Tutorial: DCEP-Sim: An Open Simulation Framework for
Distributed CEP

Introduction for Users and Prospective Developers

Fabrice Starks
University of Oslo
Norway
fabriceb@ifi.uio.no

ABSTRACT

Evaluation of Distributed Complex Event Processing (CEP) systems
is a rather challenging task. To simplify this task, we developed
the open simulation framework for Distributed CEP, called DCEP-
Sim. The goal of this tutorial is to facilitate the process of using
DCEP-Sim. Since DCEP-Sim is designed and implemented in the
popular network simulator ns-3 we introduce the most important
concepts of ns-3. Simulations in ns-3 are configured and executed
though a main program called an ns-3 script. We use a simple
example script to explain how simulations with DCEP-Sim are set
up and executed. To give an idea how DCEP-Sim can be adjusted to
particular needs, we explain how DCEP-Sim can be adapted (e.g.,
through changing the workload and the network topology) and
how new Distributed CEP solutions can be added by explaining
how to add a new operator to DCEP-Sim.

CCS CONCEPTS

+ Computing methodologies — Simulation tools;

KEYWORDS

Distributed Complex Event Processing, Simulation

ACM Reference Format:

Fabrice Starks, Stein Kristiansen, and Thomas Plagemann. 2018. Tutorial:
DCEP-Sim: An Open Simulation Framework for Distributed CEP: Intro-
duction for Users and Prospective Developers. In DEBS ’18: The 12th ACM
International Conference on Distributed and Event-based Systems, June 25-29,
2018, Hamilton, New Zealand. ACM, New York, NY, USA, 4 pages. https:
//doi.org/lO.l145/3210284.3219501

1 INTRODUCTION

DCEP-Sim is an open simulation framework to simplify the eval-
uation of Distributed Complex Event Processing (CEP) systems,
including the comparison of different Distributed CEP solutions
[5], [4]. DCEP-Sim is implemented as an application in the popular
network simulator ns-3 to achieve representative and accurate sim-
ulation results for all kinds of networks, including mobile networks
[2], [3]. It fully leverages all features of ns-3 that (1) allow easy setup

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS 18, June 25-29, 2018, Hamilton, New Zealand

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5782-1/18/06.

https://doi.org/10.1145/3210284.3219501

Stein Kristiansen
University of Oslo
Norway
steikr@ifi.uio.no

Thomas Plagemann
University of Oslo
Norway
plageman@ifi.uio.no

and configuration of simulations, (2) the large collection of exist-
ing networking related simulation models, and (3) the approach to
easily adapt existing simulation models and add new simulation
models. Therefore, it is useful for users of DCEP-Sim and manda-
tory for prospective developers to understand the concepts of ns-3.
Consequently, this DCEP-Sim tutorial contains a brief introduction
of the most important ns-3 concepts.

DCEP-Sim itself is designed and implemented to be open for
arbitrary extensions, like adding new operators, new placement
policies, and new placement adaptation policies and mechanisms.
The existing open source solution of DCEP-Sim can be therefore
seen as an extensible Distributed CEP skeleton for ns-3. The classi-
cal software engineering principles of separation of concerns and
the separation of policies and mechanisms are applied to the CEP
fundamentals presented in [1] and result in an architecture with
four main components (see Figure 1).

The four main components are implemented as sub-classes of
the ns-3 Object class and the CEP engine is a wrapper class for
the detector, producer and forwarder. Due to space restrictions we
refer the reader to [5] for a detailed explanation of the design and
implementation of the DCEP-Sim components. The DCEP-Sim code
base contains several example setups for simulations. In order to
perform particular experiments, one might want to change (1) the
workload which is defined by Source components that produce
atomic events and a Sink component that provides the query, (2)
the network topology in terms of number of nodes, connectivity, or
mobility pattern, (3) change existing or add new placement policies,
and (4) add new operators for the CEP engine. In order to explain
how this can be done, we briefly introduce in the next section the
most important ns-3 concepts. Afterwards, we follow a hands-on
approach to explain how simulation experiments with DCEP-Sim
are configured and executed with a so-called script. Furthermore,
we explain how to change the workload for experiments and how to
extend DCEP-Sim with new operators to illustrate the extensibility
of DCEP-Sim.

2 BRIEF INTRODUCTION TO NS-3

ns-3 is one of the most widely used open-source discrete event
network simulators. As a general-purpose network simulator, its
model base spans a wide range of models of nodes, communica-
tion software and traffic, network devices, and network media. The
models are relatively detailed compared to other simulators, fa-
cilitating realistic simulations, emulations, and rapid prototyping



DEBS ’18, June 25-29, 2018, Hamilton, New Zealand

Placement

CEP Engine Dispatcher Communication

4{ Detector H Producer ]—'{Furwarder}—'

Figure 1: DCEP-Sim Architecture

of real-world implementations. At the same time the models im-
pose sufficiently low computational overhead to enable practical
simulations of large-scale networks.

ns-3 users can be roughly classified as experimenters that conduct
network experiments and model developers that extend the ns-3
model base. Thus, ns-3 supports usability and extensibility and
provides facilities that are tailored specifically to each user group.

2.1 Facilities for Experimenters

Experiments with discrete event simulators are typically specified
via a simulation script. This script constitutes the primary interface
for experimenters. In ns-3, this script is a main() function written
in C++! and compiled and linked with the required models upon
simulation execution. The script describes how to construct the
models and events that make up the simulated network scenario.
This includes the instantiation and parametrization of models for
nodes, links, communication protocols and node movements, the
specification of traffic workload, and the scheduling of pre-defined
events at given points in simulation time. Examples of the latter
are events that initiate and terminate the transmission of traffic,
and the event that terminates the simulation.

ns-3 provides three key facilities to enable scripting style im-
plementation of the above-mentioned main() function, such that
the simulation script can be implemented with only rudimentary
C++ knowledge: (1) helper and containers, (2) the attribute system,
and (3) the data collection framework. Helpers leverage the fact that
most network configurations are similar across experiments, e.g.,
mobile networks often consist of mobile nodes that use identical
Internet stacks and network interface cards.

ns-3 helpers expose to the experimenter easy-to-use interfaces
that encapsulate common tasks required to configure and install
models on network nodes. Helpers are used in conjunction with
containers, to allow the same configuration and model instantiation
to be repeated for many nodes at once. For instance, with a sin-
gle call to InternetStackHelper: :install( NodeContainer c),
models for the complete Internet stack, including pre-configured in-
stances of the ARP, ICMP, IP, UDP, and TCP protocols, are installed
on all nodes in the container c. DCEP-Sim provides for example
helpers to install DCEP applications on all nodes that are part of the

! Alternatively, ns-3 allows to write the script in Python. This is however not as
common, and is not covered in this tutorial.

Fabrice Starks, Stein Kristiansen, and Thomas Plagemann

DCEP overlay with the simple command DcepAppHelper: : Install
(NodeContainer c).

Simulation models typically have attributes that affect their be-
havior. The attribute system provides an intuitive interface to expose
model attributes. All objects inheriting from the ObjectBase class
can be assigned such attributes. For instance, all Dcep objects have
attributes to determine which placement policy and adaptation
policy to use for the placement of operators and adaptation of
the operator graph. Attributes can be set directly by calling the
SetAttribute(string name, const AttributeValue &value)
member function inherited from the ObjectBase class. Alternatively,
they can be set by specifying default values at the beginning of the
simulation script after which all objects of the specified type are
initialized with the given attribute values.

ns-3 provides detailed tracing of simulated traffic, e.g., in the form
of pcap-traces containing all data sent or received at the network
devices. Furthermore, ns-3 provides a separate data collection frame-
work to collect data from other sources. This framework is based
on the more fundamental trace sources and trace sinks. In addition
to attributes, classes that inherit from the ObjectBase class can be
assigned trace sources that function as dispatch points for data that
is useful for, e.g., simulation output. User-defined functions, called
trace sinks, can be attached to these at simulation initialization time,
and will be called upon the availability of data at the trace source.
DCEP-Sim makes extensive use of trace sources. As an example,
the DataSource class has a trace source named Event that provides
information about every new event produced by a data source in
the operator graph. The data collection framework builds on this
tracing framework to provide higher-level services, like storing the
data in a particular format (e.g., as SQLLite-formated output), auto-
matically plotting the data using GnuPlot, and performing online
statistical analysis during the simulation to, e.g., determine when
enough data is available to yield sufficiently narrow confidence
intervals in the results.

All attributes and trace sources are addressable via an intuitive,
shared attribute namespace, that also supports expressive wildcard
characters to address multiple model instances at once. This relieves
the user from the need to iterate complicated data structures to
gain access to the objects of interest.

2.2 Facilities for Model Developers

Developers benefit additionally from the three ns-3 features: smart
pointers, object aggregation, and run time typing information. Ex-
tending the model base is required whenever simulation studies
involve evaluation of new network components, and the simulator
community thrives from the continuous sharing of such models via
integration with the mainline model base. This process however
puts stringent requirements on the fundamental design principles
of the model base, requiring facilities that ensure sustainable ex-
tensibility. From more than 20 years of experience with ns-2, one
particularly significant obstacle for extensibility has been identi-
fied: the problem of the fragile base class. As the number of classes
inheriting from a given base class increases, there is an increasing
probability of breaking any of these when modifying the base class.
ns-3 addresses this problem via an engineering principle called



Tutorial: DCEP-Sim: An Open Simulation Framework for Distributed CEP

object aggregation. Instead of inheriting from a base class, new func-
tionality is added by aggregating objects to each other. All objects
in an aggregation can access each other via their type, i.e., this
depends on the ns-3 facility run-time type information. DCEP-Sim
makes extensive use of object aggregation, e.g., to build particular
DCEP instances according to user-provided attribute values. For
instance, object aggregation is used by the DCEP-Sim helpers to
aggregate particular placement and adaptation policies according
to the values defined by the experimenter via the attribute system.
This way, model developers can easily extend the set of available
policies by adding new classes to the pool of policies.

One particularly cumbersome aspect of C++ programming is
the lack of garbage collection. The smart pointers of ns-3 help to
alleviate this problem. By consistently using smart pointers for
a given object type, the smart-pointer sub-system automatically
keeps track of the number of references to that object and deletes
the object when the reference count reaches zero. Since only objects
of classes that inherit from RefCountBase are managed by smart
pointers, this does not entirely eliminate the possibility of memory
leaks, but significantly helps to reduce the problem.

All above-mentioned facilities are provided by three core classes
at the base of the ns-3 class hierarchy: Object, ObjectBase and
RefCountBase. Each of these endow their sub-classes with a par-
ticular sub-set of facilities: (1) ObjectBase objects can be given
ns-3 attributes and trace sources and can be aggregated with other
ObjectBase objects, (2) RefCountBase objects can be managed
by smart-pointers, and (3) the Object class provides all of the above
features and is therefore often the best choice for developers to
extend.

3 A SIMPLE DCEP-SIM SCRIPT

In this section, we take a step-by-step look at the example script
called dcep-example.cc. At first, the logging levels for the Placement,
Dcep, Detector and Communication components are set with the
LogComponentEnable () function (see Listing 1).

Listing 1: Setting logging level
LogComponentEnable ("Placement", LOG_LEVEL_INFO) ;
LogComponentEnable ("Dcep", LOG_LEVEL_INFO) ;
LogComponentEnable ("Detector", LOG_LEVEL_INFO);
LogComponentEnable ("Communication",

LOG_LEVEL_INFO) ;

The next step is to create a container for numNodes number of
nodes (see Listing 2). Afterwards, a wireless network in which the
nodes in the network container n move according to the Constant
PositionMobilityModel is installed.

Listing 2: Create and install network topology
uint32_t numNodes = gridWidth«gridWidth;
NodeContainer n;
n.Create (numNodes);

NetDeviceContainer devices = SetupWirelessNetwork (
n);

MobilityHelper mobility;

DEBS ’18, June 25-29, 2018, Hamilton, New Zealand

mobility . SetPositionAllocator ("ns3::
GridPositionAllocator", "MinX", DoubleValue (0.0)
, "MinY", DoubleValue (0.0), "DeltaX",
DoubleValue (distance), "DeltaY", DoubleValue (
distance), "GridWidth", UintegerValue (gridWidth)
, "LayoutType", StringValue ("RowFirst"));

mobility . SetMobilityModel ("ns3::
ConstantPositionMobilityModel");
mobility.Install (n);

The OLSR routing protocol is installed in Listing 3 with the
0lsrHelper. The network layer protocol IP, and transport protocols
TCP and UDP are set up with the InternetStack-Helper and
installed on the nodes that are part of the network container n and
IPv4 addresses are assigned to these devices.

Listing 3: Setting up network and transport layer
OlsrHelper olsr;
InternetStackHelper internet;
internet.SetRoutingHelper (olsr);
internet.Install (n);
Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer iface = ipv4.Assign (
devices) ;

The main complexity of setting up the Distributed CEP overlay is
encapsulated in the DcepAppHelper, which installs on all nodes in
the network container a Distributed CEP instance and groups them
in an application container. Node 0 is configured to serve as sink.
All Distributed CEP instances are provided with the sink address
and the placement policy to be used. Furthermore, two Distributed
CEP instances are configured to serve as sources (see Listing 4).

Listing 4: Setting up the Distributed CEP overlay

sinkAddress = Address (iface.GetAddress (0));
DcepAppHelper dcepApphelper;
ApplicationContainer dcepApps = dcepApphelper.
Install (n);

uint32_t eventCode = 1;

for(uint32_t i = 0; i <= numNodes; i++) {
dcepApps.Get(i)—>SetAttribute ("SinkAddress",
AddressValue (sinkAddress));
dcepApps.Get(i)—>SetAttribute ("placement
policy", StringValue(placementPolicy));

if(i == 0) { /+ sink nodex/

dcepApps.Get(1)—>SetAttribute ("IsSink",
BooleanValue (true));

}

else if ((i == (numNodes—1)) || (i == (

numNodes—-2)) ) {
dcepApps.Get(0)—>SetAttribute ("
IsGenerator", BooleanValue(true));
dcepApps.Get(0)—>SetAttribute ("event
code", UintegerValue (eventCode++));



DEBS ’18, June 25-29, 2018, Hamilton, New Zealand

dcepApps.Get(i)—>SetAttribute ("number of
events", UintegerValue (numberOfEvents

)) s

Finally, dcepApps is scheduled to run from Second 1 to 30 and
the simulator to stop at Second 35. Afterwards, the simulator is
executed and simulates 35 seconds before terminating (see Listing

5).

Listing 5: Running the simulation

dcepApps. Start (Seconds (1.0));
dcepApps.Stop (Seconds (30.0));
Simulator :: Stop (Seconds (35.0) );
Simulator ::Run ();

Simulator :: Destroy ();

4 ADAPTING AND EXTENDING DCEP-SIM

To give the reader a first idea of how to tailor DCEP-Sim to perform
particular experiments we briefly explain how the workload can be
changed and how new operators can be added.

Distributed CEP instances can be configured in the script as data
sources. The current data source model supports uniform traffic
and the event rate and the total number of events can be config-
ured in the script. To introduce more complex traffic patterns, e.g.,
based on statistical distributions, or to generate trace driven event
streams the data source model needs to be extended respectively
new models created. The function of the DataSource object that
generates atomic events is called GenerateCEPEvents() and can
be found in the dcep.cc file. In this way it is possible to generate
arbitrary event streams with well-defined or random patterns and
to replay event stream traces from a file.

Operators are used in the detector class (which is member of
the CEP engine wrapper class). The operator implementation is
separated from the implementation of the selection and production
policies that should be used. When a query is placed, the CEP
engine instantiates it by creating an instance of the operator(s) given
in the query. The DCEP-Sim operator abstract class defines two
virtual functions which need to be implemented by derived classes
to add a new operator: the Configure() function to set up the
operator and the Evaluate() function to do the actual processing
of incoming CEP events. The Configure() function is called to
set up the operator. Typically, this function would configure the
selection and consumption policies which the operator will apply,
in addition to setting up the buffers for events as shown in Listing
6 for the AND operator.

Listing 6: Configuration of AND operator
Void AndOperator:: Configure (Ptr <Query> q) {

this —>queryld = q—>id;

this —>eventl = q—>ineventl;

this —>event2 = gq—>inevent2;

Ptr <BufferManager > bufman = CreateObject<
BufferManager >() ;

Fabrice Starks, Stein Kristiansen, and Thomas Plagemann

bufman—>consumption_policy =
SELECTED_CONSUMPTION; //default
bufman->selection_policy =
SINGLE_SELECTION; //default
bufman—->configure (this);

this —>bufman = bufman;

When an event is received by the CEP engine, it is passed to
every operator expecting it by calling the Evaluate function. The
Evaluate function returns true or false based on whether some
events have matched the expected pattern. The function also returns
a list of all events that matched the pattern through its output
parameter. When the Evaluate function returns true, the detector
component forwards the list of events that matched, along with the
corresponding query, to the producer component.

5 CONCLUSIONS

Currently, DCEP-Sim serves as a tool for our ongoing research on
adaptive placement in mobile networks. We provide the current
code base as open source and hope that DCEP-Sim might be use-
ful to other researchers and developers and are looking forward
to future contributions in form of extensions of DCEP-Sim from
the research community. Integrating the Distributed CEP simula-
tion in ns-3 allows to benefit from all ns-3 advantages, including
a large number of existing models for network simulation, easy
extensibility, and powerful logging ang tracing facilities. To fully
leverage these features, it is recommended to become familiar with
ns-3. As a tool created for research in our lab it is naturally not
yet fully complete and perfect. Some prospective users might find
it unsatisfactory that a discrete event simulator like ns-3 is not
simulating the execution time of software, e.g., the execution of the
CEP instances. Creating models of the execution of CEP instances
is subject for future research.

ACKNOWLEDGMENTS

This work has been supported by the Cesar project (The Research
Council of Norway, project number 250239).

REFERENCES

[1] Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Information:
From Data Stream to Complex Event Processing. ACM Comput. Surv. 44, 3, Article
15 (June 2012), 62 pages. https://doi.org/10.1145/2187671.2187677

[2] NS-3.2017. https://www.nsnam.org/ (2017), last vistited 2018-5-11.

[3] ns-3 network simulator. 2018. Release ns-3-dev.
https://www.nsnam.org/docs/manual/ns-3-manual.pdf (retrieved 2018-5-11 2018).

[4] F. Starks. 2018. DCEP-Sim repository. http://github.com/fabricesbDCEP-Sim.git,
(retrieved 2018-5-14 2018).

[5] Fabrice Starks, Thomas Peter Plagemann, and Stein Kristiansen. 2017. DCEP-Sim:
An Open Simulation Framework for Distributed CEP. In Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems (DEBS °17).
ACM, New York, NY, USA, 180-190. https://doi.org/10.1145/3093742.3093919



