G,T) consisting of the func-
tions f : G/T — M(C.(A)) satisfying the compatibility condition (3.1) and the
property
(3.2) f(gl) € Ce(A/TY),
will be denoted by C.(A/T) x%9 G/T and will be called the *-algebraic crossed
product of C.(A/T") by the Hecke pair (G,T").

43
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It is relevant to point out that the definitions of the spaces B(A,G,T') and
C.(A/T)x%9G /T seem more suitable for Hecke pairs (G, T'), as in general a function
in B(A,G,T') could only have support on those elements gI' € G/T" such that

ITgl'/T| < 0.
We now define a product and an involution in B(A, G,T') by:
(3.3) (f1% f2)(gl) : Z fr(hT)@n(fo(h™'gT)),
[hleG/T
(3-4) (f*) (gD) = A(g™ )@y (f(g~'T))".

PROPOSITION 3.1.4. B(A,G,T') becomes a unital *-algebra under the product
and involution defined above, whose identity element is the function f such that
f(T) =1 and is zero in the remaining points of G/T.

Proof: First, we claim that the expression for the product defined above is
well-defined in B(A, G,T), i.e. for f1, fo € B(A,G,T") the expression

(frx f2) (D) ==Y fuhD)@n(f2(h~"gl))

[h]leG/T

is independent from the choice of the representatives [h] and also that it has finitely
many summands. Independence from the choice of the representatives [h] € G/T
follows directly from the compatibility condition (3.1) and the fact that the sum is
finite follows simply from the fact that f; has finite support.

Now we claim that f; * fo has also finite support, for fi, fo € B(A,G,T). Let
S1,82 € G/T be the supports of the functions f; and fy respectively. We will
regard S7 and Sy as subsets of G (being finite unions of left cosets). It is easy to
check that the function G x G — M(C.(.A))

(h,g) = fi(hT)an(f2(h~"gT))

has support contained in Sy x (S7 - S2). Since (G,T') is a Hecke pair, the product
S7 - Ss is also a finite union of left cosets. Hence, f1 * fo has finite support.

We also notice that f; * fo satisfies the compatibility condition (3.1), thus
defining an element of B(A, G,T'), since for any v € I' we have

(frxf2)(vgl) = Y fu(AD) @n(fo(h ygT))

[hleG/T

= Z fi(vhT) avh(fz(h_lglj))
[R]leG/T

= Y a,(AD) @, oan(fo(h D))

[h]leG/T

= @, ((fr* f2)(9D))-

In a similar way we can see that the expression that defines the involution is
well-defined in B(A,G,T'). There are now a few things that need to be checked
before we can say that B(A,G,T) is a *-algebra, namely that the product is as-
sociative and the involution is indeed an involution relatively to this product (the
fact that the product is distributive and the properties concerning multiplication
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by scalars are obvious). The proofs of these facts are essentially just a mimic of the
corresponding proofs for “classical” crossed products by groups. Thus, we can say
that B(A, G,T") is *-algebra under this product and involution. O

THEOREM 3.1.5. C.(A/T) x%9 G/T is a *-ideal of B(A,G,T). In particular it
is a *-algebra for the above operations.

Proof: 1t is easy to see that the space C.(A/T) x%9 G/T is invariant for the
involution, i.e.

f€C(AT) x99 GIT = f* € C(A/T) x% GJT.

Thus, to prove that C.(A/T) x%9G /T is a (two-sided) *-ideal of B(A, G,T) it is
enough to prove that it is a right ideal, i.e. if f; € B(A,G,T') and fo € C.(A/T)x 9
G/T then f; x fa € C.(A/T) x%9 G/T, because any right *-ideal is automatically
two-sided. Hence, all we need to prove is that (f; x f2)(g') € C.(A/TY), for every
f1 € B(A,G,T) and fy € C.(A/T) x%9 G/T. The proof of this fact will follow the
following steps:

1) Prove that: given a subgroup H C G, f € C.(A/H) and a unit u € X°,
we have f -1, € C.(A).

2) Let T':= (f1 * f2)(91) = X jpjecyr fi(hD)an (f2(h~tgT)). Use 1) to show
that T - 1, € C.(A) for any unit u € X°.

3) Fix a unit u € X% By 2) we have T'1, = 3_,(a;)s,, where the elements
x; € X are such that s(z;) = u. Show that T'1,rs = Y ;[a;]s,rs, and
conclude that T 1,rs € C.(A/TY).

4) Prove that there exists a finite set of units {uy,...,u,} € X° such that
T =>%",T1,7s. Conclude that T € C.(A/TY).

e Proof of 1) : This follows immediately from Proposition 2.3.5.

e Proof of 2) :  We know that fo(h~*gl') € Ce(A/T" '9). Thus, from
Proposition 2.3.9, we conclude that @y, (f2(h™'g)) € Cc(A/RCh~'Nglg™1).
Now, using 1), we see that @ (f2(h~tg)) 1, € C.(A) and consequently
fi(hD)an (f2(h=1g)) 1, € C.(A). Hence, T 1, € C.(A).

e Proof of 3) : For any v € I'Y we have, using Lemma 3.1.2,

Tlyy = @y-1(T) Ly =1 (T (1us))

= 0yt (T 1u> = Z Qy—1 (ai)aji,y .
Let y € X and b € A,. We have

Tloeb = Tb, , if r(y) € ul'
whely 0, otherwise .

Assume now that r(y) € ul'? and let ¥ € T'Y be such that r(y) = uy. We
then have

Tb, = Tlsb, = Y o5-1(ai)s5by.
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Since s(x;) = u, we have s(x;7) = vy = r(y). Hence,
Toy, = ) (o5-1(ai)b)azy -

We conclude that

T1lureb
uhe Ty 0, otherwise .

= Z[ai]miFg by .

Thus, T 1,rs = Zi[ai]mirg € CC(.A/FQ).
Proof of 4) : For easiness of reading of this last part of the proof we
introduce the following definition: given F € M(C.(A)) we define the
support of F to be the set {u € X°: F'1, # 0}. Notice in particular that
the support of an element [a],m, with a # 0, is the set s(z)H.

Since @p(fa2(h~1gT)) € C.(A/ATh™1 N glg™1), there exists a finite
number of units vy, ...,vx € X° such that @, (fo(h~!gl')) has support in

{Zi(aﬁl(ai)b)xﬁy , if r(y) € ul?

k k
U vi(hfh_l N gf‘g_l) - U vigTg™ 1.
i=1 1=1

Hence, there is a finite number of units wy,...,w; € XY such that T has
support contained in

1
U wiglg™t.
i=1

Therefore, T has support contained in

I m

U U wiejl‘g s

i=1j=1
where 601, ...,0,, are representatives of the classes of gl'g~!/TY (being a
finite number because (G, T") is a Hecke pair). Thus, we have proven that
there is a finite number of units u, ..., u, € X° such that T has support
inside U?’:l u;I'9. Moreover, we can suppose we have chosen the units
U1, ..., U, such that the corresponding orbits u;I'9 are mutually disjoint.
It is now easy to see that we have T'=>""" , T'1,,1s. Indeed, given y € X
and b € A, if r(y) ¢ U, w;I'9, then

Thy =T lyyby =0=> Tlyreby,
i=1
and if r(y) € U;—, u;I'?, then r(y) belongs to precisely one of the orbits,
say u;,I'9, and we have

> Tlyroby =Ty, roby =Tb,.

i=1
Hence, we must have T = > "  T1,,rs, and by 3) we conclude that
T e C.(A/T9). O
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As it is well-known, when working with crossed products A x G by discrete
groups, one always has an embedded copy of A inside the crossed product. Some-
thing analogous happens in the case of crossed products by Hecke pairs, where
C.(A/T) is canonically embedded in C.(A/T') x%9 G/T, as is stated in the next
result (whose proof amounts to routine verification).

PROPOSITION 3.1.6. There is a natural embedding of the *-algebra C.(A/T)
in Co(A/T) x%9 G/T, which identifies an element f € C.(A/T') with the function
((f) € C(A/T) x%9 G/T such that

(Hm) =f and L(f) is zero elsewhere.

REMARK 3.1.7. The above result says that we can identify C.(A/T") with the
functions of C.(A/T') x%9 G/T with support in I'. We shall, henceforward, make
no distinctions in notation between an element of C.(A/I") and its correspondent

in C.(A/T) x%9 G/T.

THEOREM 3.1.8. C.(A/T') x%9 G/T is an essential *-ideal of B(A,G,T). In
particular, Co(A/T) x%9 G /T is an essential *-algebra. Moreover, there are natural
embeddings

C.(A/T) x4 G/T < B(A,G,T) — M(C.(A/T) x%9 G/T),
that make the following diagram commute
M(Co(A/T) %89 G/T)
/ T

Cu(A/T) x%9 G/T B(A,G,T).

Proof: We have already proven that C.(A/T)x%9G/T is a *-ideal of B(A, G, T),
thus we only need to check that this ideal is in fact essential. Suppose f €
B(A,G,T) is such that f x (C.(A/T) x4 G/T) = {0}. Then, in particular, us-
ing Proposition 3.1.6, we must have f * (C.(A/T')) = {0}. Let g € G and take
[a].r € C.(A/T), we then have

0= (f*laler) (0T = FGT)y(alur) = FoT) g (@))ag-1gr5-1 -
Thus, multiplying by 1g(;)s—1 € M(C.(A)) we get

0= f(gr)[ag(a)]zgflgFgfl1s(z)g*1 = f(gr)ag(a’)xg*1 = f(gr)ag(az) .

Since this true for all a € A, and z € X and given that « takes fibers of A bijectively
into fibers of A, we must have f(¢I')b, = 0 for all b € A, and y € X. Hence, we
must have f(gI') = 0. Thus, f = 0 and we conclude that C.(A/T") x29 G/T is an
essential *-ideal of B(A, G,T).

Since C.(A/T) x%9 G/T is a *-subalgebra of B(A,G,T'), we immediately con-
clude that C.(A/T') x%9 G/T is an essential *-algebra.
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The embedding of B(A,G,T) in M(C.(A/T) x%9 G/T) then follows from the
universal property of multiplier algebras, Theorem 1.2.10. (]

In the theory of crossed products A x G by groups, one always has an em-
bedded copy of the group algebra C(G) inside the multiplier algebra M (A x G).
Something analogous happens in the case of crossed products by Hecke pairs,
where the Hecke algebra H(G,T') is canonically embedded in the multiplier al-
gebra M(C.(A/T) x%9 G/T), as is stated in the next result (whose proof amounts
to routine verification).

PROPOSITION 3.1.9. The Hecke *-algebra H(G,T') embeds in B(A,G,T) in the
following way: an element f € H(G,T') is identified with the element f € B(A,G,T)
given by

f(g) = fgD)1,
where 1 is the unit of M(C.(A)).

The next result does not typically play an essential role in the case of crossed
products by groups, but will be extremely important for us in case of crossed prod-
ucts by Hecke pairs. The proof is also just routine verification.

PROPOSITION 3.1.10. The algebra C.(X°/T) embeds in B(A,G,T) in the fol-
lowing way: an element f € C.(XY/T) is identified with the function (f) €
B(A,G,T) given by

(HT) = f and L(f) is zero elsewhere.

REMARK 3.1.11. Propositions 3.1.9 and 3.1.10 allow us to view both the Hecke
*-algebra H(G,T') and C.(X"/T") as *-subalgebras of B(A, G,T'). We shall hencefor-
ward make no distinctions in notation between an element of H(G,T) or C.(X°/T)
and its correspondent in B(A, G,T).

The purpose of the following diagram is to illustrate, in a more condensed form,
all the canonical embeddings we have been considering so far:

Co(A/T) — CL(A/T) x%9 G/T

T

H(G,T) B(A,G,T) — M(C.(A/T) x4l9 G/T))

—

Ce(X°/T)
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REMARK 3.1.12. The reason for considering the algebra B(A, G,T) is two-fold.
On one side B(A, G,T") made it easier to make sure the convolution product (3.3)
was well-defined in C.(A/T') x%9G /T On the other (perhaps more important) side,
the fact that both H(G,T') and C.(X°/T) are canonically embedded in B(A, G,T)
allows us to treat the elements of H(G,T') and C.(X°/T') both as multipliers in
M(C.(A/T) x%9 G/T)), but also allows us to operate these elements with the con-
volution product and involution expressions (3.3) and (3.4), as these are defined in

B(A,G,T).

As it is well-known in the theory of crossed products by discrete groups, a
(*-algebraic) crossed product A x G is spanned by elements of the form a * g,
where @ € A and g € G (here g is seen as an element of the group algebra
C(G) € M(A x G)). We will now explore something analogous in the case of
crossed products by Hecke pairs. It turns out that C.(A/T) x%9 G/T is spanned
by elements of the form [a],r * T'gT * 1g(z)4r, where z € X, a € A, and gT' € G/T,
as we show in the next result.

THEOREM 3.1.13. For any f € C.(A/T) x%9 G/T we have
(3.5) f= > > [f (91“)(96)} Tl Lsgr -

[g]€T\G/T aT9e€X/T9
In particular, C.(A/T) x%9 G/T is spanned by elements of the form
[a]er * Tgl * 155y gr
with x € X, a € Ay and gT' € G/T.

The following lemma is needed in order to prove the above result:

LEMMA 3.1.14. Letx € X, a € A, and gT € G/T'. We have
- if hI' = ~gI’ ith v e T
[a]xl" *FgF " ls(x)gF (hF) _ [av(a)}aj'y e, Zf ' YgL, wih
0, otherwise .

In particular,

[a]a:F * Fgr * ls(m)gF (gF) = [a]wr‘g :

Proof: An easy computation yields
[a]zp * gl % 1s(x)gF (hF) = [a]zp . FgF(hF) . ah(ls(x)gp) s

from which we conclude that [a],r * T'gT * 15(;)4r is supported in the double coset
IgI'. Now, evaluating at the point gI' € G/T" we get

[alzr * Tgl * 1gz)gr (1) = [aler - Tgl'(gl) - @g(1s(a)gr)
i ag( s(x)gF)

]
[a]

= [aler - 1g(@)grg-
[a]

a

Q|zT9
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where the last equality comes from Proposition 2.3.10. From the compatibility
condition (3.1) and Proposition 2.3.9 it then follows that, for v € T,
[a]wF * FgF * 1s(z)gF (fygr) = a’y([a}xf-‘?)
= [O"Y(a)}az'y—ll“"rg .
([

Proof of Theorem 3.1.13: Let us first prove that the expression on the
right hand side of (3.5) is well-defined. It is easy to see that for every g € G, the
expression

> [feD@)] T Ly
xI'9eX/T9

does not depend on the choice of the representative x of xI'9. Now, let us see that
it also does not depend on the choice of the representative g in I'gI". Let vgf, with
~v,0 € T', be any other representative. We have

> [FO9on)@)] < TghT Lo =
x99 X /T99 v

= Y [foeD@)] Tl % yapgr
aTV9 € X T79 *

= Y [@ U))@)) | Tl Lyapgr
xr‘vgex/r‘vg z

=Y [eUED@))] #TIr Ly
aT79E€X /T v
We notice that there is a well-defined bijective correspondence X/T'Y — X/T79
given by 'Y — z~~'T"9. Thus, we get

= Y [oUED)@)] | # T * La

29 X/T9

> D@ #Tglx Lyayr

29X /T

Hence, the expression in (3.5) is well-defined. Let us now prove the decomposition
in question. For any ¢I" € G/T we have

Z Z f(gl)(z) * gl % 1s(l‘)gF (tr) =
zT

[9]€eT\G/T 2I'9€X/T9
- ¥ [f(tI‘)(x)} *TIT s Lger ().
aTteX /Tt “
By Lemma 3.1.14 it follows that
= > [rmw)
zIteX /Tt
fQr),
and this finishes the proof. ([

z't
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In the following result we collect some useful equalities concerning products
in C.(A/T) x%9 G/T, which will be useful later on. One should observe the sim-
ilarities between the equalities (3.8) and (3.9) and the equalities obtained by an
Huef, Kaliszewski and Raeburn in [9, Lemma 1.3 (i) and (ii)] if in their setting one
was allowed to somehow “drop” the representations. The similarity is more than a
coincidence as we will see later in Chapter ?77.

PROPOSITION 3.1.15. In C.(A/T) x%9 G/T the following equalities hold:
(3.6) ([a}xp * Dgl * 1S(m)gr‘) = A(g) [ag-1(a™)]z-1g4r * Lg~ T % ls@-1yr

(3.7) Leayr * Tgl # [ag-1(a)]egr = [a]or * Tgl * 1ggygr

(3.8) alor *TgT = > [alor * TgT # Ly(a)qr -
[1]€S.\I/T'9

(3.9) Tyl * [a],r = > Le(eyygr * Dol [aler

[v]€S A\ /T~

In particular, from (3.7) we see that C.(A/T) x%9 G/T is also spanned by all ele-
ments of the form 1yyr * gl * [a]zgr, with g € G, x € X and a € A,.

Proof: Let us first prove equality (3.6). First we notice that
([a}wl—‘ * Fgr * 1s(m)gF)* = A(g) 1s(r)gF * Fg_lr * [a’*}mfll‘ ’

which means that ([a]xp * gl * 1s(x)gp)* has support in the double coset T'g~'T.
Now evaluating this element on ¢~ 'T" we get,

([a]ar = TgT * ls(x)gp)* (7' =
= A(g) @1 (([aler * TgT * 1s(aygr) (1)
= Ag) @g-1([a]ers)”
= A(g) lag-1(a”)], -1 ypa—
= A(g) ([og-1(a")]p-1gr *Tg7 Tk 1g(p-1yr) (97'T).
Let us now prove equality (3.7). We have
Loy * DT * [ag-1(a)lagr = A(9) ([og-1(a")]o-1r # g™ 'T # Lgor)”
= A(g) ([og-1(a*)]g—1gr *Tg™'T % 1s(mflg)gflr)*7
which together with (3.6) yields
A(9)A(g™") [a]er * Tyl * Lg(zg)r
= [a].r * Tgl * Is(zg)r -
Let us now prove (3.8). An easy computation yields
[a]or * Tgl' (RI') = [a]or - TgT'(RD),

from which we conclude that [a],r * T'gI' has support in I'gl'. Evaluating this
element on the point gI" we get

[alar xTgl (gT) = [alor -TgT'(gT) = [alar .
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From Proposition 2.3.7 one always has the following decomposition

la]lar = Z [ay-1(a)]ayrs -

[v]€S\I'/T9

Together with Lemma 3.1.14 we get

[alar # Tl (9T) = [alor

= Y leay1(@)ars

[V]€S\I'/T9

= Z [a"/_l (a’)]ﬂf’YF * FgF * 15(1)’\/91" (QF)
[v]€S:\I'/T9

= Z la]or * DT * 1g(2)4gr (91),
[v]€SL\I'/T9

and equality (3.8) is proven.

Equality (3.9) follows easily from (3.8) by taking the involution and using the
fact that S, = S,-1.

The last claim of this proposition follows simply from (3.7) and Proposition
3.1.13. ([

In the theory of crossed products A x G by discrete groups one has a “covariance
relation” of the form g*ax* g~ = ag(a). This relation is essential in the passage
from covariant representations of the system (A, G, «) to representations of the
crossed product. More generally, the following relation holds in A x G:

gxaxh = ag(a)*gh.

We will now explore how this generalizes to the setting of crossed products by
Hecke pairs. What we are aiming for is a description of how products of the form
T'gT" * [a],r * T'sT" can be expressed by the canonical spanning set of elements of
the form [b],r * DAL * 1(z)nr (according to Theorem 3.1.13). This will be achieved
in Corollary 3.1.18 below and will play an important role in the representation
theory of crossed products by Hecke pairs, particularly in the definition of covariant
representations. One should observe the similarities between the expressions we
obtain both in Theorem 3.1.16 and Corollary 3.1.18 and the expression provided
by an Huef, Kaliszewski and Raeburn in [9, Definition 1.1] (if one “forgets” the
representations in their setting). Once again, this is more than a coincidence as
we will see in Chapter ?7?7. In fact, an Huef, Kaliszewski and Raeburn’s definition
served as a guiding line for our results below and for the definition of a covariant
representation (Definition 3.3.1) which we shall present in the next section.

Before we establish the results we are aiming for we need to establish some
notation, which will be used throughout this work. For w,v € G and a unit y € X°
we define the sets

(3.10) ny
(3.11) o,

{[r] € TwI'/T : r~'wol C Tl and yw™' € yI'r~'},
{[r] € TwI'/T : r~twol C Tl and yw™! € yI‘rilI‘w“} .



3.1. DEFINITION OF THE CROSSED PRODUCT AND BASIC PROPERTIES 53

and the numbers

(3.12) =Y
(313) = # aw U7
Y
(3.14) Ny, = oo
’ dw,v

We will also denote by EY , the double coset space

(3.15) EY, ==8,\['/(uI'u"' nolv™!).

THEOREM 3.1.16. Let g,s € G and y € X°. We have that

NG
FgF * 1yf‘ « s’ = Z Z L(”LU”U) (1y’yu}*11—‘ * Twol” * 1y'va)
[w]€TgT /T [y]€EY _,
[v]eTsT/T ’
L(g)NY3,
= Z Z Tgv!)] (Lyyg-1r * TgoT * 1yyr)
[v]ersT/T [yJeEY_, |
A(g) Ny'_yl w
- Z Z Ialo) (Lyyur * Tu™ 0l * 1yyr) -

[u]eTg™'r/T [VEEY .
[v]ersT/T

In order to prove the above result we will need the following lemma, which

gives some properties of the numbers nf, , and d, ,

LEMMA 3.1.17. Let w,v,€ G, 0 € T and y € X°. The numbers n, , and dY, ,
satisfy the following properties:

: Yy — Y -/ Yy — Jy
1) nw,v@ - nw,v ¢ ) dw vl T dw,v
Yy 7} / Y —_ Jy
i) ng, . ny . i) dew,v dy, ,
ooy yl oy Nyl o
111) nwﬂ*lv - nw9*1,v e ) dw O-1v T dwefl,v

More generally, if w,v € G and y € X° are such that Twl' = T'wl, Tol' = T'wT,
gl = yT', Wl = wol’ and gw 1T = yw™'T%, then

: y Y . y gy
iv) nl, , =ng s ') dY, , =dg 5

Proof: Assertions i) and i) are obvious.

Assertion i) follows from the observation that [r] — [#~1r] establishes a bijec-
tion between the sets n¥, , and ngww.

Assertion ') is proven in a similar fashion as assertion 7).

To prove assertion iv), let § € I'”? be such that gw ! = yw~'6. We have

ni’;ﬁ = {[r] eTwl'/T: r~lwol CToT and guw ! € @Tr‘l}
= {[r] € Twl'/T : v~ twol’ C Tl and yw ™16 € yI‘ril} .
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Since 0 € I'*V we have wvl’ = wvl’, so that
= {[r]eT9'wl'/T :r '~ wol' CTol and yw '6 € yI'r~'}
= ngflw,v '
Z*lw,v = n%»jvﬂf'
As for assertion iv’), taking § € T'"? again as such that yw—
notice that

Now, from assertion i), it follows that n% =N

L= yw™16, we

Wy = {[r] € T@T/T : v '@l C T9T and yw ' € ygIr'T7%}
= {[r] €Twl/T : 7 'wol C Twl and yw™ '@ € yI'r '}
= {[r] €Twl/T :r 'wol C Twl and yw™' € yI'r 'T*"}
AR
Assertions #4¢) and 4ii’) are a direct consequence of iv) and v’). O

Proof of Theorem 3.1.16: We have

Tgl# 1,r +DsT (i) = Y Tgl'(wl) @y ((1yr # TsT) (w™'))
[w]eG/T

= Z A ((1yr * TsT) (w™'D))

[w]ergl’/T"

= Y @uw(lyr - TsT(w™ D))

[w]elgl’/T

= Z aw(lyl")

[w]eTgl’/T
w ™ HTCrsT

= > e

[w]eTgl’/T
w™ HICrsT

We now claim that

(3.16) Yo Lo = > > N Ly

[w]elgl/T [w]elgl' /T [y]€eEY _,

w—1
w HTCTsT w=HTCTsT et

To see this, we will evaluate both the right and left expressions above on all
points 2 € X and see that we obtain the same value. First, we note that if z € X°
is not of the form yfw !, for some § € I' and w € I'gl’ such that w—I' C I'sT,
then both expressions are zero. Suppose now that x = y6w ' for some w € I'gl’
such that w—I' C T'sT. Evaluating the left expression we get

~_ ~_ 0
Z lyfu}*1 (yow 1) = Z lyFw” (yow ) = nyﬁ,ﬁ_lt :
[w]el'gl’/T" [w]eT'wI'/T
w™ NI CrsT wtew U Crao— T
As for the right expression, first we observe that if yw ! € yyw 'T?, then by
Lemma 3.1.17 v) and iv’) we have Nw ~—1, =N _,,. Thus, evaluating the right

w1t =
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expression we get

> S N L (0T ) =

[w]€TgT/T [y]eEY _,
w™ NI CrsT

Z Z Nl%‘,gﬁflt 1y,yw711‘t (ye@_l)

[w]€Tgl'/T [Y]eEY _,
w™ NI CrsT ’

= NY > S g (0@

[wlelgl'/T [y]€EY _,
w~ NtICrsT

,w_lt

—1y

dw— 1t
Using Proposition 1.3.2 we notice that

E 1y’yw*11"t = § 1y’y(w*11“wﬂw*1t1"t*1w)w*1
[VeE? eE? _,

—1 =1y aw— 1t

= 1yFw*1Ft 3

from which we obtain that,

Nowr D Y L) =

[wlelgl'/T [y]€EY _,
w NICrsT

6 ~_
= Ng,ﬁflt Z Lyrw-1re (yow 1)
[w]elgl'/T
w” I CrsD

— y0 ~—1
= Ngg- Z Lyrw-1re (0w ")
[w]eTwl'/T
wlow~ T Cr@w— T

- NV dvl

w, w1t Tw,w—1t

,w*lt

_ yo
w1t "

So, equality (3.16) is established.
Now, by Proposition 3.1.14, we see that

yy _
z : : : Nw,wflt ]‘y’Yw_lFt -

[w]€TgT/T [y]eEY _,

w1t

w” HICrsT
- Z Z Ni’,yuflt (]-y'yw*1F * I'tL 1y’yw*1tl“) (tF)
[wleLgl/T PIEE) _, o,
w T CrsT ’ ’

Now, using the fact that condition w~=*I" C T'sI" means that there exists a (necessar-
ily unique) element [v] € I'sT'/T" such that w1’ = vT', or equivalently, tI' = wul,
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we obtain
= Z Z Ni’) w1t (11/711%*11“ # el x 1y'yw*1t1“)(tr)
[w]ePgl/T [y]eEY |
[v]ersl'/T '
wyl'=tl’
= > > NZ, (Lyqw-rr * Twol s 1yr) (A1)
[w]elgl'/T [’Y]EE?“ 1,
[v]eTsT/T ’
wvl'=tI’

‘We now claim that

Z Z N%,Vv (ly’ywﬂF * Twol « 197“F)(tr) -

[w]€lgl/T [Y]€EY _,
[v]elsT'/T
wyl'=tI’

;U

NG
= Z Z L(w’v) (Lyyw—11 * Twol  1y0,p) (¢T)

[w]€Tgl/T [Y]€EY _,
[v]ersl'/T '

To prove this we note that, given any [w] € I'gI'/T" and [v] € T'sI'/T", the element
(Lyyw—11 * Twol % 1,1 ) (1) is nonzero if and only if I'tT" = T'woT, so that we can
write

NJY,
S e e r)or) -

[wleTgl/T' ()EEY _, |

[v]elsT'/T
NG,
— Z Z L(wv) (Lyyw—11 * Twol  1y,r) (¢1)
[w]€Lgl/T [y]eEY
[v]eTsI'/T v
wul' CT'tT

NYY

Z Z Z L(Zni) (Lyyw—11 * Twol  1y0,r) (¢1)

[0]€T /Tt [w]elgl' /T [v] EE” 1
[v]elsT'/T v
wul'=0tI’

N
Z Z Z sz}z) (1yyw-19-11 * TOWOVL * 1,,r) (¢1)

[0]eT /Tt [w]elgl' /T [y]€E
[v]elsT'/T
Owvl'=6tI’

*10 1o

Ny
Z Z Z L(JUU) (Lyyw—11 * Twol  1y,r) (¢1)

[0]er/Tt [w]elgl/T [Y]eEY
[v]eTsT/T "
wvl'=tI

By Lemma 3.1.17 4i) and i) we know that Ng = N2, hence
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NyY
= Z Z Z L(Z;;j) (ly'vw*l“ * Dwol” * 1y’va) (tT)

[0]eT /Tt [w]el'gl"/T ['y]GEy 1,

[v]els'/T
wvl'=tI’
N,
= L(t) Z Z L(w’v) (Lyyw—11 * Twol  1y,p) (¢1)
[wlelgl' /T YeE) ;|
[v]eTsT/T
wyl'=tI’
= > > NYL, (1ygw-rr * Twol s 1yy,r) (1T).
[w]€lgl /T [y]€EY _,
[v]eTsT'/T v
wol'=tI'
Hence, we have proven that
N
Ll 1yp x I'sT" = Z Z T(wo) (1y7w_11~ * Twol * 1y'yvr) .
[w]elgl'/T [y]eEY _,
[v]eTsl'/T v
Also,
N
Z Z L(u;v) (Lyyw—11 * Twol  1y,r)
[w]€TgT/T [y]€EY _,
[v]els'/T '
N?J’Yv
= Z Z L(;ggv) (1y7971971p * [Ogul x lywp)
(B1€/T? [yeB) 1, 4 ,
[v]elsT/T
Ny,
= Z Z L(g7v) (Lyyg—1r * Dgol % 1yyr)
(61€T/T? [y]eE)_,
[v]eTsT/T v
L(g)Ng

= > > ﬁ (Lysg—0 ¥ Tgul  Lyyer) -

[lers/T [7IeEY_,

U

Moreover, we also have

L{g)NJ%,
Z Z = (1yyg—1r * Tgol % 1yppr)
- L(gv)
[v]ersT/T MEEQ—“,
) AlgIVI,
— LgY Z Z Tv)g’ (1y7971r * Igol * 1y7vl“)

[v]eTsT/T ['y]GEy

S,
A(g)Ng
— Z Z Tv)g (Lyyg-1r * Dol * 1yyr)
leler/ro " DIEEL L
[v]elsl'/T
A(Q)N% 1y _
- Z Z L(99g1 ) (1y'yg*11“ * g ol x 1y'y€*1vF) )

pleryre ' DIEE) o,
[v]elsT'/T
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but since there is a well-defined bijection Egg_l Y, = Eé’_l g—1, given by [v] = [y0],
we obtain '

= 2 X

[pler/rs " DB, 1,
[v]elsT'/T

A(g)NYY

9,0~ 1v

-1
W (ly'ng*lF * Fg@ vl % 1y709—1vr)

NYY thus

v gb—1 v’

A(g)NY,

g0~ v

L(g6~tw)

and from Lemma 3.1.17 we get Nya |

POEENDY

[pler/ro ' DI€B) 1
[v]elsT'/T

(Lyyog-1r * Tgf~ "0l % Lyyer)

A(g N@I’Y

Z Z L( . (1?/7“1“ * Tu™ "ol 1wa) :

[ulerg~'r/T [v]€EL.,
[v]elsT'/T

COROLLARY 3.1.18. Similarly, for a € A, with x € X, we have

Lyl « [a],r x TsT' =

st(:f})w
- Z Z L(wv) ([aw'rl(a)]x'wall“ * Dwol™ * 1s(z)~yv1‘)
[w]elgl'/T [’Y]GEs(f)l
[v]elsT/T w= v
L(g)Ngts "
= — -1 - Tgul' % 1
Z Z L(gv) ([O‘gv (a)]zyg—11 * Lol * s(;c)'yul")

[v]ersr/T ['Y]EES(I)

A(g)N, s(_’i)v )
= Z Z L( ([aufl’Y*l(a’)]iE’YU«F * ['u 1’UF * 1S(z)vvf‘) .

[u]eTg™'T/T [4]eES®
[v]elsT/T

Proof: According to equality (3.9) in Proposition 3.1.15 we have
Lyl «* [a],r * TsT' =

= Z Le(zyog—1r * gl * [a],r * ['sT
[0]€S,\I'/T9~ !

= Z 11.(13)99—11“ * FgF * [O[g—l (Oégg—l (a))]mggflgp * ['sT
[6]€S,\I/Ta"

and by (3.7) in the same proposition we get

= > loge-1(a)lsog-1r * Tl Iy * DsT,
[6]€S,\I'/T9~!
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and by Theorem 3.1.16 we obtain

N;(ﬂ;)v
= Z L(’(;)’U) [049971 (a)]mggfq‘ * 1s(z)’yw*1F * Twol * ls(w)'va .
-1
0leS,\TI'/T?
| ][w]e}‘g{"/l“
[v]elsT'/T
e

For each fixed w, v and + all the summands in the expression
Ns(w)’Y

Z LEUQZ)U) [ag0*1 (a)]magfll“ * ls(:r:)'wall“ * Lwol * 1s(m)'va )
[0]€S.\I'/Ts~"

are zero except precisely for one summand and we have

Z Tl;}’()) [0499—1 (a)]rgg—lp * 1s(z)’yw*11" * [wol * 1s(a:)'va
[0]€S \T/Ta™ "
NS@)Y
= L(l;ﬂ}) [aw"/_l (a)]m'yw—lr‘ * [wol « ]-s(;c)fyvl" .

Hence we obtain

Tgl'xa,r xT'sI’ =

NS}(T})’Y
SR ND M- 1 RS
el'g'/T" s(z)
[[1111}]161‘;]1“//1“ MEEw*,v

The remaining equalities in the statement of this corollary are proven in a similar
fashion. O

3.2. Basic Examples

ExaMPLE 3.2.1. We will now show that when I is a normal subgroup of G our
notion of a crossed product by the Hecke pair (G,T") is precisely the usual crossed
product by the group G/T". Normality of the subgroup I' implies that the G-action &
on M(C.(A)) gives rise to an action of G/T on C.(A/T"). Moreover, we have I'Y =T
for all g € G, and it follows easily from the definitions that C.(A/T") x*9 G/T is
nothing but the usual crossed product by the action of the group G/T".

It is also interesting to observe that any usual crossed product C.(B) x%9 G/T
coming from an action of the group G/T" on a Fell bundle B over a groupoid Y is
actually a crossed product by the Hecke pair (G,T) in our sense. To see this we
note that the action of G/I" on B lifts to an action of G on B. In this lifted action
the subgroup I' acts trivially, so that the action is I'-good. Moreover, since I' is
normal in G, the I'-intersection property is also trivially satisfied. It is clear that
Y/T is just Y and B/T' coincides with B. Thus, forming the crossed product by
the Hecke pair (G,T) will give nothing but the usual crossed product by G/T, i.e.
C.(B/T) x99 G/T = C,(B) x*9 G/T.
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ExXAMPLE 3.2.2. We will now explain how the Hecke algebra H(G,T") is an
example of a crossed product by a Hecke pair, namely H(G,T') =2 C x9 G/T, just
like group algebras are examples of crossed products by groups.

We start with a groupoid X consisting of only one element, i.e. X = {x}, and
we take C as the Fell A bundle over X, ie. A, = C. We take also the trivial
G-action a on A. Since the G-action fixes every element of A, it is indeed I'-good
and in this case we have X/T' = X = {x}. For the orbit bundle we have that
A/T' = A, and moreover

CL(AJT) = C.(X/T) = C.(X) = C.

Hence, we are in the conditions of the Standing Assumption 3.0.1 and we can form
the crossed product C.(A/T') x%9 G/T', which we will simply write as C x%9 G/T.

Since C is unital the definitions of B(A,G,T') and C x%9 G/T coincide in
this case. Moreover Definition 3.1.3 reads that C x29 G/T is the set of functions
f : G/T — C satisfying the compatibility condition (3.1). Since the action @ is
trivial, the compatibility condition simply says that C x29 G//T" consists of all the
functions f : G/T' — C which are left I'-invariant. Morever, the product and
involution expressions become respectively

(frx f2)(D) =D A(RD) fo(h™'gT),

[hleG/T
(f*) (L) :== A(g™") f(g~'T).

Hence, it is clear that C x29 G/T" is nothing but the Hecke algebra H(G,T).

It follows from this that the product T'gl’ x 1,p * I'sT" is just the product of
the double cosets I'gI" and I'sI" inside the Hecke algebra, since 1.r is the identity
element. It is interesting to note in this regard that the expression for this product
described in Theorem 3.1.16 is a familiar expression for the product I'gl" * I'sT" in
H(G,T). To see this, we note that the stabilizer S, of * is the whole group G,
and therefore E7 , consists only of the class [e]. Moreover, the numbers n;_,
and d’_, , defined in (3.12) and (3.13), are equal, so that N, ~= 1. Thus,
the expréssion described in Theorem 3.1.16 is just the familiar eipression from
Proposition 1.3.6

Z A(g) -1
FgF *['s' = m T'u= "ol s
[uleTg~'r/T
[v]elsT'/T

ExXAMPLE 3.2.3. As a generalization of Example 3.2.2 we will now show that
if the G-action fixes every element of the bundle A, then C.(A/T) x%9 G/T is
isomorphic to the *-algebraic tensor product of C.(A/T") and H(G,T). This result
also has a known analogue in the theory of crossed products by groups.

PRrROPOSITION 3.2.4. If the G-action fizes every element of A, then we have
Co(A/T) x¥9 G/T = C.(A/T) ®H(G,T),

where ® s the symbol that denotes the *-algebraic tensor product.
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Proof: Given that we have canonical embeddings of C.(A/T") and H(G,T) into
M(C.(A/T) x%9 G/T') we have a canonical linear map from C,(A/T') ® H(G,T) to
M(C.(A/T) x%9 G/T') determined by

(3.17) 1@ fa fix fa,

where f1 € C.(A/T) and f2 € H(G,T). Standard arguments can be used to show
that this mapping is injective (since the mappings from both C.(A/T") and H(G,T")
into the multiplier algebra of the crossed product are injections). It is also clear that
the image of the map determined by (3.17) is contained in C.(A/T) x%9 G/T'. Let
us now check that this mapping is surjective. First we will show that the elements
of C.(A/T) commute with elements of H(G,T) inside M(C.(A/T) x%9 G/T). It
follows from expressions (3.8) and (3.7) that

[al.r * Tgl" = Z [alor * Tl * 1g(z)ygr
[V]€S=\T/T9
= Z ]-r(x)l" * Fgr * [ag_ vt (a)]l”YQF .
[v]€S.\I'/T9

Since every point of X is fixed by the associated G-action on X, we have that
S, = G, and therefore S;\I'/T'Y consists only of the class [e], so that we can write
= Iy * gl * [ag-1(a)]zgr -
Moreover, since the G-actions on A and X are trivial we can furthermore write
Le@@yg—1r * Lgl * [a]ar .

Now, by the same reasoning as above and using expression (3.9) we have

= Z lr($)79—1F * FgF * [a}mp
[yleS.\I/To ™!
= T¢I« [a].r.
Thus we conclude that [a],r * T'gI" = T'gT" * [a],r. By Theorem 3.1.13 we know that

clements of the form [a],r * Dgl * 15z ,r span Ce(A/T) x29 G/T', and from the
commutation relation we just proved it follows that

[a]er * Tgl * 150 = Tgl * [alor * Lg(g)gr
= Tl [aler * 1gm)r
= gl * [al.r
= |[a)yr x gl
so that C.(A/T) x29 G/T is spanned by elements of the form a,r * ['gl'. We now
conclude that the image of the map (3.17) is the whole C.(A/T) x%9 G/T.

The fact that this map is a *-homomorphism also follows directly from the
commutation relation proved above. ([

3.3. Representation theory

In this section we develop the representation theory of crossed products by
Hecke pairs. We will introduce the notion of a covariant pre-representation and
show that there is a bijective correspondence between covariant pre-representations
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and representations of the crossed product, in a similar fashion to the theory of
crossed products by groups.

Recall from Proposition 1.2.16 that every nondegenerate *-representation 7 :
C.(A/T) — B(4€) extends uniquely to a *-representation

7 : Mp(C.(A/T)) — B(A#).

We will use the notation 7 to denote this extension throughout this section, many
times without any reference. Since C.(XY/T") is spanned by projections, it is a
BG*-algebra (recall Definition 1.1.3) and therefore we naturally have C.(X°/T") C
Mp(Ce(A/T)).

DEFINITION 3.3.1. Let 7 be a nondegenerate *-representation of C.(A/T") on a
Hilbert space ¢ and 7 its unique extension to a *-representation of Mp(C.(A/T)).
Let © be a unital pre-*-representation of H(G,I') on the inner product space
W = w(C.(A/T))H#. We say that (mw, p) is a covariant pre-*-representation if
the following equality

(318) w(TgD)r([alr)u(TsT) =

A(g)NZ&HT .
X A e @) O ) R
[uleTg™'T/T [y)eEyD)
[v]elsT'/T

holds on L(#), for all g,s € G and = € X.

Condition (3.18) simply says that the pair (7, ) must preserve the structure
of products of the form I'gI" * [a],1 * I'sI", when expressed in terms of the canonical
spanning set of elements of the form [b],r * I'dl" * 14(,yar, as explicitly described in
Corollary 3.1.18.

The reader should note the similarity between our definition of a covariant pre-
*-representation and the covariant pairs of an Huef, Kaliszewski and Raeburn in
[9, Definition 1.1]. Their notion of covariant pairs served as a motivation for us and
is actually a particular case of our Definition 3.3.1, as we shall see in Chapter 77.

The operators 7 ([ov,—1,-1(a)]gyur) p(Tu 0T) T(1g(4)yor) in expression (3.18)
are all bounded, as we will now show, and are therefore defined in the whole Hilbert
space .

THEOREM 3.3.2. Let w: C(A/T) — B(J) be a nondegenerate *-representation
and p: H(G,T) = L(#') a pre-*-representation on the inner product space W :=
w(C.(A/T)). Every element of the form

7r([a]aﬂf‘)/14(Pgl—‘)%(ls(ﬂc)gl‘) s
is a bounded operator on W and therefore extends uniquely to the whole Hilbert
space .

We will need some preliminary facts and lemmas in order to prove Theorem
3.3.2. These auxiliary results will also be useful later in this section.

Let m : C.(A/T) — B(J) be a nondegenerate *-representation and 7 its
extension to Mp(C.(A/T)). For any unit u € X° the operator 7(1,r) € B(J7) is
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a projection, and therefore 7(1,r)## is a Hilbert subspace. The fiber (A/T),r is a
C*-algebra which we can naturally identify with the *-subalgebra

{la]ur € Ce(A/T) : [a] € (A/T)ur} € Ce(A/T),
under the identification given by
(A/T)ur 3 [a] +— [a]ur € C.(A/T).

The *-representation 7 when restricted to (A/T"),r, under the above identification,
leaves the subspace 7(1,r)#¢ invariant, because

([alur)7(Lur)€ = 7T([alur)§ = T(1ur)7([a]ur)§ -
The following lemma assures that this restriction is nondegenerate.

LEMMA 3.3.3. Let w: C.(A/T") — B(H) be a nondegenerate *-representation
and T its unique extension to Mpg(C.(A/T)). The *-representation of (A/T),r on
the Hilbert space 7(1,r)H, as above, is nondegenerate.

Proof: Let 7(1,r)§ be an element of 7(1,r).# such that
7([a)ur)7(1ur)§ = 0,
for all [a] € (A/T)ur. We want to prove that 7(1,r)§ = 0. To see this, let z € X
and [b] € (A/T),r. We have two alternatives: either s(x)I" # ul’ or s(z)[' = ul. In
the first case we see that
T([blar) 7 (Lur)€ = T([blar - 1ur)§ =0,
whereas for the second we see that
IR F LN = FOlar)F(Lar)é, 7o) F (L))

= (@([b*b]s@)r)7(Lur)§, T(Lur)§)

(@([0*bur)7(Lur)€ , T(Lur)E)
by assumption. Thus, in any case we have 7([b],r)7(1,r) = 0 for all x € X and

[b] € (A/T).r. By nondegeneracy of , this implies that 7(1,r)¢ = 0, as we wanted
to prove. O

LEMMA 3.3.4. Let m be a nondegenerate *-representation of C.(A/T) on a
Hilbert space 5. We have that 7(C.(A/T))H# = 7(C.(X°/T)) 2.

Proof: 1t is clear that 7(C.(A/T))# C 7(C.(X°/T)) since for any element
of the form [a],r in C.(A/T') and § € 2 we have 7([a].r){ = T(1p(yrlal.r)§ =
%(1r(m)F)7T([a}$F)§~

Let us now prove that 7(C.(X°/T"))# C 7(C.(A/T))H#. Let ul' € X°/T and
¢ € . We know, by Lemma 3.3.3, that 7 gives a nondegenerate *-representation
of (A/T)yr on 7(1,r)s#. Since (A/T),r is a C*-algebra we have, by the general
version of Cohen’s factorization theorem (|18, Theorem 5.2.2]), that there exists
[c] € (A/T),r and n € T(1,r)-# such that

7(1ur)§ = 7([clur)n,



64 3. “-ALGEBRAIC CROSSED PRODUCT BY A HECKE PAIR
which means that 7(1,r)§ € 7(C.(A/T"))5. This finishes the proof. O

Proof of Theorem 3.3.2: The operator 7([a],r)u(Tgl)7(1s(z)gr) is clearly
defined on the inner product space m(C.(A/T")).#. By Lemma 3.3.4 this operator
is then defined on the space 7(C.(X°/T))5#. Since

7T([CL]wl—‘):u(]j‘gl—‘)%(1s(:b)gF) = ﬂ-([a]wr)ﬂ(rgr)%(ls(m)gf‘)%(1s(z)gr) y

it follows that the operator 7([a],r)u(I'gl)T(15(4)gr) is actually defined in the whole
Hilbert space .7 (or in other words, it extends canonically to J¢).

A similar argument shows that 7(1g,)gr)u((I'gl')*)7([a*],-1r) is also defined
in the whole Hilbert space ¢ and it is easy to see that 7([a].r)u(I'gl)7T(1(z)4r)
is an adjointable operator on .7, whose adjoint is 7(1g(z)gr)u((I'gl)*)7([a*]-11).
Since adjointable operators on a Hilbert space are necessarily bounded (see [19,
Proposition 9.1.11]), it follows that 7([a].r)u(I'gT)T(15(z)4r) is a bounded opera-
tor. (|

The striking feature that we actually have to consider pre-representations of
H(G,T), and not just representations, was not present in the theory of crossed
products by groups because a group algebra C(G) of a discrete group is always a
BG*-algebra and therefore all of its pre-representations come from true represen-
tations (see further Remark 3.3.8).

It will be useful to distinguish between covariant pre-*-representations and co-
variant *-representations, so we will treat them in separate definitions. As will be
discussed below we will see covariant *-representations as a particular type of co-
variant pre-*-representations.

DEFINITION 3.3.5. Let 7 be a nondegenerate *-representation of C.(.A/T") on
a Hilbert space J# and p a unital *-representation of H(G,T') on 5. We say
that (m,u) is a covariant *-representation if equality (3.18) holds in B(5#) for all
g,s € Gand x € X.

LEMMA 3.3.6. Let (m, 1) be a covariant *-representation on a Hilbert space J€.
Then p leaves the subspace # = w(C.(A/T))H invariant.

Proof: Consider elements of the form 7([a].r)&, whose span gives #. Using
the fact that p is unital and the covariance relation (3.18) we see that

w(Lgl)m([al.r)é =
w(Tgl)m([alor)u(T)E

A(g) N
Z Z L_ul@ %([au,17,1 (a)]zyur) :U'(Fuilr) %(ls(w)’yr)g ’
L(u=1)

[u]€Tg™'T/T [4)eE5Y

Hence, u(Tgl)n([al.r)€ € #, and consequently p(I'gl") leaves # invariant. This
finishes the proof. O

From a covariant *-representation (, ) one can obtain canonically a covari-
ant pre-*-representation (m, u), just by restricting p to the dense subspace # :=
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m(C.(A/T)) (which is an invariant subspace by Lemma 3.3.6). So we can regard
covariant *-representations as a special kind of covariant pre-*-representations: they
are exactly those for which g is normed. As we shall see later in Example 3.4.1,
there are covariant pre-*-representations which are not covariant *-representations,
thus in general the latter form a proper subclass of the former. We shall also see
examples where they actually coincide.

REMARK 3.3.7. Equivalently, one could define covariant (pre-)*-representation
using any other of the equalities in Corollary 3.1.18 and substituting with the ap-
propriate (pre-)*-representations. It is easy to see, using completely analogous
arguments as in the proof of Corollary 3.1.18 or Theorem 3.1.16, that all three
expressions yield the same result.

REMARK 3.3.8. Even though it might not be entirely clear from the start, when
I is a normal subgroup of G the definition of a covariant pre-representation is noth-
ing but the usual definition of covariant representation of the system (C.(A/T"), G/T).
We recall that a covariant representation of (C.(A/I'), G/T") is a pair (7, U) consist-
ing of a nondegenerate *-representation 7 of C.(A/T") and a unitary representation
U of G/T satistying the relation

W(agr(f)) = UgF'/T(f)Ug_lf )

for all f € C.(A/T) and gI" € G/T. Now, as it is well known, every unitary
representation U of G/I is associated in a canonical way to a unital *-representation
w of the group algebra C(G/T'), so that we can write the covariance condition as
m(agr(f)) = p(gl)m(f)u(g~'T). As a consequence we have that for any gT', sI' €
G/T,z € X and a € A,:

U(QF)W([a]mF)M<SF> = ﬂ-([ag(a”ngll")/‘(g—lsr) .

We want to check that covariant representations of the system (C.(A/T),G/T) are
the same as covariant pre-*-representations as in Definition 3.3.1.

Given a covariant pre-*-representation (7, u) on some Hilbert space ¢ in the
sense of Definition 3.3.1, we have that u is a pre-*-representation of C(G/T"), which
is normed since any group algebra of a discrete group is a BG*-algebra, and thus
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we can see pu as a true *-representation on . We then have that

(o) (laler) (g™ 'T)
p(Tgl)m((aler)p (Fgle)
NS(II)’Y
Z Z — %([au—lv—l(a)]w’vur)ﬂ(ruilvr)%(ls(m)ﬂ/vl“)

[u]eTg 'T/T [y)eEs%)
[v]erg~'r/T

= Y N F(lag(@)ag-rr) (997 T) F(Lsgaygrr)

hees®)

- Z N;SCW ([ag(a)]zg—lF ’ 1S($)g_1r)

MeEr®)

= Z Ng(;)’lY ﬂ-([aq(a)]zg*q‘) .

hees®)

s(z )

It is clear from the normality of T' that E -1 consists only of the class [e] and

moreover Nq(q_)1 =1, so that

u(gD)m(laler)u(g™'T) = w(log(a)]eg-11) -

By linearity it follows that u(gl)m(f)u(g™'T) = m(@,r(f)) for any f € C.(A/T).
Thus, with U being the unitary representation of G/I" associated to u, we see that
(m,U) is covariant representation of the system (C.(A/T),G/T).

For the other direction, let (7,U) be a covariant representation of the system
(C.(A/T),G/T) and let p be the *-representation of C(G/T") associated to U, which
we restrict to the inner product space 7(C.(A/T"))7#. We want to prove that (m, i)
is a covariant pre-*-representation in the sense of Definition 3.3.1. We have

5 _ ~
Z Z L(uijv)v 7 ([aty-15-1(a)]zyur) p(T'u 'or) T(ls(z)yor) »
[u]€Lg™'T/T [y]e B3y
[v]el'sT/T
where the last equality is obtained following analogous computations as those above.
Thus, (7, 1) is a covariant pre-*-representation in the sense of Definition 3.3.1.

The following result makes it clear that some of the relations we have inside
the crossed product (see Proposition 3.1.15) are preserved upon taking covariant
pre-*-representations. This is expected since, as we stated before, we will prove
that covariant pre-representations give rise to representations of the crossed prod-
uct, and this result is the first step in that direction:
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PROPOSITION 3.3.9. Let (m, 1) be a covariant pre-*-representation. The follow-
ing two equalities hold:

(3.19) T(Le@r)u(TgD)m([ag-1(a)]agr) = T([alr)w(TgT)T(1s(a)r) -
(3.20) pCgD)((alar) = Y Fleg@yyg—r)(TgD)7([alor) -
MeEs) |

Proof: Since (m, p) is a covariant pre-*-representation we have
pTgl)7(laler) = p(Tgl)7([aler)u(T)
= > N (g1 (@)]eyg-0) p(TID)T (Lsayyr)
B
= Z %([ag'\/‘l (a)}o:'yg—lF):u(FgF)%(ls(z)I‘) )
heEs®)
where the last equality comes from the fact that nf](,?f” =1= df,fi”, and thus
N;(éc)7 = 1. From this it follows that
%(11'(9:)9*1F)u(rgr)%([a}zr) =

Z 7fF(lr(:c)gfl1")7?([0‘57'y*1 (a)}mvg*lF)ﬂ(FgF)%(ls(a:)F)
eBs®)

,e

= Z %(11'(93)9—11“ : [ag'y—l (a)]wvg—1F)N(F9F)%(ls(ac)1‘) :
MeE:™) |

Now the product 1,(z)g-1r - [@gy—1(a)]zyg-1r is nonzero only when r(z)g~'T' =
r(z)yg~'T, from which one readily concludes that r(z)y € r(z)g 'I'g. Since one
trivially has r(z)y € r(x)I" we conclude that

r(z)y € r(@)l Nr(z)g~'Ty,

and by the I-intersection property we have r(z)y € r(z)[¥ . From Proposition
1.3.2 this means that [y] = [e] in E;(_xl),e. We recall that E;(_wl{e = Sr(z)\F/Fgfl,
and since T C T we have by Proposition 1.3.1 that [v] = [y] defines a canonical
bijection between E;(,‘Tl)ye and (Sy(z) N F)\I‘/Fgfl. Since the G-action is I'-good we
necessarily have S,y NI' = S, NI = S;(,) NI, and therefore using Proposition 1.3.1

one more time we can say that E;(fl{e = E;(,xl)’e. Hence, we can say that [y] = [e]
in E;(,xl)e. We conclude that
T(le@yg0)(Cgl)7([aler) = T(le@yg—rr - [g(@)]ag-110) (L9 T (1s(ayr)

= %([ag(a)]nglF)M(FgF)%(1s(:c)F)-
Since the last expression is valid for any € X and [a] € (A/T),r, if we take z to
be xg and [a] to be [a,-1(a)] we obtain the desired equality (3.19):

T(Le(@r) (T ([ag-1(a)]ogr) = T([aler) w(TgL)T (Ls(a)gr) -
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Let us now prove equality (3.20). Using the equality in beginning of this proof and
equality (3.19) which we have just proven, we get precisely

N(Fgr)%([a]xf‘) = Z %([ag’y_l (a)]w’yg—1F):U‘(Fg]-—‘)%(ls(z)l‘)

MeE) |

= Z %([097*1 (a)]m'yg*lF)U(Fgr)%(ls(xwgfl)gl“)
heEs)

= Z %(1!‘(x)'yg_11—‘)/1’(1—‘91—‘)%([0[’}/_1(a)]I’YF)
MeE) |

= Z ﬂh(m)«,g*1F)H(F9F)%([a}xr) .
Mes;t

This finishes the proof. O

The passage from a covariant pre-representation (7, ) to a representation of
C.(A/T) x%9 G/T is done via the so-called integrated form 7 x u, which we now
describe:

DEFINITION 3.3.10. Let (m, 1) be a covariant pre-*-representation on a Hilbert
space . We define the integrated form of (m, j1) as the function wxp : C.(A/T)x L9
G/T' — B(#) defined by

)= S S F([FD) )], ) AT F(lsr).

[g]€N\G/T aT9€X/T9

REMARK 3.3.11. For f of the form f = a,r * I'gl’ * 15(,)4r We have
[m x p](f) = 7([aler) p(Tgl) T(Ls(aygr) -
Moreover, from equality (3.19), for f" of the form f" = 1, * Tgl’ * [ag—1(a)]egr

we have

[m % u](f) = T(Le(ayr) p(TgL) T ([og-1 (a)]agr) -

PROPOSITION 3.3.12. The integrated form wXx i of a covariant pre-*-representation
(m, 1) is a well-defined nondegenerate *-representation.

Proof: First we need to check that the expression that defines [ x u|(f) for a
given f € C.(A/T) x%9 G /T is well-defined. This is proven in an entirely analogous
way as in the proof that the expression (3.5) in Proposition 3.1.13 is well-defined.
Secondly, we need to show that [r x u|(f) makes sense as an element of B(.¢).
From Theorem 3.3.2 we have that

#([F D) @)] 1 ) iTGDF (Ls(arr) € BOY)

thus, it follows that [1 x u|(f) € B(#'), and therefore [r x u](f) admits a unique
extension to B(J).
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Now, it is obvious that m x p is a linear transformation. Let us check that
it preserves the involution. It is then enough to check it for elements of the form
[ = la]ar * Tgl" % 15(4)gp. Since (7, ) is a covariant pre-*-representation we have,
by Propositions 3.3.9 and 3.1.15,

(mxul(f)” =

>

T(1s@)gr) #(Lg~'T) 7([a*]-11)

Lie-1)gr) p(Tg~'T) T([a* -1 4-11)
[ag—1(a*)]-1gr) p(Cg ' T) T(Ls(z-1)gg-11)
[ag-1(a®)]y—1gr) p(Tg™'T) F(1sz-1yr)
A(g) [ag-1(a*)]z-1gr * Tg™'T % Igp-1yr)
).

g
g
g
)

>

=N

|
>

(9) 7(1
(9) 7(
(9) 7(
(9) 7(

|
>

X X

 (
] (

33

Let us now prove that m x u preserves products. We will start by proving that

(3.21) [m > p(fr + fo) = [m < pl(fr) [m < pl(f2),

for fi := [a]er * Tgl' % 15(5)gr and fo := [b]yr * T'sT' * 14y, Let us compute the
expression on the left side of (3.21). First, we notice that for the product f; * fo to
be non-zero one must have r(y) € s(x)gl', and in this case we obtain

fi1x fo = [a]ur x Tgl * [byr + T'sT' * 1g()sr

which by Corollary 3.1.18 gives

INOL B
= >, Loy [a]or * [0ty—17-1(B)]yyur * Tu™ 0L # Lggy)yur * Lg(y)sr
[u]€eTg~'T/T
[v]elsT/T
[v]eEsw
A(g)NZ)
= 2 L(uv) [a]ar * [oy-11-1 (O)]yyur * Tu™ 0 * L(y)yor
[u]€eTg~'T/T
[v]elsT/T
(MeELY
s(y)sC'=s(y)youl
A(g)NZ) )
- Z L(u_l’U)’ [aer * [Oéirlryil (b)]y-yul‘ *Tu™tol 1s(y’7u)u*1vF
[u]erg~'T/T
[v]elsT/T
[eEsY

s(y)sT'=s(y)yvl'

The product [a]r*[cv,~14-1(D)]yyur is always either zero or of the form [¢] (1) (yyu)rs
for some 6 € I' and ¢ € A(;)(yyu)- The point is that s((z8)(yyu)) = s(yyu), so
that each non-zero summand in the last sum above is actually of the form

[C}ZF * Il * ]-s(z)dl" s
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for appropriate [c] € (A/T).r, 2 € X and d € G. Thus, by linearity of 7 X p and
Remark 3.3.11 we obtain

[T x pl(f1* f2) =
A(g)Ns(y)V
Y.

L(u—?;)}v T([aler - [ty -14-1(D)]yyur) u(Fu_lvF) T(1g(y)yor) -
[u]lerg=—'r/T
[v]elsT'/T

eEsw
s(y)sT'=s(y)yvl

Let us now compute the expression on the right side of (3.21). We have

[ u](f1) [ pl(f2) = 7([aler) p(Tgl) T(1s(a)gr) T([blyr) p(T'sT) T(1s(y)sr) -

For 1g(z)gr - [b]yr to be non-zero we must have r(y) € s(x)gT’, and in this case
we obtain, using the definition of a covariant pre-*-representation,

[ x pl(f1) [m x pl(f2) =
7 ([a]or) p(TgT) T([blyr) p(TsT) T (1g(y)sr)

A g)]\fs(_yl)V
= Z TL})’U%([@]IF[O%*W*I(b)]yvur)N(Fu_lUF)%(ls(y)’WF)%(IS(y)sF)
[ulerg='r/T
[v]elsT'/T
[veESY)
A(g)NZW o
= Z Wﬂ([a]mp o147 -1(0)]yyur) u(Tu™ " vl') T(1g(y)yor) -
[u]erg~'r/T
[v]elsT'/T
heEyy

s(y)s'=s(y)yvT’

Hence, we have proven equality (3.21) for the special case of f; and fs being f; :=
[aler *Tgl * 1g(2)gr and fo := [b]yr * ['sT # 15()sr. Using this we will now show that
equality (3.21) holds for any fi, fo € C.(A/T) x%9 G/T. In fact, by Proposition
3.1.13, f1 and f5 can be written as sums

leZUi7 f2=ij,
i J

where each v; and wj is of the form [a],r * gl * 1(5)4r, for some gI' € G/T', x € X
and a € A,. Since 7™ X pu is a linear mapping we have

mx (e ) = el (3 e) « (Y w)

= [wxg](Zvi*wj)
= Y lmx p(vixwy),

.3
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and by the special case of equality (3.21) we have just proven we get

mx (e f) = Sl (o) x pl(wy)

(Xl wlw0)) (Xl x (wy)

[wxu](zvi)[ﬂxﬂ](zwﬂ')

= [mxp](fi)lm x p](f2).

Hence, ™ x p is a *-representation. To finish the proof we now only need to show
that 7 X u is nondegenerate. The restriction of 7 x p to the *-subalgebra C.(A/T)
is precisely the representation 7. Since 7 is assumed to be nondegenerate it follows
that m X u must be nondegenerate as well. (]

The next result shows how from a representation of the crossed product one
can naturally form a covariant pre-representation.

PROPOSITION 3.3.13. Let ® : C.(A/T) x%9 G/T — B(5#) be a nondegenerate
*-representation. Consider the pair (®|,ws) defined by
o ®| is the restriction of ® to C.(A/T).
o Let & be the extension of ® to a pre-*-representation (via Proposition
1.2.13) of M(C.(A/T)x%9G/T') on the inner product space ®(C.(A/T)x %9
G/T)A. We define we to be the restriction of ® to H(G,T).
The pair (®|,ws) is a covariant pre-*-representation.

We will need some preliminary lemmas in order to prove Proposition 3.3.13.

LEMMA 3.3.14. If ® : C.(A/T) x%9 G/T — B() is a nondegenerate *-
representation, then its restriction to C.(A/I') is also nondegenerate.

Proof: Let £ € A be such that ®(C.(A/T)) & = {0}. We want to show that
¢ = 0. Since ® is nondegenerate, it is then enough to prove that ®(C.(A/T) x a9
G/T')¢ = {0}. Thus, by virtue of Proposition 3.1.15, it suffices to prove that
P(1y(oyr * gl * [ag-1(a)|ogr)§ =0 forallg € G,z € X, a € A,. We have

”(I)(lr(w)r‘ * gl [O‘g*1 (a)]ng)g‘P =

= A(g)<¢’([a9*1 (a*)]xflgl‘ * nglr * 1r(w)F * 1r(ac)F * FgF * [O‘g*1 (a')]gcgl“)§7 £>

= A(g)(P([ag-1(a")]o-14r)B(Lg T * Lygzyr * Tl * [ag-1(a)ugr)€ , €)

= A(g)(P(Tg™'T * Lyuyr * gl # [ag-1(a)]agr)€ s ([arg-1(a)]gr)€)

=0.

Hence £ = 0 and therefore ® restricted to C.(A/T") is nondegenerate. O

LEMMA 3.3.15. Let ® : C.(A/T) x%9 G/T — B(J#) be a nondegenerate *-
representation and ® its unique extension to Mp(C.(A/T) x%9 G/T) (via Proposi-

tion 1.2.16). Let ®| be the restriction of ® to C.(A/T) and ®| its unique extension
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to Mp(C.(A/T)). We have that
o(f) =2I(f),

for all f € C,(X°/T). In other words, the two *-representations ® and zf\ are the
same in C.(X°/T).

Proof: By Lemma 3.3.14 the subspace ®(C.(A/T")).# is dense in S, so that
it is enough to check that ®(f)®(f2)¢ = ®|(f)P(f2)E, for all fo € C.(A/T) and
¢ € . By definition of the extension ® (see Proposition 1.2.16) we have

O(N)B(f2)E = (f * fo)E,

where f * f5 is the product of f and fo, which lies inside C.(A/T) x%9 G/T. Since
both f and fo are elements of B(A,G,I') we see the product f x fo as taking
place in B(A,G,T'). By definition of the embeddings of C.(X°/T") and C.(.A/T') in
B(A,G,T) we have that f * f5 is nothing but the element f - fo, where the product
is just the product of f and fo inside M(C.(A)). As we observed in Section 2.3,
this product is exactly same as the product of f and fo in M(C.(A/T)). Thus, the
following computation makes sense:

O(NHR(f2)E = O(f * f2)¢

= O(f- f2)6 = PI(f)P[(f2)¢-
This finishes the proof. (I

I

o
—~
~
ol
S—
Iy

LEMMA 3.3.16. Let ® : C.(A/T) x%9 G/T' — B(H) be a nondegenerate *-
representation. We have that

O(CL(A/T)) A = B(C.(A/T) x% G /T2 .

Proof: The inclusion ®(C.(A/T))# C ®(C.(A/T) x%9 G/T)A is obvious.
To check the converse inclusion it is enough to prove that

P([aler * Tl * 1g@)r)§ € O(Ce(A/T)) A,

forallz € X,a € Ay, g € Gand £ € #. Let ® : Mp(C,(A/T) x4 G/T) — B(H)
be the unique extension of ® to a *-representation of Mp(C.(A/T") x%9 G/T), as
in Proposition 1.2.16. We then get

®(laler x Tgl * 1g)gr)§ = P(Le@r * [aler * Tgl * 1g(4)4r )€
= O(Ly()r)@([aler * Dgl' * 15(2)r)§ -
Denoting by ®| the restriction of ® to C.(A/T") we have, by Lemma 3.3.15, that

= (I)|(1T(Z)F)(b([a’]$r * FgF * 1s(z)gF)§7

ie. ®([alur * TgT % lo(m)gr)é € B|(Co(X/T)).#. By Lemma 3.3.4 it then follows
that ®([alsr * gl  Lyg)er)€ € B|(Co(A/T))H. O
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Proof of Proposition 3.3.13: First of all, by Lemma 3.3.14, ®| is indeed
a nondegenerate *-representation of C.(A/T"). Secondly, from Lemma 3.3.16, we
have

O(C(A/T)) A = B(Ce(A/T) x49 G/T).A#
Thus, we is a pre-*-representation of H(G,I') on # := ®(C.(A/T))#. We now
only need to check covariance. We have
wa (LgT) ®@|([a]or)we (TsT) =
O(T'gl)®([a],r)P(T'sT)
&(DgT * [a],r + T'sT)

_ A(g) NS(I)
(I)( Z Z Lg( [a“71771 (a)]lE’YUF * Fu_lvF * 15(1)71}1—‘)

[WELg™'T/T [1]e B
[v]elsT/T

NS - -
- Z Z l(‘;g() S q)([aufl’v’l(a)]QJ’YuP)@<Fu_1vr)(b(1s(z)'yvl“)~

[u]€Tg ™ T/T [4]e ES)
[v]elsT/T

Denoting by E’T the unique extension of ®| to Mp(C.(A/T)) we have, by Lemma
3.3.15, that

A(g)Njﬁ{z _ o
Z Z L(u- ®|([avy-14-1(a)]yur)we (T'u Ur)q)l(ls(r)va)'
[ulelg™'T/T [y]e BT
[v]elsT/T

This finishes the proof. (I

THEOREM 3.3.17. There is a bijective correspondence between nondegenerate
*_representations of C.(A/T) x%9 G/T and covariant pre-*-representations. This
bijection is given by (m, u) — m X p, with inverse given by ® — (P|,wq).

Proof: We have to prove that the composition of these maps, in both orders,
is the identity.

Let (m,u) be a covariant pre-*-representation and 7 x p its integrated form.
We want to show that

((ﬂ- x /J)|, WTFXM) = (F,M) .

By definition of the integrated form we readily have (7 x )| = 7. This also implies,
via Lemma 3.3.14, that the inner product spaces on which ;1 and wrx, are defined
are actually the same. Thus, it remains to be checked that wrx, = p. Let w([a],r)&
be one of the generators of w(C.(A/I"))5. We have

wwxu(FgF) ([a IF)& =

]
= [mx p)(Tgl) n([a].r)¢
= [mx p](Tgl * [a].r)E,
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and using Proposition 3.1.15, Remark 3.3.11 and Proposition 3.3.9 we obtain

[ % M]( Z Ly(a)ygr * TgT * [G;L;F)f

hees) ,
= Z %(1r(x)'ygF)/L(Fgr)%([a]rF)g
MeEs®)

= pu(TgTl) m([a).r)E

Hence, we conclude that wry, = p.
Now let ® be a *-representation of C.(.A/T) x%9 G/T and (®|,ws) its corre-
sponding covariant pre-*-representation. We want to prove that

¢|XOJ<I>:(I>.

Let 1y(q)r * gL * [og—1(a)]zgr be one of the spanning elements of C,(A/T) x%9 G/T
and £ € 5. We have

[@] x wa] (Leayr * TgT * [aty—1 (@)]agr) € = B (Ly(ayr)wa (TgT) D[ ([ (@)]agr) €,

which by Lemma 3.3.15 gives that

B (Le(ayr) DTGB ([ag-1 (@)]agr) €
(I)(lr(z)l“ * FgF * [04971 (a)]xgr) f

Thus, @| X we = P. O

We will now show that the bijective correspondence between covariant pre-*-
representations and nondegenerate *-representations of the crossed product behaves
as expected regarding unitary equivalence. First however we make the following
remark /definition:

REMARK 3.3.18. Let (7, ) be a covariant pre-*-representation on a Hilbert
space . If 74 is another Hilbert space and U : ¢ — J¢) is a unitary, then
it is easily seen that (UnU*,UpU*) is also a covariant pre-*-representation. We
will henceforward say that two covariant pre-*-representations (71, p1) and (e, pi2)
are unitarily equivalent if there exists a unitary U between the underlying Hilbert
spaces such that (w1, 1) = (UmU*, UpU™).

PROPOSITION 3.3.19. Suppose that (71, 1) and (w2, p2) are two covariant pre-
*-representations. Then (w1, u1) s unitarily equivalent to (mwa, u2) if and only if
w1 X py 1S unitarily equivalent to wo X Ls.

Proof: (=) This direction is straightforward from the definition of the in-
tegrated form and from the following computation, where U is a unitary which
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establishes an equivalence between (71, 1) and (72, u2) :

[U(m x p)U]([alor * Tgl * 15(2)gr) =
= Um([aler)p (Pgl) w1 (Ls(a)r)U™
= Um([al.r)UUp (TgT) U Umi (Ls(z)gr) U™
= [UmU* x U U*|(laler * Tgl' * 1g(2)gr)
= [ma x p2]([alor * gL * 1g(a)gr) -

(«<=) Suppose that 7 x 1 and 79 X o are unitarily equivalent and let U be a unitary
which establishes this equivalence. Then, since m; and 75 are just the restrictions
of, respectively, m1 X ;1 and 7y X s we automatically have that Um U™ = mo. To see
that Up U™ = ps we just note that U canonically establishes a unitary equivalence
between the associated pre-*-representations 7r1/>?/u1 and wmg of the multiplier
algebra M(C.(A/T) x%9 G/T). O

3.4. More on covariant pre-*-representations

In the previous section we introduced the notion of covariant pre-*-representations
of C.(A/T) x%9 G/T (Definition 3.3.1) and a particular instance of these which we
called covariant *-representations (Definition 3.3.5).

In this section we will see that the class of covariant pre-*-representations is
in general strictly larger than the class of covariant *-representations. It is thus
unavoidable, in general, to consider pre-representations of the Hecke algebra in the
representation theory of crossed products by Hecke pairs. We shall also see, never-
theless, that in many interesting situations every covariant pre-*-representation is
actually a covariant *-representation.

EXAMPLE 3.4.1. Let (G,T) be a Hecke pair such that its corresponding Hecke
algebra H(G,T') does not have an enveloping C*-algebra (it is well known that
such pairs exist, as for example (G,I") = (SL2(Qp), SL2(Z,)) as discussed in [8]).
The fact that the Hecke algebra does not have an enveloping C*-algebra implies
that there is a sequence of *-representations {i, }nen of H(G,T') on Hilbert spaces
{H, }nen and an element f € H(G,T) such that ||u,(f)|| — oo. Let ¥ be the
inner product space ¥ := @, .y, and p: H(G,T') — L(¥) the diagonal pre-*-

neN
representation
o= @ Hn s
neN
which of course is not normed. Let X = {x1,z2,...} be an infinite countable set,

with the trivial groupoid structure, i.e. X is just a set. We consider the Fell bundle
A over X whose fibers are the complex numbers, i.e. A, = C for every x € X, and
we consider the trivial action of G on A, i.e. the action that fixes every element of
A. Thus, the action is I'-good and has the I'-intersection property. We also have
that

Ce(A/T) = Ce(X) = Co(X°/T)..

~ Let 7m: Cc(X) — B(7) be the *-representation on the Hilbert space completion
¥ of ¥ such that 7(1,,) is the projection onto the subspace .72,.
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We claim that (, ) is a covariant pre-*-representation of C.(X) x%9 G/T'. To
see this, first we notice that 7 is obviously nondegenerate and moreover 7(C.(X))¥ =
¥, which is the inner product space where p is defined. Next we notice that for
every z, € X and g € G, the operators m(1,, ) and p(I'gI") commute. Moreover,
we have

(1o, )u(Tgl)m(1e,) = pn(Lgl)
on the subspace J7;,. Also we have
pw(TgD)m(1y, )pu(LsT) =
u(Tgl)p(ls)7(1s,,)
- Y 29 ety a1,

[u]leTg~'T/T
[v]elsT'/T

A
- Y A, e ) (L)
[ulelg~'T/T
[v]elsT/T
A(g)sz;yv —1

Z Z W T(Ly ) (P D) 7(Lg, o)
[u]eTg~'T/T [vI€ELT,
[v]elsT'/T

where the last equality comes from the fact that since S;, = G we must have that

By, consists only of the class [e], N, | =1 and also that 15,y = 1z, = 1,0
So we have established that (, ) is indeed a covariant pre-*-representation.

Nevertheless, p is not normed, so that (7, ) is not a covariant *-representation.
It is worth noting that here we are in the conditions of Example 3.2.3, so that

Co(X) x4 GIT = C(X)®H(G,T).

Example 3.4.1 shows that there can be more covariant pre-*-representations
than covariant *-representations. Nevertheless, the two classes actually coincide in
many cases. One such case is when C.(A/T') has an identity element:

PROPOSITION 3.4.2. If the crossed product C.(A/T) x%9 G/T has an identity
element (equivalently, if C.(A/T) has an identity element), then every covariant
pre-*-representation is a covariant *-representation.

Proof: Let us assume that C.(A/T') x29 G /T has an identity element (equiv-
alently, C.(A/T") has an identity element).

Let (7, ) be a covariant pre-*-representation. As it was shown in Theorem
3.3.17, the integrated form 7 x y is a *-representation of C.(A/I") x %9 G/T" such that
I = Wrxu, Where wry, is the pre-*-representation which is obtained by extending
7 x p to the multiplier algebra M (C.(A/T') x%9 G/T) and then restricting it to
H(G,T). Since the crossed product C.(A/T) x29 G/T has an identity element, we
have

M(C,(A/T) x%9 G/T) = C.(A/T) x4 G/T,
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and therefore wy, is just the restriction of m x u to the the Hecke algebra H(G,T').
Hence, ;1 = wyrx, is a true *-representation. ([

Another interesting situation where covariant pre-*-representations coincide
with covariant *-representations is when H(G,T") is a BG*-algebra. This is known
to be the case for many classes of Hecke pairs (G,T") as we proved in [17]. Actu-
ally, the author does not know of any Hecke pair (G,T") for which the full Hecke
C*-algebra exists but H(G,T") is not BG*-algebra. It would be interesting to know
if a counter-example exists (as was already asked in [17, Section 7, point 4]).

ProPOSITION 3.4.3. If H(G,T') is a BG*-algebra, then every covariant pre-*-
representation is a covariant *-representation.

Proof: If H(G,T) is a BG*-algebra, then every pre-*-representation of H(G,T)
is automatically normed and hence arises from a true *-representation. O

3.5. Crossed product in the case of free actions

In this section we will see that when the associated G-action on X is free the
expressions for the products of the form I'gT"  [a],r * ['sT', described in Corollary
3.1.18, as well as the definition of a covariant pre-*-representation become much
simpler and even more similar to the notion of covariant pairs of [9].

THEOREM 3.5.1. If the action of G on X is free, then

(3.22) Dl s lyr#TsD'= Y lyur*Tu” "ol % 1yyr

[uleTg~'T'/T
[v]elsT'/T

and similarly,

(3.23) Pyl s [alr *TsT = > [ay-1(a)]pur * Tu™ 0T # Iygyor -

[u]lerg~'r/T
[v]elsT'/T

We recall from (3.10) and (3.11) the definitions of the sets n¥, , and ?¥ ,, and

w,v w,v’

from (3.12) and (3.13) the definitions of the numbers n¥, , and d, .

w,v

LEMMA 3.5.2. If the action of G on X is free, then

Ny =1 and dy, , = [T N wlw™!].

Proof: We have
ny, = {[7“] € Twl/T : r~twol C Tl and yw ™' € yFril}
= {I] € Twl/T: 7 'wol CTol and w™' € Ty}
{[7‘] € Twl'/T : 7~ twul C Tl and 7T = wr}
= {wl}.
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Thus, n¥ , = 1. Also,

),V

0, = {[r]eTwl/T:r'wel CTol and yw™' € yIr T}
= {[r]eTwl/T :r " wol CTwland w' € Tr 'T*"}.
Now we notice that in the above set the condition »~twvI' C T'wI is automatically

satisfied from the second condition w=! € T'r~1T"%?, because the latter means that
r~1 = 01w 10, for some 6, € T and 6, € T*". Thus, we get

o, = {[rf]eTwl/T :w™ ' elr T}
= {[r] eTwl/T :r e " ul'}
vl /T .
Thus, we obtain d¥, , = [[**wI'/T| = [[** : T** Nwl'w ™). 0

Proof of Theorem 3.5.1: We have seen in Theorem 3.1.16 that

A(g)NYY
Tgl s lyr«Tsl = > > 2(1_?”) (Lyyur * Tu™ 0T % 1y0r)
[u]eTg~'T/T [V€EY
[v]elsT'/T
It follows from Lemma 3.5.2 that
1

Nyj = .
whe o [Putte  Tutte 1Ty

Moreover, freeness of the action also implies that

EY, = ST/ (o™ nulu™)
= T/(@wlv ' nulu™).

Now, we have the following well-defined bijective correspondence

r/(T“NT?) — T/(wlv ' Nnulu™?t)
[0] — 1],

given by Proposition 1.3.1. Note that I'* N I'V is simply the subgroup ul'u~' N
vI'v~™ ' NT, but in the following we will take preference on the notation I'* NIV for
being shorter.

Consider now the action of I on G/T" x G/T by left multiplication and denote
by Oh, n, the orbit of the element (h I, hol') € G/T' x G/T'. 1t is easy to see that
the map

r/("™ Nr'2) — O, h,
[9] — (9h1F,9h2F)

is also well-defined and is a bijection. We will denote by C the set of all orbits
contained in T'g7!T /T x I'sT'/T' (note that this set is I-invariant, so that it is a
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union of orbits). We then have

Igl' x 1yp x I'sI' =

A(g)NY2
- Z Z é( = (Typur * Tu™ ol # 1ynur)
[u]eTg~'T/T [Y]EEL .
[v]eTsl'/T
A(g)NY?
- Z W (Lyyur * Tu™ "0l 1yr)
[uleTg~'T/T [y]€T/(T“NIY)
[v]elsT'/T

A(Q)Nﬁ-ly-l,w
Lu=ty~tyv)

[ulerg~'r/T [y]€T/(TNIY)
[v]elsT'/T

(lywp w« Tuty =Lyl * 1ywp)

where the last equality comes from the fact that N7, » =N Y , which is
Ty =1y

a consequence of Lemma 3.1.17 i), or simply by Lemma 3.5. 2 Using now the
bijection between I'/(T'* N T') and the orbit space O, , as described above, we
obtain

A(g)N,

14

ETEEP VR

[u]erg='r/T ([r],[t)EOu v
[v]eTsT/T

(1y7-1" * F?”_ltF * 1th)

A(g)N/

S Y Y Y At
O€C ([ul.[W) €O (Ir],[t)€O.,
A(g)NY-
= > > > T%)l’t(lyrr*l“r_lff*lytr)
O€C ([ul.p)e0 (r] [t])eo

=2 >

I _1t> = (Lyer * Dr M % 1yr)
OeC ([r],[1)e0

where #0O denotes the total number of elements of the given orbit @. Changing
the names of the variables (r to u and ¢ to v) we get

#OA(g)N,,_ ,
2 Z =T

—1
0eC ([u],[v]) €O L(u v)

#0,.0 Ag)NY.
= X

L(u—lv)
[uleTg~r/T
[v]elsr/T

(1yu1“ * Do~ "ol % 1va)

(1yup * Ty~ Mol * 1yvp) .

We are now going to prove that the coefficients satisfy

#0,, AN,
L(u=1v)
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This follows from the following computation:
#O0y.0 [:TvNIv 1 r.Tv "
L(u=1v) N Alg) = [[F : rulv]} C[reteiTe e Ay Iy [[r : ru]]
[C:T“NTY][:T* )
[[:Tu'v Ny~ tTu)[l : TY]
[[*:T*NTY)[C: T ]
[[:Tu v Ny~ 1Ty
[ :Tv NIV [ulu~t: TY]
[[: T v Ny 1Ty
[ulu=t: T*N T
[[:Tu v Ny~ 1Ty
[ulu=t: T*NTY]
[ul'u=!:Tv NIV
= 1.

This finishes the first claim of the theorem. The second claim, concerning the
product T'gl * [a],r * T'sT", is proven in a completely similar fashion. O

PROPOSITION 3.5.3. Let w: C.(A/T) — B() be a nondegenerate *-representation,
o H(G,T) — L(n(C.(A/T) ) a unital pre-*-representation, and let us assume
that the associated G-action on X is free. The pair (m, 1) is a covariant pre-*-
representation if and only if the following equality

(3.24) u(TgD)r([alor)n@sD) = Y w(lay-1(@)]eur)n(Tu” 00T (Lsayr) -

[u]lerg=—'r/T
[v]elsT'/T

holds for all g,s € G, x € X and a € A,.

Proof: (=) Assume that (m, 11) is a covariant pre-*-representation. Then we
have

u(Lgl)m([aor)u(Tsl) = [m x p](Tgl * [a]or « I'sT')
= [rx u]( Z [ty —1(@)] gur * Tu™ ol % 1s(z)vF)
[ulelg~'T/T
[v]elsT/T
= Z F([aufl (a>]qu)M(Fu_lvr)%(ls(m)vF> .
[u]lerg='r/T
[v]elsT/T

(«<=) In order to prove equality (3.18) one just needs to show that
A(g)NZ o
> > W T([ay-1(a)]zyur) p(Tu™ 0T) T(1g(2)yor)
[Wl€Tg™'T/T [4]eB5Y
[v]elsT'/T
= Z 7ﬂf([O‘u_l (a)]CEUF)N(FU‘_lq}F)%(ls(m)UF) s

[u]lerg~r/T
[v]elsT'/T
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and this is proven in a completely analogous way as in the proof of Theorem
3.5.1. O






CHAPTER 4

Direct limits of sectional algebras

Having defined *-algebraic crossed products by Hecke pairs in the previous
chapter, the goal is now to complete them with appropriate C*-norms and the
current chapter contains the preliminary ideas and results to achieve that goal.

In this chapter we will see how, for a finite index subgroup inclusion K C H,
the algebra C.(A/H) embeds canonically inside C.(A/K). All these inclusions are
compatible with each other, so that we are able to form a certain direct limit D(.A)
which will play an essential role for defining C*-crossed products by Hecke pairs.

Throughout this chapter A denotes a Fell bundle over a discrete groupoid X,
endowed with an action « of a group G. We will always assume in every statement
of this chapter that the subgroup denoted by H C G is such that the action « is
H-good.

PROPOSITION 4.0.1. Suppose K C H C G are subgroups such that [H : K] <
oo. Then, there is an embedding of C.(A/H) into C.(A/K) determined by

[a]wH — Z [Oth—l(a)]th .

[h]eS\H/K

REMARK 4.0.2. We have shown in Proposition 2.3.7 that inside the multiplier
algebra M (C,(.A)) the element [a], g decomposes as a sum of elements of C.(A/K)
as above. The point of Proposition 4.0.1 is that this decomposition really defines an
embedding of C.(A/H) into C.(A/K). Moreover, here we are not working inside
M(C.(A)) anymore. Nevertheless this embedding of C.(A/H) into C.(A/K) is
compatible with the embeddings of these algebras into M (C.(A)) as we will see at
the end of this chapter.

Proof of Propostion 4.0.1: It is clear that the expression above is well-
defined, since [H : K] < oo, and it determines a linear map ® : C.(A/H) —
C.(A/K). Moreover, it follows directly from Propositionl.3.2 that this map is
injective. The fact that ® preserves the involution follows from the following com-
putation

®((lalem))

®([a*]p—1m) = Z [ap-1(a”)]e-1nx

[hleS, -1 \H/K
= > len-(@)e-x = (), lan-1(@)enx )’
[hE€SN\H/K [hES\H/K
= ®(la]on)"-
Let us now check that ® preserves products. If the pair (zH,yH) is not composable,
then no pair of the form (zuK,ytK), with u,t € H, is composable. Hence, in this

83
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case we have
®([alon[blyn) = 0 = @([a]on)P([blyn) -

Suppose now the pair (xH,yH) is composable, and let he H, ,. We have

o(ae)®(Blyr) = (Y o @lur) (D o 0]y )

[u]eS\H/K [tleS,\H/K
= > > w1 (@)]sur (o1 (0)]yex -
tleS,\H/K [u]€S;\H/K
‘We now claim that

[ ]GSZ\H/K[au_l (a)]zur [0 (b)}ytl{ = [Oét,lﬁ,l (a)og—1 (b)}(mﬁt)(yt)K )

To see this we notice that for u = ht we do have that the pair (zhtK,ytK) is
composable and [a, 7, (a)], 7, lar—1(0)]yex = [O‘rl}ifl(a)o‘t“(b)](xﬁt)(yt)K' Now
if [u] € S;\H/K is such that the pair (zuK,ytK) is composable, then s(z)uK =
r(y)tK. Since the pair (zhtK,ytK) is composable we also have s(z)htK = r(y)tK.
Thus, s(z)uK = s(z)htK, i.e. [u] = [ht] by Proposition 1.3.2. This proves our
claim and therefore we get

O(la]om)@(lyr) = > Y e (@eurlor (0)]yex

[t1eS,\H/K [u|eS,\H/K

= Z [ g1 (@)1 (0)] oy oy
[tJeSy,\H/K

= Z [og—1 (a5, (a)b)](xﬁy)tK :

[t]eS,\H/K
Recall that since the G-action on A is H-good we have

Sy NH = Sy ﬂHzSJLyﬂH.
Hence, using Proposition 1.3.1, we have bijections

SNH/K = (S,NH\H/K = (S. NH\H/K = S

xhy mTLy\H/K ’

determined by the maps [t] — [t], where [t] denotes the double coset with represen-
tative ¢ in the appropriate double coset space. Therefore we get

(adar)®Bly) = 3 laens (g (@B i
[tI€S, 5, \H/K
= O(log-1(a)b],7,5)
= ®([aen[blyn)-
Hence, @ is an embedding of C.(A/H) into C.(A/K). O

The canonical embeddings described in Proposition 4.0.1 are all compatible, as
the following result shows:
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PRrROPOSITION 4.0.3. Suppose that L C K C H are subgroups of G such that
[H : L] < co. The canonical embedding of C.(A/H) into C.(A/L) factors through
the canonical embeddings of C.(A/H) into C.(A/K), and C.(A/K) into C.(A/L).
In other words, the following diagram of canonical embeddings commutes:

Proof: Let us denote by &, : C.(A/H) — C.(A/K), 3 : C.(A/K) —
C.(A/L) and @3 : C.(A/H) — C.(A/L) the canonical embeddings. We want to
prove that ®3 = ®5 o ;. For this it is enough to check this equality on elements
of the form [a], . We have

Q50 P ([a]zn) = Z Qo ([ap,—1(a)]anr)

[h€SN\H/K
Z Z lag-1p-1(a)]onkL -
[h]€S:\H/K [k]€S2n\K/L

We claim that if hy,...,h, € H is a set of representatives for S;\H/K, and if
i,.--, k. is a set of representatives of Sy, \K/L for each i = 1,...,n, then the

set of all products of the form hlk:; is a set of representatives for S;\H/L. Let us
start by proving that every two such products correspond to distinct elements of
S;\H/L. Tn other words, we want to show that if [h;k}] = [hik}] in S;\H/L, then
h; = h; and k; = ké,. To see this we notice that the equality [hlk;] = [hlkfo] means
that xhlk;L = xhlkéL (see Proposition 1.3.2), and therefore zh; K = zh K, i.e.
[h:] =[] in S:\H/K, hence h; = h; because these form a set a of representatives
of S;\H/K. Now, the equality xhikjL = xhik;L means that k;- = kf, for the
same reasons. Now it remains to prove that any element of [h] € S;\H/L has a
representative of the form hzké To see this, first we take h; such that thK = zh; K,
and we consider an element k € K such that xh = xh;k, obtaining xhL = xzh;kL.
Now we take k;- such that xh;kL = xhik;L, and the result follows.
After proving the above claim we can now write

Py 0 P ([alom) = > > k-1 (@)lenkr

[h]€S\H/K [k]€Szn\K/L

= > @l

[hleS\H/L
Ps([alen) -
This finishes the proof. O

Suppose now that (G,T") is a Hecke pair for which the G-action on the Fell
bundle A is I'-good. We define the set C as the set of all finite intersections of
conjugates of T, i.e.

(4.1) C::{ﬁging_l:nEN,gl,...,gneG}.
i=1

The set C becomes a directed set with respect to the partial order given by reverse
inclusion of subgroups, i.e. H; < Hy < Hy D H, for any Hy, Hy € C.
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Since we are assuming that (G,T") is a Hecke pair it is not difficult to see that
for any H,, Hy € C we have

H, < H, = [H11H2]<OO.

Also, since we are assuming that the G-action on A is I'-good and this property
passes to conjugates and subgroups, it follows automatically that the action is also
H-good, for any H € C.

The observations in the previous paragraph together with Proposition 4.0.3
imply that {C.(A/H)}nec is a directed system of *-algebras. Let us denote by
D(A) the *-algebraic direct limit of this directed system, i.e.

(4.2) D(A) = lim Co(A/H).

There is an equivalent way of defining the algebra D(A), by viewing it as the
*-subalgebra of M (C.(A)) generated by all the C.(A/H) with H € C, as we prove
in the next result. This characterization of D(A) is also a very useful one.

PROPOSITION 4.0.4. Let K C H be subgroups of G such that [H : K] < 0.
Then the following diagram of canonical embeddings commutes:

(4.3) Ce(A/H) —— Ce(A/K)

|

M(Cc(A))-

As a consequence, D(A) is *-isomorphic to the *-subalgebra of M(C.(.A)) generated
by all the C.(A/H) with H € C.

Proof: We have to show that, inside M (C.(.A)), we have
[alem = Z [an-1(a)]znr

[hl€S\H/K
for all z,y € X, a € A, and b € A,. This was proven in Proposition 2.3.7.
Commutativity of the diagram (4.3) then implies, by universal properties, that
there exists a *-homomorphism from D(A) to M (C.(A)) whose image is precisely
the *-subalgebra generated by all C.(A/H), with H € C. This *-homomorphism is
injective since all the maps in the diagram (4.3) are injective. O

It is clear that the action @ gives rise to an action of G on D(A), which we
will still denote by @. This can be seen either directly, or simply by noticing that
the action @ on M (C.(A)) takes D(A) to itself (since for a given g € G it takes
Co(A/H) to Ce(A/gHg™)).

The algebra D(A) will play an essential role in the definition of the various
C*-crossed products by Hecke pairs, particularly the reduced ones. There are two
reduced C*-crossed products by Hecke pairs which are of particular interest to us,
and these are C(A/T") X, G/T and C*(A/T') X4, G/T. These will be defined and
studied, in a single approach, in Section 5.2, but for that we need first to understand
how the canonical embeddings

(4.4) C.(A/H) = C.(A/K),
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defined in Proposition 4.0.1 for K C H such that [H : K] < oo, behave with respect
to the full and reduced C*-completions. The goal of next subsections is exactly to
show that these embeddings always give rise to embeddings in the two canonical
C*-completions

CHA/H) = CHAJK)  and  C*(A/H) — C*(A/K),

so that we are able to form the useful C*-direct limits limpyec C)(A/H) and
limpgec C*(A/H).

4.1. Reduced completions C}(A/H)

The purpose of this subsection is to prove the following result:

THEOREM 4.1.1. Let K C H C G be subgroups such that [H : K] < oo.
The canonical embedding of C.(A/H) into C.(A/K) completes to an embedding of
Cr(A/H) into C*(A/K).

In order to prove this result we need to establish some notation and some
lemmas first. Even though Theorem 4.1.1 is stated for subgroups K C H for which
we have a finite index [H : K| we will state and prove the two following lemmas in
greater generality, as it will be convenient later on.

Recall, from Proposition 2.3.7, that for any two subgroups K C H of G for
which the G-action is H-good we have that, inside M (C.(A)), the algebra C.(A/H)
acts on C.(A/K) in the following way:

7 —1 bl 5 ) if Hr 1
[alem [blyx = (072 (Pl ! w70
’ 0, otherwise,

where h is any element of H,,. As a consequence, this action of C.(A/H) on
C.(A/K) defines a *-homomorphism

Ce(A/H) = M(Ce(A/K)).
It could be proven (in the same fashion as Theorem 2.3.1) that the *-homomorphism

above is in fact an embedding, but we will not need this fact here. We now make
the following definition:

DEFINITION 4.1.2. Suppose A is *-algebra and B is a C*-algebra. A right A—B
bimodule X is a (right) inner product B-module (in the sense of [21, Definition 2.1])
which is also a left A-module satisfying:

a(xb) = (ax)b,
(az,y)p = (z,a"y)B,

forall z,y € X, a € A and b € B.
Given a right A — B bimodule X we will say that A acts by bounded operators
on X if for any a € A there exists C' > 0 such that

laz||p < Cllz]5,
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for every x € X, where || - || g is the norm induced by (-, -)g.

If A is a *-algebra which has an enveloping C*-algebra C*(A), then any right
A — B bimodule where A acts by bounded operators can be completed to a right-
Hilbert C*(A) — B bimodule.

LEMMA 4.1.3. Let K C H be subgroups of G and let D be a C*-algebra. Sup-
pose C.(A/K) is an inner product D-module, denoted by C.(A/K)p. Assume
furthermore that C.(A/K)p is a right Cc(A/K) — D bimodule and also a right
C.(A/H) — D bimodule, where C.(A/K) acts on itself by right multiplication and
C.(A/H) acts on C.(A/K) in the canonical way.

If C.(A/K) acts on C.(A/K)p by bounded operators, then C.(A/H) also acts
on Co.(A/K)p by bounded operators.

Proof: Suppose that C.(A/K) acts on C.(A/K)p by bounded operators. We
need to show that C.(A/H) also acts on C.(A/K)p by bounded operators, with
respect to the norm || - ||p induced by the D-valued inner product in C.(A/K)p.
For this it is enough to prove that the maps

[aler : Ce(A/K) — Co(A/K),

are bounded with respect to the norm || - ||p. Moreover, from the fact that
(laler)*[alor = ([a*a])s@ym it actually suffices to show that for any unit v € X°
the mapping [a],z : C.(A/K) — C.(A/K) is bounded with respect to the norm
I-llo, -

As we have seen at the end of Section 2.1 we can write any element f €
Ce(A/K) as a sum of the form f =3 ey r[f(y)]lyx. Furthermore, we can split
the sum according to the ranges of elements, i.e.

F= 30 UWhe= Y > U@k

yKeX/K vKeXV/K yKeX/K
r(y) K=vK

Applying the multiplier [a],z to this element we get

alurf = [aJur D> D @k

vKeXV/K yKeX/K
r(y) K=vK

Z Z [alum [f(Y)]yx

vKEXY/K yKeX/K
r(y) K=vK

oY lap @bl Wk,

vKeXV/K yKeX/K
r(y) K=vK
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where h,, is any element of H, ,. Hence, if &k, , is any element of K,,, C H,, we
get

= Y Y oo @)Wk

vKCuH yKeX/K
r(y) K=vK

Yo > e @[ f @)k -

vKCuH yKeX/K
r(y) K=vK

Since f has compact support, there are a finite number of elements 11 K, ..., v, K C
uwH such that

alurrf = > > oy (@l [f @)y

i=1 yKeX/K

r(y) K=v; K

= (Yl @) (Y [FWlx)
i=1 yKeX/K

= (Yl @) /
i=1

Our assumptions say that left multiplication by elements of C.(A/K) is contin-
uous with respect to || - || p. Denoting by C.(A/K)p the completion of C.(A/K)p
as a Hilbert D-module, we have that every element of C.(A/K) uniquely defines
an element of £(C.(A/K)p). Denoting by || - ||L(

L(C.(A/K)p), we have

m) the operator norm in

a)ur f Il

@ @)) f 1o

< ”Z[O‘h,N%*I(a)}mKHE(m) 1 fllD

Now we notice that we can canonically see Z?,l[aﬁv_l (a)]v,x as an element
=11~

of the direct sum of C*-algebras (A/K)y, k@@ (A/K);nK, from which we must
have, by uniqueness of C*-norms on C*-algebras,

n

I o @ ) = g @)l = m @) =
i=
Hence we conclude that ||[alum f||p < |lall || fl|p, i-e. [a]um is bounded. O

Let us now consider C.(A/K) as the right C.(A/K) — Cy(A°/K) bimodule
whose completion is the right-Hilbert bimodule ¢« (4, K)LQ(A/ K)cya0 k). We
claim that the canonical action of C.(A/H) on C.(A/K) makes C.(A/K) into a
right C.(A/H) — Cy(A/K) bimodule. The fact that fi({f2) = (f1€)f2, for any
f1 € Co(A/H), € € C.(A/K) and fo € Co(A°/K), is obvious. Thus, we only
need to check that (f&, n)cya0/x) = (€, [ M) coa0/k), for any f € C.(A/H) and
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&, n e C.(A/K). This is also easy to see because, by definition,

(f& meyaoyry = (FO™ Mo/
& (" mM)leoarx)

= (& f"mcyao/k) -
Hence, we are under the conditions of Lemma 4.1.3, and therefore the action
of C.(A/H) on C.(A/K)cya0/k) is by bounded operators. Hence, the right
C.(A/H) — Cy(A°/K) bimodule C.(A/K) can be completed to a right-Hilbert
bimodule C*(A/H)L2(A/K)00(AD/K)'

LEMMA 4.1.4. The *-homomorphism ® : C*(A/H) — L(L*(A/K)) associated
with the right-Hilbert bimodule C*(A/H)L2(A/K)CO(AO/K) has the same kernel as
the canonical map A : C*(A/H) — C}(A/H).

Proof: The proof of this fact is essentially an adaptation of the proof of
[5, Proposition 2.10], and is achieved by exhibiting two isomorphic right-Hilbert
C*(A/H) — Cy(A°/K) bimodules Y and Z such that the *~homomorphisms from
C*(A/H) into L(Y) and £(Z) have the same kernels as A and ® respectively.
We naturally have a right-Hilbert bimodule ¢ (40, 1)Co(A°/K) (a0 k), Where
the action of Cy(A"/H) on Cy(A°/K) extends the action of C.(A°/H) on C.(A°/K).
We define Y as the balanced tensor product of the right-Hilbert bimodules ¢4, H)L2 (A/H)cy(a0)m)

and ¢, 40/ Co(A°/K)cy(a0)/ i, iee.
Y = L*(A/H) ®cy(a0 /) Co(A”/K) .
Since Cy(A°/H) acts faithfully on Cy(A°/K), the associated *-homomorphism of
C*(A/H) to L(Y) has the same kernel as A. We define Z simply as
oA/ Zoy(ao 1K) = oA/ L (A K)cy(a0/x) -
We now want to define an isomorphism ¥ : L?(A/H) ®c,(a0/m) Co(A°/K) —
L?*(A/K) of Hilbert C*(A/H) — Cy(A°/K) bimodules. We start by defining
Co(A/H) @, ao/m) Ce(A°K) — L*(A/K),
Vo(fr @ f2) :==f1- [z

It is easy to see that Wy is well-defined. To see that Wy preserves the inner prod-
ucts it is enough to check on the generators. So let [a]u, [blyn € C.(A/H) and
[clukc, [d]vr € Ce(AY/K), with u,v € X°. We have

(Wo(la]er @ [clur ), Yo([blyr ® [dvk))coao/x) =
(lalam[cusc s [Blyaldlvr) o0 k)
= ([c'lurla’ ]z m[blyrldlor)|coao/ k) -
Now the product ([¢*]ux[a*]s—1 g [blyr[d]vr)|cya0/ k) is automatically zero unless
vK = uK, tH = yH and vK C s(y)H, in which case we necessarily have that
([C*]uK[a*]mle[b]yH[d]v )|CO(A0/K) = [C*LLK[a*]xle[b]yH[d]vK' On the other hand,
(laler @ [cluk s [blyr @ [dlvr)cya0/x) =
([eux  ([alemr , [blym)coaosm) [dlor)co(a0) k)
= [cur([a"]z-1m[blyr)|co a0/ m) [dlox
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Now the product [c*]uk ([a*]z—1p[blyr)|co(a0/m) [d]luk is automatically zero unless
vK = uK, tH = yH and vK C s(y)H, in which case we necessarily have that
[ Jur ([0 ]e-1m [Blym)|co(a0/my [dlox = [¢*]ura’]o-1m[blyn[d]ox. Hence, we con-
clude that ¥ preserves the inner products.

Now, if f1, fo € C.(A/H) and f3 € C.(A°/K) we have

Uo(f1(fo® f3)) = Yo(fife® f3) = fifofs = fi¥oe(fa ® f3).

Thus, ¥ preserves the left module actions. Let us now check that ¥, has a dense
image in L?(A/K). It is enough to prove that all generators [a],x € C.(A/K) are
in closure of the image of Wy, since their span is dense in L?(A/K). To see this,
let {¢*} be an approximate identity of Ag(,). We have

\I’o([a]xH ® [e/\]s(m)K) = [a}zH[e’\]s(z)K = [ae/\]:rK-
We then get

||[a€A]zK - [G]IK”%Q(A/K) ||[a€A - a]xK”%Q(A/K)
|

| ([ae'\ - a}*[aeA - a])s(m)K”Co(AO/K)

= |lae* — a]*[ac* — d]]

le*a*ae — era*a — a*ae* + a*al.

Noticing that a*a € Ag(,), we then have that

le*a*ae* — era*all + || — a*ae* + a*al|

<
< |la*ae* —a*al + || — a*ae* + a*al|
— 0.

Thus, we conclude that ¥ has dense range. Hence, from [5, Lemma 2.9], it fol-
lows that ¥ extends to an isomorphism of the right-Hilbert C*(A/H)—Cy(A°/K)
bimodules Y and Z. O

Proof of Theorem 4.1.1: The image of C*(A/H) in L(L*(A/K)) is isomor-
phic to C(A/H) by Lemma 4.1.4. On the other hand, the image of C*(A/H) in
L(L*(A/K)) is simply the completion of C.(A/H) as a subalgebra of C(A/K).
Hence, we conclude that the canonical embedding of C.(A/H) into C.(A/K) com-
pletes to an embedding of C(A/H) into C}(A/K). 0O

It follows from Theorem 4.1.1 and Proposition 4.0.3 that for any subgroups
L C K C H such that [H : L] < oo the following diagram of canonical embeddings
commutes

Cr(A/H) — CI(A/K) —— C(A/L) .
\_/

Hence, we have a direct system of C*-algebras {C}(A/H)}uec. Let us denote
by D,.(A) its corresponding C*-algebraic direct limit

(4.5) D, (A) = lim G} (A/H).

We notice that the algebra D(A) is a dense *-subalgebra of D,.(A). We now want
to show that the action @ of G on D(A) extends to D, (A).
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THEOREM 4.1.5. The action @ of G on D(A) extends uniquely to an action of
G on D, (A) and is such that &, takes C}(A/H) to C:(A/gHg™ "), for any g € G.

Proof: We have a canonical isomorphism between the right-Hilbert bimodules
C*(A/H)LQ(A/H)CU(A"/H) and C*(_A/gHg—l)LQ(A/gHgil)CO(‘AO/gHg—l), that is de-
termined by the canonical isomorphisms C.(A/H) — C.(A/gHg™') and C.(A°/H) —
C.(A°/gHg™") defined by @,, i.e. defined respectively by

laom = [ag(a)]pg-1gmg-1 and blurr — [ag(D)]ug-1gmg-1

where 2 € X, u € X° a € A, and b € A,. Since C7(A/H) is the image of
C*(A/H) inside L(L?*(A/H)), and similarly for C*(A/gHg™ '), we conclude that
the isomorphism C.(A/H) = C.(A/gHg™') defined by @, extends to an isomor-
phism C}(A/H) = C(A/gHg™ ). Since C/(A/gHg™') is embedded in D,.(A), we
can see @4 as an injective *~homomorphism from C}(A/H) into D, (A).

A routine computation shows that the following diagram of canonical injections
commutes:

Cr(A/H) —= CI(A/K)

Hence, we obtain an injective *-homomorphism from D,.(A) to itself, which we still
denote by @, and which extends the usual map @, from D(A) to itself. It is also
clear that this map is surjective, and that for g,h € G we have oy, = a4 o @y,
so that we get an action of G on D,(A) which extends the usual action of G on

D(A). 0

4.2. Maximal completions C*(A/H)

The purpose of this subsection is to prove the following result:

THEOREM 4.2.1. Let K C H be subgroups of G such that [H : K] < co. The
canonical embedding of C.(A/H) into C.(A/K) completes to a nondegenerate em-
bedding of C*(A/H) into C*(A/K).

In order to prove this result we will need to know how to “extend" a represen-
tation of C.(A/H) to a representation of C.(A/K) on a larger Hilbert space.

DEFINITION 4.2.2. Let K C H be subgroups of G such that [H : K] < co. Let
7 : Co(A/H) — B() be a *-representation. We define the map 7% : C.(A/K) —
B(# @ ?(X°/K)) by

m([alzm)E @ Or(a)xc 5 if uK =s(x)K
0, otherwise.

(46) 7 ([aox) (€ ® burc) := {
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PROPOSITION 4.2.3. The map 7% is a well-defined *-representation.

Proof: 1t is clear that the expression that defines 7% ([a],z) defines a linear
operator in the inner product space 5 @ C.(X°/K), which is easily observed to
be bounded. Thus, 7% ([a],x) € B(# @ (*(X°/K)).

It is clear that expression (4.6) defines a linear mapping 7% on C.(A/K), so
that we only need to see that it preserves products and the involution. To see that
it preserves products, consider two elements of the form [a],x and [b],x. There are
two cases to consider: either r(y) € s(z)K or r(y) ¢ s(z)K.

In the second case, we have [a],x[blyx = 0 and thus 7% ([a],k [b]yx) = 0.
But also 75 ([a].x)7% ([b],) = 0, because for any vector £ ® 6,5 we have that
T8 ([blyx ) (€ ® dux) is either zero or equal to m([b]yx )€ ® byp(y) i, and therefore we
always have 7 ([a].r )75 ([b]yx ) (€ ® Surc) = 0.

In the first case we have

" ([a]ex [Dlyx) (€ ® durc) =
= 7%l (@] 5y k) (€ ® burc)
_ [ rllag (@Bl n)E @ burgyi s u = s(aky)K
0, otherwise.
_ {n([a]mw([b}ymgmw, if uk = s(y)K
0, otherwise.
_ {nK([ahK) (m([blym)€ © baayic),  if ul =s(y)K
0, otherwise.
_ )R ldlar) (r(Blym)€ ® 0eyy) . if uK =s(y)K
0, otherwise.

K([a]wK)WK([b}yK) (£ ®dur) -

In both cases we have 7% ([a],x [b]yx) = 5 ([a]ox )75 ([blyx ), hence 7 pre-
serves products. Let us now check that it preserves the involution. We have

3

<7TK([a}wK) (E®@0ur), N® k) =

_ (m([a]er)€ @ Op(ayic » M@ Ouk) if uK =s(x)K
0, otherwise.
S x(la]zm)€, 0, if uK =s(z)K and vK =r(z)K
N 0, otherwise.
)&, m([a]g-rm)m) if uK =s(z)K and vK =r(z)K
N 0, otherwise.
_ <€ ® 6uK ’ ﬂ-([a*]xle)n ® 55(9:)K> ) if vK = I‘(I)K
0, otherwise.

= (E®dux, 7 ([0"]o-1k) (1 ® du)) -
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Hence, we conclude that 7% ([a].x)* = 7%(([a].x)*), and therefore 7% preserves
the involution. Hence, 7¥ is a *-representation. ([

LEMMA 4.2.4. Let us denote by §,i € (*(X°/K) the vector
[hleSN\H/K

The map 7 satisfies

ﬂ-K([a]zH) (f ® 6uH) = {g([a]xH)g ® 5r(w)H s OZ{hZZZs:eS($)H’

Proof: We have
" ([a]em) (€ ® bumr) = > > ™ (an-1(@)]enk) (€ @ Sun)
[hE€SN\H/K [W)€S\NH/K
from which we see that, if uH # s(z)H then 7% ([a],x) (€®d6,m) = 0. On the other
hand, if uH = s(z)H, then we have
w8 ([a)on) (€ ® Ssaym) =
> > T (lon-r (@) (€© duawx)

[h]€S\H/K [h']€Ss(z)\H/K

- Z Z ™ (Jon-1(a)ani) (€ @ Ss(ayn i)

[h]eSs(z)\H/K [h’]ESS(I)\H/K

= Z ([ -1(a)]anm )€ @ Op(a)nk

[h] e‘S“s(ar:) \H/K

= > w(la)en)€ @ Sriaynk

[h]€Ss(a) \H/ K
= Z 7([alem)€ @ Seeynk
(W €Se(a)\H/K
m([alam)€ @ Or(a)m -
This finishes the proof. (I

Proof of Theorem 4.2.1: In order to prove this statement we have to show
that for any f € C.(A/H) we have || f|lc+(a/x) = ||fllc=(a/m)- Since we are viewing
C.(A/H) as a *-subalgebra of C.(A/K) we automatically have the inequality

[fllexarx) < 11 f]

In order to prove the converse inequality, it suffices to prove that

(4.8) lx (A< 75 (O,

for any nondegenerate *-representation m of C.(A/H), because, since 7 is arbitrary,
this clearly implies that [|f||c+a/m) < ||fllc+(4/K)- Let us then prove inequality
(4.8).

C*(A/H) -
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We can write any element f € Ce(A/H) as f =3, yex/ulf(@)]on. Further-
more we can split this sum according to the ranges of elements, i.e.

rHeX/H vHeXO/H zHeX/H
r(z)H=vH

Suppose 7 : C.(A/H) — B(J) is a *-representation and £ € S is a vector of
norm one. We have

Ie( Y U@L e = Y w0 U@len el

cHEX/H vHEXC/H  zHEX/H
r(z)H=vH

For different units vH € X°/H, the elements (Y smex/um [f(2)]an )€ are easily
r(x)H=vH
seen to be orthogonal, so that

= Y (Y @l )EP

vHeXO/H rHeX/H
r(z)H=vH

= Y Y @l

vHeX®/H xzHeX/H
r(z)H=vH

In the notation of (4.7), let dur := > 1es,\#/x Sunk- Let us denote by Cy the
number of elements of S,\H/K. It is not difficult to check that for any r € H the
map [h] — [r~!h] is a well-defined bijection between S,\H/K and S,,.\H/K, so
that C,, = Cy,.. We have

S oAl Y wlf@ln)e @ sl

vHeXO/H ~ Y zHeX/H
r(z)H=vH

=YY ar@hmEe sl

vHEXO/H aHeX/H '
r(z)H=vH

— 1YY A @hne @ bl

vHEXC/H zHEX/H Cri)

r(z)H=vH
1 -
= | Z c T([f (2))am) T (Ls(y )€ @ Oe(myu|I” -
cHex/H ~*®)

By Lemma 4.2.4 we have that

=Y S A (U@ ) (FLaey )€ @ Saeyn) 2

ctHEX/H Cr(a)
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and since Sg(;)\H/K = Sp(2)\H/K, we get that Cg,) = Cy(y). Thus,
1

= | - T (@)]en) (F(Ls@)ym)€ ® Ssoymr) II?
eHex/H ~5*)
1

Cs(x) ﬂ-K([f(xﬂwH) (%(1S(I)H)£ ® 65(:1:)H) H2

tHEX/H

I3 m U@l (g Fsom)€ @ S ) I

sHEX/H

Similarly as we did for ranges, we can split the sum ZxHeX/H[f(x)]wH according
to sources. In this way, since this sum is finite, there is a finite number of units
u H,...,u,H € X°/H, which we assume to be pairwise different, such that we can
write

SN F@ler=>_ > [f@)n

zHeX/H =1 zHeX/H
s(z)H=u, H

By Lemma 4.2.4 we see that 7% ([f(2)].x) (%(1uiH)§ ® 6uiH) = 0 unless s(z)H =

u; H. Hence we get

IS @) (g 7 a6 ) I
zHeX/H ste
= 1T @) (3 g 7L )
rHEX/H i=1 Wi
= (Y ) ZCL 1)E® burr) |12
sHeX/H i=1

We now notice that, since we are assuming £ to be of norm one, it follows that the
vector

1 _

also has norm less or equal to one, because

Zci~ we)E® S 2 = Zn F(Luyi)€ @ B
= anuimsuz
= Hﬂ(zlm el

lelf?
1.
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Hence, taking the supremum over vectors £ of norm one, we immediately get
the inequality

lw(HI < = (NIl

As we explained earlier, this proves that we get an embedding of C*(A/H) into
C*(A/K). O

It follows from 4.2.1 that {C*(A/H)}nec is a direct system of C*-algebras.
Let us denote by Dyax(A) its corresponding C*-algebraic direct limit

(4.9) Dine(A) = lim C*(A/H)

We notice that the algebra D(A) is a dense *-subalgebra of Dyax(A). We now want
to show that the action @ of G on D(A) extends to Dyyax(A).

THEOREM 4.2.5. The action & of G on D(A) extends uniquely to an action of
G on Dyax(A) and is such that @, takes C*(A/H) to C*(A/gHg™'), for any g € G.

Proof: Since @, is a *-isomorphism between C.(A/H) and C.(A/gHg™'), it
necessarily extends to a *-isomorphism between the enveloping C*-algebras C*(.A/H)
and C*(A/gHg™'). Since C*(A/gHg™"') is embedded in Dyax(A), we can see @,
as an injective *-homomorphism from C*(A/H) into Dpax(A).

A routine computation shows that the following diagram of canonical injections
commutes:

C*(A/H) — C*(A/K)

_ Qg
Qg

Dyyax(A) .

Hence, we obtain an injective *-homomorphism from Dy,.x(A) to itself, which we
still denote by @y, and which extends the usual map @, from D(A) to itself. It is
also clear that this map is surjective, and that for g,h € G we have @y, = @, o @y,
so that we get an action of G on Dy (A) which extends the usual action of G on

D(A). 0






CHAPTER 5

Reduced C*-crossed products

In this chapter we define reduced C*-crossed products by Hecke pairs and study
some of their properties. Since the algebra C.(A/T") admits several possible C*-
completions, we will be able to form several reduced C*-crossed products, such as
CHAT) xqr G/T and C*(A/T) Xqo, G/T. As we shall see, many of the main
properties of reduced C*-crossed products by groups hold also in the Hecke pair
case.

In Section 5.4 we also compare our construction of a reduced crossed product
by a Hecke pair with that of Laca, Larsen and Neshveyev in [15], and show that
they agree whenever they are both definable.

5.1. Regular representations

In this subsection we introduce the notion of regular representations in the
context of crossed products by Hecke pairs. These are concrete *-representations of
C.(A/T)x%9G/T involving the regular representation of the Hecke algebra H(G,T')
and are indispensable for defining reduced C*-crossed products.

In the theory of crossed products by groups A x G, regular representations
are the integrated forms of certain covariant representations involving the regular
representation of G. They are defined in the following way: one starts with a
nondegenerate representation m of A on some Hilbert space % and constructs a
new representation 7, of A on the Hilbert J# ® (?(G), defined in an appropriate
way, such that 7, together with the regular representation of G form a covariant
representation. Their integrated form is then called a regular representation.

We are now going to make an analogous construction in the case of Hecke pairs.
The main novelty here is that we have to start with a representation 7 of D(A), in-
stead of C.(A/T'), so that we can construct the new representation m,, of C.(A/T).
This is because we need to take into account all algebras of the form C.(A/H),
where H = glfgfl N---Ng,lg,! is a finite intersection of conjugates of I'. Nat-
urally, when T is a normal subgroup, D(.A) is nothing but the algebra C.(A/T)
itself, so that we will recover the original definition of a regular representation for
crossed products by groups.

DEFINITION 5.1.1. Let w : D(A) — B(¢) be a nondegenerate *-representation.
We define the map 7, : C.(A/T) — B(H# @ (?(G/T)) by
o (f) (€ © bnr) = m(a@n(f))€ © dnr -

99
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PROPOSITION 5.1.2. Let w : D(A) — B(J) be a nondegenerate *-representation.
Then, the map m, is a nondegenerate *-representation of C.(A/T).

LEMMA 5.1.3. Let m : D(A) — B(J) be a nondegenerate *-representation.
Then the restriction of m to C.(A/H) is nondegenerate, for any H € C.

Proof: Let & € A be such that 7(C.(A/H))§ = 0. Take any x € X, a € A,
and K € C such that K € H. We have that

In([aler)éll* = (m(la*alsm)x)E, €)
<7T([a*]z*1K : [a’}IH)é—? §>
<7T([a*]w—1K)7T([a]xH)§7 €>
= 0.

From this we conclude that 7(C.(A/K))¢ = 0, for any K € C such that K C H.
Since for any subgroup L € C we have C.(A/L) C C.(A/(L N H)), and obviously
LNH C H, we can in fact conclude that 7(C.(A/L))¢ =0 for all L € C. In other
words, we have proven that 7(D(A))¢ = 0, which by nondegeneracy of 7 implies
that & = 0. O

Proof of Proposition 5.1.2: 1t is clear that the expression that defines
mo(f), for f € C.(A/T), defines a linear operator on the inner product space
H @ C.(G/T). Let us first check that this operator is indeed bounded. We have

Ima(h) (32 Gra)l = | Y @ () @ ourll

[hleG/T [hleG/T

= > lm@a(f)énrl?

[R]eG/T

Y @ ()Pl

[pJeG/T

Y @)

[rleG/T

IN

IN

- asnrn-n lénr |-

Since @, gives an isomorphism between C*(A/T) and C*(A/hT'h™1) we get

> I ayrylignrll?

[hleG/T

118 a/my | Z Enr @ Spr|
(heG/T

Hence, 7, (f) is bounded and thus defines uniquely an operator in B(#®¢%(G/T)).
It is simple to check that 7 is linear and preserves products. Let us then see that
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it preserves the involution. We have

(ma(f) (£ ® Onr), N ® Ogr)

s

(m(@n(f))€ @ Spr, N ® dgr)

(m(@n(f))§, m){dnr s dgr)
= (&, m(@n(f*))n)(Onr , dgr)

(€, m(@y(f*))m)(Snr , dgr)
= (€@, Ta(f") (n®dgr)) -

Thus, 74 (f)* = 7o (f*), and therefore 7, defines a *-representation. It remains to
check that this *-representation is nondegenerate. To see this, we start by canoni-
cally identifying /7 ® ¢2(G/T") with the Hilbert space £2(G /T, 5#). On this Hilbert
space, it is easy to see that m,(f) is given by

[0 (f) (O] (AT) = m(@n(f)) C(RT)

for ¢ € (?(G/T', ). Suppose now that ¢ € £2(G/T', ) is such that 7, (f) ¢ =0
for all f € C.(A/T). Thus, for each hI' € G/T" we have (@ (f))((hI') = 0 for
all f € C.(A/T). This can be expressed equivalently as m(f)((hT") = 0 for all
f € C.(A/hTh™1). By Lemma 5.1.3 the restriction of 7 to C.(A/hT'h~1) is nonde-
generate and therefore we have ((hI') = 0. Thus, 7, is nondegenerate. (|

DEFINITION 5.1.4. Let m : D(A) — B(%) be a nondegenerate *-representation
and p: H(G,T') — B(£*(G/T)) the right regular representation of the Hecke alge-
bra. The pair (74,1 ® p) is called a regular covariant representation.

REMARK 5.1.5. We observe that when I' is a normal subgroup of G we have
glg™! =T for all g € G, so that the algebra D(A) coincides with C.(A/T). For
this reason our notion of a regular representation coincides with the usual notion
of a regular covariant representation of the system (C.(A/I'),G/T,@).

THEOREM 5.1.6. Every reqular covariant representation (74,1 ® p) is a covari-
ant *-representation. Moreover, its integrated form is given by

(5.1) [rax A@p)(f) (€)= > Alg'h)* m(ay(f(g " hD)))E® dyr,

lgleG/T

for every f € C.(A/T) x%9 G/T.

Proof: We shall first check that the expression (5.1) does indeed define a *-
representation of C.(A/T') x%9 G/T. Afterwards we will show that the covariant

pre-*-representation associated to it is precisely (74,1 ® p).
Let mpeq : Ce(A/T) x%9 GJT — B(# @ ¢*(G/T')) be defined by

Treg(f) (€@ ) == Y A(g™'h)? m(ay(f(g7 ' hL)))E @ byr -
l[gleG/T

It is not evident that 7., is a bounded operator for all f € C.(A/T) x%9 G/T,
but it is clear that m.¢4(f) is well-defined as a linear operator on the inner product
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space J ® C.(G/T). Under the identification of 7 ® C.(G/T") with C.(G/T’, ),
it is easy to see that m.¢4(f) is given by

[Treq () Z A(g™rh) m(@y(f(g~ AL)))n(hT),

hleG/T

for any n € C.(G/I', ). Let us now check that m,c4(f) is indeed bounded. For
any vector n € C.(G/T, 7€) we have

Irreg (A al® = D llweeg(F) ml(9D)I?

lgleG/T

S Y AT )R a(@g(f(gT D)) n(RT) |2

l9JeG/T [h]eG/T

5 (3 A istaiso )]

gleG/T  [h]eG/T

IA

For each hI' € G/T let us define T""" € C.(G/T") by

T (gT) = Alg™ ) |m (@, (f (g~ hD)))llIn(AD)]

and T € C.(G/T) by T := Z[h]eG/F ThT | which is clearly a finite sum since 7 has
finite support. Thus, we have

IregNal? < Y (X 1)
[9]eG/T  [h]€G/T
= > (TD)’
[gleG/T
= |ITNZc/m
= | Z T %6 /my
[heG/T
hT 2
< Z |7 Hé?(c;/r))
[hleG/T

- (£ [ a6 is@ i) Emeo? )

[RleG/T | [gleG/T

- ( S Dl [ Algth) (@ <<1hr>>)|2) .

[R]eG/T l9]eG/T

By the Cauchy-Schwarz inequality in ¢2(G/T) we get

(X menE) (> S Al (@, (fg~ o))

[pleG/T []eG/T [gleG/T

S X AW @SR ) Il

[p]eG/T [gleG/T

IN

which shows that m,..4(f) is bounded.
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Let us now check that .4 preserves products and the involution. Let fq, fo €
C.(A/T) x, G/T. We have

Treg(f1 % f2) (€ ® Onr) =
= Y Algh)Ea(ag((fu* f2) (g7 hD)))E ® dyr
l[gleG/T

= > 3 AlgTn)Ea@ ((AGD)au(fa(s7 g7 AD))))E ® dyr

[9]€G/T [s]eG/T

= > > Algh)? (@ (f1(sD)) s (fols T g IAD)))E ® dyr

l9]eG/T [s]leG/T
= D > Al a(ag(filg ST (falsTAT)))E @ yr

[9leG/T [s]eG/T
1

= D> > Alge) AT ) (@(fi(g T sD))m (@ (fa(sTHAD)))E @ Gyr
[s]€G/TlgleG/T
= 3 me(f) (A(S—lh)%W(Es(fg(s—lhf)))§®(5sr>

[s]eG/T

= Treg (1) Treq (f2) (€ ® Sur) -

Hence we conclude that mycq(fi* f2) = Treg(f1)7reg(f2). Let us now check that
Treg Preserves the involution. For f € C.(A/T) x G/T" we have

<7Treg(f*) (f ® 6h1“) , N 5sl“> =
- Z <A(g_1h)%F(@g(f*(g_lhl“)))f(g)(sgr’ 77®5sr>

lgleG/T

(Al M) AR g) w(@y @y 11 (7 gT))))E @ byr, @ bir )

(]

lgleG/T

= Y (AT w(@n(f(hgD))) ", n) (Ggr , bur)

lgleG/T
= (& ABT ) w(@n(f(h D))
On the other side we also have
(€@ 0nr, Treg(f) (N® dsr)) =
= > (e@aur, Al ) m(@,(FlgTsT)))n @ dyr )

[gleG/T
= Y (&, Algts)z m(@,(f(g™ D)) (dur, Gr)
[gleG/T
= (&, A(h7 ) m(@n(f(h~1sT)))n).
Therefore we can conclude that meq(f*) = mreq(f)*. Hence, Ty is a *-

representation.

The restriction of 7., to C.(A/T) is precisely m,, and since 7, is nonde-
generate, then so is m..,. Hence, it follows from Theorem 3.3.17 that 7.4 is
the integrated form of a covariant pre-*-representation (,ey|,wr,.,), as defined
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in Proposition 3.3.13. As we pointed out above, 74| = 7. Thus, to finish
the proof we only need to prove that wr, , = 1® p. For a vector of the form
To([a)er) (€ @ dnr) € Ta(C(A/T)) (S ® £2(G/T)) and a double coset T'gl" we have
Wirreg (PgT") ma([alar) (€ @ Onr) = Treg (I'gl) ma([al.T) (€ ® Onr)
= Treg(Tgl)mreg([alor) (€ ® Onr)
= Treg(Lgl" * [a]r) (€ @ Ohr) -
Let us now compute mreq(f)(§ ® dpr) for f:=TgT * [a],r. By definition
Treg(f) (€@ 0hr) = > A(s7'h)% m(@,(f(s7"hT)))E @ Gor -

[s]eG/T

It is clear that f(s~'AI") is nonzero if and only if s7'AI' C I'gl’, which is equivalent
to sI' C hT'¢~'T". Hence,

- S AT (@ (f(sTHRD)))E ® bar -
[s]e hTg—1T'/T
It is easy to see that [0] — [hOg~!] establishes a well-defined bijection between
I'/T9 " and hTg~'T'/T, so that

= Y A0 h) w(@hgg-r (F(g0T hTIRD)))E @ Spgg-rr

[0]er/T9~ !
= > A (@ (F9T))E D Bhggir -
[6]eT/T9™ !
Now, it is easily seen that f(gI') = [ag(a)]g-14rg-1- Hence, we get

= Z A(g)% ﬂ-(ahﬁg ([o‘g(a)]nglgl“gfl))f & 5h9g*11“
[er/To™!

= Z A(g)? m(an([aler))é @ dpgg—11
[]eT/Ts™!

= gT) (m(@n((alar))€ @ our )
- ( ®p)<r D) ma([al >(5®6hr)

This shows that wy, ., = 1® p in 74 (Ce(A/T)) (S @ £2(G/T)) and finishes the
proof. (I

REMARK 5.1.7. The proof of Theorem 5.1.6 may seem odd, since we did not
first prove that the pair (7,1 ® p) is a covariant *-representation and then deduce
that its integrated form 7, X (1 ® p) is a *-representation and is given by (5.1).
Instead we followed the opposite approach. This is because we do not know how
to prove directly that (7,1 ® p) is a covariant *-representation, due to the several
difficult technicalities that arise in the computations.

5.2. Reduced C*-crossed products

We now want to define reduced C*-norms in the *-algebraic crossed product
C.(A/T) x49 G/T. Since C.(A/T) admits several canonical C*-completions one
should expect that there are several reduced C*-norms we can give to C,(A/T") x 29
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G/T', which give rise to different reduced C*-crossed products, as for example
CH(A/T) Xor G/T" and C*(A/T) X4, G/T'. We will treat in this section all these
different reduced C*-norms (and reduced C*-crossed products) in a single approach,
and for that the notion we need is that of a @-permissible C*-norm on D(A):

DEFINITION 5.2.1. A C*-norm || - ||+ in D(A) is said to be @-permissible if the
action @ of G on D(A) extends to D, (A), the completion of D(A) with respect to
the norm | - ||. In other words, if for every g € G the automorphism @, of D(A)
is continuous with respect to || - ||

DEFINITION 5.2.2. Let || - ||+ be an @-permissible C*-norm in D(.A) and let us
denote by D, (A) and C*(A/T') the completions of D(.A) and C.(A/T), respectively,
with respect to the norm ||-||,. We define the norm || - ||, in C.(A/T) x%9 G/T by

[fllrr = sup ma x (L@ )N
T€R(D,(A))

where the supremum is taken over the class R(D,(A)) of all nondegenerate *-
representations of D,(A). The completion of C.(A/I") x%9 G/T" with respect to
this norm shall be denoted by C*(A/T) X4, G/T and referred to as the reduced
crossed product of C*(A/T) by the Hecke pair (G,T).

Before we prove that |- ||, is indeed a C*-norm, let us first look at the two main
instances we have in mind, which arise when CZ(A/T') is C}*(A/T) or C*(A/T). Tt
is not obvious from the start that there exists a C*-norm || - ||, in D(A) whose
restriction to C.(A/I") will give the reduced or the maximal C*-norm in C.(.A/T"),
but this is indeed the case from what we proved in the preliminary sections 4.1 and
4.2:

o For CY(A/T):

As described in Section 4.1, we can form the C*-algebraic direct limit
D, (A) = limpec C*(A/H), which contains D(A) as a dense *-subalgebra.
Taking || - ||+ to be the C*-norm || - ||- of D,.(A), we see that C*(A/T) =
C*(A/T). The norm || - ||, is a-permissible because of Theorem 4.1.5.

o For C*(A/T):

As described in Section 4.2, we can form the C*-algebraic direct
limit Dyax(A) = limgee C*(A/H), which contains D(A) as a dense *-
subalgebra. Taking | - |- to be the C*-norm || - ||max of Dmax(A), we see
that C*(A/T) = C*(A/T). The norm || - ||max is @-permissible because of
Theorem 4.2.5.

LEMMA 5.2.3. If 7 : D(A) — B(J) is a nondegenerate *-representation which
is continuous with respect to an a-permissible norm || - ||- in D(A), then 7y is a
representation of C.(A/T) which is continuous with respect to the norm ||| as well.
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Proof: Let f € C.(A/T). We have
e (f)( Z &nr @ Spr) ||?

| Z 7(@n (f))énr @ Snrll®

[hleG/T [hleG/T
= Z (@ (f))énr|?
[hleG/T
< D Iw@ ()P I€nrll?
[hleG/T
< > @Iz lgnr )
[hleG/T
Since || - || is @-permissible we have that ||an(f)||- = || f]|-- Hence we have
Ima(H)( D Grean)l® < Y I3
[RleG/T [hleG/T
= AT D & @durl®.
[hleG/T
Hence, 7, is continuous with respect to the norm || - || O

PROPOSITION 5.2.4. || - ||, is a well-defined C*-norm on C.(A/T) x%9 G/T.

Proof: First we must show that the supremum in the definition of || - ||, is
bounded. Given a *-representation 7 of D, we have, by Lemma 5.2.3, that

lre x (L@ p)I(NII <

< Y o e (D) @)] ) 1T @ p) (TgD)|[[Ta(Lagr)ll
[g]€eT\G/T zT'9e€X/T9
< > Y D@l ITgTles@r) -

[g]€T\G/T zT'9e€X/T9

Thus, since ||[1o X (1 ® p)](f)] is finite and bounded by a number that does not
depend on 7, we conclude that || ||, is bounded by this same number.

It is clear from the definition and the above paragraph that || - ||, is C*-
seminorm. To prove that it is actually a C*-norm it is enough to prove that if 7 is
a faithful nondegenerate *-representation of D, (A), then 7, x (1 ® p) is a faithful
*_representation of C.(A/T) x%9 G/T. Let us then prove this claim. Suppose
f € Ce(AJT) x%9 GT is such that [r x (1® p)](f) = 0. Then, for every £ @ §,r €
S @ ?(G/T) we have

0= [Tax(@@pIHEDH) = Y. Alg™h)? m(a@y(f(g~ h0)))E @ dyr -
l[gleG/T

In particular, for ¢gT' = T', we have w(f(hI'))¢ = 0, and since this holds for every
¢ € A we have w(f(hI')) = 0. Now, since 7 is a faithful *-representation, it follows
that f(hI') = 0. Since this holds for every hI' € G/T', we have f = 0,i.e. o X (1®p)
is injective. (]

The next result explains why we call the completion of C.(.A/T) x %9 G/T under
the norm || - ||, the reduced crossed product of C*(A/T") by the Hecke pair (G,T")
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and justifies also the notation C*(A/T') X, G/T chosen to denote this completion.

PROPOSITION 5.2.5. The restriction of the norm |||+ of Ce(A/T)x%9G/T to
C.(A/T) is precisely the norm ||-||.. Hence, the embedding C.(A/T) — C.(A/T)x 9
G/T completes to an embedding CE(A/T) = CX(A/T) Xq,r G/T.

Proof: Let w : D,(A) — B() be a nondegenerate *-representation. From
Lemma 5.2.3 we have, for every f € C.(A/T),

e x (L@ p)I(NI = llma (NI < 11+

and therefore

[z < I F1l+-

We now wish to prove the converse inequality. Let 7 : D, (A) — B(J) be a faithful
nondegenerate *-representation. For any f € C.(A/T") we have

[fll- = l=OI = sup [[=(f)E]l

ll=1

= sup [[ma(f)(E @ dr)|
ll=1

< sup [ma(f)C = (A
lli=1

= ra x @@ IHI < £l
thus proving the converse inequality. We conclude that
Hf”T,T = |Ifll-,
for any f € C.(A/T) and this finishes the proof. O

An important feature of reduced crossed products by groups A X, G is the ex-
istence of a faithful conditional expectation onto A. We will now explain how this
holds as well for reduced crossed products by Hecke pairs, with somewhat analogous
proofs. The goal is to prove Theorem 5.2.7 bellow, and for that we follow closely
the approach presented in [20] in the case of groups.

PROPOSITION 5.2.6. For every gI' € G/T the map Egr defined by
E,r: C.(A/T) x%9 GJT — C*(A/TY)
Egr(f) == f(gl').

is linear and continuous with respect to the norm || - ||+..

Before we give a proof of the result above we need to set some notation. For
each element gI' € G/T" we will denote by ogr the Hilbert space isometry ogr :
H — A @ *(G/T) defined by

(5.2) ogr(§) == € ® dgr .
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Proof of Proposition 5.2.6: Let m be a faithful nondegenerate *-represen-
tation of D,(A). It is easily seen that of [T x (1 ® p)|(f) ogr = A(g)2 7(f(gD)).
Hence we have

1B (Dl = IF @D = =(f(gD))]
= [|A(g™)? o [7a x (1@ P)I(f) ogr|
< AlgYE [ma x Q@ p)I(S)l
< Al ISl

This finishes the proof. (I

We shall henceforward make no distinction of notation between the maps Fyr
defined on C.(A/T) x%9 G/T and their extension to C*(A/T) X4, G/T.

The following result is of particular importance in theory of reduced C*-crossed
products. Analogously to the case of groups, it reveals two important features of
reduced C*-crossed products by Hecke pairs: the fact that every element of a re-
duced crossed product is uniquely described in terms of its coefficients (determined
by the Egr maps); and the fact that Er is a faithful conditional expectation.

THEOREM 5.2.7. We have

i) If f € CEH(A/T) X, G/T and Egr(f) =0 for all gT' € G/T, then f = 0.
ii) Er is a faithful conditional expectation of CE(A/T)X o, rG/T onto CE(A/T).

We start with the following auxiliary result:

*

LEMMA 5.2.8. Let w be a nondegenerate
feC:A/T) Xa,r G/T we have

(5.3) oip [mx (1@ pI(f) onr = Alg™h)% w(@g(Ey-1hr(f))) -

-representation of Dr(A). For all

Proof: We notice that equality (5.3) above holds for any f € C.(A/T) x%9
G/T, following the definitions of the maps Eir, [mo X (1 ® p)](f) and oyr, with
tI' € G/T. By continuity, it follows readily that the equality must hold for every
feC:(A/T) X G/T. O

Proof of Theorem 5.2.7: i) Let f € C*(A/T) Xa,G/T. Suppose Egr(f) =
0 for all gT" € G/T. Then, for any given nondegenerate *-representation 7 of D, (A)
we have, by Lemma 5.2.8, that o [ma x (1 ® p)](f) opr = 0 for all gI', A" € G/T.
Hence, [mo X (1®p)](f) = 0. Since, this is true for any m, we must have || f,., = 0,
ie. f=0.

i1) Let us first prove that Er is a conditional expectation, i.e. Er is an idem-
potent, positive, C*(A/T")-linear map.

If f € C.(A/T) then it is clear that Er(f) = f. By continuity and Proposition
5.2.5 it follows that Er(f) = f for all f € C*(A/T"). Thus, Er is idempotent.
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Suppose now that f € C.(A/T) x%9 G/T. We have

Ec(f*«f) = (f*=HT) = D fD)an(f(h~'T))

[nleG/T

> AGTHan(f(h'D) E(f(hT'T)) = 0

[RleG/T

By continuity it follows that Er(f* * f) > 0 for all f € C*(A/T') X4, G/T, i.e. Ep
is positive. It remains to show that Er is CX(A/T')-linear. We recall that we see
C.(A/T) as a *-subalgebra of C.(A/T) x%9 G/T in the following way: an element
f € C.(A/T) is identified with the element F € C.(.A/T) x29 G/T" with support in
I' and such that F(T') = f. For any f € C.(A/T) and fy € C.(A/T) x%9 G/T" we
have

Er(fxfa) = (Fxf)@) = >  FhDan(f2(h7'T))

[rleG/T
FI)f2(T) = fEr(f2),

and similarly we get Er(f2 * f) = Er(f2) f. Once again by continuity we conclude
that the same equalities hold for f € C¥(A/T) and f; € C*(A/T) X4, G/T. Thus,
FEr is a conditional expectation.

Let us now prove that Ep is faithful. For any f € C.(A/T) x%9 G/T we have
(where the first equality was computed above):

Ec(f*«f) = > A@ Han(f(h D) an(f(h'T))
[h]eG/T
= Y AGTHa(Erar () @ (Er-ir(f)) -
[heG/T

Hence, we have Er(f* * f) > A(h™Y) an(En_1r(f))*an(En_ir(f)) for each hl' €
G/T,. By continuity this inequality holds for every f € C*(A/T) X, G/T, and
therefore if f € C¥(A/T') X4, G/T' is such that Epr(f* = f) =0, then E,p(f) = 0 for
all gT" € G/T. Hence, by part i), we conclude that f = 0. Thus, Er is faithful. O

The next result shows, like in crossed products by groups, that to define the
norm || - ||, of the reduced crossed product CZ(A/T) X4, G/T we only need to
start with a faithful nondegenerate *-representation of D, (A), instead of taking the
supremum over all nondegenerate *-representations of D, (A).

THEOREM 5.2.9. Let w: D, (A) — B(4) be a nondegenerate *-representation.
We have that

i) If 7o : CX(A/T) — B( @ (2(G)T)) is faithful, then [mq x (1 ® p)] is a
faithful *-representation of C*(A/T') X4, G/T. Consequently,
[fll7.r = lllma x (L@ PO

for all f € CE(A)T) X, G/T.
i) If 7 is faithful, then 7, is faithful.
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Proof: Let us prove i) first. Suppose 7, is faithful as a *-representation of
C:(AJT). Let f € C*(A/T) Xq.r G/T be such that [r x (1® p)](f) = 0. Then, of
course, [T, X (1 ® p)](f* * f) = 0 and we have

0 = oirlrax Q@IS * Mo = 7(@,(Ee(f + )
= ol Ta(Br(f" * ) oy

This implies that 7 (Er(f* = f)) =0, i.e. Ep(f**f) =0, and since Er is a faithful
conditional expectation we have f*« f =0, i.e. f =0. Thus, 7, X (1®p) is faithful.

Let us now prove claim i7). We know that 7, as a *-representation of C.(.A/I"),
is given by

Ta(f) (€ @ 0gr) = m(@y(f))§ @ ogr

By continuity the same expression holds for f € C*(A/T"). Now suppose that
7o (f) = 0 for some f € C*(A/T"). Then, by the above expression, we have w(f) = 0.
Since 7 is faithful we must have f = 0. Thus, 7, is faithful. O

Another feature of reduced C*-crossed products by groups A x,. G is the fact
that the reduced C*-algebra of the group is always canonically embedded in the
multiplier algebra M (A x, G). The same is true in the Hecke pair case as we now
show:

PROPOSITION 5.2.10. There is a unique embedding of the reduced Hecke C™*-
algebra CF(G,T) into M(CE(A/T) o G/T) extending the action of H(G,T') on
C.(A/T) x4 GT.

Proof: Let us first see that the action of H(G,T) on C.(A/T) x%9 G/T is
continuous with respect to the norm | - ||;,, so that it extends uniquely to an
action of H(G,T') on C*(A/T) x4, G/T.

Let 7 be a faithful nondegenerate *-representation of D, (A). From Theorem
5.2.9 we know that m, X (1 ® p) is also faithful. For f; € H(G,T') and f> €
C.(AJT) x%9 GT, we have

1 fallrr = lll7a x (1@ p)](f1* fo)l
< @@ p)(flllltra x (L& p)](f)l
= NGl f2llr -

Thus, the action of H(G,T') on C.(A/T) x%9 G/T' extends uniquely to an action
on C*(A/T') xq, G/T, or in other words, we have an embedding of H(G,I") into
M(C:(A/T) xqr G/T). We now want to prove that this embedding extends to an
embedding of C}(G,T') into the same multiplier algebra. For that it is enough to
prove that, for any f € H(G,T), we have

I fllarcsa/myxanamy = I fllcz@r) -
Let w4 X (1 ® p) denote the extension of 7, X (1 ® p) to M(C*(A/T) Xq.r G/T),
which is faithful since 7, X (1 ® p) is faithful on C*(A/T) x4, G/I'. We have

—_~—

that 7, x (1 ® p) and (1 ® p) coincide in H(G,T) since they are given by the same
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expression on the dense subspace [1, x (1 ® p)](C.(A/T) x%9 G/T)#. Thus, we
have

—_~—

[ x (1@ p)](f) = (L@ p)(f),
for any f € H(G,T). It then follows that

Ifllaczamyxancm = lmax @@ )N = (L@ o)
= HP(f)” = ||f| Ccx(G,T) -
This finishes the proof. O

As it is known, reduced C*-crossed products by discrete groups satisfy a univer-
sal property among all the C*-completions of the *-algebraic crossed product that
have a certain conditional expectation. This universal property says that every such
completion has a canonical surjective map onto the reduced C*-crossed product.
As a consequence, the reduced C*-crossed product is the only C*-completion of the
*-algebraic crossed product that has a certain faithful conditional expectation.

The next result explains how this holds in the Hecke pair case.

THEOREM 5.2.11. Let || - |- be an a-permissible C*-norm on D(A) and || - ||u
a C*-norm on C.(A/T) x%9 G/T whose restriction to C.(A/T) is just the norm
|| - |l-. Let us denote by C:(A/T) Xq. G/T the completion of C.(A/T) x29 G/T
under the norm || - ||w-

If there exists a bounded linear map F : CX(A/T) Xq . G/T — CEH(A/T) such
that

for all f € C.(A/T) x%9 G /T, then:
a) There exists a surjective *-homomorphism
A:CHAJT) Xaw G/T — CE(A/T) Xo,r G/T,

such that A is the identity on C.(A/T) x%9 G/T.
b) F is a conditional expectation.
¢) F is faithful if and only if A is an isomorphism.

Proof: Let Xy be the space C.(A/T') x%9 G/T. Tt is easily seen that Xg
is a (right) inner product C.(A/T)-module, where C.(A/T') acts on X, by right
multiplication and the inner product is given by

(fi, f2) == (f7 = f2)(I).
Since for any f € Xy and f; € C.(A/T) we have

I S Feflle = I )7+ (F* A)) D)
= U= f+ )M

1T+ )N fall-

LAIZICE S P

it follows that we can complete Xy to a (right) Hilbert C*(A/T")-module, which we
will denote by X. The inner product on X, which extends the inner product (-, -)
above, will be denoted by (-, )cx(a/r)-



112 5. REDUCED C*-CROSSED PRODUCTS

The *-algebra C.(A/T') x%9 G /T acts on X by left multiplication and there-
fore it is easily seen that this action is compatible with the right module structure.
Moreover, C.(A/T) x%9 G/T acts on X, by bounded operators, relatively to the
norm induced by the inner product (-, '>C:(_A/F), as we now show. For this we
recall the conditional expectation Er of C¥(A/T) x4, G/T onto CE(A/T) as de-
fined in Proposition 5.2.6. For any f, fi € C.(A/T) x%9 G/T" we have that inside
CH(A/T) X G/T the following holds:

(fxfi, frfc.ar = ((Fxf) =(f*f)I)
Er((f = f1)" = (f = f1))
Er(fi = "= fxf1)
If1I2 Er(f * f1)

= ||f||72',r<f17 f1>o;(A/F) )

where we used the positivity of Er in C*(A/I') x4, G/I'. Since the norm || - ||, is
just the restriction of the norm || - ||, we get

(5.4) ICf* fos fxfoe:aml- < If

which shows that C.(A/T') x%9 G/T acts on Xy by bounded operators. Moreover,
inequality (5.4) shows that this action extends to an action of C(A/I') X4, G/T
on X and thus gives rise to a *-homomorphism @ : C*(A/T") X4, G/T — L(X).
We will now show that ® is injective. Firstly, we will prove that ® is injective on
C*(A/T), which is the same as to show that

(5:5) [e(eexy = I1f1l+

for all f € C.(A/T'). It is clear from inequality (5.4) that ||®(f)||z(x) < [|f|l-- The
converse inequality follows from the fact that, for any f, f1 € C.(A/T), we have

IN

<f1 ) f1>C:(,A/F)||T )

2
T

WF*fu, fx flosamll- = [If- fAll2.

Before we prove that @ is injective in the whole of C*(A/T) x4, G/I' we need to
establish some notation and results.

As usual, Y := C*(A/T) is a Hilbert module over itself. We define the map
Jjr : Y — X simply by inclusion, i.e. jr(f) := f. It is then easy to see that jr is
adjointable with adjoint jf : X — Y given by jr(f) = f(T'), for any f € X,. It is
also easy to see that, for any f € C.(A/T") we have

Gr(f), ir(fNe=ary = (f, Hesar

where the inner product on the left (respectively, right) hand side corresponds to
the inner product in X (respectively, in V). Thus, jr is an isometry between Y
and X and has therefore norm 1.

Let E : ®(C.(A/T) x%9 G/T) — C%(A/T) be the map defined by

E(®(f)) == ®(f(T)).

First let us say a few words about why E is well-defined. This is the case because ® is
injective on C.(A/T') x%9 G /T, which is easily seen to be true because C..(A/T") x 49
G/T is an essential *-algebra (Theorem 3.1.8).
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We claim that E is continuous with respect to the norm of £(X). First we
notice that for any f € C.(A/T") we have that (as elements of £(Y))
f=ir®(f)jr-
Let f € C.(A/T) x%9 G/T. We have
IE@(Nlcce) = 12 TDIex) -
As we proved in (5.5), the norm || - [|z(x) When restricted to ®(C.(A/I')) is such

that [|®(g)|lz(x) = llgll-, and moreover the norm || - ||, coincides with the norm
|l - [lz(vy, since L(Y') = M(C*(A/I')). Hence we have:
IE@Necoy = I1FM)lecoy = 1Dz

= |ir®(Nirllcyy < N1(H)llzx)

which shows that E is continuous with respect to the norm of £(X).

We can now prove that ® is injective. First we notice that for any f €
C.(A/T) x%9 G/T we have E(®(f)) = ®(Er(f)). By continuity, this equality then
holds for any f € C*(A/T) x4, G/T. Suppose now that f € C*(A/T) x,, G/T' is
such that ®(f) = 0. Then we have

0 = E@(f" «f) = ®(Ec(f"*/f)).
Since @ is faithful on C*(A/T), it then follows that Er(f* % f) = 0, and since Er
is faithful this implies that f* « f =0, i.e. f =0. Thus, ® is injective.

We will first prove part b) of the theorem and only afterwards prove part a).
For that we need to show that F is an idempotent, positive, C*(.A/I')-linear map.
The fact that F is idempotent is obvious. Now, let f € C.(A/T') x%9 G/T. We
have that

F(f«f) = (f*=HD)
= Y @)
[hleG/T
= > ARTHa(f(TD) ('),
[hleG/T

which by continuity means that F' is positive. Moreover, for f; € C.(A/T") we have
that

F(fixf) = (fixHI) = fi-f(T)
= fi-F(f),
and similarly F(f % f1) = F(f) - f1. By continuity of F, it follows that F'(f1 * f) =
fi-F(f) and F(fxf1) = F(f)- fi for any f € C7(A/T) xa,uG/T and fi € C7(A/T).
Hence we have shown that F' is a conditional expectation, and therefore b) is proven.
Now, let f,g € C.(A/T) x29 G/T. We have that inside C7(A/T') X 4., G/T the
following holds:
(fxg, f*gcramry = ((f*g)"*(f*g)T)
= F((f*9)"*(f*9))
F(g" "« f*g)
IIZF (9" * 9)
= f12{9. 9)cxcar),

IN
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where we have used to the positivity of F. Since the norm ||-|| is just the restriction
of the norm || - ||, we get

(5.6) Kf*g, f*gesamll- < IFIZIKg . gescamlz

which shows that the action of C.(A/T) x%9 G/T on X, extends to an action of
C*(A/T)X 4,wG /T on X and thus gives rise to a *-homomorphism from C*(A/T") X 4.
G/T to L(X). As the injectivity of ® shows, the closure of the image of C..(A/T") x 219

G/T in L(X) is isomorphic to C*(A/I') X, G/T. Hence, we conclude that there

isamap A : CX(A/T) Xauw G/T' — C:(A/T) Xqa,r G/T such that A(f) = f, for

f €C.(A/T) x%9 GT, and so part a) is proven.

Let us now prove ¢). The direction (<=) is clear, because F is then noth-
ing but the conditional expectation Er, which is faithful. Let us now prove the
direction (=). For any f € C.(A/T) x%9 G/T we have that Er o A(f* * f) =
F(f* = f). By continuity this formula holds for any f € C*(A/T') x4 G/T. Let
f € C:(A/T) xaw G/T be such that A(f) = 0. Then we necessarily have that
0=FEroA(f*«f)=F(f*«f), and since F is faithful we have that f** f =0, i.e.
f=o0. 0

5.3. Alternative definition of C}(A/T") x,, G/T

The C*-direct limit D, (A) played a key role in the definition of the reduced
crossed product C;f(A/T") x4, G/T. In this section we will see that instead of D,.(A)
one can use the more natural C*-algebra C*(A) to define the reduced crossed prod-
uct C*(A/T') Xq,» G/T. The algebra C(A) has several advantages over D,.(A). For
instance C(A) appears more naturally in the setup for defining crossed products
(recall that we start with the bundle A and then we form the various bundles A /T
from it). Also, C}(A), being a cross sectional algebra of a Fell bundle, seems to be
structurally simpler than D,.(A), which is a direct limit of cross sectional algebras
of Fell bundles.

The question one might ask at this point is: can one similarly use C*(A)
instead of Dyax(A) in order to define C*(A/T) x4, G/T 7 As we shall also see in
this section, this is not possible in general. At the core of this problem lies the fact
that one has always an embedding

Cr(A/H) = M(C;:(A)),
extending the natural embedding of C.(A/H) into M (C.(A)), whereas the analo-
gous map

C*(A/H) — M(C™(A)),

is not always injective. This implies that the while the algebra D, (A) embeds
naturally in M(C,.(A)), the analogous map from Dy (A) to M(C*(A)) is not an
embedding in general.

We start with the following general result:

PROPOSITION 5.3.1. Let |||+ be any C*-norm on C.(A) and C*(A) its comple-
tion. There is a unique mapping C*(A/H) — M(C*(A)) which extends the action
of C.(A/H) on C.(A).
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Proof: As is known C*(A) is naturally a Hilbert C(.A)-module, whose algebra
of adjointable operators L(C*(.A)) is precisely the multiplier algebra M (C%(.A)). In
particular X := C.(A) is an inner product C¥(A)-module. Moreover, X is also a
right C.(A) — C*(A) bimodule and a right C.(A/H) — C*(A) bimodule (in the
sense of Definition 4.1.2), under the canonical actions of C.(A) and C.(A/H) on
X. Since C.(A) acts on X by bounded operators, it then follows from Lemma
4.1.3 (taking K = {e}) that C.(A/H) acts on X by bounded operators. Thus, by
completion, we obtain a right-Hilbert bimodule ¢« 4,1)C; (A)c: (A)- Hence obtain
a unique map C*(A/H) — M(C*(A)) which extends the action of C.(A/H) on
C.(A). O

As shall see later in this section the map C*(A/H) — M (C*(A)) is not an em-
bedding in general, not even when C*(A) = C*(A). Nevertheless for the reduced
norms we have the following result:

THEOREM 5.3.2. There is a unique embedding of C(A/H) into M(C}(A))
which extends the action of C.(A/H) on C.(A).

Proof: From Proposition 5.3.1 we know that there exists a unique *-homo-
morphism from C*(A/H) to M(C;(A)), which extends the action of C.(A/H) on
Cc(A). Thus, we have a right-Hilbert bimodule ¢« (4/m)Cy(A)cz(ay- Taking the
balanced tensor product of this right-Hilbert bimodule with ¢ (4)L?(A)cy(a0) we
get a C*(A/H) — Cy(AY) right-Hilbert bimodule

C*(A/H) (Cﬁ(«‘l) ®c(A) LQ(A)) Co(A9) -

Since the action of C*(A) on L?(A) is faithful, the kernels of the maps from
C*(A/H) to M(C*(A)) and /:(c;f (A) ¢ () L2 (A)) are the same.

Now, C;(A) ®cx(a) L*(A) is isomorphic to L*(A) as a Hilbert C*(A/H) —
Co(A%) bimodule. Hence, it follows that the kernel of the map from C*(A/H) to
M(C7(A)) is the same as the kernel of the map from C*(A/H) to L(L?*(A)). Now,
the latter map has the same kernel as the canonical map A : C*(A/H) — C:(A/H),

by Lemma 4.1.4 applied when K is the trivial subgroup. Thus, this gives an em-
bedding of C*(A/H) into M(C;(A)). O

The next result is a generalization of [5, Proposition 2.10| (see Example 2.2.3).
Its proof relies ultimately on Lemma 4.1.4, whose proof, we recall, was essentially
an adaptation of the proof [5, Proposition 2.10] itself.

COROLLARY 5.3.3. Suppose A is amenable. Then, the kernel of the canoni-
cal map C*(AJ/H) — M(C*(A)) is the same as the kernel of the canonical map
A:C*(A/H) = Cr(A/H).

Proof: In the proof of Proposition 5.3.2 we established that the kernel of the
canonnical map A : C*(A/H) — C*(A/H) is the same as the kernel of the map
C*(A/H) — M(C?(A)), which is the same as the map C*(A/H) — M(C*(A)) by
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amenability of A. O

We now give an example where the map C*(A/H) — M(C*(A)) is not injec-
tive:

EXAMPLE 5.3.4. Let B be a non-amenable Fell bundle over the group G, and let
A := B x G be the associated Fell bundle over the transformation groupoid G x G.
Following Example 2.2.3, we have a right G-action on A which entails the action on
the groupoid G x G, given by (s,t)g := (s,tg). Moreover, since the G-action is free,
it is H-good and satisfies the H-intersection property, for any subgroup H C G. In
this example we will consider H to be the whole group G. In this case the orbit
groupoid (G X G)/G can be naturally identified with the group G, and moreover,
the Fell bundle A/G is naturally identified with 5.

It is known that the bundle A is always amenable (see [5, Remark 2.11]),
and therefore by Corollary 5.3.3 we have that the kernel of the map C*(A/G) —
M(C*(A)) is the same as the kernel of the canonical map C*(A4/G) — C*(A/G).
As we pointed out above, the bundle A/G is just B, which is non-amenable by
assumption. Hence, the canonical map C*(A/G) — Cr(A/G) has a non-trivial
kernel, and therefore the map C*(A/G) — M(C*(A)) is not injective.

We will now see that D, (A) is canonically embedded in M (C}(A)), being the
C*-algebra generated by all the images of C*(A/H) inside M (C}(A)), as in Propo-
sition 5.3.2, with H € C.

PROPOSITION 5.3.5. Let K C H be subgroups of G such that [H : K] < 0.
Then, the following diagram of canonical embeddings commutes:

(5.7) Cr(A/H) —— C(A/K)

g

M(Cy(A)) -

As a consequence D, (A) embedds in M (C(A)), being *-isomorphic to the subalge-
bra of M(Cr(A)) generated by all the C*(A/H), with H € C.

Proof: We have already proven in Proposition 4.0.4 that

(5.8) alorby = Y [on-1(a)]anxby,
[Rl€ES\H/K

for any =,y € X, a € A, and b € A,. Hence, by linearity, density and conti-
nuity, we conclude that diagram (5.7) commutes. By the universal property of
D,.(A) we then have a *-homomorphism from D,(A) to M(C*(A)), whose image
is generated by all the images of C*(A/H) inside M (C;(A)), for any H € C. This
*-homomorphism from D, (A) to M(C}(A)) is injective because all the maps in
diagram (5.7) are injective. O
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We can now give an equivalent definition for the reduced crossed product
CH(A/T) X, G/T, using the algebra C’(A) instead of D}(A). This can be ad-
vantageous as we observed in the opening paragraph of this subsection. Also, this
equivalence of definitions will make the connection between our definition of a re-
duced crossed product by a Hecke pair and that of Laca, Larsen and Neshveyev in
[15] more clear, as we shall see in the next subsection.

THEOREM 5.3.6. Let w: C(A) — B(J€) be a nondegenerate *-representation,
and T its extension to M(C}(A)). We have that

i) If 7o : CH(AJT) — B(H @ (2(G)T)) is faithful, then 7o x (1 ® p) is a
faithful representation of C(A/T) X, o G/T. Consequently,
[fllr == [I[7a x (L@ p)I(NII

for all f € CH(A/T) X, o G/T.
i) If 7 is faithful, then T, is faithful.

Proof: By Proposition 5.3.5 D,.(A) is canonically embedded in M (C}(A)), so
that 7 restricts to a *-representation of D, (A). This restriction is nondegenerate,
because the restriction to C(A/T) is already nondegenerate, as follows from the
following argument. Let & € J# be such that 7(C}(A/T)){ = 0. For any x € X
and a € A, we have

I7(az)€ll* =

(@ @) €
-
=

m(ag-1 - [alar)$; €)
m(az-1)7([aler)€, €)
0.

Thus, by nondegeneracy of m we get that & = 0, and therefore 7 restricted to
Cr(A/T), and hence also D,.(A), is nondegenerate. We are now in the conditions
of Theorem 5.2.9.

Claim i) also follows from Theorem 5.2.9, given the fact that a faithfull non-
degenerate *-representation of C}(A) extends faithfully to M (C;(A)). O

5.4. Comparison with Laca-Larsen-Neshveyev construction

In [15], Laca, Larsen and Neshveyev, based on the work of Connes-Marcolli
[3] and Tzanev [22], introduced an algebra which can be thought of as a reduced
crossed product of an abelian algebra by an action of a Hecke pair.

The construction introduced by Laca, Larsen and Neshveyev was one of the
motivations behind our definition of a crossed product by a Hecke pair. However,
the setup for their construction in [15] is slightly different from ours, being on one
side more particular, as it only allows one to take a crossed product by an abelian
algebra, but also more general, as the underlying space is not assumed in [15] to
be discrete. We will show in this section that when both setups agree, our crossed
product is canonically isomorphic to the crossed product of [15].

We will first briefly recall the setup and construction presented in [15, Section
1]. In order to make a coherent and more meaningful comparison between our
construction and that of [15] we will have to make a few simple modifications in



118 5. REDUCED C*-CROSSED PRODUCTS

the latter. Essentially, we will consider right actions of G instead of left ones, and
make the appropriate changes in the construction of [15] according to this.

Let G be a group acting on the right on a locally compact space X. Let I' C G
be a Hecke subgroup and consider the (right) action of ' x I on X X G, given by:

(5.9) (#,9)(11,72) = (271,71 'g72) -

Define X xr G/T to be the quotient space of X x G by the action of T' x I'. We
assume that the space X xr G/T" is Hausdorff.

REMARK 5.4.1. In [15] the original assumption was that the action of I' on X
was proper (hence implying that X xp G/T" is Hausdorff), but as it was observed
in [15, Remark 1.4], requiring that X xr G/I' is Hausdorff was actually enough for
the construction to make sense, and this is an important detail for us as the actions
we consider are not proper in general (see Remark 5.4.2).

REMARK 5.4.2. Let X = {x} be a space with just one point and (G,T") a Hecke
pair where T" is infinite. We consider the trivial action of G on X. In this case
X xp G/ is the space I'\G/T" with the discrete topology, which is Hausdorff. Nev-
ertheless, since I' is infinite, neither the action of I" on X, nor the action of I' x T’
on X x G, is proper. To see this, notice that the pre-image of the compact sets {x}
and {(*,e)}, in X x I'and X x G x I" x I repectively, are infinite.

Let C.(X xrG/T') be the space of compactly supported continuous functions on
X xrG/T. We will view the elements of C.(X xrG/T") as (I'xT')-invariant functions
on X x G. One can define a convolution product and involution in C.(X xp G/T")
according to the following formulas:

(5.10) (f1* fa)(z,9) == Z fi(z, h) fa(xh,h™tg),
[h]leG/T
(5.11) f(@,9) = fxg,971).

For each given € X we can define a *-representation 7, : C.(X xpr G/T') —
B(¢*(G/T)) by

(5.12) mo(f)onr = > flxg, g h)d,r -

geG/T

The C*-algebra C}(X xp G/T) is defined as the completion of C.(X xr G/T") in
the norm

(5.13) If1I == sup [|ma(f)]l -
reX

The setup behind this construction differs slightly from our own, so we will
compare both constructions under the following assumptions:
(G,T) is a Hecke pair;
X is a set (seen as both a discrete space and a discrete groupoid);
There is a right action of G on X
The G-action satisfies the I'-intersection property.
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We notice that since X and G are discrete the space X xp G/T is also discrete
and therefore Hausdorff, so that the necessary assumptions for the construction of
[15] are satisfied. Also, since X is just a set, the action G on X is necessarily
I’-good. Thus, the assumptions for our construction (Standing Assumption 3.0.1)
are satisfied with respect to the trivial Fell bundle A over X in which every fiber
A, is just C. Recall that in this case C.(A) = C.(X) and C.(A/T) = C.(X/T).

THEOREM 5.4.3. Let (G,T') be a Hecke pair and X a set. Assume that there is
a right G-action on X which satisfies the I'-intersection property. Then, the map
¢ : C.(X/T) x% G/T — C.(X xp G/T) given by

O(f) (z,9) = Alg)* f(gD)(x),

*

is a *-isomorphism. This map extends to a *-isomorphism between the reduced
completions ® : Co(X/T) Xo,r G/T — CHX xp G/T). Moreover, under the
*-isomorphism ®, the *-representation T, is just (Pz)a X p, where @, is the *-
representation of Co(X) given by evaluation at x, i.e. o, (f) = f(x).

Proof: Let us first check that ® is well-defined, i.e. ®(f) is a (I x I')-invariant
function in G x X, with compact support (as a function on X xp G/T"). To see
this, let 71,72 € I'. We have that

(1 972)* f (1 " gneT) (@)
1_
(9)2 @, (f(gI)) (x7)
= Ag) ( ) (z)
= ©(f)(z.9),
so that ®(f) is I' x [-invariant. It is easy to see that ®(f) has compact support
(as a function on X xp G/T'). Thus, ® is well-defined.

Let us now prove that ® is a *-homomorphism. It is clear that ® is linear,

so that we only need to check that ® preserves products and the involution. For
fi, f2 € C.(X/T) x%9 G/T we have that

(I)(fl*f2)(‘r’g) =
= Alg)? (fl*fz)(gl“)( )
= 3 Alg)F ARD)an(f2(h™ gD)) (z)

[hleG/T

- ¥ (A £ (hD) (x ))(A(h‘lg)%ah(fz(h‘lgl“))(w))

[hleG/T

- ¥ (<I>(f1) (z, h)) (A(h’lg)% fo(h™1gT) (xh))

[R]leG/T
= > () @) (®(f2) kb))
[hleG/T

= O(fi) * (f2) (z,9).

O(f) (z71,71 '912) = A

I
l>

Nl
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Also for f € C.(X/T') x%9 G/T we have

O(f*) (z,9) = Alg)? f(gD)(2) = Al9)*A(g )T, (f(g~T)) (w)
(

Hence, ® is a *~homomorphism. Let us now prove that ® is injective. Suppose
®(f) = 0. Then for every g € G and = € X we have

0 = &(f)(x,9) = Alg)* f(gD) (z).

Hence, we conclude that f(¢gT') = 0 for all g € G, and therefore f = 0, i.e. P is
injective.

Let us now prove the surjectivity of ®. The elements of C.(X xr G/I') are
simply linear combinations of characteristic functions of elements of X xp G/I',
so in order to prove that ® is surjective we only need to check that each of these
characteristic functions belongs the image of ®. Let [(z,g)] € X xr G/T. We claim
that @(A(g)_% Ler # gl + 1gr) = 1y
notice that

z,9)]- Lo see this, we recall Lemma 3.1.14 and

It is not difficult to see that ®(1,r * gl * 1,4r) (y,h) = 0 if (y, h) does not belong
to the I’ x '-orbit of (z, g), so that @(A(g)*% Lor #Tgl* 1pgr) = 1y(5,g))- Hence, we
can conclude that ® is surjective and therefore establishes a *-isomorphism between
C.(X/T) x%9 G/T and C.(X xr G/T).

We will now see that under the *-isomorphism ®, the *-representation m, is
just (¥z)a X p, in other words 7, 0 @ = (p;)q X p- This follows from the following
computation:

Ty 0 ®(f) dpr = Z ‘I)(f)(xgvgilh)égl"

g'eG/T

= D Alg'W)E g hD)(xg) dyr
g'eG/T

= > AlgT'mEa(flg D) (@) dr
gr'eG/T

= D> Al @R (@ (fgT L)) dyr
gl'eG/T

= [(6z)a X PI(f) bgr -

Let us now prove that the *-isomorphism ® extends to a *-isomorphism between
Co(X/T) X G/T and C} (X xp G/T). Let 7 : Co(X xr G/T) — B(£?(X)) be the

direct sum *-representation 7 := @, . y 7, on the Hilbert space @,y C = £3(X).
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‘We then have that

Tod(f) = Pm((f))

zeX

= Pl&a)a x ol(f)

zeX

= (P ca)a xAllf)

zeX

= @ e ).

rzeX

Now the *-representation @, .y ¢, of Co(X) is obviously injective. Hence, by
Theorem 5.3.6 i), it follows that m o ® extends to a faithful *-representation
of Cy(X/T) xq, G/T. This implies that ® extends to an isomorphism between
Co(X/T') Xqa,r G/T and C}(X xp G/T'), because

12N = sup flm (@A) = llmo S(£)]
11l






CHAPTER 6

Other completions

Just like there are several canonical C*-completions of a Hecke algebra, one
can also consider different C*-completions of crossed products by Hecke pairs. Es-
pecially interesting for this work are full C*-crossed products, but we will also take
a look at C*-completions arising from a L'-norm.

6.1. Full C*-crossed products

In this section we define and study full C*-crossed products by Hecke pairs.
Just like in the reduced case, several full C*-crossed products can be considered,
such as C*(A/T) X, G/T and C*(A/T') X, G/T where each of these is thought of as
the full C*-crossed product of C*(A/T"), respectively C*(A/T), by the Hecke pair
(G,T). As is the case for Hecke algebras, full crossed products by Hecke pairs do
not have to exist in general.

DEFINITION 6.1.1. Let || - ||- be an @-permissible C*-norm in D(A). We will
denote by [ - ||+ : Ce(A/T) x2%9 G/T — RE U {oco} the function defined by

(6.1) 1fll7u == sup [|@(F)]
PeER,

where the supremum is taken over the class R, of *-representations of C..(A/I") x 29
G /T whose restrictions to C.(A/T") are continuous with respect to || - || .

PROPOSITION 6.1.2. We have that || - ||, is a C*-norm in C.(A/T) x%9 G/T
if and only if || f|l+. < co for all f € C.(A/T) x29 G/T.

Proof: (=) : This direction is trivial since a norm must take values in R

(<) : It is clear in this case that || - ||, defines a C*-seminorm. To check
that it is a true C*-norm it is enough to find a faithful *-representation ® € R,.
This is easy because since || - |- is @-permissible we can take any nondegenerate
faithful *-representation 7 of D, (A) and take ® := 1, X (1® p), which is a faithful
*-representation by Theorem 5.2.9. We have that ® € R, because its restriction
to C.(A/T) is just 74, which is continuous with respect to ||-||- by Lemma 5.2.3. O

DEFINITION 6.1.3. Let || - || be an @-permissible C*-norm in D(A). When
Il - |7 is @ C*-norm we will call it the universal norm associated to || - ||-. The
completion of C.(A/T) x%9 G/T" with respect to this norm will be denoted by
C*(A/T) x4 G/T and referred to as the full crossed product of C*(A/T) by the

123
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Hecke pair (G,T).

It is clear that || - ||, < |- ||+« so that the identity map on C.(A/T) x%9 G/T
extends to a surjective *~homomorphism

(6.2) CI(A/T) Xo GJT — CT(A/T) X G/T,

in case || - ||, is & norm.

In general, full crossed products do not necessarily exist, as it is already clear
from the fact that a Hecke algebra (which is a particular case of crossed product
by a Hecke pair) does not need to have an enveloping C*-algebra. Nevertheless,
for Hecke pairs whose Hecke algebras are BG*-algebras one can always assure the
existence of full C*-crossed products, as we show below. We recall that a *-algebra
is called a BG*-algebra if all of its pre-*-representations are normed. Most Hecke
algebras for which it is known that a full Hecke C'*-algebra exists are known to be
BG*-algebras, as we discussed in [17].

THEOREM 6.1.4. If H(G,T) is a BG*-algebra, then the full crossed product
CH(A/T) xo G/T always exists, for any a-permissible norm || - || .

Proof: We will prove that when H(G,T') is a BG*-algebra we have
(6.3) sup [ (/)] < s,

where the supremum runs over the class of all *-representations of C,(A/T") x%9
G/I'. To see this we first notice that it is enough to consider nondegenerate *-
representations. Secondly, from Theorem 3.3.17, any nondegenerate *-representation
® of C.(A/T) x%9 G/T is the integrated form of a covariant pre-*-representation
(@[, ws), so that we can write & = ®| x wg. Taking any element [a],r * gL' * 1g(z)4r

of the canonical spanning set of elements of the crossed product we then have
[@([alor * TgL * 1saygr)| = [1®[([a]er)we (DgL) @|(Ls(z)qr)|
< [@|([a]sr)ws (TgD)]|-
Now, since H(G,T') is a BG*-algebra we have that wg is normed, i.e. we(T'gl)

is a bounded operator. Moreover, because it is a BG*-algebra, H(G,T') has an
enveloping C'*-algebra. Hence, we conclude that

< [|®|([a]er) || lws (TgT) ||
< |lalzrlle-ca/mlITgTllc= @) -
Thus, it is clear that
sup [[®([alsr * TgL * 1g(aygr)|| < o0

Since this is true for the elements of the canonical spanning set, it follows that (6.3)
holds for any f € C.(A/T) x%9 G/T. O

Any BG*-algebra necessarily has an enveloping C*-algebra. Is it then possible
to weaken the assumptions on Theorem 6.1.4 to cover all Hecke algebras with an
enveloping C*-algebra? In other words:
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OPEN QUESTION 6.1.5. If #(G,T') has an enveloping C*-algebra, do the full
crossed products C(A/T) x, G/T" always exist?

We do not know the answer to this question. In fact we do not even have
an example of a Hecke algebra which has an enveloping C*-algebra and is not a
BG*-algebra. More generally even, the author does not know any example of a *-
algebra that can be faithfully represented on a Hilbert space and has an enveloping
C*-algebra, but which is not a BG*-algebra.

Regarding the existence of full crossed products we will show, in the next
chapter, that they can exist for Hecke pairs for which the Hecke algebra does not
have an enveloping C*-algebra. Namely, the full crossed product Cy(G/T') xo G/T,
arising from the action of G on itself by translation, exists for all Hecke pairs (G, T").

6.2. L'-norm and associated C*-completion

We now define a L!-norm on C.(A/T") x%9 G/T, whose corresponding envelop-
ing C*-algebra can still be understood as a crossed product of C*(A/T") by the
Hecke pair (G,T"), for a @-permissible norm || - ||-.

DEFINITION 6.2.1. Let || -||- be an @-permissible C*-norm on D(A). We define
the norm || - ||, 11 in C.(A/T) x%9 G/T by:

(6.4) Il == > Llg) [F(gD)|--
[g]eT\G/T
Before we prove that || - ||, .1 is a norm we observe that || - ||, 11 is well-defined,
i.e. it does not depend on the chosen representative g of [g], because for any v € T
we have, using the fact that the || - ||, is @-permissible,

1f (gDl = Ny (flgIDll= = [f (gDl

With this observation at hand we can easily derive another formula for | - || L1, for
which we have

(6.5) flrze = > (D)l -

lgleG/T

PROPOSITION 6.2.2. The function || - ||, 11 is a norm for which

11 fallrr < MAllz ool ol and  ([f*lr e = [1fllrzr -

Thus, under this norm C.(A/T) x%9 G/T becomes a normed *-algebra.
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Proof: 1t is easy to check that |- ||, 1 is a vector space norm in C,.(A/T) x 29
G/TI'. Let us prove first that || f*|/; 1 = | f||+,z1. We have

1 e = > L@ I @D
[g)emG/T
= > L@Al Y la(fg D)
lglema/r
= Y L M)l
lglema/r

Since [g] — [g7'] is a bijection of the set I'\G/T, we get

= > Llfedl-

lgleMG/T

= | fllrzr-

Let us now prove that || fi * fall-. .1 < || fill+,01 || f2]lr,2. For this we will use
the formula for || - ||, 1 given by (6.5). We have that

Ifrs fellrr = D I(fa* f2) (D)l
lg)eG/T
< Y ) IAGDIlan (gDl -
[9)€G/T [n€G/T
Using the fact that || - ||, is @-permissible we have

= S IAGDI (D),

[gleG/T [h]eG/T

S IAGD) | f2(h gDl

[R]eG/T [g]€eG/T

Yo > AGDIID)

[R]eG/T [g]€eG/T

S IAGDI) (D IfDl-)

[leG/T lgleG/T

1]

T, L1 ||f2 |‘r7L1 .

O

Completing C.(A/T) x29 G/T in the norm | - ||, 21 we obtain a Banach *-
algebra, and taking the enveloping C*-algebra of this Banach *-algebra we obtain a
C*-completion of C.(A/T') x29 G/T, which we denote by C(A/T) X1 G/T. We
notice that the restriction of the norm || - ||, 11 to C.(A/T") is precisely the norm
|l - ||+, from which we can conclude that | - ||, is always greater or equal to the
C*-norm of C*(A/T) x4 1 G/I'. This means that, if || - ||, is a norm, there is
canonical map

(6.6) CH(AJT) xo G/T — CH(AJT) X .11 G/T.
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In case the crossed product is just the Hecke algebra itself, the map (6.6) is just
the usual map

C*(G,T) — C*(LY(G,T)).

So far we have seen three canonical C*-crossed products of C*(A/T') by the
Hecke pair (G,T'), and these are C*(A/T") xo, G/T, C:(A/T) x4 2 G/T' and
C*(A/T) x, G/T if it exists. Each one of these corresponds respectively, in the
Hecke algebra case, to the completions C*(G,T'), C*(L*(G,T')) and C*(G,T). It
is an interesting problem, which we will not explore here, to understand how the

Schlichting completion construction and the remaining Hecke C*-algebra pC*(G)p
carry over to the setting of crossed products by Hecke pairs.






CHAPTER 7

Stone-von Neumann theorem for Hecke pairs

A modern version of the Stone-von Neumann theorem in the language of crossed
products by groups states that (see [21, Theorem C.34])

Co(G) X0 G = Cy(G) x0r G = K((Q)).

More precisely, if « is the action of G on Cy(G) by right translation, M : Co(G) —
B(f*(Q)) the *-representation by pointwise multiplication and p the right regular
representation of G on ¢?(G), then (M, p) is a covariant representation of the system
(Co(G),G) and M x p is a faithful *-representation of Cy(G) x, G with range
K2 (Q)).

It follows from this result that any covariant representation of (Co(G),G) is
unitarily equivalent to an amplification (1 ® M,1® p) of (M, p), since the algebra
of compact operators has a trivial representation theory (|21, Remark C.35]).

The goal of this chapter is to show how the Stone-von Neumann theorem gen-
eralizes to the setting of Hecke pairs and their crossed products. In the process we
recover an Huef, Kaliszewski and Raeburn’s notion of a covariant pair [9] and their
version of the Stone-von Neumann theorem for Hecke pairs, which did not make
use of crossed products and which we will now recall.

In [9, Definition 1.1], an Huef, Kaliszewski and Raeburn introduced the no-
tion of a covariant pair (mw,u) consisting of a nondegenerate *-representation 7 :
Co(G/T') — B(H) and a unital *-representation u : H(G,T') — B(H) satisfying

(7.1) p(CgD)m(Lor)p(@sD) = Y w(lgur)p(Tu 0D m(Lr) -
[u]eTg~'T/T
[v]elsT'/T
The basic example of a covariant pair, computed in [9, Example 1.5], is that
of (M, p) where M : Co(G/T) — B(¢?(G/T)) is the *-representation by pointwise
multiplication and p is the right regular representation of H(G,T).

REMARK 7.0.1. One should note that the definition of the right regular rep-
resentation p used in [9] differs from ours, since in [9] the factor A2 is absent.
Nevertheless, (M, p) is still a covariant pair with our definition of p. Moreover, the
results of [9] remain valid for our p as well, up to multiplication by some factor in
some of them.

It was proven in [9, Theorem 1.6] that all covariant pairs are unitarily equivalent
to an amplification (1 ® M,1® p) of (M, p), which can be seen as an analogue for
Hecke pairs of the Stone-von Neumann theorem. It should be noted that this result
was proven without any crossed product construction behind it.
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In the following we will prove a Stone-von Neumann theorem for Hecke pairs
in the language of crossed products, stating that

Co(G/T) x G/T = Co(G)T) x, G/T = K(*(G/T)).

We will also show that the covariant pairs of [9] coincide with our notion of a
covariant *-representation and we will recover an Huef, Kaliszewski and Raeburn’s
version of the Stone-von Neumann theorem (|9, Theorem 1.6]) as a consequence of
the above isomorphisms.

The case under consideration now is that when the groupoid X is the set G
and A is the Fell bundle over (the set) G whose fibers are C. In this case we have
C.(A) = C.(G) and, naturally, C}(A) = C*(A) = Cy(G). We consider the action
a of G on A induced by the right multiplication of G on itself. Since this action
is free, it is I'-good and satisfies the I'-intersection property. Moreover the induced
action @ of G on C.(G) is simply the action by right translation. In this setting
the groupoid X/T" is then nothing but the orbit set G/T", and C.(A/T") = C.(G/TI).
Moreover, Cf(A/T) = C*(A/T) = Co(G/T).

PROPOSITION 7.0.2. Let Tyr pr € Co(G/T) x%9 G/T be the element
Tgp’hp = 1gF * Fg_lhl“ * 1hp .
Then {Tyr wr}gr prec T is a set of matriz units that span Co(G/T) x219 G/T.

Proof: 1t is clear that T ,p = Threr. Let us now compute the product
Tgl",hl" * Ts[‘,tp. If AT 75 SF, then Tg[*,hp * Tsl",tl" = 0. In case hI' = SF, we get

Tyornr * Thrar = 1o #*Tg 'AT # 1pp # TR HT * 1yp

= 1gF * ( Z 1pur * Dyl * 1hor ) * 14 .

[u]€eTh~1gl/T
[v]erh~1¢T/T

Now for the product 1,r1p,r to be non-zero, we must have hul' = gI', i.e. ul' =
h~'gl. Similarly, for the product 1j,r1;r to be non-zero we must have hvl’ = tT,
i.e. vI' = h~1I". Thus,
Tyronr * Thrar = lgr# Lyp—rgr x D(R7 g) T R 1T * Lpporgp * Lir
= lyp*Dg M 1;p
= Tyrar-

Hence, {T,r nr}or ar is a set of matrix units. The fact that this set spans C,(G /T') x 29
G/T follows readily from Theorem 3.1.13, noting that for z € G and ¢gT" € G/T" we
have

13;1" * FgF * lxgp = TxF,;ch .

This finishes the proof. (I

THEOREM 7.0.3. The full crossed product Co(G/T') xo G /T exists and moreover
Co(GJT) x4 G/T = Co(G)T) x4, G/T = K(2(G/T)).
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Denoting by M : Co(G/T) — B(£%(G)) the *-representation by pointwise multipli-
cation, we have that (M, p) is a covariant *-representation and M X p is a faithful
*_representation of Co(G/T) X G/T with range K(¢*(G/T)).

Proof: By Proposition 7.0.2 we have that {T,r nr}er nr is a set of matrix units
that span C.(G/T)x29G//T. Hence, the enveloping C*-algebra of C.(G/T')x%9G /T
must exist. As it is known, there exists only one C*-algebra, up to isomorphism,
generated by a set of matrix units indexed by G/, and that is K(¢?(G/T")). Hence,
we necessarily have

Co(G)T) x4 G/T = Co(G)T) x4, G/T = K(2(G/T)).

It has been shown in [9, Example 1.5] that (M, p) is a covariant pair, so that
equality (7.1) holds. Since the action of G on itself is free, it follows readily from
Proposition 3.5.3 that this means that (M, p) is a covariant *-representation.

Let us denote by ¢ : Cyp(G) — C the *-representation given by evaluation at
the identity element, i.e.

o(f) = fle),

and let ¢ be its extension to M(Cy(G)) = Cy(G). We claim that ¢, restricted to
C.(G/T) is nothing but the representation by multiplication, i.e. ¢, = M, and this
follows from the following computation, where f € C.(G/T):

Sa(f)onr = San(f))or = an(f)(e)dr
= f(hD)opr = M(f)onr.

Since M = 5(1 is faithful, it now follows from Theorem 5.3.6 that M X p is a faithful
*_representation of Co(G/T') X4, G/T =2 Co(G/T) x4 G/T in B(¢*(G/T)), whose
image must necessarily be K(¢2(G/I)). O

As a corollary of our Stone-von-Neumann theorem we recover [9, Theorem 1.6]
and we show that the covariant pre-*-representations of C.(G/T') x%9 G /T coincide
with the covariant pairs of [9].

COROLLARY 7.0.4. Let (G,T") be a Hecke pair, m : Co(G/T) — B(H) a non-
degenerate *-representation and p : H(G,T') — L(w(C.(G/I"))H) a unital pre-*-
representation. Then (m, 1) is a covariant pre-*-representation if and only if it is
unitarily equivalent to an amplification (1 ® M,1® p) of (M, p). In particular we
have

i) All covariant pre-*-representation are covariant *-representations, and
these are the same as the covariant pairs of [9].

ii) A *-representation m is equivalent to an amplification of M if and only if
there exists a *-representation p of H(G,T') such that (m, ) is a covariant
*-representation.

Proof: Let (1) be a covariant pre-*-representation of C.(G/T) x9 G/T.
Then its integrated form 7 X p extends to a nondegenerate *-representation of
Co(G/T) x4 G/T'. By Theorem 7.0.3 M X p is a *-isomorphism between Co(G/T") X o
G/T and K(£?(G/T)), so that (mx u)o(M x p)~! is a nondegenerate *-representation
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of K(¢?(G/T)). Since the algebra of compact operators has a trivial representation
theory (see for example [21, Lemma B.34]) there exists a Hilbert space J# such
that (7 x p) o (M x p)~! is unitarily equivalent to the representation 1 ® id in
A @ (*(G)T). Hence, (7 x p) is unitarily equivalent to 1 ® (M x p). Now given
the fact that (M, p) is a covariant *-representation, it is not difficult to see that
(1® M,1® p) is also a covariant *-representation and moreover

1(Mxp)=(1M)x(1®p).

By Proposition 3.3.19 it follows that (7, 1) is unitarily equivalent to (1® M,1® p).

The converse is easier: suppose now that (7, 1) is equivalent ot an amplification
(1® M,1® p) of (M,p). Since (1 ® M,1® p) is a covariant *-representation, it
follows that (7, 1) must also be a covariant *-representation.

Let us now check 7). As we have just proven, every covariant pre-*-represen-
tation is unitarily equivalent to an amplification (1 ® M,1 ® p) of (M, p). Since,
(1® M,1® p) is a covariant *-representation it follows that every covariant pre-*-
representation is actually a covariant *-representation.

Let us now prove ii). Suppose 7 : Co(G/I') — B(H) is equivalent to an am-
plification of M, i.e. there exists a Hilbert space %) and a unitary U : 5 —
M @ (2(GT) such that 7 = U(1 @ M)U*. As (U(1®@ M)U*,U(1 ® p)U*) is a
covariant *-representation, we conclude that there exists a *-representation p such
that (m, ) is a covariant *-representation. The converse follows easily from what
we proved above: if there exists a *-representation u of H(G,I") such that (m, u) is
a covariant *-representation, then (m, ) is unitarily equivalent to an amplification
(1® M,1® p) of (M, p), and therefore  is unitarily equivalent to an amplification
of M. O



CHAPTER 8

Towards Katayama duality

The theory of crossed products by Hecke pairs we have developed is intended
for applications in non-abelian crossed product duality. We have already taken the
first step in this direction, having established a Stone-von Neumann theorem for
Hecke pairs which reflects the results of an Huef, Kaliszewski and Raeburn [9]. We
believe that this theory of crossed products by Hecke pairs can be further applied
and bring insight into the emerging theory of crossed products by coactions of
homogeneous spaces ([5], [4]). The basic idea here is to obtain duality results for
“actions” and “coactions” of homogeneous spaces (those coming from Hecke pairs).

In this chapter we will explain how our construction of a crossed product of
a Hecke pair seems very suitable for obtaining a form of Katayama duality for
homogeneous spaces arising from Hecke pairs, with respect to what we would call
the Echterhoff-Quigg crossed product. This is work in progress and we have nearly
finished a paper where we show this duality. The goal of this chapter is merely to
show that our setup is suitable for obtaining such a duality result.

Let § be a coaction of a discrete group G on a C*-algebra B and B x5 G the
corresponding crossed product. We follow the conventions and notation of [5] for
coactions and their crossed products. As it is known, there is an action 8 of G on
B x5 G, called the dual action, determined by

3 (j8(@)jc(f)) = jnla)jc(os(f)). Va€ B, f € Co(G),s € G,

where o denotes the action of right translation on Cy(G), i.e. o5(f)(t) := f(ts).

Katayama’s duality theorem (the original version comes from [12, Theorem 8|)
is an analogue for coactions of the duality theorem of Imai and Takai. A general
version of it states that we have a canonical isomorphism

(8.1) (B x; @) x5, G= Be K(*(G)),

for some C*-completion of the *-algebraic crossed product (B x5 G) xglg G. This
C*-completion (B x5 G) X5, G lies in between the full and the reduced crossed
products, and the coaction § is called mazimal (respectively, normal) if this C*-
crossed product is the full (respectively, the reduced) crossed product.

We would like to extend this duality result for coactions of homogeneous spaces
G/T. In this spirit we should obtain an isomorphism of the type

(8.2) (B x5 G/T) x5, G/T = B K(*(G/T)).

Of course, the expression on the left hand side makes no sense unless I' is normal in
G (in which case, the above is just Katayama’s result), and there are a few reasons
for that. First, it does not make sense in general for a homogeneous space to coact
on a C*-algebra, which consequently makes it difficult to give meaning to B xsG/I".
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Secondly, it also does not make sense in general for a homogeneous space G/T" to

~

act (namely, by J) on a C*-algebra.

The second objection can be overcome by simply using our definition of a
crossed product by (an “action” of) a Hecke pair (G,T'). The first objection can be
overcomed because, even though there is no definition of a coaction of a homoge-
neous space, it is possible to define C*-algebras B x5 G/T" which can be thought of
as crossed products of B by a coaction of G/T" ([5], [4]). In this way the iterated
crossed product in expression (8.2) may have a true meaning. This is the approach
we suggest towards a generalization of Katayama’s result.

It is our point of view that such a Katayama duality result can hold when B X
G/T is a certain C*-completion of the algebra C.(B x G/T") defined by Echterhoff
and Quigg in [5]. The full completion C*(B x G/I') has already been dubbed the
Echterhoff and Quigg’s crossed product by the restricted coaction of G/T" in [9] (in
case we start with a maximal coaction of G on B).

In the remaining part of this chapter we will show that the Echterhoff and
Quigg’s algebra C.(B x G/T') falls in our set up for defining crossed products by
Hecke pairs. In other words, we will show that it makes sense to define the crossed
product C.(B x G/T") xglg G/T by the dual action d of the Hecke pair (G,T).

We recall briefly the construction of Echterhoff and Quigg, and the reader is
advised to read our Example 2.2.3 again. We start with a coaction ¢ of a discrete
group G on a C*-algebra B, and we denote by B its associated Fell bundle. Fol-
lowing [6, Section 3] we denote by B x G the corresponding Fell bundle over the
groupoid G x G. Elements of B x G have the form (bs, t), with bs € B, and s,t € G.
Any such element lies in the fiber (B x G), ) over (s,t) € G x G.

We recall that the multiplication and inversion in G x G are given by

(s, tr)(t,r) = (st,r) and (5,6)"1 = (s71, st),
and the corresponding multiplication and involution on B x G are given by
(bs,tr)(ct, 1) = ((bC)st, ) and (be,t) ™1 = (b%_y, 5t).

An important property of C.(B x G/T") is that it embeds densely in the coaction
crossed product B x5 G, by identifying (as,t) with jp(a)jc(1:). In this setting we
have that B x5 G = C*(B x G) =2 C}(B x G), as stated in [6, Corollary 3.4].

The dual action 0 of G on Bx G is determined by gg(jB(a)jg(lt)) =jp(a)ja(lig-1),
which on the generators of C.(B x G)) means

(8.3) Sg(as,t) = (as,tg™").

Now let H C G be a subgroup. Following [5], one can define a Fell bundle
B x G/H over the groupoid G x G/H. We recall from [5] that the operations on
the groupoid G x G/H are defined by

(s,trH)(t,rH) = (st,rH) and (s,tH)™ ' = (s7',stH),
and the corresponding operations on the Fell bundle B x G/H are defined by
(bs, trH)(cs,mH) = ((be)st, 7 H) and (b, tH) ™ = (by—1,stH).

The Echterhoff and Quigg algebra is defined as the algebra C.(B x G/H) of finitely
supported sections of this Fell bundle.
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Let us now consider the case of a Hecke pair (G,T) to see that the conditions
of our definition of crossed products by Hecke pairs are met, and see that it makes
sense to define C.(B x G/T) xglg G/T.

For this we take the bundle A := B x G over the groupoid X := G x G, as
above. We observe that there is a natural G-action & on A given by (8.3), which of
course gives precisely the dual action of G on C.(A). This action also entails the
canonical right action of G on the groupoid X, given by

(8.4) (s,t)g := (s,tg).

Since this action is free, it is H-good and satisfies the H-intersection property for
any subgroup H C G. Moreover, the orbit groupoid X/H is canonically identified
with the groupoid G x G/H, simply by (s,t)H + (s,tH). This canonical identi-
fication is easily seen to be a groupoid isomorphism, so that X/H and G x G/H
are “the same” groupoid. Under this identification, the Fell bundle A/H is just
the Fell bundle B x G/H, and therefore we can canonically identify C.(A/H) with
C.(Bx G/H).

We can now conclude that all our conditions are met and therefore we can
define the *-algebraic crossed product C.(B x G/TI) x;lg G/T'. We expect that there
is a C*-completion of the Echterhoff and Quigg algebra C.(B x G/T"), which we
would like to call the Echterhoff and Quigg’s crossed product, for which a form of
Katayama duality as in (8.2) holds.
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