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Abstract
There seem to be two main reasons for coming up with a measure of importance
of system components. Firstly, it permits the analyst to determine which com-
ponents merit the most additional research and development to improve overall
system reliability at minimum cost or effort. Secondly, it may suggest the most
efficient way to diagnose system failure by generating a repair checklist for an
operator to follow. It should be noted that no measure of importance can be
expected to be universally best irrespective of usage purpose. In this project
we will present a new and general approach to importance measures related
to multistate systems. Particular focus is put on a class of repairable directed
network flow systems.
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1 Introduction
In reliability theory a main problem is to find out how the reliability of a complex
system can be determined from knowledge of the reliabilities of its components.
One weakness of traditional binary reliability theory is that the system and
the components are always described just as functioning or failed. This ap-
proach represents an oversimplification in many real-life situations where the
system and their components are capable of assuming a whole range of levels
of performance, varying from perfect functioning to complete failure. The ba-
sic reliability theory for such multistate systems of multistate components has
been established by the mid 1980s, and has been developed continuously. In
particular, many different tools for analyzing the importance of components in
multistate systems have been developed in recent years. There are two main
reasons for coming up with a measure of importance of system components.
Firstly, it permits the analyst to determine which components merit the most
additional research and development to improve overall system reliability at
minimum cost or effort. Secondly, it may suggest the most efficient way to di-
agnose system failure by generating a repair checklist for an operator to follow.
Over the years different measures have been suggested. More recent work in this
area includes extensions of the binary case of some well-established measures
of component importance to the class of multistate repairable systems. Fur-
thermore, the importance of the components in a multistate system have been
studied from some new perspectives, introducing various approaches applied to
real-life situations.

The classical approaches to importance measures include Birnbaum, Barlow-
Proschan and Natvig measures of component importance, including the dual
extensions of the latter measures. The measures are treated in details in [5], [6],
[9], [10], [11], [12]. Furthermore, a number of applications have been proposed,
e.g in [8] the extended Natvig measure is applied to an offshore oil and gas pro-
duction system. In particular, the Birnbaum measure of component importance
provides a dynamic approach to determining importance of the components in
the system. The Birnbaum measure of a given component is defined as the
probability that such component is critical to the functioning of the system.
Furthermore, time-independent Barlow-Proschan measure of importance can
be expressed as a weighted average of the Birnbaum measure with respect to
the component lifetime densities. The Barlow-Proschan measure implies that
components with long lifetimes compared to the system lifetime will have a large
reliability importance. An alternative measure can be defined by instead saying
that components which greatly reduce the remaining system lifetime by failing,
are the most important components. This is reflected by Natvig measure. The
Natvig type measures focus on how a change in the component state affects the
expected system uptime and downtime relative to the given system state.

Furthermore, a series of new approaches to component importance measures
for multistate system has been developed in recent years. In particular, several
different measures applied to real life situations have been derived. For in-
stance, a cost-based importance measure, as an extension of Birnbaum measure
has been proposed in [17]. In particular, it is pointed out that existing impor-
tance measures have paid little attention to the costs incurred by maintaining
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a system and its components. Hence, this paper considers costs of improving
component reliability, costs due to component failure and cost of system failure,
and provides possible extensions and applications of the importance measure.
Paper [16] introduces a component state based integrated importance measure
for multistate systems. Importance measures are used to identify weak compo-
nents and states in contributing to the reliable functioning of a system. Tradi-
tionally, importance measures do not consider the possible effect of groups of
transition rates among different component states, which, however, has great
effect on the component probability distribution and should therefore be taken
into consideration. Thus, a generalization of the integrated importance measure
describes in which state it is most worthy to keep the component to provide the
desired level of system performance, and which component is the most impor-
tant to keep in some state and above for improving the performance of the
system. An application to an oil transportation system is presented to illustrate
the use of the suggested importance measure.
Furthermore, paper [18] introduces component maintenance priority importance
measure. Time on performing preventive maintenance on a component in a sys-
tem may affect system availability if system operation needs stopping for the
maintenance. To avoid such an availability reduction, one may adopt the fol-
lowing method: if a component fails, preventive maintenance is carried out on a
number of the other components while the failed component is being repaired.
Hence, the importance measure can be used to select components for the pre-
ventive maintenance.

To conclude our brief overview of various component importance measures, we
remark that no measure can be said to be universally best irrespective of us-
age purpose. Still comparing different measures is often of interest. In this
project we will provide further generic extensions of the Birnbaum measure for
binary systems, applied to multistate systems. Particular focus will be put on
class of repairable directed network flow systems. Thus, we consider asymptotic
Birnbaum measure as a generalization of the Birnbaum measure to multistate
repairable systems, and two importance measures based on asymptotic avail-
ability and mean state of the system, respectively. In particular, one way of
improving the system is to increase the time spent by the components in the
higher level states. This can be modelled as an increase in the corresponding ex-
pected waiting time. Hence, the alternative family of importance measures aims
to assess change in the asymptotic system availability at given system level with
respect to change in expected waiting time in higher level states. Alternatively,
an asymptotic mean state of the system can be used as a basis for importance
measure. For the binary systems, the Birnbaum measure of importance can be
obtained by differentiating the reliability function of the system with respect to
component reliability. Thus, the two suggested importance measures, derived
as partial derivatives of asymptotic availability and mean state of the system,
propose an alternative way of reflecting this relation for the class of multistate
systems.

This project has the following structure: first, section (2) provides an intro-
duction to the binary systems and an extension of a few basic concepts to mul-
tistate systems, providing a necessary framework for the study. Furthermore,
section (3) introduces the component importance measures. Finally, numerical
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examples applied to directed network flow systems are presented in section (4).
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2 Binary and multistate monotone systems
The first subsection gives a brief introduction to the simple concept of the bi-
nary monotone systems. The further subsections extend basic results to multi-
state systems, as well as a few definitions are introduced, providing a necessary
framework for this project. Also, the class of directed network flow systems is
introduced.

2.1 Binary monotone systems
Assume that (C, φ) is a binary monotone system, where C = {1, ..., n} is
the component set, and φ is the structure function. Moreover, let X(t) =
(X1(t), ..., Xn(t)) where Xi(t) is the state variable of component i at time t,
where i ∈ C, i.e., Xi(t) = 1 if component i is functioning at time t, and
Xi(t) = 0 otherwise. Then a component i ∈ C is said to be critical for the
system if:

φ(0i,X(t)) = 0, and φ(1i,X(t)) = 1. (1)

For the explanation of the notation, see [7]. Since (C, φ) is a binary monotone
system, the structure function φ is binary and non-decreasing. Hence we al-
ways have: 0 ≤ φ(0i,X(t)) ≤ φ(1i,X(t)) ≤ 1. From this i follows that (1) is
equivalent to:

φ(0i,X(t)) < φ(1i,X(t)). (2)

In fact, due to monotonicity, we may equivalently say that component i is critical
at time t if:

φ(0i,X(t)) 6= φ(1i,X(t)). (3)

The condition (3) can be rewritten even further in a way that makes it easy to
extend it to more general settings. In order to do so we introduce:

X+
i (t) =

{
0, for Xi(t) = 1

1 for Xi(t) = 0

We observe that for repairable components X+
i (t) represents the upcoming state

of component i at time t. Using this notation, we may rewrite (3) as:

φ(X+
i (t),X(t)) 6= φ(X(t)). (4)

Hence, component i is critical at time t if a state change of component i at time
t, implies a system state change at time t as well.

According to [2] the Birnbaum measure of importance of component i ∈ C

at time t, denoted by I(i)B (t), is the probability that the component is critical at
time t. By (4) this implies that we have:

I
(i)
B (t) = P [φ(X+

i (t),X(t)) 6= φ(X(t))]. (5)

We also introduce the asymptotic Birnbaum measure of importance of compo-
nent i ∈ C as:

I
(i)
B = lim

t→∞
I
(i)
B (t) = lim

t→∞
P [φ(X+

i (t),X(t)) 6= φ(X(t))]. (6)
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Assuming that the component state processes {X1(t), ..., Xn(t)} are indepen-
dent, and that the limiting distributions for these processes exists, we introduce
p = (p1, ..., pn), where:

pi = lim
t→∞

P (Xi(t) = 1), i ∈ C.

We also introduce the reliability of the system:

h = h(p) = lim
t→∞

P (φ(X(t)) = 1).

It is then very well-known that we have (see [7]):

I
(i)
B =

∂h

∂pi
(p), i ∈ C. (7)

This implies that the asymptotic importance of component i may be interpreted
as the change rate of the asymptotic system availability with respect to a small
change in the asymptotic component availability. Thus, if one looks for ways to
improve the asymptotic system availability, one should focus on the component
with the highest asymptotic importance.

2.2 Multistate monotone systems
For an extensive introduction to multistate monotone systems we refer to [10].
In this context we define a multistate monotone system similar to a binary mono-
tone system as an ordered pair (C, φ), where C = {1, .., n} is the component
set, and φ is the structure function. Moreover, we let X(t) = (X1(t), ..., Xn(t))
where Xi(t) is the state variable of component i at time t. Contrary to the bi-
nary system, however, both the components and the system may be in multiple
states (not just 0 and 1). More specifically, if i ∈ C, we let Si = {0, 1, ..., ri}
denote the set of states for component i. Assume that each component starts
out at its top-level state, and then at random points of time transits downwards
through the state set until it reaches state 0. At this stage the component is
replaced by a new component, and a new life cycle begins.

For each component i ∈ C we also introduce a function fi : Si → R repre-
senting the physical state of the component as a function of the state. Thus, if
Xi(t) = xi ∈ Si, then the physical state of component i at time t is fi(Xi(t)).
E.g., if component i is a pipeline, then the physical state of the component at a
given point of time may be the capacity of the pipeline at this point of time. Be-
ing a physical property of the pipeline, this may be any arbitrary non-negative
number depending on the state of the component, and the function fi provides a
convenient way of encoding this directly into the model. Note that the functions
f1, ..., fn do not necessary need to be monotone. In particular, such assumption
introduces additional flexibility to the modeling of component states within the
predefined life cycle of a component. E.g, it permits performing minimal repairs
on the components, that is maintenance or improvement of the component be-
fore it reaches its failure state. Also, in many real-life situations one may think of
several possibilities for component states ordering. In particular, consider some
kind of machine part or an engine that becomes more efficient after some time
functioning, that is so called burn-in cases, where a new component starts its
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life cycle at some intermediate state before reaching its perfect functioning state.

The structure function φ represents the state of the system expressed as a func-
tion of the states of the components. It is common in multistate reliability
theory to assume that φ also assumes values in a set of non-negative integers.
In this context, however, we let the structure function represent the physical
state of the system. Moreover, we assume that φ can be written as:

φ(X(t)) = φ(f1(X1(t)), ..., fn(Xn(t)))

This assumption implies that the physical state of the system is a function of the
physical states of the components. Furthermore, it seems reasonable to allow
the physical state of the system to be expressed as a non-decreasing function
of the physical states of the components, reflecting the physical monotonicity
of the system. It should be noted that φ does not necessarily need to be non-
decreasing in component states Xi, i ∈ C. Hence, assume that φ is a non-
decreasing function of the physical state functions f1, ..., fn. The advantage
with this approach is that the system state is expressed in terms of physical
quantities rather than being encoded more abstractly as non-negative integers.

2.3 Network flow systems
An important class of multistate systems which can be handled within this
framework is the class of directed network flow systems. A directed network
flow system contains of a set of points, referred to as nodes, and a set of lines
between these points, referred to as edges. See Figure 1.

Figure 1: A directed network flow system.

The edges of a directed network flow system are directed (indicated by an arrow),
implying that flow can only pass through an edge according to the direction of
the edge. From now and throughout this study we only consider simple source-
to-terminal flow networks where one of the nodes is the source node, while
another node is the terminal node. The components of the system are the edges
of the network, and the state of the system is defined as the amount of flow (of
some kind) that can be transmitted from the source node to the terminal node
through the network.

In figure (1) the node S is the source node, while the node T is the terminal
node. The component set of the system is the set of edges, i.e. C = {1, ..., 7}.
In order to determine the amount of flow that can be transmitted from S to T ,
we consider a subset K of the edge set C, e.g., K = {4, 5, 7}. We observe that
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if we remove all edges in K from the network, the connection between S and
T through the network is broken. Thus, K is referred to as a minimal cut set
of the network. We also note that the amount of flow that can be transmitted
from S to T is limited by the sum of the capacities of the components in K.
Hence, we have:

φ(X(t)) ≤
∑
i∈K

fi(Xi(t)).

The same holds true for any minimal cut set in the network. Thus, if we identify
all minimal cut sets of the system, say K1, ...,Kk, we must have:

φ(X(t)) ≤ min
1≤j≤k

∑
i∈Kj

fi(Xi(t)).

According to the so-called max-flow-min-cut theorem (see [3]), we actually have:

φ(X(t)) = min
1≤j≤k

∑
i∈Kj

fi(Xi(t)).

This result gives us an easy way of determining the state of a directed network
flow system. Moreover, [3] also provides an efficient algorithm for determining
the maximal flow.

2.4 Stationary probability distribution in multistate sys-
tems

In this section we introduce a few basic concepts used in multistate system reli-
ability theory. The components of the system are assumed to be stochastically
independent. For i = 1, ..., n and j ∈ Si = {0, 1, ..., ri} introduce the marginal
probability distributions for the component state variables:

qij(t) = P [Xi(t) = j], (8)

qi(t) = (qi0(t), qi1(t), ..., qiri(t)). (9)

Where the vector qi(t), i = 1, ..., n, contains the probability distribution for
Xi(t), with the following property:∑

j∈Si

qij(t) = 1, i = 1, ..., n. (10)

Finally, introduce the vector q(t) containing probability distributions for all the
component state variables:

q(t) = (q1(t), ..., qn(t)). (11)

Using standard renewal theory and under mild restrictions on the waiting time
distributions it is well known that that for i = 1, ..., n the stationary probabilities
for the states of component i are given by:

qij = lim
t→∞

qij(t) =
µij∑
k∈Si

µik
, (12)
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where µij denotes the expected waiting time for component i in state j, i ∈ C,
j ∈ Si. Introduce the stationary vectors:

qi = (qi0, ..., qiri), i = 1, ..., n,

q = (q1, ..., qn).

Let the ith component have an absolutely continuous distribution Fij(t) of time
spent in state j, before jumping downwards to state j − 1, with density fij(t).
It is assumed that all these times spent in the various states are independent.
Finally, introduce the following notation:

(si,x) = (x1, ..., xi−1, s, xi+1, ..., xn). (13)

that is, the vector (si,x) is obtained by replacing the ith coordinate by s for
any vector x. Also, introduce the (ri + 1)- dimensional row vector eij , with
coordinates indexed from 0 up to ri, such that jth coordinate is 1 and the rest
of coordinates are zero:

eij = (1j ,0), i = 1, ..., n, j = 0, ..., ri. (14)

Thus, eij can be interpreted as a vector representing the conditional probability
distribution for Xi(t) given that Xi(t) = j.
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3 Measures of component importance
The following section presents three different measures of component importance
in multistate systems. In particular, a necessary framework is established, fol-
lowed by numerical study of the measures presented in the last section (4). First,
a generalization of the well-known Birnbaum measure of component importance
is introduced. Furthermore, an alternative family of importance measures for
multistate systems is suggested. In particular, we introduce two new alterna-
tive approaches to component importance measures, based on the asymptotic
availability of the system and asymptotic mean state of the system.

3.1 Birnbaum importance measure
In order to define criticality and importance we start out by considering a mul-
tistate monotone system (C, φ). Now let i ∈ C, and let Si = {0, 1, ..., ri} be the
set of states for this component. We then introduce:

X+
i (t) =

{
Xi(t)− 1, for Xi(t) > 0

si for Xi(t) = 0
(15)

Thus, as for the binary case X+
i (t) represents the upcoming state of component

i at time t. We then say, as in the binary case, that component i is critical at
time t if:

φ(X+
i (t),X(t)) 6= φ(X(t)) (16)

Hence, component i is critical at time t if a state change of component i at
time t implies a system state change at time t as well. As before we define the
Birnbaum measure of importance of component i at time t, denoted by I(i)B (t),
as the probability that the component is critical at time t. By (16) this implies
that we still have:

I
(i)
B (t) = P [φ(X+

i (t),X(t)) 6= φ(X(t))]. (17)

We also introduce the asymptotic Birnbaum measure of importance of compo-
nent i ∈ C as:

I
(i)
B = lim

t→∞
I
(i)
B (t) = lim

t→∞
P [φ(X+

i (t),X(t)) 6= φ(X(t))]. (18)

We observe that by following the above path the generalization of the Birnbaum
to multistate systems is very straightforward. However, if one wants to derive
a version of this measure expressed as a partial derivative similar to (7), it is
not obvious how this can be done. In fact, there are many alternative solutions
to this problem. The following subsections present two particular methods for
computing the component importance measures with expressions equivalent to
the derivative for the binary case.

3.2 Asymptotic availability of the system
Introduce:

µij = Expected waiting time for component i in statej, i ∈ C, j ∈ Si.
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We also let µi = (µi0, µi1, ..., µiri), i = 1, ..., n, and µ = (µ1, ....,µn). Under
mild restrictions on the waiting time distributions for the components it can be
shown that the limiting distribution for the component state process {Xi(t)}
depends only on µi, i ∈ C. Moreover, assuming that the component state
processes are independent, the limiting distribution for the system state process
{φ(X(t))} depends only on µ1, ...,µn. Now let M be given by:

M = max
x

φ(x),

where the maximum is taken over all possible component state vectors x =
(x1, ..., xn), where xi ∈ Si, i ∈ C. We then introduce the asymptotic system
availability at level m given by:

hm = lim
t→∞

P (φ(X(t)) ≥ m), m ∈ (0,M ]. (19)

Then it follows by the above arguments that we may write:

hm = hm(µ1, ...,µn) = hm(µ), m ∈ (0,M ].

One way of improving the system is to increase the time spent by the compo-
nents in the higher level states. This can be modelled as an increase in the
corresponding expected waiting time. Motivated by this we may define alterna-
tive family of importance measures:

I
(i,j)
B1 (m) =

∂hm
∂µij

(µ1, ...,µn), i ∈ C, j ∈Mi,m ∈ (0,M ]. (20)

This implies that the measure defined above can be interpreted as the change
rate of the asymptotic system availability at level m with respect to a small
change in expected waiting time in state j of component i.

One of the basic tools for calculating reliability of binary monotone systems
is pivotal decomposition. The method allows us to simplify the structure and
reliability functions by dividing the problem into two simpler problems and
reduce the order of the functions:

φ(x(t)) = xi(t)φ(1i,x(t)) + (1− xi(t))φ(0i,x(t)),

h(p) = lim
t→∞

P (φ(X(t)) = 1) = pih(1i,p) + (1− pi)h(0i,p).

An equivalent expression can be obtained for multistate systems. This can
be done, in similar way as for the binary case, by conditioning on the state
j ∈ Si of a component i ∈ C. Hence, the asymptotic system availability at level
m ∈ (0,M ] can be decomposed as follows:

hm = lim
t→∞

P (φ(X(t)) ≥ m)

= lim
t→∞

∑
j∈Si

P
(
φ(X(t)) ≥ m | Xi(t) = j

)
· P (Xi(t) = j)

=
∑
j∈Si

µij
(
∑
k∈Si

µik)
· hm((eij)i,µ)

=
(∑
j∈Si

µij

)−1(∑
j∈Si

(
µij · hm((eij)i,µ)

))
,

(21)
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where, for i ∈ C, j ∈ Si, m ∈ (0,M ], and by (12) we have:

lim
t→∞

P (Xi(t) = j) = qij =
µij∑
k∈Si

µik
,

lim
t→∞

P
(
φ(X(t)) ≥ m | Xi(t) = j

)
= hm((eij)i,µ),

and where
(
(eij)i,µ

)
=
(
µ1, ...,µi−1, (eij)i,µi+1, ...,µn

)
, a vector represent-

ing the conditional probability distribution. Thus, hm((eij)i,µ) represents the
conditional asymptotic system availability at levelm, given component i in state
j.
Furthermore, for i = 1, ..., n, j = 0, 1, ..., ri and m ∈ (0,M ] we have:

I
(i,j)
B1 (m) =

∂hm
∂µij

(µ1, ...,µn)

=
( ∑
k∈Si

µik

)−2((∑
k 6=j

µik

)
· hm((eij)i,µ)−

∑
k 6=j

(
µik · hm((eik)i,µ)

))
.

(22)

Note that (22) can also be expressed as a function of the stationary probabilities:

I
(i,j)
B1 (m) =

( ∑
k∈Si

µik

)−1((∑
k 6=j

qik

)
· hm((eij)i,µ)−

∑
k 6=j

(
qik · hm((eik)i,µ)

))
.

(23)

Hence, I(i,j)B1 (m) can be expressed as a sum of conditional asymptotic avail-
abilities of the system, weighted by the stationary probabilities. Furthermore,
observe that

∑
j∈Si

µij may be interpreted as the expected amount of time it
takes for component i to complete one full life cycle by deteriorating through all
states from the perfect functioning state until the complete failure state. Hence,
the I(i,j)B1 (m) measure depends both on the stationary probability distributions
of component waiting times, and expected time of full life cycle of component
i. Thus, the measure is sensitive to the choice of scale of the expected waiting
times in states j of component i, and an adjustment of the measure might be
necessary in certain cases. This relation is examined and discussed further in
subsection (4.2).

The I(i,j)B1 (m) importance measure indicates how the change in expected waiting
time in state j of component i affects the asymptotic availability of the system
at level m. In particular, we will see that the measures can both be negative
and positive. Hence, the absolute values of the measures are used to rank the
importance of the system components i for each state j and at level m.

3.3 Asymptotic mean state of the system
Instead of using the asymptotic system availability as a basis for an importance
measure we may alternatively use the asymptotic mean state of the system:

ξ = lim
t→∞

E[φ(X(t))],
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and define:
I
(i,j)
B2 =

∂ξ

∂µij
(µ1, ...,µn), i ∈ C, j ∈ Si. (24)

Hence, the importance measure I(i,j)B2 can be interpreted as the change rate of
the asymptotic mean state of the system with respect to a small change in ex-
pected waiting time in state j of component i.

Similarly to I(i,j)B1 , by using pivotal decomposition we obtain the following ex-
pression:

ξ = lim
t→∞

E[φ(X(t))]

= lim
t→∞

E
[
E[φ(X(t)) | Xi(t) = j]

]
= lim
t→∞

∑
j∈Si

E[φ(X(t)) | Xi(t) = j] · P (Xi(t) = j)

=
∑
j∈Si

µij
(
∑
k∈Si

µik)
· ξ((eij)i,µ)

=
(∑
j∈Si

µij

)−1(∑
j∈Si

(
µij · ξ((eij)i,µ)

))
,

(25)

where, for i ∈ C and j ∈ Si we have:

lim
t→∞

E
[
φ(X(t)) | Xi(t) = j

]
= ξ((eij)i,µ),

and where ξ((eij)i,µ) represents the conditional asymptotic mean state of the
system, given component i in state j. Furthermore,

I
(i,j)
B2 =

∂ξ

∂µij
(µ1, ...,µn)

=
( ∑
k∈Si

µik

)−2((∑
k 6=j

µik

)
· ξ((eij)i,µ)−

∑
k 6=j

(
µik · ξ((eik)i,µ)

))
.

(26)

Note that (26) can also be expressed as a function of the stationary probabilities:

I
(i,j)
B2 (m) =

( ∑
k∈Si

µik

)−1((∑
k 6=j

qik

)
· ξ((eij)i,µ)−

∑
k 6=j

(
qik · ξ((eik)i,µ)

))
.

(27)

Hence, I(i,j)B2 can be expressed as a sum of conditional asymptotic mean states
of the system, weighted by the stationary probabilities. Similarly as for the
I
(i,j)
B1 (m) measure, the I(i,j)B2 measure depends on both the stationary probabil-
ity distributions of component waiting times, and expected time of full life cycle
of component i. Thus, the measure is sensitive to the choice of scale of the
component mean waiting times.

The I(i,j)B2 importance measure indicates how the change in expected waiting
time in state j of component i affects the asymptotic mean state of the system.
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Similarly as for the I(i,j)B1 (m) measure, the absolute values of the I(i,j)B2 measures
are considered in order to rank the importance of the system components i for
each state j.
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4 Numerical study of importance measures
In this section we will present different examples of directed network flows sys-
tems. Subsection (4.1) gives a general introduction to discrete event simulation
and describes the simulation process. Furthermore, the three suggested impor-
tance measures I(i)B , I

(i,j)
B1 (m) and I

(i,j)
B2 are computed and compared. Each of

the presented examples, analyzed in subsections (4.2) - (4.4) looks at different
properties of the measures and highlights possible issues, differences and sim-
ilarities between the measures. In particular, we investigate sensitivity of the
measures with respect to scaling of mean expected waiting times in component
states. Furthermore, we examine how the ordering of the component states af-
fects the three measures. Finally, a more complex system with several bridge
components is considered and the sensitivity of component importance with re-
spect to direction of the component flow is analyzed. The final subsection (4.5)
gives a brief summary of the observations and conclusions.

4.1 Discrete event simulation
Discrete event models are frequently used in simulation studies to model and
analyze pure jump processes. A discrete event model can be viewed as a system
consisting of a collection of stochastic processes (the elementary processes of
the system), where the states of the individual processes change as results of
various kinds of events occurring at random points of time. We always assume
that each event only affects one of the elementary processes. Between these
events the states of the processes are considered to be constant.

In the context of multistate systems, we assume that the life cycle of the i’th
component starts out with the component being in its perfect functioning state.
Then the state of the component degrades through all intermediate states, and
ends up in the complete failure state. After that the component is replaced or
repaired back to its perfect functioning state again, and a new life cycle begins.
In order to model this, introduce the following random variable:

Ukij = The k’th time spent by the i’th component in state j,

where i = 1, ..., n, j = 0, 1, ..., ri and k = 1, 2, .... All these random variables are
assumed to be stochastically independent. This implies in particular that the
component states X1(t), ..., Xn(t) are independent for each t ≥ 0. Furthermore,
we assume that U (1)

ij , U
(2)
ij , ... are identically distributed with an absolutely con-

tinuous distribution Fij(t) with a positive mean value µij < ∞, i = 1, ..., n,
j = 0, 1, ..., ri. Thus, component objects are equipped with methods for gener-
ating state change events according to the distribution of Uij ’s.

4.1.1 Pure jump processes

As before we consider a multistate system with component set C = 1, ..., n and
structure function φ. Moreover, for i = 1, ..., n we let Xi(t) denote the state of
the i’th component at time t ≥ 0, and let the events affecting the i’th component
be denoted by Ei1, Ei2, ..., listed in chronological order. Since we assumed that
the times spent in each state have absolutely continuous distributions, all these
events happen at distinct points of time almost surely. We let Ti1 < Ti2, ...
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be the corresponding points of time for these events. We also let Ti0 = 0,
i = 1, ..., n. Then, the component state processes can then be expressed as:

Xi(t) = Xi(0) +

∞∑
k=0

I(Tik ≤ t)Jik, t ≥ 0, i = 1, ..., n, (28)

where the jumps Jik are the changes in state values as result of the respective
events Eik. We assume that all components start out by being in their perfect
state. Thus, for i = 1, ..., n we have Xi(0) = siri , while the jumps are given by:

Ji1 = si(ri−1) − siri , Ji2 = si(ri−2) − si(ri−1), ... ,

Jik = si(ri−k) − si(ri−(k−1)), ... , Jiri = si0 − si1.

Hence, component i ∈ C starts at its top level state at time Ti0 = 0, and ac-
cordingly to the jumps deteriorates by going through all states from the perfect
functioning state until the complete failure state, denoted by the last jump in
the life cycle, Jiri . Then, the component is replaced by a new one and a new
life cycle begins, following the same pattern with the jumps as described above.
For i = 1, ..., n we also introduce the times between the events defined as:

∆ik = Tik − Ti(k−1), k = 1, 2, ...,

Thus, for i = 1, ..., n we have:

∆i1 = U
(1)
iri
, ∆i2 = U

(1)
iri−1

, ...

Since U (1)
ij , U

(2)
ij , ... are independent and identically distributed with positive

mean value µij , it follows that Xi is a pure jump process, i = 1, ..., n. In partic-
ular, observe that the infinite sum in (28) indicates that the number of events
occurring in the interval [0, t] is unbounded. The possibility of having an infinite
number of events in [0, t], however, may cause various technical difficulties. In
particular, this may cause simulations to break down since an infinite number of
events need to be generated and handled. To avoid these difficulties, we always
assume that the number of events occurring in any finite interval is finite with
probability one. A pure jump process satisfying this assumption is said to be
regular. For more details we refer to ([6]). Furthermore, it can be shown that
the system states φ = φ(X) as well as all the criticality states are regular pure
jump processes.

Stationary statistical properties of a system, can easily be estimated by run-
ning a single discrete event simulation on the system over a sufficiently long
time horizon, or by working directly on the stationary probability distributions
of the elementary processes. Sometimes, however, one needs to estimate how
the statistical properties of the system evolve over time. In such cases it is
necessary to run many simulations to obtain stable results.

4.1.2 Estimating availability, mean state and importance

The systems presented in this study are analyzed using the software MulticueTM,
developed at University of Oslo. In particular, in order to compute the impor-
tance measures, we estimate the system availability ĥm(t), mean state of the
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system ξ̂ and the Birnbaum importance measure I(i)B as functions of time t,
for i = 1, ..., n, j = 1, ..., ri, and m ∈ (0,M ]. All calculations are carried out
using discrete event simulation. We run N simulations on the system, where
each simulation covers the time interval [0, T ]. In each simulation we sample
the values of the system state and the criticality states at each sampling point
t1, t2, ..., tH = T . Then, the asymptotic estimates are obtained by running the
simulations over a sufficiently long time horizon T .

In order to obtain stable results, a reasonable length of the time horizon T
and sufficiently large number of simulations N is required. In order to explain
how N can be chosen, we will consider pointwise estimates of the system avail-
ability at level m and Birnbaum importance measure for component i. Denote
the kth simulated value of the component state vector process at time t ≥ 0
by Xk(t), k = 1, 2, ..., N . Then, for i ∈ C, m ∈ (0,M ] and h = 1, 2..., H we
introduce the following pointwise estimates:

ĥm(th) =
1

N

N∑
k=1

I
[
φ(Xk(th)) ≥ m

]
,

Î
(i)
B (th) =

1

N

N∑
k=1

I
[
φ
(
X+
i (th),Xk(th)

)
6= φ(Xk(th))

]
.

Note that for N = 1, ĥm(th) can be considered a Bernoulli variable with mean
hm(th). Then, by repeating the simulationN times, we obtain

∑N
k=1 I

[
φ(Xk(th)) ≥

m
]
∼ Binomial(N,hm(th)). Thus, we can derive an upper bound for the vari-

ance of the pointwise estimates:

Var
( 1

N

N∑
k=1

I
[
φ(Xk(th)) ≥ m

])
=
hm(th)(1− hm(th))

N
≤ 1

4N
.

Hence, increasing the number of simulations N provides an effective way of
stabilizing the results for the pointwise estimates, by reducing the standard de-
viation of the estimates. For more details on this matter we refer to [6] and [7].

Furthermore, one can derive T by computing the expected number of full cycles
of component i, that is the number of times a component i, i ∈ C deteriorates
through all states j ∈ Si. Hence, by defining the following relation:

Expected number of cycles of component i :=
T∑

j∈Si
µij

,

a reasonable time horizon can be found by choosing a sensible number of cycles
for the component with the longest life cycle, maxi∈C

∑
j∈Si

µij . In particular,
it can be shown that the system availability converges fast towards its stationary
value for certain distributions of the waiting times of component states. Accord-
ing to an example applied to a binary system, shown in [7], we have that all the
component availabilities converge very fast towards their common stationary
value, when all the components in the system have exponential lifetime distri-
butions with equal means. As a result of this the system availability converges
very fast towards its stationary value, and the same conclusion applies to the
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Birnbaum measures of importance. A lower bound for the time horizon of the
simulations T , and hence number of cycles is derived. Thus, it can be shown
that approximately 10 component life cycles is sensible for the binary case with
exponentially distributed component waiting times. This result provides a gen-
eral idea for the lower bound of T . E.g for maxi∈C

∑
j∈Si

µij = 31, we conclude
that T > 310, is the lower bound for the time horizon of the simulations.

The main purpose of this study is to give an introduction to the I(i,j)B1 (m),
I
(i,j)
B2 and I(i)B importance measures and to illustrate how these are calculated.
In particular, the numerical examples presented in this section focus mostly on
the rank of the component importance. Hence, both N and T are chosen accord-
ingly, compromising the computation time and the aim of the study. In order
to further analyze differences in the simulated rates I(i,j)B1 (m) and I(i,j)B2 , partic-
ularly when the purpose of the study is is to compare approximately equal rates
for components i ∈ C, it is recommended to further reduce standard deviation
of the estimates by increasing the number of simulations N . Furthermore, the
choice of time horizon T can be easily evaluated by inspecting the plots of the
resulting estimates, and verifying that the stability in the estimates is reached.

The software MulticueTMhas a built-in support for the calculation of the asymp-
totic Birnbaum measure of importance, I(i)B for arbitrary complex directed net-
work flow systems. The measure is simulated using the definition described by
the formula (18), that is for each simulation at time t ∈ [0, T ], a probability
that component i is critical for the system is sampled. The simulated values
at t = T for the analyzed systems are reported. Due to the stochastic nature
of the waiting times in component states, the simulated probabilities fluctuate
for each t ∈ [0, T ], and the mean value of the simulated measure, denoted by
Ī
(i)
B = 1

T

∫ T
0
I
(i)
B (t)dt, is reported along with I(i)B . Note that in order to compute

Ī
(i)
B , a longer time horizon is required. At time t = 0 and i ∈ C, we have that
I
(i)
B (0) is either equal to 1 or 0, affecting the computed mean value. Additional
simulations with longer time horizon are performed in order to obtain more
reasonable results for Ī(i)B . In particular, for the numerical examples examined
in in subsections (4.2) - (4.4), we perform an additional simulation of the Ī(i)B
measure with a time horizon T

′
= 10T .

The asymptotic system availabilities for component i in state j and at level
m, hm((eij)i,µ) and asymptotic mean state of the system for component i in
state j, ξ((eij)i,µ), i ∈ C, j ∈ Si, m ∈ (0,M ], are computed by applying piv-
otal decomposition, that is by conditioning on the state of the component and
running the simulations over the sufficiently long time horizon. In particular, for
each component i, a simulation is performed by conditioning on state j, return-
ing the mean state of the system ξ((eij)i,µ) and the probabilities hm((eij)i,µ)
for alle the levels m. Such simulation is done by replacing the distribution of
the mean times spent in each state by a fixed number equal to maximal time
horizon of the simulation, T for the state j we condition on, and a small number
close to zero, e.g 0.01 for the latter states. Simulations are then repeated for
each component i and state j.
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In sections (3.2) and (3.3) we derived an explicit formula for computing the
values of importance measures I(i,j)B1 (m) and I(i,j)B2 . After simulating the asymp-
totic availabilities and mean state of the system, the calculation of the measures
is straight forward. For all the examples of the directed network flow systems
analyzed in this section, we will assume the following set of possible states for
component i ∈ C, Si = {0, 1, 2}, where state j = 0 is the complete failure state,
and j = 2 is the perfect functioning state. Thus, for component i, i ∈ C, state
j = 1 and given level m ∈ (0,M ] we have by the derived formula (22):

I
(i,1)
B1 (m) =

( ∑
k∈Si

µik

)−2((∑
k 6=j

µik

)
· hm((eij)i,µ)−

∑
k 6=j

(
µik · hm((eik)i,µ)

))

=
( 2∑
j=0

µij

)−2((
µi0 + µi2

)
· ĥm((ei1)i,µ)− µi0 · ĥm((ei0)i,µ)− µi2 · ĥm((ei2)i,µ)

)

=
( 2∑
j=0

µij

)−1((
qi0 + qi2

)
· ĥm((ei1)i,µ)− qi0 · ĥm((ei0)i,µ)− qi2 · ĥm((ei2)i,µ)

)
.

Similarly, for component i, i ∈ C and state j = 1 we have by (26):

I
(i,1)
B2 =

( ∑
k∈Si

µik

)−2((∑
k 6=j

µik

)
· ξ((eij)i,µ)−

∑
k 6=j

(
µik · ξ((eik)i,µ)

))

=
( 2∑
j=0

µij

)−2((
µi0 + µi2

)
· ξ̂((ei1)i,µ)− µi0 · ξ̂((ei0)i,µ)− µi2 · ξ̂((ei2)i,µ)

)

=
( 2∑
j=0

µij

)−1((
qi0 + qi2

)
· ξ̂((ei1)i,µ)− qi0 · ξ̂((ei0)i,µ)− qi2 · ξ̂((ei2)i,µ)

)
.

The following sections present examples of numerical studies of the three impor-
tance I(i,j)B1 (m), I(i,j)B2 and I

(i)
B , applied to directed network flow systems. The

main purpose is to examine various properties of the measures. In particular,
each examined case illustrates different type of sensitivity of the measures.

4.2 Scaling of mean waiting times of component states

As we have seen in sections (3.2) and (3.3), the I(i,j)B1 (m) and I
(j,j)
B2 impor-

tance measures depend on the stationary probabilities for the component wait-
ing times, qij ’s. Thus, then main purpose of this example is to examine how this
dependency emerges when the stationary probabilities for the component wait-
ing times, qij ’s, are equal in each equivalent state j for all components i ∈ C,
but a different scale for the mean waiting times µij ’s, is applied for each com-
ponent i. That is, we examine the sensitivity of the importance measures with
respect to scaling of the mean waiting times of component states. In particular,
we will see that an adjustment of the I(i,j)B1 (m) and I(j,j)B2 measures is necessary
to obtain reasonable results. In order to study such case, we consider a simple
series system of two components i ∈ C = {1, 2}, shown in Figure (2).
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Figure 2: A simple series system with two components

Denote the set of states for component i ∈ C as Si = {0, 1, 2}. In particular,
assume that the times spent in state j are exponentially distributed, with the
expected waiting times for components i = 1, 2 as shown in Table (1). Hence,
for each state j, the expected waiting times are ten times lager for component
i = 1 in each state j. Furthermore, observe that the system state takes all
values in the set Sφ = {0, 1, 2, }, with M = 2 being the maximal flow of the
system. The number of simulations is N = 3000, and the time horizon of the
simulations, T = 20000 is chosen such that a reasonable number of expected
life cycles of the component i = 1 with the largest expected time of one life
cycle is ensured. In particular, the component i = 1 is expected to perform
approximately 65 life cycles thorough the total simulation time.

Table 1: Distribution of times spent in state j for component i ∈ C

Order State j Distribution i = 1 Distribution i = 2

2 2 Expon(200) Expon(20)
1 1 Expon(100) Expon(10)
0 0 Expon(10) Expon(1)

The stationary probabilities, qij =
µij∑ri
l=0 µil

of component i are equal in each
j for both components, i.e for i = 1, 2 we have qi2 ≈ 0.65, qi1 ≈ 0.32 and
qi0 ≈ 0.03. Hence, we expect the two components in series to be equally impor-
tant for the system reliability. In particular, we will se how this assumption is
reflected by the I(i,j)B1 (m) and I(j,j)B2 importance measures.

Table 2: A simple series system with two components - I(i,j)B1 (m) measure for
component i in state j at level m

i
m = 1 m = 2

j = 1 j = 2 j = 1 j = 2

1 0.0001 0.0001 -0.0013 0.0007
2 0.0010 0.0010 -0.0135 0.0074
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Table 3: A simple series system with two components - I(i,j)B2 measure for com-
ponent i in state j

i = 1 i = 2

j = 1 -0.0012 -0.0124
j = 2 0.0008 0.0084

Tables (2), (3) display the results form the simulations for I(i,j)B1 (m) and I(j,j)B2

measures. The absolute values of the rates are higher for the component i = 2
for all the values of component state j = 1, 2 and system level m = 1, 2, im-
plying higher importance of the second component. However, the asymptotic
system availabilities hm and asymptotic mean state of the system ξ depend only
on the stationary distribution of component states, thus the simulated values
ĥm((eij)i,µ) and ξ̂((eij)i,µ) are approximately equal for both components in
each j ∈ Si and system level m ∈ (0, 2].

Recall the derived expression for the measures, (23) and (27). Observe that
the only term differentiating the calculated measures for each i is the sum of
expected waiting times in states j Si. Thus, we have:(∑

j∈Si

µij

)−1
=

1

310
= 0.0032 for i = 1,

(∑
j∈Si

µij

)−1
=

1

31
= 0.032 for i = 2.

Hence, the I(i,j)B1 (m) and I(j,j)B2 measures are affected by the choice of scale of the
expected waiting times in the component states. In order to avoid this problem,
we introduce a scaled version of the importance measure,

I
∗(i,j)
B1 (m) =

( ∑
k∈Si

µik
)
· I(i,j)B1 (m). (29)

Similarly as for the I(i,j)B1 (m) measure, introduce a scaled version of the impor-
tance measure,

I
∗(i,j)
B2 =

( ∑
k∈Si

µik
)
· I(i,j)B2 . (30)

Tables (4), (5) show the computed values of the scaled measures. Finally, the
simulated asymptotic Birnbaum importance measures, I(i)B , i = 1, 2 are shown in
Table (6) and Figure (3). The simulated probabilities are approximately equal
for both components, indicated in the figure by the the smooth lines representing
the values of Ī(i)B .

Hence, the scaled measures I∗(i,j)B1 (m) and I∗(i,j)B2 along with the I(i)B measure
lead to the same conclusion that the two components with equal stationary
probabilities for each of the equivalent states j indeed are equally important for
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Table 4: A simple series system with two components - I∗(i,j)B1 (m) measure for
component i in state j at level m

i
m = 1 m = 2

j = 1 j = 2 j = 1 j = 2

1 0.0312 0.0312 -0.4164 0.2290
2 0.0312 0.0312 -0.4170 0.2294

Table 5: A simple series system with two components - I∗(i,j)B2 measure for
component i in state j

i = 1 i = 2

j = 1 -0.3852 -0.3857
j = 2 0.2603 0.2605

Table 6: A simple series system with two components - I(i)B measure for com-
ponent i

i = 1 i = 2

I
(i)
B 0.7690 0.7507
Ī
(i)
B 0.7598 0.7601

Figure 3: A simple series system with two components - I(i)B measures for i = 1, 2
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the system reliability. In particular, we have seen that the original measures
I
(i,j)
B1 (m) and I(i,j)B2 demonstrate sensitivity with respect to scaling of the mean
waiting times in component states, while the asymptotic Birnbaum measure,
I
(i)
B does not have this property. Hence, the scaled versions of the measures are
applied in order to determine the rank of component importance. Thus, when
modelling waiting times of component states with different values of

∑
j∈Si

µij
for components i ∈ C, use of the scaled version of the measures is necessary.
Otherwise, the unscaled measures can be used.

4.3 Ordering of component states
We will now consider the component importance sensitivity with respect to or-
dering of the component states. In particular, we will examine whether the
three measures, I(i,j)B1 (m), I(i,j)B2 and I

(i)
B are affected by change in component

state ordering. The Figure (4) below shows the analyzed system, a bridge sys-
tem with a series component. We will investigate two cases of ordering of the
component states. The first case, where we assume a natural ordering of the
component states, that is we assume that each component i ∈ C starts at its
perfect functioning state j = 2, followed by a transition to the intermediate
state j = 1, until it reaches the failure state j = 0. After that the component
is repaired back to its top level state again, and a new life cycle begins. The
case is denoted by the ordering {2-1-0}. In the second case, for the component
in series i = 1, we assume that the first and second order of the states switch
places, that is component i = 1 start its life cycle at level j = 1, then after the
first transition reaches its top level state j = 2, followed by the transition to
failure state j = 0 at the end of the cycle, denoted by the ordering {1-2-0}).

Figure 4: Bridge system with a series component

The component set is given by C = {1, 2, 3, 4, 5, 6}. Denote set of states for
component i ∈ C as Si = {0, 1, 2}. In particular, assume that the times spent
in state j are exponentially distributed, with the expected mean waiting times
for components i ∈ C as shown in Tables (7), (8). Also, observe that the system
state takes all values in the set Sφ = {0, 1, 2, }, with M = 2 being the maximal
flow of the system. The time horizon of the simulations is set to be T = 3000
and number of simulation N = 5000.
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Table 7: Distribution of times spent in state j for component i, i ∈ C, with
ordering {2-1-0}

Order State j Distribution

2 2 Expon(20)
1 1 Expon(10)
0 0 Expon(2)

Table 8: Distribution of times spent in state j for component i = 1, with
ordering {1-2-0}

Order State j Distribution

2 1 Expon(10)
1 2 Expon(20)
0 0 Expon(2)

The results presented in Tables (9) and (10) show the I(i,j)B1 (m) and I(i,j)B2 mea-
sures of component importance for the system. Recall that the two measures
depend only on the stationary distribution of the component states. Thus, the
asymptotic availabilities of the system hm, and the asymptotic mean state of
the system, ξ, for i ∈ C, j = 1, 2, m ∈ (0, 2], and hence the corresponding
importance measures are not affected by the ordering of the component states.
Therefore, the simulated measures apply to both cases, that is the case when
states of the components are assumed to transit from the top state (j = 2) to
failure state (j = 0), and the case where the ordering of the states of component
i = 1 is changed.

Furthermore, we expect the component in series, i = 1, to have the highest im-
portance, and hence the highest absolute values of I(i,j)B1 (m) and I(i,j)B2 measures
for all states j and system levels m. The simulated values show the symmetrical
property of the system, with approximately equal importance for component
pairs i = 2 and i = 6, i = 3 and i = 5, and where the bridge component i = 4
has the lowest importance. Thus, the simulated rates seem sensible. The rank
of the two measures is presented in Table (11).

The simulated values of the I(i)B measure, presented in Tables (12) and (13), show
that the ordering of the component state transitions affects the asymptotic Birn-
baum measure. In particular, the rank of component importance remains the
same, but the simulated probability for component i = 1 with changed order of
the state transitions is increased. Thus, the I(i)B measure is sensitive with respect
to ordering of the component states. Figure (5), corresponding to the result in
Tables (12), (13), illustrates the difference in I(i)B measure for component i = 1

(the red curve), with a visible upwards shift for the I(1)B measure corresponding



4 NUMERICAL STUDY OF IMPORTANCE MEASURES 27

Table 9: Bridge system with a series component - I(i,j)B1 (m) measure for compo-
nent i in state j at level m

i
m = 1 m = 2

j = 1 j = 2 j = 1 j = 2

1 0.0019 0.0019 -0.0174 0.0104
2 0.0002 0.0002 -0.0006 0.0013
3 0.0001 0.0001 -0.0002 0.0007
4 0.0000 0.0000 0.0000 0.0000
5 0.0001 0.0001 -0.0001 0.0007
6 0.0002 0.0002 -0.0006 0.0013

Table 10: Bridge system with a series component - I(i,j)B2 measure for component
i in state j

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 -0.0154 -0.0004 0.0000 0.0000 0.0000 -0.0004
j = 2 0.0124 0.0015 0.0008 0.0000 0.0008 0.0015

Table 11: Bridge system with a series component - the ranks of the component
importance measures corresponding to the results in Tables (9), (10)

Rank for m = 1, 2 and j = 1, 2

I
(i,j)
B1 (m) 1 > 2 ≈ 6 > 3 ≈ 5 > 4

I
(i,j)
B2 1 > 2 ≈ 6 > 3 ≈ 5 > 4

to the ordering {1-2-0}.

Table 12: Bridge system with a series component - I(i)B measure with ordering
{2-1-0} ∀i ∈ C

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

I
(i)
B 0.9234 0.1932 0.1138 0.0060 0.1124 0.1892
Ī
(i)
B 0.9267 0.1879 0.1093 0.0072 0.1094 0.1881
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Table 13: Bridge system with a series component - I(i)B measure with ordering
{1-2-0} for i = 1

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

I
(i)
B 0.9566 0.1936 0.1158 0.0056 0.1032 0.1832
Ī
(i)
B 0.9574 0.1874 0.1095 0.0071 0.1093 0.1875

Figure 5: Bridge system with a series component - I(i)B measures - ordering
{2-1-0} ∀i ∈ C to the left, ordering {1-2-0} for i = 1 to the right

To see why this happen, we will examine how the Birnbaum measure of im-
portance is calculated for component i = 1 for each case of the ordering of
component states. Denote Y (t) as flow through a bridge system at time t, that
is the bridge module in Figure (4) consisting of components i = 2, 3, 4, 5, 6. Ob-
serve that the variable Y (t) takes all values in the set SY = {0, 1, 2, 3, 4}. Thus,
we now consider a simple series system with component state variables X1(t)
and Y (t) at time t. Recall the definition of the Birnbaum importance measure
as the probability that component i is critical at time t, i.e probability that a
state change of component i at time t implies a system state change at time t
as well:

I
(i)
B (t) = P [φ(X+

i (t),X(t)) 6= φ(X(t))].

First, observe that state of a series system of two components, denoted from now
by φ(X(t)) = φ(X1(t), Y (t)), can be obtained by the following combinations of
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component states:

φ(0, 0) = φ(1, 0) = φ(2, 0) = φ(0, 1) = φ(0, 2) = φ(0, 3) = φ(0, 4) = 0,

φ(1, 1) = φ(2, 1) = φ(1, 2) = φ(1, 3) = φ(1, 4) = 1,

φ(2, 2) = φ(2, 3) = φ(2, 4) = 2.

Hence, Sφ = {0, 1, 2} are the possible states of the system. Furthermore, observe
that by the definition of upcoming state of component i at time t, given by (15),
we have for the {2-1-0} ordering of component state transitions:

If Xi(t) = 2, then X+
i (t) = 1,

If Xi(t) = 1, then X+
i (t) = 0,

If Xi(t) = 0, then X+
i (t) = 2.

For the {1-2-0} ordering of component state transitions we have:

If Xi(t) = 1, then X+
i (t) = 2,

If Xi(t) = 2, then X+
i (t) = 0,

If Xi(t) = 0, then X+
i (t) = 1.

Furthermore, observe that the Birnbaum measure of component importance can
be decomposed by conditioning on the state j of component i at time t:

P
[
φ(X+

i (t),X(t)) 6= φ(X(t))
]

=

=
∑
j∈Si

P
[
φ(X+

i (t),X(t)) 6= φ(X(t)) | Xi(t) = j
]
· P
[
Xi(t) = j

]
. (31)

By conditioning on the state y ∈ SY = {0, 1, 2, 3, 4} of the flow of the bridge
module, we obtain:

P
[
φ(X+

i (t),X(t)) 6= φ(X(t)) | Xi(t) = j
]

=

=
∑
y∈SY

P
[
φ(X+

i (t),X(t)) 6= φ(X(t)) | Xi(t) = j, Y (t) = y
]
· P
[
Y (t) = y

]
.

(32)

First, we will see how the Birnbaum importance measure is calculated for com-
ponent i = 1 when the component states transitions follow the {2-1-0} ordering.
For X1(t) = 2 and Y (t) = 2 we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2, Y (t) = 2)] =

= P [φ(1, 2) 6= φ(2, 2) | X1(t) = 2, Y (t) = 2)] = 1.

Observe that this holds for all Y (t) ≥ 2, and we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2, Y (t) ≥ 2)] = 1.

Hence, for component i = 1 in state j = 2 and the bridge module Y in state
y ≥ 2, the change of the state of component i = 1 will cause change of the system
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state as well with probability one. In particular, 1 = φ(1, 2) 6= φ(2, 2) = 2.
Similarly, for X1(t) = 2, and Y (t) = 1 and Y (t) = 0 respectively we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2, Y (t) = 1] = 0,

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2, Y (t) = 0] = 0.

That is, for component i = 1 in state j = 2 and states of the bridge module
y = 0, 1, the change of state of component i = 1 will not generate system state
change. Thus, by the formula (32) we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2] =

= 1 · P [Y (t) ≥ 2] + 0 · P [Y (t) = 1] + 0 · P [Y (t) = 0] =

= P [Y (t) ≥ 2].

Furthermore, for X1(t) = 1 and y ∈ SY we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 1, Y (t) = y] =

{
1, if Y (t) ≥ 1

0, otherwise

Hence, by the formula (32) we get:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 1] = P [Y (t) ≥ 1].

Similarly, for X1(t) = 0 and y ∈ SY we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 1, Y (t) = y] =

{
1, if Y (t) ≥ 1

0, otherwise

Hence, by the formula (32) we get:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 0] = P [Y (t) ≥ 1].

Finally, by combining the conditional probabilities defined in the expression
(31), we obtain the following probability that component i = 1 with component
state ordering {2-1-0} is critical at time t:

I
(i)
B (t) = P [φ(X+

1 (t), Y (t)) 6= φ(X1(t), Y (t))] =

= q12(t) · P [Y (t) ≥ 2] + q11(t) · P [Y (t) ≥ 1] + q10(t) · P [Y (t) ≥ 1] =

=
(
q12(t) + q11(t)

)
· P [Y (t) ≥ 2] + q11(t) · P [Y (t) = 1] + q10(t) · P [Y (t) ≥ 1].

(33)

where qij(t) = P [Xi(t) = j], j ∈ Si.

Similarly, the Birnbaum importance measure is calculated for component i = 1
when the component states transitions follow the {1-2-0} ordering. For X1(t) =
2 and y ∈ SY we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2, Y (t) = y] =

{
1, if Y (t) ≥ 1

0, otherwise
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Hence, by the formula (32) we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 2] = P [Y (t) ≥ 1].

Furthermore, for X1(t) = 1 and y ∈ SY we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 1, Y (t) = y] =

{
1, if Y (t) ≥ 2

0, otherwise

Hence, by the formula (32) we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 1] = P [Y (t) ≥ 2].

Furthermore, for X1(t) = 0 and y ∈ SY we have:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 0, Y (t) = y] =

{
1, if Y (t) ≥ 1

0, otherwise

Hence, by the formula (32) we get:

P [φ(X+
1 (t), Y (t)) 6= φ(X1(t), Y (t)) | X1(t) = 0] = P [Y (t) ≥ 1].

Finally, by combining the conditional probabilities defined in the expression
(31), we obtain the following probability that component i = 1 with component
state ordering {1-2-0} is critical at time t:

I
(i)
B (t) = P [φ(X+

1 (t), Y (t)) 6= φ(X1(t), Y (t))] =

= q12(t) · P [Y (t) ≥ 1] + q11(t) · P [Y (t) ≥ 2] + q10(t) · P [Y (t) ≥ 1] =

=
(
q12(t) + q11(t)

)
· P [Y (t) ≥ 2] + q12(t) · P [Y (t) = 1] + q10(t) · P [Y (t) ≥ 1].

(34)

We can now compare the two derived expressions for Birnbaum importance
measure of component i = 1 at time t, shown by (33) and (34) for the the
ordering {2-1-0} and {1-2-0}, respectively. In particular, we omit terms that are
equal for both expressions, and recognize one particular term in each expression
differentiating the two measures: q11(t) ·P [Y (t) = 1] for the {2-1-0} ordering of
states of component i = 1, and q12(t) · P [Y (t) = 1] for the {1-2-0} ordering of
states of component i = 1. Recall that the stationary probabilities of waiting
times in state j are given by qi2 ≈ 0.63 > qi1 ≈ 0.31 > qi0 ≈ 0.06. Hence,
when t → ∞, the calculated asymptotic Birnbaum measure of importance of
component i = 1 having the {1-2-0} ordering of component states is greater
that the importance measure computed for the {2-1-0} ordering.

4.4 Direction of the component flow
The purpose of this section is to investigate sensitivity of the three importance
measures with respect to direction of the component flow. In particular, we will
analyze a more complex system with two bridge components, denoted by i = 3
and i = 5. Subsection (4.4.1) examines how the importance of the components
changes when the direction of the flow of the two bridge components varies. In
total four different cases, denoted by Cases 1.1-1.4, are analyzed and compared.
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Figures (6), (9), (12) and (15) illustrate the four systems we will investigate.
Furthermore, subsection (4.4.2) takes a closer look at a special case of the sys-
tem, where the component importance behavior is analyzed when component
i = 4 is assumed to always be in its top level state.

For all the systems analyzed in this section assume the following distribution of
times spent in state j ∈ Si of component i ∈ C = {1, 2, 3, 4, 5, 6, 7}, presented
in Table (14). The time horizon of the simulations is set to be T = 3000 and
number of simulations N = 5000.

Table 14: Distribution of times spent in state j ∈ Si for component i, i ∈ C

Order State j Distribution

2 2 Expon(20)
1 1 Expon(10)
0 0 Expon(1)

We regard the system as a flow network and let the system state be the amount
of the flow that can be transported through the network. In order to de-
termine this we start out by identifying the binary minimal cut sets of the
network, Kj , j = 1, .., k., that is the minimal sets of components the re-
moval of which will break the connection between the endpoints of the net-
work. For example, for the first case shown in Figure (6), the minimal cut sets
are K1 = {1, 2},K2 = {2, 4},K3 = {4, 7} and K4 = {6, 7}, K5 = {1, 3, 7},
K6 = {2, 5, 6} such that for the top level state j = 2 we have:∑

i∈Kj

Xi(t) = 4 for j = 1, 2, 3, 4

∑
i∈Kj

Xi(t) = 6 for j = 5, 6.

We then apply the well-known max-flow-min-cut theorem, as described in sec-
tion (2.3):

φ(X(t)) = min
1≤j≤k

∑
i∈Kj

Xi(t) = 4.

We can easily verify this for the three other cases as well. Hence, for the di-
rected network flow systems presented in this section, by considering all possible
combinations of component states, it is easy to see that φ takes all values in the
set Sφ = {0, 1, 2, 3, 4}, with M = 4 being the maximal flow of the system.
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4.4.1 Direction of component flow in complex system with bridge
components

Figure 6: Complex system with bridge components - Case 1.1

Figure (6) shows the first analyzed system (Case 1.1). Tables (15), (16)
and (17) display the results from the simulations for the three measures. First,
observe that the resulting values can be both positive or negative. Recall the
interpretation of the I(i,j)B1 (m) importance measure as the change rate of the
asymptotic system availability at level m with respect to a small change in
expected waiting time in state j of component i. E.g, the simulated value
I
(7,1)
B1 (2) = −0.00053 represents the change in the asymptotic system availabil-
ity at level m = 2 as a result of a small change, ∆, in expected waiting time
in state j = 1 of component i = 7. Hence, a small increase in µ71, ∆ > 0, will
result in reduction in asymptotic system availability at level m = 2. Similarly,
for the top level state j = 2, the measure I(7,2)B1 (2) = 0.00111 > 0 reflects that
the increased mean waiting time will improve the asymptotic system availabil-
ity at level m = 2. Finally, I(i,j)B2 importance measure can be interpreted as the
change rate of the asymptotic mean state of the system with respect to a small
change in expected waiting time in state j of component i.

Table 15: Complex system - Case 1.1 - I(i,j)B1 (m) measure for component i in
state j at level m

i
m = 1 m = 2 m = 3 m = 4

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

1 0.00003 0.00003 -0.00010 0.00056 -0.00313 0.00249 -0.00363 0.00200
2 0.00007 0.00007 -0.00054 0.00112 -0.00732 0.00458 -0.00363 0.00200
3 0.00000 0.00000 0.00000 0.00002 0.00003 0.00003 0.00001 0.00000
4 0.00006 0.00006 -0.00030 0.00097 -0.00582 0.00383 -0.00364 0.00200
5 0.00000 0.00000 0.00001 0.00001 0.00003 0.00003 -0.00001 0.00000
6 0.00003 0.00003 -0.00010 0.00056 -0.00313 0.00249 -0.00364 0.00200
7 0.00007 0.00007 -0.00053 0.00111 -0.00731 0.00458 -0.00364 0.00200
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Table 16: Complex system - Case 1.1 - I(i,j)B2 measure for component i in state j

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 -0.00683 -0.01142 0.00004 -0.00969 0.00002 -0.00684 -0.01142
j = 2 0.00508 0.00776 0.00004 0.00687 0.00005 0.00508 0.00776

Table 17: Complex system - Case 1.1 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.5222 0.7046 0.0112 0.6738 0.0158 0.5258 0.7066
Ī
(i)
B 0.5280 0.7084 0.0141 0.6690 0.0141 0.5281 0.7086

Figures (7) and (8) show the the simulated asymptotic Birnbaum importance
measure, I(i)B . Note the different scale of the probabilities shown on the y-axis in
both figures. The values for the simulated I(i)B measure reported in Table (17)
correspond to the component criticality probabilities at time T

′
= 30000. The

probabilities fluctuate as a result of random variation in waiting times in each
state. Therefore, Ī(i)B , mean value of the simulated measure, might be useful
when the difference between the simulated values of I(i)B for different compo-
nents is small. Ī(i)B is shown in figure (8) (the smooth lines) among with I(i)B .

Figure 7: Complex system - Case 1.1 - I(i)B measure of components i = 1, 2, 4, 6, 7
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Figure 8: Complex system - Case 1.1 - I(i)B measure of components i = 3, 5

By considering the absolute values of the simulated change rates, conclusions
might be drawn about the impact on system availability or mean state of the
system for different values of state j and level m, and hence the importance of
each component in each case. Tables (18) and (19) show the resulting ranks
of the measures for the components i ∈ C. Furthermore, observe that for the
I
(i,j)
B1 (m) measure, the overall rank of component importance may vary for dif-
ferent values of level m, that is the differences in component importance are not
equally large for certain system levels. For example, for system level m = 4, the
component importance is approximately equal for components i = 1, 2, 7, 4, 6.
In particular, the I(i,j)B1 (m) importance measure provides more detailed informa-
tion about component importance for different component states j and system
levels m. Such information may be useful when different ways of improving the
system are considered, e.g. when costs of component improvements, resulting in
increased expected waiting times in state j, vary for different components and
component states. Thus, the rates may be used to support the selection of the
component the analyst should focus on.

In general, the ranks of component importance lead to equivalent conclusions
about component importance for the three measures. The asymptotic Birn-
baum measure, I(i)B provides a more general information about the component
importance for the system reliability. Finally, observe that the two bridge com-
ponents i = 3 and i = 5 form a directed cycle with component i = 4. Thus, the
probabilities that the two bridge components are critical for the system are ap-
proximately equal, and the simulated values of I(i)B are relatively low, compared
to the other components in the system.
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Table 18: Complex system - Case 1.1 - The ranks of the I(i,j)B1 (m) measure at
system level m and state j = 1, 2, corresponding to the results in Table (15)

Rank state j = 1, 2

m = 1 2 ≈ 7 > 4 > 1 ≈ 6 > 3 ≈ 5

m = 2 2 ≈ 7 > 4 > 1 ≈ 6 > 3 ≈ 5

m = 3 2 ≈ 7 > 4 > 1 ≈ 6 > 3 ≈ 5

m = 4 2 ≈ 7 ≈ 4 ≈ 1 ≈ 6 > 3 ≈ 5

Table 19: Complex system - Case 1.1 - The ranks of the component importance
measures corresponding to the results in Tables (16) and (17)

Rank state j = 1, 2

I
(i,j)
B2 2 ≈ 7 > 4 > 1 ≈ 6 > 3 ≈ 5

I
(i)
B 2 ≈ 7 > 4 > 1 ≈ 6 > 3 ≈ 5

Consider now the second analyzed system (Case 1.2), shown by Figure (9). In
particular observe that the direction of the flow of component i = 3 is changed.
Tables (20), (21) and (22) display the results from the simulations for the three
importance measures.

Figure 9: Complex system with bridge components - Case 1.2

Figures (10) and (11) show the the simulated asymptotic Birnbaum importance
measure, I(i)B . Note the different scale of the probabilities shown on the y-axis
in both figures. The values for the simulated I

(i)
B measure reported in Table

(22) correspond to the component criticality probabilities at time T
′

= 30000.
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Table 20: Complex system - Case 1.2 - I(i,j)B1 (m) measure for component i in
state j at level m

i
m = 1 m = 2 m = 3 m = 4

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

1 0.00006 0.00006 -0.00038 0.00102 -0.00630 0.00409 -0.00363 0.00200
2 0.00003 0.00003 -0.00012 0.00058 -0.00367 0.00278 -0.00364 0.00200
3 0.00000 0.00000 0.00000 0.00002 0.00003 0.00005 0.00000 0.00000
4 0.00003 0.00003 0.00003 0.00048 -0.00225 0.00207 -0.00364 0.00200
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00003 0.00003 0.00003 0.00046 -0.00217 0.00203 -0.00364 0.00200
7 0.00010 0.00010 -0.00103 0.00158 -0.01049 0.00619 -0.00364 0.00200

Table 21: Complex system - Case 1.2 - I(i,j)B2 measure for component i in state j

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 -0.01024 -0.00740 0.00003 -0.00583 0.00000 -0.00574 -0.01506
j = 2 0.00717 0.00540 0.00007 0.00459 0.00000 0.00452 0.00987

Table 22: Complex system - Case 1.2 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.6922 0.5520 0.0196 0.5112 0.0006 0.5000 0.8392
Ī
(i)
B 0.6859 0.5455 0.0206 0.5117 0.0005 0.5057 0.8460

Tables (23) and (24) show the resulting ranks of the measures for the compo-
nents i ∈ C. In general, the ranks of component importance lead to equivalent
conclusions about component importance for the three measures. Observe that
the change in the direction of the flow of component i = 3 influence the rank
of all the remaining components in the system. In particular, the importance
of the two bridge components i = 3 and i = 5 with respect to each other is
changed, such that 3 > 5.
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Figure 10: Complex system - Case 1.2 - I(i)B measure of components i =
1, 2, 4, 6, 7

Figure 11: Complex system - Case 1.2 - I(i)B measure of components i = 3, 5



4 NUMERICAL STUDY OF IMPORTANCE MEASURES 39

Table 23: Complex system - Case 1.2 - The ranks of the I(i,j)B1 (m) measure at
system level m and state j = 1, 2, corresponding to the results in Table (20)

Rank state j = 1, 2

m = 1 7 > 1 > 2 ≈ 4 ≈ 6 > 3 ≈ 5

m = 2 7 > 1 > 2 > 4 ≈ 6 > 3 ≈ 5

m = 3 7 > 1 > 2 > 4 > 6 > 3 > 5

m = 4 7 ≈ 1 ≈ 2 ≈ 4 ≈ 6 > 3 ≈ 5

Table 24: Complex system - Case 1.2 - The ranks of the component importance
measures corresponding to the results in Tables 21) and 22)

Rank state j = 1, 2

I
(i,j)
B2 7 > 1 > 2 > 4 > 6 > 3 > 5

I
(i)
B 7 > 1 > 2 > 4 > 6 > 3 > 5

Consider now the second analyzed system (Case 1.3), shown by Figure (12). In
particular observe that the direction of the flow of component i = 5 is changed,
compared with the preceding example. Note also that the directions of the flow
of components i = 3 and i = 5 are the opposite to the system presented in Case
1.1. Tables (25), (26) and (27) display the results from the simulations for the
three importance measures.

Figure 12: Complex system with bridge components - Case 1.3

Figures (13) and (14) show the the simulated asymptotic Birnbaum importance
measure, I(i)B . Note the different scale of the probabilities shown on the y-axis
in both figures. The values for the simulated I

(i)
B measure reported in Table

(27) correspond to the component criticality probabilities at time T
′

= 30000.

Tables (28) and (29) show the resulting ranks of the measures for the compo-
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Table 25: Complex system - Case 1.3 - I(i,j)B1 (m) measure for component i in
state j at level m

i
m = 1 m = 2 m = 3 m = 4

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

1 0.00003 0.00003 -0.00031 0.00069 -0.00490 0.00355 -0.00539 0.00297
2 0.00004 0.00004 -0.00033 0.00072 -0.00522 0.00371 -0.00541 0.00297
3 0.00000 0.00000 0.00001 0.00004 0.00001 0.00015 -0.00002 0.00010
4 0.00000 0.00000 0.00002 0.00004 -0.00003 0.00024 -0.00013 0.00022
5 0.00000 0.00000 0.00000 0.00004 0.00000 0.00016 -0.00002 0.00010
6 0.00004 0.00003 -0.00030 0.00069 -0.00491 0.00356 -0.00541 0.00297
7 0.00004 0.00004 -0.00033 0.00072 -0.00524 0.00372 -0.00539 0.00296

Table 26: Complex system - Case 1.3 - I(i,j)B2 measure for component i in state j

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 -0.01056 -0.01091 0.00000 -0.00014 -0.00001 -0.01058 -0.01092
j = 2 0.00724 0.00744 0.00029 0.00050 0.00030 0.00725 0.00744

Table 27: Complex system - Case 1.3 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.6786 0.6904 0.0718 0.1054 0.0730 0.6666 0.6764
Ī
(i)
B 0.6710 0.6829 0.0703 0.1053 0.0705 0.6717 0.6835

Table 28: Complex system - Case 1.3 - The ranks of the I(i,j)B1 (m) measure at
system level m and state j = 1, 2, corresponding to the results in Table (25)

Rank state j = 1, 2

m = 1 2 ≈ 7 ≈ 1 ≈ 6 > 4 ≈ 3 ≈ 5

m = 2 2 ≈ 7 > 1 ≈ 6 > 4 ≈ 3 ≈ 5

m = 3 2 ≈ 7 > 1 ≈ 6 > 4 > 3 ≈ 5

m = 4 2 ≈ 7 ≈ 1 ≈ 6 > 4 > 3 ≈ 5

nents i ∈ C. In general, the ranks of component importance lead to equivalent
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Figure 13: Complex system - Case 1.3 - I(i)B measure of components i = 1, 2, 6, 7

Figure 14: Complex system - Case 1.3 - I(i)B measure of components i = 3, 4, 5

conclusions about component importance for the three measures. Observe that
the change in the direction of the flow of component i = 5 affects the rank of all
the remaining components in the system. In particular, the two bridge compo-
nents i = 3 and i = 5 together with component i = 4 form a parallell structure
with respect to each other. Hence, compared with Case 1.1 with the opposite
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Table 29: Complex system - Case 1.3 - The ranks of the component importance
measures corresponding to the results in Tables (26) and (27)

Rank state j = 1, 2

I
(i,j)
B2 2 ≈ 7 > 1 ≈ 6 > 4 > 3 ≈ 5

I
(i)
B 2 ≈ 7 > 1 ≈ 6 > 4 > 3 ≈ 5

direction of the flow of the two bridge components, we have that component
i = 4 becomes less important than the component pair i = 1, 6. Also, similarly
as for the first case we have 3 ≈ 5.

Consider now the last analyzed system (Case 1.4), shown by Figure (15). In
particular observe that the direction of the flow of component i = 3 is changed,
compared with the preceding example. Note also that the directions of the flow
of components i = 3 and i = 5 are the opposite to the system presented in Case
1.2. Tables (30), (31) and (32) display the results from the simulations for the
three importance measures.

Figure 15: Complex system with bridge components - Case 1.4

Figures (16) and (17) show the the simulated asymptotic Birnbaum importance
measure, I(i)B . Note the different scale of the probabilities shown on the y-axis
in both figures. The values for the simulated I

(i)
B measure reported in Table

(32) correspond to the component criticality probabilities at time T
′

= 30000.

Tables (28) and (29) show the resulting ranks of the measures for the compo-
nents i ∈ C. In general, the ranks of component importance lead to equivalent
conclusions about component importance for the three measures. Observe that
the change in the direction of the flow of component i = 3 again affects the rank
of all the remaining components in the system. In particular, the importance
of the two bridge components i = 3 and i = 5 with respect to each other is
changed. Hence, compared with Case 1.2 with the opposite direction of the flow
of the two bridge components, we have that 5 > 3.
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Table 30: Complex system - Case 1.4 - I(i,j)B1 (m) measure for component i in
state j at level m

i
m = 1 m = 2 m = 3 m = 4

j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

1 0.00003 0.00003 0-00003 0.00047 -0.00218 0.00204 -0.00364 0.00200
2 0.00010 0.00010 -0.00102 0.00157 -0.01048 0.00618 -0.00362 0.00199
3 0.00000 0.00000 0.00000 0.00000 -0.00002 0.00001 -0.00001 0.00001
4 0.00003 0.00003 0.00003 0.00048 -0.00226 0.00208 -0.00363 0.00200
5 0.00000 0.00000 0.00001 0.00002 0.00005 0.00004 0.00001 0.00000
6 0.00006 0.00006 -0.00039 0.00102 -0.00629 0.00409 -0.00364 0.00200
7 0.00003 0.00003 -0.00012 0.00058 -0.00365 0.00277 -0.00363 0.00200

Table 31: Complex system - Case 1.4 - I(i,j)B2 measure for component i in state j

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 -0.00576 -0.01502 -0.00004 -0.00584 0.00007 -0.01025 -0.00737
j = 2 0.00454 0.00984 0.00002 0.00459 0.00006 0.00717 0.00538

Table 32: Complex system - Case 1.4 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.5066 0.8492 0.0006 0.5138 0.0208 0.6876 0.5400
Ī
(i)
B 0.5058 0.8460 0.0005 0.5117 0.0205 0.6856 0.5456

Table 33: Complex system - Case 1.4 - The ranks of the I(i,j)B1 (m) measure at
system level m and state j = 1, 2, corresponding to the results in Table (30)

Rank state j = 1, 2

m = 1 2 > 6 > 7 ≈ 4 ≈ 1 > 5 ≈ 3

m = 2 2 > 6 > 7 > 4 ≈ 1 > 5 > 3

m = 3 2 > 6 > 7 > 4 > 1 > 5 > 3

m = 4 2 ≈ 6 ≈ 7 ≈ 4 ≈ 1 > 5 ≈ 3
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Figure 16: Complex system - Case 1.4 - I(i)B measure of components i =
1, 2, 4, 6, 7

Figure 17: Complex system - Case 1.4 - I(i)B measure of components i = 3, 5

Hence, the three importance measures, asymptotic Birnbaum measure I(i)B , as
well as the two alternative importance measures I(i,j)B1 (m) and I

(i,j)
B2 , provide

equivalent conclusions about rank of component importance. However, note
that the I(i,j)B1 (m) measure does not imply significant differences in component
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Table 34: Complex system - Case 1.4 - The ranks of the component importance
measures corresponding to the results in Tables (31) and (32)

Rank state j = 1, 2

I
(i,j)
B2 2 > 6 > 7 > 4 > 1 > 5 > 3

I
(i)
B 2 > 6 > 7 > 4 > 1 > 5 > 3

importance for all system levels m. In particular, for all the examined cases the
ranking of I(i,j)B1 (m) is identical to the rank of the I(i,j)B2 and I(i)B measures only at
level m = 3. Summarizing the discussion we may simplify this by saying that in
general, the three measures of component importance in a directed network flow
system are sensitive with respect to the choice of direction of the component
flow.

4.4.2 Further analysis of importance of the bridge components

For the four different cases of the system examined in the preceding section,
we have seen that the importance of the bridge components i = 3, 5 vary for
different directions of the flow of these components. In particular, the state of
component i = 4 seems to have a significant effect on the importance of the
bridge components. Thus, we will now examine a special case of the complex
system shown in the preceding subsection, where the influence of component
i = 4 is neutralized. For all the four cases of different flow directions of compo-
nents i = 3, 5, assume that component i = 4 is always in its perfect functioning
state, j = 2, that is X4(t) = 2, ∀ t ∈ [0, T ]. Hence, the system becomes a
bridge system with two bridge components i = 3 and i = 5, and observe that
the components are in parallell or anti-parallell, depending on the direction of
the flow of the components with respect to each other. We will investigate how
this assumption affects the ranking of the component importance for the four
different cases equivalent to the cases analyzed in the preceding subsection. In
particular, we will see how the importance of the bridge components is affected.

Consider now a special case of the system shown in Figure (6), equivalent to
the Case 1.1 with the additional assumption about state of component i = 4.
Table (35) shows the simulated asymptotic Birnbaum measures for the system.
The measures for this case, denoted by Case 2.1, are then presented in Figures
(18) and (19), and the resulting rank of the component importance is shown in
Table (36).

Hence, the analyzed system is symmetrical, reflected by the approximately iden-
tical values of the I(i)B importance measure for components i = 1, 2, 6, 7. Fur-
thermore, the two bridge components in anti-parallell can be considered as a one
bridge component, with possible flow in both directions. Hence, the simulated
probabilities for the two bridge components i = 3, 5 are approximately equal as
well, similarly to the Case 1.1.
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Table 35: Complex system - Case 2.1 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.6966 0.6978 0.0190 0.5118 0.0176 0.6748 0.6726
Ī
(i)
B 0.6849 0.6849 0.0206 0.5137 0.0204 0.6852 0.6852

Figure 18: Complex system - Case 2.1 - I(i)B measure of components i =
1, 2, 4, 6, 7

Table 36: Complex system - Case 2.1 - The rank of the I(i)B measure correspond-
ing to the results in Table (35)

Rank

I
(i)
B 1 ≈ 2 ≈ 6 ≈ 7 > 4 > 3 ≈ 5

Consider now a special case of the system shown in Figure (9), equivalent to
the Case 1.2 with the additional assumption about state of component i = 4.
Again, the direction of the flow of the component i = 3 is changed, compared
to the previous example. Table (37) shows the simulated asymptotic Birnbaum
measures for the system. The measures for this case, denoted by Case 2.2, are
then presented in Figures (20) and (21), and the resulting rank of the compo-
nent importance is shown in Table (38).



4 NUMERICAL STUDY OF IMPORTANCE MEASURES 47

Figure 19: Complex system - Case 2.1 - I(i)B measure of components i = 3, 5

Table 37: Complex system - Case 2.2 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.8214 0.6378 0.0006 0.3180 0.0002 0.6238 0.8104
Ī
(i)
B 0.8124 0.6280 0.0007 0.3221 0.0007 0.6286 0.8129

Table 38: Complex system - Case 2.2 - The rank of the I(i)B measure correspond-
ing to the results in Table (37)

Rank

I
(i)
B 1 ≈ 7 > 2 ≈ 6 > 4 > 3 ≈ 5

The analyzed system is symmetrical, reflected by the approximately identical
values of the importance measures for component pairs i = 1, 7 and i = 2, 6.
Observe that the two bridge components in parallell, with identical direction of
the flow, can be considered as a one bridge component. The simulated measures
of components i = 3, 5 are relatively low compared to the remaining components
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Figure 20: Complex system - Case 2.2 - I(i)B measure of components i =
1, 2, 4, 6, 7

Figure 21: Complex system - Case 2.2 - I(i)B measure of components i = 3, 5

in the system, and approximately equal for the two bridge components. Hence,
components i = 3, 5 are nearly irrelevant for the reliability of the system when
component i = 4 is assumed to be functioning at its top level state for all
t ∈ [0, T ].
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Consider now a special case of the system shown in Figure (12), equivalent
to the Case 1.3 with the additional assumption about state of component i = 4.
Again, the direction of the flow of the component i = 5 is changed, compared
to the previous example. Table (39) shows the simulated asymptotic Birnbaum
measures for the system. The measures for this case, denoted by Case 2.3, are
then presented in Figures (22) and (23), and the resulting rank of the compo-
nent importance is shown in Table (40).

Table 39: Complex system - Case 2.3 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.6782 0.6810 0.0220 0.0190 0.0218 0.6796 0.6770
Ī
(i)
B 0.6850 0.6851 0.0205 0.0202 0.0206 0.6849 0.6849

Figure 22: Complex system - Case 2.3 - I(i)B measure of components i = 1, 2, 6, 7

Similarly as for the Case 2.1, the two bridge components in anti-parallell can
be considered as a one bridge component, with possible flow in both directions.
Hence, the analyzed system is symmetrical, reflected by the approximately iden-
tical values of the I(i)B importance measure for components i = 1, 2, 6, 7. Fur-
thermore, the simulated probabilities for the two bridge components i = 3, 5 are
approximately equal as well, similarly to the Case 1.3.
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Figure 23: Complex system - Case 2.3 - I(i)B measure of components i = 3, 4, 5

Table 40: Complex system - Case 2.3 - The rank of the I(i)B measure correspond-
ing to the results in Table (39)

Rank

I
(i)
B 1 ≈ 2 ≈ 6 ≈ 7 > 3 ≈ 5 > 4

Finally, consider a special case of the system shown in Figure (15), equiva-
lent to the Case 1.4 with the additional assumption about state of component
i = 4. Again, the direction of the flow of the component i = 3 is changed,
compared to the previous example. Table (41) shows the simulated asymptotic
Birnbaum measures for the system. The measures for this case, denoted by
Case 2.4, are then presented in Figures (24) and (25), and the resulting rank of
the component importance is shown in Table (42).

Table 41: Complex system - Case 2.4 - I(i)B measure for component i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

I
(i)
B 0.6352 0.8176 0.0008 0.3256 0.0006 0.8110 0.6274
Ī
(i)
B 0.6284 0.8129 0.0007 0.3221 0.0007 0.8126 0.6287
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Figure 24: Complex system - Case 2.4 - I(i)B measure of components i =
1, 2, 4, 6, 7

Figure 25: Complex system - Case 2.4 - I(i)B measure of components i = 3, 5

The analyzed system is symmetrical, reflected by the approximately identical
values of the importance measures for component pairs i = 2, 6 and i = 1, 7.
Observe that the two bridge components in parallell, with identical direction of
the flow, can be considered as a one bridge component. The simulated measures
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Table 42: Complex system - Case 2.4 - The rank of the I(i)B measure correspond-
ing to the results in Table (41)

Rank

I
(i)
B 2 ≈ 6 > 1 ≈ 7 > 4 > 3 ≈ 5

of components i = 3, 5 are relatively low compared to the remaining components
in the system, and approximately equal for the two bridge components. Hence,
components i = 3, 5 are nearly irrelevant for the reliability of the system when
component i = 4 is assumed to be functioning at its top level state for all
t ∈ [0, T ].

Hence, by adding the assumption about the state of component i = 4, the
importance of the two bridge components i = 3, 5 becomes approximately equal
for the system reliability in the four examined cases. In particular, this implies
that the state of component i = 4 does indeed affect importance of the two
bridge components. Hence, when the effect of component i = 4 is neutralized,
the direction of the flow for the two bridge components does not affect the rank
of the two components with respect to each other. However, the overall rank of
component importance, i.e the rank of the remaining components i = 1, 2, 4, 6, 7
changes as the assumption on component i = 4 is added, which further high-
lights the sensitivity of the I(i)B measure with respect to the direction of the
component flow.

4.5 Concluding remarks
In this study we have introduced a new and general approach to importance
measures applied to multistate systems, with a special focus on directed network
flow systems. In particular, we have introduced a generalization of the Birn-
baum importance measure to multistate systems, I(i)B , defined as an asymptotic
probability that the component is critical. Furthermore, two new importance
measures for multistate systems I(i,j)B1 (m) and I(i,j)B2 have been suggested. The
two measures provide a further extension of the Birnbaum importance measure
for multistate systems, expressed as partial derivatives of the asymptotic system
availability and mean state of the system, respectively. Thus, the two measures
can be interpreted as a change rate of the asymptotic system availability at
level m or mean state of the system with respect to a small change in expected
waiting time in state j of component i.

It should be noted that no measure of importance can be expected to be uni-
versally best irrespective of usage purpose, and comparing different measures is
often of interest. In particular, the I(i,j)B1 (m) and I(i,j)B2 measures provides more
detailed information about component importance. For the I(i,j)B1 (m) measure,
the importance of a component is calculated separately for each component
state and system level. It may happen that a component is very important at
one state, and less important, or even irrelevant, at another. The asymptotic



4 NUMERICAL STUDY OF IMPORTANCE MEASURES 53

Birnbaum measure provides a more unified measure of component criticality as
t→∞.

In in section (4) we have shown how discrete event simulations can be a very
useful tool in the study of repairable multistate systems. These methods are
particularly convenient in the study of advanced importance measures. Such
measures can be very complicated, and thus impossible to calculate analytically.
By using discrete event simulations, however, this can be done in a very natural
and intuitive way. Furthermore, the numerical examples presented in this sec-
tion highlight different properties of the three measures. In particular, we have
examined sensitivity of the measures with respect to scaling of expected waiting
times in component states, ordering of the component states and direction of
the component flow. We have seen an example of how the I(i)B measure can be
derived analytically, and why the measure is affected by ordering of component
states, while the two latter measures do not have this property. Furthermore, we
have concluded that the I(i,j)B1 (m) and I(i,j)B2 are sensitive with respect to scaling
of the mean waiting times of component states, and proposed scaled versions
of the measures in order to avoid this problem. The last numerical example
provides a more general study of the usage and calculation of the importance
measures, applied to a specific case of flow system, where the direction of the
component flow varies.



5 REFERENCES 54

5 References
[1] Barlow RE. Proschan F. Importance of system components and fault tree

events. Stochastic Processes and their Applications, 3:153–173, 1975.

[2] Birnbaum ZW. On the importance of different components in a multicom-
ponent system. In: Krishnaiah PR, Ed. Multivariate analysis - II, pages
581–592, 1969.

[3] Ford LR. Fulkerson DR. Maximal flow through a network. Canadian J
Math, 8:399–404, 1956.

[4] Hosseini S. Barker K. Ramirez-Marquez JE. A review of definitions and
measures of system resilience. Reliability Engineering and System Safety,
145:47–61, 2016.

[5] Huseby AB. Natvig B. Advanced discrete simulation methods applied to
repairable multistate systems. In: Bris R, Guedes Soares C, Martorell S,
Ed. Reliability, Risk and Safety. Theory and Applications, 1:659–666, 2010.
London, CRC Press.

[6] Huseby AB. Natvig B. Discrete event simulation methods applied to ad-
vanced importance measures of repairable components in multistate net-
work flow systems. Reliability Engineering and System Safety, 119:186–198,
2012.

[7] Huseby AB. Dahl KR. Risk- and Reliability Analysis with applications.
Compendium in STK3405. University of Oslo. 2018.

[8] Natvig B. Eide KA. Gåsemyr J. Huseby AB. Isaksen SL. Simulation based
analysis and an application to an offshore oil and gas production system
of the Natvig measures of component importance in repairable systems.
Reliability Engineering and System Safety, 94:1629–1638, 2009.

[9] Natvig B. Gåsemyr J. New results on the Barlow-Proschan and Natvig mea-
sures of component importance in nonrepairable and repairable systems.
Methodology and Computing in Applied Probability, 11:603–620, 2009.

[10] Natvig B. Multistate Systems Reliability Theory with Applications. New
York: Wiley, 2011.

[11] Natvig B. Measures of component importance in nonrepairable and re-
pairable multistate strongly coherent systems. Methodology and Computing
in Applied Probability, 13(3):523–547, 2011.

[12] Natvig B. Huseby AB. Reistadbakk MO. Measures of component impor-
tance in nonrepairable and repairable multistate systems - a numerical
study. Reliability Engineering and System Safety, 96:1680–1690, 2011.

[13] Ramirez-Marquez JE. Rocco CM. Gebre BA. Coit DW. Tortorella M. New
insights on multi-state component criticality and importance. Reliability
Engineering and System Safety, 91:894–904, 2006.



5 REFERENCES 55

[14] Ramirez-Marquez JE. Coit DW. Multi-state component criticality analysis
for reliability improvement in multi-state systems. Reliability Engineering
and System Safety, 92:1608–1619, 2007.

[15] Rocco CM. Moronta J. Ramirez-Marquez JE. Barker K. Effects of multi-
state links in network community detection. Reliability Engineering and
System Safety, 163:46–56, 2017.

[16] Si S. Levitin G. Dui H. Sun S. Component state-based integrated impor-
tance measure for multi-state systems. Reliability Engineering and System
Safety, 116:75–83, 2013.

[17] Wu S. Coolen F. A cost-based importance measure for system compo-
nents: An extension of the Birnbaum importance. European Journal of
Operational Research, 225:189–195, 2013.

[18] Wu S. Chen Y. Wu Q. Wang Z. Linking component importance to op-
timisation of preventive maintenance policy. Reliability Engineering and
System Safety, 146:26–32, 2016.

[19] Zio E. Podofillini L. Levitin G. Estimation of the importance measures of
multi-state elements by Monte Carlo simulation. Reliability Engineering
and System Safety, 86:191–204, 2004.

[20] Zio E. Marella M. Podofillini L. Importance measures-based prioritization
for improving the performance of multi-state systems: application to the
railway industry. Reliability Engineering and System Safety, 92:1303–1314,
2007.


	Introduction
	Binary and multistate monotone systems
	Binary monotone systems
	Multistate monotone systems
	Network flow systems
	Stationary probability distribution in multistate systems

	Measures of component importance
	Birnbaum importance measure
	Asymptotic availability of the system
	Asymptotic mean state of the system

	Numerical study of importance measures
	Discrete event simulation
	Pure jump processes
	Estimating availability, mean state and importance

	Scaling of mean waiting times of component states
	Ordering of component states
	Direction of the component flow
	Direction of component flow in complex system with bridge components
	Further analysis of importance of the bridge components

	Concluding remarks

	References

