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Abstract

We consider the problem of optimal control of a mean-field stochastic differential equa-
tion (SDE) under model uncertainty. The model uncertainty is represented by ambigu-
ity about the law L(X(t)) of the state X(t) at time t. For example, it could be the law
LP(X(t)) of X(t) with respect to the given, underlying probability measure P. This
is the classical case when there is no model uncertainty. But it could also be the law
LQ(X(t)) with respect to some other probability measure Q or, more generally, any
random measure µ(t) on R with total mass 1.

We represent this model uncertainty control problem as a stochastic differential game
of a mean-field related type SDE with two players. The control of one of the players,
representing the uncertainty of the law of the state, is a measure-valued stochastic pro-
cess µ(t) and the control of the other player is a classical real-valued stochastic process
u(t). This optimal control problem with respect to random probability processes µ(t)
in a non-Markovian setting is a new type of stochastic control problems that has not
been studied before. By constructing a new Hilbert space M of measures, we obtain
a sufficient and a necessary maximum principles for Nash equilibria for such games in
the general nonzero-sum case, and for saddle points in zero-sum games.

As an application we find an explicit solution of the problem of optimal consumption
under model uncertainty of a cash flow described by a mean-field related type SDE.
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1 Introduction

There are many ways of introducing model uncertainty. For example, in recent works of
Øksendal and Sulem [17], [16], [15], the underlaying probability measure is not given a priori
and there can be a family of possible probability measures to choose from.
The aim of this paper is to study stochastic optimal control under model uncertainty of a
mean-field related type SDE driven by Brownian motion and an independent Poisson random
measure. The model uncertainty is represented by ambiguity about the law L(X(t)) of the
state X(t) at time t. For example, it could be the law LP(X(t)) of X(t) with respect to the
given, underlying probability measure P. This is the classical case when there is no model
uncertainty. But it could also be the law LQ(X(t)) with respect to some other probability
measure Q or, more generally, any random measure µ(t) on R with total mass 1.
We represent this model uncertainty control problem as a stochastic differential game of a
mean-field related type SDE with two players. The control of one of the players, representing
the uncertainty of the law of the state, is a measure-valued stochastic process µ(t), and the
control of the other player is a classical real-valued stochastic process u(t). We penalize µ(t)
for being far away from the law LP(X(t)) with respect to the original probability measure
P. This leads to a new type of mean-field stochastic control problems in which the control
is random measure-valued stochastic process µ(t) on R.

To the best of our knowledge this type of problem has not been studied before. By con-
structing a new Hilbert space M of measures, we obtain sufficient and necessary maximum
principles for Nash equilibria for such games in the general nonzero-sum case, and saddle
points for zero-sum games. As an application we find an explicit solution of the problem
of optimal consumption under model uncertainty of a cash flow described by a mean-field
related type SDE.

Mean-field games problems were first studied by Lasry and Lions [12] and Lions in [13] has
proved the differentiability of functions of measures defined on a Wasserstein metric space
P2 by using the lifting technics. Since then this type of problems has gained a lot attention,
we can for example refer to Carmona et al [8], [7], Buckdahn et al [6], Bensoussan et al [4],
Bayraktar et al [3], Corso and Pham [10], Djehiche and Hamadene [11], Pham and Wei [18]
and Agram [1].
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2 A weighted Sobolev space of random measures

In this section, we as in Agram and Øksendal [2] construct a Hilbert space M of random
measures on R. It is simpler to work with than the Wasserstein metric space that has been
used by many authors previously.

Definition 1 (Weighted Sobolev spaces of measures) For k = 0, 1, 2, ... let M̃(k) denote the
set of random measures µ on R such that

E[
∫
R|µ̂(y)|2|y|ke−y2

dy] <∞, (1)

where
µ̂(y) =

∫
Re

ixydµ(x) (2)

is the Fourier transform of the measure µ. If µ, η ∈ M̃(k) we define the inner product
〈µ, η〉M̃(k) by

〈µ, η〉M̃(k) = E[
∫
R Re(µ̂(y)η̂(y))|y|ke−y2

dy], (3)

where, in general, Re(z) denotes the real part of the complex number z, and z̄ denotes the
complex conjugate of z. The norm || · ||M̃(k) associated to this inner product is given by

‖µ‖2
M̃(k) = 〈µ, µ〉M̃(k) = E[

∫
R|µ̂(y)|2|y|ke−y2

dy]. (4)

The space M̃(k) equipped with the inner product 〈µ, η〉M̃(k) is a pre-Hilbert space. We let

M(k) denote the completion of this pre-Hilbert space. We denote by M(k)
0 the set of all

deterministic elements of M(k). For k = 0 we write M(0) =M and M(0)
0 =M0.

There are several advantages with working with this Hilbert space M, compared to the
Wasserstein metric space:

• Our space of measures is easier to work with.

• A Hilbert space has a useful stronger structure than a metric space.

• The Wasserstein metric space P2 deals only with probability measures with finite sec-
ond moment, while our Hilbert space deals with any (random) measure satisfying (1).

• With this norm we have the following useful estimate:

Lemma 2 Let X(1) and X(2) be two random variables in L2(P). Then∥∥L(X(1))− L(X(2))
∥∥2

M0
≤
√
πE[(X(1) −X(2))2].

We refer to [2] for a proof.

Let us give some examples of measures:
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Example 3 (Measures)

1. Suppose that µ = δx0, the unit point mass at x0 ∈ R. Then δx0 ∈M0 and∫
Re

ixydµ(x) = eix0y,

and hence
‖µ‖2

M0
=
∫
R|e

ix0y|2e−y2
dy <∞.

2. Suppose dµ(x) = f(x)dx, where f ∈ L1(R). Then µ ∈ M0 and by Riemann-Lebesque
lemma, µ̂(y) ∈ C0(R), i.e. µ̂ is continuous and µ̂(y)→ 0 when |y| → ∞. In particular,
|µ̂| is bounded on R and hence

‖µ‖2
M0

=
∫
R|µ̂(y)|2e−y2

dy <∞.

3. Suppose that µ is any finite positive measure on R. Then µ ∈M(k)
0 for all k, because

|µ̂(y)| ≤
∫
Rdµ(y) = µ(R) <∞, for all y,

and hence

‖µ‖2

M(k)
0

=
∫
R|µ̂(y)|2|y|ke−y2

dy ≤ µ2(R)
∫
R |y|

ke−y
2
dy <∞.

4. Next, suppose x0 = x0(ω) is random. Then δx0(ω) is a random measure in M. Simi-
larly, if f(x) = f(x, ω) is random, then dµ(x, ω) = f(x, ω)dx is a random measure in
M.

2.1 t-absolute continuity and t-derivative of the law process

Let (Ω,F ,P) be a given probability space with filtration F = (Ft)t≥0 generated by a one-
dimensional Brownian motion B and an independent Poisson random measure N(dt, dζ). Let
ν(dζ)dt denote the Lévy measure of N , and let Ñ(dt, dζ) denote the compensated Poisson
random measure N(dt, dζ)− ν(dζ)dt.
Suppose that X(t) = Xt is an Itô-Lévy process of the form{

dXt = α(t)dt+ β(t)dB(t) +
∫
R0
γ(t, ζ)Ñ(dt, dζ); t ∈ [0, T ],

X0 = x ∈ R,
(5)

where α, β and γ are bounded predictable processes.
Let ϕ ∈ C2. Then under appropriate conditions on the coefficients, we get by the Itô formula

E[ϕ(Xt+h)]− E[ϕ(Xt)] = E[
∫ t+h
t

Aϕ(Xs)ds], (6)
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where
Aϕ(Xs) = α(s)ϕ′(Xs) + 1

2
β2(s)ϕ′′(Xs)

+
∫
R0
{ϕ(Xs + γ(s, ζ))− ϕ(Xs)− ϕ′(Xs)γ(s, ζ)}ν(dζ).

In particular, if
ϕ(x) = ϕy(x) := exp(ixy); y ∈ R,

then
Aϕy(Xs) = (iyα(s)− 1

2
β2(s)y2

+
∫
R0
{exp(iγ(s, ζ)y)− 1− iyγ(s, ζ)} ν(dζ))ϕy(Xs),

for all y ∈ R.

Definition 4 (Law process) From now on we use the notation

Mt := M(t) := L(Xt); 0 ≤ t ≤ T

for the law process L(Xt) of Xt = X(t) with respect to P.

Lemma 5 (i) The map t 7→Mt : [0, T ]→M0 is absolutely continuous, and the derivative

M ′(t) :=
d

dt
M(t)

exists for all t.

(ii) There exists a constant C <∞ such that

||M ′(t)||M0 ≤ C||M(t)||M(4)
0

for all t ∈ [0, T ];M(t) ∈M(4)
0 . (7)

Proof. (i) Let 0 ≤ t < t+ h ≤ T . Then by (2) and (4) we get

‖Mt+h −Mt‖2
M0

=
∫
R|M̂t+h(y)− M̂t(y)|2e−y2

dy

=
∫
R|
∫
Re

ixydL(Xt+h)−
∫
Re

ixydL(Xt)(x)|2e−y2

dy

=
∫
R|E[ϕy(Xt+h)]− E[ϕy(Xt)]|2e−y

2

dy. (8)

The last equality holds by using that for any bounded function ψ we have

E[ψ(X)] =
∫
Rψ(x)dL(X)(x).

By (6), we obtain

‖Mt+h −Mt‖2
M0

=
∫
R|E[

∫ t+h
t

Aϕy(X(s))ds]|2e−y2

dy

≤
∫
R(
∫ t+h
t

E[|Aϕy(Xs)|]ds)2e−y
2

dy ≤ C1 h
2, (9)

for some constant C1 which does not depend on t and h.
We have proved that for different t and t + h, ‖Mt+h −Mt‖2

M0
≤ C h2 and it is easy to
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see that this holds for every finite disjoint partition of the interval [0, T ]. Thus we get that
t 7→M(t) is absolutely continuous, and the derivative M ′(t) = d

dt
M(t) exists for all t.

(ii) This follows from (9), using that the coefficients α, β, γ are bounded and that

E[|Aϕy(Xs)|] ≤ const.y2|E[exp(iyXs)]| ≤ const.y2|M̂s(y)|. (10)

. �
From the lemma above we conclude the following:

Lemma 6 If Xt is an Itô-Lévy process as in (5), then the derivative M ′
s := d

ds
Ms exists in

M0 for a.a. s, and we have

Mt = M0 +
∫ t

0
M ′

sds; t ≥ 0.

In the following we will apply this to the solutions X(t) of the mean-field related type SDEs
we consider below.

Example 7

(a) Suppose that X(t) = B(t) with B(0) = 0. Then

dL(X(t))(x) = 1√
2πt

exp(−x2

2t
)dx,

i.e. L(X(t)) has a density 1√
2πt

exp(−x2

2t
). Therefore d

dt
L(X(t)) is a measure with den-

sity
d
dt

1√
2πt

exp(−x2

2t
) = (x

2−t
2t2

)( 1√
2πt

exp(−x2

2t
)).

(b) Suppose X(t) = N(t), a Poisson process with intensity λ̄. Then for k = 1, 2, ... we have

P(N(t) = k) = e−λ̄t(λ̄t)k

k!

and hence
d
dt
P(N(t) = k) = 1

k!
(λ̄e−λ̄t(λt)k−1{k − λ̄t}).

3 Preliminaries

We will recall some concepts and spaces which will be used on the sequel.
The probability P is a reference probability measure. We introduce two smaller filtrations
G(i)=(G(i)

t )t≥0 such that G(i)
t ⊆ Ft, for i = 1, 2 and for all t ≥ 0. These filtrations represent

the information available to player number i at time t.
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3.1 Some basic concepts from Banach space theory

Since we deal with measures defined on an Hilbert spaceM, we need the Fréchet derivative
to differentiate functions of measures. Let X ,Y be two Banach spaces with norms ‖·‖X , ‖·‖Y ,
respectively, and let F : X → Y .

• We say that F has a directional derivative (or Gâteaux derivative) at v ∈ X in the
direction w ∈ X if

DwF (v) := lim
ε→0

1

ε
(F (v + εw)− F (v))

exists in Y .

• We say that F is Fréchet differentiable at v ∈ X if there exists a continuous linear map
A : X → Y such that

lim
h→0
h∈X

1

‖h‖X
‖F (v + h)− F (v)− A(h)‖Y = 0.

In this case we call A the gradient (or Fréchet derivative) of F at v and we write

A = ∇vF.

• If F is Fréchet differentiable at v with Fréchet derivative ∇vF , then F has a directional
derivative in all directions w ∈ X and

DwF (v) := 〈∇vF,w〉 = ∇vF (w) = ∇vFw.

In particular, note that if F is a linear operator, then ∇vF = F for all v.

3.2 Spaces

Throughout this work, we will use the following spaces:

• S2 is the set of R-valued F-adapted càdlàg processes (X(t))t∈[0,T ] such that

‖X‖2
S2 := E[ sup

t∈[0,T ]

|X(t)|2] < ∞ ,

• L2 is the set of R-valued F-predictable processes (Q(t))t∈[0,T ] such that

‖Q‖2
L2 := E[

∫ T
0
|Q(t)|2dt] < ∞ .

• L2(Ft) is the set of R-valued square integrable Ft-measurable random variables.
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• L2
ν is the set of F-predictable processes R : [0, T ]× R0 × Ω→ R such that

||R||2L2
ν

:= E[
∫
R0
|R(t, ζ)|2ν(dζ)dt] < ∞ .

• In general, for any given filtration H, we say that the measure-valued process µ(t) =
µ(t, ω) : [0, T ] × Ω → M is adapted to H if µ(t)(V ) is H-adapted for all Borel sets
V ⊆ R. Let MG = MG1 be a given set of M-valued, G1 = (G1

t )t≥0-predictable,
stochastic processes µ(t). We call MG the set of admissible measure-valued control
processes µ(·).

• M0 is the set of t-differentiable M0-valued processes m(t); t ∈ [0, T ].
If m ∈M0 we put m′(t) = d

dt
m(t).

• Let AG = AG2 be a given set of real-valued, G2 = (G2
t )t≥0-predictable, stochastic

processes u(t) required to have values in a given convex subset U of R. We call AG the
set of admissible real-valued control processes u(·).

• R is the set of measurable functions r : R0 → R.

• Ca([0, T ],M0) denotes the set of absolutely continuous functions m : [0, T ]→M0.

• K is the set of bounded linear functionals K : M0 → R equipped with the operator
norm

||K||K := sup
m∈M0,||m||M0

≤1

|K(m)|.

• S2
K is the set of F-adapted càdlàg processes p : [0, T ]× Ω 7→ K such that

||p||2SK := E[ sup
t∈[0,T ]

||p(t)||2K] <∞.

• L2
K is the set of F-predictable processes q : [0, T ]× Ω 7→ K such that

||q||2L2
K

:= E[
∫ T

0
||q(t)||2Kdt] <∞.

• L2
ν,K is the set of F-predictable processes r : [0, T ]× R0 × Ω 7→ K such that

||r||2L2
ν,K

:= E[
∫ T

0

∫
R0
||r(t, ζ)||2Kν(dζ)dt] <∞.

4 The model uncertainty stochastic optimal control

problem

As pointed out in the Introduction, there are several ways to represent model uncertainty
in a stochastic system. In this paper, we are interested in systems governed by controlled
mean-field related type SDE Xµ,u(t) = X(t) ∈ S2 on the form

8




dX(t) = b (t,X(t), µ(t), u(t)) dt+ σ (t,X(t), µ(t), u(t)) dB(t)

+
∫
R0
γ (t,X(t), µ(t), u(t), ζ) Ñ(dt, dζ); t ∈ [0, T ] ,

X (0) = x ∈ R.
(11)

The functions

b(t, x, µ, u) = b(t, x, µ, u, ω) : [0, T ]× R×M×U × Ω → R,
σ(t, x, µ, u) = σ(t, x, µ, u, ω) : [0, T ]× R×M×U × Ω → R,
γ(t, x, µ, u, ζ) = γ(t, x, µ, u, ζ, ω) : [0, T ]× R×M×U × R0 × Ω → R,

are supposed to be Lipschitz on x ∈ R, uniformly with respect to t and ω for given u ∈ U
and µ ∈ M. Then by e.g. Theorem 1.19 in Øksendal and Sulem [14], we have existence
and uniqueness of the solution of X(t). We may regard (11) as a perturbed version of the
mean-field equation

dX(t) = b (t,X(t),L(X(t)), u(t)) dt+ σ (t,X(t),L(X(t)), u(t)) dB(t)

+
∫
R0
γ (t,X(t),L(X(t)), u(t), ζ) Ñ(dt, dζ); t ∈ [0, T ] ,

X (0) = x ∈ R.
(12)

For example, we could have µ(t) = LQ(X(t)) for some probability measure Q 6= P.
Thus the model uncertainty is represented by an uncertainty about what law µ(t) is influ-
encing the coefficients of the system, and we are penalising the laws that are far away from
L(X(t)). See the application in Section 5.

Let us consider a performance functional of the form

J (µ, u) = E[g (X(T ),M(T )) +
∫ T

0
` (s,X (s) ,M(s), µ(s), u (s)) ds], (13)

where `(t, x,m, µ, u) = `(t, x,m, µ, u, ω) : [0, T ] × R × M0 × M × U × Ω → R and g :
R×M0 × Ω→ R are given functions.
For fixed x,m, µ, u we assume that ` (s, ·) is Fs-measurable for all s ∈ [0, T ] and g(·, ·) is
FT -measurable. We also assume the following integrability condition

E[ |g (X(T ),M(T ))|2 +
∫ T

0
|` (s,X (s) ,M(s), µ(s), u (s))|2 ds] <∞,

for all µ ∈MG and u ∈ AG.
Note that the system (11) and the performance (13) are not Markovian. However, recently
a dynamic programming approaches to mean-field stochastic control problems have been
introduced. See e.g. Bayraktar et al [3] and Pham and Wei [18]. In this paper we will use
an approach based on a suitably modified stochastic maximum principle, which also works
in partial information settings.

In the next section we study a stochastic differential game of two players, where one of the
players is solving an optimal measure-valued control problem of the type described above,
while the other player is solving a classical real-valued stochastic control problem. To the
best of our knowledge this type of stochastic differential game has not been studied before.
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4.1 Nonzero-sum games

We now proceed to a nonzero-sum maximum principle.
We consider the R×M0-valued process (X(t),M(t)) where M(t) = L(X(t)), where X(t) is
given by (11) and

dM(t) = β(M(t))dt; M(0) ∈M0 given , (14)

where β is the operator on M0 given by

β(m(t)) = m′(t). (15)

The cost functionals are assumed to be on the form

Ji (µ, u) = E[gi (X(T ),M(T ))

+
∫ T

0
`i (s,X (s) ,M(s), µ(s), u (s)) ds]; for i = 1, 2,

(16)

where M(s) := L(X(s)) and the functions

`i(t, x,m, µ, u) = `i(t, x,m, µ, u, ω) : [0, T ]× R×M0 ×M×U × Ω → R,
gi(x,m) = gi(x,m, ω) : R×M0 × Ω → R,

are continuously differentiable with respect to x, u and admit Fréchet derivatives with respect
to m and µ.

Problem 8 We consider the general nonzero-sum stochastic game to find (µ∗, u∗) ∈MG×AG
such that

J1(µ, u∗) ≤ J1(µ∗, u∗), for all µ ∈MG,
J2(µ∗, u) ≤ J2(µ∗, u∗), for all u ∈ AG.

The pair (µ∗, u∗) is called a Nash equilibrium.

Definition 9 (The Hamiltonian) For i = 1, 2 we define the Hamiltonian

Hi : [0, T ]× R×M0 ×M×U × R× R×R× Ca([0, T ],M0)→ R

by

Hi(t, x,m, µ, u, p
0
i , q

0
i , r

0
i (·), p1

i ) = `i(t, x,m, µ, u) + p0
i b(t, x, µ, u) + q0

i σ(t, x, µ, u)
+
∫
R0
r0
i (ζ)γ (t, x, µ, u, ζ) ν(dζ) + 〈p1

i , β(m)〉 . (17)

We assume that Hi is continuously differentiable with respect to x, u and admits Fréchet
derivatives with respect to m and µ.
For u ∈ AG, µ ∈ MG with corresponding solution X = Xµ,u, define p0

i = p0,µ,u
i , q0

i = q0,µ,u
i

and r0
i = r0,µ,u

i and p1
i = p1,µ,u

i , q1
i = q1,µ,u

i and r1
i = r1,µ,u

i for i = 1, 2 by the following set of
adjoint equations:
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• The real-valued BSDE in the unknown (p0
i , q

0
i , r

0
i ) ∈ S2 × L2 × L2

ν is given by

{
dp0

i (t) = −∂Hi
∂x

(t)dt+ q0
i (t)dB(t) +

∫
R0
r0
i (t, ζ)Ñ(dt, dζ); t ∈ [0, T ],

p0
i (T ) = ∂gi

∂x
(X(T ),M(T )),

(18)

• and the operator-valued BSDE in the unknown (p1
i , q

1
i , r

1
i ) ∈ S2

K × L2
K × L2

ν,K is given
by{

dp1
i (t) = −∇mHi(t)dt+ q1

i (t)dB(t) +
∫
R0
r1
i (t, ζ)Ñ(dt, dζ); t ∈ [0, T ],

p1(T ) = ∇mgi(X(T ),M(T )),
(19)

where Hi(t) = Hi(t,X (t) ,M(t), µ(t), u (t) , p0
i (t), q

0
i (t), r

0
i (t, ·), p1

i (t)) etc.
We remark that the BSDEs (18) is linear, so whenever knowing the Hamiltonian Hi and the
function gi, we can get a solution explicitly. To remind the reader of this solution formula,
let us consider the solution (P,Q,R) ∈ S2 × L2 × L2

ν of the linear BSDE
dP (t) = −[ϕ(t) + α(t)P (t) + β(t)Q(t) +

∫
R0
φ(t, ζ)R(t, ζ)ν(dζ)]dt

+Q(t)dB(t) +
∫
R0
R(t, ζ)Ñ(dt, dζ); t ∈ [0, T ] ,

P (T ) = θ ∈ L2(FT ).

(20)

Here ϕ, α, β and φ are bounded predictable processes with φ is assumed to be an R-valued
process defined on [0, T ]×R0×Ω. Then it is well-known (see e.g. Theorem 1.7 in Øksendal
and Sulem [15]) that the component P (t) of the solution of equation (20) can be written in
closed form as follows:

P (t) = E[θΓ(T )
Γ(t)

+
∫ T
t

Γ(s)
Γ(t)

ϕ(s)|Ft]; t ∈ [0, T ] , (21)

where Γ(t) ∈ S2 is the solution of the linear SDE with jumps{
dΓ(t) = Γ(t−)[α(t)dt+ β(t)dB(t) +

∫
R0
φ(t, ζ)Ñ(dt, dζ)]; t ∈ [0, T ] ,

Γ(0) = 1.
(22)

For notational convenience, we will employ the following short hand notations

Ĥ1(t) = H1(t, X̂(t), M̂(t), µ̂(t), û(t), p̂0
1(t), q̂0

1(t), r̂0
1(t, ·), p̂1

1(t)),

Ȟ1(t) = H1(t, X̂(t), M̂(t), µ(t), û(t), p̂0
1(t), q̂0

1(t), r̂0
1(t, ·), p̂1

1(t)),

H̄2(t) = H2(t, X̂(t), M̂(t), µ̂(t), û(t), p̂0
2(t), q̂0

2(t), r̂0
2(t, ·), p̂1

2(t)),

H̆2(t) = H2(t, X̂(t), M̂(t), µ̂(t), u(t), p̂0
2(t), q̂0

2(t), r̂0
2(t, ·), p̂1

2(t)).

Similar notation is used for the derivatives of H, `, g, b, σ, γ etc.
We now state a sufficient theorem for the nonzero-sum games.

Theorem 10 (Sufficient nonzero-sum maximum principle) Let (µ̂, û) ∈MG×AG with
corresponding solutions X̂, (p0

i , q
0
i , r

0
i ) and (p1

i , q
1
i , r

1
i ) of the forward and backward stochastic

differential equations (11), (18) and (19) respectively. Suppose that
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1. (Concavity) The functions

(x,m, µ) 7→ H1(t),
(x,m, u) 7→ H2(t),
(x,m) 7→ gi(x,m), for i = 1, 2,

are concave P.a.s for each t ∈ [0, T ].

2. (Maximum conditions)

E[Ĥ1(t)|G(1)
t ] = ess sup

µ∈MG

E[Ȟ1(t)|G(1)
t ], (23)

and
E[H̄2(t)|G(2)

t ] = ess sup
u∈AG

E[H̆2(t)|G(2)
t ],

P.a.s for each t ∈ [0, T ] .
Then (µ̂, û) is a Nash equilibrium for our problem.

Proof. Let us first prove that J1(µ, û) ≤ J1(µ̂, û).
By the definition of the cost functional (16) we have for fixed û ∈ AG and arbitrary µ ∈MG

J1(µ, û)− J1(µ̂, û) = I1 + I2, (24)

where

I1 = E[
∫ T

0
{ˇ̀1(t)− ˆ̀

1(t)}dt],
I2 = E[ǧ1(X(T ),M(T ))− ĝ1(X̂(T ), M̂(T ))].

By the definition of the Hamiltonian (17) we have

I1 = E[
∫ T

0
Ȟ1(t)− Ĥ1(t)− p̂0

1(t)b̃(t)− q̂0
1(t)σ̃(t)−

∫
R0
r̂0

1(t, ζ)γ̃(t, ζ)ν(dζ)− 〈p̂1
1(t), M̃ ′(t)〉dt],

(25)
where b̃(t) = b̌(t) − b̂(t) etc. By the concavity of g1 and the terminal values of the BSDEs
(18), (19), we have

I2 ≤ E[∂g1

∂x
(T )X̃(T ) + 〈∇mg1(T ), M̃(T )〉] = E[p̂0

1(T )X̃(T ) + 〈p̂1
1(T ), M̃(T )〉].

Applying the Itô formula to p̂0
1(t)X̃(t) and 〈p̂1

1(t), M̃(t)〉, we get

I2 ≤ E[p̂0
1(T )X̃(T ) + 〈p̂1

1(T ), M̃(T )〉]
= E[

∫ T
0
p̂0

1(t)dX̃(t) +
∫ T

0
X̃(t)dp̂0

1(t) +
∫ T

0
q̂0

1(t)σ̃(t)dt+
∫ T

0

∫
R0
r̂0

1(t, ζ)γ̃(t, ζ)ν(dζ)dt]

+ E[
∫ T

0
〈p̂1

1(t), dM̃(t)〉+
∫ T

0
M̃(t)dp̂1

1(t)]

= E[
∫ T

0
p̂0

1(t)b̃(t)dt−
∫ T

0
∂Ĥ1

∂x
(t)X̃(t)dt+

∫ T
0
q̂0

1(t)σ̃(t)dt

+
∫ T

0

∫
R0
r̂0

1(t, ζ)γ̃(t, ζ)ν(dζ)dt+
∫ T

0
〈p̂1

1(t), M̃ ′〉dt

−
∫ T

0
〈∇mĤ1(t), M̃(t)〉dt], (26)

12



where we have used that the dB(t) and Ñ(dt, dζ) integrals with the necessary integrability
property are martingales and then have mean zero. Substituting (25) and (26) in (24), yields

J1(µ, û)− J1(µ̂, û)

≤ E[
∫ T

0
{Ȟ1(t)− Ĥ1(t)− ∂Ĥ1

∂x
(t)X̃(t)− 〈∇mĤ1(t), M̃(t)〉}dt].

By the concavity of H1 and the fact that the process µ is G(1)
t -adapted, we obtain

J1(µ, û)− J1(µ̂, û) ≤ E[
∫ T

0
∂Ĥ1

∂µ
(t) (µ(t)− µ̂(t)) dt]

= E[
∫ T

0
E(∂Ĥ1

∂µ
(t) (µ(t)− µ̂(t)) |G(1)

t )dt]

= E[
∫ T

0
E(∂Ĥ1

∂µ
(t)|G(1)

t ) (µ(t)− µ̂(t)) dt]

≤ 0,

where ∂Ĥ1

∂µ
= ∇µĤ1. The last equality holds because of the maximum condition of Ĥ1 at

µ = µ̂.
Similar considerations apply to prove that J2(µ̂, u) ≤ J2(µ̂, û). For the sake of completeness,
we give details in the Appendix. �
We now state and prove a necessary version of the maximum principle. We assume the
following:

• Whenever µ ∈ MG (u ∈ AG) and η ∈ MG (π ∈ AG) are bounded, there exists ε > 0
such that

µ+ λη ∈MG (u+ λπ ∈ AG), for each λ ∈ [−ε, ε] .

• For each t0 ∈ [0, T ] and each bounded G(1)
t0 -measurable random measure α1 and G(2)

t0 -
measurable random variable α2, the process

η (t) = α11[t0,T ](t) (27)

belongs to MG and the process

π (t) = α21[t0,T ](t)

belongs to AG.

Definition 11 In general, if Ku(t) is a process depending on u, we define the differ-
ential operator D on K by

DKu(t) := DπKu(t) = d
dλ
Ku+λπ(t)|λ=0

whenever the derivative exists.

13



The derivative of the state X(t) defined by (11) is

DXµ(t) := d
dλ
Xµ+λη|λ=0 = Z(t)

exists, and is given by
dZ (t) = [ ∂b

∂x
(t)Z (t) + ∂b

∂µ
(t) η (t)]dt+ [∂σ

∂x
(t)Z (t) + ∂σ

∂µ
(t) η (t)]dB(t)

+
∫
R0

[∂γ
∂x

(t, ζ)Z(t) + ∂γ
∂µ

(t, ζ) η (t)]Ñ(dt, dζ); t ∈ [0, T ] ,

Z (0) = 0.

(28)

We remark that this derivative process is a linear SDE, then by assuming that b, σ and
γ admit bounded partial derivatives with respect to x and µ, there is a unique solution
Z(t) ∈ S2 of (28).
We want to prove that Z (t) is exactly the derivative in L2(P) of Xµ+λη(t) with respect to λ
at λ = 0. More precisely, we want to prove the following.

Lemma 12
E[
∫ T

0
(X

µ+λη(t)−Xµ(t)
λ

− Z (t))2dt]→ 0 as λ→ 0. (29)

Proof. For notational convenience, we have here used the simplified notations

µλ := µ+ λη (30)

and by Xµλ we mean the corresponding solution

Xµλ(t) = x+
∫ t

0

∫
R0
γ(s,Xµλ(s), µλ(s), ζ)Ñ(ds, dζ); t ∈ [0, T ] ,

when assuming that b = σ = 0, and because u is fixed we can omit it. Then, by the Itô-Lévy
isometry, we get

E[
∫ T

0
(X

µλ (t)−X(t)
λ

− Z (t))2dt]

= E[
∫ T

0

∫
R0
{γ(s,Xµλ (s),µλ(s),ζ)−γ(s,X(s),µ(s),ζ)

λ
− ∂γ

∂x
(s, ζ)Z(t)− ∂γ

∂µ
(s, ζ) η (s)}Ñ(ds, dζ))2dt]

= E[
∫ T

0

∫
R0

∫ t
0
(γ(s,Xµλ (s),µλ(s),ζ)−γ(s,X(s),µ(s),ζ)

λ
− ∂γ

∂x
(s, ζ)Z(s)− ∂γ

∂µ
(s, ζ) η (s))2ν(dζ)dsdt].

This goes to 0 when λ goes to 0, by the bounded convergence theorem and our assumption
on γ.

�

Theorem 13 (Necessary nonzero-sum maximum principle) Let (µ̂, û) ∈ MG×AG
with corresponding solutions X̂, (p0

i , q
0
i , r

0
i ) and (p1

i , q
1
i , r

1
i ) of the forward and backward

stochastic differential equations (11) and (18)−(19), with the corresponding derivative process
Ẑ given by (28). Then the following (i) and (ii) are equivalent:

14



(i) For all µ, η ∈MG and for all u, π ∈ AG

d
dλ
J1(µ+ λη, u)|λ=0 = d

ds
J2(µ, u+ sπ)|s=0 = 0,

(ii)

E[∂H1

∂µ
(t)|G(1)

t ] = E[∂H2

∂u
(t)|G(2)

t ] = 0.

Proof. First note that, by using the linearity of 〈·, ·〉 and the fact that the Fréchet derivative
of a linear operator is the same operator, we get, by interchanging the order of the derivatives
d
dt

and ∇m, that

∇m〈p1
1(t),

d

dt
m〉 = 〈p1

1(t),∇m
d

dt
m〉 = 〈p1

1(t),
d

dt
∇m(m)〉 = 〈p1

1(t),
d

dt
(·)〉,

and hence

〈∇m〈p1
1(t), d

dt
m〉, DM(t)〉 = 〈p1

1(t), d
dt
DM(t)〉 = 〈p1

1(t), DM ′(t)〉

Also, note that
dDM(t) = DM ′(t)dt.

Assume that (i) holds. Using the definition of J1 (16), we get

0 = d
dλ
J1(µ+ λη, u)|λ=0

= E[
∫ T

0
{∂`1
∂x

(t)Z (t) + 〈∇m`1(t), DM (t)〉+ ∂`1
∂µ

(t) η (t)}dt

+ ∂g1

∂x
(T )Z (T ) + 〈∇mg1 (T ) , DM(T )〉].

Hence, by the definition (17) of H1, we have

0 = d
dλ
J1(µ+ λη, u)|λ=0

= E[
∫ T

0
{∂H1

∂x
(t)− p0

1(t) ∂b
∂x

(t)− q0
1(t)∂σ

∂x
(t)−

∫
R0
r0

1(t, ζ)∂γ
∂x

(t, ζ) ν(dζ)}Z(t)dt

+
∫ T

0
〈∇mH1 (t) , DM (t)〉dt

−
∫ T

0
〈p1

1(t), DM ′ (t)〉dt+
∫ T

0
{∂H1

∂µ
(t)− p0

1(t) ∂b
∂µ

(t)

− q0
1(t)∂σ

∂µ
(t)−

∫
R0
r0

1(t, ζ)∂γ
∂µ

(t, ζ) ν(dζ)}η(t)dt+ p0
1(T )Z(T ) + 〈p1

1(T ), DM(T )〉]. (31)
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Applying now the Itô formula to both p0
1Z and 〈p1

1, DM〉, we get

E[p0
1(T )Z(T ) + 〈p1

1(T ), DM(T )〉]
= E[

∫ T
0
p0

1(t)dZ(t) +
∫ T

0
Z(t)dp0

1(t) +
∫ T

0
q0

1(t)(∂σ
∂x

(t)Z (t) + ∂σ
∂µ

(t) η (t))dt

+
∫ T

0

∫
R0
r0

1(t, ζ)(∂γ
∂x

(t, ζ)Z (t) + ∂γ
∂µ

(t, ζ) η (t))ν(dζ)dt]

+ E[
∫ T

0
〈p1

1(t), DM ′(t)〉dt+
∫ T

0
DM(t)dp1

1(t)]

= E[
∫ T

0
p0

1(t)( ∂b
∂x

(t)Z (t) + ∂b
∂µ

(t) η (t))dt−
∫ T

0
∂H1

∂x
(t)Z(t)dt

+
∫ T

0
q0

1(t)(∂σ
∂x

(t)Z (t) + ∂σ
∂µ

(t) η (t))dt

+
∫ T

0

∫
R0
r0

1(t, ζ)(∂γ
∂x

(t, ζ)Z (t) + ∂γ
∂µ

(t, ζ) η (t))ν(dζ)dt

+
∫ T

0
〈p1

1(t), DM ′(t)〉dt−
∫ T

0
〈∇mH1(t), DM(t)〉dt]. (32)

Combining the above and recalling that η is of the form (27), we conclude that

0 = E[
∫ T

0
∂H1

∂µ
(t)η(t)dt] = E[

∫ T
s
∂H1

∂µ
(t)α1dt]; s ≥ t0.

Differentiating with respect to s we obtain

0 = E[∂H1

∂µ
(s)α1]

= E[∂H1

∂µ
(t0)|G(1)

t0 ],

because this holds for all α1 and all s ≥ t0.
This argument can be reversed, to prove that (ii)=⇒(i). We omit the details.
In the same manner, we can get the equivalence between

d
ds
J2(µ, u+ sπ)|s=0 = 0

and
E[∂H2

∂u
(t)|G(2)

t ] = 0.

�
In the next section we will consider the zero-sum case, and find conditions for a saddle point
of such games.

4.2 Zero-sum game

In this section, we proceed to study the maximum principle for the zero-sum game case. Let
us then define the performance functional as

J (µ, u) = E[g (X(T ),M(T )) +
∫ T

0
` (s,X (s) ,M(s), µ(s), u (s)) ds],

where the state X(t) is the solution of a SDE (11) .
The functions

`(s, x,m, µ, u) = `(s, x,m, µ, u, ω) : [0, T ]× R×M0 ×M×U × Ω→ R
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and
g(x,m) = g(x,m, ω) : R×M0 × Ω→ R

are supposed to satisfy the following conditions:

(a) ` and g are continuously differentiable with respect to x, u and admits Fréchet derivatives
with respect to m and µ.

(b) Moreover, the function
R×M0 3 (x,m) 7→ g(x,m)

is required to be affine P-a.s.
We consider the stochastic zero-sum game to find (µ∗, u∗) such that

sup
u∈AG

inf
µ∈MG

J(µ, u) = inf
µ∈MG

sup
u∈AG

J(µ, u) = J(µ∗, u∗).

We call (µ∗, u∗) a saddle point for J(µ, u).
In this case, let the Hamiltonian

H : [0, T ]× R×M0 ×M×U × R× R×R× Ca([0, T ],M0)→ R

be given by

H(t, x,m, µ, p0, q0, r0(·), p1) = `(t, x,m, µ, u) + p0b(t, x, µ, u) + q0σ(t, x, µ, u)

+
∫
R0
r0(ζ)γ (t, x, µ, u, ζ) ν(dζ) + 〈p1, β(m)〉.

We assume the following:

(c) H is continuously differentiable with respect to x, u and admits Fréchet derivatives with
respect to m and µ.

(d) The Hamiltonian function

R×M0 ×M×U 3 (x,m, µ, u) 7→ H(t, x,m, µ, p0, q0, r0(·), p1)

is convex with respect to (x,m, µ) and concave with respect to (x,m, u) P.a.s and for
each t ∈ [0, T ] , p0, q0, r0(·) and p1.
For u ∈ AG, µ ∈ MG with corresponding solution X = Xµ,u, define p = pµ,u, q = qµ,u

and r = rµ,u by the adjoint equations: the real-BSDE in the unknown (p0, q0, r0) ∈
S2 × L2 × L2

ν has the following form
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{
dp0(t) = −∂H

∂x
(t) dt+ q0(t)dB(t) +

∫
R0
r0(t, ζ)Ñ(dt, dζ); t ∈ [0, T ] ,

p0(T ) = ∂g
∂x

(X(T ),M(T )),
(33)

and the operator-valued BSDE for the unknown (p1, q1, r1) ∈ S2
K × L2

K × L2
ν,K is given by{

dp1(t) = −∇mH(t)dt+ q1(t)dB(t) +
∫
R0
r1(t, ζ)Ñ(dt, dζ); t ∈ [0, T ],

p1(T ) = ∇mg(X(T ),M(T )).
(34)

Theorem 14 (Sufficient zero-sum maximum principle) Let (µ̂, û) ∈MG×AG with cor-
responding solutions X̂ and (p0, q0, r0), (p1, q1, r1) of the forward and backward stochastic
differential equations (11) , (33)− (34) , respectively. Assume the following:

•
E[Ĥ(t)|G(1)

t ] = ess sup
µ∈MG

E[Ȟ(t)|G(1)
t ],

•
E[H̄(t)|G(2)

t ] = ess sup
u∈AG

E[H̆(t)|G(2)
t ],

P- a.s and for all t ∈ [0, T ] , and that assumptions (a)-(d) hold.

Then (µ̂, û) is a saddle point for J (µ, u).

This result will be applied in the next section.

Theorem 15 (Necessary zero-sum maximum principle) Let (µ̂, û) ∈ MG ×AG with
corresponding solutions X̂, (p0

i , q
0
i , r

0
i ) and (p1

i , q
1
i , r

1
i ) of the forward and the backward stochas-

tic differential equations (11) and (33) − (34), respectively, with corresponding derivative
process Ẑ given by (28) . Then we have equivalence between

d
dλ
J(µ+ λη, u)|λ=0 = d

ds
J(µ, u+ sπ)|s=0 = 0,

and
E[∂H

∂µ
(t)|G(1)

t ] = E[∂H
∂u

(t)|G(2)
t ] = 0.

Proof. The same proof of both the sufficient and the necessary maximum principles for
the nonzero-sum games works for the zero-sum case. �
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5 Optimal consumption of a mean-field cash flow under

uncertainty

Consider a net cash flow Xµ,ρ = X modeled by

{
dX(t) = [µ(t)(V )− ρ(t)]X(t)dt+ σ (t)X(t)dB(t) +

∫
R0
γ (t, ζ)X(t)Ñ(dt, dζ); t ∈ [0, T ] ,

X (0) = x > 0,

where ρ(t) ≥ 0 is our relative consumption rate at time t, assumed to be a càdlàg, G(2)
t -

adapted process. Here V is a given Borel subset of R. The value of µ(t) on V models
the relative growth rate of the cash flow. The relative consumption rate ρ(t) is our control

process. We assume that
∫ T

0
ρ(t)dt < ∞ a.s. This implies that X(t) > 0 for all t, a.s.

However, the measure-valued process µ(t) represents a kind of scenario uncertainty, and we
want to maximise the total expected utility of the relative consumption rate ρ in the worst
possible scenario µ. We penalize µ(·) for being far away from the law process L(X(·)), in
the sense that we introduce a quadratic cost rate [(µ(t) −M(t))(V )]2 in the performance
functional. Hence we consider the zero-sum game

sup
ρ

inf
µ

E[
∫ T

0
{log(ρ(t)X(t)) + [(µ(t)−M(t))(V )]2}dt+ θ log(X(T ))],

where θ = θ(ω) > 0 is a given bounded FT -measurable random variable, expressing the
importance of the terminal value X(T ). Here we have chosen a logarithmic utility because
it is a central choice, and in many cases, as here, this leads to a nice explicit solution of the
corresponding control problem.
The Hamiltonian for this zero-sum game takes the form

H(t) = log(ρx) + (µ(V )−m(V ))2 + p0[µ(V )x− ρx] + q0σ(t)x

+
∫
R0
r0(ζ)γ(t, ζ)xν(dζ) + 〈p1, β(m)〉,

and the adjoint processes (p0, q0, r0) ∈ S2 × L2 × L2
ν ,(p

1, q1, r1) ∈ S2
K × L2

K × L2
ν,K are given

by the BSDEs

• 
dp0(t) = −[ 1

X(t)
+ p0(t)[µ(t)(V )− ρ(t)] + q0(t)σ(t) +

∫
R0
r0(t, ζ)γ(t, ζ)ν(dζ)]dt

+q0(t)dB(t) +
∫
R0
r0(t, ζ)Ñ(dt, dζ); t ∈ [0, T ] ,

p0(T ) = θ
X(T )

,

• 
dp1(t) = −{2[µ̂(t)(V )− M̂(t)(V )]χV (·)+ < p1(t), β(·) >}dt+ q1(t)dB(t)

+
∫
R0
r1(t, ζ)Ñ(dt, dζ); t ∈ [0, T ],

p1(T ) = 0,

19



where χV (·) is the operator which evaluates a given measure at V , i.e. 〈χV , λ〉 = λ(V ) for
all λ ∈M0. The first order condition for the optimal consumption rate ρ̂ is

E[ 1
ρ̂(t)
− p̂0(t)X̂(t)|G(2)

t ] = 0.

Since ρ̂(t) is G(2)
t -adapted, we have

ρ̂(t) = 1

E[p̂0(t)X̂(t)|G(2)
t ]
.

Now we use the minimum condition with respect to µ at µ = µ̂ and get

E[2[µ̂(t)(V )− M̂(t)(V )]λ(V ) + p̂0(t)X̂(t)λ(V )|G(1)
t ] = 0, for all λ ∈M0.

Using that µ̂(t) is G(1)
t -adapted, we obtain

µ̂(t)(V ) = E[M̂(t)(V )− 1
2
p̂0(t)X̂(t)|G(1)

t ].

It remains to find p̂0(t)X̂(t): We have by applying the Itô formula to P (t) := p̂0(t)X̂(t):

dP (t) = p̂0(t)dX̂(t) + X̂(t)dp̂0(t) + d[p̂0, X̂]t

= p̂0(t)([(µ̂(t)(V )− ρ(t)) X̂(t)]dt+ σ̂ (t) X̂(t)dB(t) +
∫
R0
γ̂ (t, ζ) X̂(t)Ñ(dt, dζ))

+ X̂(t)[− 1

X̂(t)
− p̂0(t)[µ̂(t)(V )− ρ(t)]− q̂(0)(t)σ(t)−

∫
R0
r̂0(t, ζ)γ̂(t, ζ)ν(dζ)]dt

+ q̂0(t)X̂(t)dB(t) +
∫
R0
r̂0(t, ζ)X̂(t)Ñ(dt, dζ) + q̂0(t)σ̂ (t) X̂(t)dt

+
∫
R0
r̂0(t, ζ)γ̂(t, ζ)X̂(t)N(dt, dζ). (35)

By definition∫
R0
r̂0(t, ζ)γ̂(t, ζ)X̂(t)Ñ(dt, dζ) =

∫
R0
r̂0(t, ζ)γ̂(t, ζ)X̂(t)N(dt, dζ)

−
∫
R0
r̂0(t, ζ)γ̂(t, ζ)X̂(t)ν(dζ)dt.

(36)

Substituting (36) in (35) yields

dP (t) = −dt+ [P (t)σ̂(t) + q̂0(t)X̂(t)]dB(t)

+
∫
R0

[P (t)γ̂(t, ζ) + r̂0(t, ζ)X̂(t)(1 + γ̂(t, ζ))]Ñ(dt, dζ).

Hence, if we put

P (t) := p̂0(t)X̂(t),

Q(t) := P (t)σ̂(t) + X̂(t)q̂0(t),

R(t, ζ) := P (t)γ̂(t, ζ) + r̂0(t, ζ)X̂(t)(1 + γ̂(t, ζ)).

with (P,Q,R) ∈ S2 × L2 × L2
ν satisfies the BSDE
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{
dP (t) = −dt+Q(t)dB(t) +

∫
R0
R(t, ζ)Ñ(dt, dζ); t ∈ [0, T ] ,

P (T ) = θ.

Solving this BSDE as in (21), we find the closed formula for P (t) as

P (t) = E[θ +
∫ T
t
ds|Ft]

= E [θ|Ft] + T − t.

Hence we have proved the following:

Theorem 16 The optimal consumption rate ρ̂(t) and the optimal model uncertainty law
µ̂(t) are given respectively in feed-back form by

ρ̂(t) = 1

T−t+E[θ|G(2)
t ]
,

µ̂(t)(V ) = M̂(t)(V ) + T − t− 1
2
E[θ|G(1)

t ].

6 Appendix

Let us give now the rest of the proof of Theorem 10. We want to prove that J2(µ̂, u) ≤
J2(µ̂, û). Using definition (16) gives for fixed µ̂ ∈MG and an arbitrary u ∈ AG

J2(µ̂, u)− J2(µ̂, û) = j1 + j2, (37)

where

j1 = E[
∫ T

0

{
˘̀
2(t)− ¯̀

2(t)
}
dt],

j2 = E[ğ2(X(T ),M(T ))− ḡ2(X̂(T ), M̂(T ))].

Applying the definition of the Hamiltonian (17) we have

j1 = E[
∫ T

0
{H̆2(t)− H̆2(t)− p̂0

2(t)b̃(t)− q̂0
2(t)σ̃(t)

−
∫
R0
r̂0

2(t, ζ)γ̃(t, ζ)ν(dζ)− 〈p̂1
2(t), M̃ ′(t)〉}dt], (38)

where b̃(t) = b̆(t)− b̄(t). etc., and

M̃ ′(t) = dM̃(t)
dt

.

Concavity of g2 and the definition of the terminal value of the BSDEs (18) and (19) shows
that

j2 ≤ E[∂g2

∂x
(T )X̃(T ) + 〈∇mg2(T ), M̃(t)〉]

= E[p̂0
2(T )X̃(T ) + 〈p̂1

2(T ), M̃(t)〉]. (39)
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Applying the Itô formula to p̂0
2X̃ and 〈p̂1

2, M̃〉, we get

j2 ≤ E[p̂0
2(T )X̃(T ) + 〈p̂1

2(T ), M̃(T )〉]
= E[

∫ T
0
p̂0

2(t)dX̃(t) +
∫ T

0
X̃(t)dp̂0

2(t) +
∫ T

0
q̂0

2(t)σ̃(t)dt+
∫ T

0

∫
R0
r̂0

2(t, ζ)γ̃(t, ζ)ν(dζ)dt]

+ E[
∫ T

0
〈p̂1

2(t), dM̃(t)〉+
∫ T

0
M̃(t)dp̃1

2(t)]

= E[
∫ T

0
p̂0

2(t)b̃(t)dt−
∫ T

0
∂H̄2

∂x
(t)X̃(t)dt+

∫ T
0
q̂0

2(t)σ̃(t)dt

+
∫ T

0

∫
R0
r̂0

2(t, ζ)γ̃(t, ζ)ν(dζ)dt+
∫ T

0
〈p̂1

2(t), M̃ ′(t)〉dt−
∫ T

0
〈∇mH̄2(t), M̃(t)〉dt],

where we have used that the dB(t) and Ñ(dt, dζ) integrals have mean zero. Substituting
(38) and (39) into (37), we obtain

J2(µ̂, u)− J2(µ̂, û) ≤ E[
∫ T

0
{H̆2(t)− H̄2(t)− ∂H̄2

∂x
(t)X̃(t)− 〈∇mH̄2(t), M̃(t)〉}dt].

Since H2 is concave and the process u is G(2)
t -adapted, we have

J2(µ̂, u)− J2(µ̂, û) ≤ E[
∫ T

0
∂H̄2

∂u
(t) (u(t)− û(t)) dt]

= E[
∫ T

0
E[∂H̄2

∂u
(t)|G(2)

t ] (u(t)− û(t)) dt]

≤ 0,

because H̄2 has a maximum at û. �
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