
Learning Document
Representations for Ranked

Retrieval in the Legal Domain

Atle Oftedahl

Thesis submitted for the degree of
Master in Informatics:

Technical and Scientific Applications
(Language Technology Group)

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Learning Document
Representations for Ranked

Retrieval in the Legal Domain

Atle Oftedahl

c© 2018 Atle Oftedahl

Learning Document Representations for Ranked Retrieval in the Legal
Domain

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

In this work I detail the compilation of a unique corpus of Norwegian court
decisions. I utilize this corpus to train several different machine learning
models to produce dense semantic vectors for both words and documents.
I use the document vectors to perform ranked document retrieval, and
evaluate and demonstrate the performance of the vectors for this task using
a purposely-built ranked retrieval model utilizing the document references
in the documents. Furthermore, I explore the interplay between pre-trained
semantic word vectors and convolutional neural networks and conduct
several hyperparameter optimization experiments using convolutional neural
networks to produce document vectors.

1

Acknowledgements

First and foremost I want to express my sincere gratitude to my supervisors
Fredrik Jørgensen and Erik Velldal, for not only guiding, motivating and
inspiring me throughout this thesis, but for their continued dedication to me
and my atypical progression from the first phone call until the end.

I would also like to extend my sincerest gratefulness to Lovdata and all my
colleagues there for supporting me and allowing me the time, space and
resources to undertake this project, as well as for giving me a chance and
believing in a young, wide-eyed man at the start of his career.

My genuine thanks and love to Frida for her constant support and encourage-
ment in all my endeavors. Every day I’m grateful for having you by my side
for this journey, and for all to come!

Finally, I would like to thank my family for their decades of support and care,
and for pushing and shaping me into the person I am today. I can truly never
thank you enough!

3

Contents

1 Introduction 11
1.1 Outline . 13

2 Background 14
2.1 Document retrieval . 14

2.1.1 Accuracy, precision and recall 15
2.2 Evaluating ranked retrieval . 17

2.2.1 NDCG . 17
2.2.2 Average Agreement and Rank-Biased Overlap 18

2.3 Lovdata’s document collection 19
2.4 Defining the gold standard . 21

2.4.1 An overview of legal references in the LCC 22
2.4.2 Evaluating the validity of the Reference Vector System . 23
2.4.3 Manual inspection . 25
2.4.4 Conclusion on the Reference Vector System evaluation . 27

2.5 Representing documents as vectors 27
2.5.1 Euclidean distance . 28
2.5.2 Length normalization and TF-IDF 29
2.5.3 Cosine similarity . 29
2.5.4 Preprocessing . 29

2.6 Embeddings . 30
2.6.1 Neural networks . 31
2.6.2 Normalization functions 32
2.6.3 Loss functions . 33
2.6.4 Convolutional neural networks 34
2.6.5 Word2Vec - CBOW . 37
2.6.6 Word2Vec - Skip-gram . 38
2.6.7 Fasttext and GloVe . 38

2.7 Document embeddings . 39
2.7.1 Doc2Vec . 39

3 Preliminary baseline experiments 40
3.1 preprocessing for the baseline . 40
3.2 Splitting the LCC . 41
3.3 Setting up the baseline systems 42
3.4 Evaluating the baselines . 42
3.5 Evaluation of the two baselines models 43
3.6 Comparing the two baseline models 44

5

CONTENTS 6

3.7 Comparing the metrics . 44
3.8 Conclusion on the baselines . 44

4 Creating Norwegian Word2Vec models 45
4.1 Evaluating the Word2Vec models 47

5 Convolutional neural networks 51
5.1 Network structure . 52
5.2 Data and preprocessing . 53

5.2.1 Legal area meta tag . 54
5.2.2 Document set for CNN 55
5.2.3 Input to CNN . 55

6 CNN experiments 57
6.1 CNN baseline . 57
6.2 Experiment with standard parameters 59
6.3 Analysis of the performance of the standard CNN model 60
6.4 Adjusting the word embeddings size 62
6.5 Adjusting document embedding size 65
6.6 Using pre-trained word embeddings 68
6.7 Adjusting the drop-out rate . 71
6.8 Adjusting the window sizes . 75
6.9 Using full forms instead of lemmas 80
6.10 Combining the best hyperparameters 82
6.11 Summary of CNN hyperparameter experiments 85

7 Further experiments in the context of CNNs 88
7.1 Evaluating word embeddings from a CNN 88
7.2 A closer look at the word embeddings 91
7.3 Evaluating CNN models on favorites lists 93

8 Conclusion 97
8.1 Future work . 99

8.1.1 FastText and subword information 99
8.1.2 Triplet learning . 100
8.1.3 Potential use of this work at Lovdata 102

Bibliography 104

List of Figures

2.1 Illustration of how I define the set of relevant documents for a
query document . 24

2.2 Illustration of L2 Loss for a binary classification in the range
[0,1]. As the prediction and ground truth disagree more, the loss
rises towards 1 . 34

2.3 Illustration of Cross Entropy Loss for a binary classification in
the range [0,1]. As the prediction and ground truth disagree
more, the loss rises towards infinity 35

2.4 Illustration of a CNN from (Zhang & Wallace, 2015). The
figure illustrates three filter sets, with two filters each, extracting
elements from the input sentence to make a colorful document
embedding and making a classification. 36

4.1 Training loss for the different Word2Vec models. 47

5.1 Simplified model architecture with a single channel for an
example sentence. Illustration is based on (Kim, 2014), but
altered according to our modifications. 52

6.1 Training performance of a CNN model using the standard
hyperparameters . 61

6.2 Loss for models with different word embedding sizes. The
dotted line is the loss on the development data. 63

6.3 F1 score for models with different word embedding sizes. The
dotted lines are the F1 score on the development data. 64

6.4 Loss for models with different document embedding sizes. . . . 66
6.5 F1 score for models with different document embedding sizes. . 67
6.6 Loss for models with different word embedding initializations. 69
6.7 F1 score for models with different word embedding initializations. 69
6.8 Loss for models with different drop-out rates. 71
6.9 F1 score for models with different drop-out rates. 72
6.10 Precision for models with different drop-out rates. 73
6.11 Loss for models with different single window sizes. The y-axis

is normalized with relation to model ’f = 4’ 76
6.12 F1 score for models with different single window sizes. The y-

axis is normalized with relation to model ’f = 4’ 76
6.13 Loss for models with different multiple window sizes. 78

7

LIST OF FIGURES 8

6.14 F1 score for models with different multiple window sizes. . . . 79
6.15 Loss for models using lemmas and full forms. 81
6.16 F1 score for models using lemmas and full forms. 82
6.17 Loss for different tuned models. 83
6.18 F1 score for different tuned models. 84

7.1 The triangular relationship between the three methods of esti-
mating document embeddings for the ’tuned 100’ model. 96

List of Tables

2.1 Statistics for the three judicial instances. 20
2.2 Statistics for the three judicial instances. 21
2.3 Statistics for references in LCC. ’Unique references’ refers to the

reference vocabulary for the LCC. 23
2.4 Precision@100, Mean average precision@100 and Pearson’s r

for 2000 TF-IDF-normalized query documents using cosine-
distance. @ referes to the rank at which we cut the lists, in this
case I only consider the top 100 documents. 24

3.1 Total documents for the three sets used in this thesis 42
3.2 Precision, MAP, NDCG and AA for the four models and three

court instances with a cutoff at rank 100. 43

4.1 Hyperparameters for the Word2Vec model trained on the LCC. 46
4.2 Results for the synonym detection task. 48
4.3 Results for the analogical reasoning task for the model trained

on the LCC. 49
4.4 Accuracy for the analogical reasoning task for different

Word2Vec models. 49

5.1 Statistics for the legal area tag. 55

6.1 The parameters for the different experiments. The ditto mark
denotes parameters which are always the same as the standard
model . 59

6.2 NDCG for the standard CNN and the three court instances, and
F1 score on development data after ten epochs 62

6.3 NDCG for the word embedding size experiments and the three
court instances, and F1 score on development data after ten epochs 65

6.4 NDCG for the document embedding size experiments and the
three court instances, and F1 score on development data after
ten epochs . 67

6.5 NDCG for the initialization experiments and the three court
instances, and F1 score on development data after ten epochs . 70

6.6 NDCG for the drop-out rate experiments and the three court
instances, and F1 score on development data after ten epochs . 72

6.7 NDCG for the single window size experiments and the three
court instances, and F1 score on development data after ten epochs 77

9

LIST OF TABLES 10

6.8 NDCG for the multiple window sizes experiments and the three
court instances, and F1 score on development data after ten epochs 79

6.9 NDCG for experiment where corpus was not lemmatized and
F1 score on development data after ten epochs 82

6.10 NDCG for the tuned models and the three court instances, and
F1 score on development data after ten epochs 84

6.11 Overall NDCG for all the experiments, and F1 score on devel-
opment data after ten epochs. The experiments with a single
window-size are omitted due to them involving more than one
hyperparameters being changed. Each group is sorted accord-
ing to the NDCG-score, with the best scoring model on top. The
models in cursive are the standard model. 87

7.1 Accuracy for the analogical reasoning task for two Word2Vec
models and the same word embeddings after being tuned in the
word embedding layer of a CNN for ten epochs. 89

7.2 Results for the synonym detection task for two Word2Vec
models and the same word embeddings after being tuned in the
word embedding layer of a CNN for ten epochs. k denotes how
many neighbors are included. 89

7.3 Amount of change in word embeddings for different initializa-
tions after ten epochs of tuning in a CNN, measured in euclidean
distance and cosine similarity between the embedding before
tuning and after. Mean is reported for both measures. Pearson’s
r is calculated between the column and the frequency column. . 92

7.4 Hyperparameters for some of the CNN models evaluated on the
favorites list task. See table 6.1 on page 59 for the rest. 94

7.5 Precision@100 and Mean Average Precision@100 for the differ-
ent CNN models evaluated on the favorites list task, sorted ac-
cording to the MAP@100 score. The NDCG@100 for the models
when evaluated against the RVS is reported, as well as the F1
score for the model on the CNN classification task. 94

Chapter 1

Introduction

In the recent decades, natural language processing (NLP) have garnered much
attention for continually expanding what we thought was possible when it
comes to understanding natural language. Automatic translations, sentiment
analysis of movie reviews and chatbots are just some of the things which
have benefited greatly from the recent achievements in the field. Information
retrieval and easier access to information is also undergoing a revolution. But
while these new, and often gimmicky, ways for consumers to search for and
retrieve information or interact with huge databases of knowledge seem to pop
up every other week, many industrial applications of the same technology are
lacking.

Law is often thought of as a very slow moving field, where laws and
precedences are shaped over years and decades. As new, emergent technology
makes its way into more and more of everyday life and professions, law is
finally starting to see some change. Apps to automatically file complaints or
claim insurance, predictive algorithms trying to guess the outcome of trials
and lawyer chatbots giving you legal advice are just some of the new ideas
attempting to be realized in the new and blooming field of Legal Tech.

Norway was on the forefront of the more law-focused field of legal informatics
in the 1980’s and the 1990’s (Paliwala, 2010), but as the field got more traction
in other parts of the world, Norway could not keep up, and today most the
technological advancements are coming from abroad. The line between legal
informatics and legal tech is hard to pin down, but it is clear that the increased
utilization of NLP and big data is making it harder for Norway to keep up.
Although there is a new resurgence in interest in NLP and Legal Tech in
Norway, both in academic and professional arenas, the Norwegian language
is still largely unexplored. By bringing new technology in the forms of NLP
and machine learning together with the leading Norwegian publisher of legal
documents and legal informatics pioneer, Lovdata, this thesis aims to bring
a small part of the technological revolution to one of the most routinely time
consuming tasks in law: document retrieval.

One area where this is especially relevant, is in the field of case law, one of the
major pillars of Norwegian law. Previous court decisions define, affirm and

11

CHAPTER 1. INTRODUCTION 12

affect how law is interpreted and understood by the majority of people in our
society. For much of the technological area, digitally searching databases for
court decisions has either required you to know exactly which document you
were looking for or for you to have to use large and difficult search queries for
metadata or keywords. Searching and retrieving legal documents is almost an
art, and in the eyes of many in the legal profession, navigating cumbersome
queries and rigid search restraints is not a problem to be solved, but a skill
to be acquired. But the recent technological advancements have shown us
the remarkable results possible with new and intuitive solutions for retrieving
information. In this work I will take some of the first exploratory steps in the
direction of integrating state-of-the-art technology with the Norwegian field
of law and encourage others, both academics and seasoned lawyers alike, to
explore and discover new solutions to old problems.

The first aim of this work is to attempt to establish a framework for evaluating
ranked document retrieval and document similarity for Norwegian court
decisions. This framework involves both compiling and preprocessing a
unique document collection, as well as using it to define and evaluate a
gold standard for ranked document retrieval. Through the authors affiliation
with Lovdata, this project has unique access to the biggest collection of
Norwegian court decisions in Norway. With over 130,000 court decisions, I
will attempt to formalize a process for evaluating the effectiveness of several
document retrieval systems without access to any preexisting gold standards
for such a document collection. This gold standard process will need to be
fully automatic and work on a case-by-case basis. Unfortunately, due to the
sensitivity of personal information in many of the documents in the collection,
the document collection and any models created in this work can not be made
publicly available.

Document similarity is a rather subjective notion and our intent is not to create
a perfect, all-purpose evaluation process, but one which will sufficiently enable
us to complete the second aim. The second aim is to evaluate different popular
frameworks for creating distributional semantic models used for document
retrieval using the data set compiled for this thesis, as well as studying
the effects of hyperparameter optimization, preprocessing and evaluation
methods on both several popular frameworks as well as several purpose-
built deep learning networks. The frameworks evaluated on the dataset in
this project include, among others, standard Bag-of-Words models and more
advanced representation learning using neural networks, both for words and
entire documents. In addition, I will utilize Convolutional Neural Networks
as both classifiers and incubators for document representations. With this
in mind, it is not our intention to discover the most effective off-the-shelf
framework for ranked document retrieval, nor building the most fine-tuned
domain specific algorithm for retrieving documents from our collection. Our
focus is somewhere in the middle; to explore the new possibilities brought by
easy-to-use machine learning frameworks and the benefits of more precisely
creating domain specific solutions. I will focus on the mathematical and
technological aspects of this project and will try to avoid discussing or making
decisions which require greater knowledge of the legal domain than the
average computer scientist possess.

CHAPTER 1. INTRODUCTION 13

1.1 Outline

Chapter 2 gives a theoretical overview of the essential concepts discussed
in this work. I present different measures for calculating the performance
of document retrieval systems and some common ways of preprocessing
documents. I also present the machine learning frameworks which will be
used in this project, as well as some central concepts regarding standard
neural networks, deep learning and convolutional neural networks. Moreover,
I introduce and describe the unique document collection compiled for this
thesis, as well as the evaluation process for different machine learning
models.

Chapter 3 details the process of creating and performing several baselines ex-
periments to establish a performance benchmark for the different experiments
conducted in the rest of the project. The benchmarks will be used in several
experiments to study the effects of hyperparameter tuning, initialization meth-
ods and preprocessing. Finally, this chapter includes a preliminary discussion
on preprocessing and the evaluation process in light of the performed experi-
ments.

Chapter 4 describes the process of estimating and evaluating several sets of
word embeddings using the document collection compiled for this work. This
includes utilizing a recently proposed set of benchmark data sets for evaluating
Norwegian word embeddings. The word embeddings found in this chapter
will be used in further experiments and revisited in chapter 6.

Chapter 5 gives a further details convolutional neural networks, as well as
describing the preparation for the experiments in chapter 6. This preparation
includes preprocessing the documents and constructing and analyzing the
classification task used in training the neural networks in chapter 6, as well as
the process of extracting document embeddings from a neural network.

Chapter 6 describes all the experiments conducted with the convolutional
neural networks. The first part describes a baseline experiment to be used
as a benchmark for the other experiments. The results of several different
hyperparameter-tuning experiments are discussed, analyzed and compared.
Finally, I perform a concluding experiment using the best hyperparameters
found in the previous experiments, as well as summarize the results from all
the experiments performed in the chapter.

Chapter 7 describes two exploratory experiments performed to help further
describe the results from chapter 6. This includes studying the word
embeddings from chapter 4 in the context of using them as trainable weights in
the CNNs, and how further tuning them in a CNN effect them. I also explore
the results of evaluating the document embeddings produced in chapter 6
on an additional ranked retrieval evaluation method which was discussed in
chapter 3.

Chapter 8 concludes the work of this thesis and propose suggestions for future
work.

Chapter 2

Background

In the first part of this thesis I will give an overview of the fundamental
concepts and ideas which this thesis builds upon. I will reference back to
this chapter throughout the thesis to avoid repetition and to connect topics
together. First I will discuss information retrieval, more specifically document
retrieval. Then I will cover some of the simplest ways for evaluating the
performance of a document retrieval system. I will expand on these concepts
further by discussing ranked retrieval and how we evaluate the performance
of a ranked retrieval system. I will then explore the document collection used
in this thesis and how I define the gold standard for the ranked retrieval
task at the center of this project. Finally, I will discuss how we represent the
documents from the document collection, both with sparse feature vectors and
dense semantic embeddings. This will lay the ground work for the rest of the
discussions.

2.1 Document retrieval

Information retrieval can be defined as (Manning, Raghavan, & Schütze,
2008)

Information retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an information
need from within large collections.

We use the term document retrieval when we are only retrieving documents.
In this thesis we are only retrieving documents, and thus I will use the term
document retrieval instead of information retrieval, even though they can be
used almost interchangeably.

Let us define a simple document retrieval system where a user gives the system
a query containing a word, and the system retrieves all of the documents
which contain the given word. A simple way of implementing this system
is to go through each word in each document in the collection and return the
documents which contain the query word. If we allow logic operators such as

14

CHAPTER 2. BACKGROUND 15

AND, OR and NOT in the query, the complexity of our system dramatically
increases. As does the potential usefulness of the system.

In this thesis I will build and test several document retrieval systems. We
therefore need a way of quantifying how good the systems are at retrieving
documents. The following sections are based on (Manning et al., 2008).

2.1.1 Accuracy, precision and recall

A simple information retrieval task consist of each document in the collection
being labeled as either relevant or not relevant to a given query. After a system
has retrieved a set of documents it thinks are relevant to the query, we give each
document in the whole collection one of four labels. The documents that were
retrieved by the system, and which are relevant to the query, are given the label
true positive (TP), and the documents that were not retrieved and where not
relevant to the query, are labeled true negative (TN). These are the documents
which the system made the correct decision for; to retrieve and to not retrieve,
respectively. The documents that were retrieved but where not relevant to the
query are known as false positive (FP). The documents that were not retrieved
but were relevant to the query are know as false negative (FN).

Obviously we want zero false positives and false negatives, but this is often
difficult. When designing a document retrieval system one has to have these
errors in mind and how many false positives and false negatives one can
accept. These thresholds are dependent on the specific retrieval task. Maybe it
is more important that the documents retrieved are mostly true positives, and
thus one can accept a larger amount of false negatives errors, but are very strict
on false positives.

The first measure is known as accuracy and is defined as the ratio between
relevant documents returned and the total number of documents in the
collection. This is expressed in equation 2.1, utilizing the four labels discussed
earlier.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

For many document retrieval tasks in the real world, where we are only
interested in a few documents relative to the size of the collection, accuracy
is not a good measure of the performance of the system. The system could
simply not return any documents, and according to equation 2.1 it would still
achieve a fairly good accuracy, since for the majority of the documents it is
correct to not return them. Such a system would be practically useless, even
though it has a high accuracy. To get a more informative indication of the
model’s performance we can instead use the two measures precision and recall.
I will first discuss the precision measure.

Precision is defined as the fraction of retrieved documents which are relevant
to the query. See equation 2.2 on the next page for the definition of
precision.

CHAPTER 2. BACKGROUND 16

Precision =
TP

TP + FP
(2.2)

For a moment, let us expand the requirements of the simple document retrieval
system discussed earlier. Instead of only returning a list of the documents the
system thinks are relevant, we now want this list to be sorted and ranked,
with the top documents being the documents the system is most confident in
being relevant. This is called ranked retrieval, where not only what is retrieved
is important, but the order they are retrieved in. The further down the list,
the less confident the system should be. To be clear, all the documents in the
collection are still only considered relevant or not relevant to the query, but
the model should treat some documents as more relevant than other relevant
documents. If a system retrieves a document with a high confidence of it
being relevant, and it is correct, we want to grade it better than if it retrieved a
relevant document, but with a lower confidence.

To better evaluate the effectiveness of the system’s capability to rank the
retrieved results, we can calculate not just the precision, but the average precision
of the returned results. Each of the documents in the retrieved results are
either relevant or not relevant for the query, and we start by calculating the
precision for every top-k subset of the results; the top document, the top two,
the top three and so on. This means we define the subsets as starting at the top
result and expanding the selection until the end, or until some position k in
the results. We then average those precisions to get a final value, the average
precision of the retrieval. By doing this multiple times for different queries and
retrievals, and taking the mean of all of those average precisions, we get the
final mean average precision (MAP) measure for the model. See equation 2.3 for
the average precision, and equation 2.4 for the mean average precision.

AveragePrecision =
N

∑
k=1

P(k)∆r(k) (2.3)

where

N = size of the list,
k = cutoff rank,

P(k) = precision at a cutoff of k,
∆r(k) = the change in recall between cutoff k-1 and cutoff k

MAP =
1
Q

Q

∑
q=1

AveragePrecision(q) (2.4)

where

Q = the amount of different retrievals,
AveragePrecision(q) = the average precision of a retrieval q

CHAPTER 2. BACKGROUND 17

The second measure is recall. Recall is defined as the fraction of relevant
documents which are retrieved for the query. See equation 2.5 for the definition
of recall.

Recall =
TP

TP + FN
(2.5)

However, on their own, precision and recall can easily be fooled. For example
by returning all documents you will always get a perfect recall score of 1, and
by retrieving only a single document, which is relevant, it would yield a perfect
precision. In both these cases the other measure would act as a watchdog and
expose the ’perfect’ score. To avoid having to constantly check and compare
the two measures, we combine the two measures into what is known as the
F1-measure, as can be seen in equation 2.6.

F1 = 2· precision· recall
precision + recall

(2.6)

2.2 Evaluating ranked retrieval

Since precision, recall and the F1-measure is based on the four TP, TN, FP, FN
labels, they are not suited to evaluate ranked retrieval, as they do not take into
consideration the order of the retrieved documents. We solved this earlier by
expanding the precision-measure into the MAP-measure. Let us now expand
the requirements for the document retrieval system examples discussed earlier.
For each query, let us now give each document in the collection a relevance
score instead of a binary relevant/not relevant label. We still want the results
retrieved to be ordered by relevance, but now every document is suddenly
relevant to the query, just some are more than others. To be able to evaluate and
compare the ranking of the retrieved list with the ’true’ ranking, we need some
new measures. In this section I will cover some of the most used measures
to evaluate the performance of ranked retrieval with graded relevance. I will
start with the NDCG-measure, which is the measure I will primarily use in this
work when evaluating ranked retrieval.

2.2.1 NDCG

Normalized Discounted Cumulative Gain (NDCG) is a measure of ranking
quality. NDCG makes two assumptions about the data;

1. Relevant documents are worth more when appearing earlier in the list

2. Relevant documents are worth more than less relevant documents, which
in turn are worth more than non-relevant documents.

These assumptions mean DCG, without normalization, uses a graded rele-
vance scale for documents in a result list to measures the relevance, or gain,
of a document based on its position in the list. The gain from each document is

CHAPTER 2. BACKGROUND 18

accumulated over the results, with a discounting factor being applied to docu-
ments the further down the list they appear. The DCG at a rank position p is
given in equation 2.7

DCGp =
p

∑
i=1

gaini
log2(i + 1)

(2.7)

When this measure is used in this thesis, the gain for a document is given by
its position in a limited list containing the ’true’ top 100 documents. This list
is called the gold standard, and is considered the true ranking of the documents
for a query. The gain is then a value between 1 and 100, with the top document
in the gold standard list having a gain of 100, and the bottom document having
a gain of only 1, with all other documents having a gain of 0, as they are
considered not relevant to the query.

The DCG of a list of retrieved documents is calculated by first finding the
gain for each document in the list. The gain for a document is based on the
position of that document in the gold standard list. Once the gain is found, it is
discounted by a function that takes into consideration how far from the top of
the retrieved list the document appeared. The further down the retrieved list
the relevant document appear, the more the gain is discounted. Then all the
discounted gains are accumulated to produce the final DCG score.

The score produced by the DCG algorithm can not be directly compared with
another DCG score if they do not use the same parameters. The relevance
grading and size of the result set can be different for different queries, and
these parameters directly affect the score. If you use the same parameters to
produce difference DCG score, the scores can be directly compared. To be able
to compare DCG score that use different parameters, it is possible to divide
the DCG scores by their ideal DCG score (IDCG), which is the highest possible
score for that set of parameters for that query. This will normalize the score to
the range [0, 1]. This produces the final equation, equation 2.8.

NDCGp =
DCGp

IDCGp
(2.8)

It is now possible to compare DCG scores which have used different
parameters, as each score is an indication of the performance of the model for
its own query, which takes into consideration the limitations or benefits of that
query. In this thesis I will only calculate DCG scores with the same parameters.
It is therefore not necessary to normalize the score, as each DCG is calculated
with the same parameters and the ideal DCG is always the same. However,
normalizing the score makes it easier to read and put into perspective, as it
is mapped to the familiar range [0, 1], where 1 means a perfect result. For
this reason I will use the normalized version of the DCG measure in this
thesis.

2.2.2 Average Agreement and Rank-Biased Overlap

Another increasingly popular measure is the Rank-Biased Overlap (RBO),
proposed in (Webber, 2010). Given two ranked lists, A and B, RBO defines the

CHAPTER 2. BACKGROUND 19

agreement at rank k, Ak, as the overlap, or the size of the intersection between
the two lists at rank k, divided by the rank. See equation 2.9

Ak =
|A ∩ B|

k
(2.9)

The average agreement up to k, AAk, is then:

AAk =
1
K

K

∑
k=1

Ak (2.10)

To get the RBO at a rank k, the agreement between the two lists are averaged
for each rank down to k, and each agreement is weighted by a weight, wk, that
help put emphasis on the top documents. The weighting scheme used by RBO
is a geometrically decaying weight.

RBO = (1− p)
∞

∑
k=1

pk−1· |A ∩ B|
k

(2.11)

However, the average agreement (AA) from equation 2.10 will only be used in
this thesis, as even without weights it puts emphasis on the top documents.
RBO was also specifically developed to function as a metric on possibly infinite
lists, and as we do not operate on such lists in this thesis, we do not need
geometrically decaying weights to keep the tail of the lists from outweighing
the top documents.

2.3 Lovdata’s document collection

We now have the necessary tools to evaluate the performance of document
retrieval systems, both on a ranked and boolean document collection. In
this section I will introduce and discuss the document collection we will be
working with in this thesis; The Lovdata Court Corpus (LCC). But first I will
give a quick overview of the different Norwegian courts to give the document
collection some context.

The Norwegian justice system is divided into three instances (Boe, 2010). The
first judicial instance is the District Courts, known as Tingretten in Norwegia.
They divide the country into 63 judicial districts. For civil cases, there is a lower
instance, the Conciliation Boards, which handles most cases. But the cases that
are not resolved there are brought forward to the District Courts. All criminal
cases start in the District Courts. Any party that disagrees with the results of a
case can bring it forward to the second instance, the Courts of Appeal, known
as Lagmannsretten in Norwegian. The Courts of Appeal divide the country
into only 6 judicial circuits; Borgating, Eidsivating, Agder, Gulating, Frostating
and Hålogaland Court of Appeal. After this, cases can be appealed to the final
instance, The Supreme Court, known as Høyesteretten in Norwegian. This is
a single court, and in total 20 judges are appointed to it. The verdicts are final
and cannot be appealed to any higher Norwegian court. In addition to these

CHAPTER 2. BACKGROUND 20

three instances there are several special courts in Norway, which are briefly
mentioned in the next paragraph.

The larger Lovdata document collection contains, among others, documents
and rulings from the three judicial instances and eight special courts. The
documents in this subset are sorted into 25 origin groups, based on where they
originate from. The origin groups are given as such: The District Courts and
The Supreme Court have the prefixes TR and HR, respectively. The six circuits
in the Courts of Appeal; Agder, Borgarting, Eidsivating, Frostating, Gulating
and Halogaland have the prefixes LA, LB, LE, LF, LG and LH, respectively.
Each instance, and the courts therein, are further split into two: criminal cases
and civil cases, and gain the suffix STR and SIV, respectively. These origin
groups will mostly be combined into three super-groups for the three court
instances, identified by the prefixes HR, L and TR. In addition, Lovdata has
two groups for older Eidsivating-cases; LXSTR and LXSIV, and an extra group
for The Supreme Court where appeals and other documents that are not rulings
are collected, called HRU. This brings us up to 17 origin groups. In addition,
there are some special courts in Norway: Arbeidsretten, Jordskifteoverretten,
Jordskifteretten, Trygderetten, Høyfjellskommisjonen, Utmarksdomstolen for
Finnmark, Kommisariske høyesterett 1941-1944 and Utmarkskommisjonen for
Nordland og Troms. The origin groups for them are: ARD, JSO, JSR, TRR, HFK,
UTMA, HKOM and UNT.

In the rest of this section I will compile the Lovdata Court Corpus. This corpus
is a subset of the larger Lovdata document collection. The corpus was defined
in November of 2017, and so no new documents were added to the corpus
during the work on this thesis, even though new documents are added to the
Lovdata document collection daily.

In the 25 origin groups mentioned above, there are 212,070 documents. The
8 special courts make up 18.2% of the documents, and are so domain specific
that they will be excluded from the corpus. We are therefore left with 17 origin
groups; the three legal instances. After disregarding the 8 special courts, the
HRU base contains 21% of the documents in the corpus, but since this group
mostly contains documents that are not court decisions, they are also omitted
from the corpus. Thus, the final corpus contains 136,872 documents across 16
origin groups. This subset of the larger Lovdata document collection will from
here on be known as the Lovdata Court Corpus (LCC).

Below, I will take a look at the three court instances in the corpus and present
the total number of documents in each super-group, total number of words in
each super-group and total number of references to other documents in each
group.

Instance Total documents Total words Total references

HR 40,246 68,787,157 589,656
L 77,676 213,756,900 1,710,390
TR 18,950 72,586,448 490,970

Table 2.1: Statistics for the three judicial instances.

CHAPTER 2. BACKGROUND 21

From table 2.1 on the preceding page we can observe that 56% of the
documents are from the Courts of Appeal, and 29% from The Supreme Court.
This makes sense, as The Supreme Court only rules on cases that the Courts
of Appeal have previously ruled on, which have then been appealed to The
Supreme Court and the appeal accepted. Following this logic one would think
that the District Courts subset would contain even more documents than the
Courts of Appeal, yet it only contains a meager 15% of the documents. This is
simply because Lovdata only possess a tiny fraction of all the documents from
the District Courts.

To illustrate more easily the interplay between the words, references and
documents, table 2.2 presents the average number of words per document,
the average number of references per document and words-to-references-ratio,
which will be called reference density, for each instance.

Instance avg words per doc avg refs per doc avg words per ref

HR 1,709 14.6 116.6
L 2,752 22.0 124.9
TR 3,830 25.9 147.8

Table 2.2: Statistics for the three judicial instances.

We can observe that as we move up through the judicial instances, the decisions
become shorter, but have a higher reference density, meaning there are fewer
words between each reference. When appealing a decision, most often only
a few parts of a decision is appealed, meaning that each higher instance has
fewer legal questions to answer for each case (Robberstad, 2009), and thus the
court decisions are shorter. In addition, the decisions from the District Courts
often contain a lot of factual information about the case. These paragraphs do
not contain any references as they do not raise any legal questions, they can
for example be a simple account of the events when the purported crime took
place. If the Court’s decision is appealed to the District Courts, they will not
retell those events. In the same manner, the Supreme Court will spend little
time going over the facts of the case again. Thus, each higher instance will
have shorter and more dense documents, with regards to references.

2.4 Defining the gold standard

As mentioned in section 2.2 on page 17, to be able to evaluate the retrieval of
a system we need to know the correct answer. This information is called the
gold standard and represents the ’truth’. For the LCC we do not possess such
information, but we will try to come as close to the ’truth’ as possible.

The focus of this thesis is using documents as queries for ranked retrieval.
Given a query document, a retrieval system will try to find the most similar
documents, and I postulate that there is an answer, or in this case, a list
of similar documents that are objectively the most ’correct’ and similar
documents. One way of finding these documents is by manually going

CHAPTER 2. BACKGROUND 22

through all of the documents in the corpus and assessing and ranking the
similarity to the query document by hand. With a corpus as large as ours,
this is of course practically impossible. We need an automated process that
can use the information we have available to generate this ranked list for us
on a case-by-case basis using some easily quantifiable measure of document
similarity. Creating an automated process that can assess and rank document
similarities is difficult, especially in our situation where similarity is a rather
subjective notion. We will work with what we have, and in this section I will
try to formalize the process as best I can.

To begin with, let us think about the documents in our dataset, the most
likely use of our future ranked retrieval system and most likely needs of our
users; the dataset contains documents from the legal domain, specifically court
decisions. Potential users of the system will most likely need to find documents
that ask and/or answer the same legal questions asked or answered in the
query document. Few of the meta information features in the documents in the
corpus can be used to represent this. However, like in any scholarly text where
arguments are backed by references to other scholarly texts, in legal documents
legal arguments are backed by references to other legal documents. It can then
be suggested that since users most likely need similar legal arguments, and
legal arguments are tied to the references to legal documents, the references
in a document can be used to represent the legal arguments contained therein.
Thus the similarity of the references between documents can be a surrogate for
the similarity between the documents themselves.

With this hypothesis I propose that the references to legal documents within
a query document can act as the easily quantifiable measure used to discern
document similarity. I have developed an automatic process which utilizes
the references in documents to generate a gold standard on a case-by-case
basis. This system will be known as the Reference Vector System (RVS). The
Reference Vector System will represent the documents as simple Bag-of-Words
vectors with the references acting as words. See section 2.5 on page 27 for the
introduction to representing documents as vectors and Bag-of-Words.

One of the goals of this thesis is to in the end have built another system
which can give equally correct answers on documents with references as on
documents without references. This is possible with the assumption that while
references can be used to represent the legal arguments, and thus the document
to some extent, the actual text can also represent the legal arguments, and thus
in the end the document. It is further assumed that the text is not different and
fully represent the legal arguments in the same way whether the author have
used explicit references or not.

2.4.1 An overview of legal references in the LCC

Producing a ranked list of similar documents by using the references in a query
document naturally relies on the documents having enough references in them
to be able to generate a nuanced profile of them. In the next sections I will
explore whether using legal references to produce the gold standard list is

CHAPTER 2. BACKGROUND 23

possible for the LCC, and if it actually gives us a close approximation to the
correct answers, as defined by manual effort.

References to legal documents within the full Lovdata document collection
are marked in the xml of documents with the tag ref followed by the
internal document ID, and if necessary, a specific part of the document, like
a paragraph.1 The tag can in very few instances contain a web-url, building
code or other information that links to documents or information outside of
the Lovdata collection. But at the moment it is not important where a reference
leads, as it is not important what the content behind the references is, only the
fact that it was referenced.

Unique references 140, 761
Invalid references 564
Total references 2, 791, 016
Docs with no references 4, 207

Table 2.3: Statistics for references in LCC. ’Unique references’ refers to the
reference vocabulary for the LCC.

In table 2.3 we can see that in total, in the entire LCC, there are 140, 761
unique references being cited 2, 791, 016 times. 564 references are to documents
or information outside of the Lovdata document collection, or not properly
formated references to Lovdata documents. Only 4, 207 documents in the court
subset, or 3%, contain no references. It seems that references are abundant in
documents and are not a rare property.

2.4.2 Evaluating the validity of the Reference Vector Sys-
tem

In this section we will take a closer look at the Reference Vector System
(RVS) and evaluate how well it functions as a gold standard. I will do this
by comparing it with user-made groupings of documents from Lovdata’s
websites.

On Lovdata’s website, users have the ability to add documents to different
’favorites’ lists. The use of this feature is widespread, but also widely different.
Some users simply has a single list containing every document they find
interesting or relevant so that they do not need to search for them again, while
others create highly specific lists containing a handful of documents pertaining
to for example a legal question, some piece of meta information or a case they
are working on. No personal information was collected in the retrieval of this
data.

We can use these lists to evaluate the performance of the RVS. The idea being
that if a user has put a document in a favorites list, the user has probably
thought the document somehow was similar or related to the other documents

1Example of tag-structure: <ref id=”avgjorelse/hr-2005-845-u”>and <ref id=”lov/1915-08-13-
6/§375”>

CHAPTER 2. BACKGROUND 24

in the list. To evaluate the RVS, I will define the subset of relevant documents
for a query document to be the set of documents that are in the same favorites
lists as the query document. See figure 2.1 for an illustration of this. The
favorites lists can contain any documents from the larger Lovdata document
collection, so documents that were not part of the LCC were removed from
the set of relevant documents, as they could never be suggested as a neighbor
by the RVS. The RVS will rank and retrieve the top k most similar documents
to a query document, and we can measure how well the system performs by
comparing the results against the set of relevant documents. Documents which
appeared alongside less than 10 other documents were not used as query
documents, as they would not give good indications of the actual performance
of the system.

Figure 2.1: Illustration of how I define the set of relevant documents for a query
document

An evaluation of the performance of the RVS was carried out using Gensim2.
The reference-vectors created by the RVS for each document were treated as
BoW vectors and a searchable TF-IDF-normalized index was built to be able to
rank query results using cosine-distance. Cosine TF-IDF was chosen because
it is the most commonly used measure in machine learning. The system was
evaluated on 2000 randomly picked documents. See section 2.5 on page 27 for
the introduction to representing documents as vectors, as well as the following
sections for an introduction to length normalization and cosine distance. See
table 2.4 for the results of the experiment.

Precision@100 0.187
MAP@100 0.297
Pearson’s r 0.265

Table 2.4: Precision@100, Mean average precision@100 and Pearson’s r for
2000 TF-IDF-normalized query documents using cosine-distance. @ referes
to the rank at which we cut the lists, in this case I only consider the top 100
documents.

As we can see in table 2.4, the precision@100 for the system is slightly below
one fifth, meaning one in five documents retrieved are correct. This is

2https://radimrehurek.com/gensim/

CHAPTER 2. BACKGROUND 25

statistically very impressive. On average there were 450 correct answers for a
query document, and to be able to do some probability calculations, let us use
a precision@100 of 0.19. Now we can find the probability of randomly picking
documents to retrieve and achieving the same precision. By using a probability
density function on a hypergeometric distribution, given by equation 2.12,
for an average query document, we can see that the probability of achieving
a precision@100 of 0.19, that is correctly picking 19 correct documents from
the entire corpus with only 100 tries, by randomly picking documents, is
4.62· 10−26%, or basically 0.

P(X) =
(N

k)(
K−N
n−k)

(K
n)

(2.12)

k =
nN
K

(2.13)

where

K = size of the population, the LCC,
N = number of success states in the population (size of the set of relevant documents),
n = number of draws,
k = number of observed successes

Another way of looking at it is to figure out what is the expected number of
correct recommendations out of 100 if we were picking randomly. This is given
by equation 2.13, and determines that if we were picking randomly, we would
expect to get 0.33 correct recommendations out of 100, which is a precision@100
of 0.0033. We got a precision@100 of 0.187, which is 57 times better. This means
that there is a signal which we are picking up, and the results are not only
by chance. I do not know if there is an upper bounds on the precision and
if human evaluation would give a perfect score, as it is out of scope for this
project.

Measures taken at a fixed interval, like MAP@100 and Precision@100, will
favor documents with larger sets of relevant documents, as they have a bigger
pool of correct answers. To measure the impact of this on the validity of the
experiment, the Pearson correlation coefficient for the cosine-TF-IDF results
was calculated for the MAP score. The coefficient for the 2000 results was 0.26,
suggesting a weak positive linear relationship between the size of the set of
relevant documents and the MAP@100-score. (Evans, 1996) This means that
the performance of the system in this test was somewhat tied to this aspect of
the test, and thus a slightly less precise estimate of the true performance of the
system.

2.4.3 Manual inspection

After this, a manual inspection was performed on the top 5 documents
retrieved for four query documents.

CHAPTER 2. BACKGROUND 26

For the first document, a Supreme Court appeal about insider trading, the top
document was the same case from when it was in the Courts of Appeal, and the
next two were the other Courts of Appeal cases of two of the other participants
in the illegal trading. The final two results also pertained to insider trading,
although the details were somewhat different.

The second case, a Courts of Appeal case about improper seizure of evidence,
also showed promising results. The top document was a Courts of Appeal case
about whether the judges in the query document were unfit to preside over
the case. Two of the other retrieved documents also pertained to improper
seizure of evidence, and the other two about insider trading. This was most
likely because in the query document, the improper seizure of evidence was in
an insider trading case. These results show some potential weaknesses of the
system. Although all the top five results shared many of the same references,
they did so for different reasons. In the query document, the references to
insider trading pertained to the original case and to why and how the evidence
was seized. This nuance was not understood by the system, and thus two of
the results were simply about insider trading. Also in the query document, the
improper seizure references were in the context of determining whether the
seizures were improper, while in the top retrieved document, the question was
whether the judges were fit to rule over such charges.

The third document, a drug case from the District Courts, also had similar
documents in the top 5, most notably they all involved the suspect confessing.
This is no surprise, as the fact that the suspect confessed, and this led to a
milder punishment, meant that the regulations concerning confessions had to
be referenced.

The fourth document, a Supreme Court appeal about an ill-tempered professor,
highlighted some more of the possible limitations of the reference vector
system. The top document was a ruling on whether a TV-broadcaster should be
able to broadcast a political commercial. At first glance these two documents
might not appear to be similar, but both revolve around the subject of
freedom of speech, with references to the same laws regarding that subject.
Furthermore, another three of the top 5 documents revolve around whether
TV-broadcasters could broadcast certain media, with one of them being the
Supreme Court ruling on the top retrieved document.

The results of the manual inspections show a greater promise than the
automatic evaluation. The top documents retrieved seemed for the most
part to have similar contents, and asked or answered mostly the same legal
arguments. However, the cases of the improper seizure of evidence and the ill-
tempered professor did show some of the weaknesses of the system. Even
though the query documents shared many of the legal arguments with the
top retrieved documents, it can be argued that the actual content of the case
was not very similar. This problem arises precisely because the laws and
court decisions are on purpose vague and can be applied to widely different
situations, and are subject to interpretation.

CHAPTER 2. BACKGROUND 27

2.4.4 Conclusion on the Reference Vector System evalua-
tion

The ranked list of similar documents used to evaluate the RVS was defined
by an automated process measuring the cosine-distance between TF-IDF-
normalized reference-vectors. The validity of the RVS was evaluated by
comparing the ranked top 100 results for each of 2000 generated ranked lists
against user-made favorites lists. I assume the favorites lists can act as a
reasonable stand-in for the correct answers for the evaluation, as I also lack
a definite gold standard for this. The RVS achieved a MAP@100-score of 0.297
and precision@100 of 0.187 in this test, which would be hard to achieve unless
there is a signal that we are picking up. The hypergeometric density showed
that the probability of achieving the same precision@100 by randomly picking
documents was almost 0, and the achieved precision@100 were 57 times better
than the expected precision@100 if the system was picking randomly. At this
point it becomes clear that we have no fool proof gold standard, and the RVS
is probably the closest approximation I can get while still being able to explain
it easily, and stay within the scope of this thesis. The manual inspections serve
as a testament to this.

2.5 Representing documents as vectors

Now that we have defined what kind of documents we are working with
and defined a system for generating gold standards we can used to evaluate
any future document retrieval systems, we can delve into how we represent
the documents in the LCC to allow us to calculate the similarity between
documents. This section is based on (Manning et al., 2008) and (Singhal,
2001). To avoid too much jumping back and fourth between subjects,
the previous sections have already mentioned and discussed some of the
concepts introduced in this section. Regardless, the concepts will still be fully
introduced even if we have encountered them before.

A document can be represented in a multitude of ways, and one of the most
important steps towards measuring similarities between documents is finding
a way to represent the documents such that we are able to use them as input
to advanced algorithms and to perform different mathematical operations
on them. At the same time we must be careful that the representation
does not discard or overlook important features of the documents and the
contents. Some simplifying assumptions will be made when deciding on a
representation, and these assumptions can play a big part in how we compute
the similarity and what kind of similarity we are measuring. In this section
I will look at building a feature vector for a document and different ways of
comparing vectors.

A document is typically represented by a vector of features, with each
dimension in the vector corresponding to a feature. A feature is some
information in or about the document that can represent it. A common option is
to use the Bag-of-Words (BoW) approach, wherein the features are the frequency
of use of each word in the document. The unique words in a document make

CHAPTER 2. BACKGROUND 28

up the documents vocabulary, and the BoW vector has a feature for each of the
words in this vocabulary. This method can be expanded into using sequential
sequences of words, called n-grams, for example two words at a time (bi-
grams), as features in the document vector.

In this work I am interested in comparing the vector of one document to one or
more other document vectors. We must therefore ensure that each vector has
the same features, so as to be easier to compare. To make this process easier
we can extend the basic BoW feature vector for a document to cover the entire
vocabulary of the corpus, not just the document’s own vocabulary. This means
that each document vector will have a feature for all of the words in the corpus
vocabulary, even the words which never appear in the actual document. This
makes every vector directly comparable, as they all include the same features.
As the corpus grows larger, so will the vocabulary, which leads to the vectors
becoming sparse, meaning that only a small part of each vector is actually non-
zero. In the next sections we will cover how we use these representations to
measure document similarity.

2.5.1 Euclidean distance

One of the benefits of structuring the features as a vector is that there are many
ways of comparing vectors, and they range from being rooted in a geometric
understanding of the problem to a statistical way of looking at it. One of the
most basic and easy to understand methods of doing this is by calculating the
Euclidean distance between the two vectors, or the straight-line distance.

A vector simply describes a point in a space relative to the origin of that
space. In our document vector space, where we have thousands of features,
or dimensions, this point will be located in a high dimensional space. Another
way of imagining a vector is as a line or arrow pointing from one point to
another point. The length of this line, the magnitude of the vector, is given by
the euclidean norm in eq. 2.14.

||A|| =
√

n

∑
i=1

A2
i =
√

A· A (2.14)

If we have two document vectors, we essentially have two points, and
we can imagine a vector stretching from one point to the other. The
euclidean norm of this vector is the euclidean distance between the two feature
vectors. The shorter the euclidean distance, the more closely related are the
documents.

When we count the frequency of words in a document, it does not account
for the fact that longer documents will naturally have not only more words,
but each words will on average appear more often. This leads to documents
appearing unrelated to each other by the algorithm, simply because they are
longer. One way of circumventing this is to length-normalize the document
vectors by dividing the vectors by their own length, which essentially removes
the length of a document from the proverbial equation.

CHAPTER 2. BACKGROUND 29

2.5.2 Length normalization and TF-IDF

To account for the length of a document we can simply scale the vector by
the document length. This retains all the information about the relative term
frequencies (TF) for each word and makes our vector of unit length, meaning the
magnitude is 1. In this thesis we will use the terms ’term’ and ’word’ somewhat
interchangeably. There is another keen observation about natural language
that we can leverage to our benefit: some words appear a lot, no matter the
context. These words will dominate our vectors and make our calculations
less precise, as they are so common they give us no information to help us
distinguish between documents. To combat this we turn to what is known as
the inverse document frequency, or IDF for short.

IDF scales every word by the frequency of the same word appearing in other
documents. This gives common, non-informative words such as ’the’, less
weight in the vector, making the much less frequent, but more informative
words stand out more.

By combining, or multiplying, the two ways of scaling, TF and IDF, you get
the TF-IDF weighting scheme. TF-IDF gives a high score to words with a high
frequency within a document and a low overall document frequency.

TF-IDF = t f · id f (2.15)

2.5.3 Cosine similarity

Another measure of similarity is Cosine Similarity. This measures similarity
between two vectors not by measuring the distance between them, but the
angle. The smaller the angle between them, the more similar they are.
This removes the magnitude from the problem entirely, meaning length
normalization will not affect the similarity when using the Cosine method.
Length normalization is in fact an integral part of deriving the cosine similarity,
as one can observe in eq. 2.16

Similarity = cos(θ) =
A· B

||A||||B|| (2.16)

2.5.4 Preprocessing

Before we are able to count the words in a document we have to first find all the
words and distinguish them from for example punctuations. The first step is
usually tokenization, which includes splitting sentences into words, removing
punctuation, lower casing characters, and many more operations which will
leave us with only the raw words, or tokens, in a document.

As discussed earlier, document vectors are often sparse and dealing with a lot
of sparse vectors are cumbersome. We want to reduce their dimensionality
further to make them easier to handle. Dimensionality reduction will erase

CHAPTER 2. BACKGROUND 30

some information from the vectors, but this has the added benefit of making
the vectors more abstract, making them represent more of a concept rather than
a precise piece of the puzzle.

The most straight forward way of making vectors less sparse is by creating a list
of stop-words; words that we know does not help us in computing similarities,
such as non-informative words like ’and’, or words that we just don’t want to
consider. These words will then not be used in the vectors. The number of stop-
words are usually in the hundreds, while there might be hundred thousands or
millions of other words, so more often than not this will not save considerable
space or computations. But there are other, better methods that have larger
impacts on the system.

A popular method is lemmatization. When performing lemmatization we
try to find the root of a word, the lemma, for example the root of ’are’ is
’be’. This can be achieved using advanced morphological analysis of the
term, dictionaries and the context of the term. Lemmatization can lead to
saving more space and computations than stop-words, by reducing multiple
terms to a single term. This will naturally lead to the representation of the
document becoming more vague and general, as we will loose concepts like
plurality and tense. But this can work in our favor, because we want our
representations to be a more general representation of the document to more
easily find similarities between them. A simpler, more brute force method is
a stemming algorithm that slices of endings of words, turning ’walking’ and
’walked’ into ’walk’. Performing lemmatization on ’walking’ will yield the
same result as stemming, but while stemming might cut off ’-ing’ from every
word, the lemmatization algorithm should be smart enough to know that some
words should actually end with ’-ing’ and leave them intact.

2.6 Embeddings

Choosing a suitable representation for features, documents or words is
an important step towards document similarity. Not only can the right
representation increase computational performance, but it can improve the
predictive performance of the model. The ways of constructing feature vectors
for words we discussed earlier relied on us picking and choosing the features,
but it is also possible for the computer to learn the representation on its own,
without relying on fixed and static features. These learned representations can
arise from complex relationships that we humans are unable to understand or
find on our own. The downside is that they can be hard to decipher or explain.
The past few years have produced significant improvements for learned
representations, or embeddings, most notably Word2Vec (Mikolov, Chen,
Corrado, & Dean, 2013) and Doc2Vec (Mikolov, Sutskever, Chen, Corrado,
& Dean, 2013). In the next sections we will discuss just what embeddings
are and take an in-depth look at Word2Vec and how this framework creates
word embeddings, as this is the best way to understand the inner workings of
Doc2Vec, which is ultimately the most relevant algorithm for the challenges in
this project. I will then look at FastText (Bojanowski, Grave, Joulin, & Mikolov,
2017) and GloVe (Pennington, Socher, & Manning, 2014) and see how they

CHAPTER 2. BACKGROUND 31

build upon and differ from Word2Vec. But first we need a gentle introduction
to neural networks. We need to cover neural networks as Word2Vec, Doc2Vec
and Fasttext all use neural networks to learn the embeddings. This section
is based on (Marsland, 2014). Convolutional Neural Networks (CNN) will
also be presented. Neural networks are also relevant for classification tasks
further downstream, as neural networks have proven to be useful at generating
input to other neural networks, such as in section 6.6 on page 68, were we use
Word2Vec to generate word embeddings which are then used as weights in the
input-layer of a CNN.

2.6.1 Neural networks

Neural networks try to mimic the way the brain works and how it learns.
At the center of the model is the neuron, and the simplest neural network,
the perceptron, simulates a single neuron. The perceptron consists of two
numerical inputs which are channeled into a single node, or neuron. This
neuron contains an activation function where the inputs are added, and if the
sum of the inputs are high enough, the neuron fires and sends out another
numerical value as output. The different parts of this setup are called layers;
the input-layer, the output-layer, and in the middle the neuron forms the
hidden layer. Between the layers are weights, which are multiplied with
the signal coming through, changing it. This is the crucial part, as it is the
weights that learn when we train the model. During training, when we get
an output, we calculate an error between the output and the target using
a loss function, and this error is then propagated backwards through the
layers. Backpropagation can be very tricky to explain, but the essence of it
is that the error reaches the weights between two layers, and the weights are
adjusted using gradient decent so that if the signal was sent through again,
the weights will change the signal to more closely resemble the correct target.
Another error is then computed and propagated further back in the model
where it changes another set of weights. This trains the model to output better
predictions. But the perceptron is severely limited and cannot solve complex
tasks, which is why we pair multiple perceptrons together in the hidden layer.
This produces a network of neurons, with complex connections that are able to
solve more difficult tasks. We can also stack multiple such layers to produce
what is known as a deep neural network. There exists many variations on this
idea and the steps involved, but for now it is sufficient to only use normal
neural networks with a single hidden layer and two sets of weights; input and
output.

Neural networks have a tendency to overfit, which is when it learns
the patterns from the training data too well and performs worse on the
development data we use to get an unbiased measure of the performance.
We employ regularization to help prevent a network from overfitting. A
simple method is to stop the training once we start seeing the performance
on the development data drop, as this often indicates that the network is
fitting to closely to the training data. Another regularization method is drop-
out (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). In
(Srivastava et al., 2014), the authors suggest temporarily removing nodes

CHAPTER 2. BACKGROUND 32

and incoming and outgoing connections from the network during training.
For each pass, different nodes are dropped from the network according to a
probability called drop-out rate. With a drop-out rate of 0.5, approximately half
the nodes in the network are removed. This will force the network to not rely
too much on any single node, as it might not be present in the network.

2.6.2 Normalization functions

Before exploring neural networks further it is useful to understand how and
why the output of a neural network is normalized, and how a loss function
works. In the next sections a few normalization methods and loss functions
will be presented and explained. These sections are based on (Goldberg, 2015),
(Goldberg & Hirst, 2017) and (Marsland, 2014).

To be able to learn, a neural network needs to know how the prediction it made
compares to the actual true answer, also called the ground truth. Imagine we
have a network that tries to classify what animals are present in a picture. The
output of the network, the prediction, should be the probability given by the
network that any given animal in a set of possible animals are present in the
photo. This probability for each animal should naturally be in the range [0,1].
To make sure that the output of the network is in this range it can be squashed
by a normalization function. The last layer of the network, the output layer,
usually contains the normalization function. The activation from the previous
layer for each output node, each animal, can be sent through the normalization
function and be mapped to the range [0,1]. This means that the normalization
function must be able to map any number into this range. The Sigmoid function,
eq. 2.17, does this.

σ(x) =
1

1 + e−x (2.17)

The Sigmoid function maps any value to the range [0,1], where large numbers
are close to 1 and large negative numbers are close to 0. There are some
drawbacks to the Sigmoid function, for example will the difference between
two large numbers be much smaller than the difference between two smaller,
close to 0, numbers. The rate of change at any point for the function,
the gradient, will decrease the more positive or more negative the numbers
become. The gradient is very import during the learning process of neural
networks, as it helps the network decide how to tune the weights. When the
gradient is very small, the network will adjust the weights less and learn less.
Small gradients will effectively ’kill’ the signal being sent through the network
during backpropagation, and we want to avoid that. The Sigmoid function is
usually used in multi-label classification problems; problems where the output
prediction can include multiple non-exclusive classes, or labels, such as which
animals are in a photo or which keywords belong to a document. This must
not be confused with multi-class classification, which is any classification task
where there are more than two possible classes. When there are only two
classes the problem is a binary classification problem, for example predicting

CHAPTER 2. BACKGROUND 33

whether a specific animal is in a photo. The prediction can still be anywhere in
the range [0,1].

For multi-class classification tasks where only a single class is the right answer,
for example which animal is the subject of a photograph, we can use the
Softmax function, eq. 2.18. The Softmax function turns the output of a network
into a probability distribution. This means that not only is each element
squeezed between [0,1], the elements are squeezed so that the sum of all the
elements is equal to 1.

σ(z)j =
ezj

K
∑

k=1
ezk

, j = 1, 2, ..., K (2.18)

Let’s say the network is trying to predict whether the photograph is of a
lion, a giraffe or a whale, and the unnormalized output from the network is
[5,2,4]. A simple max function would normalize this to [1,0,0], as it performs a
’hard’ max-operation and singles out the 5, then turns this into a probability
distribution, which means the probability of a lion being the subject of the
photograph is 100%, as it had the highest activation. Softmax performs a ’soft’
max-operation where it allows the other classes to retain some probability.
Softmax would normalize the output to [0.7,0.04,0.26]. Although the activation
for ’whale’ is just 20% lower than for ’lion’, Softmax gives it a probability that is
63% lower than the probability of ’lion’. The probability of ’giraffe’ has almost
disappeared, although it still retains a vary small probability, as softmax never
discards a class.

It is worth noting that for a simple binary classification task, the Softmax
function becomes the Sigmoid function and they will produce the same
results.

2.6.3 Loss functions

After the predictions of the network have been normalized we compare them
to the right answers. We use a loss function to quantify the discrepancy
between the predictions and the ground truth. This discrepancy is called error
or loss, and is sent back into the network to inform the weights of how much,
and in which direction they need to change. There are many loss functions,
and they provide different values for the loss. The most simple loss function
works by measuring the absolute difference between the predictions and the
ground truth, using eq 2.19.

Absolute Error = ∑ |prediction− truth| (2.19)

This is known as the Absolute Error function. By averaging the Absolute Error
you get the Mean Absolute Error, MAE, which is also known as L1 loss. By
squaring the difference in the L1 loss instead of using the absolute function,
you get the Mean Square Error, MSE, which is also known as L2 loss.

CHAPTER 2. BACKGROUND 34

Figure 2.2: Illustration of L2 Loss for a binary classification in the range [0,1].
As the prediction and ground truth disagree more, the loss rises towards 1

The Log Loss for binary classification, or Cross Entropy Loss, eq. 2.20, can
be difficult to understand by looking at the equation, but works relatively
simply.

−(ylog(p) + (1− y)log(1− p)) (2.20)

Figure 2.3 on the following page illustrates the main concept of Cross Entropy
Loss. When the predictions made by the network agree with the ground truth,
the loss is low, but the more confident the network is in the prediction and the
more wrong it is, the more it is logarithmically penalized.

Cross Entropy Loss is widely used as a loss function, and is often paired with
a Softmax or Sigmoid activation function to normalized the input. Sometimes
such a pairing is colloquially bunched together and called for example Softmax
Cross Entropy Loss, or Sigmoid Loss, even though the activation function and
loss function are two separate functions.

Before looking at Word2Vec and the other word embedding frameworks, I
will give a quick overview of Convolutional Neural Networks, since they, as
the name implies, are closely related to the neural networks explored in the
previous sections. I will provide a more detailed and specific analysis of a
CNN later in chapter 5 on page 51.

2.6.4 Convolutional neural networks

Convolutional Neural Networks (CNN) are a neural network architecture
that is providing great results in the field of image recognition (Krizhevsky,
Sutskever, & Hinton, 2012), as they not only draw inspiration from the brain,
but more specifically the visual cortex. In the following years after (Krizhevsky

CHAPTER 2. BACKGROUND 35

Figure 2.3: Illustration of Cross Entropy Loss for a binary classification in the
range [0,1]. As the prediction and ground truth disagree more, the loss rises
towards infinity

et al., 2012), CNNs also achieved good results in natural language processing
(NLP)(Kim, 2014), as the ideas behind the models can lend themselves quite
nicely to words and sentences. As the name suggests, CNNs incorporate
convolution as a central part of the network. To better understand the concept
of convolution, I will go through an example from the visual domain.

A black and white photo is essentially a group of pixels in a grid, or a multitude
of values from 0 to 255, arranged in a matrix configuration. Convolution uses
a filter, essentially another smaller matrix, to slide over the image matrix and
perform some function to generate an output matrix. When the filter slides
over a group of pixels, we multiply the filter matrix with the overlapping image
matrix and sum the result to get a single final value. We then place this value
in the output matrix and shift the filter to overlap a new part of the image
matrix and start again. This means that for each output value, or new pixel
in the output matrix, it will be a composition of all the pixels in an area of the
image. For NLP tasks we substitute the image matrix with a matrix consisting
of word vectors as rows, and the filter now slides over entire words; 3,5,7 etc.
words at a time. This filter is essentially a matrix of weights, and these weights
is one of the sets of weights the neural networks tunes while training. The
convolutional layers of a CNN usually contain hundreds of different filters,
and the filters often have one of only a handful of window sizes.

CNNs also use what is known as pooling layers. These layers subsample the
input, for example with a simple max function. This function splits the input
matrix into pieces and picks out the greatest value in each piece. This is one of
the core advantages of CNNs, as they can pick up on local features which are
good indicators for a class independent of the global position. It is also possible

CHAPTER 2. BACKGROUND 36

to use an averaging function which will compress the input by averaging the
values. This method will also retain the information that the max function
discards, but this comes at the cost of possibly retaining unwanted noise. In
CNNs used for NLP purposes, each filter has it’s own pooling layer, and the
pooling layer can either pick out a single value from the entire filter matrix,
or it can divide the filter matrix into pieces and pick out multiple values. If
a filter matrix is for example divided into three pieces, the pooling layer will
essentially pick a max value from the beginning, middle and end of a document
for the same filter.

The values picked out by the pooling layers from each filter is at the end of
the network assembled into a vector which is sent to the normalization and
loss function. This vector can be extracted and used as an embedding for the
input document. This embedding can be used to measure similarity between
documents, either by measuring distance or angle between embeddings, or
putting the embeddings in another network as input.

Figure 2.4: Illustration of a CNN from (Zhang & Wallace, 2015). The figure
illustrates three filter sets, with two filters each, extracting elements from
the input sentence to make a colorful document embedding and making a
classification.

A benefit that CNNs provide is speed. Since CNNs operate on images and
matrices, something that we have developed GPUs specifically to do, they
are able to do huge but quick calculations. The filters and pooling layers also

CHAPTER 2. BACKGROUND 37

help to pick up the most important features or summarize the content, which
decreases the amount of computations needed in the later layers.

As CNNs build upon and expand regular neural networks by using things like
convolutions and pooling, they need a prediction task and target to learn from.
In this thesis we train the network on some prediction task that we have no
direct interest in, as we only want the document representations the network
produces as a byproduct of the classification. The prediction task might be to
predict the meta data of a document. There are other methods, like Long Short-
Term Memory networks (LSTM), which are neural networks where neurons
can have loops, connecting back to themselves, essentially giving the network
memory. But for now we settle for only using CNNs.

But before we start using CNNs we will first take a look at methods of
generating word embeddings. The next sections will focus on some of the most
popular word embedding frameworks.

2.6.5 Word2Vec - CBOW

A common theory in natural language processing is the idea that the meaning
of a word is given by it’s textual context. We used this line of thinking
earlier when we discussed feature vectors for documents, where the words
that appear in a document would form a representation of the topic or content
of that document. We can apply this theory the same way for words: the other
words that appear together with a certain word can form a representation of
the meaning of that word. We could for example say that if a word appears in a
sentence, then all the other words in that sentence is in the contextual window
of the word, meaning we use them as features to represent the word. A feature
vector for a word will then consist of all the other words it has occurred in a
sentence together with. But for the most part we are interested in a window
with a fixed size, like the two words on either sides of a center word. Picking
the size of this window is an important part of the task. Following this line
of reasoning you could say that if you could then predict the context a word
would appear in, you would have understood the meaning of the word. This
is the backbone of the Word2Vec algorithm.

Word2Vec can be separated into two different network structures: CBOW
and Skip-gram. I will first give an overview of CBOW, then present Skip-
gram.

Continuous Bag-of-Words (CBOW), aims at predicting the probability of a word
given the context. It uses a neural network for this task, and the goal of the
network is to build a vector for each word so that it excels at predicting other
words appearing in a words context. However, in the end we are not interested
in actually using the network or the output. We are interested in the learned
weights, which are the word vectors. We feed the context of a center word to
the input layer, and the output layer gives us a prediction for the center word.
The input layer takes a CxV matrix as input, where C is the number of context
words and V is the size of the vocabulary, the number of unique words in the
corpus. The input vector of a single context word is a one hot encoding of the
word, meaning it has a dimension for every word in the vocabulary, with a 1

CHAPTER 2. BACKGROUND 38

in the spot that represents the context word and a 0 in the others. Likewise, the
output layer delivers a 1xV one hot encoded vector representing the prediction
for the center word.

The weights between the hidden layer and the output layer is what we use
as the word vector representation of the word, or what we call the word
embedding. One of the things that set embeddings apart from say a normal
BoW approach is the fact that the vector representation is not based on some
easily observable fact, like discrete word frequency, but a continuous and
distributed representation of the context made by the network. Another is that
the embedding is considerably denser and has lower dimensionality than the
BoW vector representation. The reason for this is the size of the hidden layer.
We set the size of the hidden layer, and thus the size of the embedding, quite
low, usually in the hundreds. This forces the network to squeeze and compress
the information before interpreting it. This has proven to enable the network
to capture new and different concepts and relationships between words. As
the input is multiplied by the input weights, or since the input is one hot
encoded, we simply pick the corresponding rows from the weights, we get
an activation with size CxN. We pass this to the hidden layer which is a mean
linear activation which performs an element-wise average and end up with
a final 1xN hidden activation that we pass to the output weights. The final
output is produced and we get the negative log likelihood of a word given a
set of context words. Finally we calculate the errors between the target and the
output, and propagate this error backwards through the network.

2.6.6 Word2Vec - Skip-gram

Skip-gram works the same way as CBOW, we just flip the entire network
around. This time we want to predict the context words given a center word.
This means that the input is a single 1xV center word which is passed to the
input-weights (VxN) and to the hidden layer (Nx1). The major difference this
time is that the Nx1 hidden activation is sent to the output weights with size
NxV and we get a CxV matrix as a result. Since we wanted to predict the
context words we end up with C number of output vectors, which are all
the same, and not just one. We calculate the error between the output and
the target, and then we element-wise sum the errors for each vector to get
one final error, which we then propagate through the network. For CBOW,
the embedding was found in the output weights, and for skip-gram the input
weights are the word embeddings.

2.6.7 Fasttext and GloVe

While Word2Vec and Doc2Vec, which we will look at in the next section, made
quite the impact when they arrived, other methods have sprung up in the wake
that provide better performance in certain areas. Facebook’s AI Research team
came up with the FastText library (Bojanowski et al., 2017), which can be used
to produce word representations. They way it differs from Word2Vec is that
while Word2Vec treats a word as the lowest, most basic building block, FastText

CHAPTER 2. BACKGROUND 39

splits words into n-grams, which together with the word itself, represent
the word (Joulin, Grave, Bojanowski, & Mikolov, 2017). This can help with
representing uncommon words, as some of the n-grams can be shared with
common words, and this also applies to words that are not in the corpus, as
they might also have n-grams that are shared with known words. This is
something that Word2Vec and GloVe can not do. FastText also makes use of
CBOW and Skip-gram, while GloVe does not.

GloVe (Pennington et al., 2014) runs over a corpus and fills out a co-occurrence
matrix for each word and some context window. While Word2Vec optimizes
the embeddings by performing a prediction task, for GloVe the embeddings are
optimized using gradient decent so that the dot product of two embeddings
equals the log of the number of times the two words will occur near each
other, given by the co-occurence matrix. GloVe offer some performance gains
for the computations and calculations, but whether GloVe performs better
than Word2Vec or FastText depends on the task and data, especially the
preprocessing of the data.

2.7 Document embeddings

We are interested in finding the embeddings for documents, not just words,
but finding representations for structures larger than a single word can be
difficult. There have been attempts to construct vector representations of n-
grams and sentences, for example by averaging the embedding of each word
in a sentence, but when the network tries to predict context words or the center
word, it does not care about the actual order of the words, only that it is within
the context window. There can be valuable information in the order of words.
Simply averaging the word vectors will not produce a viable representation of
a sentence, as two different sentences with the exact same words will share the
same representation

2.7.1 Doc2Vec

Doc2Vec, or paragraph vectors, tries to use the same approach as Word2Vec,
but preserving the information that stems from the word ordering. It does
this by including a paragraph vector along side the context words in the Skip-
gram model. When we train the network, the paragraph vector is trained as
well, and in the end it holds an embedding of the paragraph. This model is
called Distributed Memory version of Paragraph Vector (PV-DM) as it acts as
a memory, remembering what is missing from the context. Another model
is called Distributed Bag of Words version of Paragraph Vector (PV-DBOW),
which resembles the CBOW method, only this time we use the paragraph
vector as input instead.

Chapter 3

Preliminary baseline
experiments

In the following chapters we will use different algorithms and approaches
for recommending documents. It is therefore beneficial to first establish
a benchmark performance measure of a baseline system. By establishing
a baseline benchmark, we can easier see the performance gains or losses
achieved by the different approaches relative to this references point. As
baseline systems often are simple or common ways of solving a task, it can
also become easier to intuit what contributed to the changes in performance of
the other systems, as the baseline is easier to understand and more widely
explored by literature. This will also help us to better understand the
complexity and difficulty of our task, as we have more reference points for
the baseline’s performance. For this reason the baseline should also be robust
and expected to perform well, and so we present multiple baselines and
preprocessing methods to get a more informed overview of the task.

The first baseline algorithm for our task will be a Gensim TF-IDF normalized
BoW model. A BoW model is often the standard method in solving a wide
range of natural language processing tasks, and we will use it to create a
benchmark which represents one of the most simple and easy to implement
methods for solving this task. BoW also generally performs well and can be
difficult to improve upon.

The second baseline algorithm for our task will be a Gensim Doc2Vec model.
The Doc2Vec model have been used to easily achieve state-of-the-art results
in recent years and we will use a Doc2Vec model to establish a benchmark to
represent a recent state-of-the-art model.

3.1 preprocessing for the baseline

Before creating the models, the documents in the collection need to be
preprocessed. The documents are structured according to the XML format,

40

CHAPTER 3. PRELIMINARY BASELINE EXPERIMENTS 41

but we are only interested in the actual content of the document, not the
surrounding XML structure, and so each document was stripped of the XML
structure.

The documents, now free from XML structure, were preprocessed by UDPipe1.
A pre-trained UDPipe model for Norwegian-Bokmål (Øvrelid & Hohle, 2016;
Velldal, Øvrelid, & Hohle, 2017) was downloaded and applied, instead of
training the UDPipe model ourselves, as this will give more consistent and
replicable results. The documents were preprocessed in two ways for the
baseline; for the first version of the baseline the documents were simply be
tokenized, while for the second version they were lemmatized and lowercased.
Using UDPipe, the sentences in the document were segmented and tokenized,
with the resulting tokens being separated by whitespaces and with one
sentence on each line in the final document. The same process was repeated for
the second version of the document collection, and this time the tokens were
also lemmatized and lowercased.

Many of the documents are written in Bokmål, the most popular of the two
official written standards for the Norwegian language. The other documents
are written in Nynorsk. Nynorsk and Bokmål share many similarities, but
differ widely on others. Since only the UDPipe Bokmål model was used
when preprocessing documents it is highly likely that documents written
in Nynorsk were not ideally preprocessed. This also applies to any other
language found in the documents, such as English, Swedish or German. It
is out of the scope for this thesis to distinguish the two standards and different
languages during preprocessing, as this would not only involve automatically
detecting the language for each document, but also for each sentence or section
in a document, as court decisions can include lengthy quotes or excerpts in
different languages. It is not possible to rule out that this might affect the
performances of any of the models tested in this thesis.

3.2 Splitting the LCC

The Lovdata Court Corpus (LCC) was then split into three groups; training,
development and evaluation. 80% of the document mass was placed in the
training set, and both the development and evaluation sets received 10% each.
Since the documents in the LCC originate from several different courts and
court instances, the split-ratio was preserved across the different origins. The
documents from each origin were shuffled before dividing them, to prevent
any bias arising from their ordering, as they are ordered alphabetically by
their filename, which includes a publishing date. Naturally, as law is a field
that is constantly evolving and adapting, there will be a discrepancy between
old and new documents, which we wish not to be biased towards. This
segmentation was separately performed on both the full form and lemmatized
set of documents, with the same documents being placed in the same groups
between the two.

1https://ufal.mff.cuni.cz/udpipe

CHAPTER 3. PRELIMINARY BASELINE EXPERIMENTS 42

Document Set Total documents

Training 109,516
Development 13,677
Evaluation 13,679

Table 3.1: Total documents for the three sets used in this thesis

3.3 Setting up the baseline systems

The first baseline is a TF-IDF normalized BoW model created by Gensim using
the training set. A searchable index was created by Gensim which allows us to
send documents as queries and get a ranked list of all the training documents
ranked according to their cosine-similarity to the query document.

The second baseline, a Doc2Vec model created by Gensim, was trained
on the training set for 100 epochs, using the default hyperparameters of
Gensim.

Both of the baselines were trained and evaluated on both the full form and
lemmatized document collections. In the next sections we will first discuss the
evaluation of the BoW model on the full form collection and the lemmatized
collection, then the Doc2Vec models on the two collections, before we finally
discuss the result of the evaluations of the two corpuses and models relative to
each other.

3.4 Evaluating the baselines

To establish the benchmarks set by the baselines, the baselines were evaluated
on a document-similarity task. The models were given the documents from
the evaluation set as queries and asked to retrieve the top 100 most similar
documents from the training set. The same documents were given to the
Reference Vector System (RVS), which produced it’s own top 100 list from
the training set. This list was used as the gold standard for the two baseline
models.

The evaluation set was intentionally not included in the training of either of
the baselines, but was kept separate. For this reason, both the baselines and
the RVS are given a document from the evaluation set as input and retrieve
only documents from the training set. I chose this approach as it is more strict
since documents are being held out from the creation or training of the systems.
This is also because it more closely mimics the most likely use case for the final
system, where new, unseen documents are given as input and the retrieved
results come from a known, existing set of documents. However, another very
close use case is a ’more like this’-feature for documents in a complete set.
This use case would be closer to including the evaluation set in the creation or
training of the system.

For each document, the two ranked lists produced by the baselines were

CHAPTER 3. PRELIMINARY BASELINE EXPERIMENTS 43

compared against the gold standard and the performance of each baseline
was measured using four measures: precision, MAP, NDCG and average
agreement. From these scores we calculated the average score for each court
instance, as well as for the entire evaluation set. See table 3.2, where the four
measures are placed on the horizontal axis of the table, while the four baseline
models are placed on the vertical axis.

Model Precision@100 MAP@100 NDCG@100 AA@100

H
R

BoW full 0.133 0.273 0.092 0.115
BoW lemma 0.131 0.266 0.091 0.112
Doc2Vec full 0.026 0.077 0.020 0.020

Doc2Vec lemma 0.020 0.063 0.015 0.017

L

BoW full 0.140 0.251 0.103 0.107
BoW lemma 0.137 0.251 0.101 0.105
Doc2Vec full 0.031 0.079 0.025 0.021

Doc2Vec lemma 0.039 0.096 0.030 0.027

TR

BoW full 0.137 0.281 0.093 0.120
BoW lemma 0.137 0.279 0.093 0.119
Doc2Vec full 0.046 0.118 0.033 0.037

Doc2Vec lemma 0.053 0.142 0.038 0.043

O
ve

ra
ll BoW full 0.138 0.256 0.100 0.109

BoW lemma 0.136 0.255 0.099 0.107
Doc2Vec full 0.032 0.083 0.025 0.023

Doc2Vec lemma 0.038 0.097 0.029 0.027

Table 3.2: Precision, MAP, NDCG and AA for the four models and three court
instances with a cutoff at rank 100.

3.5 Evaluation of the two baselines models

The overall group in table 3.2 show that there is a negligible difference between
the BoW model on the full form and lemmatized documents. Both models
retrieved on average 14% relevant documents, approximately one in seven.
The District Courts (TR), which have longer documents according to table 2.2
on page 21, generally perform slightly better than the other two instances for
the BoW models. This is most likely because longer documents have more
words, and thus a higher probability of containing words which are good
discriminators.

The overall group in table 3.2 show that there is a slightly larger performance-
gap between the full form and lemmatized documents for the Doc2Vec model
than for the BoW model. The Doc2Vec model trained on the lemmatized corpus
perform about 20% better than the Doc2Vec model trained on the full form
tokens. Showing the same tendency as the BoW model, the Doc2Vec model
consistently perform far better on the longer documents from the District
Courts.

CHAPTER 3. PRELIMINARY BASELINE EXPERIMENTS 44

3.6 Comparing the two baseline models

The overall group in Table 3.2 on the preceding page show that the BoW
model performs on average four times better than the Doc2vec model on the
corpus of full forms, and three times better on the lemmatized documents, even
though Doc2Vec is considered more advanced. However, as stated in (Mikolov,
Sutskever, et al., 2013), a BoW model tend to perform well on long documents,
and is difficult to improve upon. In the paper this was a reference to the IMDB-
dataset, which consists of movie reviews containing on average 267.9 tokens
(Hong & Fang, 2015). Considering that we are using full documents that can
span multiple pages and thousands of tokens, and that the Doc2Vec model uses
the default hyperparameters suggested by Gensim, which are not tuned for
this specific task, it is less surprising that the Doc2Vec model does not perform
as well.

3.7 Comparing the metrics

Going forward, for simplicities sake we would like to only use a single metric
for evaluating ranked retrieval instead of four. It is therefore important to
observe in Table 3.2 on the previous page that for each of the three court
instances, the four metrics consistently rank the four models in the same order
relative to each other. For example does the BoW model for full form tokens
always achieve the highest score for all of the measures, and the BoW model
for lammas achieve the second highest. This shows that while the measures
measure and express different aspects of the models, the relative relationships
between the models stay the same. This means that the measure we use when
evaluating and ranking the models is not a factor, and when deciding which
measure to keep on using we will rather consider the aspects of the models it
compares. Going forward I will use NDCG as the only measure, as it is the only
measure that take into consideration the ranking of both the lists it compares,
which is a property that that is integral to this project.

3.8 Conclusion on the baselines

In this section we have introduced four different baseline models, based on two
different frameworks; Bag-of-Words and Doc2Vec. Two of the four models, one
from each framework, were trained on the full form training subset of the LCC,
while the two others were trained on the lemmatized training subset. I showed
that the BoW models clearly outperformed the Doc2Vec models, and that the
difference between using full forms or lemmas varies between the frameworks.
The BoW models were not particularly impacted by the preprocessing, while
the Doc2Vec models performed better when lemmatizing the text.

Chapter 4

Creating Norwegian
Word2Vec models

Before commencing the experiments with convolutional neural networks
(CNN), we will first have a look at estimating Norwegian word embeddings
using the Word2Vec framework. The word embeddings from this section will
later be used to initialize weights in a CNN as part of a set of experiments.
Although not directly related to the ranked document retrieval studied in
this thesis, word embeddings and their use is very fascinating, and so I
will also devote a portion of this section to carry out experiments on the
different Word2Vec models. While this is interesting in and of itself, it will
help shed some contextual light on different parts of this thesis and provide
supplementary information which will make some results more nuanced and
clearer. After the experiments with the different CNN models we will revisit
the results from this section, which will provide some more context to the
results in both this section and chapter 5 on page 51.

The primary Word2Vec model will be trained on the Lovdata Court Corpus
(LCC) used in this thesis. There does not exist any Norwegian corpus
of court decisions as large as this one1, or with the same structure and
metadata. The corpus of court decisions used in this thesis is as such
quite unique. There exists relatively few large-scale Norwegian text corpus
resources, the most notable being The Norwegian Newspaper Corpus2 (NNC),
which contains over 1.6 billion tokens, in both Norwegian Bokmål and
Norwegian Nynorsk, gathered from 24 Norwegian newspapers from 1998
to 2014. Another large Norwegian text corpus, The The Oslo Corpus of
Tagged Norwegian Texts3 from 1999, contains over 22 million tokens, in both
Norwegian Bokmål and Norwegian Nynorsk, gathered from three genres:
fiction, newspapers/magazines, and factual prose. The factual prose consists
mainly of some NOU reports (Norwegian Official Reports) and Norwegian
laws and regulations from between 1981 and 1995, but no court decisions. In

1Approximately 355 million tokens. See section 2.3 on page 19
2https://www.nb.no/sprakbanken/show?serial=sbr-4&lang=en
3http://www.tekstlab.uio.no/norsk/bokmaal/english.html

45

CHAPTER 4. CREATING NORWEGIAN WORD2VEC MODELS 46

this section several Word2Vec models will be trained on both the LCC and the
NNC, and a combination of both. The models will then be evaluated on two
intrinsic evaluation tasks for Norwegian word embeddings.

The word embeddings produced by the Word2Vec models were evaluated on
The Norwegian Analogy Test Set4 and the The Norwegian Synonymy Test
Set5, the two only benchmark data sets for evaluating models of semantic
word similarity for Norwegian. In (Stadsnes, 2018) and (Stadsnes, Øvrelid, &
Velldal, 2018), the authors demonstrate the usefulness of the two resources by
evaluating the performance of semantic vectors trained on the NNC by several
different word embedding frameworks. I will compare the performance of
the word vectors produced by the Word2Vec models trained in this work with
the best- and worst-performing models from the paper: a Word2Vec CBOW
model and a GloVe model, respectively. The models from (Stadsnes et al.,
2018) use mostly the default hyperparameters for the respective frameworks,
with word embedding size of 100, a minimum frequency cut-off of five and
trained for five and 25 epochs, respectively. The models in this thesis also
use the default hyperparameters of the Word2Vec implementation, but in this
chapter the word embedding size is 50 and all words are included regardless
of frequency. The models in this thesis was also trained for 100 epochs. For
these reasons it is not very interesting only comparing our models against the
Word2Vec CBOW and GloVe models.

Using the same lemmatized NNC as (Stadsnes et al., 2018), I trained two
Word2Vec models with a word embedding size of 50. These models also have
no frequency cutoff. In addition to training a model on the NNC, I also trained
a model on the combined NNC and the LCC, to study the impact the judicial
documents have on the performance of the model. These two models used
the same hyperparameters as in table 4.1. When the models and results from
(Stadsnes et al., 2018) are being discussed, they will be explicitly references,
any other reference to models trained on the NNC will be in reference to the
models trained in this thesis.

The first Word2Vec model was trained on the LCC, and word embeddings
were estimated using the Gensim implementation of Word2Vec. The model
used the CBOW variant of Word2Vec and was trained on the training subset
of the lemmatized court corpus. See table 4.1 for the hyperparameters of the
model.

Word2Vec variant CBOW
Window size five words
Embedding size 50
Epochs 100
Training data Lemmatized training subset of the LCC

Table 4.1: Hyperparameters for the Word2Vec model trained on the LCC.

CBOW was chosen over Skip-Gram as this was also the case in (Kim, 2014),

4https://github.com/ltgoslo/norwegian-analogies
5https://github.com/ltgoslo/norwegian-synonyms

CHAPTER 4. CREATING NORWEGIAN WORD2VEC MODELS 47

where they used vectors trained on the Google News Corpus6 by a CBOW
neural network. The window size for the Word2Vec models in this work was
set to five as the vectors trained by Google also use this window size. The size
of the word vectors were set to 50 since the standard baseline CNN model in
section 6.2 on page 59 use word embeddings with a size of 50, and the vectors
produced by the Word2Vec models are intended to be inserted into the word
embedding layer of a CNN as part of the experiments in section 6.6 on page 68.
The models were trained for 100 epochs. In figure 4.1 we can see that the
reported loss during the training of the models stays almost constant during
the 100 epoch training period. (Stadsnes et al., 2018) only train the models
for five and 25 epochs, depending on the framework. It is uncertain if the
training period greatly affects the usefulness of the word embeddings, but this
was motivation for not training the models more than 100 epochs. The reason
for all the models having a distinctly different loss is most likely because the
Gensim implementation of Word2Vec does not normalize the loss, and so there
are more words in the larger corpuses, and thus more predictions adding to
the loss. The large spikes are also difficult to explain, but could be results of
sudden overfitting and corrections.

Figure 4.1: Training loss for the different Word2Vec models.

4.1 Evaluating the Word2Vec models

First we evaluate the different models on the synonym detection task. This task
evaluates the model’s ability to find synonyms for a target word by simply
asking it to return the top ten most similar, or closest distance-wise, words,
and comparing this with a list of known synonyms for the target word. For

6https://code.google.com/archive/p/word2vec/

CHAPTER 4. CREATING NORWEGIAN WORD2VEC MODELS 48

all models the precision and recall among the 1, 5 and 10 nearest neighbors
of the target word are reported. Like in (Stadsnes et al., 2018), only the 30K
most frequent words in the vocabulary were considered. See table 4.2 for the
results.

k = 1 k = 5 k = 10
Model P R P R P R

LCC 5.7 3.8 12.3 8.3 15.9 10.6
NNC 8.4 7.2 17.7 15.2 22.5 19.3

NNC+LCC 8.0 7.0 16.6 14.5 21.3 18.7

GloVe (Stadsnes et al., 2018) 8.4 7.2 18.8 16.1 23.7 20.3
Word2Vec (Stadsnes et al., 2018) 10.3 8.8 21.3 18.2 26.5 22.7

Table 4.2: Results for the synonym detection task.

As we can see in table 4.2, the model trained only on the LCC is outperformed
by the two models which included the NNC in the training data, which is to be
expected as the LCC is a much smaller corpus and has a more narrow domain.
However, it is surprising that the model trained only on the NNC beats the
model trained on both the NNC and the LCC. One would expect the larger
combined corpus of words would lead to more nuanced and improved word
embeddings. Perhaps the two domains are so different that including the LCC
only confused the model by placing words in an entirely new context.

All of the models performed worse than the models from (Stadsnes et al., 2018),
but this is to be expected as the word embedding size is smaller and thus able
to capture less information.

Next we evaluate the word embeddings on the analogical reasoning task. This
task is separated into several smaller evaluation tasks which focus on different
analogies. These tasks cover either syntactical analogies or semantic analogies.
The tasks are structured as questions on the form 〈Man : King, Woman :
...〉, which translates to ’Man is to king as woman is to...’, where the right
answer is ’queen’. The semantic questions are mostly about the relationship
between countries and capitals, cities and counties and men and women. The
syntactical questions are typically about verb tense or forms of adjectives, such
as 〈big : bigger, small : smaller〉. Syntactical information is mostly removed for
lemmatized texts, as lemmatization actively tries to conjugate verbs to a single
form, such as the present infinitive form, or remove notions such as plurality.
Because of this, the syntactical questions will not be used when evaluating
models trained on a lemmatized corpus, which is also done in (Stadsnes et
al., 2018). Again, only the 30K most frequent words in the vocabulary were
considered. See table 4.3 on the next page for the results.

It is no surprise that the Word2Vec model trained on the LCC does not perform
as well as the models trained on the entire NNC. The model trained only
on the LCC achieves a total accuracy of only 12.6%, about half of the other
models. Although the model has trained on documents from a very narrow
domain, one would still think that many of the semantic questions are almost
as applicable in this context. Norwegian cities, counties and the importance of

CHAPTER 4. CREATING NORWEGIAN WORD2VEC MODELS 49

Task Accuracy Correct/total questions

Common capital city 20.8 15/72
All captial cities 9.5 4/42

Currency 0.0 0/28
City-in-county 7.7 167/2174
Man-Woman 56.7 136/240

Total accuracy 12.6 322/2556
GloVe total (Stadsnes et al., 2018) 59.7

Word2Vec total (Stadsnes et al., 2018) 46.0

Table 4.3: Results for the analogical reasoning task for the model trained on the
LCC.

Task LCC NNC NNC+LCC

Common capital city 20.8 37.9 36.2
All captial cities 9.5 38.7 39.9

Currency 0.0 35.0 42.5
City-in-county 7.7 16.0 16.2
Man–Woman 56.7 65.7 66.3

Total semantic accuracy 12.6 28.3 28.8

GloVe total (Stadsnes et al., 2018) 59.7
Word2Vec total (Stadsnes et al., 2018) 46.0

Table 4.4: Accuracy for the analogical reasoning task for different Word2Vec
models.

distinguishing places should be familiar concepts in court decisions. Often
when cities and places are mentioned, the county or jurisdiction is also
mentioned, as court decisions should be precise and not ambiguous. However,
as one can see in table 4.3, the model only achieves an accuracy of 7.7% on the
City-in-county task. It is also curious that the model scored no points on the
currency task. As the court decisions are strictly Norwegian, when a foreign
currency is mentioned it is usually given the proper context, like ’American
dollar’, ’Japanese yen’ and ’Swiss francs’. One would think that Word2Vec
would pick this up.

Since the corpus contains a lot of domain specific terms and phrases, the
lemmatization of the documents by the UDPipe model is far from perfect.
While this might be problematic for the document similarity task or the CNN
classification task, it should not greatly effect the outcome of the evaluation of
the Word2Vec model on the analogies task, as the questions asked are about
common words which will most likely have been lemmatized properly.

It is more understandable that the model does not perform well on the capital
cities tasks, as the court decisions are Norwegian, and when other countries
are mentioned it is most often in the context of someone being from that
country, and the relationship between a capital city and the country is largely
uninteresting. This is probably why the model achieves an accuracy of 25%

CHAPTER 4. CREATING NORWEGIAN WORD2VEC MODELS 50

on the syntactic nationality adjective task, which is not included in the table.
It performs even better on the man–woman semantic task. Male–female
relationships are abundant in court decisions as many crimes establish clear
and contextual differences between the genders, and things like pronouns
make it especially easy to differentiate ’policeman’ and ’policewoman’ by the
context alone. The same goes for parent–child relationships, which were a
subset of questions in the man–woman semantic task, as there are many cases
involving family members.

Focusing on the models trained on the NNC and the combined NNC and
LCC, table 4.4 on the previous page show that unlike for the synonym task,
the model which also trained on the LCC performs better. The improvement
is slight, but still an improvement. Interestingly, the performance on the
’Common Capital City’ task is slightly lower for the model also trained on
the LCC. Another interesting behavior is the increase in performance on the
’Currency’ task. The model trained only on the LCC failed every single
currency-question it was asked. However, when a model was trained on the
NNC and the LCC, the LCC somehow helped it perform better than when
trained only on the NNC, even though the model trained on the LCC alone
had not learned enough to answer correctly.

The model trained on the NNC and the LCC still did not perform as well as
the models from (Stadsnes et al., 2018), but this is most likely due to differences
such as the word embedding size. The results from (Stadsnes et al., 2018) are
still included as reference points.

The results from this section will be revisited and discussed further in
section 6.6 on page 68 and in section 7.1 on page 88.

Chapter 5

Convolutional neural
networks

In this section I will take an in-depth look at the structure and set-up of a
Convolutional Neural Network (CNN), and focus on the CNN configuration
used in this thesis. This model is based on the model outlined in (Kim, 2014),
and implemented in Python using TensorFlow1. Most of the code for the
implementation in TensorFlow is based on a slightly simplified version of
(Kim, 2014) made by Denny Britz2. The simplifications made are as follows
(Britz, 2015):

1. The model does not enforce L2 norm constraints, a regularization
method, on the weight vectors. (Zhang & Wallace, 2015), which conduct a
sensitivity analysis of one-layer CNNs to explore the effect of architecture
components on model performance, found that the constraints had little
effect on the end result.

2. The original paper experiments with using both static and non-static
word vectors at the same time. The model made by Denny Britz use
only one channel.

CNNs have strong ties with computer vision and image recognition, and
some of the terminology from these fields have been used in (Kim, 2014), and
thus I will also employ some more image-related words, such as ’channel’.
In (Kim, 2014) they experiment with having more than one input ’channel’.
This is standard when dealing with image recognition, where images can
be split into three dimensions, or ’channels’; red, green and blue. In (Kim,
2014) they experiment with using two channels; one channel with static word
embeddings which are not trained any further, and another channel with word
embeddings which are trained further. The model made by Denny Britz does
not do this, it uses only a single channel which is randomly initialized and
trained via backpropagation. For this thesis the code was modified so that
the single input channel is also able to use pre-trained word embeddings,

1https://www.tensorflow.org/
2https://github.com/dennybritz/cnn-text-classification-tf

51

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS 52

as explored further in section 6.6 on page 68. When using pre-trained word
embeddings, the embeddings are also not kept static, but allowed to be further
trained, or ’tuned’.

Figure 5.1: Simplified model architecture with a single channel for an example
sentence. Illustration is based on (Kim, 2014), but altered according to our
modifications.

5.1 Network structure

The model is comprised of three main parts; the word embeddings, the
convolutional layer and the output layer. See section 2.6.4 on page 34 for a
more general explanation of a typical CNN architecture. All documents will
be made to fit the set document length, either by padding them or by cutting
them short during preprocessing. The word embedding layer contains the
weights that make up the word embeddings, acting as a look-up table for the
word embeddings. These weights are either randomly initialized and then
adjusted and learned during training, or initialized to some set of pre-trained
weights. In this thesis, when using pre-trained word embedding weights they
will be the word embeddings from the Word2Vec models from chapter 4 on
page 45.

Next is another central part of the network, the convolutional layer. A
convolutional operation involves a filter being applied to a window of W
words. The filter produces a new feature from this window. The filter then
slides over all possible windows in the documents. The combined features
from each of these windows are put into a feature map. A max-pooling
operation is then applied to the feature map, reducing the map to a single
feature; the largest, and hopefully the most important, feature in the map. This
is just a single filter, and the network has several in parallel. There are multiple
window sizes, and each of these window sizes have multiple filters. Even
though the filters for a specific window slide over the same groups of words,
the filters themselves are different, and are tuned differently during training,
so each filter hopefully picks up on something new. The filters perform narrow
convolutions, meaning that they do not pad the edges of the documents. In the
end, every feature produced by all the filters are concatenated into a single

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS 53

vector. This is the vector we extract and use as the embedding for a document.
When talking about the parameters of a CNN I will mostly mention and
discuss the size of the document embedding, not the number of filters used,
as the size of the document embeddings are more near to the discussion in
this thesis. The number of filters can also easily be inferred from the size of
the document embedding and the number of different window sizes, as the
number of filters for each window size is given by the simple relationship
document embedding size
number of window sizes .

The final part of the network starts with a drop-out layer. Drop-out, as
explained in section 2.6.4 on page 34, drops out a handful of nodes from a
network to prevent the network from relying too much on any single node.
Usually drop-out is applied to the hidden layers of a network, but it can
also be used as a stand-alone layer. In this CNN the drop-out layer is a
separate layer that the document embedding vector pass through, where a
certain percentage of the nodes are dropped each pass, effectively denying
parts of the embedding to be passed to the next layers. After the drop-out
has been applied to the embedding we calculate the predictions the network
has made, the error and the loss. The model made by Denny Britz uses a
softmax cross-entropy loss function. With softmax, the sum of the probabilities
all add up to 1, meaning if you increase the probability of the document
belonging to one class, the probabilities for the other classes diminishes. Since
the documents we are classifying can belong to multiple, independent classes
we instead use a sigmoid cross-entropy loss function, which does not adhere
to this constraint.

Unless stated otherwise, the ’performance’ of a CNN model will refer to the
performance of the document embeddings extracted from a network and used
on the document similarity task, not the actual performance of the network on
the classification task.

5.2 Data and preprocessing

As CNNs are based on the architecture of neural networks, the model is trained
by updating the weights in the network using backpropagation. To be able
to do this it needs to compute an error between the output of the network
and some desired, target value. I intend to extract the document embeddings
produced by the network after training and use them to compute document
similarities. The document embeddings, or rather, the weights that produce
the document embeddings, are adjusted during the backpropagation phase
to minimize the loss. This means that even though I am not interested in
the actual results from the network, it is important that the task it is training
on will encourage the network to find document embeddings that are useful
for the actual task I am using the embeddings for. In my case I am using
the document embeddings as representations for documents to measure the
similarity between them, and thus I need to force the network to learn to pick
up on distinguishing features and attributes in the documents. I want to find
out if a task such as predicting certain meta features of a document will provide

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS 54

the network enough constraints to be able to produce documents embeddings
which can be used for similarity comparisons.

However, not all of the meta features are usable for this, as many of them will
not require the network to learn useful document embeddings. In addition,
the documents in the LCC contain a wide range of meta features, but they are
sporadic and it is often either too random which documents have which meta
features, or too predictable. The only features that form a sufficiently large and
wide subset are for the most part not suitable as a classification task for this
situation, such as title, the date it was published or author. These features are
abundant, but tell us or the network little to nothing about the actual content
of the document. The most fitting meta feature found in the data set, which
also cover enough documents, is the legal area meta tag.

5.2.1 Legal area meta tag

The legal area metafield is used to tag documents as belonging to certain areas
of law, for example fraud, marriage or renewable energy. Unlike many of the
other metafields, this field is not populated by editors, but by an automatic
process. Many laws, regulations, articles and other documents found in the
larger Lovdata collection have a similar field, which is manually filled out by
editors. The court decisions inherit the information found in the metafield of
the documents they reference. This means that if a certain paragraph of a law
have been tagged as belonging to a certain legal area, any document which
reference that paragraph, also gets tagged with that legal area. Although the
information is not filled out or checked by any person, I believe the tag can be
trusted to act as a target for this classification task.

An interesting property of the legal area tag is the fact that it is structured
like a tree. There are 35 tree-root legal areas, and each of those roots can have
child nodes, and each of those nodes can have their own children. The trees are
maximally three levels deep, but there can be leaf nodes on any level, including
the root. The tags are integers or series of integers, corresponding to different
areas and sub-areas. A document might be tagged with the root-tag 23, which
is ’criminal law’, but also 23.03.04, which is ’criminal law’ → ’violence’ →
’murder’. In the next paragraph, a single, unique ’tag’ is referring to the tag
given to a document, regardless of depth, for example 23.03, and a document
with only this tag is thought to have only one tag, even though the tag can be
pruned to form the two tags 23.03 and the root 23.

Of the 109,517 documents in the training-subset of the LCC, 71%, or 77,806
documents, have inherited one or more legal area tags. Focusing on only these
documents, and disregarding duplicate tags in documents, there are in total
207,067 legal area tags, which mean each document have on average 2.7 tags,
with a median of 2. The most tags for a single document is 21. There are
493 unique tags. When the tags were counted, only the complete tag was
counted, not any of the sub-tags one could get by moving backwards through
the branch.

If one were to count these sub-tags, there would be 526 unique tags, meaning
that some 1-level and 2-level deep tags are never used in the actual data. The

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS 55

average depth of a tag was 2.1, with a median of 2. Going forwards I will
decompose all tags into all possible pruned branches. If a document has a
single tag 23.03.04 I will expand the tag so that the document is also tagged
with 23.03 and 23. Documents are not allowed to have duplicate tags. This will
hopefully give the network more information during training, as it can give
’partially’ right answers by predicting pruned tags.

Docs with legal area tag 77,806
Total legal area tags 207,067
Average tags per document 2.7
Most tags in single document 21
Possible unique tags 526
Unique tags used 493
Max tag depth 3
Average tag depth 2.1

Table 5.1: Statistics for the legal area tag.

5.2.2 Document set for CNN

For the training of the CNN I will use the same training and development
subset of the Lovdata Court Corpus (LCC) as I used in section 3.2 on page 41,
and the lemmatized variant. However, as not all the documents in the training
and development subset have the required legal area tag I will reduce the
training subset for the CNN to 77,806 of the documents in the training set,
and the development subset to 9,745 documents.

For evaluating the document embeddings, both the evaluation and training
subset is used. These subsets will be the same as in section 3.2 on page 41.
I will use this evaluation document set and not remove any documents as the
evaluation is not constrained by the metafields. When extracting the document
embeddings, the documents do not need to have the meta tag to be able to
be used as input to the CNN and get a document embedding out. I will
also use the complete training subset of the LCC for the evaluation, as the
documents omitted from the training can in a similar fashion also pass through
the network without needing the meta tag.

The document vectors used as input to the CNN contain integers instead
of tokens. Each integer corresponds to an index in a vocabulary and the
corresponding word embedding in the word embedding layer. The integer
0 is reserved for tokens that does not appear in the vocabulary.

5.2.3 Input to CNN

The input documents to the CNN need to be of the same length, as the
input architecture has a fixed size. Ideally the size to fit the documents
into would be the size of the longest document in the training set, and all
other, shorter documents would be zero-padded to fit. However, this leads to

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS 56

significantly more computations, as for essentially every document that needs
to be padded the computer is spending computations on processing the extra
padding. In the interest of time it is therefore beneficial to set the maximum
document length to a size where the computer is not spending large amounts
of time on processing padding, while at the same time it is not sacrificing
information by cutting off longer documents. For the training subset of the
corpus, the average length of a document is 2847.4 tokens, however using
this as the maximum length of documents would mean that a large portion
of the documents would be cut short. Instead, in order of document length,
the top 0.5 percentile is at 17,000 tokens, meaning that for this cut-off point,
half a percent of all the documents will be cut short. Using this cut-off point as
the maximum document length ensures that for the overwhelming majority
of documents there will not be any loss of information, while at the same
time I keep computations low. The development and evaluation subset of
the corpus will also be used as input to the network, and it is possible that
basing the cut-off point only on the statistics from the training subset can have
an impact on the performance of the network when using the development
and evaluation subsets, if for example the documents in these subsets are on
average much longer and would therefore result in more documents not being
ideally represented as input. However, as the development and evaluation
subsets share the same distribution of documents as the training subset, I think
it is safe to base the cut-off point only on the data from the training set.

There are multiple ways to shorten the longer documents, the easiest being
to simply cut of the excess tail. However, court decisions usually follow a
similar format; an introductory part where the case and the different aspects
of it are discussed, a middle part where the different legal questions are
raised and discussed, and a conclusion which summarizes the discussions
and gives a verdict, conclusion or otherwise concludes the document. It is
easy to see that cutting off the end of a document might adversely effect
the amount of information extracted from the document, as an essential, and
highly condensed part of the document is presented at the very end. However,
this also goes for the other parts, as the introduction gives context to the rest of
the document, and the middle contains the essence of the document.

For the sake of simplicity, the length of documents will therefore be restricted
by ignoring any words past the cut-off point, effectively cutting of the tail of
longer documents. This might lead to some information loss for a very small
part of the document collection, but this is a sacrifice I will make to keep
computations relatively low.

Chapter 6

CNN experiments

A CNN contains a lot of hyperparameters which might be tuned to improve the
network’s performance, such as the size of the word embeddings, the number
of window sizes, the number of filters, the pooling-function and so on. In
this chapter, several experiments will be conducted to investigate the effects
of changing some of these hyperparameters. Many of the hyperparameters
in a CNN are most likely dependent on each other, meaning that two
hyperparameters can be changed in separate experiments and give improved
results, but the same is not guaranteed if they are both changed in the
same experiment. The goal of this chapter is not to exhaustively map
the interplay between the different hyperparameters using grid search or
other hyperparameter optimization methods, but rather to study the effect of
adjusting a few simple, but key, hyperparameters.

The performance of each CNN model will be recorded for two different
tasks. The first task is the classification task the network is training to solve.
The F1 score and loss during training will be discussed. The second task
is a ranked document retrieval task which will be known as the document
similarity task. This task is the most important of the two tasks and one
of the core focuses of this project. It is therefore important to not only
analyze a model’s performance on the classification task, but also make note of
how adjusting the hyperparameters effect the performance on the document
similarity task.

6.1 CNN baseline

The document embeddings produced by a CNN model will be evaluated
on the document similarity task used to evaluate the performance of the
preliminary experiments in section 3.4 on page 42. This task essentially consists
of comparing the top 100 most similar documents for a query documents with
the topp 100 documents retrieved by the RVS for the same query document. To
get a better understanding of the performance of the embeddings extracted
from the different CNN models, I will establish a performance benchmark

57

CHAPTER 6. CNN EXPERIMENTS 58

from a mathematical model. If a model does not find a signal in the data
we expect the performance to be near to the performance of a model which
randomly picks documents without following any pattern. The mathematical
baseline will then simply be a model which randomly selects 100 documents to
compare against the Reference Vector System (RVS). The mathematical formula
to calculate the average NDCG performance of such a model is expressed in
eq. 6.1.

NDCG(random) =

a k2
n

1
k

k
∑

i=1
log2(i+1)

IDCG
(6.1)

where

k = 100 = number of documents to pick/relevant documents,

a = 50.5 = average gain for all relevant documents =
1
k

k

∑
i=1

i,

i = position in list,
n = 77, 806 = number of documents in pool, the training set,

IDCG = 1250.307 = the ideal DCG score,

In the next paragraphs the different parts of eq. 6.1 will be explained. First, k2

n is
the average number of relevant documents in a subset of k random documents,
in this case the number of relevant documents picked by the random model.
With k relevant documents out of n total, the relationship between the amount
of relevant documents and the total number of documents is k

n . Since the
documents follow a uniform distribution, a subset of the total documents will
have the same relationship between relevant and total number of documents.
Thus, a subset of k number of documents will have k2

n number of relevant
documents.

Each relevant document has an average gain of a, in this case 50.5, which means
that the average cumulative gain for the documents picked by the model is
a k2

n . Next we need to figure in the discount. The documents are discounted
logarithmically according to log2(i + 1), which means that each document is
on average discounted by 1

1
k

k
∑

i=1
log2(i+1)

. Applying the average discount to

the average cumulative gain gives us the average DCG. The final step is to
normalize the DCG by dividing it with the ideal DCG, which is the DCG of
the perfect result, which is the list made by the RVS. The DCG is normalized
to map it to the range [0,1]. This gives the final score, the average NDCG for a
random model.

NDCG(random) = 0.000977 (6.2)

The best performing Doc2Vec- and BoW model from section 3.4 on page 42 will
also serve as a baseline for the evaluation performance against the RVS.

CHAPTER 6. CNN EXPERIMENTS 59

6.2 Experiment with standard parameters

The first experiment with a CNN was a simple out-of-the-box test run. The
main goal was to set another baseline for the other CNN experiments, using
either the hyperparameters suggested in (Kim, 2014) or (Zhang & Wallace,
2015), used in the code by Denny Britz or parameters that were decided on
without any a priori knowledge. It is important to note that the networks
evaluated in (Kim, 2014) and (Zhang & Wallace, 2015) are used for sentence
classification, and thus the parameters and practices suggested in the papers
might not be ideal for documents as large as ours. As stated in the introduction
of chapter 6 on page 57, for inputs as large as documents I consider an
exhaustive search for ideal hyperparameters out of scope for this thesis, and
I will rather explore the effects of making a few adjustments to some key
features. The features will mainly be the same features experimented on in
(Zhang & Wallace, 2015), namely the window sizes, the number of window
sizes, the total number of filters and regularization. Neither (Kim, 2014) nor
(Zhang & Wallace, 2015) explicitly experiment with adjusting the size of the
word embeddings, but I will explore this aspect in this work.

In the next sections the model using the initial hyperparameter settings and
values will simply be known as the standard model and the hyperparameters
used will be known as the standard hyperparameters. An overview of the
hyperparameters for this network and the other models can be seen in
table 6.1.

Parameters Standard model Other values experimented on

Size of training set 77,806 ”
Max document length 17,000 ”
Batch size 64 ”
Word embedding size 50 25, 100, 300
Window sizes (3, 4, 5) 4, 7, 10, 20, 30, (6,7,8), (7,7,7)
Total filters 200 100, 300
Doc embedding size 600 100, 300, 900
Drop-out rate 0.5 0, 0.25, 0.75
Nr. of training epochs 10 ”
Word emb. initialization Random Pre-trained
Is corpus lemmatized? Yes No

Table 6.1: The parameters for the different experiments. The ditto mark denotes
parameters which are always the same as the standard model

The max input document length was set to 17,000 tokens, based on the
reasoning in section 5.2.3 on page 55. The batch size was 64, which was
the default value in the code from Denny Britz, although (Kim, 2014) use a
size of 50. The word embedding size (W) used in (Kim, 2014) and (Zhang &
Wallace, 2015) is 300, however this was reduced to 50 to lower the amount
of computations and allow for faster results for the exploratory experiments.
The weights in the word embedding layer were randomly initialized and later
adjusted during the backpropagation. The window sizes used are the same

CHAPTER 6. CNN EXPERIMENTS 60

as in (Kim, 2014), but while (Kim, 2014) uses 100 filters for each window size,
this experiment used 200. At 600, the document embedding length (D) for this
model is then twice the length of the document embeddings produced by the
model proposed by (Kim, 2014). The drop-out rate (p) was kept the same as
in (Kim, 2014). The network trained for ten epochs, making ten passes over
the training data. After every epoch the network was evaluated on the unseen
development data.

The different models trained in this chapter all behave roughly the same
during training. I will take a detailed look at the model trained using the
standard hyperparameters and analyze the training and development log. To
avoid repetition I will not analyze each model as thoroughly as the standard
one and will rather discuss them in groups and with focus on their relative
performance. During training, the performance of the models on each batch
is recorded. In total, 12,160 measurements are recorded when training for ten
epochs. These measurements are downsampled to 100 data points, ten per
epoch, by averaging groups of around 121 measurements (10% of an epoch).
These data points are then used to plot the figures in the next sections. This
gives the figures a resolution of ten data points for each epoch. The reason for
downsampling the measurements is to make it easier to plot and to interpret
as there is a large variance in the measurements and this makes many of the
graphs hard to read. The individual performance of each batch is also largely
uninteresting, and so averaging them provides a more informative overview
of the model.

After each epoch of training the model was evaluated on the classification
task using the entire development set. The results of these evaluations are
plotted in the figures to show the performance on the development set. Please
observe that the evaluation is done on the classification task, and must not be
confused with the evaluation of the models on the document similarity task.
The evaluation will give a better estimate of the true performance of the models
during training and help identify if and when overfitting occurs.

6.3 Analysis of the performance of the standard
CNN model

All the weights in the network are randomly initialized and as such the
network performs poorly in the beginning. After a full epoch, the loss is about
80 times lower than at the start, showing how the network rapidly tunes and
improves the weights. The loss continues to decline and eventually nears a
plateau. The final loss for the evaluation on the development data is about 157
times lower than at the first measurement .

The network predicts whether certain legal areas, as described in section 5.2.1
on page 54, are ’present’ for a document. In the beginning, the network
makes almost exactly the same amount of ’present’ as ’not present’ predictions.
This shows that the network is truly randomly initialized. From table 5.1 on
page 55 it is clear that on average only about 1% of the legal area tags are
’present’ for any given document. The network learns quickly over a few steps

CHAPTER 6. CNN EXPERIMENTS 61

Figure 6.1: Training performance of a CNN model using the standard
hyperparameters

that it will perform dramatically better by mostly answering ’not present’. It
always makes some ’present’ predictions, and after a few steps it has reached a
precision over 0.1, meaning over 10% of the ’present’ predictions are true. After
one epoch the precision is already around 0.8. The precision starts plateauing
after the first epoch, but keeps slowly rising for the rest of the training. The
final precision measurement is about 96 times larger than the first.

As a result of the random initialization the recall starts at 0.55, which is not
visible in figure 6.1 as the model quickly learns to mostly predict ’not present’,
and the recall drops to around 0.05 after a few steps. The model then slowly
learns to make more predictions, and the recall rises, although not as quickly
as the precision. After one epoch the recall is at 0.4, meaning 40% of the correct
tags are being correctly predicted. Towards the end the recall stops rising and
starts evening out.

The F1 score, a mix between the precision and the recall scores, show the trend
for both the measures. The final F1 measurement is about 42 times larger than
the first. After every epoch the F1 score is calculated for the development set,
and in figure 6.1 one can see that the average F1 score for the development set
closely follows the F1 score for the training set. In the next sections I will mostly
feature two types of figures: a figure for the loss of the model, both recorded
during training and when evaluated on the development data, and a figure for
the F1 score for the model, both recorded during training and when evaluated
on the development data. Although the F1 score and the loss for the most part
describe the same behavior, there can appear some interesting discrepancies
between the two measures which sometimes can paint two different pictures.

CHAPTER 6. CNN EXPERIMENTS 62

Unless there is some interesting behavior to highlight, precision and recall will
not be included in any more figures, only the F1 score.

As the task is heavily skewed towards ’not present’ predictions, as soon as the
model learns to mostly answer ’not present’, the accuracy jumps to 0.99. This
reflects the 1% distribution of the present legal area tags. This also underscores
why accuracy is a bad measure to use on heavily skewed data, as it does not
consider the fact that predicting ’not present’ tags is not the important part of
the experiment, rather it is the small nuances of the ’present’ tags which I am
interested in. For this reason I will not feature the accuracy measure any more
in this chapter.

Once the network had finished training, both the full training and evaluation
sets were sent as input to the network and the resulting document embeddings
were extracted. The performance of the model was then evaluated the
same way as in section 2.4.2 on page 23; by picking the top 100 most
similar document embeddings from the training set for each document in the
evaluation set and compare the top list with the top list produced by the RVS.
The similarities between the two top lists were measured using the NDCG
measure and the results can be seen in table 6.2. The table also includes the
NDCG of the random baseline.

Court instance Model NDCG@100 F1 score

HR Standard 0.090

L Standard 0.132

TR Standard 0.129

Overall Standard 0.127 0.774
BoW full 0.100
Doc2Vec lemma 0.029
Random 0.000977

Table 6.2: NDCG for the standard CNN and the three court instances, and F1
score on development data after ten epochs

As we can see from table 6.2, the documents embeddings extracted from a
CNN after ten epochs of training outperform all the other baselines. Although
both Doc2Vec and a CNN are implementations of neural networks, the CNN
produced document embeddings which performed over 330% better on the
document similarity task.

6.4 Adjusting the word embeddings size

The goal of the first set of experiments was to see how changing the word
embedding size would effect the network. As the word embeddings sit
in the weights of the first layer, the complexity of the embeddings could
possibly have a cascading effect through the network, as the filters in the
convolutional layer will receive more or less information. Reducing the word

CHAPTER 6. CNN EXPERIMENTS 63

embedding size is like shrinking an input image along an axis. This could
possibly remove noise from the system, but the reduction in dimensionality
might leave too much information out. It is possible that the network might
still learn to discriminate the important features, regardless of the word
embedding size, or within a reasonable window. The opposite might be true
for increasing the word embedding size, allowing more granular information
to be represented and in the end provide a more nuanced representation for
different contexts.

The parameters for this set of experiments were the same as in the previous
experiment with the standard parameters, with the only difference being the
size of the word embeddings. See table 6.1 on page 59 for the hyperparameters,
figure 6.2 and 6.3 on the next page for the performance on the classification
task, and table 6.3 on page 65 for the performance on the document similarity
task.

Figure 6.2: Loss for models with different word embedding sizes. The dotted
line is the loss on the development data.

In figure 6.2 and 6.3 on the following page, we can see that the models are
quite close in performance during training, and for the evaluation on the
development set they are even closer. After ten epochs the performance on
the development set is almost identical.

In table 6.3 on page 65 we can see that that the model with reduced word
embedding size performs worst, with the overall NDCG score dropping
by almost 7%. The model clearly still pick up on a signal and has no
trouble outperforming the random baseline, even when the size of the word
embeddings are one twelfth of the size used by (Kim, 2014).

CHAPTER 6. CNN EXPERIMENTS 64

Figure 6.3: F1 score for models with different word embedding sizes. The
dotted lines are the F1 score on the development data.

The final word embedding size experiment increased the size of the word
embeddings to 300, the same size used in (Kim, 2014). From figure 6.3 one
can see that even though 300 is three times larger than 100, the performance
gain on the training data is not three times larger, and the performance on
the development data is almost exactly the same as the model with size 100
from epoch six and out. In figure 6.2 on the previous page one can also see
that the loss for this model starts to rise for the development data during the
last two epoch, possibly indicating that the model is overfitting. Table 6.3 on
the following page show that the performance of this model on the document
similarity task is almost exactly the same as for the model with a word
embedding size of 100.

Table 6.3 on the next page show that the models with double and six times
the size of the standard word embeddings performed almost exactly the
same as the standard model. It is clear that increasing the word embedding
size positively impacted the performance, as the performance was higher for
all three court instances, most notably for The Supreme Court, where the
performance was just over 3% higher for the model with double the size,
but the improvement is minimal compared to the increase in training time.
There seemed to be an almost linear relationship between the size of the word
embeddings and the training time, so the model with six times larger word
embeddings took six times longer to train.

There seems to be a direct correlation between the word embedding size and
the performance of the system. The largest word embedding size performed
the best on both the classification task and the document similarity task.

CHAPTER 6. CNN EXPERIMENTS 65

Model NDCG@100 F1 score

H
R

W = 300 0.091
W = 100 0.093
W = 50 0.090
W = 25 0.085

L

W = 300 0.134
W = 100 0.134
W = 50 0.132
W = 25 0.123

TR
W = 300 0.129
W = 100 0.129
W = 50 0.129
W = 25 0.119

O
ve

ra
ll

W = 300 0.128 0.782
W = 100 0.128 0.780
W = 50 0.127 0.774
W = 25 0.118 0.768
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.3: NDCG for the word embedding size experiments and the three court
instances, and F1 score on development data after ten epochs

Normally these promising results would lead to more experiments where the
embedding size is increased until there is either a drop in performance or
there are too small gains to warrant further experiments. However, due to
time constraints no further experiments will be conducted. The relationship
between the training time and the size of the word embeddings led to
other experiments being prioritized over expanding the word embeddings
further.

Each set of experiments will be based around the baseline performance of the
standard model. Because of this the results from one set of experiments will
not be carried forwards to the next experiments. The best performing word
embedding size found in this section will thus not be used in the experiments
in the next sections.

6.5 Adjusting document embedding size

The goal for the second set of experiments was to study the effect of adjusting
the document embedding size. The motivation for this is the fact that the
document embedding is the part of the network I am actually interested in
using after the network has finished training. As I am using the cosine
distance to calculate the similarity between document embeddings, having
larger vectors might allow for more fine details to be conserved. This might

CHAPTER 6. CNN EXPERIMENTS 66

not make a huge impact on the classifying task for the CNN, but it might play
a greater role when evaluating document similarities later. For the experiments
in this thesis the document embedding size is only dictated by the number of
filters for each window size, and so when adjusting the document embedding
size I am at the same time adjusting the total number of filters. I discuss this
change as changing the document embedding size, since when I have extracted
the embeddings and are using them for the document similarity task, the actual
task I am interested in, the number of filters does not matter as I am not using
the CNN anymore.

All the hyperparameters in the networks were kept the same as the standard
experiment, with the exception of the document embedding size (D). The
document embedding size was increased to 900, three times the size used in
(Kim, 2014), and decreased to 300, the same size used in (Kim, 2014). See
table 6.1 on page 59 for the hyperparameters, figure 6.4 and 6.5 on the following
page for the performance on the classification task, and table 6.4 on the next
page for the performance on the document similarity task.

Figure 6.4: Loss for models with different document embedding sizes.

In figure 6.5 on the following page, we can see that increasing the document
embedding size leads to a very small performance gain on the classification
task, performing slightly better than the standard model. The performance on
the document similarity task is also slightly better, performing better than the
standard model by about 4%. By reducing the document embedding size to
300, half the size of the standard model, but the same size used in (Kim, 2014),
the performance sees a larger drop, both on the classification and similarity
task. The overall performance on the similarity task drops over 12%. As
the documents embeddings are a central part of both the classification task

CHAPTER 6. CNN EXPERIMENTS 67

Figure 6.5: F1 score for models with different document embedding sizes.

Model NDCG@100 F1 score

H
R

D = 900 0.100
D = 600 0.090
D = 300 0.083

L

D = 900 0.138
D = 600 0.132
D = 300 0.115

TR

D = 900 0.130
D = 600 0.129
D = 300 0.115

O
ve

ra
ll

D = 900 0.132 0.788
D = 600 0.127 0.774
D = 300 0.111 0.743
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.4: NDCG for the document embedding size experiments and the three
court instances, and F1 score on development data after ten epochs

and document similarity task, it is not surprising that increasing their size
and allowing them to hold more information leads to better results on the
evaluation tasks.

CHAPTER 6. CNN EXPERIMENTS 68

It is worth noting that in figure 6.4 on page 66 and 6.5 on the preceding
page one can see that training performance of the standard model and the
model with an increased document embedding size starts outperforming the
performance on the development set after around eight epochs, possibly
indicating the start of overfitting. When the network is actually overfitting
we expect the loss for the development set to start rising again. This does
not happen after ten epochs, but the loss has started to heavily plateau. The
relationship between the three models on the development data is close to the
relationship between the models on the training data, and the development
performances do not converge like in the previous experiments before training
is over.

6.6 Using pre-trained word embeddings

The goal of this set of experiments was to study the impact of using pre-trained
word embeddings to initialize the word embedding layer of the network.
The motivation for this was the fact that there exists powerful tools and
algorithms for making word embeddings, like Word2Vec. By utilizing the
information already encapsulated in the embeddings, networks might get a
jump start in performance by inserting pre-trained word embeddings into the
word embeddings layer instead of learning the embeddings from the ground
up while at the same time learning all the other weights of the network. These
embeddings can be trained on the same data I am using to train the CNN, but
I can also train them on other unlabeled data, such as the Norwegian News
Corpus1. Word2Vec only need text to train on, so any Norwegian text can be
used, regardless of domain. It is of course beneficial to use as much text from
the relevant domain as possible to help the model learn useful embeddings.
For this experiment the word embeddings in the word embedding layer will
come from two different Word2Vec models: one Word2Vec model trained on
the Lovdata Court Corpus (LCC) and another trained on the Norwegian News
Corpus (NNC) and the LCC. See chapter 4 on page 45 for a deeper analysis
of these models. In chapter 4 on page 45 it is shown that a Word2Vec model
trained on only the NNC and a model trained on the combined NNC and LCC
perform almost the same on the evaluation tasks used in that section. It was
therefore decided to only use a single mode which had trained on the NNC,
and thus I chose the one which had trained on both the NNC and the LCC, as
it had trained on more data.

All the hyperparameters in the network stayed the same as in the standard
experiment. The only difference was that the word embedding layer was
initialized with pre-trained word embeddings. The word embedding layer was
not kept static, but was allowed to be further trained. See table 6.1 on page 59
for the hyperparameters, figure 6.6 on the following page and 6.7 on the next
page for the performance on the classification task, and table 6.5 on page 70 for
the performance on the document similarity task.

As all the Word2Vec models used were trained on the training subset of the

1https://www.nb.no/sprakbanken/show?serial=sbr-4&lang=en

CHAPTER 6. CNN EXPERIMENTS 69

Figure 6.6: Loss for models with different word embedding initializations.

Figure 6.7: F1 score for models with different word embedding initializations.

LCC and thus had a vocabulary which included every term in the training
subset, there is no out-of-vocabulary terms encountered during training.
However, there are terms in the development and evaluation subsets which

CHAPTER 6. CNN EXPERIMENTS 70

Model NDCG@100 F1 score

H
R Pre-trained on LCC 0.085

Pre-trained on NNC + LCC 0.081
Randomly 0.090

L Pre-trained on LCC 0.124
Pre-trained on NNC + LCC 0.120
Randomly 0.132

TR
Pre-trained on LCC 0.124
Pre-trained on NNC + LCC 0.123
Randomly 0.129

O
ve

ra
ll

Pre-trained on LCC 0.125 0.788
Pre-trained on NNC + LCC 0.116 0.759
Randomly 0.127 0.774
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.5: NDCG for the initialization experiments and the three court
instances, and F1 score on development data after ten epochs

are not in this vocabulary, and these terms are mapped to the same 〈UNK〉-
embedding, representing an unknown word.

From table 6.5 we can see that the model with word embeddings from the
Word2Vec model which was only trained on the LCC performed almost the
same as the standard model with randomly initialized word embeddings.
In figure 6.6 on the preceding page and 6.7 on the previous page one can
see that these two models performed almost exactly the same during the
first part of training, but then the pre-trained model started dropping of and
ends up performing almost exactly the same as the other pre-trained model.
However, on the development data the pre-trained model performs much
better, establishing a clear performance gap over the standard model. The
model with pre-trained embeddings trained on both the NNC and the LCC
performed worst, both on the classification task and the document similarity
task. It is uncertain what caused the large difference in performance on the
document similarity task for this model.

These results suggest that using pre-trained word embeddings from primarily
the same domain can give a boost to the classification performance, but for
the document similarity task it does not provide a positive gain. When
using word embeddings trained on primarily out of domain documents, the
results are much worse, possibly leading to greater confusion for the model.
(Zhang & Wallace, 2015) also conclude that when there is enough training data,
learning embeddings from scratch may be the best alternative for achieving a
good score, which corroborate the document similarity scores achieved in this
section, although the scores are for two completely different tasks.

CHAPTER 6. CNN EXPERIMENTS 71

6.7 Adjusting the drop-out rate

The goal for the next set of experiments was to study the effect of adjusting
the drop-out in the network. The motivation for this was the fact that drop-
out is used to regularize the network to prevent overfitting to the data, but
it seems like the network either has enough diverse training data or does not
have enough time to start overfitting heavily, so the drop-out might slow down
the learning process and lead to unnecessary over-correcting. On the other
hand, drop-out might be a crucial step in the process, as it is applied to the
document embeddings during training and this might force the network to
build extra strong and robust embedding weights.

All the hyperparameters in the network stayed the same as in the standard
experiment. The only difference was that the drop-out rate. See table 6.1 for the
hyperparameters, figure 6.8 and 6.9 on the next page for the performance on
the classification task, and table 6.6 on the following page for the performance
on the document similarity task.

Figure 6.8: Loss for models with different drop-out rates.

In the first experiment the probability of drop-out was reduced from 50% to
0, meaning that no drop-out would be applied to the document embeddings
during training. With no drop-out the models performance on the classification
task on the training data dramatically improved, while the performance on
the development data did not share the same increase. This is expected when
regularization is removed, as this will more easily lead to the model overfitting,
which will manifest itself as an increase in performance on the training data,
but not on the development data.

CHAPTER 6. CNN EXPERIMENTS 72

Figure 6.9: F1 score for models with different drop-out rates.

Model NDCG@100 F1 score

H
R

p = 0.75 0.091
p = 0.5 0.090
p = 0 0.082
p = 0.25 0.080

L

p = 0.75 0.132
p = 0.5 0.132
p = 0 0.118
p = 0.25 0.115

TR

p = 0.75 0.125
p = 0.5 0.129
p = 0 0.113
p = 0.25 0.114

O
ve

ra
ll

p = 0.75 0.127 0.792
p = 0.5 0.127 0.774
p = 0 0.114 0.789
p = 0.25 0.111 0.723
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.6: NDCG for the drop-out rate experiments and the three court
instances, and F1 score on development data after ten epochs

CHAPTER 6. CNN EXPERIMENTS 73

The step-like increase in F1-performance at the start of each epoch is also more
prominent than the other models. This can be an indication of overfitting as the
’benefit’ of a training pass is not really visible until the model encounters the
document again, at which point it remembers what it learned after the previous
encounter without really using knowledge gained from the other documents.
This behavior can also be observed in figure 6.8 on page 71. Also note the
drop in performance as the epoch progresses before shooting up when the
next epoch starts. This could indicate that the training is actually confusing the
model as the epoch is progressing, but it still performs better than at the same
point one epoch earlier because it is overfitting. In figure 6.9 on the preceding
page, the difference between each data-point one epoch apart after around five
epochs stays almost constant, gaining on average 0.05 each epoch. In figure 6.8
on page 71 it is also visible that the loss for the model with no drop-out starts
lowest, but at the end of training, when overfitting is most likely occurring, the
loss is rising and about to overtake the standard model. This further supports
the theory that overfitting is indeed happening.

Another interesting behavior can be observed in figure 6.10. The model with
no drop-out has an unusual jump in precision at the start, before dropping
off, then slowly rising again. This happens because unlike the other models
which always made a handful of ’present’ predictions in the beginning, this
model makes very few such predictions in the beginning. The model is more
careful and makes a few, but good predictions, which leads to the precision
rising. However, this also leads it to becoming the only model which at
some point didn’t make any ’present’ predictions. However, after about an
epoch the model makes the same amount of ’present’ predictions as the other
models.

Figure 6.10: Precision for models with different drop-out rates.

CHAPTER 6. CNN EXPERIMENTS 74

What makes the large increase in performance on the classification task for
the training data, and the quite normal performance on the development data,
more interesting is the fact that the performance of the document embeddings
were much worse. The model performed about 10% worse overall than the
standard experiment with 50% drop-out. This could be the result of the model
starting to overfit to the data, but it is still noteworthy that the performance
on the development data is about the same as the other experiments, yet the
performance of the embeddings are worse then the other experiments.

For the next experiment the drop-out probability was raised to 75%, meaning
three out of four nodes were dropped out. This network also performed quite
well on the classification task, beating the default parameters. Surprisingly
both removing and increasing the drop-out rate led to improvements on the
classification task. This fact might indicate that the model is not overfitting
as severely as first thought, as increasing the regularization should combat
overfitting. The ’steps’ in performance might be explained by something
else, but it is unknown what might cause them if not overfitting. But then
again the difference in performance on the training data and development data
strongly suggest overfitting is happening, and it might just be that the drop-out
regularization is not effective enough. In contrast to the previous experiment,
increasing the drop-out had little effect on the performance of the document
embeddings, achieving a NDCG score on par with the standard model, as can
be seen in table 6.11 on page 87.

Another interesting behavior in figure 6.9 on page 72 is the ’kink’ in
performance on the development data that happens after 7 epochs for
both the models with no drop-out and increased drop-out. Both models
converge at almost the same value from this point forward, even performing a
synchronized sudden hop in performance, then plateauing.

Another experiment was conducted to study the effect of not entirely removing
the drop-out, but lowering the drop-out probability to 0.25. This did also
not give the results one would expect based on the previous experiments.
The performance on both the training and development data was greatly
reduced, although the relationship between the training and development
performance was more stable than the other experiments. This could indicate
that overfitting is not yet happening. The step-like behavior is also not present,
which could corroborate this. It thus seems like increasing regularization
increases overfitting, and lowering regularization decreases overfitting, while
performing no regularization at all increases overfitting the most. From
table 6.6 on page 72 one can also see that the loss in performance suffered
by this model also means the performance on the document similarity task
is lowered. From this set of experiments it is more difficult to draw any
conclusions on the relationship between the performance on the classification
task and the performance on the document similarity task, as there seem to be
some deviation from the relationship seen in the previous experiments.

CHAPTER 6. CNN EXPERIMENTS 75

6.8 Adjusting the window sizes

(Zhang & Wallace, 2015) suggest performing a line-search over single window
sizes to find the ’best’ single window size, and then combining multiple
different window sizes close to this ideal single window size. In the standard
model the window sizes were a triplet of size (3,4,5), with 4 being the ’ideal’
window size the triplet was centered around. In the next set of experiments five
different single window sizes will be tested and compared against each other
to find the best single window size among them, and then construct a window
size triplet around this center window size. The five window sizes are: 4, 7, 10,
20, 30. 4 was selected as the first window size to be tested as it was the size
the standard filter was centered around. In (Zhang & Wallace, 2015) they test
single window sizes in the range from 1 to 30 and the four remaining window
sizes were picked from this range. 7 was selected as the second window size to
be tested as it was the size that gave best results in (Zhang & Wallace, 2015) for
one of the datasets tested on. (Zhang & Wallace, 2015) suggest a range of 0 to
10 for datasets with short sentences, and a larger range for datasets with larger
sentences. Since the dataset used in this thesis consist of large documents,
window sizes of 10, 20 and 30 were also tested, as documents might need a
much larger window size than sentences, and the sizes were also featured in
the experiments performed in (Zhang & Wallace, 2015).

Almost all the hyperparameters in the network stayed the same as in the
standard experiment. The only difference was that the window sizes were
reduced to a single size and the number of filters for each window size was
reduced from 200 to 100, as this was the size used in (Zhang & Wallace, 2015).
This in turns means the document embedding size is lowered to 100. See
table 6.1 on page 59 for the hyperparameters, figure 6.11 on the next page
and 6.12 on the following page for the performance on the classification task,
and table 6.7 on page 77 for the performance on the document similarity task.
In figure 6.12 on the following page and 6.11 on the next page the models
performances are normalized in relation to the model with a window size of
4 (f = 4), which will be used as the baseline for the single filter experiments,
as it is the center size used in the standard model. This is done to make
the figures easier to read, as there is little difference between the models and
the relative performance between the models is more interesting than the
relative performance to the other experiments. To avoid confusion with the
word embedding size, the window sizes will be represented by a lower case
’f’.

Although (Zhang & Wallace, 2015) suggest that datasets with longer docu-
ments might benefit from larger window sizes, this does not seem to be the case
for this dataset. Of course, this dataset and task is widely different than any of
the sets used in (Zhang & Wallace, 2015) and it should come as no surprise that
the recommendations made in the paper does not hold true for this data. Still,
one would perhaps not expect that the ideal window size for single sentences
would also be the ideal window size for entire documents. Both figure 6.11 on
the following page, figure 6.12 on the next page and table 6.7 on page 77 all
show that window sizes either side of 7 decrease performances. The relative
close performance of the two models with window sizes 7 and 10 might sug-

CHAPTER 6. CNN EXPERIMENTS 76

Figure 6.11: Loss for models with different single window sizes. The y-axis is
normalized with relation to model ’f = 4’

Figure 6.12: F1 score for models with different single window sizes. The y-axis
is normalized with relation to model ’f = 4’

CHAPTER 6. CNN EXPERIMENTS 77

Model NDCG@100 F1 score

H
R

f = 4 0.056
f = 7 0.056
f = 10 0.051
f = 20 0.047
f = 30 0.040
f = (3,4,5) 0.090

L

f = 4 0.080
f = 7 0.086
f = 10 0.083
f = 20 0.075
f = 30 0.067
f = (3,4,5) 0.132

TR

f = 4 0.075
f = 7 0.080
f = 10 0.078
f = 20 0.070
f = 30 0.062
f = (3,4,5) 0.127

O
ve

ra
ll

f = 4 0.077 0.63
f = 7 0.082 0.65
f = 10 0.079 0.64
f = 20 0.071 0.62
f = 30 0.063 0.61

f = (3,4,5) 0.127 0.774
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.7: NDCG for the single window size experiments and the three court
instances, and F1 score on development data after ten epochs

gest that the ideal window size lies somewhere in between them, either 8 or 9,
but these window sizes were not tested. In (Zhang & Wallace, 2015), using the
ideal single window size of 7 beats the performance of their baseline model,
which has the same window sizes triplet as our standard model, but this does
not happen in our dataset. The baseline model has three different filter-sizes,
all with 200 feature maps each, making a final document vector of 600 features.
The model with a single window size produces a document embedding only
100 features long, and this discrepancy in document embedding size probably
accounts for most of the difference between the best single window size and
the standard triplet. As can be seen in table 6.4 on page 67, reducing the size
of the document embeddings severely impacts the performance, so I would
not expect any model with only 100 total feature maps to beat the baseline, a
model with 600 feature maps, regardless of window size or number of window
sizes.

CHAPTER 6. CNN EXPERIMENTS 78

The goal of the next experiments was to test using multiple window sizes
near the ideal single window size, as this would give results which were more
easily comparable with the baseline model. Following the recommendation in
(Zhang & Wallace, 2015), the window sizes tested were both combinations of
different window sizes near the ideal size and copies of the ideal size. Two
sets of window sizes were tested: (6,7,8), centering around the ideal size of
7, and (7,7,7) which was based on the recommendation in (Zhang & Wallace,
2015) that for some tasks simply increasing the number of filters for the ideal
single window size was the best solution. For the rest of this section the (7,7,7)
window size set will be reffered to as a ’set’ of window sizes even though
having three sets of 200 filters with window size 7 is the same as having a
single window size of 7 and 600 filters. For these experiments the number of
filters for each window size was increased back to 200, as this would produce a
document embedding with the same amount of features as the standard model,
which also uses three window sizes and 200 feature maps for each size.

Again, all the hyperparameters in the network stayed the same as in the
standard experiment. The only difference was the multiple window sizes.
See table 6.1 on page 59 for the hyperparameters, figure 6.13 and 6.14 on the
following page for the performance on the classification task, and table 6.8
on the next page for the performance on the document similarity task. These
figures are also normalized with regards to ’f = (3,4,5)’.

Figure 6.13: Loss for models with different multiple window sizes.

The first of the experiments moved the center value of the filter-size triplet to
7, the single window size which did the best in the previous experiments. This
increased the performance on the training data, while the performance on the
development data approximately followed the performance of the standard

CHAPTER 6. CNN EXPERIMENTS 79

Figure 6.14: F1 score for models with different multiple window sizes.

Model NDCG@100 F1 score

H
R

f = (6,7,8) 0.088
f = (7,7,7) 0.088
f = (3,4,5) 0.090

L

f = (6,7,8) 0.132
f = (7,7,7) 0.132
f = (3,4,5) 0.132

TR

f = (6,7,8) 0.130
f = (7,7,7) 0.130
f = (3,4,5) 0.127

O
ve

ra
ll

f = (6,7,8) 0.127 0.777
f = (7,7,7) 0.127 0.778
f = (3,4,5) 0.127 0.774
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.8: NDCG for the multiple window sizes experiments and the three
court instances, and F1 score on development data after ten epochs

model on the development data. The performance on the document similarity
task compared to the standard model did also not change. In (Zhang &
Wallace, 2015) they suggest that simply using one window size and many
filters could achieve top scores on some tasks. The next experiment then only

CHAPTER 6. CNN EXPERIMENTS 80

used three sets of 200 filters with a size of 7, which as discussed earlier is the
same as having a single window size of 7 and 600 filters. This model performed
almost exactly the same as the previous experiment. It seems having one
slightly smaller and one slightly larger window does not seem to have helped
in picking out important features.

Table 6.8 on the preceding page show that centering the filter triplet around
a higher value did not effect the final document similarity score. Although
the previous experiments showed that a window size of 7 outperformed the
lower window size of 4, which was the center size of the baseline model,
this relationship did not continue when expanding these values into triplets
or increasing the number of filters for a single window size.

The reason that higher window sizes does not seem to matter for this task
might be a consequence of the training task. The network is attempting to
predict the legal area tags for documents, and the tags are determined by the
references in the documents. It is possible that the network is learning this
relationship and adjusts the filters to pick out the references. These references
would be a single word, or a couple of words long at most, and for the filters
to pick them out they would not need to cover more than a few words at
a time, and so the difference between covering 4 or 7 words is negligible.
It is highly likely that some other classification task for this dataset would
behave differently and possibly have a larger performance gap between the
two window triplets.

In the single window size experiments the 7-centered model performed better
than the 4-centered model derived from the standard model. In the multiple
window size experiments, the 7-centered models did not perform better than
the standard model. The difference between the single and multiple window
size experiments with regard to the difference between the standard model
and the 7-centered model performance can possibly be explained by the fact
that the models with multiple window sizes have many more filters. For the
single window size experiments, only 100 filters were used, and so the size of
the filters might have a bigger impact, as 100 filters might not be enough to
pick out all the important features. This might lead to larger window sizes
having a small advantage as they cover more words and can ’see’ more at
once, which might help it make more informed decisions with few filters.
When having multiple window sizes the total number of filters was 600, and
so the models might have enough filters to go around to pick up the important
features regardless of the window size and how much each filter ’sees’, and
thus a 4-centered and a 7-centered filter triplet performs the same.

6.9 Using full forms instead of lemmas

The final experiment will study the effect of not lemmatizing the corpus. The
motivation for this comes from the experiments done in section 3.4 on page 42
where both the BoW model and the Doc2Vec model were tested on lemmatized
text and full forms. The results from those experiments showed that there
was little difference between the two preprocessing methods, but Doc2Vec

CHAPTER 6. CNN EXPERIMENTS 81

performed slightly better using lemmas. As both CNNs and Doc2Vec are based
on the neural network architecture, I expect CNNs to also perform better with
lemmas, but as the classification task is closely related to the references in the
documents, only a relatively few words might be important, and thus having
nuanced full forms available might lead to better performances.

All the hyperparameters in the network stayed the same as in the standard
experiment, but this experiment utilized a corpus of full forms. See table 6.1
on page 59 for the hyperparameters, figure 6.15 and 6.16 on the following page
for the performance on the classification task, and table 6.9 for the performance
on the document similarity task.

Figure 6.15: Loss for models using lemmas and full forms.

As we can see in figures 6.15 and 6.16 on the next page, both the performance
on the training data and the development data is very close for both models
during training. The lines almost completely overlap. The models performance
on the document similarity task is slightly lower than the standard model, as
can be seen in table 6.9 on the following page. Lemmatizing the corpus gave
an 16% increase in performance for a Doc2Vec model, as shown in table 3.2
on page 43. For the document embeddings produced in this experiment,
lemmatization of the corpus resulted in an increase in performance of about
2.4%. The reason for the performance on the classification task not dropping
when using full forms might be because the classification task is closely related
to the references in a document, and the network might learn to pick these few
words out no matter the preprocessing.

CHAPTER 6. CNN EXPERIMENTS 82

Figure 6.16: F1 score for models using lemmas and full forms.

Model NDCG@100 F1 score

H
R Standard 0.090

Full forms 0.087

L Standard 0.132
Full forms 0.129

TR

Standard 0.129
Full forms 0.126

O
ve

ra
ll

Standard 0.127 0.774
Full forms 0.124 0.776
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.9: NDCG for experiment where corpus was not lemmatized and F1
score on development data after ten epochs

6.10 Combining the best hyperparameters

After several experiments where some of the different hyperparameters of the
network have been adjusted, a final experiment will be conducted to evaluate
the performance of a network with a combination of the best hyperparameters
from the other experiments. While one might think that this model should give
the best performance on both the classification and the document similarity

CHAPTER 6. CNN EXPERIMENTS 83

task, this is not the case. In reality the parameters are most likely dependent
on each other, meaning two hyperparameters which on their own gave better
results, does not necessarily give better results when they are combined. Due
to time constraints, an exhaustive grid search over all possible combinations of
hyperparameters, or random combinations of them, was not possible.

From section 6.4 on page 62 a word embedding size of 300 was selected, as it
gave the highest score on both the classification and document similarity tasks.
From section 6.5 on page 65 it was shown that a document embedding size of
900 was the best choice, as it also gave the best performance for both tasks in
section 6.5 on page 65. From section 6.6 on page 68 it was decided to not use
pre-trained word embeddings in the word embedding layer, as this did not
improve the performance. From section 6.7 on page 71 a drop-out rate of 0.5
was selected as it performed the same as increasing the drop-out to 0.75 on the
document similarity task. The filter-sets (3,4,5) and (6,7,8) performed as well as
the (7,7,7) filter set, and so the (7,7,7) filter-set was chosen because section 6.8 on
page 75 showed that for that task, using a single filter with window size 7 was a
better choice than a window size of 4. With a document embedding size of 900,
the number of filters for each of the three window sizes was 300. In addition
to this model, another model with the same hyperparameters, except a word
embedding size of 100, was also trained. Since the only difference between the
two models is the word embedding size, they will be known as ’Tuned 300’
and ’Tuned 100’, respectively.

See figure 6.17 and 6.18 on the next page for the performance of the tuned
models on the classification task, and table 6.10 on the following page for the
performance on the document similarity task.

Figure 6.17: Loss for different tuned models.

CHAPTER 6. CNN EXPERIMENTS 84

Figure 6.18: F1 score for different tuned models.

Model NDCG@100 F1 score

H
R

Tuned 100 0.091
Standard 0.090
Tuned 300 0.052

L

Tuned 100 0.139
Standard 0.132
Tuned 300 0.089

TR

Tuned 100 0.132
Standard 0.129
Tuned 300 0.079

O
ve

ra
ll

Tuned 100 0.133 0.787
Standard 0.127 0.774
Tuned 300 0.083 0.778
BoW full 0.1000
Doc2Vec lemma 0.029
Random 0.000977

Table 6.10: NDCG for the tuned models and the three court instances, and F1
score on development data after ten epochs

As we can see from table 6.10, the tuned model with a word embedding size of
300 only achieved a score of 0.083 on the document similarity task, far below
any of the other CNN experiments. As previously stated, the hyperparameters
for the network are most likely dependent on each other, and simply using all

CHAPTER 6. CNN EXPERIMENTS 85

the ’best’ hyperparameters might not lead to the best model. In figure 6.17
on page 83 one can see that the loss for the model starts rising after about six
epochs, earlier than any other model, and by a much larger amount, indicating
much stronger overfitting. There is some evidence of this behavior also for the
model with a word embedding size of 300 in figure 6.2 on page 63. Perhaps
the model had too many weights, which allowed overfitting to more easily
happen, and using a higher drop-out rate could have prevented some of this.
After ten epochs the loss has reached a similar level as after one and a half
epochs of training. This could mean the model could have ’regressed’ in
performance to a point which is equivalent of one to two epochs of training.
With this in mind, the score on the document similarity task is not so strange.
It should be noted however that the F1 score for the model does not fall as
overfitting is happening, it only plateaus like most of the other models.

The other tuned model appears more successful. It seems that limiting the
word embedding size to 100 prevented the model from overfitting to the same
extent as the other tuned model, although figure 6.17 on page 83 show that the
loss for this model also starts to rise towards the end. But it still manages to
set the best score on the document similarity task for any model, achieving an
NDCG@100-score of 0.133.

6.11 Summary of CNN hyperparameter experi-
ments

In the previous sections we have seen the results of several different hyperpa-
rameter experiments. The hyperparameters of the CNN is most likely depen-
dent on each other, and due to time constraints, a complete grid search over
the hyperparameters to find the best combination was not feasible, and so sev-
eral smaller experiments were conducted, altering a single hyperparameter at
a time. Finally, the best hyperparameter configurations from the experiments
were combined into two experiments where I studied the effect of combining
the hyperparameters. One of the models from these two experiments achieved
the highest scores on both the CNN classification task and the document sim-
ilarity task. In this section the different experiments and their results will be
quickly summarized. See table 6.11 on page 87 for a complete table of the re-
sults from every experiment. Due to time constraints, a manual inspection of
some of the retrieved documents for the best model, like in section 2.4.3 on
page 25, was not performed.

In both the experiments where the size of either the word embeddings,
the document embeddings, the window size or the amount of drop-out
were altered, increasing this size always led to a better score on both the
classification task and the document similarity task. Lowering this size always
led to worse performance. Most of the experiments consisted of only one
experiment increasing the value of a hyperparameter and one decreasing the
value, and so it is unclear to which extent one could increase the value and still
see notable improvements on the evaluation tasks.

For the experiment on the single window size, the size was only increased.

CHAPTER 6. CNN EXPERIMENTS 86

This experiment showed that increasing the size beyond a certain point led to
a decrease in performance. When experimenting with a trio of window sizes
centered around a central value, the increase in performance when increasing
the window size we had observed in the previous experiment was not present.
This shows the hyperparameters dependency on each other. It is unknown
which combination of hyperparameters would show the same relationship
between a trio of window sizes and the performance on the evaluation task,
if any.

Using pre-trained word vectors to initialize the word embedding layer did
not have any positive effects on the performance. This will be explored and
discussed further in section 7.1 on page 88.

Lemmatizing the corpus led to a small increase in performance over a model
which used full forms. However, for the classification task, both full forms and
lemmatization performed almost completely the same.

In almost every experiment with a CNN model, the performance on the
document similarity task by the document embeddings was always best on
documents from the Courts of Appeal and worst on the Supreme Court
documents. In table 2.2 on page 21 we can see that the documents from
the Courts of Appeal are neither the longest nor shortest, and they do not
have the fewest or most references in them. It is therefore perplexing that
these documents always led to the document embeddings performing best.
One would expect the performance of the document embeddings was more
strongly tied to the amount of words in a document, and as such the documents
from the District Courts would have the best performance. Or if the CNNs are
learning to only pick out the references in a document one would likewise
expect the documents from the District Courts to have the best performance.
Perhaps the slightly more condensed information in the Courts of Appeal
documents led to better embeddings, and at the same time the Supreme Court
documents were too condensed, which led to even worse embeddings than the
documents from the District Courts.

The best hyperparameters from each experiment were combined into two
models for the last set of experiments. One model used a word embedding
size of 100 and the other a word embeddings size of 300. The latter model
achieved a very low score on the document similarity task. The reason for this
was most likely because of overfitting. The other model did not overfit to the
same extent and achieved the best results on the document similarity task out
of all the experiments. However, these results were only about 4.7% better than
the standard model.

Pearson’s r was calculated for the NDCG-scores and the F1 scores to determine
the relationship between the CNN’s performance on the document similarity
task and the classification task. Ideally we would like this to be a strong
relationship, because that means that when training the network, we would
also be training the embeddings to perform better on the document similarity
task, even though that is an entirely different task. When selecting a
classification task for the CNN to train on I tried to find a task which I
believed would have a strong relationship between these two tasks, however
this was only speculations, as there was no results to give any indications of the

CHAPTER 6. CNN EXPERIMENTS 87

Model NDCG@100 F1 score

W = 300 0.128 0.782
W = 100 0.128 0.780

W = 50 0.127 0.774
W = 25 0.118 0.768

D = 900 0.132 0.788
D = 600 0.127 0.774
D = 300 0.111 0.743

Randomly initialized 0.127 0.774
Initialized with LCC W2V 0.125 0.788

Initialized with NNC+LCC W2V 0.116 0.759

p = 0.75 0.127 0.792
p = 0.5 0.127 0.774

p = 0.25 0.111 0.723
p = 0 0.114 0.789

f = (7,7,7) 0.127 0.778
f = (6,7,8) 0.127 0.777
f = (3,4,5) 0.127 0.774

Lemmatized 0.127 0.774
Full forms 0.124 0.776

Tuned 100 0.133 0.787
Standard 0.127 0.774

Tuned 300 0.083 0.778

BoW full 0.100
Doc2Vec lemma 0.029

Random 0.000977

Table 6.11: Overall NDCG for all the experiments, and F1 score on develop-
ment data after ten epochs. The experiments with a single window-size are
omitted due to them involving more than one hyperparameters being changed.
Each group is sorted according to the NDCG-score, with the best scoring model
on top. The models in cursive are the standard model.

relationship yet. After all the experiments I have more data to approximately
determine the relationship between the two tasks. The Pearson’s r of all the
results is calculated to 0.248, indicating a weak positive relationship between
the two tasks. I want the goals of the classification task to align with the goals
of the document similarity task, but not too much, as this might indicate that
the classification task is too similar to the document similarity task and the
models are learning representations which might only be good for getting a
high score on the chosen evaluation task, and not other ways of evaluating
document similarity. On the other hand, the Pearson’s r score of 0.248 might
be a little bit too weak of a relationship.

Chapter 7

Further experiments in the
context of CNNs

In this section I will perform some additional experiments pertaining to the
CNNs and experiments performed in the previous chapter. I will take a close
look at the word embedding layer of a few CNNs from the previous chapter
and compare the word embeddings extracted from the CNNs after ten epochs
of training to the embeddings from section 4 on page 45. In the last section I
will evaluate the documents embeddings extracted from a few of the CNNs
trained in the previous chapter on the retrieval task from section 2.4.2 on
page 23. This was motivated by the fact that the retrieval task in section 2.4.2
was based on actual human made document groupings, and evaluating the
document embeddings on this task might provide some more insight into the
performance of the embeddings.

7.1 Evaluating word embeddings from a CNN

A convolutional neural network (CNN) is trained by updating the weights in
the network. In the networks presented in this thesis, during training, the set
of weights which make up the word embeddings are also trained and adjusted,
even when pre-trained word embeddings are provided as an initialization for
these weights. In chapter 4 on page 45, word embeddings were produced
by different Word2Vec models and later used as initializations for the word
embedding-layer of the the CNNs in section 6.6 on page 68. In this section I will
work backwards and extract the word embeddings from a CNN which as been
randomly initialized and trained, and evaluate them on the same evaluation
tasks as the other Word2Vec models were in chapter 4 on page 45. The word
embeddings were extracted from the ’tuned 100’ model from section 6.10 on
page 82, as it was the model which performed best on both the document
similarity task and the classification task. In addition, the word embeddings
from both networks with pre-trained word embeddings from section 6.6 on
page 68 were extracted and tested. In this section, the process of further

88

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 89

training a set of word embeddings in the word embedding layer of a CNN
will be known as ’tuning’, and the word embeddings extracted after tuning
will be known as ’tuned’ word embeddings.

See table 7.1 for the performances on the analogical reasoning task and table 7.2
for the performances on the synonym detection task. The ’tuned 100’ model is
omitted from these tables as it did not score any points. I will discuss this a
little bit later.

LCC NNC+LCC
Task Before After Before After

Common capital city 20.8 18.1 36.2 36.2
All captial cities 9.5 11.9 39.9 39.9

Currency 0.0 0.0 42.5 42.5
City-in-county 7.7 7.7 16.2 16.2
Man–Woman 56.7 56.7 66.3 68.6

Total semantic accuracy 12.6 12.6 28.8 28.9

Table 7.1: Accuracy for the analogical reasoning task for two Word2Vec models
and the same word embeddings after being tuned in the word embedding layer
of a CNN for ten epochs.

k = 1 k = 5 k = 10
Model P R P R P R

LCC 5.7 3.8 12.3 8.3 15.9 10.6
Tuned LCC 5.7 3.8 12.3 8.3 15.8 10.6
NNC+LCC 8.0 7.0 16.6 14.5 21.3 18.7

Tuned NNC+LCC 8.0 7.0 16.5 14.5 21.2 18.6

Table 7.2: Results for the synonym detection task for two Word2Vec models and
the same word embeddings after being tuned in the word embedding layer of
a CNN for ten epochs. k denotes how many neighbors are included.

Let us first focus on the word embeddings extracted from the model with
word embeddings pre-trained on only the LCC. The performance of the word
embeddings on the evaluation task ware largely uneventful as the word
embeddings scored almost exactly the same points as prior to tuning. On the
analogies task the only difference between the models was that after tuning the
word embeddings were better at answering the questions about uncommon
capital cities, while equally worse as answering the questions about common
capital cities. It is almost as if it transfered the knowledge from one domain
to another almost identical domain. In the end it achieved exactly the same
overall score as prior to training. On the synonyms task the results were
also exactly the same for both the first and the five first words, while looking
at the top ten closest words the model had a slightly lower precision after
training.

Next, the word embeddings from the network which was initialized with the
pre-trained word embeddings from a Word2Vec model which was trained on

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 90

the Norwegian News Corpus (NNC) and the LCC were extracted and tested.
In chapter 4 on page 45, this Word2Vec model performed best on the analogies
task, achieving a total semantic accuracy of 28.8. After tuning ten epochs in the
word embedding layer of a CNN, the word embeddings performed slightly
better, setting a new score of 28.9. It performed the same on all of the tasks,
with the exception of the man–woman relationship task. On this task it had
an increase in performance of about 3.5%. Out of all the tasks, this task had
the best potential for an increase in performance from training on the LCC.
The Word2Vec model trained only on the LCC show that the man–woman
relationship is the strongest relationship picked up by the model, achieving
a score of more than double that of the next highest score, the common capital
cities. See section 4.1 on page 47 for a discussion of why this might be. For
this reason it is likely that more training on the LCC would lead to learning
this relationship better. On the synonym detection task the model performed
slightly worse at both the five first and the ten first words.

The word embeddings extracted from the ’tuned 100’ model, which was
initialized with random word embeddings is omitted from both table 7.1 on
the preceding page and 7.2 on the previous page as it scored no points on both
tasks. This was perhaps expected, as the classification task was not aimed at
learning good word embeddings, but good document embeddings. This seems
to have made the word embeddings adapt to the task at hand and transformed
them into representations which will benefit the classification of legal areas,
not the task of learning the relationship between single words. The word
embeddings are interpreted by the convolutional layer before being squeezed
down into the document embeddings, meaning the word embeddings do not
necessarily need to make sense to humans, as long as the other weights further
into the network can decipher and interpret the embeddings into something
ultimately useful for the classification task.

We have seen from the pre-trained models that the difference between the
word embeddings before and after training is minimal, indicating that the
word embeddings are not that important in the grand scheme of things, and
therefore the randomly initialized word embeddings have probably only been
altered very slightly to pick up the signal the network needs, and then it has
let the other word embeddings be. As discussed in section 6.11 on page 85, it
is possible the network has only learned to pick out the references or a few
key words from the documents, and this would lead to many of the word
embeddings being largely left alone. Unfortunately, the evaluation tasks are
very general and would probably not pick up this very specific change in the
embeddings, and I have not devised any tests of our own to explore whether
this is happening.

The models in section 6.6 on page 68 share the same hyperparameters, the only
difference is the initialization of the word embeddings. As we have seen, the
word embeddings are only slightly altered, no matter the initialization method.
This explains the close performance of the CNN models with pre-trained word
embeddings, as it does not make a large impact how the word embeddings
were initialized in the beginning and so the networks perform almost the same.
In figures 6.6 and 6.7 on page 69 we can see that the models are so similar that
the lines in the figure almost completely overlap.

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 91

7.2 A closer look at the word embeddings

To get some more insight into what ten epochs of tuning in the word
embedding layer of a CNN have done to the three different sets of word
embeddings, a simple experiment was set up and will be discussed in this
section. This discussion is on the boundaries of the scope of this thesis, but
is motivated by the fact that it might shed some light on the interplay between
the Word2Vec models and the CNNs described in this work. With this in
mind there will be limited discussion of the results in this section and I will
try to focus the attention back towards the Word2Vec models and the CNNs
rather than exploring further away from the scope of this thesis. Looking at
the actual word embeddings before and after the tuning can perhaps tell us
something about what has happened to them during the tuning, and what
kind of influence the CNN had on them. Three words from three categories
were selected for closer inspection. The three categories and words are domain
specific words such as forlik (settlement), rett (court) and straffelov (penal code),
normal content words such as kjøleskap (refrigerator), snakke (talk) and mann
(man) and function words and numbers such as og (and), i (in) and lastly the
number 23.

The word forlik was selected because it is a non-legal word describing
agreement or settling something, but is primarily used in a legal context. Even
more divisive is rett, which in Norwegian has a plethora of widely different
meanings, such as court, straight, dish and correct. It is therefore interesting
to see what happens to this embedding with further tuning, as the word is
mostly used in the context of a court in the Lovdata Court Corpus (LCC).
straffelov was selected as it is the most referenced law in the entire corpus
and the word is rooted firmly in the legal domain. The content words were
selected largely with no particular intent, only to be normal words which could
appear in a lot of different contexts. However, the content word mann was
especially selected for this experiment as gender relationships were one of the
analogies tasks Word2Vec models trained on the LCC excelled at, even though
the word does not carry any extra meaning in a legal context. The function
words were selected to study the change in the embeddings of words which
are used a lot, no matter the context, as they are fundamental building blocks
of language.

Let us first consider the amount of change the different embeddings experi-
enced over the course of ten epochs of tuning. See table 7.3 on the next page
for an overview of the change for the different words and different models.
The amount of change was measured as the euclidean distance between the
word embedding before tuning and the same word embedding after tuning,
as well as the cosine similarity of the two embeddings. The euclidean distance
will measure the amount of change an embedding has undergone in terms of
distance, while the cosine similarity will measure the amount of change in se-
mantic meaning. A cosine similarity of 0 indicates a 90 degree angle between
two words, which mean they are semantically unrelated, while a cosine simi-
larity of -1 represents an angle of 180 degrees, which mean the words are re-
lated again, but semantically the opposite. The mean for the entire vocabulary
for each measure is also reported. In addition, the Pearson’s r between each

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 92

column and the frequency of the each word in the LCC is also reported. This
was calculated to uncover the connection between the amount of training data
for each word and the amount it changed.

initialization: LCC NNC+LCC Randomly

Word Freq Euc Cosine Euc Cosine Euc Cosine

forlik 98918 2.14 0.993 0.84 0.999 8.25 0.082
rett 6258363 2.39 0.995 1.16 0.997 7.75 0.087
straffelov 453999 2.60 0.999 2.42 0.994 8.58 -0.122
kjøleskap 965 1.23 0.998 0.56 0.999 8.91 -0.163
snakke 27335 0.90 0.999 3.14 0.991 7.83 0.082
mann 2047381 2.02 0.992 2.11 0.994 8.02 0.017
og 9530594 4.41 0.900 5.06 0.903 8.53 -0.063
i 99525680 4.22 0.944 3.40 0.967 8.09 0.063
23 3714384 2.55 0.991 2.21 0.993 8.05 0.073

Mean 234 0.11 0.992 0.02 0.999 8.15 0
Pearson’s r 0.61 0.46 0.34 0.26 -0.14 -0.20

Table 7.3: Amount of change in word embeddings for different initializations
after ten epochs of tuning in a CNN, measured in euclidean distance and cosine
similarity between the embedding before tuning and after. Mean is reported
for both measures. Pearson’s r is calculated between the column and the
frequency column.

Let us first consider the word embeddings which have been pre-trained only
on the LCC. In table 7.3 we can see that on average there is little change in the
semantic meaning of the word embeddings, with an average cosine similarity
of 0.992 between the words before and after tuning. We can see that the
domain specific words and two of the content words are above this average,
meaning those embeddings have changed less than average semantically. The
more common and less informative content and function words have changed
more. Perhaps the function words give the CNN little information for the
classification task, and so the CNN changes them a lot to either align them
with a pattern which helps the network, or to remove their influence as much
as possible from the network. However, the Pearon’s r for the two columns tell
us that the relationship between the frequency of the words in the training data
and the amount of change has a medium positive link. So the greater amount
of change for the function words and mann is somewhat linked with the fact
that they appear more often in the training data.

For the word embeddings which have been pre-trained on both the NNC and
the LCC, we can see in table 7.3 that they follow almost the same pattern as
the two previous columns, but there are some differences. There is much less
change in these embeddings, with an average cosine similarity of 0.999. In
addition, there is a lower relationship between the word frequencies and the
amount of change. Yet, the relative relationship between the words in this test
is almost the same as the other word embeddings. The domain specific words
mostly changing the least, and the function words change the most, but this
time almost all of them change more than the average.

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 93

The randomly initialized word embeddings undergo a lot of change. As all the
embeddings start out as random vectors, there is no pattern in how much they
change, as the amount of tuning they need is tied to the state they are in before
tuning, which is random. This also leads to a very weak negative relationship
between the word frequencies and the amount of change. It is also interesting
to note that the average amount of semantic change, as measured by the cosine
similarity, is an almost exactly perfect 90 degrees, meaning the embeddings
totally changed their semantic meaning. This is expected, as they started as
random noise with no meaning. All the word embeddings sets had a very
strong relationship between the amount they changed in euclidean distance
and the change in semantic meaning, as measured by the cosine similarity.
This indicates that when the embeddings changed it most often resulted in a
change in semantic meaning, and not the embedding becoming ’stronger’ or
pointing more in the same semantic direction.

As the results for this section is based solely on nine out of 1,5 million
words, they are not guaranteed to hold true for the rest of the vocabulary.
But the results seem to follow somewhat expected patterns, and the average
measurements tell us that there is little change for most of the words. While
it is disappointing that the network seems to not leverage the large amounts
of information encapsulated in the word embeddings, one of the greatest
strengths of machine learning is the ability computers have to see patterns
and meaning across huge amounts of data. While it seems the tuning of the
word embeddings in the embeddings layer of a CNN had little impact on the
embeddings, the networks were not training on a task which encouraged it
to build stronger semantic relationships between the word embeddings. Most
likely it made some small adjustments to allow a signal to flow more strongly
to the other parts of the network, like the convolutional layer. The analysis
performed in this section is already on the boundaries of the scope of this
thesis and so while it is possible to investigate the word embeddings further, I
considered any further analysis of the network and the flow of information as
out of scope for this project.

7.3 Evaluating CNN models on favorites lists

In section 2.4.2 on page 23, to get a clearer picture of the validity of the
Reference Vector System (RVS), it was evaluated on a simple task. The task
consisted of predicting which documents appear alongside a target document
in favorites lists made by users of Lovdata. The goal of the experiment was
to see how well the RVS corroborated the grouping of documents made by
users, which I considered one of the best approximations to a human-made
document similarity gold standard. In this section I will evaluate the document
embeddings made by a couple of the CNN models tested in chapter 6 on the
same task in the same manner as in section 2.4.2 on page 23. This can give us
some more insight into the performance of the CNN models as well as on how
the three different ways of representing documents relate to each other.

The models tested in this section are the following: the standard model
will again serve as a baseline for the other models, in addition, the best

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 94

performing model, the ’tuned 100’ model, will be tested, as well as one of
the worst performing models, the model with a document embedding size of
300. The best performing models from some of the experiments will also be
tested, specifically the best performing models from the word embedding size-
, document embedding size-, drop-out rate- and the window-size experiments.
See table 7.4 for a reminder of the hyperparameters of some of the CNN models
tested in this section. The models were evaluated on the eligible documents
from the entire evaluation subset, meaning all the query documents were
documents from the evaluation subset and all the target documents were from
the training subset. Like in section 2.4.2 on page 23, query documents which
appeared alongside less than 10 other documents were not eligible and not
used in the evaluation.

Parameters Standard Tuned 100 Worst

Size of training set 77,806 ” ”
Max document length 17,000 ” ”
Batch size 64 ” ”
Word embedding size 50 100 ”
Window sizes (3, 4, 5) (7, 7, 7) ”
Total filters 200 300 100
Doc embedding size 600 900 300
Drop-out rate 0.5 ” ”
Nr. of training epochs 10 ” ”
Word emb. initialization random ” ”

Table 7.4: Hyperparameters for some of the CNN models evaluated on the
favorites list task. See table 6.1 on page 59 for the rest.

Against favorites lists Against RVS
Precision@100 MAP@100 NDCG@100 F1

Reference Vectors 0.187 0.297
p= 0.75 0.202 0.292 0.127 0.778
D = 900 0.201 0.288 0.128 0.78
Standard 0.197 0.282 0.127 0.792
f = (7,7,7) 0.187 0.270 0.114 0.789
W = 300 0.186 0.270 0.127 0.774
Tuned 100 0.185 0.268 0.132 0.788
D = 300 0.184 0.262 0.071 0.62
Randomly picking 0.003

Table 7.5: Precision@100 and Mean Average Precision@100 for the different
CNN models evaluated on the favorites list task, sorted according to the
MAP@100 score. The NDCG@100 for the models when evaluated against the
RVS is reported, as well as the F1 score for the model on the CNN classification
task.

In table 7.5 we can see that most of the models perform almost as well as the
RVS. This is interesting, as for example the standard CNN model only achieves
an NDCG score of 0.127 when comparing directly against the RVS, while when

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 95

comparing both of them against the favorites list task they perform almost as
well. It should be noted that this is two entirely different tasks and measures
used. The favorites list task does not involve the target document set being
ranked and the sizes of the target set varies, while when comparing the RVS
and the CNN models we are comparing two ranked lists limited to the top 100
documents, which is why I use the NDCG@100 measure and not the MAP@100
measure.

From table 7.5 on the previous page we can also see that the CNN model
with document embedding size of 300, which performed most poorly on the
document similarity task, also performs most poorly on the favorites lists
task. Surprisingly, the CNN model which performed best on the document
similarity task, the tuned model with a word embedding size of 100, has the
second lowest performance against the favorites lists. Two other models, the
model with 7-centered window sizes and the model with a word embedding
size of 300, which both outperform the standard model on the document
similarity task, albeit only just, are both beaten by the standard model on this
task.

The CNN model with a drop-out rate of 0.75 narrowly beats the model with the
increased document embedding size. As we can see, lowering the document
embedding size leads to worse performance, and increasing it lead to better
performance. This is to be expected, the task revolves around the document
embeddings, and as such, larger embeddings are able to hold more information
which can be utilized to make better decisions.

Pearson’s r was calculated between two column-pairs in table 7.5 on the
preceding page: The relationship between the models performance on the
classification task and the performance of the document embeddings when
compared against the favorites list, and the relationship between the models
performance on the document similarity task and the performance of the
document embeddings when compared against the favorites list. The
Pearson’s r for the first relationship was calculated to 0.637, indicating a
medium positive relationship between the performance of the CNN on the
classification task and the performance of the document embeddings later
when compared against the favorites list. This was mentioned in section 6.11
on page 85 as a possible outcome of the very strong relationship between the
F1 score and the NDCG-score. A very strong relationship between the F1- and
the NDCG-score does not mean the document embeddings are necessarily bad,
but they might struggle to perform as well on other tasks, as an evaluation task
with strong ties to the classification task might be biased and give an inflated
impression of the performance.

The Pearson’s r for the second relationship was calculated to 0.467, also
indicating a medium positive relationship between the performance of the
CNN on the document similarity task and the performance of the document
embeddings later when compared against the favorites list, although a
somewhat weaker link than the first relationship. Again, this does not
necessarily mean the document embeddings or the evaluation tasks are bad.
One could argue that the document embeddings could be thought of as better
if there was a strong relationship between the embedding’s performance on
the two evaluation tasks, meaning that when a model did well on one task it

CHAPTER 7. FURTHER EXPERIMENTS IN THE CONTEXT OF CNNS 96

also did well on the other, and vica versa. But one could also argue that this
indicates that the two tasks are so different that it could be unfair to compare
them to each other so directly.

The most interesting aspect of this experiment is the triangular relationship
between the three methods of estimating document embeddings: The favorites
list-method, the RVS and the embeddings extracted from CNNs. This
relationship is illustrated in figure 7.1. As stated above, NDCG and MAP are
two entirely different measures, as are the two evaluation tasks. What this
relationship show is perhaps the fragility of using the RVS as the gold standard.
When both the CNN embeddings and the reference vectors achieve almost
the same score when evaluated against the favorites list vectors, one would
think when the CNN embeddings are evaluated against the reference vectors it
would achieve a very good score, indicating that they are mostly the same. This
does not happen, and it is uncertain what this could mean. When evaluating
document vectors with the favorites list-method we look at the top 100 most
similar documents to a target document according to the document vectors.
We compare this top 100 against the content of the favorites lists, which can
contain many more than 100 documents. It is thus possible for the CNN
embeddings and the reference vectors to pick out different top 100 lists that
both score roughly the same against the favorites lists, but against each other
they match very little, as they have picket out different documents. This could
explain why the favorites list-method gives the two document vectors roughly
the same score, but when we pit them against each other the evaluation method
tells us that the vectors have little in common. Even if the two top 100 lists
were exactly the same, achieving the same score on the favorites list task, but
opposites, where the top document in one is the bottom document in the other,
they would still achieve a NDCG@100 of roughly 0.69 against each other. This
is far away from the 0.127 the standard model achieves, meaning they must
contain some number of different documents.

Figure 7.1: The triangular relationship between the three methods of estimat-
ing document embeddings for the ’tuned 100’ model.

Chapter 8

Conclusion

In this work I have detailed the compilation of a unique corpus of Norwegian
court decisions. I have utilized this corpus to train several different machine
learning models to produce semantic vectors for both words and documents.
The document vectors were used for ranked document retrieval, and the
performance of the vectors for this task was evaluated using a ranked retrieval
model based on the document references in the documents, which was
purposely built for this project. Finally, I have explored the interplay between
pre-trained semantic word vectors and convolutional neural networks (CNN)
and conducted several hyperparameter experiments using CNNs to produce
document vectors.

In chapter 2 I detailed the creation of the unique Lovdata Court Corpus
(LCC), a document collection containing more than 130,000 Norwegian court
decisions with extensive metadata. I provided an analysis of the document
collection and the metadata, and in section 3.1 on page 40 I described the
preprocessing which was applied. A lemmatized version of the corpus was
primarily used in this thesis, but a corpus containing full forms was also
included in some experiments to study the effect of lemmatizing the corpus.
The LCC contains documents both in Norwegian Bokmål and Norwegian
Nynorsk, but I preprocessed the documents using models specific to Bokmål
documents, regardless of if the documents was in Nynorsk or any other
language, such as Swedish or older versions of Norwegian. This is not
ideal and will lead to poorer preprocessing for some documents, but I
considered it out of scope for this project to detect the language used and act
accordingly.

Furthermore, in section 2.4.2 on page 23 I created and assessed a ranked
retrieval evaluation method for the LCC, the Reference Vector System (RVS).
This resource did not exist for this corpus and was created solely to aid in the
evaluation of different machine learning models for a ranked retrieval task.
However, this evaluation method is not a perfect stand-in for a high-quality,
human-made gold standard, but when the RVS was evaluated in section 2.4.2
on page 23 I showed that it did indeed pick up a signal and performed
significantly better than randomly picking documents.

97

CHAPTER 8. CONCLUSION 98

In chapter 3 Both a standard Bag-of-Words model (BoW) and a Doc2Vec model
was trained on both versions of the LCC and evaluated on the RVS. There
was little difference between using a lemmatized or full form corpus, but
BoW preferred full forms while Doc2Vec preferred lemmas. The BoW model
trained on full forms performed best, achieving a NDCG@100 score of 0.1 and
a Precision@100 of 0.138, meaning one out of seven documents were relevant
to the query. The Doc2Vec models performed approximately three to four
times worse than the BoW models. The performance of the models were
disappointing, and due to the uncertainty around the quality of the RVS, I do
not know if this was cased by shortcomings with the RVS, or the sheer difficulty
of the ranked retrieval task.

In chapter 6 I demonstrated the use of a CNN to produce document embed-
dings by training it on a metadata classification task. The performance on the
ranked retrieval task for document embeddings were then evaluated using the
RVS. An exhaustive search for the best combination of hyperparameters was
out of the scope for this thesis, but several key hyperparameters were the sub-
ject of hyperparameter-tuning experiments which focused on adjusting only
one hyperparameter. Finally, in section 6.10 on page 82, two combinations of
the individually best performing hyperparameters were combined for a con-
cluding experiment. One of these models, or rather, the document embed-
dings extracted from this model, had one of the worst performances compared
to the other CNN experiments. This showed how volatile the combinations of
hyperparameters are for a CNN for this task. It also demonstrated the onset
of overfitting, which was present in many of the experiments, even when the
amount of regularization in the network was the subject of experiments. The
other model using a combination of the best hyperparameters set the best per-
formance for the CNN experiments. It achieved a NDCG@100 of 0.133, which
is a perfect 33% increase over the best BoW model. However, it is only a 4.7%
increase over the baseline CNN experiment, which either used default hyper-
parameters or hyperparameters suggest in (Kim, 2014) and (Zhang & Wallace,
2015). I generally found the recommendations in (Kim, 2014) and (Zhang &
Wallace, 2015) to also be valid for the experiments in this work, even though
there is an enormous difference between the size of the documents used in this
project and the size the recommendations were based on. Due to the closeness
of the CNN classification task and the RVS, it is possible that the CNNs learned
to detect and react to the references or a few local features in the documents. It
is thus possible that a simple n-gram BoW model would perform equally good,
but this was not tested.

In chapter 4 I use the Word2Vec framework for estimating three different sets
of semantic word embeddings. The sets were either trained on the LCC, the
Norwegian News Corpus (NNC) or a combination of both. In section 4.1 on
page 47, I evaluated these word embeddings on two benchmark data sets that
enable intrinsic evaluation of distributional semantic models for Norwegian.
I found that training on the NNC or the combination of the NNC and the
LCC gave the best results. However, due to the generality of the tasks in the
two benchmark data sets and the domain specific documents in the LCC, I
found that the tasks were perhaps not fully able to quantify the added benefit
of also including the LCC in the training. In chapter 6, I used two of the
sets of word embeddings created as initializations for different CNNs in two

CHAPTER 8. CONCLUSION 99

separate experiments. While they did not improve on the performance of the
baseline CNN, in chapter 7, I also performed the same intrinsic evaluation of
the embeddings after the CNNs had finished training. This added tuning in the
word embedding layer of a CNN did not lead to any significant improvements
on the intrinsic evaluation tasks. A further analysis in section 7.2 on page 91
showed that the word embeddings had undergone little change while in the
CNN.

8.1 Future work

In this final section I will reflect upon some of the potential use cases for the
models created in this work and the results presented. I will also discuss some
areas of the project where there is potential for improvement and different
alternative approaches to some aspects of the work.

8.1.1 FastText and subword information

In section 2.6.7 on page 38 I briefly discussed FastText, a framework for
learning word representations using subword information. In this subsection I
will discuss how FastText can provide increased word embedding performance
for Norwegian, and the potential gains from incorporating FastText into the
systems from this thesis.

In section 2.6.7 on page 38 it was mentioned that FastText incorporates sub-
word information into the Word2Vec CBOW or Skip-gram models discussed
in section 2.6.5 on page 37 and 2.6.6 on page 38. The subword information is
the character n-grams which make up the word. With this approach, words
would be able to share representations, and out-of-vocabulary (OOV) words
would be able to be represented either fully or partially by sharing n-grams
with known words. This approach would not only reduce the impact of OOV
words, but also strengthen the known word embeddings by more closely con-
necting them with similar words. In Norwegian, compound words are abun-
dant and an integral part of our language. To further specify the meaning of
a word we often add another word to it, like sommerdag and vinterdag, which
is ’summer day’ and ’winter day’, respectively. Influence from, among others,
the English language has increased the frequency of which compound words
are wrongly split, and it has become so common for these mistakes to occur
that we even have a word for it; særskriving, which literally mean ”separate
writing”. The importance of not splitting Norwegian compound words is the
fact that splitting the word can significantly alter its meaning. A good example
of this is røykfritt, meaning ’free of smoke’ or ’no smoking zone’, and røyk fritt,
meaning ’smoke freely’ (Letnes, 2014).

There is thus great potential for FastText to take advantage of the subword
information in Norwegian compound words to build stronger and better word
representations. This does not only apply to ’normal’ words, but also domain
specific words like those found in legal texts. There are many compound
words and concepts in the Lovdata Court Corpus (LCC) which could benefit

CHAPTER 8. CONCLUSION 100

from utilizing the subword information, for example tingrett (District Court),
lagmannsrett (Court of Appeal) and høyesterett (Supreme Court) all end with rett
(court), connecting them all as different court instances. Another example is
dommer (judge), lekdommer (lay judge) and høyesterettsdommer (Supreme Court
Judge), where the two latter judges are more specific variations of the first,
unspecified judge.

(Stadsnes, 2018) showed that FastText produced Norwegian word embeddings
which gave varied results, achieving a superior score to Word2Vec and
GloVe on the analogies evaluation task, but inferior results on the synonym
evaluation task. It is uncertain what kind of effect using FastText word
embeddings to initialize the word embedding layer of a CNN would have, but
seeing as the results of using pre-trained word embeddings as initialization
did not provide better results than the standard model in 6.6 on page 68, it is
doubtful that FastText would improve on this significantly. Like for many of
the subjects in this work, there is not a lot of previous work using FastText
on Norwegian texts, let alone legal documents, to build upon, and this is
one of the main hurdles which led to FastText not being implemented in this
project.

8.1.2 Triplet learning

One of the main issues faced when preparing the convolutional network to
produce document embeddings was finding a classification task which would
lead the network to learn useful document embeddings for our downstream
document similarity task. Predicting a single or multiple types of metadata
for a document seemed like one of the easiest and most straight forward tasks.
However, much of the metadata for a document is probably not suited to be
used for the classification task, as we want to ’trick’ the network into making
useful document embeddings as a by-product of this classification task. In
addition, most of the useful and descriptive metadata was either rarely used
or only used for a small subset of the documents. A subset of court decisions
pertaining to different drug-related crimes have a great deal of relevant and
descriptive metafields, which directly tie into the content of the document,
but this subset was not large enough to be able to thoroughly train on, and
if the network had been able to learn useful document representations, the
representations would probably only be solid for documents from the same
narrow subset of drug-related crimes, which was too small for the scope of this
thesis.

During the work on this thesis, other approaches to the classification task
were briefly experimented with, among them triplet learning (Wang et al.,
n.d.). Triplet learning, or triplet loss, is an intuitive proposal for a loss
function. Instead of classifying pieces of metadata for a document, three
separate documents, a triplet, are run through the network and the distance
between the three document embeddings are computed. The idea is that
one of the documents is an anchor document, another is a document related
to the anchor document and the final document is unrelated to the anchor
document. The goal for the network is to minimize the distance between the
anchors and related documents, while maximizing the distance between the

CHAPTER 8. CONCLUSION 101

anchor documents and the unrelated documents, essentially learning to rank
documents, albeit only two at a time. The loss is then calculated from how
right or wrong the network is in it’s prediction of which document is related
and which is unrelated to the anchor. This loss is then used to train the network
as per usual. One of the interesting properties of such a learning method is the
fact that we must provide the network with two documents which we know
for a fact are related and unrelated to the anchor, it is a supervised task after
all. However, this task can be accomplished in many different ways and be
different for every document. There is no need to keep to only a single piece
of metadata for every document, we can mix and match them and combine
them with other methods of ranking documents, as long as we end up with
a quantifiable and consistent way of deciding on which document is related
and unrelated. In fact, the more we combine and mix methods for finding
the related and unrelated documents, the more nuanced the network will
hopefully become. However, devising this ranking function in a consistent
manner can be a challenge, and the right balance between related-ness and
unrelated-ness of the two documents can be hard to find. If the unrelated
document is too unrelated, the task becomes too easy and the network will
learn to little, and the same will happen if the unrelated document is too close
to the related document and the task becomes too difficult for the the network.
But this factor of the learning process can be adjusted during the training by
dynamically adjusting the difficulty of the triplet to always keep the difficulty
of the task in the sweet spot or by requiring the network to distinguish between
the documents beyond some margin which we can continually increase or
decrease.

Due to time constraints it was decided not to pursue experimenting with triplet
learning. On paper it offers some interesting benefits, but constructing a well
functioning and consistent ranking function to draw the triplets in such a
manner that the network will learn useful document representations were far
too time consuming compared to the relatively easy classification of the legal
area.

An easy implementation of a ranking function would be to use the Reference
Vectors System (RVS) to pick a relevant and a non-relevant document. The
downside to this approach could be that the CNN could possibly only learn to
pick out the references in the documents to achieve a good performance during
training, and when presented with documents not containing any references it
would not be able to make a good prediction. If we continued to evaluate the
document embeddings using the RVS we would probably not notice this, as the
RVS requires there to be references in the documents. We would either need to
find another way of evaluating the document embeddings which did not rely
on references to be able to get an accurate idea of the actual performance, or
get an unpleasant surprise when we tested the system on new data.

A weakness of the RVS in general is the fact that documents can reference
the same laws or court decisions, but for different reasons, and as such
the document embeddings from a network trained specifically to pick out
references could be poor representations of the documents to use for document
similarity tasks. This weakness also effects the reference vectors as a valid gold
standard, but it was the lesser evil than some of the other methods of defining a

CHAPTER 8. CONCLUSION 102

gold standard. One might think the legal area tag is superior as a classification
task in this way, as one can directly say that two documents which share a legal
area tag must be somewhat similar. But alas, since the legal area is directly
tied to the references in a document, it also does not differentiate between the
context to as why the references were there.

8.1.3 Potential use of this work at Lovdata

This work was made possible by the author’s access to Lovdata’s document
collection and systems. In this subsection I will explore some of the different
uses within Lovdata for the systems developed in this project, as well as the
groundwork it lays.

The most relevant system developed in this project for incorporating into
Lovdata’s production systems are of course a document retrieval system where
users can use their own documents or paragraphs of text as search queries.
When evaluated against the RVS the ’tuned 100’ CNN model performed best, it
is however unknown how the model would perform in a real life scenario with
users that have complex information needs. One of the first steps in developing
this system further is to expose it to real users and device a method for
measuring the system’s performance on real users. There are many methods
of measuring how happy users are with a system, such as automatic logging
of which documents of the retrieved documents are clicked on by the user or
asking them to fill out a simple questionnaire. With the data gathered by this
experiment we could get a better idea of the actual usefulness of the models,
and depending on the extensiveness and duration of the experiment we could
also devise a new and better gold standard than the RVS, which would in turn
allow us to further evaluate new and existing models. The biggest room for
improvements lies with performing many small improvements to get better
data sets and evaluation measures, such as separating documents of different
languages, inspecting and tweaking the preprocessing to remove tokens such
as ’321 500’ or treating references in the RVS as trees which can be
pruned, like for the legal area tag.

The task of retrieving relevant documents could also be applicable in other
areas, such as implementing a ’more like this’-function for court decisions. This
would essentially be the exact same system and have the same functionality as
the system proposed in the previous paragraph, but this system would not
use unseen documents given by users as input, but rather documents from the
existing LCC. The possible information gathered from interactions with such a
system would enable us to for example establish a network linking documents
together. This could in turn be useful for developing a better gold standard,
like in the previous paragraph.

Another possible use for the document representations estimated in this work,
and any future document representations, is predicting metainformation for
documents using clustering techniques. Metainformation such as legal area,
which is described in section 5.2.1 on page 54, is today either applied through
an automated process or by manual effort. This could perhaps be applied
automatically through clustering by using the most popular tag of the n

CHAPTER 8. CONCLUSION 103

nearest neighbors to a document. Studying these clusters along with their
metainformation, such as legal area, keywords and publishing date, could also
be beneficial for more academical or journalistic purposes, such as tracking the
types of legal questions the Supreme Court has tackled over the years or if
similar documents and cases end up with similar decisions.

Documents can also be classified as belonging to certain legal areas by using
the CNNs trained in chapter 6. The classification task these networks trained
on was classifying legal areas for documents, and as such we can easily
incorporate them into the internal document workflow at Lovdata. We even
have a solid gold standard for this task and can be confident in the reported
performances in chapter 6. The best F1 score achieved in this chapter was 0.792,
which is a good score. I have not experimented with weighting precision or
recall, but it is likely that we could adjust the importance of precision or recall
to suit our needs. We could either requiring a high precision so that the system
would need less oversight and could be more or less autonomous, or a high
recall so that the system has a larger coverage, but this would require more
manual effort to double check the results.

The most important contribution from this project is the groundwork it lays
for further work at Lovdata. Establishing relationships between documents
is essential in many of the aspects of both the internal workflow and the
functionalities offered to the users of the website, and the examples mentioned
in the past paragraphs are just a few of the most prominent potential uses.
The consequences of even implementing simple FastText word embeddings,
which take a couple of hours to train, could bleed into several parts of the
whole system, such as more efficient search using synonyms and subword
information, keyword extraction, search query completion or named entity
recognition. One of the goals of this thesis was to demonstrate the unexplored
potential of machine learning and Norwegian legal documents. Although the
structured documents used in this work are not possible to publicly release due
to, among other things, their sensitivity, many of the concepts demonstrated in
this work can be directly applied to a large law firm and their internal collection
of legal documents. The examples explored in this section is just the tip of the
iceberg of what is possible!

Bibliography

Boe, E. M. (2010). Innføring i juss (3rd ed.). Oslo: Universitetsforlaget.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word

vectors with subword information. Transactions of the Association for
Computational Linguistics, 5, 135–146.

Britz, D. (2015, december). Implementing a cnn for text classification in
tensorflow. Retrieved 2018-10-29, from http://www.wildml.com/2015/

12/implementing-a-cnn-for-text-classification-in-tensorflow/

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific
Grove: Brooks/Cole Pub. Co.

Goldberg, Y. (2015). A primer on neural network models for natural language
processing. CoRR, abs/1510.00726.

Goldberg, Y., & Hirst, G. (2017). Neural network methods in natural language
processing. San Rafael, California: Morgan & Claypool Publishers.

Hong, J., & Fang, M. (2015). Sentiment analysis with deeply learned distributed
representations of variable length texts (Tech. Rep.). Technical report,
Stanford University.

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for
efficient text classification. In Proceedings of the 2017 conference of the
european chapter of the association for computational linguistics. Valencia,
Spain.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In
Proceedings of the 2014 conference on empirical methods in natural language
processing, EMNLP. Doha, Qatar.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th
international conference on neural information processing systems - volume 1
(pp. 1097–1105). Lake Tahoe, Nevada.

Letnes, A. M. (2014). ”dessverre har jeg en slags problemmer med dysleksi” : the
effects of dyslexia on the acquisition of norwegian as a second language in adults,
as seen in written texts from test of norwegian – advanced level (Master’s
thesis, NTNU, Trondheim). Retrieved from https://brage.bibsys.no/

xmlui/handle/11250/299551

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information
retrieval. Cambridge, UK: Cambridge University Press.

Marsland, S. (2014). Machine learning: An algorithmic perspective (2nd ed.).
London, UK: Chapman & Hall/CRC.

104

Bibliography 105

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. In Iclr workshop papers. Scottsdale,
Arizona.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositional-
ity. In Advances in neural information processing systems (pp. 3111–3119).
Lake Tahoe, Nevada.

Øvrelid, L., & Hohle, P. (2016). Universal dependencies for norwegian. In
Proceedings of the tenth international conference on language resources and
evaluation LREC 2106 (pp. 1579–1585). Portorož, Slovenia.

Paliwala, A. (2010). A history of legal informatics. Zaragoza, Spain: Prensas de
la Universidad de Zaragoza.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (emnlp) (pp. 1532–1543). Doha,
Qatar.

Robberstad, A. (2009). Sivilprosess (2nd ed.). Fagbokforlaget.
Singhal, A. (2001). Modern information retrieval: a brief overview. Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering, 24(4),
35–42.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.

Stadsnes, C. (2018). Evaluating semantic vectors for norwegian (2018, University of
Oslo, Oslo). Retrieved from https://www.duo.uio.no/handle/10852/

61756

Stadsnes, C., Øvrelid, L., & Velldal, E. (2018). Evaluating semantic vectors for
norwegian. In Norsk informatikkonferanse 2018. Longyearbyen, Svalbard.

Velldal, E., Øvrelid, L., & Hohle, P. (2017). Joint ud parsing of norwegian
bokmål and nynorsk. In Proceedings of the 21st nordic conference of
computational linguistics (pp. 1–10). Gothenburg, Sweden.

Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., . . . Wu, Y.
(n.d.). Learning fine-grained image similarity with deep ranking. In
Proceedings of the ieee conference on computer vision and pattern recognition.
Columbus, Ohio.

Webber, W. (2010). Measurement in information retrieval evaluation (Doctoral
dissertation, University of Melbourne, Australia). Retrieved from
http://hdl.handle.net/11343/35779

Zhang, Y., & Wallace, B. C. (2015). A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification.
CoRR, abs/1510.03820.

