
Variational Autoencoders with
Mixture Density Networks for

Sequence Prediction in
Algorithmic Composition

A Musical World Model

Viktoria Røsjø

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Variational Autoencoders with
Mixture Density Networks for

Sequence Prediction in
Algorithmic Composition

A Musical World Model

Viktoria Røsjø

c© 2018 Viktoria Røsjø

Variational Autoencoders with Mixture Density Networks for Sequence
Prediction in Algorithmic Composition

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Acknowledgements

Thank you to my parents, for emotional and financial support, allowing
me to reach as far as my ambition would take me. Without you, this would
not be possible.

Thank you to my excellent supervisor, Charles, for always being available
to answer questions, brainstorm, and steer me in the right direction. He is
the brain behind the idea of The Musical World Model, and I’m thankful
that I got to work with it.

Thank you to my roomates, Hanne and Silje, for patiently listening to me
complain about bugs and errors, and cheering me all the way to the finish
line.

Thank you to all my ROBIN friends, for silly conversations and rubber
ducking. I have learned a lot from you.

Thank you to all my other friends, that have shown me that they will be
there waiting, when I come out of this master bubble.

You are all important weights in my network, and have contributed to this
output!

i

Abstract

Does music contain a hierarchical component which is relevant when
teaching a machine learning model to create music? And, can a machine
learning model learn long term structure in music, based on its own
perception of data?

In 2014, Diedrik P. Kingma and Max Welling presented a novel
technique in generative modelling, called the Variational Autoencoder
(VAE). The method presented a technique for learning intractable data
distributions, and at the same time representing the data in a compressed
latent space. From this latent space, it was possible to sample new
datapoints, with similar features as those from the true data set. This
method was quickly adopted for modelling real valued data, with both
a fixed dimensionality, and in sequences. Through the course of 2017 and
2018, Google Brain released two variational autoencoders for sequential
data: SketchRNN for sketch drawings, and MusicVAE for symbolic
generation of music. These models inspire the variational autoencoder
framework used in this thesis. The MusicVAE has a hierarchical element
to assist in creation of music: a recurrent neural network function as a
composer to manage the structural development of melodies. Their studies
showed that the hierarchical component helped create more probable
musical compositions than the formal VAE. MusicVAE is taken as a starting
point for this thesis; however, rather than the recurrent neural network, a
new architecture for generating high-level structure in music is introduced,
using a mixture density network.

The Mixture Density Network, a network that can predict multi-valued
output, was developed in 1994 by Christopher M. Bishop. The model
can utilize any kind of network to condition the probability distributions.
In 2018, David Ha and Jürgen Schmidhuber used a recurrent mixture
density network (MDRNN) for predicting latent vectors in a reinforcement
learning model. This has inspired the idea of replacing the recurrent
composer from the MusicVAE with a MDRNN. This thesis introduces
this novel architecture, in which musical compositions are guided by
generating sequences of vectors from a VAE’s compressed latent space.
This is a novel architecture, in which compositions of music is guided by
learned sequences of latent vectors. The model is named Mixture Composer
Variational Autoencoder, or MCVAE.

Evaluation of the models showed that a difference in the models was
noticeable. An evaluation with human annotators shows that music that
has been composed by the MCVAE has noticeably better musical qualities
than music generated from the formal VAE. Another evaluation, using
a 5-gram model show that music made with guidance from the MDN
creates melodies which are a lot more probable than music made without
guidance.

ii

Contents

1 Introduction 2
1.1 Motivation . 2

1.1.1 Algorithmic composition 2
1.1.2 Markov models . 3
1.1.3 Creativity . 4
1.1.4 Connectionism . 4
1.1.5 Recurrent neural networks (RNNs) for music mod-

elling . 5
1.1.6 Long Short-Term Memory Networks (LSTMs) for

music modelling . 5
1.1.7 Variational Autoencoders 6
1.1.8 Variational Autoencoders 7
1.1.9 Mixture Density Recurrent Neural Networks 8

1.2 Research Questions . 9
1.3 Thesis Outline . 10

2 Artificial Neural Networks 12
2.0.1 Types of machine learning 12
2.0.2 Deep Learning . 13

2.1 Feedforward Neural Networks 13
2.1.1 Single Layer Perceptron 14
2.1.2 Activation function . 14
2.1.3 Loss Function . 17
2.1.4 Backpropagation . 17
2.1.5 Softmax . 21
2.1.6 Cross Entropy . 21

3 Sequence learning 23
3.1 Recurrent Neural Networks (RNNs) 23

3.1.1 Parameter Sharing . 23
3.1.2 Vanilla RNN . 24
3.1.3 Long and short term dependencies 26
3.1.4 Long Short Term Memory Networks (LSTMs) 27

3.2 Mixture Density Networks (MDNs) 29
3.2.1 Mixture Models (MMs) 29
3.2.2 Combining the models 32

iii

4 Generative modelling 33
4.1 Inference in probabilistic models 33

4.1.1 Directed and undirected probabilistic models 34
4.1.2 Implicit and explicit models 35

4.2 Measuring difference between distributions 36
4.2.1 Information entropy 36
4.2.2 Kullback-Liebler divergence (KL) 37
4.2.3 Jensen-Shannon divergence (JS) 38
4.2.4 Wasserstein distance (W) 39

4.3 Generative Adversarial Networks (GANs) 39
4.3.1 The generative and discriminative models 40
4.3.2 Latent variable interpolation 40
4.3.3 MidiNet . 41
4.3.4 Mode collapse . 42
4.3.5 Unstable training . 42
4.3.6 Wasserstein distance to avoid mode collapse 43

4.4 Autoencoders . 44
4.4.1 Variational autoencoders 45
4.4.2 Inference as an optimization method 45
4.4.3 Latent variables . 46
4.4.4 VAE optimization . 46
4.4.5 The variational lower bound 47
4.4.6 The reparameterization trick 48
4.4.7 Disentangled variational autoencoder 50
4.4.8 Posterior collapse . 51
4.4.9 Summary . 51

5 Methods 52
5.1 SketchRNN . 52
5.2 MusicVAE . 54

5.2.1 Disentanglement . 54
5.2.2 Flat model vs. hierarchical model 55

5.3 World Models . 56
5.4 Novel solution: MCVAE . 56

5.4.1 VAE hyperparameter choices 58

6 Experiments 61
6.1 Dataset . 61

6.1.1 Slicing songs into bars 61
6.2 Hyperparameter tuning for VAE 62

6.2.1 Evaluating the results 62
6.3 Training a MDN . 64
6.4 Evaluating the models . 65

6.4.1 Human annotators . 66
6.4.2 Language model evaluation 66

6.5 Evaluating VAE outputs . 67
6.5.1 Human annotators . 67
6.5.2 Language model evaluation 67

iv

6.6 Evaluating MCVAE outputs 69
6.6.1 Human annotators . 69
6.6.2 Language model evaluation 69

6.7 Summary of results . 72

7 Discussion 77
7.1 Dominating outliers . 77

7.1.1 Computing average song length 78
7.2 Range selection . 80
7.3 Independent and identically distributed data 80
7.4 Creativity . 81

7.4.1 Accuracy as a metric 81
7.4.2 Criteria of usefulness 82

8 Conclusion & Future work 83
8.1 Summary of Evaluation Findings 83

8.1.1 Human annotators . 83
8.1.2 Language model evaluation 84

8.2 Research questions . 85
8.2.1 What are the main technologies for using ANNs to

model and compose music? 85
8.2.2 In what ways can music be represented to an ANN? . 85
8.2.3 How can a VAE be used to compose long compositions? 85
8.2.4 How can we evaluate the success of a creative ANN

model? . 86
8.2.5 Can a MDRNN be used to steer a VAE model of music? 86
8.2.6 Does an MDRNN/VAE system produce better com-

positions than a VAE alone? 86
8.3 Future Directions and Final Remarks 87

8.3.1 Data processing . 87
8.3.2 Real world applications 88

List of Figures

1.1 An example of musical dice game from the music notation
software Musescore [10] . 3

1.2 Visualization of a Markov model with three states: A, B and
C, and the transition probabilities between them [45]. 4

1.3 Unrolled graph of connectionist network by P.M. Todd [125]. 6
1.4 Comparison of AE and VAE latent space. The feature smile

is presented with levels between [−1, 1] [61]. 7

v

1.5 Example of the difference in latent space density between a
autoencoder and a variational autoencoder, trained on the
MNIST dataset [115]. 8

2.1 The step function. 15
2.2 The logistic function. 16
2.3 The tanh function. 16
2.4 Logistic output function with and without bias. 17
2.5 A network with sparse connections 18
2.6 Training a neural net, example from scikit-learn[113]. 19

3.1 RNN illustration . 24
3.2 Many to one-architecture . 25
3.3 One to many-architecthure . 26
3.4 Encoder-decoder network translating from english to nor-

wegian. 26
3.5 Block diagram of an LSTM. The black square indicate a

delay of one time step. X-nodes indicate element-wise
multiplication, and the +-gate indicate addition. The gates
use nonlinear functions, defined by the user. 30

3.6 The mixture density model [8]. 31
3.7 Representation of the conversion from bars to distributions,

with the underlying note vectors. The image is a simplifi-
cation of the creation of distributions, as the distributions
produced by the VAE-encoder are multivariate with 64 di-
mensions. 31

3.8 Illustration of the creation of a dataset for the MDRNN
(figure a), and the mixture density network composer in
MCVAE (Figure b). 32

4.1 Directed graphical model. 34
4.2 Overview of generative models, from Ian Goodfellows NIPS

tutorial in 2016 [39]. 35
4.3 Joint distribution of X and Y. 36
4.4 Approximating a distribution [67]. 37
4.5 Forward approximation [67]. 38
4.6 Moving dirt between piles to make them match [133]. 39
4.7 Flowchart of a GAN. 40
4.8 Bedroom interpolation in DCGAN [103]. 41
4.9 Feature extraction in DCGAN [103]. 42
4.10 Oscillating gradients in GAN [133]. 43
4.11 W-distance (left) and JS-divergence (right) for ρ(Pθ , P0) as

a function of θ. W-distance is continuous, while JS has a
sudden jump in θ = 0. 44

4.12 General representation of autoencoder. 44
4.13 Graphical model of variational autoencoder. The dashed

lines indicate the variational approximation, and the solid
lines indicate the generative process. 46

vi

4.14 Visualization of the encoder and decoder network in a
variational autoencoder. 47

4.15 Graphical model of stochastic node. 49
4.16 Graphical model of deterministic node. 50

5.1 SketchRNN encoder architecture, reproduced from [46] . . . 53
5.2 SketchRNN decoder architecture, reproduced from [46] . . . 53
5.3 MusicVAE architecture, reproduced from [104] 54
5.4 Results for quantitative evaluation of true data interpolation,

and latent space interpolation with the flat model versus the
MusicVAE, reproduced from [104]. 55

5.5 Results from listening tests evaluation comparison of true
melodies, and melodies from the flat model and MusicVAE,
reproduced from [104]. This shows the number of times that
each of the two models or a true melody, was considered
most musical by the participants. 56

5.6 World Model architecture, reproduced from [47] 57
5.7 Mixture density network predictor in World Models, repro-

duced from [47] . 57
5.8 Stacked bidirectional LSTMs [139], in the MCVAE encoder. . 58
5.9 Stacked unidirectional LSTMs in the MCVAE decoder. 59
5.10 Mixture density network composer in MCVAE. 59
5.11 Full VAE with MDRNN sequence prediction. 60

6.1 Sheet music translated to a note vector. For the input of the
LSTM, the full song is sliced into 1× 16 vectors. 62

6.2 Holding encoder/decoder dimension fixed, and varying
the latent dimension. The smoothed line is a fitted 3-
dimensional polynomial, created by averaging each point xi
by all points ± 25 from xi. This method is also known as
Savitzky-Golay filtering [100, p. 650]. The errorbar is given
by the standard deviation for the current distribution. 63

6.3 Holding latent dimension fixed, and varying the encoder /
decoder size. 64

6.4 Results from the Likert type-scale evaluation of the 6
statements in Section 6.4.1 for the formal VAE. On the x-axis
are number of people. Acronyms for the scale factors: SD:
Strongly disagree, D: Disagree, N: Neutral, A: Agree, SA:
Strongly Agree. 72

6.5 Results from the Likert type-scale evaluation of the 6
statements in Section 6.4.1 for the MCVAE. On the x-axis
are number of people. Acronyms for the scale factors: SD:
Strongly disagree, D: Disagree, N: Neutral, A: Agree, SA:
Strongly Agree. 73

6.6 Interpolating in true data space between songs in Set A and
songs in Set B. 73

6.7 Interpolating in latent space with VAE, conditionally. 74
6.8 Interpolating in latent space with MCVAE, conditionally. . . 74

vii

6.9 Interpolating in latent space with VAE, unconditionally. . . . 75
6.10 Interpolating in latent space with MCVAE, unconditionally. 75
6.11 Interpolating in latent space with MCVAE, unconditionally,

after cleaning the dataset. 76

7.1 Boxplot of bar distribution in the dataset. The mean is
represented by a green triangle, median by a orange line and
the outliers as blue crosses. 78

7.2 Boxplot of bar distribution in the preprocessed dataset. The
mean is represented by a green triangle, median by a orange
line and the outliers as blue crosses. 79

7.3 Histogram of bar distribution in the two processed datasets. 79
7.4 Note density for 1000 songs in the dataset. 80

List of Tables

4.1 Musical features [58] that could be learned by a VAE. We
might expect that the latent space would represent some of
these features. 46

4.2 Reparameterizing a Gaussian distribution 49

viii

Abbreviations

AE Autoencoder
AI Artificial Intelligence

ANN Artificial Neural Network
BDRNN Bidirectional Recurrent Neural Network

CAP Credit Assignment Paths
CNN Convolutional Neural Network
FNN Forward Neural Network
GAN Generative Adversarial Network
GUI Graphical User Interface
HCI Human Computer Interface

JS-divergence Jensen-Shannon divergence
KL-divergence Kullback-Liebler divergence

LSTM Long Short-Term Memory
MAP Max a posteriori
MDN Mixture Density Network

MDRNN Mixture Density Recurrent Neural Network
MM Mixture Model

RNN Recurrent Neural Network
RHS Right Hand Side
VAE Variational Autoencoder

1

Chapter 1

Introduction

I frequently hear music in the
very heart of noise.

George Gershwin [99, p. 177]

1.1 Motivation

1.1.1 Algorithmic composition

Algorithmic composition is the process of creating music from a set of
rules. This is an old concept, with examples from the 18th century,
such as Musikalisches Würfelspiel - the musical dice game (see Figure 1.1).
Created by Johann Philipp Kirnberger in 1757, its name was “The ever-
ready minuet and polonaise composer”. The idea of the game was to encode
the conventions of musical composition into a set of easily followed rules.
Players could use the game to create new pieces of music to perform.
Playing both the game and the music was supposed to be an enjoyable
experience.

The game was constructed like this; for each bar, there exists 11 possible
sequences. The user rolls two dice for each temporal unit, and choose
a bar based on the dice’s number [26, p. 36]. Musikalisches Würfelspiel
became popular in Western Europe. Up to 1812, 20 different games were
made. Among those, two games were released under the names of Haydn
and Mozart. Although it has not been proven that they created the games
themselves[51].

Current news about AI-generated art and music suggest that using
algorithms to create music is as relevant today as it was in the 18th century
[2]. In this thesis, I will explore one of the latest methods for algorithmic
composition: the Variational Autoencoder (VAE). Additionally, by viewing
music as a sequence of probability distributions, a Mixture Density Network
(MDN) in tandem with a Recurrent Neural Network (RNN) is used as a
composer network, taking advantage of the RNN’s ability to predict a
sequences and the MDN’s ability to predict probability distributions. The
novel model is given the name Mixture Composer Variational Autoencoder

2

(a) A dice game table

(b) A slice of a dice game music sheet, with numbered bars

Figure 1.1: An example of musical dice game from the music notation
software Musescore [10]

or MCVAE (the model can be found at https://github.com/vikrosj/

music-variational-autoencoders).

1.1.2 Markov models

In the 20th century, composers and computer scientists started to explore
applying statistical models to algorithmic composition. In 1950, Harry F.
Olson and Henry Belar developed the “Electronic Music Synthesizer”. The
synthesizer used a Markov model to generate musical structure [26, p. 71].
A Markov model is a stochastic method for modelling randomly changing
systems [107]. It does so by calculating the transition probabilities between
adjacent events (see Figure 1.2).

Markov models have one defining limitation. When trained on a set
of compositions, they can only model sub sequences that already exist in
the data. These models cannot deduce any unknown musical sequences, or
extrapolate new sequences from the given training data [85].

3

Figure 1.2: Visualization of a Markov model with three states: A, B and C,
and the transition probabilities between them [45].

1.1.3 Creativity

Does rearranging existing sub sequences to make new music count as
creativity? Psychologist and creativity researcher, Dean Keath Simonton
stated to the American Psychological Association (APA) that “You can’t be
creative unless you come up with something that hasn’t been done before.
The idea also has to work, or be adaptive or be functional in some way; it
has to meet some criteria of usefulness” [65]. This definition of creativity
gives a guideline to what a creative model has to manage. It has to create
something new, and at the same time be functional. A Markov model can
be said to be somewhat creative, as it creates new arrangements of existing
sequences. But, a fully creative model must be able to create new sequences
of music, that it has not seen before. Secondly, the music must “meet some
criteria of usefulness”.

Arguably, creation of music is in itself useful, as it activates the reward
system in the brain. Researchers has shown that listening to your favourite
song flood the brain with dopamine [111], but the reason for this is not
yet found. It could relate to the way in which music set up a pattern of
expectation, and then fulfills them - in which the brain recieves a reward
for predicting correctly [34]. Every human culture has their kind of music
[75], which speaks to the fact that creating music is important. In this thesis,
the usefullness-criteria is discussed, but not extensively investigated. What
is investigated is the other side of creativity: creating something new. This
is done by exploring the machine learning field of generative modelling, in
which the ML-model seek to learn the true distribution of a data set, to
produce new data points with some variations [42, p. 716].

1.1.4 Connectionism

Connectionism is a concept from cognitive science that dates back to the
1940’s, but had it’s breakthrough in 1986, with David E. Rumelhart and
James L. McLelland two-volume compendium Parallel Distributed Process-

4

ing (PDP)[108]. Connectionism provided a new way of understanding the
mind and how information is processed in the brain. The earlier idea was
that a single neuron (or small bundle of) was concerned with each thing the
brain had to process. This is explained via the concept “the grandmother
cell”, the idea of one specific neuron (or small bundle of), devoted to recog-
nizing a persons grandmother [84]. But, evidence suggests that a thought
involve a distributed pattern of activity across the cortex [121, Chapter 6].
This concept lead to connectionism in programming.

1.1.5 Recurrent neural networks (RNNs) for music modelling

Peter M. Todd, in A Connectionist Approach To Algorithmic Composition
[125] used connectionism for music modelling. He described PDP and
connectionism as a “paradigm for computing”. It replaced the “strict rule-
following behaviour with regularity-learning and generalization”. The
architecture of his network was inspired by a PDP approach by Michael I.
Jordan, where each output of the network was reentered into the network
via feedback connections [62]. Todd’s work was the first to apply a
recurrent network to generalize the structure of musical examples, and
compose new pieces based on this generalization.

Music is temporal

Todd’s paper also addressed a key factor for music modelling; music is a
temporal process. Meaning that it is dependent of time, and often long term
structure. Therefore, time must be represented somehow. The solution was
either “a sliding window of successive time-periods of fixed size”, where
time is a spatial component. Or, time could be represented by “the relative
position of a note in a sequence”. Both these representations are used today,
but in recurrent neural networks, the latter is used. Todd’s network learned
the sequence note by note. It had a two part input; one for the note and one
for the plan. The plan input is a vector that is concatenated with the input
note. It labels a full sequence with a number, every new sequence has its
own number. In this way, Todd tested how interpolation between these
numbers, or class labels, gave new melodies after training the network.

The work was revolutionary at this time, and as the author writes
himself: “The possibilities for further work expanding the capabilities of
this approach are virtually limitless”. But, it also proved that the current
standards of RNNs faced a problem with learning long term sequences.
Todd writes: “the place for this network [...] is restricted to generating
relatively short musical lines, high in local structure, but lacking in overall
global organization”.

1.1.6 Long Short-Term Memory Networks (LSTMs) for music
modelling

LSTMs was developed by Sepp Hochreiter and Jürgen Schmidhuber in
1997, and was a revolutionary new technique for RNNs [54]. The method

5

for both output and con-
text; context units also
have self-feedback connec-
tions. Each network out-
put indicates the pitch at
a certain time slice in the
melody.

t

Context
(memory of melody so far)

text or state that the network uses to produce the
next element in the sequence. Each successive out-
put of the network is entered into this memory by
the feedback connections indicated from the output
units to the context units.

A memory of more than just the single previous
output is kept by having a self-feedback connection
on each individual context unit, as shown in Fig. 3.
These connections have a strength (weight) of less
than 1.0, so that each context unit computes an
exponentially decreasing sum of all of its previous
inputs, which are the network's outputs. For ex-
ample, if the self-feedback strength were 0.8, then a
unit's memory would decrease proportionally by
the amounts 0.8, 0.64, 0.51, 0.41, etc., as long as
nothing new were entered into its memory. This
connection strength cannot be greater than 1.0 or
the activation values of the context units would ex-
plode exponentially.

The context units and plan units are all fully in-
terconnected by a set of learned, weighted connec-
tions to the next layer of units, the hidden units.
The hidden units are so named because they are
neither at the network's input nor output, and so

are in some sense buried inside the network. The
hidden units combine the weighted information
from the (fixed) plan units and the (evolving) con-
text units, processing it via their logistic activa-
tion functions (Dolson 1989). They then pass on
this processed information through the final set of
weights to the output units. The output units then
determine what the network will produce as the
next element in the sequence. Each successive out-
put is also finally passed along the feedback con-
nections back to the context units, where they are
added into the changing context. This in turn en-
ables the computation of the following element in
the sequence, and the cycle repeats.

The actual number of the various types of units
used in the network depends on several factors. The
number of plan units must be sufficient to specify
different plans for all the different sequences to be
learned. For example, we might want to use plans
that have only one plan unit on at a time (i.e., with
an activation of 1.0), while all the rest of the plan
units are off (i.e., they have activations of 0.0). The
particular plan unit that is on, for example the third
or the fifth, specifies the sequence being processed
(i.e., sequence number 3 or number 5). This type of
plan is known as a localist representation, because
each unit represents an entire entity (here an entire
sequence) locally, by itself. If we wanted to learn N
sequences for example, we would need N plan units
to specify all of them in this way. On the other
hand, a binary-coded plan representation would be
more compact: in this case, we would need only
log2 N plan units to create N different plans. Thus
plan 011 would specify sequence number 4 out of 8
possible, starting with 000. This is a distributed
type of representation, because each entity is repre-
sented by a pattern of activation spread over several
units at once.

The number of output units in the network de-
pends on the representation of the sequence ele-
ments used, so it cannot be specified until this
representation is settled. The number of context
units depends on the type of memory desired. We
will see below that having an equal number of out-
put units and context units is useful. Finally, the
number of hidden units depends on what the net-
work must learn and cannot be exactly specified. If

Computer Music Journal

Fig. 3. The sequential net-
work design used for com-
positional purposes in this
paper. The current musical
representation requires
note-begin (nb) and pitch
(D4-C6) units, as shown

time slice N

I

30

Figure 1.3: Unrolled graph of connectionist network by P.M. Todd [125].

allowed RNNs to learn long term structure in data. It is still the most
popular RNN method today, although some variations also do exist
[44]. Both RNNs and LSTMs are explained thoroughly in Chapter 3.
Douglas Eck and Jürgen Schmidhuber used this method in their 2002 paper
Finding Temporal Structure in Music: Blues Improvisation with LSTM Recurrent
Networks [29]. The authors sought to prove that while a RNN can learn
local, but not global structure in music, an LSTM can learn both. They train
the network to produce both melody and chords of blues music. And, the
result was that the LSTM did learn global musical structure, and thus could
compose new blues pieces.

1.1.7 Variational Autoencoders

An autoencoder is an idea that dates back to 1987, originally used for
feature learning and dimensionality reduction [42, p. 499]. An autoencoder
is a neural network architecture where the goal is to reproduce the input.
Autoencoders can be divided into three parts: the encoder, decoder and
latent space. For dimensionality reduction, the latent space has fewer
nodes than encoder and decoder, and thus works as a bottleneck (some
autoencoders have a larger latent space than encoder and decoder, these
are briefly discussed in Chapter 4). In the latent space, features in the data
are represented as discrete values, and their value indicate how much of
each feature is present in the current sample. The discrete representations
causes the latent representation to be sparse (see Figure 1.4). But, since the
network generalizes the input in the latent space, it is possible to interpolate

6

somewhat between the data points. Unfortunately, due to the sparsity
of values in the latent space, the interpolation between known values is
unlikely to be smooth [7].

Figure 1.4: Comparison of AE and VAE latent space. The feature smile is
presented with levels between [−1, 1] [61].

In 2014, Diedrick P. Kingma and Max Welling published the paper
Auto-Encoding Variational Bayes which explained a technique to address
this issue applied in the so-called variational autoencoder (VAE) [132].
In a VAE, all data points are assumed to be distributions, and the latent
space also represents data points as distributions. The latent space is
initialized as a multidimensional Gaussian distribution. By enforcing a
method called the Kullback-Liebler divergence, the latent space represent the
points as Gaussian distributions. This method forces the latent space to be
dense, and thus interpolating between real data points gives higher rate of
semantic morphing than the autoencoder [115] (see Figure 1.5).

1.1.8 Variational Autoencoders

In 2016, Douglas Eck introduced the project Magenta at the Google Brain
Team. The project wish to explore - in his own words - “Can we use
machine learning to create compelling art and music? If so, how? If
not, why not?” [30]. Motivated by these questions the team created,
among others, two variational autoencoders with compelling results. The
first of these was SketchRNN, which generates sketch drawings both
conditionally and unconditionally [46]. It is trained on a large dataset of
labeled sketch drawings, and learns to both reproduce input and create
its own variants of labeled objects. The level of similarity between input
and output is conditioned on a temperature level that indicate level of
randomness during sampling.

In 2018, Magenta introduced MusicVAE in the paper A Hierarchical Latent
Vector Model for Learning Long-Term Structure in Music [104]. As the

7

(a) Autoencoder (b) Variational autoencoder

Figure 1.5: Example of the difference in latent space density between a
autoencoder and a variational autoencoder, trained on the MNIST dataset
[115].

title suggests, the decoder is a hierarchical model, designed to avoid a
phenomenon in RNN decoders known as the posterior collapse. This is
when the decoder model has so many neurons that it learns to memorize
the entire data set. Thus, it can reproduce sequences, independent of
the latent vector, and thus effectively ignore the latent vector in creation
of sequences. The latent vectors are produced by a conductor RNN that
outputs a sequence of vectors per song. And the decoder model MusicVAE
only produce one sequence of a song, per latent vector. This level of
hierarchy gave more pleasing musical results, than by letting the VAE
predict long sequences without any conditioning.

1.1.9 Mixture Density Recurrent Neural Networks

An MDN is a neural net that predicts probability distributions [8].
In combination with an RNN, it can predict sequences of probability
distributions. MDRNNs have been applied to various kinds of sequence
modelling, from text and handwriting prediction [43] to musical control
data in an interactive music application[81].

March of 2018, David Ha and Jürgen Schmidhuber introduced a “World
Model” that made use of an MDRNN and a VAE. The World Model is
a method for improving learning in reinforcement learning agents. The
authors visualize the architecture by asking the question “Can agents learn
inside of their own drams?” [48]. The dreams they are referring to are the
latent representations of the real world. The MDRNN is trained to predict
latent vectors, and then convert them to actions in the true data space. With
this question in mind, the idea of a MDRNN for latent vector prediction of
musical sequences came to be. The high-level question asked in this thesis
is then: can a machine learning model create music from their dreams?

8

By combining the idea of a hierarchical model for creating music, along
with the use of a MDRNN for sequence predictions, I have created a
novel architecture, the Mixture Composer VAE, MCVAE. The model is a
variational autoencoder, with a MDRNN for hierarchical control of latent
vector predictions during music creation.

1.2 Research Questions

The thesis asks six questions:

1. What are the main technologies for using ANN to model and compose
music?

In Chapter 4, the main technologies GANs and VAEs are explained in
detail, with theoretical background from Chapter 2 on Artificial Neural
Networks, and 3 on Recurrent Neural Networks and Mixture Density
Networks.

2. In what way can music be represented to an ANN?

The main approaches for representing music to an ANN is discussed in
the literature. For this thesis, a melody-only in the symbolic domain
representation is chosen, explained in Section 6.1. Section 7.3 in the
Discussion-chapter discuss the problem with time series data for a VAE.

3. How can a VAE be used to compose long compositions?

In Chapter 3, LSTM’s advantage over vanilla RNNs for long term-
depending structures is explained. Variational autoencoders and the
implementation of LSTMs in them is clarified in 4.4.1.

4. How can we evaluate the success of a creative ANN model?

Creative ANN models are commonly evaluated by human annotators and
by interpolating in the latent space. Details about these methods and how
the evaluation for this thesis is done is explained in section 6.4.

5. Can a MDRNN be used to steer a VAE model of music?

The functionality and building blocks of a MDRNN is illustrated in Section
3.2, along with the way it is implemented in steering a musical VAE model.
The question of whether it succeeds or not is evaluated in Section 6.6.

6. Does an MDRNN/VAE system produce better compositions than a
VAE alone?

The findings of this thesis indicate that the MDRNN/VAE does produce
better compositions, especially in terms of musical structure. The results
are summarized in 6.7 and in the conclusion in Chapter 8.

9

1.3 Thesis Outline

Chapter 1. Introduction

Introduction to the thesis, and the motivation behind it.

Chapter 2. Artificial Neural Networks

Theoretical background for explaining the topics for the two following
chapters.

Chapter 3. Sequence learning

Dividing the chapter in two, the first part elaborates on the most widely
used machine learning method for sequence learning, namely LSTMs. The
second part of the chapter delve into the limitations of FNNs for multi-
valued output, explaining how MDNs are used to solve this problem.
Lastly, clarifying why MDNs could be useful in sequence learning for
VAEs, resulting in the reason this thesis investigate the topic.

Chapter 4. Generative modelling

Going into detail about the main technologies for using an ANN for
creative purposes; GANs and VAEs. Looking into these methods used in
image and art creation, and music modelling.

Chapter 5. Methods

Outlining the architecture of two state of the art ML models for generative
modelling. Additionally, elaborating on a RL-method with MDRNN for
sequence learning. These three inspirations combined make up a novel
method presented lastly in this chapter.

Chapter 6. Experiments

Details of experiments conducted to evaluate the success of the models,
with corresponding results.

Chapter 7. Discussion

Discussing a couple of discoveries and their effect on the results of the
models. Also discussing a weakness in the VAE model when modelling
sequential data, and possible workarounds for this problem. The creativity
criterion mentioned in the introduction is discussed.

Chapter 8. Conclusion & Further work

In the conclusion all results are summarized, the research questions are
addressed. Ending with some future directions to improve the results for

10

both models, and some remarks on the real world application for the novel
model introduced in this thesis.

11

Chapter 2

Artificial Neural Networks

A computer program is said to
learn from experience E with
respect to some class of tasks T
and performance measure P, if
its performance at tasks in T, as
measured by P, improves with
experience E.

Tom M. Mitchell, 1997 [53]

This chapter introduces important concepts and terminology in ma-
chine learning, and particularly feedforward neural networks, that is fur-
ther developed in chapters 3 and 4.

As the quote states, a computer program is said to learn from experience,
performing a certain set of tasks, whilst measuring the performance.

As an example, consider a human being learning how to play a video
game. The person playing performs a certain set of tasks, to complete each
level. It is very likely that the person fails more than once, and then changes
his or her strategy to complete the level. In this example, the performance
can be measured in time, collected points per level and whether or not the
person finished the level. By playing the game more than once, the person
is learning from experience.

When it comes to machine learning, to learn from experience is referred
to as learning from data. An algorithm is presented with data, and with the
correct learning strategy, the algorithm can learn something from this data.
Stanford University presents a straightforward definition:

Machine learning is the science of getting computers to act
without being explicitly programmed [93].

2.0.1 Types of machine learning

Typically, machine learning is divided into four groups [76].
Supervised learning. In supervised learning, the algorithm is pre-

sented with pairs of input and corresponding correct output. By training

12

on this data set, the algorithm learns to generalize so it outputs correctly to
each input.

Unsupervised learning. Here, no correct outputs are provided. Instead
the goal for the algorithm is to spot similarities in the data, and categorize
them accordingly.

Reinforcement learning. In reinforcement learning, the algorithm is
given a goal, but no information on how to reach it. It learns by itself how
to reach the goal. It receives a reward for reaching the goal, and maybe for
reaching a few sub goals. It may also receive penalties when the goal is not
reached.

Evolutionary learning. The method sees biological evolution as a
learning process. Inspired by how biological organisms adapt to survive,
how their genes are distributed in reproduction, and how to measure fitness
of an individual or a population are elements in this topic.

In this thesis, the model is trained with self-supervised learning, a sub
field of supervised learning where the output data is equal to the input
data. This method is used when the model seek to learn the underlying
generator that creates the data.

2.0.2 Deep Learning

To distinguish if a neural net is either shallow or deep, the concept of Credit
Assignment Paths (CAPs) was introduced by Jurgen Schmidhuber in the
article Deep Learning in Neural Networks: An Overview (2014) [112]. A CAP is
the chain of transformation that occur from input to output. The definiton
of a deep model is not explicitly defined, but a CAP > 10 is considered
“very deep”. In the article, Schmidhuber also explains: “In a sense, RNNs
are the deepest of all NNs”. RNNs are generally applied to sequence
learning, and is therefore applied in this thesis.

2.1 Feedforward Neural Networks

Feedforward neural networks, FNNs, form the foundation for recurrent
networks, and is a subfield of supervised learning. The term feedforward
describes the way information flows through the system. Information
travels from input to output without feedback connections [42, p. 164]. A
feedback connection is where the outputs of the system are fed back into
the model. The outputs from the FNN are used to train the network in the
backpropagation process, which will be explained further down.

Feedforward neural networks are called networks because they typi-
cally chain together different functions [42, p. 164]. For example, Equation
2.1 is a network consisting of three functions, connected in a chain.

f (x) = f (3)(f (2)(f (1)(x))) (2.1)

13

This chain demonstrates the structure of a neural network. Each
function is a layer. The inner function is the input layer, the outer function
is the output layer, and any number of functions in between are the hidden
layers. In supervised learning, the only known desired output is f (x) = y,
meaning that the desired output of the inner layers are unknown. They are
therefore called hidden layers.

The objective of this network is to approximate some function, f. For
instance, a classifier f (x) = y, maps an input x to a class, y. The network
defines a mapping f (x; Θ) = y. Θ denote the distribution of the weight
parameters. The network learns the parameters, Θ, that best approximate
the function through comparing computed values to ground truth values
[42, p. 164].

One defining aspect of the feedforward network is that no information
is stored between computations. The network is looking for similarities
and patterns in the data, but it does not interpret the data sequentially. To
sequentially process data, feedback connections must be introduced to the
system.

2.1.1 Single Layer Perceptron

The concepts of feedforward networks can be described with the example
of the single layer perceptron, SLP, first introduced by American psychol-
ogist Frank Rosenblatt [106] in 1958. The SLP is a neural network with no
hidden units, meaning it comprises only an input and an output layer. The
chain function is described in Equation 2.2.

f (x) = f (1)(x) (2.2)

The input layer consists of n weights. The n number of input weights
match the number of data points that are processed per iteration. The input
layer also contains a bias and bias weights, so the output is shifted by the
bias term. This is demonstrated at the end of this section. The output layer
is one or more nodes with an activation function.

The process of learning an SLP start with the multiplication of the
inputs and their corresponding weights. The sum of these products, or
the weighted sum, is passed to the activation function [126].

2.1.2 Activation function

The activation function mimics a neuron in the brain. The goal of the
function is therefore to “decide” whether the neuron should “fire” a signal
or not. The signal and the threshold for firing it varies with each function.
As mentioned, the activation function receives a weighted sum of its inputs
and adds bias.

Y = ∑(weight · input) + bias (2.3)

14

The value of Y can be any number in the range (−∞, ∞). Thus, the
activation function is necessary to implement a transformation on Y and
create a firing threshold for the signal [126].

The activation function in the SLP output layer is classically a step
function.

Figure 2.1: The step function.

The step function outputs either 0 or 1. This means that the the function
is activated if Y is above some threshold, and not activated if Y is below the
threshold. In Figure 2.1 the threshold is 0.

Defining the general activation function g at output o as:

o = g(xt · w + b) = g(Y) (2.4)

The output of the activation function is:

o =

{
1 if Y ≥ threshold
0 if Y < threshold (2.5)

This function has limitations. Consider connecting multiple neurons
to an output neuron in the case of distinguishing between more than two
classes. Since the neuron only fires at 100% or 0%, deciding which class it
predicts is impossible. For this task, a function with intermittent activation
values is necessary [126].

In recurrent neural nets, the hyperbolic tangent (tanh) and logistic
function (σ) are most typically used [73, p. 89].

The logistic function

σ(x) =
1

1 + e−x (2.6)

The logistic function has intermittent activation values, in the range
(0, 1). This is beneficial, because it enforces a boundary on the activation,
so it doesn’t blow up to −∞ or ∞. Because of the benefits of this function,
it is one of the most widely used activation functions today [126]. Albeit,

15

Figure 2.2: The logistic function.

there are complications with this functions also. Noticeably in Figure 2.2,
towards either end of the output, the function responds less to changes in x.
Meaning that for large inputs x, the function saturates and provides small
changes to its output. This causes an issue called vanishing gradients, which
will be discussed more extensively later.

The hyperbolic tangent function

tanh(x) =
e2x − 1
e2x + 1

= 2σ(2x)− 1 (2.7)

Figure 2.3: The tanh function.

The tanh-function is a scaled σ-function, so it has similar properties.
The range of tanh is larger, binding the output to (−1, 1). In the process of
training the neural net, the gradient of the activation function is computed.
The gradient of tanh is steeper than that of σ, so the choice of activation
function depends on the requirement of gradient strength [126].

Bias added to the system is demonstrated below. In this example, the
activation function g is the logistic function. Altering the weight w changes
the steepness of the curve. But, the function clamps the input to a range of
numbers between 0 and 1, with rotational symmetry at (0, 1

2) [131]. To alter
the inflection point, a bias must be inserted.

16

(a) Output without bias. (b) Output with bias.

Figure 2.4: Logistic output function with and without bias.

2.1.3 Loss Function

The terms loss function and error function are used interchangeably in
machine learning literature. In this thesis, loss function is used. The loss
function is defined on a data point, prediction or label and quantifies the
misclassification [55]. It does so with computing E(Y, f (X)) where f(X) is a
function predicting Y given values from input X. The loss function is used
for penalizing errors in prediction. One example of a loss function is the
square error computation [49]:

e(θ) = ((f (xi) | θ)− yi)
2 (2.8)

Cost Function

The cost function is a sum of loss functions over the training set [55]. Both
the cost and loss function are used for penalizing errors, but they are used
for different learning methods [76, p. 82]. The most common cost function
is the Mean Squared Error function (MSE) [71]:

MSE(θ) =
1
N

N

∑
i=1

((f (xi) | θ)− yi)
2 (2.9)

2.1.4 Backpropagation

The backpropagation algorithm is a method for automatic differentiation
of complex, nested functions. The counterpart to automatic differentiation
is hand-engineering, where experts hard code the features they know
enhance learning in the neural nets. [60].

For the FNN, the backpropagation algorithm requires two things [60]:

1. A dataset

2. A loss or cost function

17

And the dataset most commonly consist of three sets [76, p. 20]:

1. A training set

2. A validation set

3. A test set

The training set is the part of the dataset that is used to train the model.
The validation set is used to keep track of the models performance, hence
where the loss function is applied. Lastly, the test set is used once the model
is completely trained to provide an unbiased evaluation of the final model
[116].

For each instance in the training set, the network computes the output
of every neuron in each layer. Finally, it measures the output on the last
layer, and compare this to the true answer. By doing this comparison, the
networks error is computed for each neuron. With this information, the
network computes how much each neuron contributed to the error in the
successive neuron it is connected to. It does this by computing the error
gradient with respect to the size of the neuron. The size of the neuron is
typically called its weight. This computational process continues backwards
in all the previous layers of the network, until the input layer is reached [37,
p. 261].

x1

x2

x3

x4

z1

z2

f

Figure 2.5: A network with sparse connections

Computing the gradient Figure 2.5 is an example of a sparse net.
The nodes are multiplicative. As previously mentioned, the gradient is
computed with respect to each input neuron. A few, selected gradients
from the figure above look as follows:

δ f
δz1

=
δ(z1 · z2)

δz1
= z2 (2.10)

δ f
δx2

=
δ f
δz1

δz1

δx2
= x1 (2.11)

18

δ f
δx4

=
δ f
δz2

δz2

δx4
= x3 (2.12)

Overfitting and underfitting

The images in Figure 2.6 exemplify the problems that occur when training
neural network to approximate a function, using linear regression. It shows
that MSE is not always indicative of a good solution. Model number two,
a fourth degree polynomial, adapts best to the original function. The third
model is apparently not a good representation of the original function -
yet, it has a smaller MSE. This is known as overfitting. The function has
adapted perfectly to the data, but it does not generalize well. Many of the
points in a dataset may be noise, and when the final model is overfitted,
it has also learned the noise. Likewise, the first model does not generalize
well. It is almost not adapted to the datapoints at all. This is known as
underfitting. Both overfitting and underfitting prevents the neural net from
learning, therefore there exists many methods to avoid these events from
happening [14].

Figure 2.6: Training a neural net, example from scikit-learn[113].

Batch, sequential or stochastic training

The learning method explained at the beginning of this section is what’s
known as sequential training. This is where the error is computed and
the weights are updated after each input. This is not necessarily the most
efficient method, but it may have better results than batch learning, because
it converges slowly [76, p. 82]. Batch learning is where all of the training
data is presented to the network, in what is called an epoch. The cost
is computed, and then the weights are updated once every epoch. The
training data can be divided into smaller pieces in what’s called minibatches,
and the gradients are updated for every pass through a minibatch. One
benefit of batch training is that the analysis of the convergence rate and
the weight dynamics are simpler [71]. Lastly, stochastic or online training is
where a single example is chosen randomly from the training set at every
iteration. An estimate of the gradient is then computed, and the network is

19

updated. This is a preferred method for basic backpropagation, because it
is faster than batch learning. It often results in better solutions, particularly
for redundant datasets [71].

Weight initialisation

Initialisation of the weights is important for the progress of the network.
Most importantly, they cannot all be the same number. This is due to
the gradient computation. If the weights are equal, the gradients and the
parameter update will also be equal. The weights will then learn the same
thing, and they’re not separable. It is therefore common to initialise the
weights to small, random numbers. The concept is that they will compute
distinct updates and integrate themselves as divergent parts of the full
network, when they are random and unique in the beginning [63].

Vanishing gradients Although, in some cases, small weights leads
to computing small gradients, because the gradient is proportional to the
weights. The gradient is repeatedly multiplied through the network, thus
very small gradients can lead to a slow or no update of the network. This
is what’s referred to as vanishing gradients. As previously mentioned, for
sigmoidal functions, large inputs can cause the function to saturate and also
produce a small change in output. Both of these instances cause vanishing
gradients.

Exploding gradients On the other hand, repeatedly multiplying
gradients that are larger than 1 might cause the gradients to grow too large,
causing exploding gradients. This may lead to an unstable model that is
unable to increase the loss during training [12].

Xavier initialisation A method for weight initialisation introduced
in 2010 is the Xavier initialisation, where the weights are drawn from the
Gaussian distribution with zero mean and variance at

var(wi) =
1

Navg
(2.13)

Navg =
Nin + Nout

2
(2.14)

N is the number of input and output neurons. This method keeps
the variance of the weights across the layers, and reduce the problem
of vanishing gradients. It is recommended to use this method for tanh
networks. There is also a version for ReLU networks. [38].

20

2.1.5 Softmax

The softmax function is often placed at the output layer of a neural
network. It is a classification function, commonly used in multiclass
learning problems where each input is categorized into more than two
categories, and the categories don’t overlap. [120]. The softmax function
computes the normalized probabilities for each class.

so f tmax(x)i =
exi

∑n
j=1 exj

(2.15)

The exponentiation is due to interpreting the scores inside the vector as
the unnormalized logarithm of the probabilities. As the logarithm is the
inverse operation of exponentiation, log loss is commonly used as a loss
function together with the softmax activation function [90].

2.1.6 Cross Entropy

The multiclass cross-entropy is also known as negative log likelihood, as
they are two different interpretations of the same function [49, p. 32].

C = − 1
n ∑

x
(y ln a + (1− y) ln(1− a)) (2.16)

Equation 2.16 is the negative log likelihood of the Bernoulli distribution,
which is a discrete distribution with two possible outcomes [3]. Here n is
the total number of training data points. The sum is over all training inputs,
x, and y is the corresponding desired output. The probability mass function
for the Bernoulli distribution is shown in definition 2.17.

o(k; p) =
{

1− p if k = 0
p if k = 1

(2.17)

The variable, k, takes value 1 with probability p, and value 0 with
probability 1-p. Equation 2.18 is the negative log likelihood of the binomial
distribution, which is a discrete probability distribution. In other words,
the cross-entropy of a multiclass version of Bernoulli [4]. Viewing the
softmax function, it is visible that the log likelihood is logarithm applied
to a softmax output.

Li = −log(
e fyi

∑j e f j
) (2.18)

The cross-entropy is reasonable to use as a cost-function for classifica-
tion [94]. This is because the individual parts of the sum are all negative
because they are the logarithms of the softmax output (in a range between
zero and one). Hence, the sum is negative, but then this sum is then again

21

negated. Thus, the output of the cross-entropy function will always be pos-
itive. The higher the probability for the correct class gets, the smaller the
likelihood gets. Since the function is used to calculate the distance between
the correct outputs and the computed output, this means that the closer the
predictions get to the truth, the lesser the distance get. Consequently, the
loss is minimized.

22

Chapter 3

Sequence learning

It’s something you learn after
your second theme party, it’s all
been done before.

Prior Walter, Angels in America
[70]

In this chapter, sequence learning is divided in two sections: Recurrent
Neural Networks (RNNs) and Mixture Density Networks (MDNs). RNNs
and their ability to perform sequence prediction is explained. Starting
with vanilla RNNs, their structure and limitations are discussed, including
the problems they face with learning long term structure . This leads to
introducing Long Short-Term Memory Networks (LSTMs), a specialised
RNN unit design that handles long term structure. Mixture Density
Networks (MDNs) can represent conditional probability distributions
just as a commonplace neural net can represent arbitrary functions.
Finally, explaining the need for the combined use of these (in algorithmic
composition) concludes the chapter.

3.1 Recurrent Neural Networks (RNNs)

As the quote suggests, current events may have similar features to previous
ones. So, to see the broader picture of an event, i.e. it’s context or
development, perhaps a good idea is to remember important parts of the
past. This is the concept of recurrent neural nets, RNNs. In all RNNs,
the past is an input to the future. And in some RNNs, the algorithm
has measures for remembering, forgetting and selecting parts of data that
ultimately should be remembered in the future. This way, an RNN can
process sequences, more powerfully than a FNN can do [42, p. 368].

3.1.1 Parameter Sharing

The definition of recurrence is that something is returning or happening
time after time [88]. Examine the classical function for a dynamical system:

23

s(t) = f (s(t−1); θ) (3.1)

The function 3.1 is a recurrent function, since the function at time t refers
back to the same function at time t - 1. Here, the function f is used at every
time step in a sequence from t = 1, ..., τ. The same method takes place in a
RNN; the same formula f is used at every time step, to process a vector x.
The function f use the same set of parameters for every time step [73, p. 20].
This feature is called parameter or weight sharing.

Consider the case of training an FNN to process sentences of fixed
length. The network would have separate weights for each input feature.
Therefore, in each position of the sentence, the net would have to learn
the rules of the language separately. Because the FNN does not master
sequential processing, the net is compelled to learn the rules independently
of the previous computations. In contrast, because the RNN shares the
same weights across several time steps, it can therefore detect rules and
sequences [42, p. 368].

3.1.2 Vanilla RNN

y

RNN

x

Figure 3.1: RNN illustration

In general, a recurrent neural net has a recurrent core, which takes an
input, x, and updates its hidden state, h. This hidden state is then fed back
into the core at the next time step, t, when the next input is fed into the
model. Usually, at a frequent rate, the goal is to get an output, y, from the
RNN [73, p. 19]. The general hidden state function is similar to function
3.1.

h(t) = fW(h(t−1); x(t)) (3.2)

Where:

h(t) current state

h(t−1) previous state

24

fW function with parameters, W

xt input vector at time step, t

Note that the same function, fW , and the same parameters, W, are used
in every step of the computation. In the standard RNN, the hidden state, h,
consists of a single layer, usually a tanh-function [28].

h(t) = tanh(Whhh(t−1) + Whxx(t)) (3.3)

y(t) = Whyh(t) (3.4)

Where:

tanh hyperbolic tangent function, to create non-linearity

Whh weight matrix for previous hidden state

Whx weight matrix for input, x(t)

Why weight matrix to compute output from state h(t)

y(t) output, y, at time, t

Computational graph

In Figure 3.1 the intermediate computations are hidden. To get a clearer
view of the inner workings of the RNN, an unrolled computational graph, as
shown in Figure 3.2 and 3.3, is useful.

h(0) fW h(1) fW h(2) ... h(T)

W

x1 x2

y L

Figure 3.2: Many to one-architecture

Figure 3.2 is an example of a many to one-architecture, in which a new
input, x, is provided at each timestep, t, and the output, y, is computed
at the end of a timeseries. In this case, the loss is computed at time T. In
this architecture, a variably sized input is transformed into a single vector
output. As mentioned, the same weight matrix, W, is used at each time

25

h(0) fW

x

h(1)

y(1) l(1)

fW h(2) ... h(T)

W

y(2) y(T)l(2) l(T)

L

Figure 3.3: One to many-architecthure

step. When computing the gradient for W in backpropagation, δW(t) is
then computed at each time step. The final δW is the sum of the gradients
from t = 0 to t = T. This is used to update W before next forward pass [33].

Figure 3.3 is a one to many-architecture RNN, receiving a fixed size input,
and producing a variably sized output. In this case, the model is making
predictions at each time step and computing intermediate loss, and lastly
summarizing this into a total loss at time T [33].

Sequence modelling

For sequence modelling, used for instance in language translation, both the
input and the output are of variable sizes. This is typically solved by a many
to one-network, followed by a one to many-network. This is also known as
a Encoder-Decoder Network [13] (see Figure 3.4). The many to one-network
receives a variably sized sentence vector and encodes this to a fixed size
output. Then, the one to many-network receives the fixed size input and
decodes this to a new, variably sized sentence vector.

”network” encoder decoder dense ”nettverk”

Figure 3.4: Encoder-decoder network translating from english to norwe-
gian.

3.1.3 Long and short term dependencies

Consider reading a sentence, and then trying to predict the next word.
For instance “I’m writing a master thesis about [blank]”. To fill in the
blank here, only relying on recent information, can prove to be difficult.
The information to finish the sentence may have been given a long time
ago. This exemplifies the difference in short and long term dependencies.

26

RNNs handle short term dependencies, but struggles with long term
dependencies [95]. In practice, the problem a vanilla RNN faces is that
the error tend to vanish or explode in backpropagation. This is due to
the recurrent update of the hidden state, where the weight matrix Whh is
multiplied with the differentiated function for each update of the function
in the backwards pass. This causes the gradient to increase or decrease
exponentially with time when the absolute value of the gradients are less
than or larger than 1, respectively [54, p. 4]. This inspired a new version of
RNNs, called Long Short Term Memory Networks.

3.1.4 Long Short Term Memory Networks (LSTMs)

LSTMs (see Figure 3.5) are a special kind of RNNs, and they are specifically
designed to tackle the long-term dependency problem. In the original
paper, by Sepp Hochreiter and Jurgen Schmidthuber, the authors claim
that “In comparisons with RTRL, BPTT [...], LSTM leads to many more
successful runs, and learns much faster. LSTM also solves complex,
artificial long time lag tasks that have never been solved by previous
recurrent algorithms” [54, p. 1].
RNNs store representations of recent events in form of activations. Storing
recent events is analogous with a short term memory. But, it does not
select what is important to remember, but rather remembers everything.
What an LSTM does is introduce gating functions that can open and close
access to the gradient flow. Thus, allowing the gradient to flow unchanged
upstream, and also selecting what parts of past events that are beneficial
to remember. A long term memory is characterized by slowly changing
weights. An LSTM store recent events, but it does allow the weights to
flow unchanged through time, thus the name Long Short-Term Memory.

Whilst the repeating module in the standard RNN contains a single layer,
the LSTM contains two. These are the cell state and the hidden state. They
are denoted by the following functions, respectively:

c(t) = f � ct−1 + i� s (3.5)

h(t) = o� tanh(c(t)) (3.6)

Cell state

The cell state is where the gradient is allowed to flow unchanged. It has
similar functionality as a conveyor belt. Information can be kept in this
state throughout the recurrent chain, without any losses. Following the
conveyor belt analogy, there are four workers that manipulate the items on
the belt in an LSTM architecture. These are called gating functions.

27

The gating functions

The four gates of an LSTM, and a short summary of their operations are:

Input gate, i Determine quantity of new input to store in cell state.

Output gate, o Determine quantity of current cell state to send to current
hidden state.

Forget gate, f Determine quantity of previous input to remove from cell
state.

Squash gate, s Scaling of new input.

The equations are, respectively:

i(t) = σ(Wi[h(t−1), x(t)] + bi) (3.7)

o(t) = σ(Wo[h(t−1), x(t)] + bo) (3.8)

f (t) = σ(W f [h(t−1), x(t)] + b f) (3.9)

s(t) = tanh(Ws[h(t−1), x(t)] + bs) (3.10)

In the original LSTM, the authors mention a input gate, output gate and a
memory cell. Thus, the update of the cell state was originally as in Equation
3.11 [54, p. 7].

c(t) = ct−1 + i� s (3.11)

The original LSTM’s hidden state is similar to Equation 3.6. In later
years, the name forget gate has also been brought into the vocabulary [42,
p. 405]. The output from the forget gate is multiplied element-wise with the
previous cell state, resulting in the cell state Equation 3.5. This distinction is
also used by the deep learning library Keras [22], which is the library used
in this paper. The last gate, s, is used for squashing the new input before
multiplying it with the input gate. This will be referred to as the squashing
gate, s (Equation 3.10) in this paper.
The forget, input and output gate use sigmoid nonlinearity, and the squash-
ing gate may have any squashing nonlinearity [42, p. 405]. Although, the
most common function to use for all but the squashing gate is the logis-
tic sigmoid function. It is what the Keras library declare as the default for
these functions. This has the best results in the original experiments, as it
is reported that they need no fine-tuning of the initial bias with this choice

28

[54, p. 9]. The choice of a logistic sigmoid for gates that control quantity of
input is also intuitively a logical choice. In the original paper, the hidden
state is updated with a tanh, as in Equation 3.6, and the squash gate is up-
dated with a scaled tanh with range from [−2, 2] [54, p. 24]. But, in the Keras
library, the default functions for both the hidden state and the squash gate
is a regular tanh, and these settings will be used in the experiments of this
paper.

Hidden state

In vanilla RNN, the hidden state is a concatenation of the previous hidden
state and the new input, which is then squashed in a tanh-layer to produce
a new hidden state. But, as seen in Equation 3.6, in an LSTM, the hidden
state is an element-wise multiplication between the output gate and a tanh-
squashed current cell state.

Bidirectional RNN

Both the vanilla RNN and LSTM learn representations from previous time
steps. But, to learn context in a time series, it may sometimes be better to
learn representations from future time steps. As, for instance, in “The bass
must be salted” or “The bass player was ready”, the future representations
give context about the past. This is the motivation behind a bidirectional
RNN (BRNN) [36]. The BRNN process input in both directions, both
forward and backwards. This eventually results in two cell states and two
hidden states for each time series; forward h and c, and backwards h and
c. This kind of architecture is used for the encoder in this thesis. After
processing one sequence, all of the states are added together, before being
applied to the next step of the network.

3.2 Mixture Density Networks (MDNs)

The regular sum-of-squares or cross-entropy loss function mentioned in
Section 2.1.6 outputs conditional averages of the targets (conditioned on the
input data). The outputs often represent probabilities of class membership,
with one class being the true class. This output is a single probability
distribution. The method works well for single-valued output, but has
limited mapping to multi-valued outputs. In the 1994 paper Mixture
Density Networks by Christopher Bishop, the author provides a solution for
multi-valued output situations: “The [...] Mixture Density Network [...]
can in principle represent arbitrary conditional probability distributions in
the same way that a conventional neural network can represent arbitrary
functions” [8].

3.2.1 Mixture Models (MMs)

The MM is a method for optimizing the fit between a statistical model and
the observed data. The statistical model can, for instance be a normal

29

Figure 3.5: Block diagram of an LSTM. The black square indicate a delay
of one time step. X-nodes indicate element-wise multiplication, and the +-
gate indicate addition. The gates use nonlinear functions, defined by the
user.

distribution, in that case the MM will assure normal distributions for
all subgroups in the data set. The mixture density network combines a
mixture density model with a neural network. The outputs from the neural
network determine the parameters for the mixture density model. The
mixture density model then create the conditional pdf for the target values
t, conditioned on the input to the neural net, x [8]. A hyperparameter for
the mixture model is its mixture components. The mixture components are
the number of distributions the MDN assumes that the true distribution
has. Meaning, that the number of mixture components are the number
of distributions the MDN outputs, regardless of the dimensionality of the
input.

As the goal for this thesis is to predict sequences, the MDN is a mixture
density model combined with a recurrent neural network, a MDRNN.
Specifically, a MDRNN layer for Keras [77], created by Martin as part of
work in modelling creative sequences [78, 81], was applied to the existing
VAE model created for this thesis.

A premise for the VAE is to assume that the data is identical
and independently distributed, and that the data points are normally

30

that the components of t are statistically independent, in contrast to the single-Gaussianrepresentation in (11).For any given value of x, the mixture model (22) provides a general formalism for mod-elling an arbitrary conditional density function p(t j x). We now take the various pa-rameters of the mixture model, namely the mixing coe�cients �i(x), the means �i(x)and the variances �i(x), to be general (continuous) functions of x. This is achieved bymodelling them using the outputs of a conventional neural network which takes x as itsinput. The combined structure of a feed-forward network and a mixture model we referto as a Mixture Density Network (MDN), and its basic structure is indicated in Figure 2.By choosing a mixture model with a su�cient number of kernel functions, and a neuralnetwork with a su�cient number of hidden units, the MDN can approximate as closelyas desired any conditional density p(t j x).
neural

network

mixture
model

input
vector

parameter
vector

conditional
probability

density

x

z

p(t |x)

Figure 2: The Mixture Density Network consists of a feed-forward neural network whoseoutputs determine the parameters in a mixture density model. The mixture model thenrepresents the conditional probability density function of the target variables, conditionedon the input vector to the neural network.The neural network element of the MDN can be any standard feed-forward structure withuniversal approximation capabilities. In this paper we consider a standard multi-layerperceptron, with a single hidden layer of sigmoidal units and an output layer of linearunits, and we shall use zj to denote the output variables. Note that the total numberof network outputs is given by (c + 2) �m, as compared with the usual c outputs for a7
Figure 3.6: The mixture density model [8].

distributed [132]. This means that all input sequences (one sequence is one
data point) are assumed to be Gaussian distributions. The encoder will
compress the input into Gaussian representations, and the decoder will
sample from these distributions to recreate the sequences. The Gaussian
representations are called latent vectors, denoted with the letter z, see Figure
3.7.

Figure 3.7: Representation of the conversion from bars to distributions,
with the underlying note vectors. The image is a simplification of the
creation of distributions, as the distributions produced by the VAE-encoder
are multivariate with 64 dimensions.

31

3.2.2 Combining the models

In the context of music generation, an MDN can be used to predict a
sequence of real valued-representations of musical events. Martin et al.
[81] used an MDRNN to model sequences of musical control instructions,
but we seek to generate sequences of musical notes. In the next chapter,
we discuss variational autoencoders, which provide a method to encode
a bar of musical notes into compressed representations as a real-valued
vector, called z-vectors . Sequences of these vectors can be predicted by
an MDRNN to compose music as follows: a dataset for the MDRNN is
created by inferring z-vectors for all songs in the dataset (in this case,
the minimum song length was set to ≥ 16 bars). The z-vectors are then
saved for each song (see Figure 3.8a). After this procedure, the MDRNN is
trained to predict the next zn+1 given zn (Figure 3.8b). After finishing this
process, the mixture density network can predict songs, bar by bar, only
being conditioned on one z0 in the start of a sequence (see Figure 5.11).

(a)

(b)

Figure 3.8: Illustration of the creation of a dataset for the MDRNN (figure
a), and the mixture density network composer in MCVAE (Figure b).

32

Chapter 4

Generative modelling

“Stories”, he’d said, his voice
low and almost husky, “we are
made up of stories. And even
the one’s that seem the most like
lies can be our deepest hidden
truths”.

Stan, Briar Rose [138]

This chapter elaborates on the two state-of-the-art methods for gener-
ative modelling that exist today; GANs and VAEs. Explaining the differ-
ence between explicit (VAEs) and implicit (GANs) probabilistic models,
and how the models can update their knowledge about the true data dis-
tributions. GANs main building blocks and its strengths and weaknesses
are addressed. Then follows an in-depth section on the VAE concepts and
optimization method. Lastly, a few weaknesses in the VAE along with pro-
posed solutions of disentanglement and dropout is introduced.

The goal for a generative model is to learn the true distribution of a data set,
to be able to produce new data points with some variations. The generative
models parameters should be fewer than the training data points, because
this will force the model to discover the essence of the data, in order to
generate it. The true distribution of the data may be intractable. Therefore,
the approach for a generative model is to model a distribution of data
that is as close as possible to the true distribution. In a broader context,
generative models may provide a framework for artificial intelligence, “for
all the many different intuitive concepts they need to understand, giving
them the ability to reason about these concepts in the face of uncertainty”
[42, p. 716].

4.1 Inference in probabilistic models

A probabilistic model estimates, on basis of historical data, the probability
of an event occurring again [16]. Inference is “a conclusion or opinion
that is formed because of known facts or evidence” [87]. In machine

33

learning, ANNs can perform inference after they have been trained. During
inference, the network is fed new input, and draws conclusions about
this input based on knowledge attained during training. Inference in a
probabilistic model is concerned with two questions [31]:

Marginal inference Infer the probability of a given variable, after
summing everything else out.

Max a posteriori inference (MAP). Assign the most likely label to a
variable in the model.

Inference can very often be a NP-hard problem, meaning that the time
it takes to find a solution grow exponentially with the problem size [130].
The tractability of the inference depends on the structure of the probability
graph. But, even if a problem is intractable, approximate inference can
get useful answers [31]. There exist many approximate inference methods,
examples are Laplace approximation and variational inference [109]. The
variational autoencoder (VAE) use variational inference.

In the next sections, the variations of probabilistic models and which
methods they use for updating their representations of true data is
elaborated, before going into detail on the building blocks of GANs and
VAEs.

4.1.1 Directed and undirected probabilistic models

Directed probabilistic models, or directed graphical models is a structured
probabilistic model, also known as a belief networks or Bayesian networks
[42, p. 560]. The variational autoencoder seeks to solve the inference
problem in directed graphical models [132]. The name directed indicate
that the models edges are directed, and the direction is represented with
an arrow. These models are relevant when there is a clear reason to point
to a direction. These are often situations where the causality is understood,
and it is pointing in only one direction. The arrow indicate which variable’s
distribution is defined by other variables’ distributions. Drawing an arrow
from a to b means that b’s distribution is conditioned on a. Going from left
to right, a variable pointing to another is the parent of this variable. And a
variable being pointed to is the child [56].

Figure 4.1: Directed graphical model.

34

The directed graphical model in Figure 4.1, model the likelihood for
taking part in a meeting, depending on the delay in public transport. The
delay in public transport is again depending on two independent variables;
traffic and personnel. The full joint probability is:

P(T, P, D, M) = P(T) · P(P) · P(D|T, P) · P(M|D) (4.1)

In undirected probabilistic models the direction between events is not
clear, or may be going in both directions [42, p. 563]. The difference
between a directed and undirected graphical model is important when
defining the joint probability that the graph can represent. But, for
inference, it’s generally common to have a specified fixed probability
distribution, which renders the difference between these models less
important [128].

4.1.2 Implicit and explicit models

There is a convenient distinction between two types of probabilistic
models; prescribed or explicit models and implicit models [92]. Explicit
models contribute an explicit parameterization of the distribution of a
random variable x, with parameters θ and log-likelihood function log qθ(x).
The majority of machine learning models are explicit. The alternate implicit
models define stochastic procedure that generates data directly. There exist
many different methods for generative modelling, but among todays most
popular methods are VAEs and GANs [64]. Using the distinction between
explicit and implicit models, a VAE falls under the category explicit, and
GAN under the category implicit (see Figure 4.2).

Figure 4.2: Overview of generative models, from Ian Goodfellows NIPS
tutorial in 2016 [39].

35

4.2 Measuring difference between distributions

The VAE makes a prior assumption of the distribution of the true data,
draws samples from real data, and then adjust the parameters of the prior
distribution [132]. While the GAN creates data from noise, compare this
with real data, and then adjust its method for generating new data [41].
Thus, both VAEs and GANs needs methods for quantifying the difference
between the generative data and the true data distribution. GANs typically
use either Jensen Shannon-divergence or Wasserstein distance, while VAEs
moreoften use Kullback-Liebler divergence.

4.2.1 Information entropy

Entropy, in thermodynamics, is defined broadly as “the degree or disorder
of uncertainty in a system” [86]. One can consider the level of motion in
water molecules, in the three states of water; solid, liquid and gas. When
water is in solid form, the water molecules stand still in a rigid structure
- therefore this structure has low entropy. When water turns to liquid,
the molecules have more positions to move between, giving this structure
higher entropy. When water is a gas, the molecules can move almost
everywhere - thus this state has high entropy.

The mathematician Claude Shannon introduced the term “entropy of
an information source” in 1948 [117]. It is a definition of the entropy of a
random variable. This is the measure of the uncertainty associated with the
random variable. Beneath is the entropy function for multiple classes:

H(X) = −
n

∑
i=1

pi · logb(pi) (4.2)

Shannon also defined the entropy for a joint distribution H(X,Y).

Figure 4.3: Joint distribution of X and Y.

H(X, Y) = −
i=1

∑
n

j=1

∑
m

P(xi, yj) · logb(P(xi, yj)) (4.3)

Equations 4.2 and 4.3 yield common methods for measuring the dis-
tance between two distributions, namely the Kullback-Liebler divergence

36

and the Jensen-Shannon divergence. These distance measurements are
used as loss functions in generative models.

4.2.2 Kullback-Liebler divergence (KL)

Kullback-Liebler divergence is also known as cross entropy [119].

KL(P||Q) =
n

∑
i=1

P(x) · log
P(x)
Q(x)

= H(P, Q)− H(P) (4.4)

H(P, Q) is the joint entropy of the probability distributions and H(P) is
the entropy of probability distribution P. The Kullback-Liebler divergence
is a non-symmetric measure of the difference between two distributions.

Forward and reverse KL divergence

The description non-symmetric in the KL definition mean that the order
of the operators matter. Meaning that KL(P||Q) 6= KL(Q||P). To
optimize and reduce the difference between two distributions, one would
assume a true distribution P(X), and optimize an approximate distribution
Q(X). In this case, there are two ways to optimize. One is from the
true distribution to the approximate - forward. The second is from the
approximate distribution to the true - reverse [9].

Forward KL divergence.

In the exemplified case, Equation 4.5 define the forward situation.

Figure 4.4: Approximating a distribution [67].

KL(P||Q) =
n

∑
i=1

P(x) · log
P(x)
Q(x)

= H(P, Q)− H(P) (4.5)

37

In this case, P(x) is the weight of the divergence. Meaning that when
P(x) = 0, the divergence is zero. This way, when optimizing the difference
between two distributions as in Equation 4.4, the error for the divergence
will be the smallest around P(x) = 0. Conversely, when P(x) > 0, the
log P(x)

Q(x) plays an important role in the divergence. This method leads to
Q(x) averaging over the entire space of P(x). Forward KL divergence is
also known as zero avoiding, because it avoids Q(x) = 0 when P(x) > 0
[67]. This leads to the approximation seen in Figure 4.5.

Figure 4.5: Forward approximation [67].

Reverse KL divergence.

In reverse KL divergence, the order in the KL function is reversed.

KL(Q||P) =
n

∑
i=1

Q(x) · log
Q(x)
P(x)

= H(Q, P)− H(Q) (4.6)

This yields the opposite result. Here, Q(x) is the weight of the
divergence. Parts of P(x) can be ignored, when Q(x) = 0. When Q(x) > 0,
the difference between the two distributions must be as low as possible.
In this case, the end result of the optimization would be as in Figure 4.4.
Although parts of P(x) is overlooked, Q(x) fit parts of the true distribution
with higher precision, than by averaging the entire true distribution. This
method is called zero forcing, as it forces Q(x) to be zero on some parts of
P(x) [67].

4.2.3 Jensen-Shannon divergence (JS)

The Jensen-Shannon divergence is a symmetrized and smoothed version of
the KL-divergence.

Where R = 0.5 · P + Q denotes the midpoint between P and Q.
This method was originally used for optimizing Generative Adversarial

38

JS(P||Q) = 0.5 · (KL(P||R) + KL(Q||R)) (4.7)

Networks (see Section 4.3), but a recent research in GAN-optimization
suggest that the Wasserstein distance is a better method [6] for this network.

4.2.4 Wasserstein distance (W)

The Wasserstein distance is a measure of the distance between two
probability distributions. It is also known as Earth-Mover (EM) distance,
because the distributions can be interpreted as piles of dirt, and EM
measures how many shovelfuls of dirt that needs to be moved [133].

Consider the example below of two, discrete distributions, P and Q.

Figure 4.6: Moving dirt between piles to make them match [133].

Moving from left to right, each pile is compared and aligned. For
(P1, Q1), two blocks are moved from P1 → P2. For (P2, Q2), two blocks
are moved from P2 → P3. For (P3, Q3), one block is moved from Q3 → Q4.
In 2017, Martin Arjovsky et. al suggested that the Wasserstein distance is
a better method for optimizing Generative Adversarial Networks than the
original Jensen-Shannon divergence [6]. See Section 4.3.6.

4.3 Generative Adversarial Networks (GANs)

A GAN is an implicit probabilistic model, developed by Ian J. Goodfellow
et.al, based on game theory. The method consist of two players, and the
goal is for the players to reach a Nash equilibrium. Nash equilibrium is
where each player in a game has a set of strategies, and no incentive to
change their strategy, given what the opposite player is doing. This means
that the players have no benefit in changing their strategy, and thus don’t
[101].

39

4.3.1 The generative and discriminative models

In a GAN, two models are trained simultaneously; a generative model, G,
and a discriminative model, D. For example, the goal is to create music
with this network. The generative model is seeded with random noise,
and outputs examples of songs. The discriminative model is fed both the
samples from model G, and samples from a dataset of real songs, and its
purpose is to classify whether the sample it is evaluating is real or fake.

Figure 4.7: Flowchart of a GAN.

Both models are trained with backpropagation. During backpropaga-
tion, G’s incentive is to maximize the probability that D classifies incor-
rectly. And D’s motivation is the opposite. The authors of the original
GAN-paper explain the procedure like this: “The generative model can be
thought of as analogous to a team of counterfeiters, trying to produce fake
currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency.” [41].

4.3.2 Latent variable interpolation

In general, probabilistic models are modelled as a collection of observable
(x), and hidden, or latent (z) variables [59]. Both GANs and VAEs use
latent variables to downsample the true data distribution. For a VAE, input
data is transformed into latent variables, and then mapped from these
latent variables back to the true data distribution. The GAN use latent
variables to map from noise into true data. With the GAN, mapping is done
with the generator. While in the VAE, mapping is done with a decoder (see
Section 4.4.4).

40

The model DCGAN [103] from 2016, by Alan Radford and Luke Metz,
show one example on latent variable interpolation on bedroom images (see
Figure 4.8). The example show that with interpolating between different
representations of bedrooms, all transitions appear plausible.

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Figure 4.8: Bedroom interpolation in DCGAN [103].

The same paper also show that feature extraction is possible, by
performing vector arithmetic on features (see Figure 4.8). The example
show that the model harnesses features like “glasses”, “woman” and
“man”, by being able to subtract man from an image of a man with glasses,
and then adding a woman instead.

4.3.3 MidiNet

In 2016, a team from DeepMind at Google presented an autoregressive
method for music generation in raw audio domain. The model was Net, a
speech generator conditioned on text [97]. The network used convolutional
neural networks, showing that CNNs can be used on temporal data. The
team also trained the WaveNet to create music, stating “Since WaveNets
can be used to model any audio signal, we thought it would also be fun

41

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

Figure 4.9: Feature extraction in DCGAN [103].

to try to generate music” [96]. The network was trained on raw audio, and
created melodies in raw audio domain. This method inspired another team,
at Research Center for IT innovation in Taiwan, to try GANs for music
creation in the symbolic domain. They released the model MidiNet in 2017,
approximately a year after WaveNet [136]. The model is trained to produce
music, bar by bar, in the symbolic domain. MidiNet was compared with
three generative RNN models from Googles Magenta project MelodyRNN
[127]: 1. Baseline model, 2. Lookback model, 3. Attention model. 21
subjects with musical background was asked to listen to three sets of
music. They were asked to evaluate how pleasing, interesting and realistic
the music was, on a Likert-type scale. The results showed that MidiNet
produced equally pleasing and realistic music as the comparative RNN
models, but the music did appear to be more interesting.

4.3.4 Mode collapse

Despite GANs impressive results in both image and music creation, the
model have two dominant disadvantages, that still is a subject for research.
These are mode collapse and unstable training. Mode collapse is a situation
that may arise during training. That is when the generator produce similar
outputs with very small diversity. It still manages to fool the discriminator,
but it fails to learn to represent the whole data distribution.

4.3.5 Unstable training

Goodfellow has commented on the unstable traning of GANs. Gradient
descent does not guarantee finding the Nash equilibrium. “Sometimes
gradient descent does this, sometimes it doesn’t”, he states [40]. Meaning
that training a GAN is relatively hard, as there is no guarantees that the
Nash equilibrium is found. Salimans et.al. have discussed this further in
Improving Techniques for training GANs.

42

They exemplify the problem of finding Nash equilibrium in a non-
cooperative game.

For example, when one player minimizes xy with respect to x
and another player minimizes -xy with respect to y,
gradient descent enters a stable orbit, rather than converging to
x = y = 0 [110].

Illustrated, this gives:

f0(x) = xy

f1(x) = −xy

Where f0(x) change x to minimize xy, and f1(x) change y to minimize
-xy. Their derivatives are:

δ f0(x)
δx

= y

δ f1(x)
δy

= −x

f0(x) is updated with x − η · y and f1(x) is updated with y − η · x in
each iteration, where η is the learning rate. When x and y have different
signs, the gradient updates cause oscillations that increase over time [133].

Figure 4.10: Oscillating gradients in GAN [133].

4.3.6 Wasserstein distance to avoid mode collapse

Martin Arjovsky et.al. investigate the benefits of using Wasserstein
distance instead of Jensen-Shannon divergence in the paper Wasserstein
GAN [6]. They explore a setting where both probability distributions P
and Q are disjoint.

∀(x, y) ∈ P, x = 0 and y ∼ U (0, 1) (4.8)

In this case, there is no overlap between the distributions when θ 6= 0
(see Figure 4.11). In that case, Kullback-Liebler goes towards infinity and

43

∀(x, y) ∈ Q, x = θ, 0 ≤ θ ≤ 1 and y ∼ U (0, 1) (4.9)

Jensen-Shannon is not differentiable in θ = 0. But, the Wasserstein function
provides a smooth computation, which is necessary for a stable update of
the gradients [133].

Figure 1: These plots show ρ(Pθ,P0) as a function of θ when ρ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,Pθ) is a continuous loss function on θ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z × Rd → X be a function, that will
be denoted gθ(z) with z the first coordinate and θ the second. Let Pθ denote the
distribution of gθ(Z). Then,

1. If g is continuous in θ, so is W (Pr,Pθ).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,Pθ)
is continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,Pθ) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let gθ be any feedforward neural network4 parameterized by θ, and
p(z) a prior over z such that Ez∼p(z)[‖z‖] < ∞ (e.g. Gaussian, uniform, etc.).

3 The argument for why this happens, and indeed how we arrived to the idea that Wasserstein
is what we should really be optimizing is displayed in Appendix A. We strongly encourage the
interested reader who is not afraid of the mathematics to go through it.

4By a feedforward neural network we mean a function composed by affine transformations and
pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,
softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more
technical (even though very similar) so we omit it.

5

Figure 4.11: W-distance (left) and JS-divergence (right) for ρ(Pθ , P0) as a
function of θ. W-distance is continuous, while JS has a sudden jump in
θ = 0.

In their results, Wasserstein seems to give a more stable optimization.
They also state that in “no experiment did we see evidence of mode
collapse for the WGAN algorithm.”

4.4 Autoencoders

An autoencoder is a neural network whose goal is to recreate its input,
while learning useful information about the input dataset [42, p. 499]. It is
sometimes referred to as a unsupervised learning algorithm, as the input
does not come with an expected target value. But, since the target value
is the same as the input, the more precise label for this network is a self-
supervised algorithm [21].

An autoencoder consists of three parts: an encoder, a latent code and a
decoder. Depending on the motivation behind the autoencoder, the latent
code may have smaller or larger dimensionality than the input and output
layers [42, p.500-501].

Figure 4.12: General representation of autoencoder.

In general, the encoder alters the dimensionality of the input, di, to a
fixed size vector, or latent space representation with dimension dl . Then,

44

the decoder reconstructs the input based on this latent space. The only
requirement for an autoencoder is that the output dimension is the same as
the input dimension [27].

Latent space dimensionality

In an undercomplete autoencoder, dl < di, the latent space captures the most
noticeable features of the training data. While in a regularizing autoencoder,
dl > di, the network is encouraged to learn other properties than the ones
required to copy input to output. These properties are for instance the
sparsity of the representation, smallness of the derivatives, robustness to
noise and missing inputs [42, p. 501].

4.4.1 Variational autoencoders

While an autoencoder maps the input to a fixed vector, a variational
autencoder maps the input to a distribution. The idea of variational
autoencoders was first published by Diedrik P. Kingma and Max Welling
in 2014, with the title Auto-Encoding Variational Bayes [132]. The authors ask
the question:

How can we perform efficient inference and learning in directed
probabilistic models, in the presence of continuous latent
variables with intractable posterior distributions, and large
datasets?

Prior and posterior probability

A prior probability is a subjective estimate, before any experiments has
been made. The posterior probability is the probability of an event
happening, after all the evidence is taken into account [74, p. 101]. When
modelling real-world data, the posterior distribution may be too complex
to model. Therefore the posterior distribution is intractable. The question
asked by Kingma and Welling is then; how can we learn and draw
conclusions about a system that is too complex to model precisely?

4.4.2 Inference as an optimization method

The method used for variational autoencoders is known as Mean-Field
Approximation or Variational lower bound [59]. This method rewrites a
statistical inference problem to an optimization problem. The idea is to
perform inference on a set of known distributions, Q, all with a fixed
set of parameters, (µ, σ2), to find the q ∈ Q that is most similar to the
true distribution p [69]. Then, it is possible to get approximate solutions
by querying q instead of p. Adjusting the parameters of q is done by
sampling from the true distribution p, and updating the parameters (µ, σ2)
of q, in a method called Bayesian inference. Bayesian inference is the
method of updating a hypothesis as more evidence come to light [11]. The
parameters are updated applying reverse Kullback Liebler divergence (see

45

Section 4.2.2) [67]. The many unknown distributions are all assumed to be
Gaussian for real-valued data, both pθ(z), pθ(x|z), pθ(z|x) and qφ(z|x) [59].
Note that since pθ(x) is intractable, the posterior distribution pθ(z|x) is also
intractable, and therefore qφ(z|x) is used as an approximation instead [72,
p. 68].

4.4.3 Latent variables

In an encoder/decoder-network, the hidden variables are the latent ones,
and the observable are the input and output. The latent variables hold
information about the different features for the output. Table 4.1 display
different features for describing music. In addition to the notes themselves,
music holds information that may be difficult to describe in a discrete
manner.

Feature Related term
Rhythm beat, meter, tempo, syncopation, polyrythm
Dynamics crescendo, descendo, forte, piano, etc
Melody pitch, range, theme
Harmony chord, progression, key, tonality, consonance, dissonance
Tone color register, range
Texture monophonic, polyphonic, homophonic
Form binary, ternary, strophic, etc

Table 4.1: Musical features [58] that could be learned by a VAE. We might
expect that the latent space would represent some of these features.

4.4.4 VAE optimization

The method for optimizing in a VAE is visualized as a two part system (see
Figure 4.13), like the autoencoder.

Figure 4.13: Graphical model of variational autoencoder. The dashed lines
indicate the variational approximation, and the solid lines indicate the
generative process.

46

Explained in autoencoder terms, the two processes are:

Encoder - variational approximation qφ(z|x) to true posterior, pθ(z|x)
[72, p. 71]. Parameters are called variational parameters, with
notation φ.

Decoder - generative model, pθ(x|z) [72, p. 71]. Generates outputs,
x, from latent vectors z. Parameters are called generative
parameters, with notation θ.

Figure 4.14: Visualization of the encoder and decoder network in a
variational autoencoder.

4.4.5 The variational lower bound

The variational autoencoder seek to maximize the log likelihood of data
point x, log pθ(x). In Equation 4.10, Bayes’ rule is used to rewrite pθ(x).
This is used to represent the data likelihood in Equation 4.11 [72, p. 82].

pθ(x|z) = pθ(x) · pθ(z|x)
pθ(z)

pθ(x) =
pθ(x|z) · pθ(z)

pθ(z|x)

(4.10)

The two first terms on the right hand side is what’s known as the
variational lower bound, or evidence lower bound, ELBO [59]. Rewriting
the function, for clarity:

The log likelihood of data point x is thus described by two parts:

47

log pθ(x) = Ez ∼ qφ(z|x)[log pθ(x(i))]

= Ez[
log pθ(x|z) · pθ(z)

pθ(z|x)
]

= Ez[
log pθ(x|z) · pθ(z)

pθ(z|x)
·

qφ(z|x)
qφ(z|x)

]

= Ez[log pθ(x|z)]− Ez[log
qφ(z|x)
pθ(z)

] + Ez[log
qφ(z|x(i))
pθ(z|x)

]

= Ez[log pθ(x|z)]− DKL(qφ(z|x)||pθ(z))
+ DKL(qφ(z|x)||pθ(z|x))

(4.11)

log pθ(x) = L+ DKL(qφ(z|x)||pθ(z|x)) (4.12)

Part 1: Ez[log pθ(x|z)]− DKL(qφ(z|x)||pθ(z)):
the variational lower bound, L. The expected value of the output
from the generative model is the reconstruction accuracy. This,
minus the distance between the approximated conditional z and
the prior z, is the lower bound. Both these distributions are
Gaussians, so this KL divergence has a closed form-solution [72,
p. 79].

Part 2: +DKL(qφ(z|x)||pθ(z|x)):
The distance between the approximated conditional z-distribution
and the true conditional z-distribution. The approximated (z|x) is
a Gaussian, while the true distribution is intractable. Therefore,
this term is not computable.

As KL divergence always is ≥ 0, this leads to L ≤ log pθ(x). Because
of this, L is named the lower bound on the solution. The variational lower
bound is the limit to how close the prior distribution can get to the posterior
distribution. As the difference between the lower bound and the data log
likelihood is the KL divergence between the true and the approximated
conditional z-distribution, this means that L = log pθ(x), if (and only if)
the distributions are equal [137].

4.4.6 The reparameterization trick

As the last KL term in 4.12 is intractable and not computable, the goal is
to maximize L [72, p. 79]. By maximizing the lower bound, the likelihood
of the data points increase. The KL divergence in the lower bound can
be integrated analytically, so that only the reconstruction error has to be
estimated by sampling [132]. But, the prior z is stochastic (sampled from
a Gaussian), meaning that it is changing with every iteration, regardless
of the input. Using a fixed input, presented to the network through
many iterations would still give various outputs. It is as sending a clear

48

signal through a noisy channel. A fully stochastic node like this is not
differentiable.

Figure 4.15: Graphical model of stochastic node.

Reparameterization is the method of rewriting statistical problems. It
means to define a new function that describes the original function with
new parameters [134]. A subset of reparameterizing tricks is to substitute
a variate by a deterministic transformation of a simpler variate [91].
These transformations involve combining the parameters of the desired
distribution with a base distribution, p(ε), where ε is easy to sample from
the distribution. Combining the parameters, and this ε, gives the desired
distribution, p(z). Specifically, for a Gaussian distribution [91]:

p(z; θ) Base p(ε) Rewritten as
N (µ; σ2) ε ∼ N (0; 1) µ + σ� ε

Table 4.2: Reparameterizing a Gaussian distribution

The lower bound function for datapoint x(i) is as seen in Equation 4.13
[132]:

L(θ, φ; x(i)) '1
2

J

∑
j=1

(1 + log((µ(i)
j)2)− (σ

(i)
j)2 − (µ

(i)
j)2)+

1
L

L

∑
l=1

log pθ(x(i)|z(i,l)) (4.13)

where z(i,l) = µ(i) + σ(i) � ε(l) and ε(l) ∼ N (0, I).

49

Figure 4.16: Graphical model of deterministic node.

The first RHS term is the analytic integration of the KL divergence, and
the second term is the reparameterized sample of expected output. The
symbol ”'” describe that the LHS and RHS are homotopically equivalent.
This means that one mathematical object can be continuously transformed
into the other, and is an implication of the reparameterization [129].

4.4.7 Disentangled variational autoencoder

Recent research [15] has been looking into the information bottleneck of
the variational autoencoder, and ways to optimize it. When optimizing
the lower bound, KL-divergence is zero when qφ(z|x) = pθ(z), meaning
that µi = 0 and σi = 1, ∀i. This means that the latent channels are
forced to encode all data points with µ = 0 and σ = 1 . The way to
increase the capacity of the latent channels is by scattering the means for the
datapoints, or decreasing the standard deviations, but this leads to a higher
KL-divergence. This bottleneck enforce an embedding in which adjacency
in latent space implies adjacency in data space. On the other hand, this
may lead to overlapping encoded distributions that will give a higher cost
on the log-likelihood, due to reduced discriminability.

The mentioned study propose that a the KL-term alone puts too little
pressure on enforcing this adjacency constraint. With a high KL-term, they
postulate that only information about the data points that give significant
improvement in log-likelihood is encoded.

γ · |DKL(qφ(z|x)||pθ(z)− C| (4.14)

50

The authors suggest a flexible KL-term (see equation 4.14), annealing its
value from a large value to a smaller one during optimization. The C is a
selected KL-divergence value, while γ is the weight of the KL-penalty. This
method force the latent space to first encode the most important features,
and then slowly adding features that improve reconstruction accuracy.
The results from their experiments show that this method encode more
information, and produce a smoother latent dimension.

4.4.8 Posterior collapse

In RNN autoencoders, the decoder model may have so many neurons
that it learns to memorize the entire training set. This means that it can
reproduce sequences, independent of the latent vector, and thus ignore the
latent vector. This is what’s known as the posterior collapse [104]. A proposed
solution is to introduce a lossy representation of the data [19]. For LSTMs,
dropout on the internal gates, and not the cell state, has seemingly the best
results [20].

4.4.9 Summary

This chapter gives an overview of today’s state-of-the-art models for
generative modelling, namely GANs and VAEs. The core strengths and
weaknesses for both models are mentioned. In the remainder of the thesis,
the focus will be on the VAE method applied to the problem of well-
structured musical composition.

51

Chapter 5

Methods

We cannot predict the future,
but we can invent it.

Dennis Gabor [24, p. 210]

In this chapter, the three main inspirations for the thesis’ novel
architecture are explained. Disclosed chronologically, two VAE models
from Google Brain are first discussed, then the World Model. Lastly,
the novel architecture Mixture Composer VAE or MCVAE is explained,
visualized, and its choice of hyperparameters justified.

The solution used in this thesis builds on three existing machine learning
frameworks; SketchRNN and MusicVAE from the Google Brain Team, and
David Ha and Jürgen Schmidhuber’s World Model. In 2017 and 2018,
the Google Brain Team produced SketchRNN and MusicVAE, two VAE-
architectures for generative sequence modeling that combined outlines the
VAE architecture applied in this thesis. In MusicVAE, the authors seek to
improve the formal VAE’s ability to predict long term sequences, by adding
a hierarchical ”conductor” RNN between the latent layer and the decoder
(see Figure 5.3).

In this thesis, a novel solution to the hierarchical composer network
is proposed (see Figure 5.11), by exchanging the RNN composer with
a MDRNN. This idea stems from Ha and Schmidhuber’s World Model
(Figure 5.6), in which a reinforcement learning system use a MDRNN to
predict latent vector representations of the ”real world” environment the
agent operates in. The novel solution in this thesis is named MCVAE.

5.1 SketchRNN

SketchRNN originates from the paper A Neural Representation of Sketch
Drawings by David Ha and Douglas Eck (2017) [46]. SketchRNN is
constructed as a one layer bidirectional RNN-encoder (see Figure 5.1), and
a one layer unidirectional RNN-decoder (Figure 5.2). The layers are of
size 512 and 2048, respectively, and the latent layer is size 128. They

52

use a Gaussian Mixture Model on the decoder output, that takes the
softmax output, y, and a temperature parameter, T that affects the softmax
sampling, when creating the next data point. The sampled z from the
encoder, and a ”start of sequence”-token is concatenated as input to the
decoder. The sampled z is also squashed through a tanh-gate to initialize
the hidden states and cell states in the decoder.
3.2 Sketch-RNN

Figure 2: Schematic diagram of sketch-rnn.

Our model is a Sequence-to-Sequence Variational Autoencoder (VAE), similar to the architecture
described in [2, 15]. Our encoder is a bidirectional RNN [21] that takes in a sketch as an input, and
outputs a latent vector of size Nz . Specifically, we feed the sketch sequence, S, and also the same
sketch sequence in reverse order, Sreverse, into two encoding RNNs that make up the bidirectional
RNN, to obtain two final hidden states:

h→ = encode→(S), h← = encode←(Sreverse), h = [h→ ; h←] (1)
We take this final concatenated hidden state, h, and project it into two vectors µ and σ̂, each of size
Nz , using a fully connected layer. We convert σ̂ into a non-negative standard deviation parameter
σ using an exponential operation. We use µ and σ, along with N (0, I), a vector of IID Gaussian
variables of size Nz , to construct a random vector, z ∈ RNz , as in the approach for a VAE [15]:

µ = Wµh+ bµ, σ̂ = Wσh+ bσ, σ = exp
(σ̂

2

)
, z = µ+ σ �N (0, I) (2)

Under this encoding scheme, the latent vector z is not a deterministic output for a given input sketch,
but a random vector conditioned on the input sketch.

Our decoder is an autoregressive RNN that samples output sketches conditional on a given latent
vector z. The initial hidden states h0, and optional cell states c0 (if applicable) of the decoder RNN is
the output of a single layer network: [h0 ; c0] = tanh(Wzz + bz)

At each step i of the decoder RNN, we feed the previous point, Si−1 and the latent vector z in as
a concatenated input xi, where S0 is defined as (0, 0, 1, 0, 0). The output at each time step are the
parameters for a probability distribution of the next data point Si. In Equation 3, we model (∆x,∆y)
as a Gaussian mixture model (GMM) with M normal distributions as in [1, 6], and (q1, q2, q3) as
a categorical distribution to model the ground truth data (p1, p2, p3), where (q1 + q2 + q3 = 1) as
done in [7] and [26]. Unlike [6], our generated sequence is conditioned from a latent code z sampled
from our encoder, which is trained end-to-end alongside the decoder.

p(∆x,∆y) =
M∑

j=1

Πj N (∆x,∆y | µx,j , µy,j , σx,j , σy,j , ρxy,j), where
M∑

j=1

Πj = 1 (3)

N (x, y|µx, µy, σx, σy, ρxy) is the probability distribution function for a bivariate normal distribution.
Each of the M bivariate normal distributions consist of five parameters: (µx, µy, σx, σy, ρxy), where
µx and µy are the means, σx and σy are the standard deviations, and ρxy is the correlation parameter of
each bivariate normal distribution. An additional vector Π of length M , also a categorical distribution,
are the mixture weights of the Gaussian mixture model. Hence the size of the output vector y is
5M +M + 3, which includes the 3 logits needed to generate (q1, q2, q3).

The next hidden state of the RNN, generated with its forward operation, projects into the output
vector yi using a fully-connected layer:

xi = [Si−1 ; z], [hi ; ci] = forward(xi, [hi−1 ; ci−1]), yi = Wyhi+by, yi ∈ R6M+3 (4)
The vector yi is broken down into the parameters of the probability distribution of the next data point:

[(Π̂1 µx µy σ̂x σ̂y ρ̂xy)1 ... (Π̂1 µx µy σ̂x σ̂y ρ̂xy)M (q̂1 q̂2 q̂3)] = yi (5)

3

Figure 5.1: SketchRNN encoder architecture, reproduced from [46]

3.2 Sketch-RNN

Figure 2: Schematic diagram of sketch-rnn.

Our model is a Sequence-to-Sequence Variational Autoencoder (VAE), similar to the architecture
described in [2, 15]. Our encoder is a bidirectional RNN [21] that takes in a sketch as an input, and
outputs a latent vector of size Nz . Specifically, we feed the sketch sequence, S, and also the same
sketch sequence in reverse order, Sreverse, into two encoding RNNs that make up the bidirectional
RNN, to obtain two final hidden states:

h→ = encode→(S), h← = encode←(Sreverse), h = [h→ ; h←] (1)
We take this final concatenated hidden state, h, and project it into two vectors µ and σ̂, each of size
Nz , using a fully connected layer. We convert σ̂ into a non-negative standard deviation parameter
σ using an exponential operation. We use µ and σ, along with N (0, I), a vector of IID Gaussian
variables of size Nz , to construct a random vector, z ∈ RNz , as in the approach for a VAE [15]:

µ = Wµh+ bµ, σ̂ = Wσh+ bσ, σ = exp
(σ̂

2

)
, z = µ+ σ �N (0, I) (2)

Under this encoding scheme, the latent vector z is not a deterministic output for a given input sketch,
but a random vector conditioned on the input sketch.

Our decoder is an autoregressive RNN that samples output sketches conditional on a given latent
vector z. The initial hidden states h0, and optional cell states c0 (if applicable) of the decoder RNN is
the output of a single layer network: [h0 ; c0] = tanh(Wzz + bz)

At each step i of the decoder RNN, we feed the previous point, Si−1 and the latent vector z in as
a concatenated input xi, where S0 is defined as (0, 0, 1, 0, 0). The output at each time step are the
parameters for a probability distribution of the next data point Si. In Equation 3, we model (∆x,∆y)
as a Gaussian mixture model (GMM) with M normal distributions as in [1, 6], and (q1, q2, q3) as
a categorical distribution to model the ground truth data (p1, p2, p3), where (q1 + q2 + q3 = 1) as
done in [7] and [26]. Unlike [6], our generated sequence is conditioned from a latent code z sampled
from our encoder, which is trained end-to-end alongside the decoder.

p(∆x,∆y) =
M∑

j=1

Πj N (∆x,∆y | µx,j , µy,j , σx,j , σy,j , ρxy,j), where
M∑

j=1

Πj = 1 (3)

N (x, y|µx, µy, σx, σy, ρxy) is the probability distribution function for a bivariate normal distribution.
Each of the M bivariate normal distributions consist of five parameters: (µx, µy, σx, σy, ρxy), where
µx and µy are the means, σx and σy are the standard deviations, and ρxy is the correlation parameter of
each bivariate normal distribution. An additional vector Π of length M , also a categorical distribution,
are the mixture weights of the Gaussian mixture model. Hence the size of the output vector y is
5M +M + 3, which includes the 3 logits needed to generate (q1, q2, q3).

The next hidden state of the RNN, generated with its forward operation, projects into the output
vector yi using a fully-connected layer:

xi = [Si−1 ; z], [hi ; ci] = forward(xi, [hi−1 ; ci−1]), yi = Wyhi+by, yi ∈ R6M+3 (4)
The vector yi is broken down into the parameters of the probability distribution of the next data point:

[(Π̂1 µx µy σ̂x σ̂y ρ̂xy)1 ... (Π̂1 µx µy σ̂x σ̂y ρ̂xy)M (q̂1 q̂2 q̂3)] = yi (5)

3

Figure 5.2: SketchRNN decoder architecture, reproduced from [46]

53

5.2 MusicVAE

MusicVAE stems from the paper A Hierarchical Latent Vector Model for
Learning Long-Term Structure in Music by Adam Roberts, Jesse Engel, et.al
(2018) [104]. A Hierarchical Latent Vector Model for Music

Z

♪ ♪ ♪ ♪ ♪ ♪ ♪ ♪ ♪
16 16 16

Encoder

Latent
Code

Conductor

Input

Decoder

Output

Figure 2. Schematic of our hierarchical recurrent Variational Au-
toencoder model, “MusicVAE.”

the initial state of a decoder RNN, which autoregressively
produces the output sequence y = {y1, y2, . . . , yT }. The
model is trained both to reconstruct the input sequence (i.e.,
yi = xi, i ∈ {1, . . . , T}) and to learn an approximate poste-
rior qλ(z|x) close to the prior p(z), as in a standard Varia-
tional Autoencoder.

There are two main drawbacks of this approach: first, RNNs
are themselves typically used on their own as powerful au-
toregressive models of sequences. As a result, the decoder
in a recurrent VAE is itself sufficiently powerful to produce
an effective model of the data, and therefore the decoder can
completely ignore the latent code. With the latent code ig-
nored, the KL divergence term of the ELBO can be trivially
set to zero, despite the fact that the model is no longer ef-
fectively acting as an autoencoder. Second, the model must
compress the entire sequence to a single latent vector. While
this has been shown to work for short sequences (Bowman
et al., 2016; Sutskever et al., 2014), this approach begins to
fall apart as the sequence length increases (Bahdanau et al.,
2015). In the following section, we present a latent variable
autoencoder model which overcomes these issues by using
a hierarchical RNN for the decoder.

3. Model
From a high level, our model follows the basic structure
used in previously-proposed VAEs for sequential data (Bow-
man et al., 2016). However, we propose a novel hierarchical
decoder, which we show produces substantially better per-
formance on long sequences in section 5. A schematic of
our model, which we dub “MusicVAE,” is shown in fig. 2.

3.1. Bidirectional Encoder

For the encoder qλ(z|x), we use a two-layer bidirectional
LSTM network (Hochreiter & Schmidhuber, 1997; Schus-
ter & Paliwal, 1997). We process an input sequence
x = {x1, x2, . . . , xT } to obtain the final state vectors
−→
h T ,
←−
h T from the second bidirectional LSTM layer. These

are then concatenated to produce hT and fed into two fully-
connected layers to produce the latent distribution parame-
ters µ and σ:

µ =WhµhT + bµ (6)
σ = log (exp(WhσhT + bσ) + 1) (7)

where Whµ,Whσ and bµ, bσ weight matrices and bias vec-
tors respectively. In our experiments, we use an LSTM
state size of 2048 for all layers and a latent dimensional-
ity of 512. As is standard in Variational Autoencoders, µ
and σ then parametrize the latent distribution as in eq. (2).
The use of a bidirectional recurrent encoder ideally gives
the parametrization of the latent distribution longer-term
context about the input sequence.

3.2. Hierarchical Decoder

In prior work, the decoder in a recurrent VAE is typically
a simple stacked RNN. The decoder RNN uses the latent
vector z to set its initial state, and proceeds to generate
the output sequence autoregressively. In preliminary ex-
periments (discussed in section 5), we found that using a
simple RNN as the decoder resulted in poor sampling and
reconstruction for long sequences. We believe this is caused
by the vanishing influence of the latent state as the output
sequence is generated.

To mitigate this issue, we propose a novel hierarchical RNN
for the decoder. Assume that the input sequence (and target
output sequence) x can be segmented intoU nonoverlapping
subsequences yu with endpoints iu so that

yu = {xiu , xiu+1, xiu+2, . . . , xiu+1−1} (8)
→ x = {y1, y2, . . . , yU} (9)

where we define the special case of iU+1 = T . Then, the
latent vector z is passed through a fully-connected layer2

followed by a tanh activation to get the initial state of a “con-
ductor” RNN. The conductor RNN produces U embedding
vectors c = {c1, c2, . . . , cU}, one for each subsequence. In
our experiments, we use a two-layer unidirectional LSTM
for the conductor with a hidden state size of 1024 and an
output dimensionality of 512.

Once the conductor has produced the sequence of embed-
ding vectors c, each one is individually passed through a
shared fully-connected layer followed by a tanh activation
to produce initial states for a final bottom-layer decoder
RNN. The decoder RNN then autoregressively produces a
sequence of distributions over output tokens for each sub-
sequence yu via a softmax output layer. The embeddings
for each subsequence produced by the conductor are also
concatenated with the previous output token and passed as

2Throughout, whenever we refer to a “fully-connected layer,”
we mean a simple affine transformation as in eq. (6).

Figure 5.3: MusicVAE architecture, reproduced from [104]

MusicVAE use a two-layer bidirectional encoder, as well as a two-
layer unidirectional decoder. Additionally, they have implemented a two-
layer unidirectional Conductor RNN, that produce embedding vectors for
each 16 bar sub sequence in the output. The encoder and decoder all
have 2048 nodes per LSTM, the conductor has 1024, and the latent space
dimensionality is 512.

The conductor is created, seeking to avoid the posterior collapse problem
that may occur in RNN autoencoders. They use the conductor to “limit the
scope of the decoder to force it to use the latent code to model long-term
structure”. The decoder receives a new embedding vector for each 16 note
sub sequence, or bar. The last token from each sequence is used as input for
the next sequence, concatenated with the corresponding embedding vector.

5.2.1 Disentanglement

The MusicVAE is trained using annealing of the KL-cost, as mentioned in
Section 4.4.7, but with in a simplified fashion (see equation 5.1), suggested
by Bowman et al. (2016) [102].

β · DKL(qφ(z|x)||pθ(z)) (5.1)

By multiplying the KL-term with a β-variable, and annealing this from
zero, the model is forced to encode as much information as possible into

54

the latent layer. The MusicVAE only anneal β from 0-0.2, meaning that this
model mostly emphasize reconstruction accuracy.

5.2.2 Flat model vs. hierarchical model

In the MusicVAE-paper, the hierarchical model is compared to a ”flat”
model to endorse the need for the hierarchy. All melodies in the data
set have 4

4 time signature, resulting in 16 sixteenth-notes per bar. The
models were compared on 16-bar melodies, meaning 256 notes. The flat
model output the whole melody without any hierarchical dependencies.
While the MusicVAE output the melody with a hierarchical dependency
for every 2 bars (32 notes). The models were evaluated quantitatively (see
Figure 5.4) on latent space interpolation between real data points, using
a language model probability evaluation, and secondly by computing
hamming distance. In these evaluations, the hierarchical model produced
the most probable melodies when interpolating. The Hamming distance
varies monotonically for both models, but the hierarchical decoder has
a lower intercept, this is explained as a result of better reconstruction
accuracy.

Figure 5.4: Results for quantitative evaluation of true data interpolation,
and latent space interpolation with the flat model versus the MusicVAE,
reproduced from [104].

Secondly, the model was evaluated with human annotators performing
a listening test. The flat and hierarchical model composed 30 second
compositions of three types: monotonic melody, trio (polyphonic melody)
and a monotonic drum composition. The listeners were asked to evaluate
pairs of compositions. The pairs were of melodies from the true data set,

55

compared to either an example from the flat or the hierarchical model.
The listeners were asked to evaluate which model was more musical, on
a Likert-type scale. The comparisons show that the hierarchical model
produced more musical results than the flat one, and the composed drum
sequences were even higher rated than real data. These results suggest
that a hierarchical intermediate layer for algorithmic composition helps to
preserve information about melodic structure, in a better way than just the
VAE alone.

Figure 5.5: Results from listening tests evaluation comparison of true
melodies, and melodies from the flat model and MusicVAE, reproduced
from [104]. This shows the number of times that each of the two models or
a true melody, was considered most musical by the participants.

5.3 World Models

The World Model is an architecture from the paper World Models by David
Ha and Jürgen Schmidhuber (2018) (Figure 5.6). The model solved a
reinforcement learning task of playing two video games VizDoom [135] and
CarRacing-v0 [18]. The World Model learns a compressed representation
of the RL-environment with self-supervised learning, and then train a
subsystem on features extracted from this learning. The subsystem is
trained to predict the next feature in a sequence, and then transfer this
feature along with the previous feature into an action for the RL-agent.
The features in this context is latent vectors from a convolutional VAE. The
subsystem part that learns to predict latent vectors is an MDRNN. It is
this part of the subsystem (Figure 5.7) that is adopted into the The Musical
World Model in this thesis, the MCVAE.

5.4 Novel solution: MCVAE

The Mixture Composer VAE, MCVAE (Figure 5.11) is a variational au-
toencoder for symbolic music modelling, with a mixture density net-
work that governs the latent vector sequences, similar to Ha’s World
Model (the model can be found at https://github.com/vikrosj/

music-variational-autoencoders). In contrast to the World Model, the
MCVAE use a RNN network in the VAE, rather than a CNN. The MCVAE

56

World Models

Encoder z Decoder

Original Observed Frame Reconstructed Frame

Figure 5. Flow diagram of a Variational Autoencoder (VAE).

Here, we use a simple Variational Autoencoder (Kingma
& Welling, 2013; Rezende et al., 2014) as our V model to
compress each image frame into a small latent vector z.

2.2. MDN-RNN (M) Model

While it is the role of the V model to compress what the
agent sees at each time frame, we also want to compress
what happens over time. For this purpose, the role of the
M model is to predict the future. The M model serves as a
predictive model of the future z vectors that V is expected to
produce. Since many complex environments are stochastic
in nature, we train our RNN to output a probability density
function p(z) instead of a deterministic prediction of z.

Figure 6. RNN with a Mixture Density Network output layer. The
MDN outputs the parameters of a mixture of Gaussian distribution
used to sample a prediction of the next latent vector z.

In our approach, we approximate p(z) as a mixture of Gaus-
sian distribution, and train the RNN to output the probability
distribution of the next latent vector zt+1 given the current
and past information made available to it.

More specifically, the RNN will model P (zt+1 | at, zt, ht),
where at is the action taken at time t and ht is the hidden
state of the RNN at time t. During sampling, we can adjust
a temperature parameter τ to control model uncertainty, as
done in (Ha & Eck, 2017) – we will find adjusting τ to be
useful for training our controller later on.

This approach is known as a Mixture Density Net-
work (Bishop, 1994) combined with a RNN (MDN-RNN)
(Graves, 2013; Ha, 2017a), and has been applied in the
past for sequence generation problems such as generating
handwriting (Graves, 2013) and sketches (Ha & Eck, 2017).

Figure 7. SketchRNN (Ha & Eck, 2017) is an example of a MDN-
RNN used to predict the next pen strokes of a sketch drawing. We
use a similar model to predict the next latent vector zt.

2.3. Controller (C) Model

The Controller (C) model is responsible for determining the
course of actions to take in order to maximize the expected
cumulative reward of the agent during a rollout of the en-
vironment. In our experiments, we deliberately make C as
simple and small as possible, and trained separately from V
and M, so that most of our agent’s complexity resides in the
world model (V and M).

C is a simple single layer linear model that maps zt and ht
directly to action at at each time step:

at =Wc [zt ht] + bc (1)

In this linear model, Wc and bc are the weight matrix and
bias vector that maps the concatenated input vector [zt ht]
to the output action vector at.

2.4. Putting V, M, and C Together

The following flow diagram illustrates how V, M, and C
interacts with the environment:

Figure 8. Flow diagram of our Agent model. The raw observation
is first processed by V at each time step t to produce zt. The input
into C is this latent vector zt concatenated with M’s hidden state
ht at each time step. C will then output an action vector at for
motor control, and will affect the environment. M will then take
the current zt and action at as an input to update its own hidden
state to produce ht+1 to be used at time t+ 1.

Figure 5.6: World Model architecture, reproduced from [47]

World Models

Encoder z Decoder

Original Observed Frame Reconstructed Frame

Figure 5. Flow diagram of a Variational Autoencoder (VAE).

Here, we use a simple Variational Autoencoder (Kingma
& Welling, 2013; Rezende et al., 2014) as our V model to
compress each image frame into a small latent vector z.

2.2. MDN-RNN (M) Model

While it is the role of the V model to compress what the
agent sees at each time frame, we also want to compress
what happens over time. For this purpose, the role of the
M model is to predict the future. The M model serves as a
predictive model of the future z vectors that V is expected to
produce. Since many complex environments are stochastic
in nature, we train our RNN to output a probability density
function p(z) instead of a deterministic prediction of z.

Figure 6. RNN with a Mixture Density Network output layer. The
MDN outputs the parameters of a mixture of Gaussian distribution
used to sample a prediction of the next latent vector z.

In our approach, we approximate p(z) as a mixture of Gaus-
sian distribution, and train the RNN to output the probability
distribution of the next latent vector zt+1 given the current
and past information made available to it.

More specifically, the RNN will model P (zt+1 | at, zt, ht),
where at is the action taken at time t and ht is the hidden
state of the RNN at time t. During sampling, we can adjust
a temperature parameter τ to control model uncertainty, as
done in (Ha & Eck, 2017) – we will find adjusting τ to be
useful for training our controller later on.

This approach is known as a Mixture Density Net-
work (Bishop, 1994) combined with a RNN (MDN-RNN)
(Graves, 2013; Ha, 2017a), and has been applied in the
past for sequence generation problems such as generating
handwriting (Graves, 2013) and sketches (Ha & Eck, 2017).

Figure 7. SketchRNN (Ha & Eck, 2017) is an example of a MDN-
RNN used to predict the next pen strokes of a sketch drawing. We
use a similar model to predict the next latent vector zt.

2.3. Controller (C) Model

The Controller (C) model is responsible for determining the
course of actions to take in order to maximize the expected
cumulative reward of the agent during a rollout of the en-
vironment. In our experiments, we deliberately make C as
simple and small as possible, and trained separately from V
and M, so that most of our agent’s complexity resides in the
world model (V and M).

C is a simple single layer linear model that maps zt and ht
directly to action at at each time step:

at =Wc [zt ht] + bc (1)

In this linear model, Wc and bc are the weight matrix and
bias vector that maps the concatenated input vector [zt ht]
to the output action vector at.

2.4. Putting V, M, and C Together

The following flow diagram illustrates how V, M, and C
interacts with the environment:

Figure 8. Flow diagram of our Agent model. The raw observation
is first processed by V at each time step t to produce zt. The input
into C is this latent vector zt concatenated with M’s hidden state
ht at each time step. C will then output an action vector at for
motor control, and will affect the environment. M will then take
the current zt and action at as an input to update its own hidden
state to produce ht+1 to be used at time t+ 1.

Figure 5.7: Mixture density network predictor in World Models, repro-
duced from [47]

has a two layer, bidirectional LSTM encoder (see Figure 5.8), and a two
layer, unidirectional LTSM decoder (see Figure 5.9). Both with 512 units.
Dropout is used on the input of the first encoder layer, with probability
p = 0.3. Disentanglement for the KL-divergence (see Section 4.4.7) is not
implemented, meaning that β = 1. The latent layer is of size 64. These
sizes were chosen after conducting a hyperparameter-test, testing all com-
bination of sizes [64, 128, 256, 512, 1024] for encoder/decoder units and
latent layer (see Section 5.4.1 and 6.2). The MDRNN is a two layered unidi-
rectional LSTM, with a MM component on its output (see Figure 5.10). The
full model can predict an unlimited number of bars, conditioned on one
input bar (see Figure 5.11). The LSTMs have 512 units, and the MM has 10
mixture parameters, resulting in 1290 units (10 mixtures · (641 µs · 64 σs +
π)). The hyperparameters for the MDRNN were a result of trial and error,
but a extensive search was not performed, as it was for the VAE. This will

1The input vectors from the latent layer is size 64.

57

rather be performed in further works.

Figure 5.8: Stacked bidirectional LSTMs [139], in the MCVAE encoder.

5.4.1 VAE hyperparameter choices

In the hyperparameter-tests, sizes of 512 (Figure 6.2d) and 1024 (Figure
6.2e) were the ones with a clear indication of learning for the first 200
epochs. But, for size 1024, the network converged at 70% after 50 epochs,

58

Figure 5.9: Stacked unidirectional LSTMs in the MCVAE decoder.

Figure 5.10: Mixture density network composer in MCVAE.

and didn’t improve much for consecutive epochs. Encoder/decoder size
of 512 showed a steady rate of learning for all 200 epochs, ending at

59

Figure 5.11: Full VAE with MDRNN sequence prediction.

an accuracy of 20% (Figure 6.2d), while sizes 64, 128 and 256 showed
serrated learning curves and did not achieve more than 3.5% accuracy at
their best (Figures 6.2a, 6.2b, 6.2c, respectively). The latent dimension size
didn’t appear to have a great impact on the networks accuracy (Figure 6.3),
therefore the smallest size (in this trial) was selected. The results from the
hyperparameter-tuning is discussed further in Section 6.2.

60

Chapter 6

Experiments

You know my method. It is
founded upon the observation
of trifles.

Sherlock Holmes, The adventures of
Sherlock Holmes [25]

In this chapter, explanation of and results from all experiments is
collected. First, an explanation of how the MIDI files were converted into a
dataset for the VAE. Then, how the hyperparameter-tuning was conducted,
with a following result evaluation. Explanation on the two choices of
model evaluation: human critics and n-gram evaluation. Followed by
results from the model evaluations, and finally a summary of the results.

6.1 Dataset

The dataset consist of 10k songs from a subreddit on reddit.com, named
WeAreTheMusicMakers, posted by a user named midi man [123]. The
dataset has been constructed by crawling a large number of websites and
eliminating any duplicate files with a checksum function. All songs are
from publicly available midi repositories. Originally, the dataset consists
of 130k songs, but due to time constraints in parsing and translating the
files to note vectors, 10k songs was set as a maximum.

6.1.1 Slicing songs into bars

The songs are sliced into arrays of 16 digits, each digit representing one
16th note, or semiquaver. Meaning that one vector is a bar, for a melody
with a 4

4 time signature. While the creators of the MusicVAE chose only 4
4

songs, that selection has not been done for this thesis. Therefore, a 16 note
vector in this case may represent an incomplete bar, or an ”overcomplete”
bar, as well as a complete bar. The LSTM in the VAE is only concerned with
learning sequences of numbers, so the underlying time signature for the
notes could be unimportant. The question is whether the time steps for the

61

LSTM has to be of same length or if it’s enough that they are consecutive
actions. This could be a topic for further investigation in later works.

The MIDI range

The maximum MIDI note range is from 0 to 127, with the frequency range
8,18-13289,75 Hz [89]. The most common range is for the piano, with MIDI
range from 21-108 and frequency range 27,5-4186,01 Hz (from A2 to C8).
For the note arrays, the full MIDI range was chosen. In addition to these
128 numbers, two more events were needed to encode tempo in a song,
NOTE OFF and NO EVENT. The events are encoded with 128 and 129,
respectively. The idea for this kind of encoding were first publicly shared
by the creators of MelodyRNN and inspired the preprocessing method for
MIDIs used here [1]. Lastly, to enable the decoder to create music without
conditioning it on a note, a ”start of sequence” event was added to the
vocabulary, encoded with the number 130. Figure 6.1 illustrates how two
bars are translated with this framework.

Figure 6.1: Sheet music translated to a note vector. For the input of the
LSTM, the full song is sliced into 1× 16 vectors.

6.2 Hyperparameter tuning for VAE

To decide hyperparameters for the VAE, a hyperparameter test of varying
encoder/decoder sizes and latent dimension sizes was performed. The
motivation was to find the best combination of encoder/decoder size and
latent dimension. Different size for encoder and decoder in the same
model were not considered, due to time constraints. The evaluation was
divided in two: first, a fixed encoder/decoder size against a varying latent
dimension (Figure 6.2). Secondly, a fixed latent dimension against varying
encoder/decoder sizes (Figure 6.3). The network was trained for 200
epochs for each combination. The sizes for both encoder/decoder layers
and latent layer were [64, 128, 256, 512, 1024].

6.2.1 Evaluating the results

Evaluating the results, it appears that the number of encoder/decoder units
are important for the accuracy of the net. Size 1024 showed the steep-
est learning curve for the first 50 epochs (see Figure 6.2e), regardless of
the latent dimension (see Figure 6.3. But, the method also appear to con-
verge at approximately 70% accuracy after 50 epochs, and then not improve
much for the next 150 epochs. Encoder/decoder sizes 64, 128 and 256 all

62

(a) Encoder: 64 (b) Encoder: 128

(c) Encoder: 256 (d) Encoder: 512

(e) Encoder: 1024

Figure 6.2: Holding encoder/decoder dimension fixed, and varying the
latent dimension. The smoothed line is a fitted 3-dimensional polynomial,
created by averaging each point xi by all points ± 25 from xi. This method
is also known as Savitzky-Golay filtering [100, p. 650]. The errorbar is given
by the standard deviation for the current distribution.

show signs of unstable learning, as the smoothed 3-dimensional polynomi-
als all are serrated for all 200 epochs (Figures 6.2a, 6.2b, 6.2c, respectively).
The maximum accuracy for the three methods are respectively 1.4%, 1.5%
and 3.5%, approximately. Encoder/decoder size 512 (Figure 6.2d) show
a steady rate of learning, as it did not converge during the 200 epochs of
hyperparameter-tuning, and the smoothed signal is less serrated than for
the smaller encoder/decoder sizes. The accuracy appear to be climbing
steadily, and ending up at 20% accuracy after 200 epochs. Therefore, 512
was chosen as the encoder/decoder size. The latent dimension size didn’t
appear to have a great impact on the networks accuracy (Figure 6.3), there-

63

fore the smallest size (in this trial) was selected. Possibly, the size could
have been reduced even more for the latent dimension, too increase its abil-
ity to be a bottleneck for the input data. This can be investigated in further
works. The selected sizes after the hyperparameter-tests were:

Encoder/decoder: 512
Latent dimension: 64

(a) Latent: 64 (b) Latent: 128

(c) Latent: 256 (d) Latent: 512

(e) Latent: 1024

Figure 6.3: Holding latent dimension fixed, and varying the encoder /
decoder size.

6.3 Training a MDN

After training the VAE, a dataset for the MDRNN was created by inferring
z-vectors for all songs in the dataset (≥ 16 bars) and saving these for each

64

song. The MDRNN was then trained to predict the next zn+1 given a zn (see
Figure 3.8) .

During this process, it was discovered that the dataset had some
dominating outliers. While most of the songs had number of bars in the
range [70-120], some songs were around 1000 bars, and one song had 88000
bars. Elaboration on this discovery, its impact and suggested solutions are
discussed further in Section 7.1. Before training the MDN to create music
for the human annotators, the dataset was processed, removing all songs
with a bar length above 339 bars, or 3 · 113, where 113 is the average song
length of the top 100 song on iTunes in 2012, this is explained further in
Section 7.1.

6.4 Evaluating the models

Generative models exist with a variety of applications; compression,
denoising and unsupervised feature learning, to name a few. Good
performance at one field does not directly imply good performance in
another field. It is therefore recommended that the model is evaluated
directly with regards to the application it is intended for [124]. To generate
music or images with a neural network involves unsupervised feature
learning. The model learns the underlying features that make up the data
set, and can create new samples from these features. In this field, human
annotators are often used as evaluation metric, to evaluate the quality of the
samples. Both WaveNet [97], MusicVAE [104], MidiNet [136] and RoboJam
[81] use human critics for their evaluations. All of these, except MusicVAE,
ask the human critics questions where the response is given in a Likert-type
scale with five scales.

After training the model, the true data is represented in a latent space
which one can draw samples from. The metric for checking the generative
quality of the model is by evaluating the samples from this space. It should
contain both a representation of the real data, and new data points with
similar features as the real data. If this is the case, then we can say that the
model has generalized the data well. Human annotators usually evaluate
whether the generated output is distinguishable from real data. While
interpolation is a method to evaluate the space between real data points.
David Berthelot et al. at Google Brain define high-quality interpolation
with two characteristics:

First, that intermediate points along the interpolation are indis-
tinguishable from real data; and second, that the intermediate
points provide a semantically smooth morphing between the
endpoints [7].

The metric “semantically smooth morphing“ is problem-dependent.
Here too, human annotators are used to evaluate how meaningful the
interpolation is. Latent space interpolation is typically used in generative
modelling of images, like DCGAN [103], IcGAN (an invertible GAN for
image editing) [98], and DiscoGAN (a GAN for discovering cross-domain

65

features in images) [66]. But, in MusicVAE [104], latent space interpolation
was also used for evaluating the interpolation between true data points.

After training the VAE, the model was evaluated qualitatively and
quantitatively, based on the mentioned methods. The qualitative assess-
ment consisted of a human evaluation, while the quantitative assessment
was a probability evaluation using a 5-gram model, performed on latent
space interpolation.

6.4.1 Human annotators

8 people with a musical background (either band or orchestra members)
participated in evaluating 10 songs: 5 from the VAE and 5 from the MDN.
The 5 examples for the VAE and MCVAE evaluation were created by
seeding the models with the first bar from the same 5 sample songs from
the true dataset. Then, both models inferred melodies of 25 bars, for each
sample song. During listening to the music from the outputs, the songs
had a noticeably large range that sounded unnatural. Because of this, the
darkest notes were transposed up two octaves (+24) and the brightest notes
were transposed down two octaves (-24) during preparation. The human
critics were asked to evaluate 6 statements in a Likert type-scale. The
question topics are inspired by [81] and [83].

The statements were:

1. The compositions had a high musical quality (quality) .

2. The compositions showed musical creativity (creativity).

3. The compositions had a melody (melody).

4. The compositions had a good musical structure (structure).

5. The compositions seem easy to play (technical structure).

6. The melodies from the model seem similar (similarity).

6.4.2 Language model evaluation

The quantitative evaluation was a probability evaluation using a n-gram-
model with n = 5. A n-gram model is a language model, that computes
the probabilities of a n-length sequence, using the Markov assumption. The
Markov assumption states that the probability of an element only depends
on the n-1 previous elements [32].

P(w1, ..., wn) ≈∏
i

P(wi|wi−n+1, ..., wi−1) (6.1)

The 5-gram probabilities were computed by linearly interpolating in
the latent space representations for the five first bars of 200 real songs. 100
songs in Set A, and 100 songs in Set B. Interpolation of the latent vectors
was performed with Equation 6.2. Interpolation was done with intercept
degree α ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. Equation 6.2 describes the interpolation

66

between the latent vectors for song a ∈ Set A, and song b ∈ Set B. Equation
6.3 describes the true data interpolation (tdii). Results from interpolating
between the melodies in true data space is presented in Figure 6.6, for
comparison with the generative models.

zi = α · zai + (1− α) · zbi (6.2)

tdii = α · ai + (1− α) · bi (6.3)

Figure 6.6 show that the true songs (on the ends A and B), have a
low probability on average, around 35%. Indicating that many of the
true melodies are considered unlikely by the 5-gram-model. This could
mean that some sequences of notes have a much higher probability than
others. There is no visible change in probability before α = 0.5 in which
the melodies are combined 50/50. This results in especially unlikely songs.
It appears that on average are songs in Set B slightly less likely than the
songs in Set A, and as long as the interpolated song has above 70% of a
song from one section present, this song is dominating the outcome. This
could mean the songs have somewhat similar structure, or contain many
of the same notes, and therefore mixing them slightly does not give very
different results.

6.5 Evaluating VAE outputs

6.5.1 Human annotators

The results from the evaluation (Figure 6.4) show that the music from the
VAE was lacking in both melody and quality, and the melodies seemed
hard to play. The majority agreed that the songs seemed to be similar,
created with the same kind of structure. The participants were asked to
add their observations, if they had any. The feedback pointed out that the
melodies contained a valid bass line. But, the range of notes in one song
was considered to be too spread. The melodies seemed to be composed for
multiple musicians at once. One also mentioned that if the patterns had
been repeated more, then the melodies could sound ”human”. But, the
overall feedback was that the melodies sounded random.

6.5.2 Language model evaluation

Conditional interpolation

Using the five first bars’ latent vectors from set A and set B, new latent
vectors were constructed by linearly interpolating between za and zb (see
Algorithm 1). The decoder inferred the melody based on these vectors, and
then the probability of the melody was computed using the 5-gram model.

67

Algorithm 1 Algorithm for the conditional interpolation for the VAE.

1: procedure N-GRAM(A, B)
2: for all a,b pairs in A,B do
3: α = 0.1
4: for i in range 5 do
5: pred song = []

6: for j in range 5 do
7: z = α· z a[j] + (1- α) · z b[j]

8: predict sequence, length 16

9: pred song.append(sequence)

10: end for
11: compute n-gram for pred song

12: α+ = 0.2
13: end for
14: end for
15: end procedure

The results from the language model (Figure 6.9) show that the
interpolation in the latent space produce on average melodies with a low
probability, the mean lays approximately around 20%, and the median is
even lower than that. As the VAE predict songs with lower probability than
the original ones (Figure 6.6), this indicates that interpolation in z-space is
not directly translated to interpolation in data space. It could also mean
that the latent vectors does not represent the data as they should, or that the
models weights aren’t adjusted properly. Although the model was trained
until accuracy was high and loss was low, this does not necessarily mean
that the VAE generalizes well. If the data is biased, the VAE will be biased.
The KL-penalty may also be too low, as is postulated in Section 4.4.7, and
therefore will the latent space encode information that is not relevant for
reconstruction.

Unconditional interpolation

For the unconditional interpolation, the VAE was fed the first vector from
song a and b, and then inferred a sequence length of 400 timesteps,
meaning 25 bars (see Algorithm 2).

The results from unconditional latent space interpolation (Figure 6.9)
show that the probability of the outputs are averaging just below 60%,
which is much higher than the conditional interpolation. But the variance
in the data range from very low to very high. By only conditioning the VAE
with a starting vector, z, it appears to struggle with making melodies with
a consistent structure. The VAE should not be expected to perform better
than true data, but by using the logic that a VAE can infer new melodies,
one could expect that it would be able to create songs with somewhat the
same structure as it’s input vector. These results indicate that the VAE
doesn’t follow the structure of the input vector for a full sequence, creating
output that is considered to be either very unlikely or very likely. For the

68

Algorithm 2 Algorithm for the unconditional interpolation for the VAE.

1: procedure N-GRAM(A, B)
2: for all a,b pairs in A,B do
3: α = 0.1
4: for i in range 5 do
5: z = α· z a[0] + (1- α) · z b[0]

6: predict sequence, length 80

7: compute n-gram for sequence

8: α+ = 0.2
9: end for

10: end for
11: end procedure

two outermost interpolations (α = 0.9 and α = 0.1), 50% of the values has a
probability close to 90%, while the probabilities below the median are very
spread. This result is almost the same for all of the interpolation sequences,
the bottom half of the results vary greatly, indicating that there is no clear
pattern in the musical creation process.

6.6 Evaluating MCVAE outputs

6.6.1 Human annotators

The 5 songs for the MCVAE evaluation were created with the same 5
sample songs as the ones used for conditioning the VAE. But, here, the
MDN predicted a sequence of 25 bars, only conditioned on the first latent
vector, and the decoder inferred the melodies based on this sequence of
latent vectors. The quality, melody and structure of this model was also
considered to be poor. But, the technical structure got a higher rating than
for the VAE. There were a majority agreement here as well that the melodies
sounded similar. The participants’ feedback showed that the melodies
appeared to have a little more musical quality than the VAE. The melodies
had fewer, and longer notes, and some rhythmic structure. One comment
noted that the model seemed to find some patterns, but didn’t evolve these.
The general assessment was that these songs also appeared random to the
human annotators.

6.6.2 Language model evaluation

The language model evaluation for this section was done both with the
MDN trained on inferred latent vectors (from the VAE) for the unprocessed
dataset, and the processed dataset. This is because the melodies for the
MDN evaluated by humans were created with the MDN trained on latent
vectors inferred from the processed dataset.

69

Conditional inference

Conditional interpolation was done with Algorithm 3. The MCVAE-
results for the unprocessed dataset (Figure 6.8) show on average the same
probabilities as songs in Set A and B. While the VAE performed with
even lower probability than the true data, the MDRNN appear to be able
to predict melodies with approximately the same probability as the ones
in the true data set. For interpolation degree α = 0.5, the MDRNN
predicts sequences that are more probable than the true data interpolation.
This may be due to the fact that the MDRNN has fewer number of
mixtures than the original z-vector, and by that creates more definite and
probable latent vectors. The MDRNN use 10 mixtures, while the original
latent vectors has dimensionality of 64. The MDRNN may be filtering
and improving the latent vector distributions to more clear and definite
probability distributions. Figures 6.7 and 6.11 show that the VAE with an
MDRNN for latent vector prediction produce more probable interpolations
between true songs than the VAE does alone.

Algorithm 3 Algorithm for the conditional interpolation for MDN

1: procedure N-GRAM(A, B)
2: for all a,b pairs in A,B do
3: α = 0.1
4: for i in range 5 do
5: pred song = []

6: pred song.append(α· z a[0] + (1- α) · z b[0])

7: for j in range (1,5) do
8: prev z = α· z a[j-1] + (1- α) · z b[j-1]

9: predict z from prev z

10: predict sequence from z

11: pred song.append(sequence)

12: end for
13: compute n-gram for pred song

14: α+ = 0.2
15: end for
16: end for
17: end procedure

Unconditional inference

Unconditional interpolation was done with Algorithm 4. The uncondi-
tional inference for the MCVAE (Figure 6.10) created sequences with a
mean of approximately 55% probability, which is more likely than the true
data points in set A and B, the true data-interpolation (Figure 6.6) and the
unconditional inference for the formal VAE (Figure 6.9). Additionally, 50%
of the data has a probability ranging from 50-70%. This is a much more sta-
ble result than that from the unconditional interpolation of the VAE, where
50% of the data was spread from approximately 20% probability to 90%

70

probability. These results show that, even though the melodies from the
MCVAE were not regarded as much more pleasing than the VAE-melodies
by the human critics, they were on average more probable than true data-
interpolation. The melodies in these samples were only conditioned on one
latent vector, and the rest of the melody was inferred by the MDRNN-layer.
The results from the interpolation in this case shows that the MDRNN pro-
duce latent vectors with a smooth transition and overall similar score in
probability. It is reasonable to assume that with a better representation of
data and a dataset with less noise, the MCVAE would compose melodies
which were even more probable, and that better captured a musical struc-
ture. Unconditional interpolation was also performed after the dataset was
cleaned for dominating melodies (mentioned in Section 6.3). The results
from this test show that the melodies here averaged approximately as the
melodies from the uncleaned set (see Figure 6.10), but the samples had
fewer outliers. This may be relating to the fact that the dataset this MC-
VAE was trained on also had fewer outliers than the original dataset.

Algorithm 4 Algorithm for the unconditional interpolation for MDN

1: procedure N-GRAM(A, B)
2: for all a,b pairs in A,B do
3: α = 0.1
4: for i in range 5 do
5: pred song = []

6: prev z = α· z a[0] + (1- α) · z b[0]

7: pred song.append(prev z)

8: for j in range (1,5) do
9: predict z from prev z

10: predict sequence from z

11: pred song.append(sequence)

12: prev z = z

13: end for
14: compute n-gram for pred song

15: α+ = 0.2
16: end for
17: end for
18: end procedure

71

6.7 Summary of results

The MCVAE was rated higher than the formal VAE on structure, melody,
creativity and musical quality, by the human annotators, see Figures
6.4 and 6.5. In the conditional interpolation, the MCVAE (Figure 6.8)
performed better than the VAE (Figure 6.7) slightly below the true data
interpolation (Figure 6.6), but better than true data interpolation for
interpolation degree α = 0.5. The latent vector space from the MCVAE
appear to have smoother transitions of sequence interpolations than both
the true data and the VAE. For the unconditional inference, the VAE
performed extremely irregular (Figure 6.9), while the MCVAE created
sequences that were all more likely than the true data points in set A and
B (Figure 6.10). Unconditional inference by the MCVAE trained only on
samples from the cleaned dataset performed better than than the MCVAE
trained on the original, noisy dataset, as there were less outliers in the
samples (Figure 6.11). This appear to correlate with the fact that the dataset
this MCVAE was trained on had fewer outliers than the original dataset.

Figure 6.4: Results from the Likert type-scale evaluation of the 6 statements
in Section 6.4.1 for the formal VAE. On the x-axis are number of people.
Acronyms for the scale factors: SD: Strongly disagree, D: Disagree, N:
Neutral, A: Agree, SA: Strongly Agree.

72

Figure 6.5: Results from the Likert type-scale evaluation of the 6 statements
in Section 6.4.1 for the MCVAE. On the x-axis are number of people.
Acronyms for the scale factors: SD: Strongly disagree, D: Disagree, N:
Neutral, A: Agree, SA: Strongly Agree.

Figure 6.6: Interpolating in true data space between songs in Set A and
songs in Set B.

73

Figure 6.7: Interpolating in latent space with VAE, conditionally.

Figure 6.8: Interpolating in latent space with MCVAE, conditionally.

74

Figure 6.9: Interpolating in latent space with VAE, unconditionally.

Figure 6.10: Interpolating in latent space with MCVAE, unconditionally.

75

Figure 6.11: Interpolating in latent space with MCVAE, unconditionally,
after cleaning the dataset.

76

Chapter 7

Discussion

Problems worthy of attack
prove their worth by fighting
back.

Piet Hein, Grooks 1 [52]

This chapter discuss the challenges with creating a dataset from MIDI
files for a neural network. It addresses a problem that occurred for this
thesis’ experiments with a noisy dataset. Then, some thoughts on range
selection and the premise that data for a VAE should be independent and
identically distributed - which time series data is not. Lastly, the point
from the introduction on the creativity criterion for a generative model is
discussed.

The results from a machine learning model is only as good as the data
it uses [17]. As the goal for this model was to be a versatile application
for creating music, that means that the samples in the dataset should be
somewhat evenly distributed - so no melody would have an increasingly
higher chance of being selected for each batch during training. A flaw in the
creation of the dataset used for this project was not ensuring this criterion.
The MIDI files in the Big Data Set were expected to have somewhat similar
lengths, and their sizes weren’t checked before pre-processing the data for
the MDN. While the evaluation supported the use of the MDN to help
govern structure, the VAE may produce more pleasing bars of music if it is
traines using a better structured dataset.

7.1 Dominating outliers

During the construction of the MDN dataset, the length of each song
was evaluated. This lead to the discovery that the data was unevenly
distributed. Creating a boxplot of the bar length distribution showed that
while the mean and median of the data appeared to lay close, some outliers
were dominating the data (see Figure 7.1).
The dataset’s common statistical metrics were:

77

Figure 7.1: Boxplot of bar distribution in the dataset. The mean is
represented by a green triangle, median by a orange line and the outliers
as blue crosses.

Standard deviation 906.39

Median 82.0

Mean 95.76

Minimum value 1

Maximum value 88863

7.1.1 Computing average song length

The average song length for the top 100 songs on iTunes (in 2012) were at
226 seconds [5]. One bar equals 2 seconds [35], meaning that the average
song length would be around 113 bars. To evaluate the distribution of
bars in the songs of the dataset, the data was processed with two different
maximum values. One keeping everything less than 3 · 113, and another
keeping everything less than 2 · 133, 113 being the average song length top
100 songs on iTunes (in 2012), as mentioned.

Figure 7.2 show that while approximately the same amount of data
lies between the first and third quadrant, and their means and medians
are almost similar, the dataset with less than 3 · avg len has more outliers.
Plotting a histogram of the bar distribution for the two sets show the same
results (see Figure 7.3). Viewing Figure 7.3, it is apparent that there aren’t
many songs above the average song length.

Both the VAE and the MCVAE got feedback from human annotators
that the music sounded random, poorly structured and appeared to be

78

Figure 7.2: Boxplot of bar distribution in the preprocessed dataset. The
mean is represented by a green triangle, median by a orange line and the
outliers as blue crosses.

Figure 7.3: Histogram of bar distribution in the two processed datasets.

created for multiple musicians simultaneously, even though the MCVAE
were rated higher. The fact that a few melodies had a much higher
occurrence in the dataset than the others may have caused this. After this
was discovered, the functions for parsing MIDI files and selecting songs

79

have been changed, keeping only songs less than 3 · avg len, in future use.

Figure 7.4: Note density for 1000 songs in the dataset.

7.2 Range selection

Although some notes have a higher probability of being created than
others, there are a few measures that can be taken to create a slightly more
even distribution of notes. As is apparent in Figure 7.4, the note range for
the 1000 selected songs lay approximately between 20-100. As the piano
range for MIDIs lay in the range 21-108 [89], this may be a more appropriate
range to encode the notes into.

7.3 Independent and identically distributed data

In music modelling, some notes have a higher probability than others.
The reason for this is that there exist a tonal hierarchy, where some notes
are “more prominent, stable, and structurally significant than others“ [68,
p. 52].

A result that is not very apparent from Figure 7.4 becomes more visible
when inspecting the 5 most common notes in the songs from the example
above:

NO EVENT 129.0 occurence: 259583

NOTE OFF 128.0 occurence: 78115

A4 69.0 occurence: 8289

G4 67.0 occurence: 7287

D4 62.0 occurence: 6527

80

Codes 129 and 128, standing for NO EVENT and NOTE OFF, has a
much higher occurrence than the rest of the notes. Every note in the corpus
includes 0 or more NO EVENT, and notes longer than one semiquaver
require multiple NO EVENT codes, thus it is dominant in the dataset.
These two values encode rhythm in the melodies, and therefore, their
prominent presence is not surprising. But, their presence also distort the
tonal hierarchy. When inspecting a song with this encoding, the rhythm-
values are the most prominent, stable and structurally significant. And,
although rhythm is structurally significant, pauses and silence does not
make music alone. So, the notes should have a more leveled presence, to
counter the rhythm values.

Additionally, a variational autoencoder assumes a independent and
identically distributed (i.i.d) dataset, meaning that the random variables
are independent and have the same distributions [57]. An example of i.i.d.
events is throwing a dice, each throw is independent of the others, and
the events all have the same probability distribution. A time series is, in
general not i.i.d. But, while keeping these two things in mind, another
way of encoding the music should be investigated and pursued. In the
MusicVAE-project a 3 × N matrix was used [105], N being the number
of notes per matrix. The three rows were assigned for note value, start
time and end time for the note. Both start and end values are cumulative.
Meaning that previous end time is the start time for the next note. This
way of encoding reduces the occurrences of notes, and may be a better
way of encoding. But, the optimal solution for encoding music should be
investigated further before drawing any conclusions on this topic.

7.4 Creativity

7.4.1 Accuracy as a metric

Although the method for training a variational autoencoder is by teaching
it to reproduce input, reproduction of true data is not the desired outcome
for the model. In this sense, accuracy is a somewhat counter intuitive
metric. It is not until after the model is trained, that one can evaluate the
model based on its true purpose: the ability to generate new data with
meaningful structure. A model that is trained to reproduce input is also just
learning from the data it sees, and with this in mind, one can argue that the
creativity of the model is limited by the dataset. Another point regarding
accuracy is that the very failure of a model to recreate the original data
may be the desired outcome, giving new and interesting samples [122].
The measure of success of a ML-model for music is more subjective than
that of a ML-model used for instance for image recognition. As music is a
complex form of data and experienced differently among subjects, this is
an important thought to keep in mind.

81

7.4.2 Criteria of usefulness

Whether or not a ML model for music modelling can be useful is in
itself a topic for modern day research. With one argument being that the
ML models only learn limited aspects of music like melodies, harmonies
and temporal structure. And, the model is first useful when human
musicians contribute their expression to the machine made arrangements
[80]. Keeping this in mind, a ML model can participate in musical creations
as a “musical other“, that can be altered and tweaked to the musicians
taste. It can also challenge creativity, by creating arrangements that were
unlikely to the human musician[122]. Research on ML-HCI-systems or
“intelligent listener“-systems [82] that adapts to human performance, show
that an intelligent agent improve aspects of improvisation of music [83].
The “intelligent listener“-system is a HCI where the GUI changes based on
predictions the systems make about the human musicians input. The GUI
only change occasionally, as it listens to the human performance, and only
make changes when it predicts that this will fit the performance. As the
adaptive system seem to improve improvisation, this is an argument for
incorporating machine intelligence in digital musical instruments.

The neural network in this thesis generalizes to all forms of sequential
data, in which each data point is a complex probability distribution.
This neural network can be incorporated in human-machine collaboration
systems, like the “intelligent listener“-system. It may also be incorporated
in other musical ML-systems like systems that mimic an ensemble, that
improvise along with a human musician [79]. The arguments for the
usefulness of a predictive musical ML-model are compelling. A ML-model
can both be tweaked to adapt the musical style of the performer. Secondly,
as research indicate that a responsive ML-model may improve aspects of
improvisation for human performers, the usefulness for this field of science
seems obvious.

82

Chapter 8

Conclusion & Future work

’As you yourself have said,
what other explanation can
there be?’ Poirot stared straight
ahead of him. ’That is what I ask
myself,’ he said. ’That is what I
never cease to ask myself.’

Hercule Poirot, Murder on The
Orient Express [23]

The main contribution of this thesis is the introduction of a new hierarchical
sequence prediction method, applying a MDRNN for latent vector predic-
tions for VAEs that generate symbolic music. The novel method is named
Mixture Composer VAE, MCVAE. The method can also be seen as a generic
method for hierarchical sequence prediction, and be used for other gen-
erative tasks than symbolic music modelling. Additionally, this research
also confirms something that has been addressed before in research: music
modelling is improved when structural hierarchy is implemented into the
model.

8.1 Summary of Evaluation Findings

Before addressing the research questions, the main evaluation findings will
be summarized.

8.1.1 Human annotators

8 human critics with musical background (either band or orchestra
members) participated in a listening test, comparing 10 melodies of 25 bars
(≈ 50 seconds), 5 melodies from the VAE and 5 melodies from the MCVAE.
Both the VAE and the MCVAE were seeded with the first bar from the same
5 songs, from the true data set. Then, the models inferred 25 bar melodies.

83

Results

The MCVAE was rated higher than the formal VAE on structure, melody,
creativity and musical quality, by the human critics.

8.1.2 Language model evaluation

A 5-gram model was used for assessing the probability of sequences during
linear interpolation in latent space. The evaluation was done between the
latent space representations of 200 songs from the true data set, 100 songs
labeled Set A and 100 songs labeled Set B. Interpolation was done for the
5 first bars of the selected songs. Interpolation was done with intercept
degree α ∈ [0.1, 0.3, 0.5, 0.7, 0.9].

The models interpolated in two ways: conditionally and uncondition-
ally. In the conditional interpolation, the VAE was given all the interpolated
latent vectors between song a ∈ Set A and song b ∈ Set B, and inferred the
output from this. In the conditional interpolation of the MDN, the model
predicted latent vector zn+1, given zn from the song. The first latent vector
z0 could not be predicted using this method, and was used directly.

In the unconditional interpolation, the VAE was seeded with the
interpolated latent vector z0 for each a/b-pair, and inferred a melody of
sequence length 400, meaning 25 bars. The MCVAE was given the same
vector z0, and predicted 24 vectors (z1, ..., z24) from this.

The latent space interpolation was also compared to interpolation in
true data space. In true data space, a 50/50 interpolation produced a highly
unlikely output. The other intercept degrees were considered to be equally
likely, this could be due to the fact that many of the songs had similar
structure.

Results

The language model evaluation shows that in the conditional interpolation,
the VAE produced less probable results than the true data interpolation.
The MDN creates melodies with equal probability as the true songs,
suggesting a smooth interpolation between the sequences. The MDN
should, in theory, output the same zn as the VAE, but the conditional
interpolation results suggest that the MDN alters the output somewhat,
perhaps outputting latent vectors with higher probability than that the ones
from the VAE.

In the unconditional interpolation, the VAE had a mean at 60%
probability, but with an extremely high variance. For most of the
interpolation degrees, the VAE-probabilities ranged from 10% to 90%,
suggesting a very unstable model. The MDN performed much more stable
in this test, with mean at 55%, and first and second quartile at 45% to
65% for all interpolations. This output has a higher probability than the
true data interpolation, suggesting that the MDN had learned a probable
melodic structure.

84

These results suggest that using a MDRNN for hierarchical melodic
composition outputs songs that are more similar to true data, than when
letting the VAE infer melodies without hierarchy. According to the
human listening test results, even though the MDRNN layer facilitate more
probable sequences, additional measures must be taken in order to create
a generative musical model that produce results that are pleasing to the
human ear.

8.2 Research questions

In this section, the research questions set out in Section 1.2 will be
addressed individually.

8.2.1 What are the main technologies for using ANNs to model
and compose music?

The state-of-the-art methods today for generative modelling is by using
either Generative Adversarial Networks (GANs) or Variational Autoen-
coders (VAEs). GANs model the data explicitly by training a generator
that create samples from a noise vector, and a discriminator that evaluates
whether a sample is from the true data distribution or created by the gen-
erator. By using GANs, the network can learn the exact distribution of the
data. VAEs models the data implicitly, by assuming that the data points are
represented by a Gaussian or Bernoulli distribution. The parameters for the
assumed distributions are updated using Bayesian inference, in which the
model samples true data and updates its parameters each time it receives
new information.

8.2.2 In what ways can music be represented to an ANN?

In this thesis, music is represented to the ANN model by vectorizing MIDI
files. A melody, or a monophonic track from a MIDI file, is encoded with a
note range from 0-127 (the full MIDI range), and value 128 to encode “note
off” and 129 meaning “no event”, for rhythm encoding. Additionally, a
“start of sequence”-token is encoded with the number 130. The songs are
encoded as one dimensional vectors. A song is sliced into 16 semiquaver-
sequences, translating to one bar with time signature 4

4 . However, songs
are not selected based on time signatures, so a 16 length sequence can be
less than or more than one bar. When presenting one bar as input to the
model, the 16× 1 vector is one hot encoded, resulting in a 16× 131 vector.
In the MusicVAE-project a 3× N matrix is used [105], N being the number
of notes per matrix. The three rows were assigned for note value, start time
and end time for the note, and start and end values are cumulative.

8.2.3 How can a VAE be used to compose long compositions?

The ways in which a VAE composes long compositions today is either by
inferring infinitely long sequences, conditioned on a latent vector from

85

a true sample, and usually a “start of sequence”-token. The other way
in which a VAE can compose long sequences is by adding a hierarchical
model in between the latent layer and the decoder. In this thesis, a new
hierarchical model was implemented applying a mixture density model for
modeling the sequences of latent vectors in song predictions.

8.2.4 How can we evaluate the success of a creative ANN model?

Among common methods for evaluating a generative model is using
human critics that evaluate the models creations. Typically, they answer
questions about the samples’ pleasantness, creativity, interestingness,
structure and so forth. The critics use a Likert-type scale for answering.
Another method is to ask the human annotators to perform a Turing
test of the samples, and evaluate the samples’ resemblance to real world
compositions. A common quantitative method is to perform latent space
interpolation between true data samples, and translate these interpolations
to data space. Then, the semantic meaningfulness of the interpolation is
typically evaluated, which says something about how scattered the points
in the latent space are, and if they hold relevant information. In this thesis,
qualitative evaluation was done by 8 human annotators who evaluated the
samples’ on 6 different criteria and answered using a Likert-type scale. The
quantitative evaluation was done using a 5-gram model to evaluate the
probability of created sequences by the VAE and the novel model, MCVAE.

8.2.5 Can a MDRNN be used to steer a VAE model of music?

This thesis concludes that a MDRNN produce more probable sequences
than a VAE alone, indicating that the MDRNN learns to build probable
sequences of latent vectors. Considering this, a MDRNN can steer a VAE
model of music.

8.2.6 Does an MDRNN/VAE system produce better compositions
than a VAE alone?

The 5-gram evaluation of the two models definitely indicates that a
MDRNN/VAE system produce better compositions than the VAE alone.
The human critics rated the MDRNN/VAE higher than the formal VAE
on structure, melody, creativity and musical quality. Albeit, both models
performed poorly in this test. The main reason for this is suspected to be
concerning data quality. The dataset was found to contain noisy samples
at a late stage of the project, which could have effected the distribution
of probable sequences. A high rate of true melodies in the dataset are
regarded as very unlikely with the 5-gram model, indicating that some
features in the data have a too high presence, making the model highly
specialized in these features.

As an example of low quality data in the corpus, a song of roughly
88000 bars was discovered, which turned out to be almost all 129s, during
inspection of the song. This did not improve the data quality, considering

86

the fact that the dataset preferably should be independent and identically
distributed. In future work, higher quality datasets could be used to
experiment with the MDRNN/VAE-system. One possibility would be to
apply the recently released MAESTRO dataset [50].

8.3 Future Directions and Final Remarks

The methods for algorithmic composition has grown in complexity since
the Musikalisches Würfelspiel marked the start of the algorithmic musical
exploration in the 18th century. Algorithmic composition is now a field
of machine learning, where the models are able to produce new samples
of music, in stead of being restricted by reiterating existing musical
sequences. On a more ambitious note, generative models can contribute
further than just musical creation. The most challenging tasks for machine
learning models today is to understand sequences and “recreate human-
like semantic understanding for complex actions” [118]. These skills are
what generative models can contribute to machine learning. Therefore,
generative modelling is interesting and important both for algorithmic
composition, and for the general study of AI.

8.3.1 Data processing

Given the results of the evaluation, it is sensible to look again at the
encoding method for training data. An evaluation of the dataset show that
it has a high occurrence of 128s and 129s, which is not surprising, as these
values encode duration of notes. As the VAE assume that the data points
are independent and identically distributed, another way of encoding
could be pursued and researched. A simple suggestion is to encode the
data in two dimensional vectors instead of one dimensional. In this case,
one row can encode note value, and the other row can encode duration.
This will reduce the number of 128’s and 129’s drastically, allowing the rest
of the notes to have a higher presence. This is a suggested topic for further
works.

Furthermore, more supervision during data processing is recom-
mended. Double checking the song lengths was not performed before the
dataset for the MDN was due, after training the VAE. This is a simple and
important cross check that could improve the quality of results.

Training the VAE with a higher pressure to the Kullback-Liebler
divergence could improve the model’s utilisation of the latent vector space,
using a method recommended in the paper Understanding disentangling
in β-VAE [15]. The paper explain that by redefining the KL-term to
γ · |DKL(qφ(z|x)||pθ(z) − C|, with γ >> 1, and use simulated annealing
on the term C (from zero and up), learning of the VAE is improved. This
method force the latent space to first encode the most important features to
the KL-divergence to be low, and then slowly adding features that improve
reconstruction accuracy. Preliminary experiments with this method show
that the VAE produce melodies with better musical structure than the

87

formal one, with more pleasing melodic patterns. The melodies from
these preliminary results also have no need for the scale preprocessing as
mentioned in Section 6.4.1.

8.3.2 Real world applications

The use of a sequential generative model has many real world applications.
As discussed in this thesis, music is important for humans both culturally
and personally. Exploring the combination of music modelling and
machine learning can bring forward new musical pieces that, first of
all, may be enjoyable for humans. Secondly, machine made music can
exemplify how a ML-model learns, and additionally teach us to understand
better the underlying structures of music. Brain scientists are investigating
whether neural networks can emulate the human brain [114]. With this
in mind, research on how a neural network is creative may also give
insight into how the human brain is creative. To again quote Peter M.
Todd, an early researcher of recurrent networks for music modelling, “The
possibilities for further work expanding the capabilities of this approach
are virtually limitless”. Although this statement should be balanced a bit,
as the capabilities may not be limitless, the limit is still far ahead and is
nowhere near reached. So this field of science has many more interesting
discoveries to come.

Sequence modelling has many applications in the field of language
modelling: speech recognition and generation, translation, subject extrac-
tion, relation classification and so forth. In general, all sequential data
needs sequential modelling, so the real world applications reach as far as
the number of sequential events in the world.

In this thesis, the hierarchical nature of sequence modelling is ad-
dressed. While this work introduced a new method to music modelling, the
findings mirror those of other researchers: music modelling is improved
when structural hierarchy is implemented into the model. This is a contri-
bution to research that could reinforce the view that hierarchical methods
in sequence modelling is a wise direction to pursue for further research.

88

Bibliography

[1] Dan Abolafia. A Recurrent Neural Network Music Generation Tutorial.
Ed. by Magenta. URL: https://magenta.tensorflow.org/2016/
06/10/recurrent-neural-network-generation-tutorial.

[2] Memo Akten. Review of machine / deep learning in an artistic context.
Jan. 2016. URL: https://medium.com/machine- intelligence-
report/machine- deep- learning- in- an- artistic- context-

441f28774bcc.

[3] Wolfram Alpha, ed. Bernoulli Distribution. Mar. 2018. URL: http://
mathworld.wolfram.com/BernoulliDistribution.html.

[4] Wolfram Alpha, ed. Binomial Distribution. Mar. 2018. URL: http://
mathworld.wolfram.com/BinomialDistribution.html.

[5] Nathan Anisko and Eric Anderson. Average Length of Top 100 Songs
on iTunes. Ed. by StatCrunch. Dec. 2012. URL: https : / / www .

statcrunch.com/5.0/viewreport.php?groupid=948&reportid=

28647.

[6] Martin Arjovsky, Soumith Chintala, and Leon Bottou. “Wasserstein
GAN”. In: (2017). ISSN: 1701.07875. DOI: 10.2507/daaam.scibook.
2010.27. URL: http://arxiv.org/abs/1701.07875.

[7] David Berthelot et al. “Understanding and Improving Interpolation
in Autoencoders via an Adversarial Regularizer”. In: (2018). URL:
http://arxiv.org/abs/1807.07543.

[8] Christopher M. Bishop. “Mixture Density Networks”. In: The
effects of brief mindfulness intervention on acute pain experience: An
examination of individual difference 1 (1994), pp. 1689–1699. ISSN: 1098-
6596. DOI: 10.1017/CBO9781107415324.004.

[9] David M. Blei. Variational Inference [university lecture]. Princeton
University. 2002. URL: https://www.cs.princeton.edu/courses/
archive/fall11/cos597C/lectures/variational- inference-

i.pdf.

[10] Thomas Bonte, Nicolas Froment, and Werner Schweer. Musikalisches
Würfelspiel sheet music for Piano download free in PDF or MIDI. URL:
https://musescore.com/user/56747/scores/1742031.

89

[11] Jonny Brooks-Bartlett. Probability concepts explained: Bayesian infer-
ence for parameter estimation. Ed. by Towards Data Science. URL:
https : / / towardsdatascience . com / probability - concepts -

explained-bayesian-inference-for-parameter-estimation-

90e8930e5348.

[12] Jason Brownlee. A Gentle Introduction to Exploding Gradients in Neural
Networks. Dec. 2017. URL: https://machinelearningmastery.com/
exploding-gradients-in-neural-networks/.

[13] Jason Brownlee. Encoder-Decoder Long Short-Term Memory Networks.
Aug. 2017. URL: https://machinelearningmastery.com/encoder-
decoder-long-short-term-memory-networks/.

[14] Jason Brownlee. Overfitting and Underfitting With Machine Learning
Algorithms. URL: https : / / machinelearningmastery . com /

overfitting - and - underfitting - with - machine - learning -

algorithms/.

[15] Christopher P. Burgess et al. “Understanding disentangling in β-
VAE”. In: Computing Research Repository (CoRR) abs/1804.03599
(2018).

[16] BusinessDictionary. probabilistic model. 2018. URL: http : / / www .
businessdictionary.com/definition/probabilistic- model.

html.

[17] Li Cai and Yangyong Zhu. “The Challenges of Data Quality and
Data Quality Assessment in the Big Data Era”. In: Data Science
Journal 14.0 (May 2015), p. 2. ISSN: 1683-1470. DOI: 10.5334/dsj-
2015-002. URL: http://datascience.codata.org/article/10.
5334/dsj-2015-002/.

[18] CarRacing-v0. URL: https://gym.openai.com/envs/CarRacing-
v0/.

[19] Xi Chen et al. “Variational lossy autoencoder”. In: (2017), pp. 1–17.

[20] Gaofeng Cheng et al. “An exploration of dropout with LSTMs”.
In: Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH 2017-Augus.2 (2017),
pp. 1586–1590. ISSN: 19909772. DOI: 10.21437/Interspeech.2017-
129.

[21] Francois Chollet. Building Autoencoders in Keras. Ed. by The Keras
Blog. May 2016. URL: https : / / blog . keras . io / building -

autoencoders-in-keras.html.

[22] Francois Chollet et al. Keras. https : / / github . com / fchollet /
keras. 2015. URL: https://github.com/keras-team/keras/blob/
master/keras/layers/recurrent.py.

[23] Agatha Christie. Murder on the Orient Express. Collins Crime Club,
Jan. 1934.

90

[24] S. Cohen. Bayesian Analysis in Natural Language Processing. Synthesis
Lectures on Human Language Technologies. Morgan & Claypool
Publishers, 2016. ISBN: 9781627054218. URL: https : / / books .

google.no/books?id=oBV8DAAAQBAJ.

[25] Sir Arthur Conan Doyle. The adventures of Sherlock Holmes. George
Newnes, Oct. 1892.

[26] Marı́a Laura T Cossio et al. “Algorithmic Composition: Paradigms
of Automated Music Generation”. In: Uma ética para quantos?
XXXIII.2 (2012), pp. 81–87.

[27] Arden Dertat. Applied Deep Learning, Part 3: Autoencoders. Ed. by To-
wardssdatascience. Oct. 2017. URL: https://towardsdatascience.
com / applied - deep - learning - part - 3 - autoencoders -

1c083af4d798.

[28] DL4J, ed. A beginners guide to Recurrent Networks and LSTMs. 2017.
URL: https://deeplearning4j.org/lstm.html.

[29] D. Eck and J. Schmidhuber. “Finding temporal structure in music:
Blues improvisation with LSTM recurrent networks”. In: Neural
Networks for Signal Processing - Proceedings of the IEEE Workshop 2002-
Janua (2002), pp. 747–756. ISSN: 0780376161. DOI: 10.1109/NNSP.
2002.1030094.

[30] Douglas Eck et al. Magenta Blog. 2016. URL: https : / / magenta .
tensorflow.org/blog.

[31] Stefano Ermon and Volodymyr Kuleshow. Variable elimination. Ed.
by Stanford University. 2018. URL: https://ermongroup.github.
io/cs228-notes/inference/ve/.

[32] Murhaf Fares and Stephan Oepen. INF4820-Algorithms for AI and
NLP Basic Probability Theory & Language Models [university lecture].
University of Oslo. 2017. URL: https://www.uio.no/studier/
emner/matnat/ifi/nedlagte-emner/INF4820/h17/slides/8_

language-models_screen.pdf.

[33] Serena Young Fei-Fei Li Justin Johnson. Recurrent Neural Networks.
Ed. by Stanford. Aug. 2017. URL: https : / / www . youtube . com /
watch?v=6niqTuYFZLQ&t=1025s.

[34] Marissa Fessenden. Why Music Is Not a Universal Language [blog
post]. Smithsonian magazine. Feb. 2018. URL: https : / / www .

smithsonianmag.com/smart-news/why-music-not-universal-

language-180968245/.

[35] Peter Forret. Ed. by Toolstud.io. URL: https : / / toolstud . io /
music/bpm.php.

[36] Rohith Gandhi. Introduction to Sequence Models — RNN, Bidirectional
RNN, LSTM, GRU. Ed. by Towards Data Science. URL: https://
towardsdatascience.com/introduction-to-sequence-models-

rnn-bidirectional-rnn-lstm-gru-73927ec9df15.

91

[37] A. Gëron. Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2017. ISBN: 9781491962244. URL: https://books.
google.no/books?id=bRpYDgAAQBAJ.

[38] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty
of training deep feedforward neural networks”. In: Proceedings of
the Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010. 2010, pp. 249–256. URL: http : / / www . jmlr . org /
proceedings/papers/v9/glorot10a.html.

[39] Ian Goodfellow. Introduction to GANs, Conference on Neural Informa-
tion Processing Systems (NIPS) Processing Systems 2016 — Goodfellow,
OpenAI. URL: https://www.youtube.com/watch?v=9JpdAg6uMXs.

[40] Ian J. Goodfellow. Can generative adversarial networks be used in
sequential data in recurrent neural networks, and how effective would
they be for sequential data like auto-generating music or human speech?
Quora.com. 2016. URL: https://www.quora.com/What-are-the-
pros-and-cons-of-using-generative-adversarial-networks-

a - type - of - neural - network - Could - they - be - applied - to -

things-like-audio-waveform-via-RNN-Why-or-why-not.

[41] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In:
(2014), pp. 1–9. ISSN: 10495258. DOI: 10 . 1001 / jamainternmed .
2016.8245. eprint: 1406.2661. URL: http://arxiv.org/abs/1406.
2661.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016. URL: http://www.deeplearningbook.org.

[43] Alex Graves. “Generating Sequences With Recurrent Neural Net-
works”. In: CoRR abs/1308.0850 (2013). arXiv: 1308 . 0850. URL:
http://arxiv.org/abs/1308.0850.

[44] Klaus Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE
Transactions on Neural Networks and Learning Systems 28.10 (2017),
pp. 2222–2232. ISSN: 21622388. DOI: 10.1109/TNNLS.2016.2582924.

[45] Leonardo Guizzetti. Markov Models, or the Future is Now – Leonardo’s
blog [blog post]. URL: http://guizzetti.ca/blogs/lenny/2012/
04/markov-models-or-the-future-is-now/.

[46] David Ha and Douglas Eck. “A Neural Representation of Sketch
Drawings”. In: (2017). URL: http://arxiv.org/abs/1704.03477.

[47] David Ha and Jürgen Schmidhuber. “World Models”. In: Computing
Research Repository (CoRR) abs/1803.10122 (2018). arXiv: 1803 .

10122. URL: http://arxiv.org/abs/1803.10122.

[48] David Ha and Jürgen Schmidhuber. World Models [blog post]. 2018.
URL: https://worldmodels.github.io/.

92

[49] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. “The el-
ements of statistical learning: data mining, inference, and predic-
tion, 2nd Edition”. In: Springer series in statistics. Springer, 2009.
Chap. 2.4.

[50] Curtis Hawthorne et al. “ENABLING FACTORIZED PIANO MU-
SIC MODELING”. In: (2018), pp. 1–12.

[51] Stephen A. Hedges. “Dice Music in the Eighteenth Century”. In:
Music & Letters, Vol. 59, No. 2. Oxford University Press Stable, 1978,
pp. 180–187.

[52] Piet Hein and Jens Aarup. Grooks 1. Ed. by Borgen. 1940.

[53] Robert M. Hierons. “Machine Learning, by Tom M. Mitchell,
McGraw-Hill, 1997 (Book Review)”. In: Softw. Test., Verif. Reliab. 9.3
(1999), pp. 191–193.

[54] Sepp Hochreiter and Jürgen Schmidhuber. “LONG SHORT-TERM
MEMORY”. In: Neural Computation (1997). ISSN: 0899-7667. DOI: 10.
1162/neco.1997.9.8.1735. arXiv: 1206.2944.

[55] lejlot (https://stats.stackexchange.com/users/28903/lejlot). Objec-
tive function, cost function, loss function: are they the same thing? [forum
discussion]. StackExchange: Cross Validated. URL:https://stats.stackexchange.com/q/179027
(version: 2017-09-04). Oct. 2015. URL: https://stats.stackexchange.
com/q/179027.

[56] Bert Huang. 17 Probabilistic Graphical Models and Bayesian Networks.
Ed. by Virginia Tech. 2015. URL: https://www.youtube.com/watch?
v=zCWRTKnOYYg&t=1335s.

[57] Mark Inlow. The IID Assumption [university lecture notes]. Rose-
Hulman Institue of Technology. May 2015. URL: https : / / www .
rose-hulman.edu/class/ma/inlow/Math223/iid_f13.pdf.

[58] Daniel Jacobson. The Elements of Music. Ed. by Western Michigan
University. 2014. URL: https://wmich.edu/mus-gened/mus170/
RockElements.pdf.

[59] Eric Jang. A Beginner’s Guide to Variational Methods: Mean-Field
Approximation. Aug. 2016. URL: https://blog.evjang.com/2016/
08/variational-bayes.html.

[60] Andrew Hsu John McGonagle George Shaikouski. Backpropagation.
URL: https://brilliant.org/wiki/backpropagation/.

[61] Jeremy https://www.jeremyjordan.me/about/ Jordan. Variational
autoencoders. URL: https://www.jeremyjordan.me/variational-
autoencoders/.

[62] Michael I. Jordan. “Serial Order: A Parallel Distributed Processing
Approach”. In: 1997, pp. 471–495. DOI: 10.1016/S0166-4115(97)
80111-2. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0166411597801112.

93

[63] Andrej Karpathy. Setting up the data and the model [university lecture
notes]. Stanford University. 2017. URL: http://cs231n.github.io/
neural-networks-2/#init.

[64] Andrej Karpathy et al. Generative Models. Ed. by openAI. June 2016.
URL: https://blog.openai.com/generative-models/.

[65] Karen Kersting. What exactly is creativity? [blog post]. American
Psychological Association. Nov. 2003. URL: https://www.apa.org/
monitor/nov03/creativity.aspx.

[66] Taeksoo Kim et al. “Learning to Discover Cross-Domain Relations
with Generative Adversarial Networks”. In: Computing Research
Repository (CoRR) abs/1703.05192 (2017). arXiv: 1703.05192. URL:
http://arxiv.org/abs/1703.05192.

[67] Augustinius Kristiadi. KL Divergence: Forward vs Reverse? 2018. URL:
https://wiseodd.github.io/techblog/2016/12/21/forward-

reverse-kl/.

[68] Carol L. Krumhansl and Lola L. Cuddy. “A Theory of Tonal
Hierarchies in Music”. In: Music Perception. Ed. by Mari Riess Jones,
Richard R. Fay, and Arthur N. Popper. New York, NY: Springer
New York, 2010, pp. 51–87. DOI: 10.1007/978-1-4419-6114-3_3.
URL: https://doi.org/10.1007/978-1-4419-6114-3_3.

[69] Vladimir Kuleshov and Stefano Ermon. Variational inference. Ed. by
Stanford University. URL: https : / / ermongroup . github . io /

cs228-notes/inference/variational/.

[70] Tony Kushner. Angels in America. Nick Hern Books, 2017.

[71] Yann LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks of
the Trade - Second Edition. 2012, pp. 9–48. DOI: 10.1007/978-3-642-
35289-8_3. URL: https://doi.org/10.1007/978-3-642-35289-
8_3.

[72] Fei-Fei Li, Justin Johnson, and Serena Yeung. Generative Models. Ed.
by Stanford University. May 2017. URL: http://cs231n.stanford.
edu/slides/2017/cs231n_2017_lecture13.pdf.

[73] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 10: Recurrent
Neural Networks. May 2017. URL: http://cs231n.stanford.edu/
slides/2017/cs231n_2017_lecture10.pdf.

[74] G. Loevaas Gunnar. Statistikk for universitet og hoegskoler. Univer-
sitetsforlaget, 2013.

[75] David Ludden. Is Music a Universal Language? URL: https://www.
psychologytoday . com / us / blog / talking - apes / 201507 / is -

music-universal-language.

[76] Stephen Marsland. Machine Learning - An Algorithmic Perspective.
Chapman and Hall / CRC machine learning and pattern recogni-
tion series. CRC Press, 2009. ISBN: 978-1-4200-6718-7. URL: http:
//www.crcpress.com/product/isbn/9781420067187.

94

[77] Charles Martin. cmpercussion/keras-mdn-layer. Ed. by GitHub. 2018.
URL: https://github.com/cpmpercussion/keras-mdn-layer/
blob / master / notebooks / MDN - RNN - time - distributed - MDN -

training.ipynb.

[78] Charles P. Martin. “Predictive Musical Interaction with MDRNNs”.
In: NeurIPS 2018 Workshop on Machine Learning for Creativity
and Design. Montréal, Canada, Dec. 2018. URL: https : / /

nips2018creativity . github . io / doc / Predictive _ Musical _

Interaction_with_MDRNNs.pdf.

[79] Charles P. Martin, Kai Olav Ellefsen, and Jim Torresen. “Deep
Models for Ensemble Touch-Screen Improvisation”. In: Proceedings
of the 12th International Audio Mostly Conference on Augmented and
Participatory Sound and Music Experiences. AM ’17. Aug. 2017. DOI:
10.1145/3123514.3123556.

[80] Charles P. Martin, Kai Olav Ellefsen, and Jim Tørresen. “Deep
Predictive Models in Interactive Music”. In: Computing Research
Repository (CoRR) abs/1801.10492 (2018). arXiv: 1801.10492. URL:
http://arxiv.org/abs/1801.10492.

[81] Charles P. Martin and Jim Tørresen. “RoboJam: A Musical Mixture
Density Network for Collaborative Touchscreen Interaction”. In:
Computing Research Repository (CoRR) abs/1711.10746 (2017). arXiv:
1711.10746. URL: http://arxiv.org/abs/1711.10746.

[82] Charles Martin, Henry Gardner, and Ben Swift. “Tracking Ensemble
Performance on Touch-Screens with Gesture Classification and
Transition Matrices”. In: Proceedings of the International Conference on
New Interfaces for Musical Expression. Ed. by Edgar Berdahl and Jesse
Allison. Baton Rouge, Louisiana, USA: Louisiana State University,
May 2015, pp. 359–364. DOI: 10.5281/zenodo.1179130. URL: http:
//www.nime.org/proceedings/2015/nime2015_242.pdf.

[83] Charles Martin et al. “Intelligent Agents and Networked But-
tons Improve Free-Improvised Ensemble Music-Making on Touch-
Screens”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’16. New York, NY, USA: ACM, May 2016,
pp. 2295–2306. DOI: 10.1145/2858036.2858269.

[84] Diane Martindale. “One Face, One Neuron”. In: Scientific American
293.4 (Oct. 2005), pp. 22–24. ISSN: 0036-8733. DOI: 10 . 1038 /

scientificamerican1005 - 22. URL: http : / / www . nature . com /
doifinder/10.1038/scientificamerican1005-22.

[85] Kyle McDonald. Neural Nets for Generating Music. Ed. by Medium.
Aug. 2017. URL: https : / / medium . com / artists - and -

machine-intelligence/neural-nets-for-generating-music-

f46dffac21c0.

[86] Merriam-Webster, ed. Entropy. URL: https : / / www . merriam -

webster.com/dictionary/entropy.

95

[87] Merriam-Webster, ed. Inference. URL: https : / / www . merriam -

webster.com/dictionary/inference.

[88] Merriam-Webster, ed. Recurrent. Feb. 2018. URL: https : / / www .
merriam-webster.com/dictionary/recurrent.

[89] MIDI note numbers and center frequencies. URL: http : / / www .

inspiredacoustics.com/en/MIDI_note_numbers_and_center_

frequencies.

[90] Lester James V. Miranda. Understanding softmax and the negative log-
likelihood. URL: https://ljvmiranda921.github.io/notebook/
2017/08/13/softmax-and-the-negative-log-likelihood/.

[91] Shakir Mohamed. Machine Learning Trick of the Day(4): Reparametriz-
ing Tricks. Ed. by The Spectator. Oct. 2015. URL: http : / / blog .
shakirm.com/2015/10/machine-learning-trick-of-the-day-

4-reparameterisation-tricks/.

[92] Shakir Mohamed and Balaji Lakshminarayanan. “Learning in Im-
plicit Generative Models”. In: Computing Research Repository (CoRR)
abs/1610.03483 (2016).

[93] Andrew Ng. Ed. by Stanford. Apr. 2013. URL: http : / / online .
stanford.edu/course/machine-learning.

[94] Michael Nielsen. Improving the way neural networks learn. Dec. 2017.
URL: http://neuralnetworksanddeeplearning.com/chap3.html.

[95] Christopher Olah. Understanding LSTM Networks. Aug. 2015. URL:
http : / / colah . github . io / posts / 2015 - 08 - Understanding -

LSTMs/.

[96] Aäron van den Oord, Sander Dieleman, and Heiga Zen. June 2017.
URL: WaveNet : %20A % 20Generative % 20Model % 20for % 20Raw %

20Audio.

[97] Aaron van den Oord et al. “WaveNet: A Generative Model for Raw
Audio”. In: (2016), pp. 1–15. ISSN: 0899-7667. DOI: 10.1109/ICASSP.
2009.4960364. URL: http://arxiv.org/abs/1609.03499.

[98] Guim Perarnau et al. “Invertible Conditional GANs for image
editing”. In: Computing Research Repository (CoRR) abs/1611.06355
(2016). arXiv: 1611.06355. URL: http://arxiv.org/abs/1611.
06355.

[99] Howard Pollack. George Gershwin. His life and work. University of
California Press, Jan. 2007. ISBN: 9780520248649.

[100] William H. Press et al. Numerical Recipes in C: The Art of Scientific
Computing. New York, NY, USA: Cambridge University Press, 1988.

[101] Princeton, ed. Nash equilibrium. URL: http : / / wordnetweb .

princeton.edu/perl/webwn?s=nash%5C%20%5C%20equilibrium.

[102] Samuel R. Bowman et al. “Generating Sentences from a Continuous
Space”. In: Computing Research Repository (CoRR) abs/1511.06349
(2015). arXiv: 1511.06349. URL: http://arxiv.org/abs/1511.
06349.

96

[103] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised
Representation Learning with Deep Convolutional Generative Ad-
versarial Networks”. In: (2015), pp. 1–16. ISSN: 0004-6361. DOI: 10.
1051/0004- 6361/201527329. eprint: 1511.06434. URL: http://
arxiv.org/abs/1511.06434.

[104] Adam Roberts et al. “A Hierarchical Latent Vector Model for
Learning Long-Term Structure in Music”. In: Computing Research
Repository (CoRR) abs/1803.05428 (2018). arXiv: 1803.05428. URL:
http://arxiv.org/abs/1803.05428.

[105] Adam Roberts et al. mm.Player. URL: https://tensorflow.github.
io/magenta-js/music/demos/player.html.

[106] F Rosenblatt. “The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in The Brain”. In: Psychological Review
(1958), pp. 65–386.

[107] Margaret Rouse. Markov Model. Ed. by WhatIs.com. July 2017. URL:
https://whatis.techtarget.com/definition/Markov-model.

[108] David E. Rumelhart, James L. McClelland, and San Diego. PDP Re-
search Group. University of California. Parallel distributed processing
: explorations in the microstructure of cognition. MIT Press, 1986. ISBN:
9780262680530.

[109] Ruslan Salakhutdinov. “Approximate Inference”. In: Machine Learn-
ing (2009), pp. 467–477. ISSN: 00223530. DOI: 10.1093/petrology/
egs049.

[110] Tim Salimans et al. “Improved Techniques for Training GANs”. In:
Computing Research Repository (CoRR) abs/1606.03498 (2016). arXiv:
1606.03498. URL: http://arxiv.org/abs/1606.03498.

[111] Valorie N Salimpoor et al. “Anatomically distinct dopamine release
during anticipation and experience of peak emotion to music”. In:
Nature Neuroscience 14.2 (Feb. 2011), pp. 257–262. ISSN: 1097-6256.
DOI: 10.1038/nn.2726. URL: http://www.nature.com/articles/
nn.2726.

[112] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An
Overview”. In: Computing Research Repository (CoRR) abs/1404.7828
(2014). arXiv: 1404.7828. URL: http://arxiv.org/abs/1404.7828.

[113] Scikit-learn, ed. Underfitting vs. Overfitting. URL: http://scikit-
learn . org / stable / auto _ examples / model _ selection / plot _

underfitting_overfitting.html.

[114] Kelly Servick. “Brain scientists dive into deep neural networks.” In:
Science (New York, N.Y.) 361.6408 (Sept. 2018), p. 1177. ISSN: 1095-
9203. DOI: 10.1126/science.361.6408.1177. URL: http://www.
ncbi.nlm.nih.gov/pubmed/30237335.

[115] Irhum Shafkat. Intuitively Understanding Variational Autoencoders.
URL: https : / / towardsdatascience . com / intuitively -

understanding-variational-autoencoders-1bfe67eb5daf.

97

[116] Tarang Shan. About Train, Validation and Test Sets in Machine Learning.
Dec. 2017. URL: https : / / towardsdatascience . com / train -

validation-and-test-sets-72cb40cba9e7.

[117] Claude E Shannon. “A mathematical theory of communication”. In:
The Bell System Technical Journal 27.July 1928 (1948), pp. 379–423.
ISSN: 07246811. DOI: 10.1145/584091.584093. URL: http://cm.
bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

[118] Usman Shuja. Is Deep Learning The Big Bang Moment For AI? Ed.
by Forbes. Mar. 2018. URL: https : / / www . forbes . com / sites /
forbestechcouncil/2018/03/20/is-deep-learning-the-big-

bang-moment-for-ai/#1c49a82a4836.

[119] Ole-Johan Skrede. Generative Adversarial Networks, INF5860 - Ma-
chine Learning for Image Analysis. May 2018. URL: https : / /

www . uio . no / studier / emner / matnat / ifi / INF5860 / v18 /

undervisningsmateriale / lectures / slides _ inf5860 _ s18 _

week14.pdf.

[120] Stanford, ed. Softmax Regression. URL: http://ufldl.stanford.
edu/tutorial/supervised/SoftmaxRegression/.

[121] Stanford University. and Center for the Study of Language and
Information (U.S.) Connectionism. Stanford University, 1997. URL:
https : / / plato . stanford . edu / entries / connectionism /

#ShaConBetConCla.

[122] Bob L. Sturm et al. “Machine learning research that matters for
music creation: A case study”. In: Journal of New Music Research 0.0
(2018), pp. 1–20. DOI: 10.1080/09298215.2018.1515233. eprint:
https://doi.org/10.1080/09298215.2018.1515233. URL: https:
//doi.org/10.1080/09298215.2018.1515233.

[123] The Largest MIDI Collection on the Internet, collected and sorted
diligently by yours truly. URL: https : / / www . reddit . com / r /

WeAreTheMusicMakers / comments / 3ajwe4 / the _ largest _ midi _

collection_on_the_internet/.

[124] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note
on the evaluation of generative models”. In: (2015), pp. 1–10. ISSN:
1477-1535. URL: http://arxiv.org/abs/1511.01844.

[125] Peter M Todd. “A Connectionist Approach To Algorithmic Com-
position”. In: Computer Music Journal 13.4 (1989), pp. 27–43. ISSN:
01489267. DOI: 10.2307/3679551.

[126] Avinash Sharma V. Understanding Activation Functions In Neural
Networks. Ed. by Medium. Mar. 2017. URL: https : / / medium .

com/the-theory-of-everything/understanding-activation-

functions-in-neural-networks-9491262884e0.

[127] Elliot Waite. Generating Long-Term Structure in Songs and Stories [blog
post]. Google AI. 2016. URL: https://magenta.tensorflow.org/
2016/07/15/lookback-rnn-attention-rnn.

98

[128] Yair Weiss and Michael I. Jordan. “Probabilistic Inference in Graph-
ical Models”. In: Stat Sci (Special Issue on Bayesian Stat 21.3 (2002),
p. 421. DOI: 10.1016/0010-0285(84)90015-X.

[129] Eric W. Weisstein. Homotopy. Ed. by MathWorld - A Wolfram Web
Resource. URL: http://mathworld.wolfram.com/Homotopy.html.

[130] Eric W. Weisstein. NP-Hard Problem. URL: http : / / mathworld .
wolfram.com/NP-HardProblem.html.

[131] Eric W. Weisstein. Sigmoid Function. Ed. by MathWorld - A Wol-
fram Web Resource. URL: http : / / mathworld . wolfram . com /

SigmoidFunction.html.

[132] Max Welling. “Auto-Encoding Variational Bayes”. In: International
Conference on Machine Learning (May 2014), pp. 1–14.

[133] Lillian Weng. From GAN to WGAN. Ed. by OpenAI. May 2017. URL:
https://lilianweng.github.io/lil-log/2017/08/20/from-

GAN-to-WGAN.html#what-is-the-optimal-value-for-d.

[134] Stuart Wilson. Reparameterization. Ed. by created by Eric W. Weis-
stein MathWorld - A Wolfram Web Resource. URL: mathworld .

wolfram.com/Reparameterization.html.

[135] Marek Wydmuch et al. Institute of Computing Science, Poznań
University of Technology, Poland. URL: http://vizdoom.cs.put.
edu.pl/.

[136] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. “MidiNet: A Con-
volutional Generative Adversarial Network for Symbolic-domain
Music Generation”. In: The International Society of Music Information
Retrieval (ISMIR) (2017), pp. 324–331. URL: http://arxiv.org/abs/
1703.10847.

[137] Xitong Yang. Understanding the Variational Lower Bound [blog post].
https://xyang35.github.io/2017/04/14/variational-lower-

bound/. Apr. 2017.

[138] Jane Yolen. Briar Rose. Ed. by Tor Books. 1992. ISBN: ISBN 0-8125-
5862-6.

[139] Rui Zhao et al. “Learning to Monitor Machine Health with Convo-
lutional Bi-Directional LSTM Networks”. In: Sensors 17 (Jan. 2017),
p. 273. DOI: 10.3390/s17020273.

99

