A Programmable Hardware Calendar for High
Resolution Pacing

Salvatore Pontarelli!, Giuseppe Bianchi'-?, Michael Welzl?
!Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy.
2University of Rome Tor Vergata, Italy.
3Department of Informatics, University of Oslo, Norway.

Abstract—The challenge addressed in this paper consists in
offloading packet-based pacing to a hardware Network Interface
Card, while retaining the flexibility of software timers. In this di-
rection, we propose, design, implement, and evaluate a hardware
calendar, which can be programmed via a simple yet very flexible
programming interface leveraging stateful (adaptive) per-packet
timers. We show, for both specific examples (exponential, linearly
increasing, etc) as well as for the general case, how to derive such
a per-packet timer setting from a high-level desired rate envelope.
Further, we describe and evaluate an FPGA implementation
which relies on a novel insertion strategy for solving collisions in
the calendar’s hash table.

I. INTRODUCTION

With a growing understanding of how important it is to min-
imize latency [1], e.g. for applications such as AR/VR, online
trading systems or even web surfing, comes a need to maintain
short queues. Keeping queues short is inevitably hampered
whenever packets are sent in bursts. This has rendered packet
pacing—the insertion of time gaps in between packets—a
corner-stone of many types of Internet communication today.
Pacing, in various forms, has long become commonplace, e.g.
in data centers, as a mechanism that is shipped in Linux, and
in large-scale CDNs.

There are, however, significant difficulties in implementing
pacing. Less than a decade ago, pacing was generally per-
ceived as beneficial, but too hard to implement to be practical;
this difficulty was typically attributed to the poor precision
of software timers. Some hardware solutions were proposed
[2], [3], [4], but they did not see mainstream deployment.
Meanwhile, two opposing trends surfaced:

1) Software timers have become feasible (albeit not with-
out problems, e.g. they are quite CPU-intensive), and
software-based pacing has therefore become common.
Linux, for example, supports it via its Hierarchical Token
Bucket (HTB) and the FQ/pacing queuing discipline
(see [5] for an excellent discussion of these and other
implementations).

2) TCP Segmentation Offloading (TSO) and a more generic
form of it (Generic Segmentation Offloading (GSO)) have
become widely deployed. TSO allows the CPU to hand
over a large block of data (usually 64 Kbyte) to the
Network Interface Card (NIC), where it is dissected into
packet-size data blocks. Packet headers are added to these
blocks, and they are sent out into the network.

978-1-5386-5541-2/18/$31.00 ©2018 IEEE

Because software timers do not have control over the
individual packets that are created from such a larger data
block, TSO is usually disabled when using pacing. As an
alternative, Linux can dynamically change the size of the
TSO data blocks'. Naturally, reducing the size of TSO blocks
comes at a cost—e.g., the authors of [5] find that even using
a software NIC to run their implementation improved its
performance due to gains from larger TSO batching.

Can we get the best of both worlds—can we offload
the pacing operation together with segment offloading? 1If
this is possible, hw-based offloading can naturally operate
on the packets that the NIC creates as the result of TSO.
Such offloading requires three things to be efficiently and
scalably implemented in hardware: (1) Buffer management
and scheduling; (2) ACK parsing and timer calculation, as the
inter-packet gap (IPG) of TCP packets is determined when
ACKs arrive; and (3) quickly configurable and flexible timers.

In this paper, we make the case that such a compre-
hensive TSO+pacing operation is feasible. Indeed, related
works (discussed in the next subsection) have assessed the
feasibility of items 1 and 2 listed above. This paper specifically
focuses on item 3, showing feasibility of an ultra-flexible and
easily programmable HW timer. We believe that such initial
step will give us the possibility to design and implement a
comprehensive solution integrating all the three above aspects,
as planned in our future work.

Specifically, this paper makes three contributions. First, we
propose a hardware calendar and a relevant programming
abstraction (Section IT) which is at the same time very simple
and flexible, as it permits programming packet-based pacing
strategies that can be as fine-grained as permitting to change
the IPGs between packets within a TSO data block. Our
second contribution (Section III) is a methodology to translate
a desired pacing pattern expressed in terms of a high-level
rate envelope into a per-packet scheduling decision supported
by our API. We illustrate the proposed approach also via
examples taken from the TCP slow start and congestion
avoidance stages. Finally, our third contribution is an FPGA
implementation, described in SectionIV, which relies on a
novel insertion strategy for solving collisions in the calendar’s
hash table. Section V evaluates the novel insertion technique
comparing it with a standard Cuckoo hash table. Section VI
concludes the paper.

ISee e.g. https://lwn.net/Articles/564979/

michawe
Typewritten Text
978-1-5386-5541-2/18/$31.00 ©2018 IEEE

michawe
Typewritten Text

A. Related work

We use SENIC [6] as the foundation for our claim that
buffer management and scheduling can be efficiently im-
plemented in hardware. Different from prior work such as
vShaper [7], SENIC can directly support 10s of thousands
of rate limiters, by dividing the work between the OS and the
HW: the OS classifies packets in its host memory, and SENIC
only needs to schedule and transmit packets by pulling them
from this memory. However, SENIC does not support TSO,
as it pulls MTU sized packet portions from the host memory,
and there is also no particular support for quickly changing
timers (SCENIC’s timers are derived from a rate limit that is
configured for transmit queues (classes) that the NIC exposes).

ACK parsing in HW is readily provided by either using
programmable data plane technlogies/languages such as P4, or
by using tailored packet-manipulation-oriented HW processors
such as the one described in [8], and Section IV explains how
we implemented our timer calculation; together, these two
functions constitute the second piece of our puzzle.

There are various reasons to update NICs for low-latency
communication beyond the “TCP vs. TSO” explanation that
we have given in the previous section. Some reasons are
provided in [9], and [10] describes how NICs can be extended
to better isolate “bare-metal” data center guests (i.e., tenants
who do not wish to run their software in a Virtual Machine).

Flexible timers are indeed necessary for pacing, as pacing
decisions can depend on various factors. Initial Spreading
[11], for example, aims at spreading the packets of TCP’s
Initial Window (IW) across an RTT to reduce the negative
impact of a large initial burst. Trickle [12] is a mechanism
specifically designed for YouTube, a very bursty application
which poorly interacts with TCP. Reducing the size of the
bursts that YouTube hands over may seem to be the natural
solution, but doing so would incur increased overhead due to
the larger number of write system calls as well as timers firing
more often. Rather, Trickle rate-limits YouTube videos by
artificially constraining the TCP sender’s congestion window.

From the hardware point of view, the work most similar
to ours is [13], where a flexible timer module was proposed.
This module can be used to implement TCP offloading engines
such as the one proposed in [14]. However, the implemen-
tation of this timer module uses a simple linear addressing
in which there is a trade-off between the timer resolution
and the number of timers to allocate (i.e., allocating more
timers requires to decrease the timer accuracy). The achievable
resolution reported in [13] is 1 ms. This is enough for timers
used for triggering retransmissions, but cannot be used for
pacing purposes. Generally speaking, hardware timer modules
have been developed for TCP offloading engines [15], as
well as for offloading other network functions [16]. All these
modules have shortcomings regarding scalability (number of
timers that can be allocated) or resolution granularity.

II. CALENDAR: ARCHITECTURE AND API
A. Calendar Architecture

Figure 1 shows the high level (conceptual) architecture of
the proposed programmable calendar. The underlying idea

ExpiredTimer
StartTimer
S E‘gll'féfn Calendar
State >
Fig. 1. Conceptual Architecture of the programmable calendar

is that every packet transmission (i.e., expired pacing timer)
triggers the scheduling of the “next” transmission, further
taking into account a system state. This permits to deploy
a stateful adaptive pacing strategy where the time interval
between two consecutive packets depends on a programmer-
defined “state”, which resides in the “State” block highlighted
in Figure 1, and which may (at least in principle) be updated
at every timer expiration. Specifically, being S a set of states,
and 7 a time, the most general adaptive pacing function A
supported by our approach would be a function

A:SXxT —=8xT

which, given the transmission of packet n at time 7'(n), and
given a relevant system state s(n) € S, would return i) the
time T'(n + 1) > T'(n) after which the next packet n + 1 is
scheduled for transmission, and ii) the next state s(n + 1). In
practice, in the current HW implementation, we have so far
resorted to the special case of state s(n) € S being a counter,
ie. s(n) =n and s(n+ 1) = n + 1. Indeed, most use cases
we have considered appear to be already accommodated by
this choice. Note that the general implementation of the state
block may leverage the HW developed in our past work [18].

The incremental computation of the next timer is per-
formed by the “Evolution block™ at each timer expiration,
using as input the state of the system and the last expired
timer. For each timer expiration, the block computes the next
timer to insert into the Calendar. Generally speaking, we can
consider the “Evolution block™ able to provide any function
d(n) =T(n+ 1) — T'(n); however, for sake of concreteness,
in our implementation we have implemented the “Evolution
block™ as a simple look-up table. This design choice provides
a high programmability level for the function that can be
realized by the evolution block. It has as a drawback that
the input resolution of the §(n) function (the number of
elements representing the function domain) is limited by the
amount of memory allocated for the look-up table. Finally, the
Calendar block receives the commands to insert timers from
the “Evolution block” and signals that a timer is expired.

B. Application programming Interface

The Calendar is programmed by means of a basic Applica-
tion Programming Interface (API) described hereafter using a
notation close to the way a timer module is specified in [17].
The purpose of the calendar is to signal that a time interval has
elapsed; usually a specific action is associated to the expiration
of the timer. Since a calendar is able to manage a large number
of timers, a specific ID is associated with each timer that is

inserted in the calendar. This ID allows binding the expiry of
a timer to an action to execute. We can describe the calendar
API with the following basic routines [17]:

1) StartTimer(Interval, ID, ExpiryAction): The client calls
this routine to insert a timer in the calendar that will
expire after “Interval” units of time. The client provides
a unique ID for each timer that is inserted in the calendar.
When the timer expires, the ExpiryAction is executed.

2) StopTimer(ID): The client calls this routine to remove the
timer specified by the ID from the calendar.

3) PerTickBookkeeping: This routine checks which timers
are expired in the current “Tick” interval. The “Tick”
interval is the minimum time granularity of the calendar.

The first two routines are activated on client calls, while

the last one is invoked on each timer tick. To measure the
performance of the calendar we can refer to several specific
figures of merit. One of the most important figures is the
memory required to allocate timers. Since fast memory is
a limited resource in hardware networking devices, it is
important to optimize the memory allocated for each timer.
Another figure of merit is the minimum time granularity that
the calendar can support. Time granularity relates both to the
PerTickBookkeeping routine and to the StartTimer routine. In
the first case the time granularity corresponds to the minimum
“Tick” interval that the calendar can support. In the case of
the StartTimer routine it is the minimum Interval value that
the Calendar can manage. As will be discussed in section 1V,
this is related to the worst-case insertion time of a new timer.

In fact, the setting of a timer with an Interval value ¢ in

a calendar is performed setting an expire time 17" = t + tg,
where ¢ is the current time. Unfortunately, the insertion of T’
is not immediate, but can require multiple clock cycles. We
can define the worst insertion time of a timer in the caledar as
tmazs SO in the worst case the timer is actually inserted only
at time ¢ +t,,,,. Therefore a calendar is able to reliably insert
a timer with Interval time ¢ only if ¢ > ¢,,,,. The hardware
implementation that we developed (see Section IV) provides
a time resolution well below 1 us.

III. FROM RATE ENVELOPES TO TIMERS

For simplicity of presentation, the analysis presented in this
paper focuses on packet-based pacing. The extension to byte-
based pacing, e.g. to further account for variable packet sizes
if/when necessary, is relatively straightforward following the
very same arguments reported below, and left to the reader.

A. Warm up example: exponential TCP slow start pacing

Before moving to the general case, it seems useful to
illustrate via an initial simple example how our proposed
timer-based pacing framework proposed can be easily related
to a rate-based requirement emerging from an application.
In this section, we focus on a classical use-case, namely
Exponentially Increasing Rate, as encountered, e.g., in the
TCP Slow Start rate growth pattern.

Let us first remind how TCP Slow Start (roughly) works.
Let’s index segments starting from 1, i.e., the first segment
transmitted at time O is segment 1, and so on. Suppose that the

segment
tx time 2
(RTT units)

3
°
[]
° T\ Exp paced

° ™~ Legacy

0

—— —— ——T—T—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Segment index

Fig. 2. Exponentially increasing rate pacing

transmission time 7}, for each TCP segment is negligible with
respect to the Round Trip Time (RTT), and for convenience
assume a constant and unitary RTT = 1 (i.e., time is measured
in RTT and ACKs are not delayed). Under such assumptions,
as long as no loss is encountered, the legacy TCP Slow Start
procedure would yield the following transmission pattern:

e t =0 — segment #1
e t =1 — segment #2 followed by #3 (after T}, ~ 0)
o 1 =2 — segments #4, #5, #6 and #7 (separated by T},)

What strikes in such classical Slow Start algorithm is
that, due to the simple way in which the TCP protocol
is implemented (congestion window increased by 1 at each
ACK reception) a desired exponential growth in terms of
transmission rate comes along with the undesired by-product
of potentially severe burst transmissions?. Indeed, this pattern
can be summarized by defining with n(i) the rotal number
of packets transmitted before or “during” the time instant i.
Obviously,

n(i) = 2° (1)

with the size of a burst starting at each discrete time instant ¢
thus being computed as n(i + 1) — n(i) = 20+ — 2¢ = 2¢,

If technically feasible, it would be quite natural to replace
the Slow Start’s traditional pattern with a smoother one. The
obvious way to do so, as shown in figure 2, consists in
spreading the transmission of segments such that equation (1)
holds not only for discrete time instants ¢, but also for any
intermediate real-valued time t, i.e. such that the number of
transmitted segments up to time ¢ should not be greater than
2t Being n = 1,2, - - - the packet index, it readily follows that
the time T'(n) at which packet n shall be transmitted is

T(n) = logy(n)

This rule would produce the very smooth pattern illustrated in
figure 2. This pattern matches the slow start behavior expected
in any discrete time multiple of an RTT (for instance, packet
#8 is still transmitted, as mandated, at time 3), but spreads the
transmission of packets in between—e.g., segment #7 would

2In practice, since two transmissions are triggered by each ACK reception,
for relatively large ACK interarrival times, the pattern may not exactly
converge into a single huge burst; still, in normal conditions, it certainly does
not reduce to a smooth and regular pattern!

be paced and delayed until 7'(7) = log,(7) = 2.807, instead
of being transmitted back-to-back right after packets #4-6.

Finally, it is worth to remark that, once we have an explicit
expression for the time 7'(n) at which packet n should be
transmitted, we can readily determine an explicit incremental
formula, such that the time elapsing before the “next” packet
transmission is provided at the time at which the “previous”
packet is transmitted (the transmitter needs only to keep track
of the current packet index n). Indeed, if we define §(n) =
T(n+1) —T(n), for the above example case of slow start, it
follows that

d(n) =logy(n + 1) — logy(n) = log, (1 4 rlz>

B. Extension to the general case

The above derivation is just a special case of a more general
fluid model described hereafter. Let us consider the general
case of a pacing strategy where the goal is to emit packets
at an instantaneous rate envelope, formally expressed by an
arbitrary function R(t) [packets/time-unit].

If we interpret packets as continuous quantities, then the
cumulative number N (t) of emitted packets in a target time
interval, say (to,t) can be any positive real-value quantity,
which is related to the instantaneous rate R(t) by the obvious
integral equation

t
N(t)=N(to)+ [R(m)dr ()
to

The above formula (2) holds for “fluidic” packets, i.e., it
does not yet take into account the discrete nature of packet
transmissions. To determine a desired pacing strategy we need
to include in the above formula such a restriction, i.e. to
impose that a new packet is transmitted at the instant in which
the integral of the rate function R(¢) yields an integer value.

In practice, non restrictively assuming that {; = 0 and
numbering packets starting from ng, if the programmer wishes
to enforce a given rate envelope R(t), it suffices to solve, for
any integer value n, the integral equation

T(n)
n—mny= / R(7)dr

to

in the set of unknowns T'(n), which will provide the trans-
mission instant for the n*"* packet.

In some cases (such as the TCP slow start example dis-
cussed before), rather than the rate envelope R(t), the pro-
grammer may wish to directly start from a pacing requirement
expressed in terms of a cumulative packet transmission profile
ng + N(t), i.e. the requirement that in a time window (0,t),
no more than ng + N(¢) shall be transmitted. Owing to the
relation (2), it follows that in such case the sequence T'(n)
is directly obtained in closed form as the inverse function
T(n) = N=*(n — ng). The next use cases will provide some
practical derivation examples.

Example 1: exponential pacing. It is instructive to revisit
the example already discussed in section III-A, and show
how it maps over the formalism introduced in this section. In
that case the problem is simplified as the desired exponential

packet emission profile is already expressed in terms of the
cumulative number of transmitted packets. Hence, N(t) = 2°
and therefore T'(n) = N~1(n) = log,(n).

Example 2: linearly increasing pacing. The case of linear
increase in the pacing rate is a bit more interesting for our
purposes, because it is frequently encountered in real world
scenarios (e.g., TCP congestion avoidance’s additive increase
phase), and because in this case (unlike the previous slow start
one) the rate envelope computation R(t) is not as trivial as the
reader might expect.

Going into details, let us assume that the number of packets
to be transmitted is increased by one unit per each time
window, e.g. an RT'T. Thus, if we start from a single packet
just transmitted at time ¢ = 0 (i.e., TCP’s unitary congestion
window), we will transmit one packet exactly after one RT'T,
two additional packets by the second RT'T" (for a total of three
packets so far), three additional packets by the third RTT
(hence a total of 6 packets), and, in general, k(k+1)/2 packets
by the integer time instant k. Hence

N(t) = 1+@ - 1+/OtR(T)dr - 1+/Ot<r+;) & (3)

where R(1) = 7 + 1/2, the enforced rate envelope, can
be intuitively justified by noting that — besides the linear
increase 7 — we also need to account for the fact that a packet
transmission must occur at time ¢ = 1 — the additional con-
stant 1/2 indeed follows from the “normalization” condition
[R(T)dr = 1.

Finally, by inverting (3) and computing it for integer values,
we readily obtain the desired linearly increasing pacing rule
in terms of instant of transmission 7'(n) of the n'”* packet as
the solutions of the equation:

T(n) 1 T T 2
=1t [(T+>dr:1+(”)+(")
o 2 2 2

which, for any integer value n > 0, yields the positive solution

V8n —T7—-1

T =
For the convenience of the reader, the
first 11 values for T(n) are here reported:

{0,1,1.56,2,2.37,2.70, 3,3.27,3.53,3.77,4}. As expected,
starting from the transmission of packet #1 at time 0, packet
#2 is transmitted at ¢ = 1, packet #4 at ¢ = 2, packet #7 at
t = 3, and packet #11 at t = 4.

Finally, once the sequence of T'(n) values is given, an
explicit incremental formula, which permits to schedule the
“next” packet transmission by (only) keeping track of the
current packet index n, is readily obtained as

 V8n+1—-8n—-7
B 2

d(n)=T(n+1)—T(n)

IV. FPGA IMPLEMENTATION

The programmable calendar has been implemented on a
NetFPGA SUME as a component of the OpenState platform
described in [18]. The table realizing the “Evolution Block™ of
Fig. 1 is a 4096x32 bits (16KB) memory block addressed with

the 12 least significant bits of the Interval values provided by
the calendar block.

In order to realize a Calendar with a fine-grain time res-
olution and able to efficiently manage a large number of
timers, we design an ad-hoc hardware module that fulfills all
these requirements. We clocked the calendar with a 200MHz
clock, corresponding to a Sns clock tick. The calendar uses
a multiple-choice hash table [19] where the expiration times
are stored. In particular, the expiration time represents the
key to store in the hash table while /D and ExpiryAction
are the values associated to the key. For the implementation
we selected a 4x1 structure in which the hash structure is
divided in 4 tables each one providing one bucket to store
the {key,value} pair. The tables are realized using the dual
port Block RAMs of the FPGA. Since the FPGA has several
MB of memory available as dual port Block RAM, the
calendar is able to store tens of thousands of timers. In our
specific proof-of-concept we implemented the calendar using
32 Block RAMs (2% of the NetFPGA available Block RAMs),
corresponding to 128 KB of memory, enabling to store more
than 16 000 timers (8 Bytes for each timer).

The use of dual port RAMs allows using one port for the
PerTickBookkeeping and the other for the StartTimer routine.
The PerTickBookkeeping simply searches for the present time
inside the multiple-choice hash table at each clock cycle
performing an hash table lookup. Instead, the StartTimer
routine is done as follows: (1) the expiration time is computed
by adding the present time (with 5 ns resolution) to the Interval
provided by the StartTimer routine; (2) the calendar tries to
insert the expiration time in one of the tables. If there is a void
slot the insertion is done; (3) if there are no void slots, the
calendar continuously adds a clock tick to the expiration time
and tries to insert the new value until a void slot is found.

We highlight that adding a clock tick to solve a collision
occurring in a hash table is a specific (novel) approach that
can be applied in our case since the shift of a few nanoseconds
when a collision occurs gives a negligible impact on the
calendar accuracy. Alternative approaches such as cuckoo
tables [20] or de-amortized cuckoo hashing [21] are much
more complex to implement and provide an insertion time
that is worse than the one achievable by adding a clock tick.

In fact, the cuckoo algorithm first tries to insert the new key
in a void slot (as in the calendar algorithm), and if no void
slots are found randomly kicks out one of the keys already
stored in the calendar and tries to insert this new key in
a void location. So in the standard cuckoo implementation
the first insertion would have 4 different slots to try, but all
the subsequent tries would only have 3 slots to try (as one
of the slot is already taken by the key that kicked out the
key under insertion). Instead, the calendar algorithm always
has 4 slots to try for each insertion. This intuitively explains
why this insertion method provides an insertion time better
than the standard cuckoo algorithm. In Section V a set of
simulations are shown that confirm the intuition described
here. The drawback of the calendar algorithm is that the
actual expiry time is slighly different from the one indicated
by the StartTimer routine. However, since the time resolution
is extremely high, this small modification does not have any

practical effect. Simulations presented in Section V show that
the maximum error due to the insertion is 71 clock cycles (less
than 400 ns) in the worst case of a fully loaded table.
Finally, it is worth noting that the standard collision res-
olution techniques are based on the hypothesis that multiple
occurrences of keys with the same value cannot exist. This is
not true in our case, where it is possible to have different timers
with the same expiration time. This event can jeopardize the
capability of the cuckoo algorithm to insert timers inside the
tables. For example, if we try to schedule 5 timers to expire at
the same time instant, the standard 4x1 cuckoo table fails to
allocate these timers®. Adding a clock tick not only decreases
the insertion time but also solves this “hard collision” event
that however cannot be managed with standard techniques.

V. RESULTS

To test the effects of the insertion algorithm we compared
both the average insertion time and the worst case insertion
time of a standard cuckoo hash with those achievable with our
algorithm. As discussed in the previous section, the insertion
time for the calendar insertion includes an error due to the
difference between the expected expiration time set by the
StartTimer request and the actual expiration time stored in the
calendar. The calendar tries to insert the expiration time in one
of the 4 locations of the hash table. Therefore, if we call [the
hash table load factor, we can compute the probability P(n)
that a timer is inserted in exactly n tries as

P(n) ="V (1-1%)
and the average expected value can be computed as
1
E(n)=>) n-P(n)= T (5)

To check the correctness of this model we simulated a
hash structure composed of 4 hash tables of 4096 rows
which first is loaded to a specific load value, and then a
dynamic insertion/remove procedure is applied. The procedure
substitutes each expired timer with a new one maintaining the
same load factor for each insertion. This substitution has been
applied 1000 times for each test and the test has been repeated
1000 times. This simulation corresponds to the worst case in
which it is expected to have the worst insertion times.

The results of the simulation are shown in figure 3. The
graph shows the average insertion time for different load
factors achieved by simulation and the one computed using
equation 2. The plot shows a good agreement between the
simulated results and the computed ones.

The comparison with the insertion time of the standard
cuckoo algorithm is reported in figure 4. For all the graphs
the x-axis reports the load factor at which the hash table is
loaded before starting the insertion and removal procedure.
The plot in figure 4.a) reports the average insertion time for
the standard and for the calendar insertion algorithms, while
the plot in figure 4.b) reports the worst case insertion time

3Multiple insertions of identical keys are much more problematic than the
extreme case provided here as an example. A more mathematical discussion
of this effect can be found in [22].

7 T T T T T
g 6 F /]
= L ’o]
g3 5 /
ey L /. J
7] 4)
£33 /
o S -
ge 3r - 1
& .
z 2 - e theoretical -
/‘/‘ ‘ sinqulated)
1
70 75 80 85 90 95

load factor (%)

Fig. 3. comparison between simulated and theoretical average insertion time

40 T T T T T

° 35 L Standard cuckoo average time —=— |

£ 30 calendar average time

§3

25 25 ,

23 L i

20 20

=0

oo 15 e

g< 10 -

5]

2 5 |

0 — 1
70 75 80 85 90 95
a) load factor (%)
400 T T — T T

g 350 | Standard cuckoo worst time —=— i

= calendar worst time

s¢ 300 [s

g2

5 250 s

23

£+ 200 4

8 150 [J

i)

2~ 100]

g 50

o - -

2

0 1 I
70 75 80 85 90 95

b) load factor (%)

Fig. 4. Comparison between average insertion time of standard cuckoo and
calendar. a) the plot reports the average insertion time. b) the plot the worst
case insertion time.

for the two algorithms. As expected, the calendar insertion is
always faster than the standard one, both on average and in
the worst case. For this last parameter, it is worth to notice
that the overall worst case, which occurs when the table is
fully loaded (97%), is only of 71 clock cycles, corresponding
to 355ns. As expected, the time resolution of the calendar is
much better than the target resolution of 1 us.

VI. CONCLUSION

In this paper we have presented a flexible and programmable
approach which permits to offload very accurate, fine-grained,
and adaptive (stateful) packet-based pacing down into a hard-
ware Network Interface Card. Our approach is as flexible as a
Software timer, but since pacing is enforced in the NIC, it can
be integrated with other important offloading techniques such
as TCP Segmentation Offloading (TSO). Indeed, our work
in progress consists in designing a comprehensive solution
which, in addition to fully programmable HW pacing (this
paper) further integrates the remaining primitives necessary
to implement a full-fledget TSO-capable NIC, namely Buffer
management and scheduling, and ACK parsing.

ACKNOWLEDGMENTS

This work is partially supported by the European Commis-
sion in the frame of the Horizon 2020 project SG-PICTURE

(grant #762057).

REFERENCES

[1] Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, L.-J.,
Gjessing, S., Fairhurst, G., Griwodz, C., and Welzl, M., “Reducing inter-
net latency: A survey of techniques and their merits”, Communications
Surveys Tutorials, IEEE, PP(99):1-1, 2014.

[2] Kobayashi, K., “Transmission timer approach for rate based pacing TCP
with hardware support”, in Proc. of the Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet), 2006.

[3] Hiraki, K. et al., “End-node transmission rate control kind to intermediate
routers—towards 10Gbps era”, in Proc. of the Workshop on Protocols for
Fast Long-Distance Networks (PFLDnet), 2004.

[4] Takano, R. et al., “Design and Evaluation of Precise Software Pacing
Mechanism for Fast Long-Distance Networks”, in Proc. of the Workshop
on Protocols for Fast Long-Distance Networks (PFLDnet), 2005.

[5] Saeed, A., Dukkipati, N., Valancius, V., Lam, V. T., Contavalli, C.,
and Vahdat, A.,“Carousel: Scalable Traffic Shaping at End Hosts”. in
SIGCOMM 17, pp. 404-417.

[6] Radhakrishnan, S., Geng, Y., Jeyakumar, V., Kabbani, A., Porter, G., and
Vahdat, A., “SENIC: scalable NIC for end-host rate limiting”, In 71th
USENIX NSDI’14, pp. 475-488.

[7] Kumar, G., Kandula, S., Bodik, P., Menache, I., “Virtualizing Traffic
Shapers for Practical Resource Allocation”, In Proc. of the 5th Usenix
Workshop on Hot Topics in Cloud Computing (HotCloud’13).

[8] Pontarelli, S., Bonola, M. and Bianchi, G.: “Smashing SDN ’built-in’
actions: Programmable data plane packet manipulation in hardware”,
2017 IEEE Conf. on Network Softwarization (NetSoft *17).

[9] Flajslik, M., and Rosenblum, M., “Network interface design for low
latency request-response protocols”, In Proc. of the 2013 USENIX conf.
on Annual Technical Conference (USENIX ATC’13).

[10] Mogul, J. C., Mudigonda, J., Santos, J. R., and Turner, Y., “The NIC
is the hypervisor: bare-metal guests in IaaS clouds”, In Proc. of the 14th
USENIX conference on Hot Topics in Operating Systems (HotOS’13).

[11] Sallantin, R., Baudoin, C., Chaput, E., Arnal, F.,, Dubois, E., and
Beylot, A. L., “Initial spreading: A fast Start-Up TCP mechanism”, In
Proceedings of the 38th Annual IEEE Conference on Local Computer
Networks (LCN 2013), pp. 492-499.

[12] Ghobadi, M., Cheng, Y., Jain, A., and Mathis, M., “Trickle: rate
limiting YouTube video streaming”. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference (USENIX ATC’12). USENIX
Association, Berkeley, CA, USA, 17-17.

[13] C. Neely, G. Brebner, and W. Shang, “Flexible and modular support
for timing functions in high performance networking acceleration,” in
Field Programmable Logic and Applications (FPL), 2010 International
Conference on. IEEE, 2010, pp. 513518.

[14] Sidler, D., Alonso, G., Blott, M., Karras, K., Vissers, K., and Carley, R.
“Scalable 10Gbps TCP/IP stack architecture for reconfigurable hardware,”
In Field-Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on (pp. 36-43). IEEE.

[15] Ding, L., Kang, P., Yin, W. and Wang, L., “Hardware TCP Offload En-
gine based on 10-Gbps Ethernet for low-latency network communication,”
In Field-Programmable Technology (FPT), 2016 IEEE International
Conference on pp. 269-272.

[16] Antichi, G., Shahbaz, M., Geng, Y., Zilberman, N., Covington, A.,
Bruyere, M., McKeown, N., Feamster, N., Felderman, B., Blott, M. and
Moore, A.W., “OSNT: Open source network tester,” IEEE Network, 28(5),
pp.6-12.

[17] Varghese, G. Network algorithmics. Chapman & Hall/CRC, 2010.

[18] Pontarelli, S., Bonola, M., Bianchi, G., Capone, A., and Cascone,
C., “Stateful Openflow: Hardware Proof of Concept,” In IEEE High
Performance Switching and Routing (HPSR) (2015).

[19] Mitzenmacher, M. “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems vol.
12, no. 10 (2001), pp. 1094-1104.

[20] Pagh, R., and Rodler, F. F. “Cuckoo hashing,” Journal of Algorithms
vol. 51, no. 2 (2004), pp. 122-144.

[21] Kirsch, A., and Mitzenmacher, M. “Using a queue to de-amortize cuckoo
hashing in hardware,” In Proceedings of the Forty-Fifth Annual Allerton
Conference on Communication, Control, and Computing (2007), vol. 75.

[22] Lelarge M. “A new approach to the orientation of random hypergraphs,”
In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, 2012, pp. 251-264.

