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Abstract We present global analyses of effective Higgs
portal dark matter models in the frequentist and Bayesian
statistical frameworks. Complementing earlier studies of the
scalar Higgs portal, we use GAMBIT to determine the pre-
ferred mass and coupling ranges for models with vector,
Majorana and Dirac fermion dark matter. We also assess
the relative plausibility of all four models using Bayesian
model comparison. Our analysis includes up-to-date likeli-
hood functions for the dark matter relic density, invisible
Higgs decays, and direct and indirect searches for weakly-
interacting dark matter including the latest XENON1T data.
We also account for important uncertainties arising from the
local density and velocity distribution of dark matter, nuclear
matrix elements relevant to direct detection, and Standard
Model masses and couplings. In all Higgs portal models, we
find parameter regions that can explain all of dark matter and
give a good fit to all data. The case of vector dark matter
requires the most tuning and is therefore slightly disfavoured
from a Bayesianpoint of view. In the case of fermionic dark

a e-mail: ankit.beniwal@fysik.su.se
b e-mail: sanjay.bloor12@imperial.ac.uk
c e-mail: kahlhoefer@physik.rwth-aachen.de
d e-mail: sebastian.wild@desy.de

matter, we find a strong preference for including a CP-
violating phase that allows suppression of constraints from
direct detection experiments, with odds in favour of CP vio-
lation of the order of 100:1. Finally, we present DDCalc
2.0.0, a tool for calculating direct detection observables and
likelihoods for arbitrary non-relativistic effective operators.
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1 Introduction

Cosmological and astrophysical experiments have provided
firm evidence for the existence of dark matter (DM) [1–4].
While the nature of the DM particles and their interactions
remains an open question, it is clear that the viable candidates
must lie in theories beyond the Standard Model (BSM). A
particularly interesting class of candidates are weakly inter-
acting massive particles (WIMPs) [5]. They appear naturally
in many BSM theories, such as supersymmetry (SUSY) [6].
Due to their weak-scale interaction cross-section, they can
accurately reproduce the observed DM abundance in the Uni-
verse today.

So far there is no evidence that DM interacts with ordinary
matter in any way except via gravity. However, the generic
possibility exists that Standard Model (SM) particles may
connect to new particles via the lowest-dimension gauge-
invariant operator of the SM, H†H . It is therefore natural
to assume that the standard Higgs boson (or another scalar
that mixes with the Higgs) couples to massive DM particles
via such a ‘Higgs portal’ [7–27]. The discovery of the Higgs
boson in 2012 by ATLAS [28] and CMS [29] therefore opens
an exciting potential window for probing DM.

Despite being simple extensions of the SM in terms of
particle content and interactions, Higgs portal models have
a rich phenomenology, and can serve as effective descrip-
tions of more complicated theories [30–52]. They can pro-
duce distinct signals at present and future colliders, DM direct
detection experiments or in cosmic ray experiments. In the
recent literature, experimental limits on Higgs portal models
were considered from Large Hadron Collider (LHC), Circu-
lar Electron Positron Collider and Linear Collider searches,
LUX and PandaX, supernovae, charged cosmic and gamma

rays, Big Bang Nucleosynthesis, and cosmology [36,41,53–
76]. The lack of such signals to date places stringent con-
straints on Higgs portal models.

The first global study of the scalar Higgs portal DM model
was performed in Ref. [77]. The most recent global fits
[78,79] included relic density constraints from Planck, lead-
ing direct detection constraints from LUX, XENON1T, Pan-
daX and SuperCDMS, upper limits on the gamma-ray flux
from DM annihilation in dwarf spheroidal galaxies with the
Fermi-LAT, limits on solar DM annihilation from IceCube,
and constraints on decays of SM-like Higgs bosons to scalar
singlet particles. The most recent [79] also considered the Z3

symmetric version of the model, and the impact of requiring
vacuum stability and perturbativity up to high energy scales.

In this paper, we perform the first global fits of the effec-
tive vector, Majorana fermion and Dirac fermion Higgs portal
DM models using the GAMBIT package [80]. By employing
the latest data from the DM abundance, indirect and direct
DM search limits, and the invisible Higgs width, we system-
atically explore the model parameter space and present both
frequentist and Bayesian results. In our fits, we include the
most important SM, nuclear physics, and DM halo model nui-
sance parameters. For the fermion DM models, we present
a Bayesian model comparison between the CP-conserving
and CP-violating versions of the theory. We also carry out a
model comparison between scalar, vector and fermion DM
models.

In Sect. 2, we introduce the effective vector and fermion
Higgs portal DM models. We describe the constraints that we
use in our global fits in Sect. 3, and the details of our param-
eter scans in Sect. 4. We present likelihood and Bayesian
model comparison results respectively in Sects. 5 and 6, and
conclude in Sect. 7. Appendix A documents new features
included in the latest version of DDCalc. Appendix B con-
tains all the relevant expressions for the DM annihilation
rate into SM particles. All GAMBIT input files, samples and
best-fit points for this study are publicly available online via
Zenodo [81].

2 Models

We separately consider vector (Vμ), Majorana fermion (χ )
and Dirac fermion (ψ) DM particles that are singlets under
the SM gauge group. By imposing an unbroken global Z2

symmetry, under which all SM fields transform trivially but
(Vμ, χ,ψ) → −(Vμ, χ,ψ), we ensure that our DM candi-
dates are absolutely stable.

Before electroweak symmetry breaking (EWSB), the
Lagrangians for the three different scenarios are [51]
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LV = LSM − 1
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μ)2

+ 1

2
λhV VμV

μH†H, (1)

Lχ = LSM + 1

2
χ(i /∂ − μχ)χ

− 1

2

λhχ

Λχ

(
cos θ χχ + sin θ χ iγ5χ

)
H†H, (2)

Lψ = LSM + ψ(i /∂ − μψ)ψ

− λhψ

Λψ

(
cos θ ψψ + sin θ ψiγ5ψ

)
H†H, (3)

where LSM is the SM Lagrangian, Wμν ≡ ∂μVν − ∂νVμ

is the vector field strength tensor, λhV is the dimensionless
vector Higgs portal coupling, λhχ,hψ/Λχ,ψ are the dimen-
sionful fermionic Higgs portal couplings, and H is the SM
Higgs doublet. The fermionic Lagrangians include both CP-
odd and CP-even Higgs-portal operators, with θ controlling
their relative size. The choice cos θ = 1 corresponds to a
pure scalar, CP-conserving interaction between the fermionic
DM and the SM Higgs field, whereas cos θ = 0 corresponds
to a pure pseudoscalar, maximally CP-violating interaction.
We discuss a possible ultraviolet (UV) completion of such a
model in Sect. 3.7 (see also Refs. [12,23]).

Although all operators in the vector DM model have
mass dimension four, the model itself is fundamentally non-
renormalisable, as we do not impose a gauge symmetry to
forbid e.g. the mass term for the vector field. Processes with
large energies compared to the vector DM mass will vio-
late perturbative unitarity: for large momentum, longitudinal
modes of the vector propagator become constant and cross-
sections become divergent. In this study we remain agnostic
as to the origin of the vector mass term and the quartic vector
self-interaction, however we do consider perturbative unitar-
ity in Sect. 3.7.

After EWSB, the Higgs field acquires a non-zero vacuum
expectation value (VEV). In the unitary gauge, we can write

H = 1√
2

(
0

v0 + h

)
, (4)

whereh is the physical SM Higgs field andv0 = (
√

2GF )−1/2

= 246.22 GeV is the Higgs VEV. Thus, the H†H terms in
Eqs. (1–3) generate mass and interaction terms for the DM
fields. The tree-level physical mass of the vector DM is

m2
V = μ2

V + 1

2
λhV v2

0 . (5)

For the fermion DM models, the pseudoscalar term (pro-
portional to sin θ ) generates a non-mass-type term that is
purely quadratic in the DM fields (e.g., ψγ5ψ). Therefore

after EWSB, to eliminate this term, we perform a chiral rota-
tion of the fermion DM fields through

χ → eiγ5α/2χ, ψ → eiγ5α/2ψ , (6)

where α is a real, space-time independent parameter.1 Using
the details outlined in the appendix of Ref. [51], we arrive at
the following post-EWSB fermion DM Lagrangians

Lχ = LSM + 1

2
χ(i /∂ − mχ )χ

− 1

2

λhχ

Λχ

[
cos ξ χχ + sin ξ χ iγ5χ

](
v0h + 1

2
h2

)
,

(7)

Lψ = LSM + ψ(i /∂ − mψ)ψ

− λhψ

Λψ

[
cos ξ ψψ + sin ξ ψiγ5ψ

] (
v0h + 1

2
h2

)
,

(8)

where ξ ≡ θ + α,

cos ξ = μχ,ψ

mχ,ψ

(
cos θ + 1

2

λhχ,hψ

Λχ,ψ

v2
0

μχ,ψ

)
, (9)

and

mχ,ψ =
[(

μχ,ψ + 1

2

λhχ,hψ

Λχ,ψ

v2
0 cos θ

)2

+
(

1

2

λhχ,hψ

Λχ,ψ

v2
0 sin θ

)2
]1/2

. (10)

In particular, we note that a theory that is CP-conserving
before EWSB (cos θ = 1) is still CP-conserving after EWSB
(cos ξ = 1). Because the simplest UV completion leads to
cos θ = 1, this means the particular choice of cos ξ = 1
is also natural from the UV perspective.2 In light of this,
we compare the viability of a CP-conserving scenario to the
most general case with arbitrary ξ in Sect. 6.

3 Constraints

The free parameters of the Lagrangians are subject to vari-
ous observational and theoretical constraints. For the case of

1 Note that for the Majorana case, the 4-component spinor can be writ-
ten in terms of one two-component Weyl spinor. This transformation
simply corresponds to a phase transformation of this two-component
spinor.
2 This is not the case for the maximally CP-violating choice (cos θ = 0)

as EWSB induces a scalar interaction term with cos ξ ∝ v2
0 [82].
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Table 1 Likelihoods and
corresponding GAMBIT
modules/backends employed in
our global fit

Likelihoods GAMBIT modules/backends References

Relic density (Planck) DarkBit [4]

Higgs invisible width DecayBit [84]

Fermi-LAT dSphs gamLike 1.0.0 [85]

LUX 2016 (Run II) DDCalc 2.0.0 [86]

PandaX 2016 DDCalc 2.0.0 [87]

PandaX 2017 DDCalc 2.0.0 [88]

XENON1T 2018 DDCalc 2.0.0 [89]

CDMSlite DDCalc 2.0.0 [90]

CRESST-II DDCalc 2.0.0 [91]

PICO-60 2017 DDCalc 2.0.0 [92]

DarkSide-50 2018 DDCalc 2.0.0 [93]

IceCube 79-string nulike 1.0.6 [94]

vector DM, the relevant parameters after EWSB are the vec-
tor DM mass mV and the dimensionless coupling λhV .3 The
post-EWSB fermion Lagrangians contain three free parame-
ters: the fermion DM mass mχ,ψ , the dimensionful coupling
λhχ,hψ/Λχ,ψ between DM and the Higgs, and the scalar-
pseudoscalar mixing parameter ξ .

In Table 1, we summarise the various likelihoods used
to constrain the model parameters in our global fit. In the
following sections, we will discuss both the physics as well
as the implementation of each of these constraints.

3.1 Thermal relic density

The time evolution of the DM number density nX is governed
by the Boltzmann equation [95]

dnX

dt
+ 3HnX = −〈σvrel〉

(
n2
X − n2

X,eq

)
, (11)

where nX,eq is the number density at equilibrium, H is the
Hubble rate and 〈σvrel〉 is the thermally averaged cross-
section times relative (Møller) velocity, given by

〈σvrel〉 =
∫ ∞

4m2
X

ds
s
√
s − 4m2

X K1
(√

s/T
)

16Tm4
X K

2
2 (mX/T )

σvcms
rel , (12)

where vcms
rel is the relative velocity of the DM particles in the

centre-of-mass frame, and K1,2 are modified Bessel func-
tions. In the case of non-self-conjugate DM, the right hand
side of Eq. (11) is divided by two.

3 The quartic self-coupling λV does not play any role in the DM phe-
nomenology that we consider, and can be ignored. However, it is vital if
constraints from electroweak vacuum stability and model perturbativity
are imposed [83]. For a global fit including vacuum stability of scalar
DM, see e.g., Ref. [79].

In the scenarios discussed above, the annihilation process
of DM receives contributions from all kinematically acces-
sible final states involving massive SM fields, including neu-
trinos. Annihilations into SM gauge bosons and fermions are
mediated by a Higgs boson in the s-channel; consequently,
near the resonance region, where mX 	 mh/2, it is crucial
to perform the actual thermal average as defined in Eq. (12)
instead of expanding σvcms

rel into partial waves.4 Moreover,
we take into account the important contributions arising from
the production of off-shell pairs of gauge bosons WW ∗ and
Z Z∗ [97]. To this end, for 45 GeV ≤ √

s ≤ 300 GeV, we
compute the annihilation cross-section into SM gauge bosons
and fermions in the narrow-width approximation via

σvcms
rel = P(X)

2λ2
hXv2

0√
s


h
(
m∗

h = √
s
)

(
s − m2

h

)2 + m2
h


2
h (mh)

, (13)

where we employ the tabulated Higgs branching ratios
(m∗
h)

as implemented in DecayBit [84]. For fermionic DM, the
dimensionful coupling is implied, λhX ∈ {λhV , λhψ/Λψ,

λhχ/Λχ }. The pre-factor P(X) is given by

P(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

9

(
3 − s

m2
V

+ s2

4m4
V

)
, X = Vμ,

s

2

(
1 − 4m2

X cos2 ξ

s

)
, X = ψ, χ .

(14)

4 We assume DM to be in a local thermal equilibrium (LTE) during
freeze-out. As pointed out in Ref. [96], this assumption can break down
very close to the resonance, thereby requiring a full numerical solution
of the Boltzmann equation in phase space. As this part of the parameter
space is in any case very difficult to test experimentally (see Sect. 5),
we stick to the standard approximation of LTE.
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In particular, we notice that for CP-conserving interactions
of a fermionic DM particle, the annihilation cross-section is
p-wave suppressed.

As shown in Ref. [97], for
√
s � 300 GeV the Higgs

1-loop self-interaction begins to overestimate the tabulated
Higgs boson width in Ref. [98]. Thus, for

√
s > 300 GeV

(where the off-shell production of gauge boson pairs is irrel-
evant anyway), we revert to the tree-level expressions for the
annihilation processes given in “Appendix B”. Moreover, for
mX ≥ mh , DM can annihilate into a pair of Higgs bosons,
a process which is not included in Eq. (13). We supplement
the cross-sections computed from the tabulated DecayBit
values with this process for mX ≥ mh . The corresponding
analytical expression for the annihilation cross-sections are
given in “Appendix B”.

Finally, we obtain the relic density of X by numerically
solving Eq. (11) at each parameter point, using the routines
implemented in DarkSUSY [99,100] via DarkBit.

In the spirit of the EFT framework employed in this work,
we do not demand that the particle X constitutes all of the
observed DM, i.e., we allow for the possibility of other DM
species to contribute to the observed relic density. Concretely,
we implement the relic density constraint using a likelihood
that is flat for predicted values below the observed one, and
based on a Gaussian likelihood following the Planck mea-
sured value �DMh2 = 0.1188 ± 0.0010 [4] for predictions
that exceed the observed central value. We include a 5% the-
oretical error on the computed values of the relic density,
which we combine in quadrature with the observed error on
the Planck measured value. More details on this prescription
can be found in Refs. [80,101].

In regions of the model parameter space where the relic
abundance of X is less than the observed value, we rescale
all predicted direct and indirect detection signals by frel ≡
�X/�DM and f 2

rel, respectively. In doing so, we conserva-
tively assume that the remaining DM population does not
contribute to signals in these experiments.

3.2 Higgs invisible decays

For mX < mh/2, the SM Higgs boson can decay into a pair
of DM particles, with rates given by [51]


inv(h → VV ) = λ2
hV v2

0m
3
h

128πm4
V

(
1 − 4m2

V

m2
h

+ 12m4
V

m4
h

)

×
√

1 − 4m2
V

m2
h

, (15)


inv(h → χχ) = mhv
2
0

16π

(
λhχ

Λχ

)2
(

1 − 4m2
χ cos2 ξ

m2
h

)

×
√

1 − 4m2
χ

m2
h

, (16)


inv(h → ψψ) = mhv
2
0

8π

(
λhψ

Λψ

)2
(

1 − 4m2
ψ cos2 ξ

m2
h

)

×
√√√√1 − 4m2

ψ

m2
h

, (17)

for the vector, Majorana and Dirac DM scenarios, respec-
tively. These processes contribute to the Higgs invisible width

inv, which is constrained to be less than 19% of the total
width at 2σ C.L. [102], for SM-like Higgs couplings. We take
this constraint into account by using the DecayBit implemen-
tation of the Higgs invisible width likelihood, which in turn
is based on an interpolation of Fig. 8 in Ref. [102]. Beyond
the Higgs invisible width, the LHC provides only a mild con-
straint on Higgs portal models [63].

3.3 Indirect detection using gamma rays

Arguably, the most immediate prediction of the thermal
freeze-out scenario is that DM particles can annihilate today,
most notably in regions of enhanced DM density. In partic-
ular, gamma-ray observations of dwarf spheroidal galaxies
(dSphs) of the Milky Way are strong and robust probes of
any model of thermal DM with unsuppressed annihilation
into SM particles.5

As described in more detail in Ref. [101], the flux of
gamma rays in a given energy bin i from a target object
labeled by k can be written in the factorised form Φi · Jk ,
where Φi encodes all information about the particle physics
properties of the DM annihilation process, while Jk depends
on the spatial distribution of DM in the region of interest. For
s-wave annihilation, one obtains

Φi = κ
∑
j

(σv)0, j

8πm2
X

∫

ΔEi

dE
dNγ, j

dE
, (18)

Jk =
∫

Δ�k

d�

∫

l.o.s.
ds ρ2

X . (19)

Here κ is a phase space factor (equal to 1 for self-conjugate
DM and 1/2 for non-self-conjugate DM), (σv)0, j is the
annihilation cross-section into the final state j in the zero-
velocity limit, and dNγ, j/dE is the corresponding differen-
tial gamma-ray spectrum. The J -factor in Eq. (19) is defined
via a line of sight (l.o.s.) integral over the square of the DM

5 We do not include constraints from cosmic-ray antiprotons; although
they are potentially competitive with or even stronger than those from
gamma-ray observations of dSphs, there is still no consensus on the
systematic uncertainty of the upper bound on a DM-induced component
in the antiproton spectrum [68,103–105].

123



   38 Page 6 of 28 Eur. Phys. J. C            (2019) 79:38 

density ρX towards the target object k, extended over a solid
angle Δ�k .

In our analysis, we include the Pass-8 combined analy-
sis of 15 dwarf galaxies using 6 years ofFermi-LAT data [85],
which currently provides the strongest bounds on the annihi-
lation cross-section of DM into final states containing gamma
rays. We use the binned likelihoods implemented in Dark-
Bit [101], which make use of the gamLike package. Besides
the likelihood associated with the gamma-ray observations,
given by

lnLexp =
NdSphs∑
k=1

NeBins∑
i=1

lnLki (Φi · Jk) , (20)

we also include a term lnLJ that parametrises the uncertain-
ties on the J -factors [85,101]. We obtain the overall likeli-
hood by profiling over the J -factors of all 15 dwarf galaxies,
as

lnLprof.
dwarfs = max

J1...Jk

(
lnLexp + lnLJ

)
. (21)

Let us remark again that for the case of Dirac or Majorana
fermion DM with CP-conserving interactions (i.e., ξ = 0),
the annihilation cross-section vanishes in the zero-velocity
limit. Scenarios with ξ �= 0 therefore pay the price of an
additional penalty from gamma-ray observations, compared
to the CP-conserving case.

3.4 Direct detection

Direct searches for DM aim to measure the recoil of a nucleus
after it has scattered off a DM particle [106]. Following the
notation of Ref. [101], we write the predicted number of
signal events in a given experiment as

Np = MTexp

∫ ∞

0
φ (E)

dR

dE
dE , (22)

where M is the detector mass, Texp is the exposure time and
φ (E) is the detector efficiency function, i.e., the fraction of
recoil events with energy E that are observable after apply-
ing all cuts from the corresponding analysis. The differential
recoil rate dR/dE for scattering with a target isotope T is
given by

dR

dE
= 2ρ0

mX

∫
v f (v, t)

dσ

dq2

(
q2, v

)
d3v . (23)

Here ρ0 is the local DM density, f (v, t) is the DM
velocity distribution in the rest frame of the detector, and
dσ/dq2(q2, v) is the differential scattering cross-section
with respect to the momentum transfer q = √

2mT E .

For the vector DM model, the DM-nucleon scattering pro-
cess is induced by the standard spin-independent (SI) inter-
action, with a cross-section given by [51]

σ V
SI = μ2

N

π

λ2
hV f 2

Nm
2
N

4m2
Vm

4
h

, (24)

where μN = mVmN/(mV +mN ) is the DM-nucleon reduced
mass and fN is the effective Higgs-nucleon coupling. The
latter is related to the quark content of a proton and neutron,
and is subject to (mild) uncertainties. In our analysis we treat
the relevant nuclear matrix elements as nuisance parameters;
this will be discussed in more detail in Sect. 3.6.

In the case of fermionic DM X ∈ {χ,ψ}, the pseudoscalar
current Xiγ5X induces a non-standard dependence of the dif-
ferential scattering cross-section on the momentum transfer
q (see e.g., Ref. [107]):

dσ X
SI

dq2 = 1

v2

(
λhX

ΛX

)2 A2F2(E) f 2
Nm

2
N

4πm4
h

×
(

cos2 ξ + q2

4m2
X

sin2 ξ

)
, (25)

where A is the mass number of the target isotope of interest,
and F2(E) is the standard form factor for spin-independent
scattering [108]. As the typical momentum transfer in a scat-
tering process is |q| 	 (1 − 100) MeV � mX , we note that
direct detection constraints will be significantly suppressed
for scenarios that are dominated by the pseudoscalar inter-
action, i.e., for ξ 	 π/2. For both the vector and fermion
models, the spin-dependent (SD) cross-section is absent at
leading order. Loop corrections are found not to give a rel-
evant contribution to direct detection in the EFT approach,
although they may lead to important effects in specific UV-
completions [109–111].

For the evaluation of Np in Eq. (22), we assume a
Maxwell-Boltzmann velocity distribution in the Galactic rest
frame, with a peak velocity vpeak and truncated at the local
escape velocity vesc. We refer to Ref. [101] for the conversion
to the velocity distribution f (v, t) in the detector rest frame.
We discuss the likelihoods associated with the uncertainties
in the DM velocity distribution in Sect. 3.6.

We use the DarkBit interface to DDCalc 2.0.06 to calcu-
late the number of observed events o in the signal regions for
each experiment and to evaluate the standard Poisson likeli-
hood

L (s|o) = (b + s)o e−(b+s)

o! , (26)

6 http://ddcalc.hepforge.org/
http://github.com/patscott/ddcalc/.
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where s and b are the respective numbers of expected sig-
nal and background events. We model the detector efficien-
cies and acceptance rates by interpolating between the pre-
computed tables in DDCalc. We include likelihoods from the
new XENON1T 2018 analysis [89], LUX 2016 [86], PandaX
2016 [87] and 2017 [88] analyses, CDMSlite [90], CRESST-
II [91], PICO-60 [92], and DarkSide-50 [93]. Details of these
implementations, as well as an overview of the new features
contained in DDCalc 2.0.0, can be found in “Appendix A”.

3.5 Capture and annihilation of DM in the Sun

Similar to the process underlying direct detection, DM parti-
cles from the local halo can also elastically scatter off nuclei
in the Sun and become gravitationally bound. The result-
ing population of DM particles near the core of the Sun can
then induce annihilations into high-energy SM particles that
subsequently interact with the matter in the solar core. Of
the resulting particles, only neutrinos are able to escape the
dense Solar environment. Eventually, these can be detected
in neutrino detectors on the Earth [112–114].

The capture rate of DM in the Sun is obtained by integrat-
ing the differential scattering cross-section dσ/dq2 over the
range of recoil energies resulting in a gravitational capture, as
well as over the Sun’s volume and the DM velocity distribu-
tion. To this end, we employ the newly-developed public code
Capt’n General,7 which computes capture rates in the Sun
for spin-independent and spin-dependent interactions with
general momentum- and velocity-dependence, using the B16
Standard Solar Model [115] composition and density distri-
bution. We refer to Refs. [116,117] for details on the capture
rate calculation. Notice that similar to direct detection, the
capture rate is also subject to uncertainties related to the local
density and velocity distribution of DM in the Milky Way. As
mentioned earlier, these uncertainties are taken into account
by separate nuisance likelihoods to be discussed in Sect. 3.6.

Neglecting evaporation (which is well-justified for the DM
masses of interest in this study [118–120]), the total popula-
tion of DM in the Sun NX (t) follows from

dNX (t)

dt
= C(t) − A(t) , (27)

where C(t) is the capture rate of DM in the Sun, and A(t) ∝
〈σvrel〉NX (t)2 is the annihilation rate of DM inside the Sun;
this is calculated by DarkBit. We approximate the thermally
averaged DM annihilation cross-section, which enters in the
expression for the annihilation rate, by evaluating σv at v =√

2T�/mX , where T� = 1.35 keV is the core temperature
of the Sun.

7 https://github.com/aaronvincent/captngen.

At sufficiently large t , the solution for NX (t) reaches a
steady state and depends only on the capture rate. How-
ever, the corresponding time scale τ for reaching equilib-
rium depends also on σv, and thus changes from point to
point in the parameter space. Hence, we use the full solu-
tion of Eq. (27) to determine NX at present times, which in
turn determines the normalization of the neutrino flux poten-
tially detectable at Earth. We obtain the flavour and energy
distribution of the latter using results from WimpSim [121]
included in DarkSUSY [99,100].

Finally, we employ the likelihoods derived from the 79-
string IceCube search for high-energy neutrinos from DM
annihilation in the Sun [94] using nulike [122] via DarkBit;
this contains a full unbinned likelihood based on the event-
level energy and angular information of the candidate events.

3.6 Nuisance likelihoods

The constraints discussed in the previous sections often
depend on nuisance parameters, i.e. parameters not of direct
interest but required as input for other calculations. Exam-
ples are nuclear matrix elements related to the DM direct
detection process, the distribution of DM in the Milky Way,
or SM parameters known only to finite accuracy. It is one of
the great virtues of a global fit that such uncertainties can be
taken into account in a fully consistent way, namely by intro-
ducing new free parameters into the fit and constraining them
by new likelihood terms that characterise their uncertainty.
We list the nuisance parameters included in our analysis in
Table 2, and discuss each of them in more detail in the rest
of this section.

Following the default treatment in DarkBit, we include
a nuisance likelihood for the local DM density ρ0 given
by a log-normal distribution with central value ρ0 =
0.40 GeV cm−3 and an error σρ0 = 0.15 GeV cm−3. To
reflect the log-normal distribution, we scan over an asym-
metric range for ρ0. For more details, see Ref. [101].

Table 2 Nuisance parameters that are varied simultaneously with the
DM model parameters in our scans. All parameters have flat priors. For
more details about the nuisance likelihoods, see Sect. 3.6

Parameter Value (± range)

Local DM density ρ0 0.2−0.8 GeV cm−3

Most probable speed vpeak 240 (24)km s−1

Galactic escape speed vesc 533 (96)km s−1

Nuclear matrix element σs 43 (24)MeV

Nuclear matrix element σl 50 (45)MeV

Higgs pole mass mh 124.1–127.3 GeV

Strong coupling αMS
s (mZ ) 0.1181 (33)
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For the parameters determining the Maxwell-Boltzmann
distribution of the DM velocity in the Milky Way, namely
vpeak and vesc, we employ simple Gaussian likelihoods. Since
vpeak is equal to the circular rotation speed vrot at the posi-
tion of the Sun for an isothermal DM halo, we use the
determination of vrot from Ref. [123] to obtain vpeak =
240 ± 8 km s−1.8 The escape velocity takes a central value
of vesc = 533 ± 31.9 km s−1, where we convert the 90%
C.L. interval obtained by the RAVE collaboration [126],
assuming that the error is Gaussian.

As noted already in Sect. 3.4, the scattering cross-section
of DM with nuclei (which enters both the direct detection
and solar capture calculations) depends on the effective DM-
nucleon coupling fN , which is given by [101]

fN = 2

9
+ 7

9

∑
q=u,d,s

f (N )
Tq . (28)

Here f (N )
Tq are the nuclear matrix elements associated with

the quark q content of a nucleon N . As described in more
detail in Ref. [127], these are obtained from the following
observable combinations

σl ≡ ml〈N |uu + dd|N 〉, σs ≡ ms〈N |ss|N 〉 , (29)

where ml ≡ (mu + md)/2. We take into account the
uncertainty on these matrix elements via Gaussian likeli-
hoods given by σs = 43 ± 8 MeV [128] and σl = 50 ±
15 MeV [129]. The latter deviates from the default choice
implemented in DarkBit as it reflects recent lattice results,
which point towards smaller values of σl (see Ref. [129]
for more details). Furthermore, we have confirmed that the
uncertainties on the light quark masses have a negligible
impact on fN . Thus, for simplicity, we do not include them
in our fit.

We also use a Gaussian likelihood for the Higgs mass,
based on the PDG value of mh = 125.09 ± 0.24 GeV [130].
In line with our previous study of scalar singlet DM [78],
we allow the Higgs mass to vary by more than 4σ as the
phenomenology of our models depends strongly onmh , most
notably near the Higgs resonance region. Finally, we take into
account the uncertainty on the strong coupling constant αs ,
which enters the expression for the DM annihilation cross-
section into SM quarks (see “Appendix B”), taking a central
value αMS

s (mZ ) = 0.1181 ± 0.0011 [130].

8 Reference [124] argues that the peculiar velocity of the Sun is some-
what larger than the canonical value v�,pec = (11, 12, 7)km s−1 [125],
leading to vrot = 218 ± 6 km s−1. In the present study we do not con-
sider uncertainties in v�,pec and therefore adopt the measurement of
vrot from Ref. [123].

3.7 Perturbative unitarity and EFT validity

The parameter spaces in which we are interested are limited
by the requirement of perturbative unitarity. First of all, this
requirement imposes a bound on any dimensionless coupling
in the theory. Furthermore, as neither the vector or fermion
Higgs portal models are renormalisable, we must ensure that
the effective description is valid for the parameter regions to
be studied.

The dimensionless coupling λhV in the vector DM model
is constrained by the requirement that annihilation processes
such as VV → hh do not violate perturbative unitarity.
Determining the precise bound to be imposed onλhV is some-
what involved, so we adopt the rather generous requirement
λhV < 10 with the implicit understanding that perturba-
tivity may become an issue already for somewhat smaller
couplings.

For small DM masses, an additional complication arises
from the fact that theories with massive vector bosons are
not generally renormalisable. In that case cross-sections do
not generally remain finite in the mV → 0 limit and a sig-
nificant portion of parameter space violates perturbative uni-
tarity [131]. However, by restricting ourselves to the case of
μ2
V , λhV ≥ 0 we can safely tackle both issues due to the fact

thatmV → 0 implies λhV → 0. Using Eq. (5), this condition
translates to

0 ≤ λhV ≤ 2m2
V

v2
0

. (30)

A more careful analysis might lead to a slightly larger valid
parameter space, but as we will see in Sect. 5.1.1, those
regions would be excluded by the Higgs invisible width any-
way.

The EFT validity of the fermion DM models depends on
the specific UV completion. To estimate the range of validity,
we consider a UV completion in which a heavy scalar medi-
ator field Φ couples to the fermion DM X and the Higgs
doublet as [12]

L ⊃ −μgHΦH†H − gXΦX (cos θ + i sin θγ5) X , (31)

where X ∈ {χ,ψ} and μ has mass dimension 1.9 For this
specific UV completion, we assume that the mixing between
Φ and the Higgs field is negligible and can be ignored. The
heavy scalar field can be integrated out to give a dimensionful
coupling in the EFT approximation as

L ⊃ −μgX gH
m2

Φ

H†HX (cos θ + i sin θγ5) X . (32)

9 Note that the γ5 term can be generated by a complex mass term m̃X in
the original fermion Lagrangian and performing a chiral rotation. Thus,
full CP conservation (cos θ = 1) is equivalent to having a real mass
term.
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Thus, by comparing Eq. (32) with the fermion DM
Lagrangians in Eqs. (2) and (3), we can identify μgXgH/m2

Φ

with λhX/ΛX . As μ should be set by the new physics
scale, we take it to be roughly mΦ , implying gXgH/mΦ ∼
λhX/ΛX . In addition, we require the couplings to be pertur-
bative, i.e., gX gH ≤ 4π .

We need to consider the viable scales for which this
approximation is valid. We require that the mediator mass
mΦ is far greater than the momentum exchange q of the
interaction, i.e., mΦ � q such that Φ can be integrated out.
For DM annihilations, the momentum exchange is q ≈ 2mX .
Thus, the EFT approximation breaks down whenmΦ < 2mX

and our EFT assumption is violated when

λhX

ΛX
≥ 4π

2mX
. (33)

As the typical momentum transfer in a direct detection exper-
iment is roughly on the order of a few MeVs, the EFT validity
limit requires mΦ � O (MeV), which is always satisfied by
the previous demandmΦ > 2mX for the mass ranges of inter-
est. In this case, we assume that the couplings saturate the
bound from perturbativity, i.e., gXgH = 4π ; the constraint
would be stronger if the couplings were weaker.

For parameter points close to the EFT validity bound, the
scale of new physics is expected to be close to or even below
2mχ . In this case, the annihilation cross-section σvrel, used
in predictions of both the relic density and indirect detec-
tion signals, may receive substantial corrections from inter-
actions with Φ, which are not captured in the EFT approach.
The likelihoods computed for these points should hence be
interpreted with care.

Note that this prescription is only the simplest and most
conservative approach; additional constraints can be obtained
by unitarising the theory (e.g. [132]).

4 Scan details

We investigate the Higgs portal models using both Bayesian
and frequentist statistics. The parameter ranges and priors
that we employ in our scans of the vector and fermion
DM models are summarised in Tables 3 and 4, respectively.
Whilst the likelihoods described in the previous sections are
a common ingredient in both our frequentist and Bayesian
analyses, the priors only directly impact our Bayesian analy-
ses. We discuss our choice of priors in Sect. 5.2. For a review
of our statistical approaches to parameter inference, see e.g.,
Ref. [80].

There are two main objectives for the Bayesian scans:
firstly, producing marginal posteriors for the parameters
of interest, where we integrate over all unplotted param-
eters, and secondly, computing the marginal likelihood

Table 3 Parameter ranges and priors for the vector DM model

Parameter Minimum Maximum Prior type

λhV 10−4 10 Log

mV (low mass) 45 GeV 70 GeV Flat

mV (high mass) 45 GeV 10 TeV Log

Table 4 Parameter ranges and priors for the fermion DM models. Our
choice for the range of ξ between 0 and π reflects the fact that only
odd powers of cos ξ appear in the observables that we consider, but
never odd powers of sin ξ , which cancel exactly due to the complex
conjugation. Thus, the underlying physics is symmetric under ξ → −ξ

Parameter Minimum Maximum Prior type

λhχ,hψ/Λχ,ψ 10−6 GeV−1 1 GeV−1 Log

ξ 0 π Flat

mχ,ψ (low mass) 45 GeV 70 GeV Flat

mχ,ψ (high mass) 45 GeV 10 TeV Log

(or Bayesian evidence). We discuss the marginal likelihood
in Sect. 6. We use T-Walk, an ensemble Markov Chain
Monte Carlo (MCMC) algorithm, for sampling from the pos-
terior, and MultiNest [133–135], a nested sampling algo-
rithm, for calculating the marginal likelihood. We use T-Walk
for obtaining the marginal posterior due to the ellipsoidal
bias commonly seen in posteriors computed with MultiNest
[136].

For the frequentist analysis, we are interested in mapping
out the highest likelihood regions of our parameter space. For
this analysis we largely use Diver, a differential evolution
sampler, efficient for finding and exploring the maxima of
a multi-dimensional function. Details of T-Walk and Diver
can be found in Ref. [136].

Due to the resonant enhancement of the DM annihilation
rate by s-channel Higgs exchange at mX ≈ mh/2, there is
a large range of allowed DM-Higgs couplings that do not
overproduce the observed DM abundance. When scanning
over the full mass range, it is difficult to sample this reso-
nance region well, especially with a large number of nuisance
parameters. For this reason, we perform separate, specific
scans in the low-mass region around the resonance, using
both T-Walk and Diver. When plotting the profile likeli-
hoods, we combine the samples from the low- and high-mass
scans.

In addition, as part of the Bayesian analysis, we per-
form targeted T-Walk and MultiNest scans of the fermion
DM parameter space where the interaction is wholly scalar
(ξ = 0), using the same priors for the fermion DM mass
and its dimensionful coupling as in Table 4. This allows us
to perform model comparison between the cases where ξ is
fixed at zero, and where it is left as a free parameter.
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Table 5 Conversion criteria used for various scanning algorithms in
both the full and low mass regimes. The chain_number chosen for
T-Walk varies from scan to scan; we use the default T-Walk behaviour
of chain_number = NMPI + Nparams + 1 on 1360 MPI processes. For
more details, see Ref. [136]

Scanner Parameter Value

T-Walk chain_number 1370 (1)

sqrtR − 1 < 0.01

timeout_mins 1380

MultiNest nlive 20,000

tol 10−2

Diver NP 50,000

convthresh 10−5

The convergence criteria that we employ for the different
samplers are outlined in Table 5. We carried out all Diver
scans on 340 Intel Xeon Phi 7250 (Knights Landing) cores.
As in our recent study of scalar singlet DM [79], we ran T-
Walk scans on 1360 cores for 23 h, providing us with reliable
sampling. The MultiNest scans are based on runs using 240
Intel Broadwell cores, with a relatively high tolerance value,
which is nevertheless sufficient to compute the marginal like-
lihood to the accuracy required for model comparison. We
use the importance sampling log-evidence from MultiNest
to compute Bayes factors.

For profile likelihood plots, we combine the samples from
all Diver and T-Walk scans, for each model. The plots are
based on 1.46 × 107, 1.70 × 107 and 1.73 × 107 sam-
ples for the vector, Majorana and Dirac models, respec-
tively. We do all marginalisation, profiling and plotting with
pippi [137].

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the com-
bination of all Diver and T-Walk scans for the vector, Majo-
rana and Dirac models. Profile likelihoods in the vector model
parameters are shown in Fig. 1, with key observables rescaled
to the predicted DM relic abundance in Fig. 2. Majorana
model parameter profile likelihoods are shown in Figs. 3 and
4, with observables in Fig. 5. For the Dirac model, we sim-
ply show the mass-coupling plane in Fig. 6, as the relevant
physics and results are virtually identical to the Majorana
case.

5.1.1 Vector model

Figure 1 shows that the resonance region is tightly con-
strained by the Higgs invisible width from the upper-left
when mV < mh/2, by the relic density constraint from
below, and by direct and indirect detection from the right.
Nevertheless, the resonant enhancement of the DM annihi-
lation at around mh/2, combined with the fact that we allow
for scenarios where Vμ is only a fraction of the observed
DM, permits a wide range of portal couplings. Interestingly,
the perturbative unitarity constraint (shown as dark grey) in
Eq. (30) significantly shortens the degenerate ‘neck’ region
that appears exactly at mh/2. Most notably, this is in contrast
with the scalar Higgs portal model [78,79] where no such
constraint exists.

The high-mass region contains a set of solutions at mV 	
10 TeV and λhV � 1, which are constrained by the relic
density from below and direct detection from the left. This
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Fig. 1 Profile likelihood in the (mV , λhV ) plane for vector DM. Con-
tour lines show the 1 and 2σ confidence regions. The left panel gives
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star shows the best-fit point, and the edges of the preferred parame-
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second island is prominent in both our previous studies of
the scalar Higgs portal model [78,79] as well as other stud-
ies of the vector Higgs portal [51]. The precise extent of this
region depends on the upper bound imposed on λhV to reflect
the breakdown of perturbativity. While the constraint that we
apply ensures that perturbative unitarity is not violated [131],
higher-order corrections may nevertheless become impor-
tant in this region. The perturbative unitarity constraint from
Eq. (30) excludes solutions that would otherwise exist in a
separate triangular region at mχ 	 mh , λhV 	 1.

In Table 6, we show a breakdown of the contributions to
the likelihood at the best-fit point, which lies on the lower
end of the resonance region at λhV = 4.9 × 10−4 and mV =
62.46 GeV. If we demand that vector singlet DM constitutes
all of the observed DM, by requiring �V h2 to be within 1σ

of the observed Planck relic abundance, the best-fit point
remains almost unchanged, at λhV = 4.5 × 10−4 and mV =
62.46 GeV. We give details of these best-fit points, along with
the equivalent for fermion models, in Table 7.

In Fig. 2, we show the relic density of the vector model
(top), as well as the cross-sections relevant for direct (cen-
tre) and indirect detection (bottom), all plotted as a function
of mass. Only models along the lower-λhV edge of the two
likelihood modes have relic densities equal to the observed
value. Larger values of λhV result in progressively larger
annihilation cross-sections and therefore more suppression
of the relic density, cancelling the corresponding increase in
σ SI
p and resulting in an essentially constant rescaled cross-

section f ·σ SI
p ∼ 10−45 cm−2 in the remaining allowed high-

mass region. Future direct detection experiments such as LZ
[138] will be able to probe the high-mass region in its entirety.
However, the best-fit point – near the bottom of the resonance
region – will remain out of reach. Future indirect searches,
such as the Cherenkov Telescope Array (CTA)10 [139] will
also be able to probe large amounts of the high-mass region;
however it does not have the exclusion power that direct
detection does for Higgs portal models. Again, the best-fit
point remains out of reach.

5.1.2 Majorana fermion model

We show profile likelihoods in the (mχ , λhχ/Λχ) plane in
Fig. 3, with the low-mass region in the left panel and the full
mass region in the right panel. Here, there are no longer two
distinct solutions: the resonance and high mass regions are
connected. From the left panel in Fig. 4, where we plot the
profile likelihood in the (mχ , ξ) plane, we can see that these
regions are connected by the case where the portal interac-

10 The CTA projections plotted in Fig. 2 assume an Einasto density pro-
file, and are based on 500 h of observations of the Galactic centre [139],
with no systematic uncertainties. They should therefore be considered
optimistic [140,141].
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Fig. 2 Profile likelihoods for vector DM in planes of observable quan-
tities. Top: relic density. Centre: spin-independent WIMP-proton cross-
section, where solid lines show exclusions from PandaX 2017 [88] and
XENON1T 2018 [89], and the dashed line shows the expected sensi-
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Fig. 4 Profile likelihood in the (mχ , ξ) and (ξ, λhχ/Λχ) planes of the Majorana fermion model. Contour lines show the 1 and 2σ confidence
regions. The white star shows the best-fit point

tion is purely pseudoscalar, ξ = π/2, leading to an almost
complete suppression of constraints from the direct detection
experiments, as given in Eq. (25).

The high mass region prefers ξ ∼ π/2, with a wider
deviation from π/2 permitted as mχ is increased, due to
direct detection constraints, which become less constrain-
ing at higher WIMP masses. There is an enhancement in the
permitted range of mixing angles at mχ � mh , due to the
contact term (∝ χχhh), where DM annihilation to on-shell
Higgses reduces the relic density, providing another mecha-
nism for suppressing direct detection signals, thus lifting the
need to tune ξ .

The results are roughly symmetric about ξ = π/2, how-
ever due to odd powers of cos ξ in the annihilation cross-

section (see “Appendix B”), there is a slight asymmetry for
masses above mh . This is most clearly seen in the triangular
‘wings’ at mχ � mh in Fig. 4 where there are more solutions
for ξ > π/2 than for ξ < π/2.

In the resonance region, we see the same triangular region
as in the vector DM case: bounded from below by the relic
density, and from the upper-left by the Higgs invisible width.
However, in contrast to the vector DM case where direct
detection limits squeeze the allowed region from the upper
right, the addition of the mixing angle ξ as a free parameter
allows for the fermionic DM models to escape these con-
straints. As the pseudoscalar coupling is increased and the
scalar coupling is correspondingly decreased, the SI cross-
section becomes steadily more q2-suppressed, as seen in
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Fig. 5 Same as Fig. 2 but for Majorana fermion DM. Again, f ≡
�χ/�DM. For illustration, as there is a q2-suppression in the spin-
independent cross-section (see Eq. 25), we show σSI computed at a
reference momentum exchange of q = 50 MeV

Eq. (25). Noting that, the neck region at mχ = mh/2 is less
well-defined than in the vector and scalar DM cases above
the triangle region. Notably however, as the SI cross-section
becomes steadily moreq2-suppressed, the annihilation cross-
section becomes less p-wave suppressed (Eq. 14), and indi-
rect detection comes to dominate the constraint at the edge
of the allowed parameter space just above the resonance.

In the low-mass resonance region, virtually all values of
the mixing angle are permitted, seen clearly in the left panel
of Fig. 4, as even purely scalar couplings are not sufficient for
direct detection to probe the remaining parameter space. The
right panel also shows this in the lower ‘bulb’: couplings
between 10−3 and 10−5 GeV−1 are only permitted in the
resonance region, without any constraint on the mixing angle.

In the high-mass region, we see that unlike the vector DM
case, a wide range of WIMP masses between 100 GeV and
10 TeV are acceptable, with degenerate maximum likelihood.
This is again due to the q2-suppression of the direct detection
constraints when considering all possible values of ξ . The
large triangular high-mass region is constrained by the EFT
validity constraint from above (highlighted in dark grey) and
the relic density constraint from below.

In Fig. 5, we show the relic density (top) and scaled
cross-sections for direct (centre) and indirect detection (bot-
tom). For plotting purposes, we compute σSI at a reference
momentum exchange of q = 50 MeV, typical of direct detec-
tion experiments. Substantial fractions of allowed parameter
space lie close to current limits, but unsurprisingly, large por-
tions of the parameter space will not be probed by future
direct detection experiments, due to the momentum suppres-
sion. This is also true for indirect detection, where cross-
sections are velocity suppressed. However, given that the
two suppressions have opposite dependences on the mix-
ing parameter, the two probes will be able to compensate for
each others’ weaknesses to a certain extent.

Table 6 shows a breakdown of the contributions to the
likelihood at the best-fit point, which lies in the high mass
region at mχ = 138.4 GeV, λhχ/Λχ = 4.5 × 10−2 GeV−1

and ξ = 1.96 rad (Table 7). When we demand that χ saturates
the observed DM relic abundance, the best-fit point shifts to
the lower end of the resonance region at mχ = 61.03 GeV,
λhχ/Λχ = 6.3 × 10−6 GeV−1 and ξ = 1.41 rad.

5.1.3 Dirac fermion model

The results from our low- and high-mass scans of the Dirac
fermion model are very similar to those for the Majorana
model. We therefore only show results in the (mψ, λhψ/Λψ)

plane in Fig. 6.
In Table 6, we show a breakdown of the contributions to

the likelihood at the best-fit point. This point lies towards the
upper end of the high mass region, where λhψ/Λψ = 6.3 ×
10−4 GeV−1, mψ = 9.95 TeV and ξ = 2.06 rad. If ψ makes
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Fig. 6 Profile likelihood in the (mψ, λhψ/Λψ) plane for Dirac fermion
DM. Contour lines show the 1 and 2σ confidence regions. The left panel
gives an enhanced view of the resonance region around mψ ∼ mh/2.
The right panel shows the full parameter space explored in our fits. The
greyed out region shows where our approximate bound on the validity of

the EFT is violated, the white stars show the best-fit point for each mass
region, and the edges of the preferred parameter space along which the
model reproduces the entire observed relic density are indicated with
orange annotations

Table 6 Contributions to the
delta log-likelihood (Δ lnL) at
the best-fit point for the vector,
Majorana and Dirac DM,
compared to an ‘ideal’ case,
both with and without the
requirement of saturating the
observed relic density (RD).
Here ‘ideal’ is defined as the
central observed value for
detections, and the
background-only likelihood for
exclusions. Note that many
likelihoods are dimensionful, so
their absolute values are less
meaningful than any offset with
respect to another point (for
more details, see Sect. 8.3 of
Ref. [80])

Log-likelihood contribution Ideal Δ lnL
Vμ Vμ + RD χ χ + RD ψ ψ + RD

Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.242

Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000

γ rays (Fermi-LAT dwarfs) −33.244 0.105 0.105 0.102 0.120 0.129 0.134

LUX 2016 (Run II) − 1.467 0.003 0.003 0.020 0.000 0.028 0.028

PandaX 2016 −1.886 0.002 0.002 0.013 0.000 0.018 0.017

PandaX 2017 −1.550 0.004 0.004 0.028 0.000 0.039 0.039

XENON1T 2018 −3.440 0.208 0.208 0.143 0.211 0.087 0.087

CDMSlite −16.678 0.000 0.000 0.000 0.000 0.000 0.000

CRESST-II −27.224 0.000 0.000 0.000 0.000 0.000 0.000

PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DarkSide-50 2018 −0.090 0.000 0.000 0.002 0.000 0.005 0.005

IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001

Hadronic elements σs , σl −6.625 0.000 0.000 0.000 0.000 0.000 0.000

Local DM density ρ0 1.142 0.000 0.000 0.000 0.000 0.000 0.000

Most probable DM speed vpeak −2.998 0.000 0.000 0.000 0.000 0.000 0.000

Galactic escape speed vesc −4.382 0.000 0.000 0.000 0.000 0.000 0.000

αs 5.894 0.000 0.000 0.000 0.000 0.000 0.000

Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000

Total 86.051 0.322 0.428 0.308 0.439 0.307 0.553

up all of the DM, the best-fit point shifts slightly to the bottom
of the high mass triangle at λhψ/Λψ = 3.6 × 10−4 GeV−1,
mψ = 9.9 TeV and ξ = 2.07 rad. We compare the locations
of these best-fit points to those from the vector and Majorana
models in Table 7.

5.1.4 Goodness of fit

In Table 6, we show the contribution to the log-likelihood
for the best-fit points of the vector, Majorana and Dirac DM
models. By equating Δ lnL to half the “likelihood χ2” of
Baker and Cousins [142], we can compute an approximate
p-value for each best-fit point against a null hypothesis. We
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Table 7 Details of the best-fit parameter points for vector, Majorana
and Dirac DM Higgs portal models, both with and without the require-
ment that the predicted relic density is within 1σ of thePlanck observed
value. Here, X ∈ {V, χ, ψ} and the dimensionful nature of the coupling

is implied for the fermion cases. We do not include the values of nui-
sance parameters, as they do not differ significantly from the central
values of their likelihoods

Model Relic density condition λhX mX (GeV) ξ (rad) �Xh2 Δ lnL
Vector �V h2 � �DMh2 4.9 × 10−4 62.46 – 9.343 × 10−2 0.322

�V h2 ∼ �DMh2 4.5 × 10−4 62.46 – 1.128 × 10−1 0.428

Majorana �χh2 � �DMh2 4.5 × 10−2 GeV−1 138.4 1.96 6.588 × 10−8 0.308

�χh2 ∼ �DMh2 6.3 × 10−6 GeV−1 61.03 1.41 1.128 × 10−1 0.439

Dirac �ψh2 � �DMh2 6.3 × 10−4 GeV−1 9.950 × 103 2.06 3.813 × 10−2 0.307

�ψh2 ∼ �DMh2 3.6 × 10−4 GeV−1 9.895 × 103 2.07 1.155 × 10−1 0.553

take this null to be the ‘ideal’ case, which we define as the
background-only contribution in the case of exclusions, and
the observed value in the case of detections.

For the vector DM model, using either one or two effective
degrees of freedom, we find a p-value between roughly 0.4
and 0.7. Requiring the relic density of Vμ to be within 1σ

of the Planck value, the p-value becomes p ≈ 0.35–0.65.
For both the Majorana and Dirac fermion models, we also
find p ≈ 0.4–0.7, falling to 0.35–0.65 with the relic density
requirement. All of these are completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-tuning,
as upon integration of the posterior, regions with a lim-
ited ‘volume of support’ over the parameters that were inte-
grated over are suppressed.11 As usual, the marginal poste-
riors depend upon the choice of priors for the free model
parameters, which are summarised in Tables 3 and 4. We
choose flat priors where parameters are strongly restricted
to a particular scale, such as the mixing parameter and the
DM mass in scans restricted to the low-mass region. For
other parameters, in order to avoid favouring a particular
scale we employ logarithmic priors. Note that in this treat-
ment for the fermionic DM models we have not chosen priors
that favour the CP-conserving case. We instead present pos-
teriors for this well motivated case separately, and later in
Sect. 6 we perform a Bayesian model comparison between
a CP-conserving fermionic DM model and the full model
considered here.

5.2.1 Vector model

To obtain the marginal posterior distributions, we perform
separate T-Walk scans for the low and high mass regimes,

11 By ‘volume of support’, we mean the regions of the parameter space
that have a non-negligible likelihood times prior density.

shown in Fig. 7. Within each region we plot the relative pos-
terior probability across the parameter ranges of interest.

In the left panel of Fig. 7, the scan of the resonance region
shows that the neck region is disfavoured after marginalising
over the nuisance parameters, particularly mh , which sets
the width of the neck. This dilutes the allowed region due to
volume effects.

In the full-mass-range scan, the fine-tuned nature of the
resonance region is clearly evident. Although the best-fit
point in the profile likelihood lies in the resonance region,
the posterior mass is so small in the entire resonance region
that it drops out of the global 2σ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case of
Majorana fermion DM, the presence of the mixing parame-
ter ξ leads to a substantial increase in the preferred parameter
region (see Fig. 8). In the resonance region (left panel), there
is now a thin neck-like region at mχ ≈ mh/2. This neck
region is the same one seen in both the scalar and vector
profile likelihoods, but falls within the 2σ credible region
of the Majorana posterior, as the admittance of ξ reduces
direct detection constraints (Eq. 25), softening the penali-
sation from integrating over nuisance parameters. When we
compute the posterior over the full mass range, we once again
find the resonance region to be somewhat disfavoured, but
now there are large parameter regions with high posterior
probabilities for mχ > mh .

Nevertheless, direct detection does have a significant
impact on the high-mass region, in spite of the mixing param-
eter ξ . While the 2σ contour is roughly triangular, the points
with highest posterior probability (i.e. within the 1σ con-
tours) are split into two smaller triangles. The approximately
rectangular region that separates these two triangular regions
is disfavoured by the combination of volume effects and
direct detection, which requires ξ to be tuned relatively close
to π/2.
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Fig. 7 Marginalised posterior distributions in the (mV , λhV ) plane for
vector DM. Contour lines show the 1 and 2σ credible regions. The left
panel gives the result of a scan restricted to the resonance region around
mV ∼ mh/2. The right panel shows a full-range parameter scan. The
low-mass mode is sufficiently disfavoured in the full-range scan that it
does not appear in the righthand panel. The greyed out region shows

points that do not satisfy Eq. (30). The posterior mean is shown by a
white circle, while the maximum likelihood point is shown as a white
star. The edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange
annotations
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Fig. 8 Marginalised posterior distributions in the (mχ , λhχ/Λχ) plane
for Majorana fermion DM. Contour lines show the 1 and 2σ credible
regions. The left panel gives the result of a scan restricted to the reso-
nance region around mχ ∼ mh/2. The right panel shows a full-range
parameter scan. The greyed out region shows where our approximate

bound on the validity of the EFT is violated. The posterior mean is
shown by a white circle, while the maximum likelihood point is shown
as a white star. The edges of the preferred parameter space along which
the model reproduces the entire observed relic density are indicated
with orange annotations

To better understand the role of tuning in ξ in the pro-
cess of marginalisation, we show the marginalised posterior
in the (mχ , ξ) and (ξ, λhχ/Λχ) planes in Figs. 9 and 10,
respectively. Figure 9 provides a clear understanding of the
differences between the marginalised posteriors in Fig. 8 and
the profile likelihood in Fig. 3. In the resonance region (left
panel), the neck region is less prominent in the marginalised
posterior because direct detection limits become very con-
straining as soon as mχ > mh/2 and the mixing parameter
is forced to be very close to π/2. In the full-range scan (right
panel) we see the annihilation channel χχ → hh open up,

thus allowing a greater range of values for ξ , leading to an
enhancement in the marginalised posterior probability. This
clearly corresponds to the 1σ triangular region in the mass-
coupling plane at mχ ≈ mh , in the right hand panel of Fig. 8.

In the left panel of Fig. 10, which focuses on the reso-
nance region, we see two separate solutions for the mixing
angle and coupling: the larger island at lower coupling cor-
responds to the triangular region at mχ < mh/2, permitting
all values of ξ , and the thinner solution at larger couplings
reflects the solution atmχ > mh/2, where the scalar coupling
between the Higgs and the Majorana DM needs to be suffi-
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Fig. 9 Marginalised posterior distributions in the (mχ , ξ) plane for
Majorana fermion DM. Contour lines show the 1 and 2σ credible
regions. The left panel gives the result of a scan restricted to the reso-

nance region around mχ ∼ mh/2. The right panel shows a full-range
parameter scan. The posterior mean is shown by a white circle, while
the maximum likelihood point is shown as a white star
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Fig. 10 Marginalised posterior distributions in the (λhχ/Λχ , ξ) plane
for Majorana fermion DM. Contour lines show the 1 and 2σ credible
regions. The left panel gives the result of a scan restricted to the reso-

nance region around mχ ∼ mh/2. The right panel shows a full-range
parameter scan. The posterior mean is shown by a white circle, while
the maximum likelihood point is shown as a white star

ciently small (i.e. ξ ∼ π/2) to evade direct detection limits.
The two regions appear disconnected because the interme-
diate parameter points require so much tuning that they fall
outside of the 2σ credible regions upon marginalisation. Con-
sidering the full mass range (see the right panel in Fig. 10),
we find that the lower ‘bulb’ seen in the profile likelihood
in Fig. 4 is hardly visible in the marginalised posterior when
integrating over the nuisance parameters, due to a lower pos-
terior volume in the resonance region.

We can condense the information from Figs. 9 and 10
further by marginalising over all parameters except for ξ ,
thus obtaining a 1D posterior probability. The result is shown
in Fig. 11, where the preference for ξ ≈ π/2 becomes clear.
In other words, for the case of Majorana fermion DM, there is
a strong preference for permitting an increased admixture of

pseudoscalar-type couplings to suppress the constraints from
direct detection and the relic density, due to a momentum and
velocity suppressed cross-section respectively.

For comparison, we consider the CP-conserving case with
fixed ξ = 0 in Fig. 12. As expected from the discussion
above, we find that the permitted parameter space shrinks
vastly with respect to the case where the mixing parame-
ter is allowed to vary (see Fig. 8). In the resonance region
(left panel), we see that direct detection, the invisible Higgs
width and relic density impose strong constraints from the
left, upper-left and below, respectively. No neck region exists
because the direct detection constraints are too strong, over-
lapping with constraints on the invisible width of the Higgs
boson. In the full-range scan (right panel), we find that the
only surviving parameter space is split into the resonance
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Fig. 11 Marginalised posterior distribution for the mixing angle ξ for
Majorana fermion DM in the full-mass-range scan. The posterior mean
is shown by a blue circle, while the maximum likelihood point is shown
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region, and two small islands, at mχ ∼ mh and mχ ∼ 5 TeV.
These islands are constrained by direct detection and the EFT
validity requirement. Both will be ruled out by the next gen-
eration of direct detection experiments, if no DM signal is
observed.

Our analysis of the Dirac fermion model parameter space
is identical to the Majorana fermion one, whether ξ is fixed
or left as a free parameter, so to avoid repetition we omit
those results.

It should be clear from the comparison between Figs. 8
and 12 that the CP-conserving case (ξ = 0) is strongly
disfavoured relative to the case where ξ is allowed to vary.

We will make this qualitative observation more precise in the
following section.

6 Bayesian model comparison

6.1 Background

To be able to comment on the relative plausibility of the
different Higgs portal models, we must also perform a quan-
titative model comparison. To do this, we compute Bayes
factors for pairs of models, say M1 and M2 as [143–145],

B ≡ Z(M1)

Z(M2)
, (34)

where Z(M) is the evidence of a model M. This is the
integral of the likelihood of the observed data L(D|θ) over
the possible parameter values θ in that model, weighted by
the prior on the parameters P(θ),

Z(M) ≡
∫

L(D|θ)P(θ) dθ . (35)

We perform this integration using MultiNest [133,134],
which is designed to calculate the Bayesian evidence. The
final odds ratio (of the probability that M1 is correct to the
probability that M2 is correct) is the product of the Bayes
factor and the ratio of any prior beliefs P(M1)/P(M2) that
we might have in these models,

P(M1|D)

P(M2|D)
= B

P(M1)

P(M2)
. (36)
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Fig. 12 Marginalised posterior distributions for Majorana fermion DM
with fixed ξ = 0. Contour lines show the 1 and 2σ credible regions.
The left panel gives the result of a scan restricted to the resonance
region around mχ ∼ mh/2. The right panel shows a full-range param-

eter scan. The posterior mean is shown by a white circle, while the
maximum likelihood point is shown as a white star. The edges of the
preferred parameter space along which the model reproduces the entire
observed relic density are indicated with orange annotations
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In our analysis, we take the prior probability of every model
to be equal such that the factor,

P(M1)/P(M2) = 1 (37)

for all pairs of models. Thus, the odds ratio is simply given
by the Bayes factor. Note that even when computing the evi-
dence for or against CP violation in the fermionic model
below, we do not apply any further prior in favour of CP
conservation. The volume integrals involved in the Bayes
factor automatically implement the concept of naturalness
via Occam’s razor, penalising models with more free param-
eters if they do not fit the observed data any better than models
with less parameters.

From Eq. (35), we can see that the evidence of a model
depends on the prior choices for its parameters. This prior on
the model parameters (along with the priors on the models
themselves) makes the results of Bayesian model comparison
inherently prior-dependent. However, the influence of com-
mon parameters treated with identical priors in both models
approximately cancels when taking the ratio of evidences,
as in Eq. (34). The overall prior dependence of the Bayes
factor can thus be minimised by minimising the number of
non-shared parameters between the models being compared.
The best case is where one model is nested inside the other,
and corresponds simply to a specific choice for one of the
degrees of freedom in the larger model. In this case, the lead-
ing prior dependence is the one coming from the chosen prior
on the non-shared degree of freedom. Thus, we first investi-
gate the question of CP violation in the Higgs portal, which
we can address in this manner, before going on to the more
prior-dependent comparison of the broader models.

6.2 CP violation in the Higgs portal

We perform Bayesian model comparison for the fermionic
Higgs portal DM, and nested variants of it, by comparing
the CP-conserving case (ξ = 0) to the model where the CP
phase of the portal coupling is allowed to vary freely. Due to
the similarity of the likelihood for the Dirac and Majorana
fermion models, we do this for the Majorana fermion model
only. We carry out this exercise for two different parametri-
sations of the model, corresponding to two different priors
on the larger parameter space in which the CP-conserving
scenario is nested:

1. Assuming the parametrisation that we have discussed
thus far for the Majorana model, taking a uniform prior
for ξ and a logarithmic prior for λhχ/Λχ . This corre-
sponds to the assumption that some single mechanism
uniquely determines the magnitude and phase of both
couplings.

2. Assuming that the scalar and pseudoscalar couplings
originate from distinct physical mechanisms at unrelated
scales, such that they can be described by independent
logarithmic priors. The post-EWSB Lagrangian in this
parametrisation contains the terms

Lχ ⊃ −1

2

(
gs

Λs
χχ + gp

Λp
χ iγ5χ

) (
v0h + 1

2
h2

)
.

(38)

In this case, the parameters ξ and λhχ/Λχ from the first
parametrisation are replaced by gs/Λs and gp/Λp. In
this parametrisation, the Bayes factor may be sensitive
to the range of the prior for the couplings, as the nor-
malisation factor does not cancel when computing the
Bayes factor for the CP-conserving scenario. We choose
−6 ≤ log10(g/Λ) ≤ 0 for the couplings when comput-
ing the Bayes factors in this parametrisation, in line with
the prior that we adopt for λhχ/Λχ in parametrisation
1.

The CP-conserving model is nested within both of these mod-
els, as ξ = 0 in the first, and as gp/Λp = 0 in the second
(although the exact limit of ξ = 0 is not contained within
our chosen prior for the second parameterisation, seeing as
we choose a logarithmic prior on gp). As stated in Eq. 37, the
ratio of the prior probabilities for these models is taken to be
1 here, and is not related to priors of parameters discussed
above. We are comparing two separate models: one with a
pure CP-even coupling between the DM fermion and the
Higgs and another model where there is also a pseudoscalar
coupling, which a priori is very unlikely to be zero.

In Table 8, we give the odds ratios against the CP-
conserving case in each of these parametrisations. The value
given in the final column of this table is the ratio of the evi-
dence for the CP-violating model to the CP-conserving case.
Depending on the choice of parametrisation, we see that there
is between 140:1 and 70:1 odds against the CP-conserving
version of the Majorana Higgs portal model. The similarity in
order of magnitude12 between these two results is expected,
as it reflects the relatively mild prior-dependence of the Bayes
factor when performing an analysis of nested models that
differ by only a single parameter. Given the similarity of the
likelihood functions in the Majorana and Dirac fermion mod-
els, the odds against the pure CP-conserving version of the
Dirac fermion Higgs portal model can also be expected to be
very similar.

The odds ratio tells us the relative plausibility of one
model relative to the other. According to the standard scale
frequently used for interpreting Bayesian odds ratios (the

12 Odds ratios are best conceived of in a logarithmic sense, so a factor
of 2 difference is of negligible importance.
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Table 8 Odds ratios for CP violation for the singlet Majorana fermion
Higgs portal model. Here the odds ratios are those against a pure CP-
even Higgs portal coupling, as compared to two different parametrisa-
tions (and thus priors) of the model in which the CP nature of the Higgs
portal can vary freely

Model Comparison model and priors Odds

ξ = 0 mχ : log λhχ/Λχ : log ξ : flat 70:1

gp/Λp = 0 mχ : log gs/Λs: log gp/Λp: log 140:1

Jeffreys scale; [143,144]), this constitutes strong evidence
against pure CP-even coupling in fermionic Higgs portal
models. The preference for a CP-violating coupling can also
be seen in Fig. 11, where there is a clear preference for
ξ = π/2, whereas the CP-even coupling falls outside of
the 2σ credible region.

6.3 Scalar, vector, Majorana or Dirac?

We also carry out model comparison between the different
Higgs portal models: scalar, vector, Majorana and Dirac. As
these models are not nested, they each have unique parame-
ters. This means that there is no a priori relationship between
their respective parameters that would allow the definition of
equivalent priors on, e.g., masses or couplings in two different
models. The prior dependence of the Bayes factor is there-
fore unsuppressed by any approximate cancellations when
taking the ratio of evidences in Eq. (34). We caution that the
resulting conclusions are consequently less robust than for
the nested Majorana models. For this exercise, we update
the fit to the scalar model from Ref. [78] to incorporate the
likelihood function and nuisances that we use in the current
paper.

We find that the scalar Higgs portal model has the largest
evidence value in our scans, but is comparable to the fermion
DM models. In Table 9, we give the odds ratios against each
of the Higgs portal models, relative to the scalar model. The
data have no preference between scalar and either form of
fermionic Higgs portal model, with odds ratios of 1:1. The
vector DM model is disfavoured with a ratio of 6:1 compared
to the scalar and fermion models; this constitutes ‘positive’
evidence against the vector DM model according to the Jef-
freys scale, though the preference is only rather mild. Overall,
there is no strong preference for Higgs portal DM to trans-
form as a scalar, vector or fermion under the Lorentz group.

As we find no strong preference between the different
Higgs portal DM models using logarithmic priors, we omit a
dedicated prior sensitivity analysis. If different assumptions
on priors were to yield a stronger preference for any of the
models under consideration, the only conclusion would be
that such a preference is not robust to changes in the prior. The
situation is hence different from the one in Sect. 6.2, where

Table 9 Odds ratios against each singlet Higgs portal DM model with
Z2 symmetry, relative to the scalar model

Model Parameters and priors Odds

S mS : log λhS : log 1:1

Vμ mV : log λhV : log 6:1

χ mχ : log λhχ/Λχ : log ξ : flat 1:1

ψ mψ : log λhψ/Λψ : log ξ : flat 1:1

we did find a strong preference against the CP-conserving
model, which we showed to be largely independent of the
assumed prior.

7 Conclusions

In this study we have considered and compared simple
extensions of the SM with fermionic and vector DM par-
ticles stabilised by a Z2 symmetry. These models are non-
renormalisable, and the effective Higgs-portal coupling is the
lowest-dimension operator connecting DM to SM particles.
Scenarios of this type are constrained by the DM relic den-
sity predicted by the thermal freeze-out mechanism, invisible
Higgs decays, and direct and indirect DM searches. Pertur-
bative unitarity and validity of the corresponding EFT must
also be considered.

We find that the vector, Majorana and Dirac models are all
phenomenologically acceptable, regardless of whether or not
the DM candidate saturates the observed DM abundance. In
particular, the resonance region (where the DM particle mass
is approximately half the SM Higgs mass) is consistent with
all experimental constraints and challenging to probe even
with projected future experiments. On the other hand, larger
DM masses are typically tightly constrained by a combina-
tion of direct detection constraints, the relic density require-
ment and theoretical considerations such as perturbative uni-
tarity. Our results show that with the next generation of direct
detection experiments (e.g., LZ [138]), it will be possible to
fully probe the high-mass region for both the vector and CP-
conserving fermion DM model. Future indirect experiments
such as CTA [139] will be sensitive to parts of viable param-
eter space at large DM masses, but will have difficulty in
probing the resonance region.

An interesting alternative is fermionic DM with a CP-
violating Higgs portal coupling, for which the scattering rates
in direct detection experiments are momentum-suppressed.
By performing a Bayesian model comparison, we find that
data strongly prefers the model with CP violation over the
CP-conserving one, with odds of order 100:1 (over several
priors). This illustrates how increasingly tight experimental
constraints on weakly-interacting DM models are forcing
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us to abandon the simplest and most theoretically appealing
models, in favour of more complex models.

We have also used Bayesian model comparison to deter-
mine the viability of the scalar Higgs portal model relative
to the fermionic and vector DM models. We find a mild
preference for scalar DM over vector DM, but no particu-
lar preference between the scalar and the fermionic model.
This conclusion may however quickly change with more
data. Stronger constraints on the Higgs invisible width will
further constrain the resonance region and the combination
of these constraints with future direct detection experiments
may soon rule out the vector model.

Our study clearly demonstrates that, in the absence of pos-
itive signals, models of weakly-interacting DM particles will
only remain viable if direct detection constraints can be sys-
tematically suppressed. This makes it increasingly interest-
ing to study DM models with momentum-dependent scatter-
ing cross-sections. A systematic study of such theories will
be left for future work. Conversely, Higgs portal models pro-
vide a natural framework for interpreting signals in the next
generation of direct and indirect detection experiments. An
advanced framework for such a reinterpretation using Fisher
information will be implemented in future versions of GAM-
BIT.
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Appendix A: New features in DDCalc

In this appendix, we discuss the new features of DDCalc
2.0.0, namely the treatment of general non-relativistic
effective operators and the extended interface for imple-
menting new analyses. For a more detailed illustration of
the new features, we refer to the example programs in
DDCalc/examples/, which are provided in bothC++ and
Fortran90.13 For an introduction into the basic structure
of DDCalc, we refer to Ref. [101].

A.1: Non-relativistic effective operators

Up to second order in velocity and momentum transfer, elas-
tic scattering of DM particles off nucleons via the exchange of
a heavy mediator can be fully described by a set of 18 effec-
tive operators. These operators are conventionally denoted
by O1, O3, …, O15, O17, O18 (note that O2 and O16 are
commonly omitted), as well as q2O1 and q2O4 [146–148].
Each of these operators can arise independently for scatter-
ing off protons and neutrons or, equivalently, for the isoscalar
(τ = 0) and the iso-vector (τ = 1) current. As the interpre-
tation of these operators also depends on the total spin sχ of
the DM particle, the interactions of DM are fully specified
by a total of 37 parameters.

In order to consider a WIMP with general coupling struc-
ture, the user first initialises a generic WIMP object and then
passes this object to specialised functions that define the cou-
pling structure. For example, the following code initialises a
WIMP with mass 50 GeV and spin 1/2, and sets the isoscalar
and iso-vector coefficients of the operator O3 to 0.1 GeV−2

and 0.2 GeV−2, respectively:14

The second argument of the final function corresponds to
the index of the operator to be set, with q2O1 and q2O4 being
denoted by −1 and −4, respectively.

DDCalc then automatically performs the matching onto
the appropriate nuclear response functions, which are eval-
uated based on the parametrisation and the tabulated values
provided in Ref. [147]. These tables are provided in the sub-
folder DDCalc/data/Wbar/ for a range of relevant iso-

13 Note that DDCalc 2.0.0 no longer maintains a command line inter-
face, so that the example files are in fact the only executables that are
generated when compiling DDCalc.
14 The normalisation of the non-relativistic operators corresponds to
a DM particle that is not self-conjugate. Hence, for a self-conjugate
particle all operator coefficients have to be multiplied by a factor of
two.
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topes. Additional files can be provided to implement addi-
tional isotopes, and existing files can be replaced to study
form factor uncertainties.

Of course, it is still possible to specify the WIMP coupling
structure in the traditional way, e.g. by providing the effec-
tive couplings for spin-independent (SI) and spin-dependent
(SD) interactions with protons and neutrons. In this case,
DDCalc 2.0.0 will by default use the conventional form
factors (i.e. the Helm form factor for SI interactions and the
form factors from Ref. [149] for SD interactions, which can
be found in DDCalc/data/SDFF/). In order to use the
form factors from Ref. [147] also for standard interactions,
one can set the global option PreferNewFF contained in
DDCalc/src/DDConstants.f to true.

Let us finally emphasize that for general non-relativistic
operators, the differential event rate depends not only on the
conventional velocity integral

∫
f (v)/v d3v but also on the

second velocity integral
∫

v f (v) d3v. As before, these veloc-
ity integrals are by default evaluated using the Standard Halo
Model (SHM) with parameters that can be set externally. It is
however also possible to provide tabulated velocity integrals
in order to study velocity distributions that differ from the
SHM. An illustration of this feature is provided in the exam-
ple files DDCalc/examples/DDCalc_exclusionC.
cpp andDDCalc/examples/DDCalc_exclusionF.
f90, which demonstrates how to calculate an exclusion limit
for a given WIMP model and a given velocity distribution.

A.2: Extended detector interface

The need to implement increasingly complex direct detec-
tion experiments has led to substantial extensions of how
experiments can be defined in DDCalc 2.0.0. The details
of this new interface are described in DDCalc/src/
DDDetectors.f, but we review the most important new
features here.

First of all, it is now possible to define a number of dif-
ferent signal regions for each experiment and to specify the
number of observed events and expected background events
for each signal region. The simplest application is the imple-
mentation of a binned analysis, but it is also possible to define
more complex signal regions, provided they can be charac-
terised by a simple acceptance function ε(ER), which quan-
tifies the probability that a nuclear recoil with physical recoil
energy ER will lead to a signal within the signal region.
DDCalc 2.0.0 will then determine the expected signal in
each signal region and calculate the binned Poisson likeli-
hood. If the expected background in a signal region is set
to zero, DDCalc 2.0.0 will interpret this to mean that the
background level is unknown. In this case, the bin will only
contribute to the total likelihood if the predicted number of
signal events exceeds the number of observed events.
The example files DDCalc/examples/DDCalc_

exampleC.cpp and DDCalc/examples/DDCalc_
exampleF.f90 illustrate how the predicted number of
events in each signal region, as well as the resulting like-
lihoods, can be evaluated for specific parameter points.

Alternatively, one can also analyse experiments with
unknown backgrounds using the optimum interval method
by specifying the bins in such a way that their boundaries
correspond to the energies of the observed events. Note that
this means that it is typically not possible to use the binned
Poisson method and the optimum interval method for the
same choice of binning. A user wishing to compare these
two analysis strategies should therefore implement them as
separate experiments.

A related new feature is that it is now possible in DDCalc
2.0.0 to specify separate efficiency functions for each ele-
ment (or indeed each isotope) in the target material. This
is necessary for example if the efficiency of analysis cuts
depends on the type of recoiling nucleus (as in CRESST) or
if the low-energy threshold differs for different elements (as
in PICO). For experiments with several different elements
and several different signal regions, the number of efficiency
functions that need to be specified can potentially be quite
large. The preferred way to specify efficiency functions in
DDCalc 2.0.0 is to provide external files with tabulated val-
ues, which by default are stored in DDCalc/data/. An
illustration of this new structure can be found in the defini-
tion of the CRESST-II experiment (see below).

It is important to emphasize that the grid used to define
the efficiency functions is also used to evaluate the other
contributions to the differential event rate (i.e., form fac-
tors and velocity integrals). The number of grid points used
in the definition of the efficiency functions directly influ-
ences the computation time and the precision of the result.
In particular, it is essential to also provide a sufficiently
large number of grid points in energy ranges where the effi-
ciency is approximately constant. The function Retabula-
teEfficiency in DDCalc/src/DDDetectors.f can be
used to generate a fine efficiency grid from a coarse one,
using linear interpolation between the provided values.

A3: New experiments

DDCalc 2.0.0 ships with a broad range of new experimen-
tal analyses. In particular, there are now a number of low-
threshold experiments, so that DDCalc 2.0.0 can now also
be used to reliably calculate constraints on light DM. More-
over, we have implemented a number of planned experi-
ments, which can be used to derive projected sensitivities.

CRESST-II The CRESST-II results [91] are based on
52.2 kg days using the Lise detector module. Our implemen-
tation follows Refs. [150,151], i.e., we assume an energy
resolution of σE = 62 eV and take the cut survival probabil-
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ities from Ref. [150]. To avoid unnecessarily fine binning in
energy ranges where the expected signal rates are small, we
divide the energy range between 0.3 and 5.0 keV into 10 bins
of increasing size. In the absence of a background model, we
treat all observed events as potential signal events.

CDMSlite The analysis of CDMSLite is based on an expo-
sure of 70.14 kg days [90,152]. The energy-dependent signal
efficiency is taken from Ref. [90], which also describes the
procedure for converting nuclear recoil energies into electron
equivalent energies (eVee). We follow the same approach as
in Ref. [151] to determine the detector resolution, divide the
energy range from 60 to 500 eVee into 10 bins of increasing
size and assume no background model.

DarkSide-50 We implement the results from a search for
heavy DM particles in the DarkSide-50 detector based on a
total exposure of 19.6×103 kg days [93], taking the energy-
dependent acceptance function from Ref. [93].

PandaX-II Since the most recent data taking period of the
PandaX-II experiment (Run 10) has substantially lower back-
ground levels than previously analysed data sets [87,88],
we implement it as an independent experiment (called Pan-
daX_2017) rather than simply combining all runs. We use
the same detector efficiency for the new data set as for our
previous implementation of PandaX-II (see Ref. [101]) and
assume a background expectation of 1.55 events.15 It is then
straight-forward to perform a combination of the different
data sets by multiplying the individual likelihood functions.

XENON1T We use the same implementation of XENON1T
[89] as described in detail in Ref. [79]. To reduce background
levels, we focus on the central detector region with a mass of
0.65 t, and consider only events between the median of the
nuclear recoil band and the lower 2σ quantile. We further-
more divide this signal region into two energy bins, which
correspond to S1 ∈ [3 PE, 35 PE] and S1 ∈ [35 PE, 70 PE].
We estimate the expected backgrounds in the two bins to
be 0.46 and 0.34 events, respectively, compared to 0 and 2
observed events.

LZ Our implementation of the LZ experiment [153] fol-
lows Ref. [154]. In particular, we assume an exposure of
5.6 · 106 kg days with a resolution of σE/ER = 0.065 +
0.24 (1 keV/ER)1/2 and an acceptance of 50% for nuclear
recoils. We consider 6 evenly-spaced bins in the range from
6 to 30 keV and assume a background of 0.394 events per
bin.

PICO-500 Our implementation of PICO-500 follows the
information provided in Ref. [155]. PICO-500 plans to

15 The expected number of background events is quoted as 1.8 ± 0.5.
Assuming the uncertainty in this estimate to be Gaussian, the likelihood
is maximized for a background expectation of 1.8−0.52 = 1.55 events.

employ a C3F8 target with 250 L fiducial volume. Six live-
months of data will be taken with a low threshold of 3.2 keV,
which we implement using the same acceptance function as
for PICO-2L [156], while 12 live-months will be taken with
a threshold of 10 keV. We treat the two thresholds as two
separate bins, in which case the expected backgrounds are 3
and 0.85 events, respectively.

DARWIN The DARWIN experiment aims for a total expo-
sure of 7.3 · 107 kg days with 30% acceptance for nuclear
recoils and 99.98% rejection of electron recoils [157].
We assume an energy resolution of σE/ER = 0.05 +
(0.05 keV/ER)1/2 [158] and consider 5 equally-spaced bins
between 5 and 20 keV. The dominant background is due
to coherent neutrino-nucleus scattering, which we estimate
from Fig. 3 in Ref. [158].

DarkSide-20k We assume a total exposure of 3.65 · 107

kg days and estimate the energy resolution to be σE/ER =
0.05 + (2 keV/ER) [159]. To model the detector threshold,
we implement the acceptance function for the f200-cut from
Fig. 92 in Ref. [159]. We divide the energy range between 30
and 80 keV into 10 equally-spaced bins, and assume a back-
ground of 0.04 events per bin from instrumental background,
as well as a total of 1.6 events (with non-trivial energy depen-
dence) from coherent neutrino scattering, which we obtain
by rescaling the results from Ref. [160].

Note that the number of observed events in each bin must
be an integer in DDCalc, so it is typically not possible to set
the observed number of events equal to the expected number
of events in order to calculate the expected sensitivity of a
future experiment. By default, the observed number of events
is set to the integer closest to the background expectation, but
this introduces a bias for example if there is a large number of
bins with less than 0.5 expected background events. To accu-
rately calculate expected sensitivities, one should simulate
Poisson fluctuations in each bin, calculate the corresponding
exclusion limits, and then construct the median exclusion.
For an alternative approach, using Fisher information, we
refer to Ref. [161].

Lastly, in Fig. 13 we show a comparison of the upper
bounds on the spin-independent scattering cross-section
determined using DDCalc with the official limits obtained
by the respective collaborations. In all cases we find good
agreement, validating our implementions of the experimen-
tal likelihoods in DDCalc. Also for the planned experiments
described earlier we have confirmed that our sensitivity esti-
mates are in sufficient agreement with the expectations pub-
lished by the collaborations [153,155,157,159].
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Fig. 13 90% C.L. upper limits on the spin-independent DM-nucleon
scattering cross-section from CRESST-II, CDMSlite, DarkSide-50,
PandaX-II and XENON1T. The solid curves show the limits obtained
using DDCalc, while the dashed curves correspond to the limits derived
by the collaborations [88–91,93]. Note that close to threshold the exclu-
sion limits depend sensitively on the detector response and an accurate
modeling in DDCalc is very challenging

Appendix B: Annihilation cross-sections

In our study, the final states from the DM annihilation include
W+W−, Z Z , τ+τ−, t t̄ , bb̄, cc̄ and hh. For all final states
except hh, the DM annihilation proceeds solely via an s-
channel Higgs exchange. For massive gauge bosons, the anni-
hilation cross-section is

σvcms
rel = P(X)

s

8π
δiviλ

2
hX |Dh(s)|2

(
1 − 4xi + 12x2

i

)
,

(B.1)

where P(X) is defined in Eq. (14), i = {W, Z}, λhX ∈
{λhV , λhχ/Λχ, λhψ/Λψ }, δW = 1, δZ = 1/2, xi ≡ m2

i /s,
vi = √

1 − 4xi , and |Dh(s)|2 is the full squared Higgs prop-
agator given by

|Dh(s)|2 = 1(
s − m2

h

)2 + mh
h(
√
s)

. (B.2)

For fermion final states, the annihilation cross-section is
given by

σvcms
rel = P(X)

m2
f

4π
C f v

3
f λ

2
hX |Dh(s)|2 , (B.3)

where C f is a colour factor. For leptons, C f = 1, whereas
for quarks, it includes an important 1-loop vertex correction
given by [162]

C f = 3

{
1 +

[
3

2
log

(
m2

f

s

)
+ 9

4

]
4αs

3π

}
. (B.4)

For the hh final state, additional contributions appear from
the 4-point contact interaction as well as DM exchange in t-
and u-channels. The annihilation cross-section for VV →
hh is

σvcms
rel (VV → hh)

= λ2
hV vh

2304πsx4
V

|Dh(s)|2
[

8βv2
0λhV

1 − 2x2
h

coth−1 β

×
{

2s (2xh − 1) xV
(
(xh − 1) (2xh + 1) − x2




)

×
(
x2
h + 24x3

V + 2 (xh − 1)2 − 4 (2xh + 1) x2
V

)

− v2
0λhV

[(
3x4

h − 8x3
h xV − xh(xh − 4xV )(8x2

V + 1)

− 2xV (24x3
V − 2xV + 1))(xh − 1)2 + x2


)
)]}

+ 4s2x2
V (4xV (3xV − 1) + 1)

(
(2xh + 1)2 + x2




)

− 4sxV λhV v2
0 (2xh (2xV + 1) + 1 − 6xV )

×
(
xh (2xh − 1) − 1 − x2




)

+ λ2
hV v4

0

(
(xh − 1)2 + x2




)

x2
h − 4xV xh + xV

×
(

6x4
h + 4x3

h (1 − 8xV ) + x2
h (12xV (4xV − 1) + 1)

−64x3
V xh + 96x4

V + xV
)]

, (B.5)

where the dimensionless quantities β = (1 − 2xh)/(vhvV )

and x
 = 
hmh/s, and vh and vV are the lab-frame velocities
of the Higgs and vector DM, respectively.

Similarly, the annihilation cross-section for χχ → hh
(and equivalently for χ ↔ ψ) is given by

σvcms
rel (χχ → hh)

=
(

λhχ

Λχ

)2
vh

32πs

[ (
s − 4 cos2 ξsxχ − 8 cos ξv2

0
λhχ

Λχ

mχ

)

+ 4βs2|Dh(s)|2v2
0 coth−1 β

(1 − 2xh)2

λhχ

Λχ

×
{

2mχ cos ξ (2xh − 1)
(
xh (2xh − 1) − x2


 − 1
)

× (
8 cos2 ξ xχ − 2xh − 1

)

+ v2
0
λhχ

Λχ

(
1 − 4xh + 6x2

h − 16xχ cos2 ξ (xh − 1)

−32 cos4 ξ x2
χ

) (
(xh − 1)2 + x2




)}

+ 3s2|Dh(s)|2xh
(

8 cos ξv2
0 (xh − 1)

λhχ

Λχ

mχ

−s (xh + 2)
(
4 cos2 ξ xχ − 1

))

−
(

λhχ

Λχ

)2 2v4
0

(
2xχ

(
8 cos4 ξ xχ + 1

) − 8
(
1 + cos2 ξ

)
xh xχ + 3x2

h

)

x2
h + xχ − 4xh xχ

]
,
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where β = (1−2xh)/(vhvχ ), with vχ the lab-frame χ veloc-
ity.
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