
Building Affordable Intrusion
Detection System for Internet
of Things

Muhammad Haroon
Master’s Thesis Autumn 2018

Building Affordable Intrusion Detection System
for Internet of Things

Muhammad Haroon

17th December 2018

i

Acknowledgement

Foremost, i would like to thank my beloved family for their support and love. I
could never do it without them.

I would express my sincere gratitude to my supervisors Josef Noll and Magh-
soud Morshedi for their guidance, motivation and patience. I am grateful to
have the chance to work with one of the best young talents in UiO, Maghsoud
Morshedi.

My special thanks to Hårek Haugerud for his kindness and support.

Finally, i would like to thank my friends and colleagues, specially Madeleine
Victoria Kongshavn for her time and valuable suggestions.

ii

Abstract

IoT is a pervasive technology that has revolutionized industry with value added
solutions. Internet of Things (IoT) is a collection of small smart devices, which
can communicate through communication networks. Due to a high profit poten-
tial, it has gained an enormous attention of technology industry. IoT vendors
scramble for their profit share in the market, leaving security of these devices
almost to negligence. It exposes IoTs to identity theft, privacy breaches and in-
ternet downtime. Protecting IoTs has become one of the most researched topics
in cyber security paradigm. Due to contemporary nature of IoT devices, it is
comparatively difficult and complex to design and implement security software
considering constraints attached to IoT. Specifically, an intrusion detection sys-
tem (IDS) is a crucial tool in IoT security. Several commercial hardware and
software products have been claiming to solve these challenges by providing IDS
solutions but these solutions are costly and proprietary, which itself is an issue.
This thesis presented an affordable intrusion detection system using low price
hardware Raspberry Pi (RPi) and open-source IDS Snort. Several tests were
conducted to check capability of Raspberry Pi of hosting Snort as an IDS as
well as to analyze Snort performance. The results showed that Rpi stood firm
against several attack scenarios and Snort gave satisfactory performance. The
thesis provided a cost effective solution for IoT security to how to build an af-
fordable intrusion detection system using low price hardware and open-source
intrusion detection systems.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Statement . 5
1.3 Thesis Outline . 6

2 Background 9
2.1 Internet of Things . 9

2.1.1 IoT Ecosystem and Trend 10
2.1.2 Areas of IoT Application 11
2.1.3 General Architecture of IoT 13
2.1.4 IoT Protocols . 14
2.1.5 Challenges To IoT . 15

2.1.5.1 IoT Security Challenges 16
2.2 Intrusion Detection System . 19

2.2.1 IDS Placement Strategies 20
2.2.2 IDS Detection Methods 21

2.3 Open Source IDS . 22
2.3.1 Snort . 22

2.3.1.1 Snort Architecture 22
2.3.1.2 Configuration Modes 24
2.3.1.3 Snort Rules . 25

2.3.2 Bro . 26
2.3.3 Kismet . 26
2.3.4 Suricata . 26

2.4 Commercial Intrusion Detection Systems 27
2.4.1 McAfee NSP . 27
2.4.2 Trend Micro TippingPoint 27
2.4.3 Hillstone NIPS . 27
2.4.4 Huawei NIP . 27

2.5 Raspberry Pi . 28

v

2.5.1 Core Components . 28
2.5.2 Operating System . 29
2.5.3 Applications of RPi . 29

2.6 ELK Stack . 30
2.7 Related Work . 31

3 Methodology 34
3.1 IDS Design Methodology . 34
3.2 System Design . 35

3.2.1 System Components . 35
3.2.1.1 RPi Snort Gateway 36
3.2.1.2 Sensors . 36
3.2.1.3 Router . 36
3.2.1.4 IDS Test Machine 36
3.2.1.5 Remote Monitoring Server 37

3.3 Snort Algorithms . 37
3.3.1 Aho-Corasick State Machine 37
3.3.2 Snort Implementation of AC 40
3.3.3 Detection and Processing of Rules 42

3.4 The Approach . 44
3.4.1 Conditions . 44
3.4.2 Attack scenarios . 44
3.4.3 Monitoring . 45

4 Implementation 46
4.1 Compiling Snort on RPi . 46
4.2 Customizing Snort . 46
4.3 Snort Instances . 47

4.3.1 Snort Instance Eth0 . 48
4.3.1.1 Network . 48
4.3.1.2 Snort Eth0 Configuration File 48
4.3.1.3 Eth0 Rules File 48

4.3.2 Snort Instance Wlan0 . 49
4.3.2.1 Network . 49
4.3.2.2 Wlan0 Rules . 50

4.3.3 Logging . 50
4.4 Configuring Beats on RPi . 50
4.5 Configuring ELk server . 51
4.6 Testing . 51

4.6.1 Test 1 . 52
4.6.2 Test 2 . 53
4.6.3 Test 3 . 54
4.6.4 Test 4 . 54

5 Results and Analysis 56
5.1 Test 1 . 56

vi

5.2 Test 2 . 58
5.3 Test 3 . 60
5.4 Test 4 . 61
5.5 Monitoring Server . 63

5.5.1 Filebeat . 64
5.5.2 Metricbeat . 66

6 Discussion 69
6.1 Project Evaluation . 69
6.2 The Approach . 69
6.3 Implementation and challenges 70
6.4 Testing and Analysis . 71
6.5 Future Work . 73

7 Conclusion 74

Bibliography 75

Appendices 81

A Install and Configure Snort 82

B Hostapd and ISC server configurations 84

C Configuring Beats on RPi 87

D Setup ELK on Openstack 89

E Snort Instances and Gnuplot 93

F Snort Eth0 configurations 98

G Snort Eth0 Sample Rules 99

vii

List of Figures

1.1 IoT Market Growth Forecast showing IoT market trend in differ-
ent IoT sectors. Sources: GrowthEnabler [68] 4

2.1 major IoT companies and their sector of interest. Source:[5] . . . 11
2.2 Global share of IoT projects around the world. It also provides

top to lowest IoT segments Source: IoT Analytics [13] 12
2.3 General IoT communication architecture, showing most common

IoT sensors and devices. 13
2.4 A comprehension of major IoT challenges in present and near

future. 16
2.5 IoT layers in the context of IoT component placement in IoT

architecture Source:[22] . 17
2.6 The most common attacks against IoT Networks. 19
2.7 General IDS placement approach, the figure shows a distributed

approach IDS placement where IDS sensors placed in distributed
locations. 21

2.8 An abstracted view of Snort operation process, form packet com-
mencing to output. 23

2.9 Simple Snort Rule . 25
2.10 Raspberry Pi Model B Block Diagram showing it’s main compon-

ents. 28
2.11 Components of ELK stack in their position of operation. Source:[75] 31

3.1 Adopted system design with it’s components and connection points. 35
3.2 Aho-Corasick state machine, showing data input and output steps.

Source[66] . 38
3.3 Form Beats on RPi to ELk server on Openstack. 45

4.1 Shows how the Snort is configured on RPi with two Snort in-
stances and Beats . 47

4.2 Figure created from system design figure, it shows attack vectors
on each interface . 52

viii

5.1 Test 1 -Memory and CPU consumption during test 1 at 100MBit/sec
data rate. 57

5.2 Test 2 -Memory and CPU consumption during test 2 at 300MBit/sec
data rate. CPU consumption is increased but consistent as com-
pared to test 1. 59

5.3 Test 3 - Memory and CPU consumption during BlackBurse at-
tack, a very high CPU rate can be noticed with slight decrease in
memory consumption. 61

5.4 Test 4 -Memory and CPU consumption during dual attack, a very
high CPU rate can be seen because both of the Snort instances are
operational in detecting attacks. 63

5.5 Syn-food attack on eth0 - Snort detects the attack and generates
alert, which is sent by Filebeat and processed by ELk index patterns. 64

5.6 ssh-bruteforce attack on wlan0 - It shows the generated alert by
Snort after detection of the attack. 65

5.7 blackNurse attack on eth0 - Snort successfully detects the attack
and generates alerts. Figure shows the alert message on the ELK
server. 65

5.8 XMAS scan detected on eth0 - Figure shows the detection of nmap
XMAS scan, which normally belongs to first phases of a hacking
attempt. 65

5.9 GeoIP MAP - Showing the country location of attackers based
on their IP addresses. Red color countries are the top countries
where attacks where generated from. 66

5.10 Memory and system load - The line graph generated at ELK
server using Metricbeat data, showing memory and system load
fluctuations during a longer time span. 67

5.11 Incoming and Dropped packets - The number of packets received
and dropped by Ethernet interface. Based on Data shipped by
Metricbeat. 67

ix

List of Tables

2.1 Shows an overview of IoT related entities and their respective
parameter values. 14

2.2 Comparison of RPi alternatives in terms of price and features. . 30
2.3 A summary of the major research IoT area with concerned threats

and detection methods. 33

3.1 Specification details of RPi device used as an IDS. 36
3.2 Specification details of IDS testing machine i.e. attacking machine 37

4.1 Characteristics of Test 1, syn-flood at 100MBit/sec 52
4.2 Test 2 characteristics and it’s values for a higher data rate of

300MBit/sec . 53
4.3 Test 3 characteristics while it used BlackNurse attack at relatively

low data rate . 54
4.4 Test 4 characteristics. It shows a dual attack on both interfaces

with different data rates. 55

5.1 Test 1 - Snort I/O Statistics, showing Snort analysis and packet
drop rate. Percentage values are rounded. 57

5.2 Test 2 - Snort I/O Statistics, showing Snort analysis and packet
drop rate. Analysis rate has dropped while outstanding rate has
increased. 58

5.3 Test 3 - Snort I/O Statistics, showing Snort analysis and packet
drop rate during BlackNurse attack. A higher packet commence
rate by Snort can be noticed. 60

5.4 Test 4 - Snort I/O Statistics for eth0, showing Snort statistics
during dual interface attack. A very low analysis rate can be
seen, with a very high outstanding packet rate. 62

5.5 Test 4 - Snort I/O Statistics for wlan0, showing Snort statistics
during dual interface attack. A very higher packet commence rate
by Snort can be noticed with no packet drop. 62

x

Listings

3.1 AC implementation in Snort . 41
4.1 Static ip configuration . 48
4.2 snort_wlan0.conf . 49

1

2

Chapter 1

Introduction

Since the very beginning of Internet back in the midst of 1960s at MIT, internet
and technology in general, has evolved at a very fast pace, almost exponentially
in terms of size, power and functionality.

This tremendous growth has not only changed the world which we now see and
interact with, but in fact, it has changed the prospective of human evolution.
With all the benefits and good signs, there have been several short comings,
which unfortunately could not evolve at the same pace as internet itself, for
instance, security of all these inter-connected devices, cyber security to be more
precise.

Research in area of cyber security has held a noticeable speed. Due to unfore-
seen nature of cyber threats, research in this area is always on passive mode,
awaiting next cyber-attack to unleash. with advancements in technology, spe-
cifically nano technology, computers and other technology related devices has
shrunk to minimal size with almost an exponential increase in processing power
and communication capability. these multi function smaller devices are cap-
able of data gathering, data processing and communicating remotely over the
internet, these devices are generally referred as Internet of Things (IoT) . Dir-
ect integration of these devices into the internet made it very difficult to follow
traditional cyber security rules.

Unlike traditional computers and internet components, these devices or things,
have a direct interaction with people and have a relatively higher degree of im-
pact on quality of life. These devices are referred as Internet of Things (IoTs),
term claimed to be first coined by K.Ashton [1] back in 1999. It is the IoT,
which holds the triumph to close the gap between day to day activities and
internet. It has empowered the internet to such extent that it is very hard to
think about a day without internet.

The trend of IoT is growing at a tremendous speed. From baby monitors to

3

smart homes, autonomous cars to ICS sensors, health services to military opera-
tions, IoT will be a vital organ of internet in upcoming era. Imagine, controlling
entire home from a cell phone, for instance to control the temperature or mon-
itor the door locks and home security or using smart wearable which monitor
health and provide information about blood pressure, EKG, temperature, and
oxygen levels from finger or forehead. There are numerous other IoT applica-
tions which no wonder, looks like a scene of a Sci-fi movie. IoT has everything
to get excited for, but it is also a fact that these devices can be turned into an
ultimate nightmare due to insufficient security measures.

1.1 Motivation

According to Forbes [2], The global IoT market is expected to grow from $157B
in 2016 to $457B by 2020, attaining a marvelous Compound Annual Growth
Rate (CAGR) of 28.5%. Discrete Manufacturing, Transportation and Logistics,
and Utilities will lead all industries in IoT spending by 2020, averaging $40B
each.

Industrial manufacturing is predicted to increase from $472B in 2014 to $890B
in global IoT spending. Health-care and life sciences are projected to increase
from $520B in 2014 to $1.335T in 2020, attaining a 17% CAGR.While According
to GrowthEnabler & MarketsandMarkets analysis[68], the global IoT market
share will be dominated by three sub-sectors; Smart Cities (26%), Industrial
IoT (24%) and Connected Health (20%). Followed by Smart Homes (14%),
Connected Cars (7%), Smart Utilities (4%) and Wearables (3%).

Similarly, advisory firm Bain predicts the most competitive areas of IoT will
be in the enterprise and industrial segments. It is been estimated that consumer
applications will generate $150B by 2020, with B2B applications being worth
more than $300B. Globally, enthusiasm for the Internet of Things has fueled
more than $80B in merger and acquisition (M&A) investments by major vendors
and more than $30B in venture capital, according to Bain’s estimates. Figure
1.1 shows the year to year growth rate and global IoT market share.

Figure 1.1: IoT Market Growth Forecast showing IoT market trend in different
IoT sectors. Sources: GrowthEnabler [68]

4

The statistics and IoT market share predictions are no doubt astonishing
but unfortunately the so-called boom of IoT industry is pure profit oriented,
overlooking the criticality and security aspects of such devices. Nonetheless,
several security companies are being herded by the profit expectancy into the
business of IoT.

Researchers in security of these device are trying hard to catch the pace, in
fact, it is becoming one of the most researched fields in IT industry. Which
is a good sign, but there is too much to be done and several issues are to
be addressed. These issues have been the central point of concern for almost
all the major IoT stack holders, independent research institutes, government
regulations and standardization organizations [3].

To take part in the effort of implementation and deployment of IDS in IoT
networks, this thesis is intended to build and test an intrusion detection system
for IoT devices, using easy to access, relatively cheaper hardware Raspberry Pi
and a light weight open source Intrusion detection tool Snort.

1.2 Problem Statement

There are several commercial IDS (Intrusion Detection System) solutions avail-
able for IoTs but these solutions are either too costly or not not designed spe-
cifically for IoT environment. Most of these devices are designed for traditional
systems, providing only a partial support for IoT devices. It is very important
to keep in view the resource constraints of IoT devices when designing an IDS,
e.g. IoT devices, have low power and processing capability, are generally de-
ployed in sparse-to-congested and critical areas. Also, commercial IDS solutions
are propriety and have cross-platform dependency which makes them restricted
to be used in wider range of IoT networks.

This thesis intends to develop an intrusion detection system which is afford-
able, portable, less power consuming and open-source. The IDS device must
be deployable in most of the IoT environments with minimal configuration re-
quirements. To achieve this objective, a 35$ device Raspberry Pi (RPi) with
opensource IDS Snort will be used in development of an affordable IDS solution
for IoT devices. Moreover, this thesis will evaluate the performance of RPi in
terms of resource consumption. The thesis will try to answer following main
questions:

a) How can we build an affordable and portable IDS solution using RPi and
Snort?

b) Does RPi have enough resources to support Snort as an IDS, in terms of
resource consumption?

5

Except the core objectives, the thesis should also provide a remote monitoring
capability, which will give an insight of Snort alerts as well as performance met-
rics of RPi. ELK (Elasticsearch, Logstash, Kibana) stack is used as monitoring
server on Openstack cloud.

1.3 Thesis Outline

The Thesis is organized as following:

Chapter1 - Introduction

This chapter provides general overview of cyber security, evolution of IoTs and
its significance in Tech world. specifically, security aspects of IoTs, its future
research directions and what is this thesis aimed for?.

Chapter 2 - Background

This chapter goes through related and involved technologies in detail. A sum-
mary of related research work is also presented.

Chapter 3 - Methodology

In this chapter, Research methodology is presented, along with a description of
experiment design and result evaluation strategy.

Chapter 4 - Implementation

Chapter 4 provides details of how to practically implemented and test proposed
IDS solution.

Chapter 5 - Results and Analysis

This chapter analyzes the experiment results and provides the justification of
the results.

6

Chapter 6 - Discussion

A critical discussion on analysis and results, comprising the limitations and
strengths of the proposed work as well as future work.

Chapter 7 - Conclusion

Concluding the thesis by connecting problem statement and how the thesis have
addressed the issues outlined.

7

8

Chapter 2

Background

This chapter will provide a technical overview of the tools, technologies and all
the main components which will be involved or relevant to this project. With
an emphasis on Internet of Things IoTs, Intrusion detection systems, as well as
a review of related research material will be discussed and elaborated.

2.1 Internet of Things

Following the tradition of innovation in recent years, birth of Internet of Things
(IoT) can be tracked back to Massachusetts institute of Technology MIT. Auto-
ID center, founded in 1999, was assigned a task to work on a sensing technology
called RFID (radio frequency identification). Auto-ID was responsible to design
the first ever architecture of IoT. IoT generally, refers to a very large collection
of small smart devices connected to internet.

The phenomenal growth of smart-phones and tablet PCs sling shot the num-
ber of connected devices to an approx. of 12.5 billion in 2010, for a population
of 6.8 billion, increasing the ration from 0.08 to 1.84 devices per person. Cisco
IBSG predicts that there will be 50 billion devices connected to the internet by
2020[4]. It is worth a mention that estimates do not take into consideration the
fast-paced evolution and advancements in device technology. Secondly, entire
population is taken into calculation, in fact, a large portion of population is
still not yet connected to the internet by a true sense of internet connection I.e.
when it starts influencing their quality of life.

9

2.1.1 IoT Ecosystem and Trend

After the development of wireless sensor network (WSN) technology, several
standardization technologies are formed, based on interest in market trend and
technology selection. Technically, WSN can subdivided into IP based and non-
IP-based solutions. Most of non-IP based solutions belong to well-known alli-
ances like, Zigbee [47] and WAVE2M [48] for office manufacturing, automation,
wirelessHart [49] and PROFIBUS [50] for industrial control systems (ICS). The
heterogeneous communication system of these alliances can produce several is-
sues.

For the rest of IP-based devices, Internet Engineering Task Force (IETF)
leads the standardization convoy to propose and develop standard protocols
by keeping in view the limitations and characteristics of concerned devices. For
instance, IPV6 over Low Power Wireless Personal area Network (6LoWPAN) [6],
routing protocol for low power and lousy networks (RPL) [7] and Constrained
Application Protocol (CoAP) [8].

Most of these protocols are aimed towards coping with protocols overhead,
energy and memory consumption, and computational limitations of IoT devices
[9].Several other institutions are working on standardization of IoT, for instance,
IP Smart Object Alliance (IPSO) promotes IPv6 embedded devices for machine
-to-machine (M2M) applications, PROFINET works on Ethernet standards for
industrial automation.

Regardless of the fact that most of IoTs are heterogeneous at lower pro-
tocol layers but they do share common behavior at application layer. This
similar behavior leads to standardize application layer of IoT which is inde-
pendent of underlaying communication networks. This responsibility is taken
by European Telecommunication Standards Institute (ETSI) Technical Com-
mittee (TC M2M) [10]. ETSI will have to specify service requirements, use
cases, functional architecture and communication interfaces. To provide the
basis of one horizontal IoT platform, ETSI will bring common service layer to
globally accepted common agreed grounds.

Although several non-government entities are playing a major role in stand-
ardization but there are still some areas where governments have to assist them
in this regard. For instance, fragmented solutions and interoperability across
vertical applications. More specifically, IoT related solutions are not well ac-
cepted by the customers, severe privacy and security concerns are the major
factors of customers hesitation. For these reasons, governments have to take
their role to rectify the entire ecosystem of IoTs. For instance, US regulation
authority have provided a detailed action plan to standardize the development
of smart grids [11]. Similarly, in Europe, eCall service for vehicle fitment is to be
standardize. While in China, IoT standardization and development has secured
its place in China’s 12th five-year-plan [12]. Figure 2.1 provides an overview of
major IoT market players.

10

Figure 2.1: major IoT companies and their sector of interest. Source:[5]

2.1.2 Areas of IoT Application

A recent report issued by iot-analytics [13] provides a real-life analysis of IoT
statistics, based on the data collected from 1600 IoT projects worldwide. The
report asserts that 367 projects are aimed for smart city, 265 for industrial
settings and connected building IoT projects secures a 3rd place, in a list of top
10 ongoing projects. Americans are ahead in the race by a share of 45% in total
IoT projects, EU is at 35% and while rest of Asia contributes only for 16%.

It is also interesting to note that most of smart city projects are located in
Europe, almost 45%, while Americans are mainly focusing on connected health
55% and connected cars at 54% in north America. Asia is keener towards smart
Agriculture products i.e. 31%. Figure 2.2 depicts the results, showing share of
IoT projects around the globe in different IoT sectors.

Some of the main IoT segments are explained as follows:

a) Smart City - By 2025, with more than 60% of the world population ex-
pected to live in urban cities. By 2023, there will be 30 mega cities globally,
with 55% in developing countries, such as China, India, Russia and Latin
America [14]. Smart city has become the number one IoT application area
in 2018 as per report by IoT analytics. The immense growth in this sector is
due to the hundreds of projects initiated by private sector and governments

11

Figure 2.2: Global share of IoT projects around the world. It also provides top
to lowest IoT segments Source: IoT Analytics [13]

around the world.

For instance, Singapore and Barcelona are the prominent examples in this
area. In the segment of smart cities, biggest area of focus is smart traffic,
comprising projects on monitoring and control of traffic, bike sharing, park-
ing systems and smart buss lane while related minor projects include utilities,
smart lighting, public safety and environmental monitoring. At the current
time i.e. 2018, Europe accounts for the highest smart city initiatives.

b) Connected Industry - This area of IoT covers a vast range of hetero-
geneous applications and devices. Equipment monitoring, and non-factory
environments have been a prime focus. Non-factory applications include as-
set monitoring, and management of remote machinery such as drills, heavy
cranes, oil ridges and mining components etc.
Cisco’s connected mining operation for Rio Tinto in Australia is a vivid ex-
ample. Other mentionable connected industry applications include produc-
tion floor monitoring, remote PLC control and automated quality control
system. For instance, Varroc, is using digital factory solutions from Altizon
to connect industrial machines in the manufacturing environment [15]. How-
ever, America plays the leading role in connected industry scenario.

c) Connected Building and Connected Car - Connected Building and
Cars – connected building has gained the largest increase in number of pro-
jects since 2016 i.e. 7%. A majority of projects are aiming for facility auto-
mation to reduce energy cost.
For instance, Marriott hotel in China is utilizing building automation solu-
tions, which are supposed to reduce energy cost up to 15%. Rest of the
projects are related to building security and to heating, ventilation and air
conditioning HVAC. Connected cars has been also a top favorite for IoT pro-
jects because it provides a wide-open ground for experimentation. According
to IoT analytics, vehicle diagnostics and fleet management are the prominent
points of application i.e. 77% and 57% respectively. A recent example in this

12

context is TracknStop, an Ireland based software company has developed a
vehicle diagnostic solution which enables real-time tracking, sensor reading,
monitoring and remote control for vehicles.

2.1.3 General Architecture of IoT

There is no universally agreed architecture of IoT networks, due to the fact that
it is highly use case dependent. Every organization who wish to deploy an IoT
network, has the freedom to design and implement according to their use case
and capacity.

Figure 2.1 presents the heterogeneous nature IoT technologies, where each
deployment vertical seems unique and independent, but in fact, they do share
a lot of similarities at multiple layers of their operation. Similarly, many of
network elements and several architectural components share certain common
properties. This helps generalize the architecture of IoT, despite a varied nature
of IoT entities. It can also be considered as a basic blue print on to which, a
variety of architectural verticals can be designed and deployed.

Figure 2.3 presents a generalized architecture of IoT, which shows some of
the main components involved in communication and data processing.

Figure 2.3: General IoT communication architecture, showing most common
IoT sensors and devices.

Some of the mutual attributes and challenges are summarized as follows:

1. Minimal to no human direct interaction of field IoT devices make it essen-
tial to provide a reliable remote communication and management system.

2. In a large network, a huge amount of data is to be processed and analyzed,
which makes it important to provide data storing, mining and sharing
devices.

13

3. In case of smart cities or industrial applications, a complex network is
to be expected, enforcing the need to resolve addressing and congestion
issues.

4. Large IoT networks are generally heterogeneous in nature, which means it
demands appropriate naming and addressing mechanisms, specifically for
QoS requirements.

5. With appropriate management system, it is also vital to deploy an effi-
cient remote monitoring system, which must provide a visual status of all
network devices.

2.1.4 IoT Protocols

As it has been discussed in earlier sections that IoTs tend to inherent a hetero-
geneous nature, both in functionality and operability. IoT mostly communicate
through wireless medium, which is more feasible due to their physical attrib-
utes and environments IoTs operate in. In this regard, designing a standalone
protocol which can fulfill all the IoT specific requirements is a difficult task. At
the moment, no such standalone protocol exists.

There is a plethora of protocols and related technologies underlie the IoT
technology. some of the main data protocols will be briefed in following section.
Table 2.1 presents the layered approach towards the IoT technologies, which
categorizes a variety of opensource and proprietary solutions.

Entities Identity

Infrastructure 6LowPAN, IPv4/IPv6, RPL, NanoIP, DTLS, TSMP etc.

Identification EPC, uCode, IPv6, URIs

Transport/Communication Wifi, LoRa, 802.15.4, Sigfox, Z-wave, Zigbee, WirelessHArt, NB-IoT

Discovery Physical web, mDNS, DNS-SD, UPnP, HyperCat

Data Protocols MQTT, CoAP, AMQP, Websocket, SMCP, XMPP, DDS, REST, LLAP etc.

Device Management TR-069, OMA-DM

Semantic JSON-LD, Web Thing Model

Multi-layer Frameworks Alljoyn, IoTivity,Weave, Homekit

Table 2.1: Shows an overview of IoT related entities and their respective para-
meter values.

a) MQTT - (Message Queening Telemetry Transport) is a standard protocol
provided by Organization for the Advancement of Structured Information
Standards (OASIS) [16]. It is a lightweight publish/subscribe messaging

14

transport application level protocol. It is designed for IoTs and machine-
to-machine communication. MQTT uses TCP/IP for communication and it
can provide a reliable point to point connection stream. For networking, it
uses Ethernet, WiFi and cellular networks such as, 3G, 4G etc.

A common MQTT structure consists of three main components, publisher,
broker and subscriber. Publisher is usually a small sensor device which sends
data to broker. Subscribers are the applications connected to broker and send
the collected data from broker to IT infrastructure. Main goal of MQTT is
to provide remote monitoring i.e. telemetry, as its name implies.

Amazon now supports MQTT in their Amazon Web Services2, over both
IPv4 and IPv6 [17].

b) CoAP - (Constrained Application Protocol) is designed by Internet Engin-
eering Task Force IETF to facilitate message transfer between machine-to-
machine applications by offering various features such as, built in discovery,
multi cast support and asynchronous message exchange.[18].

c) WebSocket - as like CoAP, Websocket protocol is also designed by IEFT
[19]. It was developed as part of HTML5 initiative by implementing a JavaS-
cript interface, which facilitates full duplex communication between client
and server. The WebSocket standard simplifies much of the complexity
around bi-directional web communication and connection management.

d) XMPP - (Extensible Messaging and Presence Protocol) Extensible Mes-
saging and Presence Protocol (XMPP) is an open XML technology for real-
time communication, which powers a wide range of applications including
instant messaging, presence, collaboration, multi-part chat, voice and video
calls, content syndication and generalized routing to XML data [20]. it is
designed to be extensible.

2.1.5 Challenges To IoT

Regardless the fact that the concept of IoT is very new, but it is rather im-
mature. Surprising enough, it has grown its own ecosystem, comprising of
ever-growing billions of heterogeneous devices, numerous protocols, almost non-
uniform architectures, several parent/manufacturer organizations (mostly start-
ups) with prime goal of mere profit, different function classes i.e. application
from room temperature sensors to sensors in outer space, all of this diversity
spawn challenges in every component of this ecosystem.

It is true, if said, that currently, IoT is in its non-equilibrium state. To prove
its true worth and without making things more miserable, challenges to IoTs
must be rectified, or at least their effect must be minimized. Luckily, there have
been several initiatives taken by public and private organizations to provide
solutions and to raise awareness.

15

Challenges associated with IoT range from social issues to frightening security
concerns. For instance, Ethical issues, which requires to explain user rights,
raising public awareness etc. Legal Issues, demanding whether certain laws
have to be enforced or not, user consent, legal use of devices etc. Economic,
which is mostly a concern for IoT producers or the benefactors of IoT in terms
of direct profit.

It is directly connected with Legal issues on the long run. IoT business en-
tities must provide reasonable Terms of Service, honest marketing! and a clear
business model. Last but not least, the most important, Technical and Security
Challenges. Figure 2.4 depicts the scene, showing major issues associated with
IoTs.

Figure 2.4: A comprehension of major IoT challenges in present and near future.

To reap the greatest from IoT, rectification of Technical and Security chal-
lenges is vital. Since the thesis is aimed for rectification of one of the security
problem, only security related issues will be discussed in next section.

2.1.5.1 IoT Security Challenges

A generic IoT system can be defined by using concept of layers i.e. perception,
transportation and application layer. These layers come along with their own
type of weakness and security vulnerabilities. In [21], authors have analyzed IoT
security issues with possible security solutions. Figure 2.5 depicts the layered
security perspective of IoTs, showing security challenges associated with IoT on
different layers.

16

Figure 2.5: IoT layers in the context of IoT component placement in IoT archi-
tecture Source:[22]

I. Perception Layer
Perception layer holds the physical features and components on IoT infra-
structure. It can be logically compared to physical layer of OSI model.
It provides features of data collection and processing on different commu-
nication technologies, i.e. radio frequency identification (RFID), Wireless
Sensor Network (WSN).These devices are generally deployed randomly
without security considerations. Due to limited node resources and broad-
cast nature of these devices several security threats may result. Few of
them are described as follows.

(a) Physical Attacks - Physical attacks, as the name explains itself, are
the close proximity attacks. Physical attacks can be, For instance,
by changing original node with a malicious node, connecting to ports
physically, tempering with circuits and electronics, using Electromag-
netic pulse (EMP) to disrupt communication.

(b) Data Transit Attacks - During the data transmission, integrity and
confidentiality of the data can be compromised, for instance, by Man
in The Middle (MITM) attack, or by sniffing the broadcasted data
transmission.

(c) Impersonation Attacks - Authentication methods in IoT devices are
hard to implement. It is very trickier to detect an imposter node with
fake spoofed identity.

(d) DoS - A DoS attack can be unleashed on this layer by battery draining
i.e an attacker sending lots of packets, outage attacks, or when an edge
device stops performing its normal operation.

II. Transportation Layer
This layer is responsible to provide data transportation facilities to Per-
ception layer entities. It transmits the gathered information using commu-
nication networks (WiFi, Ad-hoc, 4G etc.) to an information processing
system. Few of the major threats at this layer are as follows:

17

(a) Routing Attacks – A node infected with a malware, may modify the
actual routing and forwarding tables, enabling the node to forward
the data to its peer system controlled by attacker, e.g. to a remote
Command and Control Center (C&C).

(b) DoS - this layer can also be compromised by a DoS. For example,
jam the transmission of radio signals.

(c) Injecting fraudulent packets – Done via insertion (where malicious
packets that seem legit are generated and sent), manipulation (when
packets are captured then modified) and replication (where the at-
tacker captures packets between two things to replay them).

III. Application Layer
The application layer provides the services requested by customers. For
instance, the application layer can provide temperature and air humidity
measurements to corresponding users. The importance of this layer for the
IoT is that it has the ability to provide and present IoT services in an easy
to use manner, to meet the requirements of a user.

Many different IoT environments i.e. smart city, smart healthcare, and
smart factory can be implemented within this level. Moreover, an applica-
tion support sublayer, to support all sorts of business services and to real-
ize intelligent computation and resources allocation, could be implemented
throughout specific middleware and cloud computing platforms. Some of
the major attacks related to Application Layer are explained below:

(a) Information Leakage - A vulnerable application software can easily
lead to confidential information leakage. For instance, username and
passwords, Emails, home addresses, Credit Card info etc. application
software are notorious for bugs and vulnerabilities.

(b) Script Injection - Attackers can upload malicious codes in software
applications exploiting the known or unknown vulnerabilities. e.g.
exploiting zero day vulnerabilities.

(c) DDoS - Distributed Denial of Service, is the most frequent and famous
attack on application layer. It targets weak spots in Web applications
and uses various techniques to compromise the application availabil-
ity. One of the famous methods adopted by DDoS is using Botnets.
A botnet is generally a large collection of compromised IoT devices.
These compromised IoT devices work as a sleeping agent, keep waiting
for commands from their master or C&C center. A specially written
malware is used to create botnets. When needed, the botnets are
signaled by their master to send data traffic towards a specific target.
DDoS attacks on application layer are evolving quickly, which make
these types of attacks very hard to detect and mitigate.

Figure 2.6 shows some of most common conventional attacks on different lay-
ers of IoT operation. The Open Web Application Security Project (OWASP)

18

Figure 2.6: The most common attacks against IoT Networks.

also have a useful list of IoT Attack surface areas which they state should be
understood by manufacturers, developers, researchers and companies looking to
deploy IoT in their organizations [23].

Other IoT specific attacks are sink hole attack, where all traffic is directed
from an area through a compromised node, where selective forwarding can follow
with the attacker deciding what data to allow through.Sybil attack, a single node
presents multiple identities to others in the network, so an attacker can be in
more than one place at once. Wormhole attack, an attacker tunnels messages
received in one part of the network over a low latency link and replays them in
a different part. These type of attacks were first mentioned in [24].

2.2 Intrusion Detection System

Networks and information system are subject to get infected and hacked. Due
to free availability of vulnerability analysis tools, the trend of attacks has risen.
Tools such as SubSeven [52], BackOrifce [53], Nmap [54], L0phtCrack [55] can
all be used to scan, identify, probe and penetrate information systems.

An intrusion detection system is supposed to detect an intrusion and generate
appropriate alert. IDS accomplish this by collecting information from different
system and network resources. After collection of information, it analyzes the
data for any suspicious behavior or security issue and generates alert. It can
be a hardware or a software, providing a variety of options to customize and
implement.

19

An intrusion detection system provides following core functionality:

• Monitoring and analysis of user and system activity

• Auditing of system configurations and vulnerabilities

• Assessing the integrity of critical system and data files

• Statistical analysis of activity patterns based on the matching to known
attacks

• Abnormal activity analysis

• Operating system audit

According to SANS [25], There are two main types of an intrusion detection
system as follows:

Network Intrusion Detection system (NIDS) performs an analysis for a
passing traffic on the entire subnet. Works in a promiscuous mode, and matches
the traffic that is passed on the subnets to the library of knows attacks. Once
the attack is identified, or abnormal behavior is sensed, the alert can be send to
the administrator. Example of the NIDS would be installing it on the subnet
where the firewalls are located in order to see if someone is trying to break into
the firewall.

Host Intrusion Detection System (HIDS) takes a snap shot of existing
system files and matches it to the previous snap shot. If the critical system files
were modified or deleted, the alert is sent to the administrator to investigate.
The example of the HIDS can be seen on the mission critical machines, that are
not expected to change their configuration.

2.2.1 IDS Placement Strategies

Correct placement of IDS into network infrastructure is important. Although
it is largely dependent on the environment and needs of the network, most
common places to deploy an IDS can be identified. Some of the recommended
placement points for IDS are illustrated as:

• Between network and Extranet

• In the DMZ before the firewall to identify the attacks on servers in DMZ

• Between the firewall and network, to identify a threat in case of the firewall
penetration.

• In the Remote access environment

• If possible between servers and user community, to identify the attacks
from the inside.

• On the intranet, FTP and database environment.

20

Figure 2.7 depicts the typical NIDS placement on a network, showing multiple
possible deployment points for IDS sensors.

Figure 2.7: General IDS placement approach, the figure shows a distributed
approach IDS placement where IDS sensors placed in distributed locations.

In terms of IDS placements, there are two typical methods, Distributed and
parallel IDS placement. In Distributed technique, IDS sensor is placed in stra-
tegic locations around the network, where each IDS node is reporting their
monitoring status to a centralized IDS manager. The goal of distributed IDS is
to improve the quality of detection process and minimize the risk of intrusions
[26].

While in parallel or centralized placement, IDS monitor network traffic on the
single ingress/egress point on the network and processes the network traffic in
parallel or concurrently. The goal of parallelism in IDS is to reduce processing
time when doing pattern matching against packets, which in result increases
throughput.

2.2.2 IDS Detection Methods

An IDS has two major categories in terms of detection, signature based and
anomaly-based detection methods. In signature-based method, IDS use a data
base of patterns or signatures of previously known attacks and then matches the
traffic with these patterns, in case of a match, it generates an alert. This method
is highly accurate with comparatively least number of false positives, but it is

21

effective against known attacks only. It will be unable to detect unknown or
zero-day attacks.

Anomaly based detection uses behavioral knowledge as its data base for intru-
sion detection i.e. it needs a collection of statistics and facts of a normal system
behavior. Whenever it notices any deviation in normal behavior it raises an
alert. This method is hard to implement as it requires machine learning tech-
niques and system training. Since there can be an unknown number of normal
behaviors, it is susceptible to a higher degree of false positives.

2.3 Open Source IDS

There are several open source intrusion detection systems available over the
web, each with its strengths and weakness. Since snort is part of this thesis
project, it will be presented in a good detail. While the other IDS systems will
be just briefly introduced.

2.3.1 Snort

Snort is an open source network intrusion detection and prevention system, cap-
able of performing real-time traffic analysis and packet logging on IP networks.
It can perform protocol analysis, content searching/matching, and can be used
to detect a variety of attacks and probes, such as buffer overflows, stealth port
scans, CGI attacks, SMB probes, OS fingerprinting attempts [27]. it was created
by Martin Roesch in 1998 and is now maintained by Sourcefire Snort Team.

2.3.1.1 Snort Architecture

Snort functions by taking a series of steps and procedures. A typical snort
procedure involves packet sniffing, Packet Decoder/Acquisition, Pre-processor,
Detection Engine and Output. Although it depends on the mode of deployment,
but a general architecture of snort can be depicted. Figure 2.8 shows snort
operation architecture. The figure shows a typical Snort architecture consisting
of it’s operational steps.

22

Figure 2.8: An abstracted view of Snort operation process, form packet commen-
cing to output.

Packet Acquisition is the first step in intrusion detection, in this phase
each packet is captured and identified by its structure. It uses libpcap library
to capture packets, as Snort does not inherently posses such capability. After
capturing the packets, these packets are then passed on to the next phase called
preprocessor.

Preprocessor is a collection of modular plugins and is one of the core com-
ponent of Snort. There are several preprocessors offered by snort, which are
categorized in two types by the mode of their operation. First type is respons-
ible to do complex tasks by adding an extra layer of analysis. This is done in case
if signature-based detection cannot be translated into rules to detect intrusion.
The second type allows the modular plugins analyze the packets for suspicious
behavior and modify them accordingly, so that the detection engine could inter-
pret these packets with accuracy. For instance, malformed or obfuscated URL
goes through prepossesses for normalization such that pattern matching could
be performed with precision, with minimal risk of sneaking through detection
engine.

Detection Engine is the main detection module, it performs signature de-
tection and parsing based on the database of rules it contains. For faster pro-
cessing these rules are loaded into memory. After arrival of a packet, detection
engine inspects the packets by matching its header and payload with loaded
rules in memory. Snort uses first match then exit logic, which means when a

23

rule matches it generates the alert and then moves to next packet inspection.
This phase is notorious for memory and processing consumption, which makes
it a difficult choice for IoTs. During a heavy traffic flow, this phase leads to a
higher packet drop.

Output works below the detection engine and in fact, it is a component of de-
tection engine itself. The Output stage logs intrusion alerts that were triggered
by the detection engine. These logs can be saved in different databases that can
be used for third party security information and event management systems like
Snorby [56], ACID [57], ELK Stack [58] or BASE [59] which provide a visual
and understandable output than the logs in raw form.

2.3.1.2 Configuration Modes

Snort can be configured to run into three different mods, namely, sniffer mode,
packet logger mode and network intrusion detection mode. These modes are
further discussed as follows:

• Sniffer mode is configured to sniff the ongoing traffic, without generating
alerts and applying any rules, logically, it can be compared with Tcpdump
[60], while ran as sniffer. Advantage of using Snort in sniffing mode over
other sniffer tools is that it provides a good summary of captured packets
which helps for an easy troubleshooting.

• When Snort runs in packet logger mode, it collects every packet it sees
and places it in a directory hierarchy based upon the IP address of one of
the hosts in the datagram. After specifying a logging directory Snort can
easily be run as logger mode by running ./snort -dev -l ./log or ./snort -l
./log -b . -b switch tells the snort to log traffic into a single binary file, into
Tcpdump binary format. It is very easy to read these binary formatted
logs by using any sniffer, such as, Tcpdump or Ethereal. Snort can also
read the packets back by using the -r switch, which puts it into playback
mode.

It is possible to manipulate the data in the file in a number of ways through
Snort’s packet logging and intrusion detection modes, as well as with the
BPF interface that’s available from the command line. For example, to
see the ICMP packets from the log file, simply specify a BPF filter at the
command line and Snort will only see the ICMP packets in the file i.e.
./snort -dvr packet.log icmp.

• Network intrusion detection system mode provides threat detection and
analysis, by using a database of rules and filters. to enable Network Intru-
sion Detection System (NIDS) mode, use ./snort -d -l ./log -c snort.conf
command, this will configure Snort to run in its most basic NIDS form,

24

logging packets that trigger rules specified in the snort.conf in plain ASCII
to disk using a hierarchical directory structure.

2.3.1.3 Snort Rules

Snort uses a simple, lightweight rules description language that is flexible and
quite powerful. These rules can be downloaded from snort community database.
These databases are updated periodically with disclosure of new threats and
vulnerabilities. It is also possible to customize the rules according one’s own
needs.

Snort rules are divided into two logical sections, the rule header and the rule
options. The rule header contains the rule’s action, protocol, source and des-
tination IP addresses, netmask and the source/destination ports information.
The rule option section holds alert messages and a detailed description, which
is used by detection engine to determine that which parts of the packet should
be inspected to decide if the rule action should be taken. Figure 2.9 shows a
simple snort rule: explaining sequentially from left to right:

Figure 2.9: Simple Snort Rule

Rule Header

• alert - Rule action, Snort will generate an alert when the set condition is
met.

• any - Source IP, Snort will look at all sources.

• any - Source port, Snort will look at all ports.

• -> - Direction, From source to destination.

• $HOME_NET - Destination IP, using the HOME_NET value from the
snort.conf file.

• any - Destination port, Snort will look at all ports on the protected net-
work.

Instead alert option, other options are drop and log, which provide Snort inline
functionality and logging respectively.

25

Rule Options

• msg:"ICMP test" - Snort will include this message with the alert.

• sid:1000001 - Snort rule ID, all numbers less than 1,000,000 are reserved.
for custom rules, any arbitrary number above that limit can be used.

• rev:1 - Revision number, This option allows for easier rule maintenance
and is used for version control.

• classtype:icmp-event – Categorizes the rule as an “icmp-event”, one of the
predefined Snort categories. This option helps with rule organization.

These rules are highly flexible in terms of customization. Following the syntax,
a Snort rule can be written in a variety of ways with multiple option to increase
detection accuracy. for instance, Pearl compatible regular expressions PCREs
can also be used.

2.3.2 Bro

Bro is an open-source network traffic analyzer. It is primarily a security monitor
that inspects all traffic on a link in depth for signs of suspicious activity. Bro
supports a wide range of traffic analysis tasks even outside of the security do-
main, including performance measurements and helping with trouble-shooting
[28].

2.3.3 Kismet

Kismet is a network detector, packet sniffer and an intrusion detection system
802.11 wireless LANs[81]. It can be used with almost any wireless card which
support monitoring mode. It can detect both wireless access points and wireless
clients and their mutual association. It has the ability to log sniffed packets
and save them in pcap formats for later analysis. It can detect non-configured
networks, probe requests, and level of wireless encryption used on a given access
point.

It consists of three main parts, a drone, which can be used to collect packets
and pass them to server, a server for interpretation of received packets, and the
client which communicates with the server and displays the information server
collects.

2.3.4 Suricata

Suricata is an open source intrusion detection system (IDS) and intrusion pre-
vention system (IPS). It was developed by the Open Information Security Found-
ation (OISF) and was first released in January 2010. It is a rule based IP/ID

26

system that utilizes externally developed rule sets to monitor network traffic
and provide alerts to the system administrator when suspicious events occur. it
features unified output functionality and Plug&Play library options to accept
calls from other applications[29].

2.4 Commercial Intrusion Detection Systems

There are several Commercial ID/IP systems available. some major products
are as follows:

2.4.1 McAfee NSP

The McAfee Network Security Platform (NSP) [61], is a network threat and
intrusion prevention solution that protects systems. It can support up to 32
million connections on a single appliance uses intelligence to find and block
advanced targeted attacks on the network. a typical NSP setup can cost around
$10,000.

2.4.2 Trend Micro TippingPoint

TippingPoint [62] identifies and blocks malicious traffic, prevents malware in-
fections, ensures network availability and resiliency, and enhances network per-
formance. The solution offers network traffic inspection throughput up to 120
Gbps. Starting price of TippingPoint T Series is $6000, which can go as high
as $72,000.

2.4.3 Hillstone NIPS

The Hillstone Network-based IPS (NIPS) [63] appliance offers intrusion pre-
vention, anti-virus, application control, advanced threat detection, abnormal
behavior detection, a cloud sandbox and a cloud-based security management
and analytic platform. It can identify more than 3,000 applications, including
mobile and cloud. It’s package price starts from $18,000.

2.4.4 Huawei NIP

Huawei Network Intelligent Protection (NIP) [64] provides virtual patches, web
application protection, client application protection, anti-malware, antivirus,
anti-DDoS, application sensing, control on IPv4 and IPv6 networks. It’s price
starts from $2,000.

27

Commercial intrusion detection systems can be deployed in large corpora-
tions. Because of very high pricing, these commercial solutions are not feasible
for medium to small organizations. An open source solution with a proper con-
figuration can also satisfy security needs of an organization. In [30], authors
have provided a good comparison of open source and commercial IDSs.

2.5 Raspberry Pi

The Raspberry Pi [65], also referred as RPi, is a single board minicomputer
developed at United Kingdom by Raspberry Pi Foundation for the purpose of
promoting computer science education in developing countries. It was primarily
aimed to be a low cost device but powerful enough to support several experi-
mental scenarios, ranging from small school projects to robotics. Figure 2.10
shows the block diagram of Raspberry Pi model B.

Figure 2.10: Raspberry Pi Model B Block Diagram showing it’s main compon-
ents.

2.5.1 Core Components

Some of the main components of Raspberry Pi are introduced below:

Processor

The first generation RPis were equipped with Broadcom BCM2835 system of
chip (SoC), which included a 700 MHz ARM1176JZF-S processor, VideoCore

28

IV graphics processing unit (GPU) and RAM. It has a level 1 (L1) cache of 16
KB and a level 2 (L2) cache of 128 KB. The level 2 cache is used primarily by
the GPU. The SoC is stacked underneath the RAM chip.

Memory

Original B boards were allocated 256 MB of split-able memory, which means
128 MB was allocated to GPU, while the rest was reserved for CPU. In further
releases of model B board, a dynamic memory allocation method was adopted,
which could dynamically split memory to GPU and CPU. Raspberry Pi 3 B+
comes with 1 GB of RAM memory.

Networking Components

The Raspberry Pi 3 and Pi Zero W (wireless) have 2.4 GHz WiFi 802.11n (150
Mbit/s) and Bluetooth 4.1 (24 Mbit/s) based on the Broadcom BCM43438
FullMAC chip. Raspberry Pi 3 B+ comes with dual-band IEEE 802.11b/g/n/ac
WiFi and Gigabit Ethernet supporting up to 300 Mbit/sec.

2.5.2 Operating System

By default, Raspberry Pi is native to Raspbian, a Debian-based Linux distribu-
tion. It is available for download from RPi Foundation’s website [65] for free.
It also offers several other choices of operating system for RPi, e.g. Ubuntu
MATE, RISC OS and Windows 10 IoT Core. Except these, there are numerous
operating systems supported by RPi which includes both non-Linux based and
Linux-based operating systems.

2.5.3 Applications of RPi

Due to its small size, very low price and power full customization features,
RPi has been the most favorite technology for researchers, science teachers,
automation industries and independent science enthusiast. A RPi can be turned
into almost any anything if its components support it. For instance, prototyping
of electrical equipment was a tedious and costly job, now it can be done by mere
$35 of RPi, by utilizing its GPIO and peripherals.

It’s applications range from media server, arcade Machine, personal security
system for network devices, a mini computer, automation, robotics and countless
other. It had made the life easier for all those technology related people who
are looking for cheap and customize-able solutions.

29

There are several alternative single board computers available in the market.
Depending on the features and price, these computers can be a good alternative
to RPi, for instance, some offer a higher CPU and memory and are equipped
with higher bandwidth Ethernet ports. Table 2.2 shows some of the alternatives
that can be chosen as an alternative to RPi.

Name CPU Memory Ethernet Price

Orange Pi Plus2[76] 1.6GHz 2GB Gigabit 49$

Asus Tinker Board[77] 1.8GHz 2GB Gigabit 60$

Banana Pi M3[78] 1.8GHz 2GB Gigabit 72$

Firefly RK3288 Plus[79] 1.8GHz 4GB Gigabit 79$

armStoneA9[80] 1.2GHz 4GB Gigabit 330$

Table 2.2: Comparison of RPi alternatives in terms of price and features.

2.6 ELK Stack

ELK, also known as Elastic stack is acronym for three open source projects,
Elasticsearch, Logstash, and Kibana[75]. Elasticsearch is search and analytics
engine. Logstash is a data processing pipeline which can receive data from sev-
eral different sources simultaneously, parse and transform it and finally hand
it over to a stash like Elasticsearch. Kibana is the visualization tool, which
visualizes data with interactive charts and graphs in Elasticsearch. Later in
never releases, ELK stack also integrated lightweight single-purpose data ship-
pers called Beats.

Elastic stack has provided an end-to-end delivery system which can provide
real time analysis of almost any type of structured and unstructured data source.
Together, these different open-source products are used for centralized logging
in IT environments. Except centralized logging, Elastic stack has numerous
other applications including business intelligence, web analytics and security
and compliance.

In a common setup, Beats collect the data and ship it to Logstash which col-
lects and parses logs with provided patterns, Elasticsearch indexes and stores the
information. Kibana enables presentation of the data with live and interactive
graphs and charts. Figure 2.11 presents the layers of Elastic stack with Kibana
on top of Elasticsearch while Beasts and Logstash are on the base, connected
directly to data feeds.

30

Figure 2.11: Components of ELK stack in their position of operation.
Source:[75]

2.7 Related Work

In recent years, IoT has been the hot topic for research, specifically secur-
ity of IoT has been researched and presented in numerous articles. These
articles have tried to cover various aspects of IDSs in IoT networks, for in-
stance, [31,32,33] have proposed IDS strategies for mobile and ad-hoc networks
(MANETs), [34,35,36] have provided IDS proposals for Wireless Sensor Net-
works, and [37] have presented IDS placement methods in cyber-physical sys-
tems (CPS).

The articles referenced above are aimed mainly for the design of IDSs for IoT
related technologies but not specifically IoT networks itself. In [38], Zarpelao et
al. provided a thorough study of IDS techniques which is more specific to IoT
networks and IoT devices. Articles realted to IoT security can be categorized
as, detection method, placement strategy and security threat. In the following
section, some of the most significant and closely related research work to this
thesis project is presented:

E. Cho, et al. [39] have proposed a centralized IDS approach, where an IDS
sensor is placed in border router such that data traffic pass through physical and
network domain. These packets are then inspected for possible botnet traffic.
They adopted anomaly-based approach and was based on the assumptions that
botnets cause unexpected change in pattern flow of IoT sensors. For normal
behavior profiling they used an average of three normal behavior metrics. When
any node violated the average behavior profile, an alert is raised.

R. Chen et al. [40] have presented signature-based intrusion detection ap-

31

proach which is based on artificial immune system mechanisms. They deployed
sensors with information of attack signatures, referred as immune cells. These
cells are said to be able to classify datagrams as malicious or normal. However,
their paper does not provide any information about the placement strategy
neither it concerns that how this method is feasible for a resource constraint
IoT network. Collecting data for artificial immune cells can be a computational
and resource overhead.

Raza et al. [41] proposed an IDS solution for IoT named SVELTE. The
solution is aimed for specific types of attack against IoT networks i.e. sinkhole
and selective forwarding attacks. There method deploys a hybrid placement
strategy where border router and network nodes are involved in attack detection.
Boarder router is responsible for detecting intrusion by analyzing RPL network
data, while network nodes are programmed to send information to the border
router, reporting any malicious traffic and sending RPL network data. It also
adopts hybrid approach in detection methods i.e. anomaly-based and signature-
based to balance computational cost and storage cost respectively.

Lee et al. [42] published about a lightweight IDS system for IoTs. The paper
adopts a distributed placement strategy which monitors energy consumption of
nodes for detecting intrusion, i.e. if energy consumption is above a normal
threshold an alert is raised. This is said to be useful against Dos attacks or if
a node is a part of a botnet. Moreover, a node is classified as malicious if it
consumes above the normal threshold energy and is removed from the routing
table. Authors used anomaly-based approach to analyze node behavior by en-
ergy consumption. Since their method focuses only on a single node parameter
i.e. energy consumption, less computational overhead is expected.

Cervantes et al. [43] proposed an IDS solution for IoT named INTI (In-
trusion detection of Sinkhole attacks in 6LoWPAN for Internet of Things). In
their method, nodes are placed in a hierarchal structure leading to a distributed
placement strategy. Each node in the hierarchy is assigned a role, where a super-
ior node is monitored for its traffic patterns. It combines the specification-based
method by utilizing trust and reputation of nodes and anomaly-based method
to monitor exchange of packets between nodes. If, in case, a node detects a
sinkhole attack, it broadcasts a message to alert the other nodes.

A. Le et al. [44], presented a lightweight IDS solution for IoTs. They
adopted a hybrid strategy by dividing the network into small clusters. Each
cluster is assigned a cluster head which is responsible for communicating with
all cluster members. Cluster head is installed with an IDS sensor and it monitors
all of its cluster members, while member report only to their respective cluster
head. Border router is also installed with an IDS sensor and is responsible for
more resource consuming instances. The authors adopted specification-based
approach for detection of routing attacks.

Knowledge-driven Adaptable Lightweight Intrusion Detection System (Kalis),
is an IDS approach presented by Midi et al. [45]. Kalis can be deployed on

32

border router or on an external device as a standalone tool. It uses a centralized
placement approach. While in detection approach, it is hybrid in nature, such
that it is self-adapting knowledge-driven IoT intrusion detection system which
can work on different communication protocols.

Kalis is said to be autonomous in collecting information about network fea-
tures and its involved components. Then using this information, Kalis dynamic-
ally configures the most effective set of detection techniques. It can be extended
for new protocols standards while the collected information can be shared for
collaborative detection. Compared to traditional IDS, authors claim that their
system is capable of detecting DoS, routing and conventional attacks.

A. Sforzin et al. [46] presented an IDS solution for IoTs using Raspberry
Pi and Snort. Their system is aimed for scalability, robustness, ease of use
and versatility. It is claimed to be an effectively portable on demand IDS that
notifies the users or the administrators of the network. Whenever it detects an
ongoing attack or suspicious network activities.

They adopted a centralized approach where RPi acts as a border router while
installed with snort sensor. All alerts can then be directed to remote server
running a Security and event Management software (SIEM). To check resource
consumption of Snort, they used different rule sets of snorts, so that only the
most relevant rules to IoT could be loaded. Authors conclude that their system
is not well suited for higher data rates and larger networks.

Table 2.3 summarizes some of the major efforts in IoT-IDS applications.

Research Placement approach Detection method Threat

E. Cho, et al. [39] Centralized Anomaly-based Botnet

R. Chen et al. [40] Hybrid Spicification-based Routing attacks

Raza et al. [41] Hybrid Hybrid Routing attacks

Lee et al. [42] Distributed Anomaly-based DoS

Cervantes et al. [43] Distributed Hybrid Routing attacks

A. Le et al. [44] Hybrid Specification-based Routing attacks

Midi et al. [45] Centralized Hybrid Conventional attacks

A. Sforzin et al. [46] Centralized Signature-based Conventional attacks

Table 2.3: A summary of the major research IoT area with concerned threats
and detection methods.

33

Chapter 3

Methodology

This chapter outlines approaches and steps towards building an intrusion de-
tection system using affordable and portable hardware i.e. Raspberry Pi and
open source intrusion detection system (IDS) Snort. In first phase, this chapter
will explain intrusion detection design methodologies, system design and it’s
components. While in next phase, adopted Snort algorithms will be presented.

3.1 IDS Design Methodology

It is very important to be vigilant while selecting IDS strategy. Specially, when
dealing with a resource constrained environment, for example, in an IoT scen-
ario. Typical IDS methodology consist of intrusion detection method, IDS place-
ment approach, target attacks and validation method. This thesis adopted fol-
lowing IDS methods:

i) Detection Method - A typical intrusion detection method can be signature-
based, anomaly-based, specification-based or a hybrid of these methods.
Since Snort uses it’s rule database to inspect and match pre-defined signa-
tures of traffic, this thesis adopted signature based detection method.

ii) IDS Placement Approach - The thesis adopted centralized placement
approach, Snort was placed in Raspberry Pi gateway. All the connected
IoT devices or sensors were connected to internet through the gateway’s
access point only.

iii) Targeted Attacks - Conventional attacks hold a much larger bucket of
attacks vectors, ranging from DoS, bots, scanners, malwares etc. these are
the attacks which are more frequent and devastating.

34

This thesis was mainly concerning with conventional attacks, with a focus
on DoS, detecting botnet traffic, alerting against scanners and recognizing
ssh dictionary attacks. A custom snort rule file was developed for each of
the interface i.e. eth0 and wlan0.

3.2 System Design

The system was designed to keep in view the complications of IoT environment.
Since IoT devices are wireless and have a broadcast signaling nature, it is relat-
ively complicated to design a stand alone security mechanism for IoT devices.
For test purposes, several assumptions were to be made, for instance, assuming
that only certain kind of IoT devices with same protocols are used e.g. sensors
with Message Queuing Telemetry Transport (MQTT).

Figure 3.1 shows the system design architecture. It gives an abstract idea
of how the system components were connected to each other. It also shows
position of intrusion detection device and how the attack machine and remote
ELK (Elasticsearch, Logstash, Kibana) server were connected.

Figure 3.1: Adopted system design with it’s components and connection points.

3.2.1 System Components

As it can be seen from previous chapters, this thesis used empirical approach
(using physical systems and not simulations) to deploy and test the system
components. Some of the core components of the setup are explained in the
following section.

35

3.2.1.1 RPi Snort Gateway

Raspberry Pi 3 model B+ was used as a core gateway equipped with Snort
sensor. Integrated Wi-Fi of RPi was used as hotspot to connect remote sensors.
For operating system, Raspbian stretch 9.4 was installed. Table 3.1 shows details
about Raspberry Pi, used as a gateway Snort sensor.

Spec Raspberry Pi 3 B+
CPU type/speed ARM Cortex-A53 1.4GHz

RAM 1GB SRAM
Ethernet speed 300Mbps

Operating System Raspbian stretch 9.4
Snort Version 2.9.12 IDS mode

Table 3.1: Specification details of RPi device used as an IDS.

Snort version 2.9.12 was used as stand alone intrusion detection system. It
was further customized to meet the resource constrained environment of RPi
gateway. It’s customization details are provided in chapter four. Moreover,
Snort was configured to operate in IDS mode.

3.2.1.2 Sensors

An another RPi was used to attach sensors with. This was a Raspberry Pi model
B+ with Raspbian lite operating system. It was isolated and deployed at fairly
distant location. Moreover, it was connected to RPi Snort sensor gateway’s
access point by using integrated Wi-Fi module.

3.2.1.3 Router

It is very important to isolate Snort Gateway and attack machines from each
other and to make the attacks realistic as well as controllable. For this purpose,
all the deployed systems were placed in different networks through static network
configuration. It was accomplished by using MikroTik hEX router series. This
small and cheap router provides five 100/1000 Ethernet ports which can provide
up to a Gigabit throughput.

3.2.1.4 IDS Test Machine

Kali Linux [74] was chosen as operating system for IDS testing due to its built-in
penetrating testing packages. It is one of the most sophisticated Linux distro

36

which provides hundreds of test options for digital forensics and testing capab-
ility of any security setup. It was installed on a HP core i5 laptop. Table 3.2
shows some of the important specification of IDS testing machine.

Spec value
CPU type/speed Intel Core i5-3210M CPU@2.50GHz x 4

RAM 8GB
Ethernet speed 1000Mb/s

Operating System Kali Rolling 2018.4 64 bit

Table 3.2: Specification details of IDS testing machine i.e. attacking machine

3.2.1.5 Remote Monitoring Server

Monitoring server was setup on Openstack cloud. It is an Ubuntu LTS machine
loaded with Logstash, Elasticsearch, and Kibana (ELK stack). For secure re-
mote access to Kibana dashboard, Nginx reverse proxy was placed. It can be
accessed from anywhere after provision of correct username and password.

3.3 Snort Algorithms

Snort is a single threaded pattern matching intrusion detection system which
relies merely on Aho-Corasick [66] multi-pattern matching algorithm. Aho-
Corasick is a backbone of Snort search and detection mechanism. Several vari-
ants of this algorithm are available to be used in Snort, where each has it’s
strengths and weaknesses as well as each one has a significant impact on per-
formance and resource utilization. In next section, Aho-Corasick (AC) is intro-
duced briefly.

3.3.1 Aho-Corasick State Machine

The original AC algorithm was first presented by Alfred V. Aho and Margaret
J.Corasick (Aho et al.) in 1975 [66]. It was designed to locate all occurrences
of any of a finite number of keywords in a string of text. It is based on the
construction of a finite state pattern matching machine from the keywords and
then use this pattern matching machine to process the text string in a single
pass.

For example, lets K = {y1, y2,yk} be a finite set of strings called keywords
while lets x be an arbitrary string called text string, Then purpose of state
machine is to locate and identify all sub-strings of x which are keywords in

37

K. overlapping is permitted for substring x. The pattern matching machine
consists of several states where each state is represented by a number. The
machine operates by processing each text string x by reading every symbol in x
and generating output. The state machine consists of three major functions: a
goto function g, a failure function f and an output function output.

Figure 3.2 represents the state machine and the three functions. It takes set
of example keywords {he,she his, hers}.It has been explained by authors Aho et
al. as follows:

Figure 3.2: Aho-Corasick state machine, showing data input and output steps.
Source[66]

In goto function, state 0 (zero) is the start state, going thorough till state 9.
Goto function g is responsible for mapping symbols in a pair or otherwise move
to failure function. Moreover, in goto function the edge labeled as h from state
0 to state 1 means that g(0,h) = 1, while absence of arrow means a fail state.

The failure function f is responsible to map states to each other. Whenever
goto function generates a failure, function f is consulted. As it’s name indicated,
function Output is responsible for generating output in case of a success symbol
match. Figure 3.2 can be translated into pseudocode as illustrated by the Aho

38

et al., pseudocode is given in below section.

Algorithm 1: Aho-Corasick pattern matching machine
1 Input. Any text string consisting of input symbols, e.g. x = a1a2.....an.

where ai is an input symbol. And a pattern matching machine M with
goto function g, failure function f and an output function output.

2 Output. Location of keyword x.
3 begin
4 state←0
5 for i←1 until n do
6 begin
7 while g(state, ai) = fail do state←f (state)
8 state←g(state, ai)
9 if output(state) 6= empty then

10 begin
11 print i
12 print output(state)
13 end
14 end
15 end

The failure transitions can be removed by Algorithm 1 by introducing func-
tions of deterministic finite automate (DFA) in-place of goto and failure func-
tions.

When an input character stream is provided, a DFA requires only one trans-
ition of the state machine to locate the correct next state. It consists of a finite
set of states S, a next move function δ, where for each state s, and input symbol
a, δ(s, a) is a state in S.

In Algorithm 1, the DFA next move function δ can be used instead goto
function. For instance, this can be done by replacing first two statements in
for-loop by a single statement state ← δ(state, ai). Aho et al. have presented
the DFA version of AC algorithm as given in Algorithm 2. They concluded
that amount of memory required to store δ in Algorithm 2 is higher than the
corresponding goto function. Whereas using DFA in Algorithm 1 can reduce
number of state transitions to as low as 50% of total state transition in original
implementation.

Snort implements optimized version of Aho-Corasick. There are several vari-
ants available to choose from. Each of the variant has it’s own performance and
memory trade-offs. The optimized version uses state transition table, which is a
list of pointers to the state vectors. Where each state vector represents a valid
state transition. Moreover, each state vector includes a header and a Boolean
flag, indicating storage format of the row and occurrence of pattern matching
respectively.

39

There has been an extensive research on improvement of Aho-Corasick for
Snort, to improve match speed as well as to minimize memory usage.

Algorithm 2: DFA version of AC algorithm
16 begin
17 queue←empty
18 for each symbol a do
19 begin
20 δ(0, a)←g(0, a)
21 if g(0, a) 6= 0 then queue←queue ∪ {g(0, a)}
22 end
23 while queue 6= empty do
24 begin
25 let r be the next state in queue
26 queue←queue - {r}
27 for each symbol a do
28 if g(r, a) = s 6= fail do
29 begin
30 queue←queue ∪ {s}
31 δ(r, a)←s
32 end
33 else δ(r, a)← δ(f(r), a)
34 end
35 end

3.3.2 Snort Implementation of AC

Snort team leader Marc Norton in [67], tested and analyzed the optimized ver-
sion of AC algorithm in Snort with it’s different variants, where he found signi-
ficant performance and memory usage differences. As compared to the original
version, optimized version handles the state table differently i.e. it breaks the
state table into transition tables, where each contains a pattern matching list
and a separate failure pointer list, which improved both memory usage as well
as match speed. Optimized AC algorithm can be presented in a simple code as
given in the Listing 3.1.

The NextState in Listing 3.1, is an array of pointers to the row vectors of the
state table, while ps points to the current state’s transition vector. The first
two words in array ps represent storage format and boolean match flag. The
parameter T is the input text being searched, while xlatcase is case converter
which converts the text to uppercase on byte at a time. It is used in case
independent scenarios. When a match is found, the pattern is processed. To
verify that a pattern has been successfully matched, if(ps[1]) is used as a check
statement. In case of no match, control sequences moves to the next state, while
in case of a match, all the patterns in current state are processed in for loop.

40

1 for (state = 0; T < Tend; T++)
2

3 {
4 ps = NextState[state];
5 sindex = xlatcase[T[0]];
6 if(ps[1])
7 {
8 for (mlist = MatchList[state];
9 mlist != NULL;

10 mlist = mlist -> next)
11 {
12 /*process the pattern match*/
13 }
14 }
15 state = ps[2u + sindex];
16 }

Listing 3.1: AC implementation in Snort

Snort Version 2.9.12 provided various choices of choosing pattern matcher al-
gorithms. The search methods or searching algorithms are categorized in two
areas, queued match search methods and non-queued search method. Moreover,
both of these methods provide their own search method variants. Some of the
search method options are described in following section.

Queued match search method

In this method all the matched pattern are queued in cache until pattern matcher
is done scanning the payload. Afterwards these matched cases are evaluated.
This method provides following options to choose from:

• ac and ac-q - This method is also known as Aho-Corasick full. It provides
the best performance available with highest memory usage. This method
is not recommended for resource constrained environments, as it is very
resource demanding.

• ac-bnfa and ac-bnfa-q - This is one of the best methods available.
This method is based on binary NFA (non-deterministic finite automata.)
It provides a high performance with low memory usage. Although this
method does not provide as good as first method but it works good for
most of the environments.

• lowmem and lowmem - This method is based on low memory keyword
trie. It provides moderate matching performance with minimal memory
usage. This method is recommended for most resource constrained envir-
onments where Snort sniffing interface is not exposed to a higher attack

41

vector i.e. towards internet but is exposed to only limited attack vectors
e.g. an access point exposed to a limited connectivity area.

• ac-split - This is the default pattern matcher algorithm implemented in
Snort version 2.9.12. It provides a high matching performance with low
memory usage. Compared to ac-bnafa-q, it consumes more memory. Snort
recommends this method for most of the machines. This method is known
also as split-any-any.

Non-queue search method

In this method, as it’s name indicates, all the patterns are processed individually
without queuing in cache. nq option specifies that matches should not be queued
and evaluated as they are found. It provides following pattern matcher options:

• ac-nq - This method is same as ac-q but without queuing. It provides
best performance with high memory usage.

• ac-bnfa-nq - In previous versions of Snort, this was the default search
method. It provides high performance with low memory usage without
queuing.

• lowmem-nq - It is same as lowmem-q without queuing capability.

Default installation of Snort is not recommended, specially while dealing with
resource constraint scenarios. This thesis has implemented Snort in an IoT
environment on a relatively low spec device i.e. Raspberry Pi. Snort is cus-
tomized with several configurations to match the hardware components capab-
ility without sacrificing performance and memory utilization. Chapter four will
provide the Snort configuration details.

3.3.3 Detection and Processing of Rules

Snort was functioning in IDS mode. Detection and rule processing phase is
highly resource consuming because of pattern matcher algorithms. For ex-
ample, in case of syn flooding attack, Snort first sniffs the packet, sends it
to detection engine, which processes the rule with pattern matcher algorithm
which inspects packet payload and header information and matches it with
both the rule option and rule header i.e. it looks for Source and destination
IPs and ports in rule header. Next, it looks for rule options, for instance, if
SYN flag (S) is set, and the interface received more than 20 packets with flag
S within thirty second time period, match is successful. Snort detection en-
gine then passes the packet to output module which takes further configured
action. Algorithm 3 shows how a SYN flooding rule is processed by Snort.

42

Algorithm 3: SYN flooding rule processed by Snort
1 Input. Acquired traffic packets during sniffing.
2 Output. Configured action, alert, log, drop.
3 Start
4 load config-file
5 Initialize
6 {
7 output plugins;
8 pre-processors;
9 plugins;

10 rule files;
11 }
12 begin
13 {
14 packet acquisition;
15 packet processing;
16 }
17 Case: (rule matching; instance: detection engine)
18 for s in packet do: # s is any string in packet
19 {
20 if
21 {
22 source ip == $EXTERNAL_NET;
23 port == $PORT;
24 flags == S;
25 packet count == 20;
26 time == 30 seconds;
27 }
28 do:
29 {
30 generate alert;
31 }
32 else:
33 {
34 ignore;
35 commence next packet;
36 }
37 end
38 }
39 end

43

3.4 The Approach

In this thesis project, system components were chosen and configured carefully
to avoid unnecessary IoT environmental factors which can effect system test
results. Several conditions were placed to avoid factors which can negatively
influence test results.

3.4.1 Conditions

The conditions regarding components connectivity and attack scenarios are
given as follows:

• All the sensors were connected to the RPi gateway access point only and
there was no other connectivity point for the sensors. Also, sensors were
configured with static IP addresses. For internet connectivity, RPi gate-
way was the only route available to all the sensors.

• All the senors were of same type and were configured over another Rasp-
berry Pi. MQTT was the only telemetry protocol which had been imple-
mented for gateway-sensor communication. SSH was also enabled between
gateway and the sensors (via another RPi).

• RPi gateway was not exposed to the internet. Instead, it was connected
to MikroTik router. This step was taken to avoid unnecessary traffic from
internet, which can influence test results negatively.

• It is literally impossible to test all possible attack vectors. Only few of
the major and more common attacks were chosen for system testing, e.g.
DoS, SSH dictionary attacks and port scanners.

3.4.2 Attack scenarios

There were two possible attack points on RPi gateway, i.e. interface eth0 and
wlan0. The eth0 interface provided internet connectivity through the router
while wlan0 acted as an access point and provided connectivity to the sensors
in WiFi range. Both of the interfaces had different attack vectors because each
interface was exposed to different attack spectrum. For instance, eth0 was prone
to a larger attack vector than wlan0 as it was exposed towards internet. On
contrary, wlan0 had a smaller exposure area for direct attacks i.e. WiFi signal
range.

Keeping this phenomenon in view, two instances of Snort were running, one
on each interface. Each Snort instance was provided with different rule files
according to their attack vectors, i.e. eth0 needs more rules than wlan0. Also,
both of the instances were using different pattern matching algorithms.

44

To evaluate the Snort detection rate and RPi’s resource usage, different levels
of DoS were initiated by variation in data rate in MBit/s. Moreover, in further
test, multiple attacks on both of the interfaces were initiated to evaluate the
capability of Snort and RPi.

3.4.3 Monitoring

In case of successful intrusion detection, each interface must log the alerts into
ELK (Elasticsearch, Logstash, Kibana) remote server. In case of local logging,
both of the interfaces sent logs to their respective separate log files. ELK was
used as monitoring server on Openstack cloud which can receive, analyze, and
visualize the logs in real time. Except Snort logs, RPi performance logs were
also shipped to ELk, to analyze the performance of Raspberry Pi during the
attack.

Filebeat and Metricbeat are the data shippers which were configured on RPi
to collect performance data and logs and ship them to ELK server on Open-
stack which was configured to receive these logs through Logstash, which process
them and the forwards these logs to Elasticsearch for storage. For visualiza-
tion Kibana was used, which receives data from Elasticsearch and visualizes it.
Kibana can be accessed through Nginx proxy server after providing username
and password. Figure 3.3 shows the steps of data transfer from RPi to ELK
server .

Figure 3.3: Form Beats on RPi to ELk server on Openstack.

Data related to memory usage and CPU consumption was collected and sent
to monitoring server. It can provide vital information about the RPi resource
utilization and generated Snort alerts. Monitoring system facilitates the per-
formance evaluation of Snort running on RPi.

45

Chapter 4

Implementation

This chapter guides through the process of implementing system design. It
provides details about Snort and Raspberry Pi configurations and system test-
ing.

4.1 Compiling Snort on RPi

Installation of Snort in RPi device is relatively trickier because of Arm Linux
architecture dependencies. Due to these dependencies, several compilation er-
rors can occur, to avoid such errors, it is better to compile Snort from source.
It is recommended not to install Snort as root, instead use sudo on a non-root
user base. Appendix A shows how Snort was configured on Raspberry Pi.

It is a good idea to disable all the default rule paths. Following sed command
can be used to disable rule paths.
sudo sed -i “s/include \$RULE_PATH/#include \$RULE_PATH/“ /etc/snort/snort.conf

4.2 Customizing Snort

If Snort is installed with default configurations and with default rule sets, it can
easily overwhelm even a powerful server. For example, there are several open
source portals which provide ready to use Snort rules. e.g. EmergingThreat[69],
Talos[70] and Snort community-rules[71]. Collectively, these portals provide
15 to 20 thousand rules, which are updated with new rules almost everyday.
When these rules are loaded into memory and Snort starts to process them
with patter matcher algorithm (assume ac-split Snort default) one by one for
a potential match, it can apparently claim a large memory chunk, letting the
system paralyzed for processing other crucial system tasks.

46

This thesis configured Snort for RPi with selected rules and ac-bnfa-nq al-
gorithm. Figure 4.1 gives an abstract idea of how Snort was configured and
what areas of Snort were tweaked and tuned for RPi. The following section
provides further details of Figure 4.1.

Figure 4.1: Shows how the Snort is configured on RPi with two Snort instances
and Beats

4.3 Snort Instances

Two instances of Snort were running, one was sniffing over eth0 interface while
another on wlan0 interface. It may sound unreasonable to run two instances
of Snort on a low spec device such as RPi but the major issue is that Snort is
single threaded which means in IDS mode it can only sniff a single instance at a
given time, for sniffing on multiple interface, multiple Snort instances must be
used, one for each interface.

Both of the instances were loaded with separate configuration files and rule
sets. Snort instances can be run either on separate terminals or as a daemon.
To run Snort as daemon, for instance on eth0, type the command as follows:

sudo snort -d -c /etc/snort/snort.conf -l /var/log/snort -D -i eth0

The -D switch runs Snort as a background process while -l instructs Snort to
start logging to the specified directory. Snort background instance can be killed

47

by ps -eaf | grep snort and then pkill -9 PID (Snort PID). Following section
further explains how Snort eth0 instance was configured.

4.3.1 Snort Instance Eth0

Interface eth0 was responsible for provision of internet connectivity to whole
network. A snort instance was configured to run on interface eth0 with specific
custom configurations and rules. following sections provide details about eth0
configurations.

4.3.1.1 Network

Using Mikrotek router, interface ethernet2 was configured for Raspberry Pi
network 192.168.10.0/24 with subnet-mask 255.255.255.0 and default gateway
as 192.168.10.1. RPi’s eth0 was provided static ip address 192.168.10.20. It
is important to not that raspbian-stretch RPi OS does not support static ip
configurations in directory / etc/network/interface, but picks static ip configur-
ations from /etc/dhcpcd.conf file. Static configuration for eth0 can be seen in
the following code.

interface eth0
static ip_address=192.168.10.20
static routers=192.168.10.1
static domain_name_servers= 8.8.8.8 192.168.10.1

Listing 4.1: Static ip configuration

No filtering or firewall was enabled on router to minimize test effecting data.

4.3.1.2 Snort Eth0 Configuration File

A separate Snort configuration file for interface eth0 was created and loaded with
eth0 specific configurations. Appendix F shows the configurations of snort_eth0
file for interface eth0. Enabling perfmonitor is optional, but it is a good idea to
enable it, because it gives real time Snort performance metrics. These metrics
can either be saved to an output file or to console. In Appendix F, pfmonitor
is set to output data to console when Snort exits.

4.3.1.3 Eth0 Rules File

Since eth0 was connected to internet via router, it is highly likely that it was
exposed to a larger set of attack vector as compared to wlan0 so it requires
comparatively larger set of Snort detection rules. One quick method is to enable

48

all rules provided by Snort, Second method is to choose adoptive approach and
select environment specific rules only. For instance, no POP3 server was running
on RPi gateway so no POP3 rule were required.

Only those rules were enabled which are effective in detection of major at-
tacks against IoTs, e.g. rules related to DoS, botnets, scanners, telnet, SSH
brute-forcing(dictionary attacks) malware patterns and few other. An approx
of five thousand rules were selected for eth0. Some of the sample Eth0 rules are
presented in Appendix G.

4.3.2 Snort Instance Wlan0

Similar to eth0, interface wlan0 was loaded with separate Snort instance. Listing
4.2 shows the configurations for config file snort_wlan0.conf.

1 #copy original snort.conf file
2 Sudo cp /etc/snort/snort.conf snort_wlan0.conf
3 sudo nano /etc/snort/snort_wlan0.conf
4 #configurations start from here
5 ipvar HOME_NET 192.168.42.0/24
6 ipvar EXTRNAL_NET !$HOME_NET
7 var RULE_PATH /etc/snort/rules
8 var SO_RULE_PATH /etc/snort/so_rules
9 var PREPROC_RULE_PATH /etc/snort/preproc_rules

10 var WHITE_LIST_PATH /etc/snort/rules
11 var BLACK_LIST_PATH /etc/snort/rules
12 config pcre_match_limit: 3500
13 config pcre_match_limit_recursion: 1500
14 config detection: search-method lowmem search-optimize max-pattern-len 20
15 preprocessor perfmonitor:
16 time 300 events atexitonly max console pktcnt 1000
17 output log_tcpdump: /var/log/snort/eth0/snort.log
18 include $RULE_PATH/wlan0.rules

Listing 4.2: snort_wlan0.conf

Unlike eth0 instance which was using ac-bnfa-nq pattern matcher algorithm,
instance wlan0 was configured with lowmem algorithm. As it’s name indicates,
it is a medium performance and low memory algorithm, which matches wlan0
requirements.

4.3.2.1 Network

Interface wlan0 was running it’s own isc-dhcp-server with network 192.168.42.0/24
and subnet 255.255.255.0. Since wlan0 was utilized as access point (AP) to
provide wireless connectivity to sensors, all the sensors obtained ip addresses
from 192.168.42.0/24 ip-pool. In order to turn wlan0 WiFi into an AP, an open

49

source package hostapd was used. Appendix B shows configuration process of
isc-dhcp-server and hostapd on RPi.

4.3.2.2 Wlan0 Rules

Interface wlan0 was least susceptible to a larger attack vector, the reason is
that it is less exposed to direct attacks on AP. If an attacks comes through the
internet i.e. through interface eth0, Snort eth0 instance will already detect it.
Some of the direct attacks on AP might not be detected by Snort because it
is not able to sniff or commence the packets. For instance, evil twin and de-
authentication attacks can not detected by Snort, to detect such attacks other
tools like Kismet[72] can be used, which is out of the scope of this thesis project.

Considering above discussed phenomenon, a relatively small set of rules was
selected for wlan0 Snort instance. A sample rule can be as follows:

#rule for botnet C2C flow
alert tcp any any -> any 23 (msg:"Mirai C2C flow, inbound login attempt";

flow:to_server,established; content:"xc3511";depth:6; sid:1000000;
rev:1)

4.3.3 Logging

Both of the Snort instances were set to log to their own logging directories, i.e.
instance eth0 logs to directory /var/log/snort/eth0/ while instance wlan0 logs
to /var/log/snort/wlan0 directory. These loggs were shipped to ELK server
using Beats data shippers. Following section provides details of how Beats were
configured on RPi.

4.4 Configuring Beats on RPi

Filebeat and Metricbeat are the important component of Beats package. They
include internal modules that simplify collecting, parsing and visualizing com-
mon log formats such as, NGINX, Apache and system metrics. It is recommen-
ded not to install Go, which is the language Beats are written in, by apt-get
which at the time of writing this thesis, does not compile on RPi with Raspbian
stretch and generates errors.

A stable Arm release of Go was installed from official Go repository[73]. Ap-
pendix C shows the process of installing Go and Beats on Rpi. To setup Filebeat
and enable system module, ./filebeat modules system enable was used, while to
ship data to ELK server, ./filebeat -e was used. Similar is the process of using
Metricbeat.

50

4.5 Configuring ELk server

ELK server was setup on Openstack cloud where it was enabled to receive logs
and RPi performance data including, CPU, memory, system load and network
information. Kibana dashboard can be access remotely by https://ElK-Server-
IP and providing username and password. It is important to open port 5044 on
Openstack, it can be done by: Access & security > Manage Rules > Add Rule
> port 5044. Appendix D provides script of how to install and configure all the
necessary components of ELK stack as well as Logstash filters for parsing Snort
alerts. It is recommended to install older stable JDK version (Java version 8.1
is a good option), as by date of this thesis writing, Logstash version 6.3 was not
compatible with latest Java distribution.

4.6 Testing

To evaluate the performance of RPi and Snort, different rates of syn-flood at-
tacks in terms of MBit/sec were initiated from IDS testing machine with Kali.
Test Data rates were 100MBit/sec, 300MBit/sec, and 500MBit/sec. A bash
script was written and run on RPi which can automatically start both of the
Snort instances at interfaces eth0 and wlan0 and stop them after time interval
of 600 seconds. The script can start Filebeat and Metricbeat as well in the same
time-frame, same script also monitored RPi resource consumption and gener-
ated the graph depicting RPi’s CPU and memory status during the attacks.

An another script was started on IDS test machine (attack machine) which
initiated syn-flood attacks at different data rates for each test individually. The
purpose of testing was to accomplish objective (b) of problem statement, i.e.
Does RPi have enough resources to support Snort as an IDS, in terms of resource
consumption? In order to test RPi capability of hosting Snort as an IDS,
interface eth0 was tested first at multiple attack data rates. Interface eth0
was attacked by syn-flood while wlan0 was attacked by ssh-dictionary attack
(ssh brute-force) from one of the compromised sensors (another RPi used as
sensor) connected to RPi’s access point.

Interface eth0 with Snort instance_eth0 was tested individually, in final test,
both of the interfaces were attacked at the same time to test the worst case
scenario. Figure 4.2 shows the attack points on RPi gateway, as well as the
Snort instances responsible to detect these attacks.

51

Figure 4.2: Figure created from system design figure, it shows attack vectors on
each interface

4.6.1 Test 1

The first test was to syn-flood interface eth0 at 100MBit/sec data rate from
attack machine. Interface eth0 of RPi can facilitate a maximum of 300MBit/sec
of bandwidth. The purpose of this test was to evaluate the performance of RPi
while it is under attack and Snort IDS and Beats are running. Table 4.1 shows
the characteristics of Test 1.

Parameter Value
Attack Data Rate 100MBit/sec

Attack Type Syn-flood
Number of Rules ≈7000

Interface under Attack Eth0
Run Time 600 Seconds
Instances Eth0, wlan0 and Beats

Table 4.1: Characteristics of Test 1, syn-flood at 100MBit/sec

Test 1 was run for 600 seconds with a total rule set of 7000 rules, where
6000 rules were assigned to Snort instance eth0 and an approx of 1000 rules
were provided to wlan0. It is important to note that Snort instance wlan0 was
running but was not under attack in any next tests except test 4. To load Snort
instances and Beats, the script in appendix E was run with bash snort.sh while
at the same time syn-flood attack from attack machine was initiated by hping3
command:

52

hping3 -d 0 -S -p 80 --flood --rand-source 192.168.10.20

The hping3 flooded the interface eth0 of RPi with packets set with syn flags
(-S option) with random source ip addresses. -d 0 option sets data payload to 0
while option -p 80 sets the target port to port 80. This Command can generate
an approx data rate of ≈100MBit/sec.

4.6.2 Test 2

Test 2 differs from Test 1 by a change in attack data rate from attack machine.
For test 2, attack data rate was set to 300MBit/sec. The purpose of this attack
was to analyze full capability of interface eth0 and make RPi CPU to work on
more packets. i.e. interface eth0 responds with an ack to each syn packet,
resulting in an increased CPU consumption, also, Snort has to commence and
process more packets per seconds which also increases CPU usage. Test 2 char-
acteristics are provided in Table 4.2.

Parameter Value
Attack Data Rate 300MBit/sec

Attack Type Syn-flood
Number of Rules ≈7000

Interface under Attack Eth0
Run Time 600 Seconds
Instances Eth0, wlan0 and Beats

Table 4.2: Test 2 characteristics and it’s values for a higher data rate of
300MBit/sec

The hping3 command used to generate syn flood on 300MBit/sec data rate
is given as:

hping3 -d 120 -S -p 80 --flood --rand-source 192.168.10.20

All the other parameters of above hping3 command remained the same as
test 1, except the packet payload size i.e. option -d 120, which makes hping3
to send each syn packet with a packet payload size of 120 bytes. Hping3 not
only increases the packet size but also increases the packets/sec rate to maintain
the maximum flood rate. Test 2 sent syn packets at the rate of ≈300MBit/sec
which matches the maximum supported rate of Ethernet interface eth0 of RPi.

53

4.6.3 Test 3

Test 3 was meant to increase the CPU clock rate of RPi by flooding ICMP type 3
code 3 packets, destination unreachable and port unreachable respectively. This
type of attack is referred as BlackNurse. This attack is notorious for very high
CPU consumption even at low rate of only ≈130MBit/sec. There are several
systems which are vulnerable to this kind of attack. By using even a single
laptop, this attack can shutdown a vulnerable server by over-loading the CPU.
Table 4.3 gives details of test 3 characteristics in the following:

Parameter Value
Attack Data Rate 130MBit/sec

Attack Type BlackNurse
Number of Rules ≈7000

Interface under Attack Eth0
Run Time 600 Seconds
Instances Eth0, wlan0 and Beats

Table 4.3: Test 3 characteristics while it used BlackNurse attack at relatively
low data rate

Following command can be used to initiate this attack:

hping3 -1 -C 3 -K 3 --flood --rand-source 192.168.10.20

In the command above, switch -1 sets attack mode to ICMP, -C 3 selects
code 3 of ICMP (destination unreachable), -k 3 sets type of ICMP to type 3
(port unreachable).

4.6.4 Test 4

Test 4 attacked both of the interfaces at the same time, i.e. interface eth0 and
wireless interface wlan0. The purpose of this test was to evaluate the worst
case scenario of RPi as an IDS machine. Worst case scenario in the sense that
it is less likely that both of the interfaces could be attacked at the same time.
This was the test where both of the Snort instances were detecting the attacks,
generating alerts and writing logs to their respective logging directories.

From attacker machine, same syn-flood attack was initiated against eth0 at
the data rate of 300MBit/sec, while interface wlan0 was attacked by a comprom-
ised sensor already connected to RPi’s access point. For interface wlan0 attack,
it was assumed that the compromised sensor (another RPi) was trying to login
to the RPi gateway through ssh brute-force (Dictionary attack). The Dictionary
attack is a low rate attack which requires data rate of ≈10-30KBit/sec.

54

The ssh dictionary attack uses a dictionary of usernames and passwords to
login to a system. If any username and password matches, attack is successful.
The aim to choose this attack was to simulate the real life behaviour of most of
the botnet command and control servers, which use the same attack methods to
compromise machines with weak/default usernames and passwords. Table 4.4
presents the details of attack characteristics selected for test 4.

Parameter Value for Eth0 Value for Wlan0
Attack Data Rate 300MBit/sec 30KBit/sec

Attack Type Syn-flood ssh bruteforce
Number of Rules ≈6000 ≈1000

Interface under Attack Eth0 Wlan0
Run Time 600 Seconds 600 Seconds
Instances Eth0, Wlan0 and Beats Eth0, Wlan0 and Beats

Table 4.4: Test 4 characteristics. It shows a dual attack on both interfaces with
different data rates.

The hping3 command was used from attacker machine, while nrack was used
from compromised sensor to initiate ssh bruteforce. The attack commands are
given as follows:

ncrack -p 22 --user root -P dark-web-top-10000.txt -T5 192.168.42.1
hping3 -d 120 -S -p 80 --flood --rand-source 192.168.10.20

The hping3 command is same as in test 2. while in ncrack, option -p 22 sets
target port to port 22 (ssh port), option –user root sets target username to be
probed to root, option -P loads the file containing a dictionary of passwords,
dark-web-top-10000.txt file in this case, option -T5 increases the prob rate to
5 tries in a single prob, 192.168.42.1 is the target ip address i.e. gateway ip of
wlan0 access point. Test 4 was very important because it tested the decision
whether it was sensible to run two Snort instances on a low spec device Rasp-
berry Pi, also test 4 pushed the RPi capability to it’s limits. Results obtained
from each test as well as response of Beats and monitoring server are discussed
in next chapter i.e. chapter 5 Analysis.

55

Chapter 5

Results and Analysis

This chapter provides an analysis of all the conducted tests of Raspberry Pi and
Snort as an IDS. This chapter evaluates the results in connection to one of the
core objectives of this thesis, i.e. Does RPi have enough resources to support
Snort as an IDS, in terms of resource consumption?

5.1 Test 1

Test 1 was taken to evaluate the RPi CPU and memory utilization during a
relatively low rate syn-flood attack on 100MBit/sec. The focal point of all the
tests was CPU consumption while memory was an added parameter because
main memory consumer is the Snort rule set which stayed constant during all
the tests. The reason to add memory parameter into tests was to give an
estimate that how much Snort can influence the RPi memory for a given set of
rules.

It is currently not possible to receive Snort overall statistics while Snort is
running, the only way to get Snort statistics is to read Snort I/O summary after
it exits, therefore, Snort data was obtained when Snort stopped after the test i.e.
precisely after 600 seconds. Snort was able to commence 3037094 packets, where
it analyzed a total of 225408 packets, marking success rate in terms of packet
analysis to be 7.42%. Snort dropped almost half of the packets i.e. 2811684
with a percentage of 48.07%, it is worth mentioning that packets dropped by
Snort should not be confused by the packets dropped by Ethernet interface, in
fact, packets dropped by Snort are the packets which are already passed by the
interface and commenced by Snort but Snort could not inspect them from the
memory. Table 5.1 shows the details of Snort I/O values during the Test 1.

The largest portion of the packets were outstanding packets i.e. 2811686
with a percentage of 92.578%. Outstanding packets are those packets which

56

Snort I/O Value
Packets Received 3037094
Packets Analyzed 225408 (7.42%)
Packets Dropped 2811684 (48.07%)

Outstanding Packets 2811686 (92.578%)
Packets/min 25045

Table 5.1: Test 1 - Snort I/O Statistics, showing Snort analysis and packet drop
rate. Percentage values are rounded.

are loaded into memory but are either marked as dropped or are still waiting
for Snort detection engine to be processed. Snort packet drop depends on the
incoming data rate, packet size and CPU load.

A high data rate increases the CPU consumption. Figure 5.1 shows the CPU
and memory consumption of RPi during test 1. It can be seen in Figure 5.1
that memory consumption is almost static, approximately 36% where it is being
loaded with Snort, Beats, as well as RPi’s own processes.

Figure 5.1: Test 1 -Memory and CPU consumption during test 1 at 100MBit/sec
data rate.

Such a low memory consumption is encouraging to add more Snort rules but
it must be taken into consideration that introducing new rules can also increase
CPU consumption because Snort will have to process more rules to match.
In terms of CPU consumption, test 1 at 100MBit/sec clocked the CPU to an

57

average of 56% of total CPU, at this percentage, RPi was able to perform it’s
operations effortlessly without any performance lagging. During test 1, it had
been noticed that Metricbeat and Filebeat kept connecting and disconnecting
to ELK server periodically, showing that on RPi, at even 100MBit/sec attack
data rate, some of the services can be disrupted, although ssh kept operational.

In Figure 5.1, certain fluctuations can be seen in CPU usage, one of the reasons
is that in test one, packet size was small with no data payload and Snort kept
refreshing it’s packet buffer whenever the buffer got overloaded, with each buffer
refresh, CPU usage dropped and then it gradually got higher til next buffer
reload, this cycle continuous until Snort commences different size of packets.
It is important to note that buffer refresh does not follow any particular time
interval.

5.2 Test 2

Test 2 was conducted at higher attack data rate of 300MBit/sec with a larger
packet size of 120 bytes of data payload. Purpose of this attack was to eval-
uate RPi response to a higher data rate syn-flood attack in terms of resource
consumption, as well as to evaluate Snort performance. It is worth mentioning
that RPi model 3 B+ Ethernet interface can support a maximum of 300Mbps
of throughput, any data rate above that will be bottlenecked at eth0.

Snort was expected to commence more packets with a higher drop rate. Table
5.1 shows the statistics of Snort after Test 2 was finished. Snort was able to
commence 4590679 packets, which is 33.8% higher than test 1.

Snort I/O Value
Packets Received 4590679
Packets Analyzed 245358 (5.35%)
Packets Dropped 4341882 (48.61%)

Outstanding Packets 4345321 (94.65%)
Packets/min 27262

Table 5.2: Test 2 - Snort I/O Statistics, showing Snort analysis and packet drop
rate. Analysis rate has dropped while outstanding rate has increased.

Although it was expected that Snort will be commencing more packets in test
2 but Snort did not go through each and every packet, most of the traffic was
passed and not analyzed which Snort does not count in I/O counters. Snort
dropped 48.61% of packets which is not much different than test 1. Snort was
able to analyze only 5.35% of packets with 94.65% of outstanding rate.

Since packet size was larger in test 2, Snort spent more time on inspecting
packets which raised outstanding packet rate and dropped the packet analysis

58

rate, such behaviour of Snort should also be evident in terms of CPU consump-
tion, i.e. it should be more consistent with less spontaneous fluctuations because
there is less frequent buffer reloads by Snort for larger packets, as discussed in
test 1. Figure 5.2 confirms this behaviour of Snort where CPU fluctuates very
close to the average CPU consumption of 64.7% with less frequent changes.

Figure 5.2: Test 2 -Memory and CPU consumption during test 2 at 300MBit/sec
data rate. CPU consumption is increased but consistent as compared to test 1.

There was a ≈15% increase in CPU consumption as compared to test 1, which
was not as higher as it was expected according to data rate ratio. The memory
consumption was almost the same as test 1 because no new Snort rules were
added during test 2. A different attack type might increase or decrease memory
based on it’s rule class and number of associated rules. Test 3 will explain this
phenomenon.

During test 2, it was noticed that RPi’s monitoring service was down, both of
the Beats were unable to connect to ELK server, unless the attack was stopped.
It shows that a 300MBit/sec syn-flood attack can knock of most of RPi’s Eth-
ernet associated services i.e. ssh was down and it was not possible to connect
to RPi via ssh. Although with a 64.7% CPU usage, RPi was able to run it’s
internal services smoothly and no performance lag was noticed, RPi as an IDS
was able to perform fine during test 2 but without remote monitoring, which
makes it less significant as a remotely operated IDS system.

During test 2, it was concluded that Ethernet interface of RPi with only
300Mbps throughput support, can lead to failure of RPi as a remote IDS.

59

5.3 Test 3

Test 3 changed the attack type from syn-flood to ICMP flood attack called
BlackNurse. This attack was meant to assess RPi’s vulnerability to this attack
and to analyze CPU consumption. During test 3, Snort was able to detect
this attack and generate alerts. Compared to syn packets, Snort handles ICMP
packets more smoothly with higher analysis rate and comparatively lower drop
rate. Table 5.3 shows the results summary obtained from Snort after the attack.

Snort I/O Value
Packets Received 16675421
Packets Analyzed 3532178 (21.18%)
Packets Dropped 13131500 (44.05%)

Outstanding Packets 13143243 (78.82%)
Packets/min 392464

Table 5.3: Test 3 - Snort I/O Statistics, showing Snort analysis and packet drop
rate during BlackNurse attack. A higher packet commence rate by Snort can be
noticed.

It can be noticed in Table 5.3 that Snort was able to receive much more
packets than syn-flood, it is because Snort’s traffic pass rate is lower for ICMP
traffic, Snort captures most of the ICMP packets and lets pass less ICMP traffic
as compared to syn packets in previous two tests.

Snort received 16675421 packets with packet analysis rate of 21.18% i.e. a
total of 3532178 packets. Drop rate of Snort was lower in test 3 as compared
to previous tests, 13131500 packets with a percentage of 44.05%. Outstanding
packets were 78.82% of total packets, i.e. 13143243 packets were outstanding
packets which were either marked to be dropped or were waiting for being
analyzed. For test 3, Snort performance seems reasonably acceptable.

As mentioned above, BlackNurse attack can result in very high CPU usage.
Figure 5.3 is evident that during test 3, RPi’s CPU usage clocked to nearly
100%, with an average CPU usage of 96%. Even at this CPU rate, RPi was
able to perform it’s IDS functions smoothly, no performance lags or system
shutdown was noted during the attack. Also, all the services associated with
Ethernet were operational, except few disconnects of Beats from ELK server
but as overall, performance of RPi during test 3 was satisfactory. Test 3 also
confirms that RPi model 3 B+ is not vulnerable to BlackNurse although it did
increase it’s CPU but could not paralyzes it completely.

In Figure 5.3, a slight decrease in memory can be noted, it is because Black-
Nurse attack belongs to different attack class with only single detection rule as
compared to syn-flood which has several rules to be loaded into memory and
matched. Test 3 concluded that RPi can perform as an IDS device even at an

60

average CPU usage of 96%.

Figure 5.3: Test 3 - Memory and CPU consumption during BlackBurse attack, a
very high CPU rate can be noticed with slight decrease in memory consumption.

5.4 Test 4

Test 4 was conducted to test the worst case attack scenario for RPi and Snort.
In this test, both of the interfaces i.e eth0 and wlan0 of RPi were attacked with
different type of attacks. Interface eth0 was syn-flooded while wlan0 was under
ssh dictionary attack from a connected compromised sensor. It is worth men-
tioning that generally sensors do not have the capability for a ssh bruteforce
except those IoT devices which have the capability of using for instance, Tel-
net. The attack scenario was conducted to evaluate performance of both Snort
instances and performance of RPi under dual attack.

Table 5.4 and Table 5.5 show statistics of Snort instance eth0 and Snort
instance wlan0 respectively.

61

Snort I/O Value
Packets Received 6604904
Packets Analyzed 77635 (1.175%)
Packets Dropped 6519573 (49.675%)

Outstanding Packets 6527269 (98.825%)

Table 5.4: Test 4 - Snort I/O Statistics for eth0, showing Snort statistics during
dual interface attack. A very low analysis rate can be seen, with a very high
outstanding packet rate.

Snort I/O Value
Packets Received 41902
Packets Analyzed 41796 (99.75%)
Packets Dropped 0 (0.0%)

Outstanding Packets 106 (0.25%)

Table 5.5: Test 4 - Snort I/O Statistics for wlan0, showing Snort statistics
during dual interface attack. A very higher packet commence rate by Snort can
be noticed with no packet drop.

Snort instance eth0 was dropped to an analysis rate of only 1.175% because
almost half of the buffer was taken over by Snort instance wlan0 as well as
the CPU. A larger portion of outstanding packets, 6527269 with a percentage
98.825% kept waiting for Snort to get analyzed or got dropped eventually after
time out. Out of these outstanding packets, 49.675% i.e. 6519573 packets got
timed out and dropped. During test 4, Snort instance eth0 performance was
below satisfactory but Snort was still able to detect the attack and generate
alerts.

Snort instance wlan0 was under a low rate attack of ≈30KBit/sec in test 4.
During the test, wlan0 instance received 41902 packets, out of which it analyzed
41796 packet with a analysis rate of 99.75%. None of the packets were dropped
by wlan0 instance while only 106 packets, 0.25% were in the outstanding waiting
list which shows that Snort can perform very good while dealing with low rate
attacks.

It was expected that putting both of Snort instances to work at the same time
will increase CPU to it’s maximum. Dual attack clocked the CPU to it’s full
capacity i.e. ≈100% with an average CPU usage of 98.7%. This rate of CPU
does not let Snort detection engine to work smoothly while dealing with high
data rate attacks, resulting in much higher outstanding and drop rate, as well
as a low analysis rate.

During this test, almost with full CPU utilization, RPi was still responsive
and no service disruption or system shutdowns were noticed. While services

62

related to Ethernet interface eth0 i.e. ssh and Beats were facing multiple ser-
vice disconnects, as like in test 2. On interface wlan0, access point was still
functioning and it was possible to connect to RPi’s access point. Much like test
1 and test 2, no major change in memory consumption was noticed.

A dual attack of RPi is less probable, as it will be rare that both of the
interfaces will be attacked at the same time, but this test does show that main-
taining this attack for a long time can probably overwhelm the CPU and can
result in a complete service disrupt. This test concluded that RPi as an IDS
gives below average performance in terms of detection of dual interface attacks
and CPU consumption. Also, remote monitoring system tends to get disrupted
easily because of the RPi’s 300MBit Ethernet port. Figure 5.4 shows the results
obtained after test 4, a very high CPU usage can be seen.

Figure 5.4: Test 4 - Memory and CPU consumption during dual attack, a very
high CPU rate can be seen because both of the Snort instances are operational
in detecting attacks.

5.5 Monitoring Server

The main purpose of including monitoring service was to visualize the Snort
data and to provide simple readability to Snort alerts e.g. type of active at-
tacks, number of alerts generated by Snort, location of attacking IP addresses
and details of the Snort rule which detected the attack i.e Signature ID etc.
Beats components, Filebeat was responsible for reading Snort alerts at RPi and
shipping them to ELK server.

63

Another Beats component called Metricbeat, was used to ship RPi’s system
metrics to ELK server. It is worth mentioning that for calculation of RPi’s CPU
and memory during the tests, local script was preferred instead Metricbeat, this
step was taken to evade time delay and service disconnect issues of Metricbeat.

During the time period of all the tests, both of the Beats were running along-
side the Snort instances. Except test 1 and test 3, Beats lost their connection
to ELK server because Ethernet interface eth0 was under heavy load and was
unable to support any more traffic. When the attacks were stopped, Beasts rees-
tablished their connections to ELK server. Filebeat uses the actual timestamp
of alert logs after reconnect but Metricbeat sometime gives less precise results
in relation to timestamp. In following section, data received by Beats on the
ELk server is presented.

5.5.1 Filebeat

Filebeat was configured to ship Snort alerts only and no other logs were sent
through it. It was more resilient than Metricbeat in terms of having less frequent
disconnects during the attacks. In the following section, Snort alert messages
sent by Filebeat for different attacks are shown.

Figure 5.5 presents the syn-flood attack on eth0, detected by Snort. It is
harder to read Snort alerts on RPi itself, ELK presents the alert in an easy,
human readable form.

Figure 5.5: Syn-food attack on eth0 - Snort detects the attack and generates
alert, which is sent by Filebeat and processed by ELk index patterns.

Figure 5.6 shows the detected ssh brute-force attack landed against wlan0
from compromised sensor. It shows the alert message, priority of attack, source
ip of the attacker and signature id of the detection rule.

64

Figure 5.6: ssh-bruteforce attack on wlan0 - It shows the generated alert by
Snort after detection of the attack.

similarly, Figure 5.7 and Figure 5.8 show the detected Snort alerts, presenting
alert message of blackNurse attack and XMAS scan respectively.

Figure 5.7: blackNurse attack on eth0 - Snort successfully detects the attack and
generates alerts. Figure shows the alert message on the ELK server.

Figure 5.8: XMAS scan detected on eth0 - Figure shows the detection of nmap
XMAS scan, which normally belongs to first phases of a hacking attempt.

For a system administrator, every information is vital for both pre and post
attack countermeasures. Specifically, it is very useful if location of attack IPs
could be identified, because the admin can then blacklist those ips either based
on subnet or location. ELK server also provides geoip map of all the unique
ip addresses used for attacks. Figure 5.9 shows the map of countries where the
attacks were coming from. The map was generated from test 1 syn flood attack
where interface eth0 was flooded with spoofed random source addresses, just to
generate different ip data.

It must be taken into consideration that source ip address may not be the

65

actual ip of the attacker in certain type of attacks because hackers generally
spoof their ip addresses (if packet response is not required) or use proxies. The
GeoIP is very useful against scanners, bots traffic, and web crawlers.

Figure 5.9: GeoIP MAP - Showing the country location of attackers based on
their IP addresses. Red color countries are the top countries where attacks where
generated from.

5.5.2 Metricbeat

Metricbeat suffered most of the service disconnects from ELK server as com-
pared to Filebeat. It was an additional Beats component added to monitor
RPi’s metrics. It can be very useful in cases where any unexpected behaviour of
a system is to be monitored, for example, CPU or memory usage above certain
threshold, level of incoming traffic etc. As discussed before that Metricbeat
might give errors with correct timestamps while shipping data, it was hard to
generate graphs with precise time of attacks, instead, graphs with a longer time
frames are shown in following section. Figures 5.10 and 5.11 show the system
load, memory usage and number of incoming and dropped packets respectively
during a time span of 30 days.

In figure 5.10, system load gives information of average system load of RPi
in 15 minutes interval in terms of percentage. Similarly, memory represents the
average memory usage of RPi in term of MBs during same time interval. It
must be noted that resource consumption statistics generated by local script
on RPi may not correlate or synchronize with Metricbeat results due to service
disconnect issues of Metricbeat.

66

Figure 5.10: Memory and system load - The line graph generated at ELK server
using Metricbeat data, showing memory and system load fluctuations during a
longer time span.

Figure 5.11: Incoming and Dropped packets - The number of packets received
and dropped by Ethernet interface. Based on Data shipped by Metricbeat.

Figure 5.11 gives an insight into level of traffic RPi was exposed to during
a total time interval of 30 days. It gives a comparative analysis of number of
incoming packets on interface eth0 and number of packet that were dropped by
the same interface. It can be seen that RPi dropped a large number of packets
which clearly show a major weakness of RPi’s 300Mbps Ethernet interface.
When this interface is exposed to above 300MBit/sec traffic, it starts dropping
large amount of packets which may or may not effect the RPi CPU depending

67

on the nature of packets. For instance, mere syn packets have a very less effects
on CPU in normal situations but ICMP type 3, code 3 packets demand a large
CPU utilization even on comparatively low rate traffic.

68

Chapter 6

Discussion

This chapter provides a critical discussion on project evaluation, the adopted
approach, implementation, results and analysis and on the project as a whole.
Also, suggestions on how this project can be improved is presented in future
work.

6.1 Project Evaluation

IoT market space is expected to be massive in near future. IoT devices are ex-
pected to have direct impact on businesses and everyday lives of people. With
this tremendous growth of IoTs, unfortunately, attacks on these devices has
increased many fold because of weak to no security of IoT devices. Most of
the IoT manufacturers focus on higher profit margins, overlooking security as-
pects. Most of the commercial security products, specifically, intrusion detection
devices (IDS) are too costly and demand special hardware, which makes it dif-
ficult for average IoT user e.g. smart home or smart building, to afford these
IDS devices.

Keep in view above phenomenon, this thesis was intended to build and test
an affordable IDS for common IoT environments. The project used a low price,
35$ single board computer device Raspberry Pi and open source IDS Snort.

6.2 The Approach

Snort IDS was placed in a single centralized RPi gateway for simplicity. For
testing Snort and RPi as an IDS, only those attacks were chosen which are very
common against IoTs i.e. DoS, dictionary attacks and port scanners. The pro-
ject chose an empirical approach and used actual hardware instead simulation,

69

also, real attack tools like hping3, ncrack and nmap were used for testing of
IDS.

Two instances of Snort were deployed on RPi, one for each interface, i.e.
Ethernet interface eth0 and wireless interface wlan0. The reason for using dual
Snort instance was because Snort is single threaded and can not listen on more
than one instance at a time. Although this approach can be resource overhead
if no attacks on wlan0 are expected. Also, certain types of attacks on wlan0
can not be detected by Snort, for instance, wireless de-authentication attack on
wlan0. Both of the instances were provided with different number and type of
rules based on the nature of their exposure, a total of ≈7000 rules were used.

Two attack points were chosen on RPi, Ethernet interface was attacked using
different data rate attacks, wlan0 was attacked by a compromised connected
sensor with a ssh dictionary attack. To analyze the Snort alerts and visualize
Rpi metrics, Beats were used alongside remote monitoring server equipped with
ELK stack.

6.3 Implementation and challenges

At the time of this thesis writing, only few documented implementation of Snort
with RPi can be seen in reputable journals. It was hard to obtain closely related
research work which used the same setup. in fact, no matching setup was found
till date which uses a combination of Snort, RPi and ELk stack, this project
was the first which attempted this combination.

Rpi uses Armv Linux architecture, which has several dependency issues while
compiling common Linux packages. Compilation of Snort on RPi was not
straight forward and had to be compiled and installed manually form source.
It was done after several trial and error and solving dependency issues. Also,
choosing ac-bnfa-nq algorithm over Snort default algorithm ac-split was not
an instant decision. unfortunately, no reputable document exists that could
provide a comparative performance analysis of Snort’s current pattern matcher
algorithms. To seek professional advice, Snort developers were consulted on se-
clists.org which is an open portal for Snort and other related security software.

Selecting and writing Snort rules was also a difficult process because a single
bad written rule could give inaccurate test result, for instance, in a syn-flood
attack rule, if count 1000, seconds 5 is changed to count 10, seconds 5, it will
not only generate a very large amount of alerts but also increase CPU many
folds. Similarly, if flags:S was put at the end of rule instead in beginning, it can
demand more work from pattern matcher algorithms hence increasing resource
usage. Moreover, selection of individual rules which match this project criteria
was a worth a job.

Configuring Beats components for data shipping on RPi was the most time

70

intensive. Currently, Elastic.co which provides official support for Beats and
ELk stack, do not provide Arm architecture builds of Beats. Also, Beats use Go
language for compilation, which also demands a manual labour to install and
configure.

The project first planned to use rsyslog for sending Snort logs to Logstash
but rsyslog did not provide support to ship real time system metrics of RPi.
Beats, on the other hand, could not only send Snort alert logs but also could
send real time system metrics. It was more reasonable to use Beats as it is easier
to index data on ELK stack when using Beats (Except Snort index pattern for
Snort alerts which had to be written). Installing ELK stack on remote server
which is an Ubuntu machine, was comparatively easier and straight forward.
This chapter also provided the answer to first question of problem statement i.e
How can we build an affordable and portable IDS solution using RPi and Snort?

6.4 Testing and Analysis

Two testing parameters were set, first, to evaluate Snort performance in terms
of detection rate i.e. analysis rate, packets dropped, and number of outstanding
packets, problem with these Snort statistics was that Snort does not provide
live on the run statistics, these can only be obtained after Snort exists. Second,
to evaluate RPi resource consumption during each test, in terms of total CPU
consumption with memory usage as an additional metric.

Initially, Metricbeat was used to collect these metrics but due to service dis-
connect and correct time synchronization issues, a local script was written to
collect these metrics in real time. Instead replaying already captured traffic
from pcaps using Tcpreplay, actual attacks using Kali Linux were preformed in
every test. The reason of choosing real attacks was to sketch a more realistic
attack scenario and accumulate more accurate data.

Test 1 used syn-flood at 100MBit/sec data rate with smaller packets, purpose
of the attack was to put Snort on work into detection of this attack as well as
consume most of the bandwidth of Ethernet interface eth0, as a result increase
the CPU usage of RPi. Test increased the CPU to an average of 56% which
had no mention-able effects on RPi performance but Snort gave a moderate
performance of analyzing only 7.42%. Test 2 and Test 3 gave almost similar
Snort statistics except test 3, which clocked the RPi CPU to 96%.

Test 4 was a worst case test scenario where both of the interfaces were attacked
simultaneously. This test clocked the CPU to it’s full potential with an average
of 98.825%. Nonetheless, during these tests, CPU of RPi was tested rigorously,
which showed an average performance, due to the fact that even at high CPU
rate no system crash, Rpi shutdown or a major system disruption was noted and
Rpi was still able to perform it’s system operations. Similarly, Snort gave below
average performance in detection of high rate attacks, and excellent performance

71

in detection of low rate attacks i.e. detection of wlan0 attack with 99.75%
analysis rate. These tests signify that Rpi can perform as an IDS using Snort in
average traffic flow environments. This also provides the answer to the problem
statement question i.e Does RPi have enough resources to support Snort as an
IDS, in terms of resource consumption? and the answer is yes.

These tests uncovered a major weakness of RPi which is the Ethernet inter-
face. Rpi’s Ethernet provides a maximum bandwidth support of only 300Mbps
which is very low for modern internet traffic scenarios. Although it’s Ethernet is
designed for sensor networks where less data flow is expected but RPi does have
the capability to operate as an IDS in non-sensor based networks, for that, it
will perhaps, need a better Ethernet. Except test 1, every other test completely
engaged Ethernet port and no incoming or outgoing communication was pos-
sible. Beats were the biggest victims of Ethernet’s inability of communication
during these tests. This may gave an idea of using alternative single board com-
puters with a better Ethernet port support which may cost relatively higher
price. For instance, Orange Pi Plus 2 and Asus Tinker Board provides one
Gigabit Ethernet port with only a marginal price increase. It is recommended
to avoid using the RPi in cases where a high data rate traffic is expected. If, in
case it is unavoidable then RPi alternatives with better specifications could be
used.

In [46], authors presented a similar approach using RPi model 2 B. They
came to almost similar conclusion that Ethernet interface of RPi can be a ma-
jor weakness, but authors did not provide a worst case scenario neither they
could provide a clear view of their system design. In [39] authors used beha-
viour profiling, which is extremely difficult to implement in common IoT setup,
similarly in [40], authors used artificial immune cells which can be computational
and resource overhead while [41] is limited to detect only few special attacks.
In [42], authors used only a single metric for detecting attacks i.e. energy con-
sumption. Also [43] was designed for only 6LoWPAN while [44] proposed a
hybrid approach which is too complex to implement in common IoT environ-
ments. Finally, except [46] none of the authors could provide cost affordability
of their proposals.

This project not only identified best to worst case scenarios but also provided
a clear system design with cost affordability. Moreover, this project has provided
probably the first practical implementation of one of the most advanced yet free
monitoring service ELk stack, on Rpi with open-source IDS Snort.

Short coming of this project probably is the inability of detecting direct wire-
less attacks on wlan0 access point. A de-authentication attack on RPi access
point will disconnect any connected IoT devices and the attack will go unnoticed
of Snort instance. Since this attack is very rare and need a very close range to
initiate the attack, it can be considered less probable.

72

6.5 Future Work

The project can be improved by changing several parameters. For instance,
instead using two instances of Snort, wlan0 instance of Snort can be changed
with Kismet IDS instead which is a specialized wireless IDS. This setup will
then provide intrusion detection on Ethernet interface with Snort while Kismet
will take care of wlan0 interface.

For a pure Wireless IDS in a wider IoT environment, multiple battery powered
RPi’s with Kismet can be deployed with a distributed approach i.e. in a cluster,
where each device cooperates with it’s neighbour devices, by exchanging inform-
ation of attack detection, battery levels, and load balancing etc. These cluster of
IDS devices can be programmed to autonomously choose their cluster heads for
instance those devices with higher battery can be chosen as cluster head or some
other parameter can be set for this. For monitoring of battery consumption and
power levels, Beats can be deployed with a longer data shipping interval to save
power.

It is also possible to make these clustered IDS sensors autonomous in decision
making and load distribution by introducing very basic machine learning using
python. Moreover, this is also possible to turn Snort IDS into an IPS (intrusion
prevention system) but it may not work good in wireless environments. Other
open-source IDSs like Bro and Suricata can also be used as an alternative to
Snort.

73

Chapter 7

Conclusion

This thesis proposed an IDS system for IoTs using very common, low price
and low spec hardware with freely available open source intrusion detection
system. The purpose of the thesis was to open new paths into IoT security by
practically demonstrating that security of IoTs in terms of Intrusion detection
can be achieved by using simple and affordable tools. It provided an affordable
alternative to costly commercial IDS systems which are not feasible for common
IoT environments like smart home and smart buildings.

The proposed IDS can be deployed in most of the IoT environments where
data traffic is expected to be low to medium, for instance, in smart buildings,
public transport stations or in personal home security. To prove the claims of the
project, it was evaluated and tested under various data traffic rates and by using
different types of real attacks. Best to worst case scenarios were implemented
to test RPi’s capability of hosting Snort, tests result confirmed the feasibility of
Raspberry Pi as an IDS and proved that under most common IoT environments,
Raspberry Pi can host Snort and can deliver the expected intrusion detection
functionality.

Although certain tests increased the RPi CPU to almost 100% but it was not
entirely due to Snort processes but was associated with data rates. Raspberry
Pi hosted Snort smoothly with no significant impact on memory neither CPU
shutdowns were noted during any of the tests, although It would be a good
idea to further test the proposed system. This project has successfully built
an affordable intrusion detection system for IoTs and has managed to test and
prove it’s claims. Also, this was the first project which used a combination of
Snort, Raspberry Pi and ELK Stack.

74

Bibliography

[1] K. Ashton. That ‘internet of things’ thing. RFiD Journal, 22:97–114, 2009.

[2] https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-
of-internet-of-things-forecasts/#3fc008701480 [Accessed September 3
2018]

[3] Introduction: Advances in IoT research and applications, Pan Wang &
Ricardo Valerdi & Shangming Zhou & Ling Li, Published online: 11 March
2015 Springer Science+Business Media New York 2015.

[4] https://www.cisco.com/c/dam/en_us/about/ac79/docs/retail/Beyond-
the-New-Normal_IBSG_051211-FINAL.pdf [Accessed September 3
2018]

[5] http://sro.sussex.ac.uk/54129/1/07110295.pdf [Accessed September 5
2018]

[6] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 packets over IEEE 802.15.4 networks,” in Internet Engineering Task
Force, RFC 4944, 2007.

[7] T. W. (Ed.), P. T. (Ed.), A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,R.
Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 routing protocol for low-
power and lossy networks,” in IETF, RFC 6550, 2012.

[8] Z. Shelby, K. Hartke, and C. Bormann, “Constrained ap-
plication protocol (CoAP),” Internect Draft, Available at:
http://datatracker.ietf.org/wg/core/charter.

[9] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. McCann, and K. K.Leung,
“A survey on the IETF protocol suite for the internet of things: standards,
challenges, and opportunities,” IEEE Wireless Communications Magazine,
vol. 20, no. 6, pp. 91–98, 2013.

[10] European Telecommunication Standards Institute,
(ETSI),http://www.etsi.org/technologies-clusters/technologies/m2m
[Accessed September 5 2018]

75

[11] D. Katusic, M. Weber, I. Bojic, G. Jezic, and M. Kusek, “Market, stand-
ardization, and regulation development in machine-to-machine communic-
ations,”in 20th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), Sept 2012, pp. 1–7.

[12] Internet of Things: Innovation with Chinese Characteristics,
http://www.hoganlovells.com/internet-of-things-innovation-withchinese-
characteristics-09-12-2013/ [Accessed September 6 2018]

[13] https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/ [Ac-
cessed September 6 2018]

[14] http://sro.sussex.ac.uk/54129/1/07110295.pdf [Accessed September 6
2018]

[15] https://altizon.com/varroc-automotive-case-study/ [Accessed September
10 2018]

[16] OASIS, MQTT Version 3.1.1, Std., 2014.

[17] Dae-Hyeok Mun, Minh Le Dinh, and Young-Woo Kwon, Department of
Computer Science, "An Assessment of Internet of Things Protocols for
Resource-Constrained Applications," IEEE 40th Annual Computer Soft-
ware and Applications Conference 2016.

[18] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application pro-
tocol (CoAP),” 2014.

[19] I. Fette and A. Melnikov, “The Websocket Protocol,” 2011.

[20] https://xmpp.org/about/ [Accessed September 12 2018]

[21] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
Internet of Things: Perspectives and challenges,” Wireless Netw., vol. 20,
no. 8, pp. 2481–2501, Nov. 2014.

[22] M. Frustaci, P. Pace, G. Aloi and G. Fortino, "Evaluating Critical Security
Issues of the IoT World: Present and Future Challenges," in IEEE Internet
of Things Journal, vol. 5, no. 4, pp. 2483-2495, Aug. 2018.

[23] https://www.owasp.org/index.php/OWASP_Internet_of_Things
_Project#tab=IoT_Attack_Surface_Areas. [Accessed September 12
2018]

[24] C. Karlof, D. Wagner, “Secure Routing in Wireless Sensor Networks: At-
tacks and Countermeasures”, 2003

[25] https://www.sans.org/reading-room/whitepapers/detection/understanding-
intrusion-detection-systems-337 [Accessed September 12 2018]

[26] Steven R Snapp et al.“DIDS (distributed intrusion detection system) mo-
tivation, architecture, and an early prototype.” In: Proceedings of the 14th

76

national computer security conference. Vol. 1. Washington, DC. 1991, pp.
167–176.

[27] https://snort.org/ [Accessed September 15 2018]

[28] https://www.bro.org/sphinx/intro/index.html [Accessed September 26
2018]

[29] https://redmine.openinfosecfoundation.org/projects/suricata/wiki
/What_is_Suricata [Accessed September 26 2018]

[30] F. Hock and P. Kortiš, "Commercial and open-source based Intrusion De-
tection System and Intrusion Prevention System (IDS/IPS) design for an
IP networks," 2015 13th International Conference on Emerging eLearning
Technologies and Applications (ICETA), Stary Smokovec, 2015, pp. 1-4.

[31] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion detection in wireless ad
hoc networks”, IEEE Wireless Communications, 11 (1), 48-60, 2004.

[32] T. Anantvalee, and W. Jie, “A survey on intrusion detection systems in
mobile ad hoc networks”, Wireless Network Security, 2, 159-180, 2017.

[33] S. Kumar, and K. Dutta, “Intrusion detection in mobile ad hoc networks:
techniques, systems, and future challenges”, Security and Communication
Networks, 9 (14), 2484-2556, 2016

[34] A. Farooqi, and F. Khan, “Intrusion detection systems for wireless sensor
networks: a survey”, In Communication and Networking Communications
in Computer and Information Science, 56, Springer, Berlin, Heidelberg,
234-241, 2009

[35] A. Abduvaliyev, A. Pathan, Z. Jianying, R. Roman, and W.
WaiChoong2013, “On the vital areas of intrusion detection systems in wire-
less sensor networks”, IEEE Communications Surveys & Tutorials, 15 (3),
1223-1237, 2013.

[36] I. Butun, S. Morgera, and R. Sankar, “A survey of intrusion detection sys-
tems in wireless sensor networks”, Communications Surveys and Tutorials
IEEE, 16 (1), 266-282, 2014.

[37] R. Mitchell, and I. Chen, “A survey of intrusion detection techniques for
cyber-physical systems”, ACM Computing Surveys (CSUR), 46 (4), 55,
2014.

[38] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network and
Computer Applications, vol. 84, pp. 25-37, 2017.

[39] E. Cho, J. Kim, and C. Hong, “Attack model and detection scheme for
botnet on 6LoWPAN,” In Management Enabling the Future Internet for
Changing Business and New Computing Services, Lecture Notes in Com-
puter Science 5787. Springer, Berlin, Heidelberg, 515-518, 2009.

77

[40] C. Liu, J. Yang, Y. Zhang, R. Chen, and J. Zeng, “Research on immunity-
based intrusion detection technology for the Internet of Things,” In: Nat-
ural Computation (ICNC), 2011 Proceedings of the Seventh International
Conference, Vol. 1, pp. 212-216, 2011.

[41] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: real-time intrusion detection
in the Internet of Things,” Ad Hoc Network, 11 (8), 2661-2674, 2013.

[42] T. Lee, C. Wen, L. Chang, H. Chiang, and M. Hsieh, “A lightweight intru-
sion detection scheme based on energy consumption analysis in 6LowPAN,”
In: Advanced Technologies, Embedded and Multimedia for Human-centric
Computing, Lecture Notes in Electrical Engineering, 260. Springer, Neth-
erlands, 1205-1213, 2014.

[43] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of sink-
hole attacks for supporting secure routing on 6LoWPAN for Internet of
Things,” In: 2015 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM), pp. 606-611, 2015

[44] A. Le, J. Loo, K. Chai, and M. Aiash, “A specification-based IDS for de-
tecting attacks on RPL-based network topology,” Information, 7 (2), 25,
2016.

[45] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis: A system for
knowledge-driven adaptable intrusion detection for the Internet of Things,”
In Proceedings of the IEEE 37th International Conference on Distributed
Computing Systems (ICDCS’17), 2017

[46] A. Sforzin, F. G. Mármol, M. Conti and J. Bohli, "RPiDS: Raspberry Pi
IDS — A Fruitful Intrusion Detection System for IoT," 2016 Intl IEEE,
Toulouse, 2016, pp. 440-448.

[47] https://www.zigbee.org/ [Accessed October 5 2018]

[48] https://wave2m.com.cutestat.com/ [Accessed October 5 2018]

[49] https://www.isa.org/standards-publications/isa-publications/intech-
magazine/2012/december/web-exclusive-analysis-wireless-industrial-
automation-standards-isa-100-11a-wirelesshart/ [Accessed October 5
2018]

[50] https://www.profibus.com/ [Accessed October 5 2018]

[51] https://www.omg.org/ [Accessed October 5 2018]

[52] http://malware.wikia.com/wiki/Sub7 [Accessed October 10 2018]

[53] https://hackstory.net/BackOrifice [Accessed October 10 2018]

[54] https://nmap.org/ [Accessed October 10 2018]

[55] https://sectools.org/tool/l0phtcrack/ [Accessed October 10 2018]

[56] https://github.com/Snorby/snorby [Accessed October 10 2018]

78

[57] http://acidlab.sourceforge.net/ [Accessed October 10 2018]

[58] https://www.elastic.co/elk-stack [Accessed October 10 2018]

[59] https://sourceforge.net/projects/secureideas/ [Accessed October 10 2018]

[60] http://www.tcpdump.org/manpages/tcpdump.1.html [Accessed October
10 2018]

[61] https://www.mcafee.com/enterprise/en-us/products/network-security-
platform.html [Accessed October 18 2018]

[62] https://www.trendmicro.com/en_us/business/products/network/intrusion-
prevention/tipping-point-threat-protection-system.html [Accessed October
18 2018]

[63] https://www.hillstonenet.com/products/network-intrusion-prevention-
system-s-series/ [Accessed October 18 2018]

[64] https://www.gartner.com/reviews/market/intrusion-prevention-
systems/vendor/huawei/product/network-intelligent-protection-nip-
system. [Accessed October 18 2018]

[65] https://www.raspberrypi.org/ [Accessed October 22 2018]

[66] Alfred V. Aho and Margaret J. Corasik. Efficient String Matching: An Aid
to Bibliographic. Search: Bell Labs, Communications of the ACM Jun 1975
Volume 18 Number 6.

[67] https://snort-org-site.s3.amazonaws.com/production/document_files
/files/000/000/085/original/OptimizingPathernMatchingForIDS.pdf [Ac-
cessed October 25 2018]

[68] https://growthenabler.com/flipbook/pdf/IOT%20Report.pdf [Accessed
September 25 2018]

[69] https://rules.emergingthreats.net/open/snort-2.9.0/rules/ [Accessed Octo-
ber 27 2018]

[70] https://www.snort.org/talos [Accessed October 27 2018]

[71] https://www.snort.org/downloads#rules [Accessed October 27 2018]

[72] https://www.kismetwireless.net/ [Accessed October 29 2018]

[73] https://golang.org/dl/ [Accessed October 29 2018]

[74] https://www.kali.org [Accessed October 29 2018]

[75] https://www.elastic.co/elk-stack [Accessed November 6 2018]

[76] http://www.orangepi.org/orangepiplus2/ [Accessed November 6 2018]

[77] https://www.asus.com/us/Single-Board-Computer/Tinker-Board/ [Ac-
cessed October 4 2018]

79

[78] http://www.banana-pi.org/m3.html [Accessed October 4 2018]

[79] http://en.t-firefly.com/product/rk3288 [Accessed October 4 2018]

[80] https://www.fs-net.de/en/products/armstone/armstonea9/ [Accessed Oc-
tober 4 2018]

[81] https://www.kismetwireless.net/ [Accessed November 8 2018]

80

Appendices

81

Appendix A

Install and Configure Snort

1 #update repositories
2 sudo apt-get update && sudo apt-get dist-upgrade -y
3 # install Snort dependencies
4 sudo apt-get install build-essential -y
5 sudo apt-get install libnet1-dev -y
6 sudo apt-get install checkinstall
7 sudo apt-get install bison git -y
8 sudo apt-get install flex -y
9 sudo apt-get install libpcap-dev -y

10 sudo apt-get install libpcre3-dev -y
11 sudo apt-get install libdumbnet-dev -y
12 # Create a directory for Snort
13 sudo mkdir snort_src && cd snort_src
14 # Download the source Snort packages and DAQ libraries.
15 sudo wget https://www.snort.org/downloads/snort/snort-2.9.12.tar.gz
16 # Current version by date
17 sudo wget https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz
18 sudo tar xvzf daq-2.0.6.tar.gz && cd daq-2.0.6/
19 sudo ./configure
20 sudo make
21 # provide package description as snort-daq and keep all the other options

as default.
22 sudo checkinstall -D --install=no --fstrans=no
23 # A package is created in same directory with .dab extension, run it as..
24 sudo dpkg -i daq_2.0.6-1_armhf.deb
25 cd ..
26 sudo tar xvfz snort-2.9.12.tar.gz && cd snort-2.9.12/
27 sudo ./configure --enable-sourcefire
28 sudo make
29 sudo checkinstall -D --install=no --fstrans=no
30 # follow same process as daq, another .deb package is created for snort,

82

run it as:
31 sudo dpkg -i snort_2.9.12-1_armhf.deb
32 sudo ldconfig
33 # confirm Snort installation directory by:
34 which snort
35 # create a symlink to snort directory
36 sudo ln -s /usr/local/bin/snort /usr/sbin/snort
37 #check snort installation
38 snort --version
39 # Add snort group and user
40 sudo groupadd snort
41 sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort
42 # create snort work directories
43 sudo mkdir -p /etc/snort/rules/iplists
44 sudo mkdir /etc/snort/preproc_rules
45 sudo mkdir /usr/local/lib/snort_dynamicrules
46 sudo mkdir /etc/snort/so_rules
47 sudo touch /etc/snort/rules/local.rules
48 sudo touch /etc/snort/rules/iplists/white_list.rules
49 sudo touch /etc/snort/rules/iplists/black_list.rules
50 sudo mkdir -p /var/log/snort/eth0
51 sudo mkdir /var/log/snort/wlan0
52 # provide permission to snort user to access directories
53 sudo chmod -R 5775 /etc/snort
54 sudo chmod -R 5775 /var/log/snort
55 sudo chmod -R 5775 /usr/local/lib/snort_dynamicrules
56 sudo chown -R snort:snort /etc/snort
57 sudo chown -R snort:snort /var/log/snort
58 sudo chown -R snort:snort /usr/local/lib/snort_dynamicrules
59 # move snort config packages to working directory /etc
60 cd snort_src/snort-2.9.12/etc
61 sudo cp *.conf /etc/snort
62 sudo cp *.config /etc/snort
63 sudo cp *.map /etc/snort
64 #further snort.conf configurations will be detailed in upcoming sections
65 #Test run snort
66 sudo snort -T -c /etc/snort/snort.conf -i eth0

83

Appendix B

Hostapd and ISC server
configurations

1 sudo apt-get update
2 # install required packages
3 sudo apt-get install hostapd isc-dhcp-server
4 sudo apt-get install iptables-persistent
5 # Edit dhcpd.conf
6 sudo nano /etc/dhcp/dhcpd.conf
7 # comment of these lines with "#"
8 #option domain-name "example.org";
9 #option domain-name-servers ns1.example.org, ns2.example.org;

10 # uncomment #authoritative;
11 authoritative;
12 # Add following at the end of file, change ip's accordingly
13 subnet 192.168.42.0 netmask 255.255.255.0 {
14 range 192.168.42.1 192.168.42.40;
15 option broadcast-address 192.168.42.255;
16 option routers 192.168.42.1,192.168.10.1;
17 default-lease-time 600;
18 max-lease-time 7200;
19 option domain-name "local";
20 option domain-name-servers 8.8.8.8,

8.8.4.4,192.168.42.1,192.168.10.1;
21 }
22 # Edit isc-dhcp-server file and add
23 sudo nano /etc/default/isc-dhcp-server
24 INTERFACESv4="wlan0"
25 # make sure wlan0 is down
26 sudo ifdown wlan0
27 # Edit file /etc/network/interfaces.d/wlan0
28 sudo nano /etc/network/interfaces.d/wlan0

84

29 # Add following and save file
30 allow-hotplug wlan0
31 iface wlan0 inet static
32 address 192.168.42.1
33 netmask 255.255.255.0
34 # Time to enable configure hostapd, hostapd.conf does not exist by

default
35 sudo nano /etc/hostapd/hostapd.conf
36 # Add following code
37 interface=wlan0
38 ssid=Pi_AP # any AP name
39 country_code=NO
40 hw_mode=g
41 channel=6
42 macaddr_acl=0
43 auth_algs=1
44 ignore_broadcast_ssid=0
45 wpa=2
46 wpa_passphrase=yourpassword
47 wpa_key_mgmt=WPA-PSK
48 wpa_pairwise=CCMP
49 wpa_group_rekey=86400
50 ieee80211n=1
51 wme_enabled=1
52 # Edit /etc/default/hostapd
53 sudo nano /etc/default/hostapd
54 # and add following
55 DAEMON_CONF="/etc/hostapd/hostapd.conf"
56 # Enable ipv4 forwarding
57 sudo nano /etc/sysctl.conf
58 # and add at the end of file
59 net.ipv4.ip_forward=1
60 # Run command
61 sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
62 # Add iptables rules
63 sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
64 sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,

ESTABLISHED -j ACCEPT
65 sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT
66 # verify iptable rules by
67 sudo iptables -t nat -S
68 sudo iptables -S
69 # save iptable rules persistently
70 sudo sh -c "iptables-save > /etc/iptables/rules.v4"
71 # turn on wlan0 and restart
72 sudo ifup wlan0
73 sudo reboot
74 # start services
75 sudo service hostapd start
76 sudo service isc-dhcp-server start

85

77 # verify status
78 sudo service hostapd status
79 sudo service isc-dhcp-server status
80 # Follow commands can also be used to start daemon services
81 sudo update-rc.d hostapd enable
82 sudo update-rc.d isc-dhcp-server enable

86

Appendix C

Configuring Beats on RPi

1 # Install dependencies
2 sudo apt-get install python-pip git
3 sudo pip install virtualenv
4 sudo wget https://dl.google.com/go/go1.11.2.linux-armv6l.tar.gz
5 sudo tar -C /usr/local/ -xzf go1.11.2.linux-armv6l.tar.gz
6 export PATH=$PATH:/usr/local/go/bin
7 sudo nano ~/.profile
8 # add following in file,if does not work, try adding same to /etc/bash.

bashrc file also.
9 #! /bin/bash

10 export PATH=$PATH:/usr/local/go/bin # and close the file
11 sudo chmod a+x ~/.profile # or /etc/bash.bashrc
12 PS1 '$ ' source ~/.profile
13 # verify Go
14 go version
15 # if "go command not found" error is thrown, provide the path again
16 export PATH=$PATH:/usr/local/go/bin
17 # setting up beats
18 sudo mkdir go
19 export GOPATH=$HOME/go
20 cd go
21 sudo mkdir -p src/github.com/elastic
22 cd src/github.com/elastic
23 sudo git clone https://github.com/elastic/beats.git
24 cd beats
25 # before installing any beats component, better to increase swap memory

for RPi, otherwise "low memory" error will be thrown.
26 sudo nano /etc/dphys-swapfile
27 # change following
28

29 CONF_SWAPFILE=/var/swap

87

30 CONF_SWAPSIZE=2048
31 CONF_MAXSWAP=3000 # save and exit
32 swapon /var/swap # or /etc/init.d/dphys-swapfile restart
33 # verify swap by
34 swapon -s
35 # provide permissions
36 sudo chown -R pi $HOME/go # incase of user pi
37 sudo chown -R pi /usr/local/go
38 # For configuring filebeat
39 cd filebeat
40 make # Do not use sudo
41 # Metricbeat can also be installed by following same process
42 # Edit filebeat.yml and change/enable following:
43 sudo nano filebeat.yml
44 filebeat.inputs:
45 - type: log
46 enabled: true
47 paths:
48 - /var/log/snort/eth0/alert
49 - /var/log/snort/wlan0/alert
50 event.type: snort
51 setup.kibana:
52 host: "ip address:5601"
53

54 # disable elasticsearch output and enable logstash
55 output.logstash:
56 hosts: ["ip address:5044"] # save and exit

88

Appendix D

Setup ELK on Openstack

1 #The Server should have at leas 2 CPU cores and 2GB RAM
2 # Installing Java
3 sudo apt install software-properties-common apt-transport-https -y
4 sudo add-apt-repository ppa:webupd8team/java -y
5 sudo apt install oracle-java8-installer -y
6 # verify Java installation
7 java -version
8 # Setup Java environment
9 update-alternatives --config java

10 # Create the profile file under profile.d directory
11 sudo nano /etc/profile.d/java.sh
12 # Add following
13 #Set JAVA_HOME
14 JAVA_HOME="/usr/lib/jvm/java-8-oracle"
15 export JAVA_HOME
16 PATH=$PATH:$JAVA_HOME
17 export PATH
18 # Provide permissions and source the file
19 chmod +x /etc/profile.d/java.sh
20 source /etc/profile.d/java.sh
21 # Verify Java environment
22 echo $JAVA_HOME
23 # Installing Elasticsearch
24 wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-

key add -
25 echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main" |

sudo tee -a /etc/apt/sources.list.d/elastic-6.x.list
26 sudo apt update
27 sudo apt install elasticsearch -y
28 # Configure elasticsearch.yml file
29 cd /etc/elasticsearch/

89

30 sudo nano elasticsearch.yml
31 # For non-root users, elasticsearch.yml can not be accessed. in such case

, use:
32 sudo chown -R ubuntu /etc/elasticsearch # ubuntu is the current user, in

this case
33 # change following in elasticsearch.yml
34 network.host: localhost
35 http.port: 9200 # save file and exit.
36 # start elasticsearch service and verify
37 systemctl start elasticsearch
38 systemctl enable elasticsearch
39 netstat -plntu
40 curl -XGET 'localhost:9200/?pretty'
41 # Install and configure Kibana
42 sudo apt install kibana -y
43 cd /etc/kibana/
44 sudo nano kibana.yml
45 server.port: 5601
46 server.host: "localhost"
47 elasticsearch.url: "http://localhost:9200" # save and exit
48 # start Kibana service and verify port
49 sudo systemctl enable kibana
50 sudo systemctl start kibana
51 netstat -plntu
52

53 # Since Kibana is configured to listen on localhost, a reverse proxy is
needed to allow remote access.Nginx is used for this purpose.

54 apt-get -y install nginx apache2-utils -y
55 # upadte nginx virtual host file, /etc/nginx/sites-available/default,

change SERVERIP by your IP
56 server {
57 listen 80;
58 server_name SERVERIP;
59 return 301 https://;
60 }
61

62 server {
63 listen *:443 ;
64 ssl on;
65 ssl_certificate /etc/pki/tls/certs/logstash-forwarder.crt;
66 ssl_certificate_key /etc/pki/tls/private/logstash-forwarder.key;
67 server_name SERVERIP;
68 access_log /var/log/nginx/kibana.access.log;
69 error_log /var/log/nginx/kibana.error.log;
70

71 location / {
72 auth_basic "Restricted";
73 auth_basic_user_file /etc/nginx/htpasswd.users;
74 proxy_pass http://localhost:5601;
75 }

90

76 }
77 # save and exit the file
78 # Generating password for kibana
79 sudo htpasswd -c /etc/nginx/.kibana-user KibanaUser # provide the

password and also change KibanaUser
80 ln -s /etc/nginx/sites-available/kibana /etc/nginx/sites-enabled/ nginx -

t
81 # Enable nginx
82 systemctl enable nginx
83 systemctl restart nginx
84 #Install and configure Logstash
85 apt-get update
86 apt-get -y install logstash
87

88 #Generate SSL Certificates, since Filebeat is used to ship logs from RPi
to ELK Server, it is need to create an SSL certificate and key pair.
The certificate is used by Filebeat to verify the identity of ELK
Server. It is optional.

89 mkdir -p /etc/pki/tls/certs
90 mkdir /etc/pki/tls/private
91

92 sed -i "230i subjectAltName = IP: ${server_address}" /etc/ssl/openssl.cnf
93 cd /etc/pki/tls
94 openssl req -config /etc/ssl/openssl.cnf -x509 -days 3650 -batch -nodes -

newkey rsa:2048 -keyout private/logstash-forwarder.key -out certs/
logstash-forwarder.crt

95 cd
96

97 # Configure Logstash files, i.e. input, output and filter.
98 # configuring /etc/logstash/conf.d/02-beats-input.conf
99 sudo nano /etc/logstash/conf.d/02-beats-input.conf

100 input {
101 beats {
102 port => 5044
103 # ssl => true
104 # ssl_certificate => "/etc/pki/tls/certs/logstash-forwarder.crt"
105 # ssl_key => "/etc/pki/tls/private/logstash-forwarder.key"
106 type => "Snort"
107 }
108 }
109 # save and exit
110 # configure Snort filter file
111 sudo nano 11-snort-filter.conf
112 filter {
113 if [type] == "Snort" {
114 grok { match => { "message" => "\[**\] \[%{GREEDYDATA:Signature}\]

%{GREEDYDATA:SnortMessage} \[**\]%{GREEDYDATA:Classification}\[
Priority: %{NUMBER:priority:int}\] \n%{GREEDYDATA:snortDate} %{IP
:SourceIP}:%{NUMBER:SourcePort:int} \-\> %{IP:DestinationIP}:%{
NUMBER:DestinationPort:int}\n%{WORD:Protocol} TTL:%{NUMBER:TTL:

91

int} TOS:%{BASE16NUM:TOS} ID:%{NUMBER:ID:int} IpLen:%{NUMBER:
IpLen:int} %{GREEDYDATA:options}"}

115 # remove_field => ["message"]
116 }
117

118 date {
119 match => ["snortDate", "MM/dd-HH:mm:ss.SSSSSS"]
120 target => "@timestamp"
121 remove_field => ["snortDate"]
122 timezone => "Europe/Amsterdam"
123 locale => "en_US"
124 }
125 geoip{
126 source=>"SourceIP"
127 }
128 }
129 }
130 # Configure elasticsearch output file
131 sudo nano 30-elasticsearch-output.conf
132 output {
133 if [type] == "Snort" {
134 elasticsearch {
135 hosts => ["localhost:9200"]
136 manage_template => false
137 index => "snort-%{+YYYY.MM.dd}"
138 }
139 }
140 }
141 # save and exit
142

143 # Verify and reboot setup
144 java -version
145 service nginx restart
146 service elasticsearch restart
147 service kibana restart
148 service logstash restart
149 systemctl enable elasticsearch
150 systemctl enable logstash
151 systemctl enable kibana

92

Appendix E

Snort Instances and Gnuplot

1

2 # snort.sh file, Run by bash snort.sh
3 # No need to run stats.sh file separately for plotting
4

5 #! bin/bash
6 #Script to initiate Snort instances from given options.
7 #It will open new terminal (tested only in RPi Raspbian stretch) and run

the given instances.
8 # Author: HH@Khan
9

10 RED='\033[0;31m'
11 YEL='\033[0;93m'
12 GRE='\033[0;32m'
13 NOCO='\033[0m'
14

15 while true; do
16 echo -ne "${GRE}Choose option to run snort and beats--------: \n\

t${YEL}[1]: ${NOCO}Run Snort on Eth0\n\t${YEL}[2]: ${NOCO}Run
Snort on wlan0\n\t${YEL}[3]: ${NOCO}Run Snort on both eth0

and wlan0 \n\t${YEL}[4]: ${NOCO}Run Filebeat and Metricbeat\n
\t${YEL}[5]: ${NOCO}Run Snort on eth0 with beats\n\t${YEL
}[6]: ${NOCO}Run both snort instances and beats\n\t"

17

18 read OPTION
19 case $OPTION in
20 1)
21 echo -ne "\n\t\t${GRE}Running snort on eth0

------------------------------------"
22 lxterminal --command="/bin/bash -c 'bash stats.sh; /bin/bash'" #

Calling Plotting file before instance run.
23 sleep 5 # plotting file starts 5 seconds

93

before Snort instances
24 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/

snort_eth0.conf -l /var/log/snort/eth0;/bin/bash'"
25 lxterminal --command="/bin/bash -c 'sudo tail -f /var

/log/snort/eth0/alert;/bin/bash'"
26

27 sleep 600 # Run Time of Snort
28 sudo pkill -SIGINT snort
29 break
30 ;;
31 2)
32 echo -ne "\n\t${GRE}Running Snort on wlan0

-------------------------------------"
33 sleep 5
34 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/

snort_wlan0.conf -l /var/log/snort/wlan0 -i wlan0;/bin/bash'"
35 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/snort/

wlan0/alert;/bin/bash'"
36 lxterminal --command="/bin/bash -c 'bash stats.sh; /bin/bash'"
37 sleep 600
38 sudo pkill -SIGINT snort
39 break
40 ;;
41 3)
42 echo -ne "\n\t${GRE}Runnig Snort on both eth0 and wlano

------------------------"
43 lxterminal --command="/bin/bash -c 'bash stats.sh; /bin/bash'"
44 sleep 5
45 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/

snort_wlan0.conf -l /var/log/snort/wlan0 -i wlan0;/bin/bash'"
46 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/

snort_eth0.conf -l /var/log/snort/eth0 -i eth0;/bin/bash'"
47

48 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/snort/
eth0/alert;/bin/bash'"

49 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/snort/
wlan0/alert;/bin/bash'"

50

51 sleep 600
52 sudo pkill -SIGINT snort
53 sleep 1
54 sudo pkill -SIGINT snort
55 break
56 ;;
57 4)
58 echo -ne "\n\t${GRE}Running Filebeat and Metricbeat...\n"
59 sleep 5
60 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/github.com

/elastic/beats/filebeat && ./filebeat.sh -e;/bin/bash'"
61 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/github.

94

com/elastic/beats/metricbeat && ./metricbeat -e;/bin/bash'"
62 break
63 ;;
64 5)
65

66 echo -ne "\n\t${GRE}Running snort on eth0 and beats--------"
67 lxterminal --command="/bin/bash -c 'bash stats.sh; /bin/bash'"
68 sleep 5
69 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/

snort_eth0.conf -l /var/log/snort/eth0;/bin/bash'"
70 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/

snort/eth0/alert;/bin/bash'"
71 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/github.com

/elastic/beats/filebeat && ./filebeat.sh -e;/bin/bash'"
72 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/

github.com/elastic/beats/metricbeat && ./metricbeat -e
;/bin/bash'"

73

74 sleep 600
75 sudo pkill -SIGINT snort
76 break
77 ;;
78 6) echo -ne "\n\t${GRE}Running both snort instances and beats

--------"
79 lxterminal --command="/bin/bash -c 'bash stats.sh; /bin/bash'"
80 sleep 4
81 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/

snort/snort_eth0.conf -l /var/log/snort/eth0; /bin/
bash'"

82 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/
snort/eth0/alert; /bin/bash'"

83 lxterminal --command="/bin/bash -c 'sudo snort -c /etc/snort/
snort_wlan0.conf -l /var/log/snort/wlan0 -i wlan0; /bin/bash'
"

84 lxterminal --command="/bin/bash -c 'sudo tail -f /var/log/
snort/wlan0/alert; /bin/bash'"

85 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/
github.com/elastic/beats/filebeat && ./filebeat.sh -e
;/bin/bash'"

86 lxterminal --command="/bin/bash -c 'cd /home/pi/go/src/
github.com/elastic/beats/metricbeat && ./metricbeat -e
;/bin/bash'"

87 sleep 600
88 sudo pkill -SIGINT snort
89 sleep 1
90 sudo pkill -SIGINT snort
91 break
92 ;;
93

94 *)

95

95 echo -ne "\n\t${RED}[-] ERROR:${NOCO} Invalid option\n\n"
96 ;;
97 esac
98

99 done
100 ###
101 #content of file stats.sh which is called from within snort.sh script
102 #! /bin/bash
103 # Script to get CPU and Memory every next second
104 #It will also plot the results after provided time using Gnuplot
105 # Author HH@Khan
106

107 sudo rm status.dat
108

109 function mem_cpu() {
110

111 end=$((SECONDS+605))
112

113 echo "Printing memory and cpu consumption in status.dat file....... "
114 while [$SECONDS -lt $end]; do
115

116 MEMORY=$(free -m | awk 'NR==2{printf "%.2f\t\t", $3*100/$2 }')
117 CPU=$(echo $[100-$(vmstat 1 2|tail -1|awk '{printf $15}')])
118

119 echo -e "$SECONDS\t\t$MEMORY$CPU" >>status.dat
120 sleep 1
121 done
122 }
123

124 function gnu_plot() {
125 sudo gnuplot -persist <<-EOFMarker
126 set y2tics
127 # We don't want to see the left ticks on the right axis
128 set ytics nomirror
129

130 # Set ranges so that the data points are not on the axis
131 set xrange [0:620] # "set autoscale x" can also be used. It presents Time

in Seconds
132

133 set yrange [0:110] #Percentages
134 set y2range[0:110]
135

136 # use first line of the file for labels
137 set key autotitle columnhead
138 # display key in least busy area
139 set key top right
140

141 # Title and axis labels
142 set title "CPU and Memory Usage During Dual Attack" # change title

accordingly

96

143 set xlabel "Time in Seconds"
144 set ylabel "Memory%"
145 set y2label "CPU%"
146

147

148 plot "status.dat" using 1:2 axes x1y1 title 'Memory' with linespoints
pointsize 0.5 pointtype 3,"" u 1:3 axes x1y2 title 'CPU' w
linespoints ps 0.5 pointtype 7

149

150 EOFMarker
151

152 }
153

154 function main() {
155 mem_cpu
156 gnu_plot
157 }
158 main

97

Appendix F

Snort Eth0 configurations

1 #copy original snort.conf file
2 Sudo cp /etc/snort/snort.conf snort_eth0.conf
3 sudo nano /etc/snort/snort_eth0.conf
4 #configurations start from here
5 ipvar HOME_NET 192.168.10.0/24
6 ipvar EXTRNAL_NET !$HOME_NET
7 var RULE_PATH /etc/snort/rules
8 var SO_RULE_PATH /etc/snort/so_rules
9 var PREPROC_RULE_PATH /etc/snort/preproc_rules

10 var WHITE_LIST_PATH /etc/snort/rules
11 var BLACK_LIST_PATH /etc/snort/rules
12 config pcre_match_limit: 3500
13 config pcre_match_limit_recursion: 1500
14 config detection: search-method ac-bnfa-nq search-optimize max-pattern-

len 20
15 preprocessor perfmonitor:
16 time 300 events atexitonly flow max console pktcnt 10000
17 output log_tcpdump: /var/log/snort/eth0/snort.log
18 include $RULE_PATH/eth0.rules

98

Appendix G

Snort Eth0 Sample Rules

1 # DoS on port 80 rule
2 alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (msg:"TCP SYN flood attack

detected on Port 80"; flow: stateless; flags:S,12; threshold: type
threshold, track by_dst, count 1000, seconds 5; classtype: attempted
-recon; sid:10002; rev:1;)

3 # Rule for detecting BlackNurse attack
4 alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"TDC-SOC-Possible

BlackNurse attack from external source"; itype:3; icode:3;
detection_filter:track by_dst,count 250, seconds 1; priority:3; sid
:88000012; rev:1;)

5

6 # Telnet/Botnet traffic detection rule
7 alert tcp $EXTERNAL_NET any -> $HOME_NET [23,2323,3323,4323] (msg:"ET

TELNET busybox MIRAI hackers - Possible Brute Force Attack"; flow:
to_server,established; content:"MIRAI"; flowbits:isset,ET.telnet.
busybox; threshold: type limit, count 1, track by_src, seconds 30;
reference:url,lists.emergingthreats.net/pipermail/emerging-sigs
/2016-August/027524.html; classtype:attempted-admin; sid:2023019;
rev:2; metadata:attack_target Server, deployment Datacenter,
signature_severity Major, created_at 2016_08_08, performance_impact
Low, updated_at 2016_09_26;)

8 # Port scan rule i.e. XMAS Tree scan
9 alert tcp any any -> $HOME_NET any (msg:"Nmap XMAS Tree Scan"; flags:FPU;

sid:10000006; rev:1;)
10 # SSH dictionary attacks
11 alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"INDICATOR-SCAN SSH

brute force login attempt"; flow:to_server,established; content:"SSH
-"; depth:4; detection_filter:track by_src, threshold: type
threshold, count 10, seconds 5;metadata:service ssh; classtype:misc-
activity; sid:19559; rev:5;)

99

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Thesis Outline

	Background
	Internet of Things
	IoT Ecosystem and Trend
	Areas of IoT Application
	General Architecture of IoT
	IoT Protocols
	Challenges To IoT
	 IoT Security Challenges

	Intrusion Detection System
	IDS Placement Strategies
	IDS Detection Methods

	Open Source IDS
	Snort
	Snort Architecture
	Configuration Modes
	Snort Rules

	Bro
	Kismet
	Suricata

	Commercial Intrusion Detection Systems
	McAfee NSP
	Trend Micro TippingPoint
	Hillstone NIPS
	Huawei NIP

	Raspberry Pi
	Core Components
	Operating System
	Applications of RPi

	ELK Stack
	Related Work

	Methodology
	IDS Design Methodology
	System Design
	System Components
	RPi Snort Gateway
	Sensors
	Router
	IDS Test Machine
	Remote Monitoring Server

	Snort Algorithms
	Aho-Corasick State Machine
	Snort Implementation of AC
	Detection and Processing of Rules

	The Approach
	Conditions
	Attack scenarios
	Monitoring

	Implementation
	Compiling Snort on RPi
	Customizing Snort
	Snort Instances
	Snort Instance Eth0
	Network
	Snort Eth0 Configuration File
	Eth0 Rules File

	Snort Instance Wlan0
	Network
	Wlan0 Rules

	Logging

	Configuring Beats on RPi
	Configuring ELk server
	Testing
	Test 1
	Test 2
	Test 3
	Test 4

	Results and Analysis
	Test 1
	Test 2
	Test 3
	Test 4
	Monitoring Server
	Filebeat
	Metricbeat

	Discussion
	Project Evaluation
	The Approach
	Implementation and challenges
	Testing and Analysis
	Future Work

	Conclusion
	Bibliography
	Appendices
	Install and Configure Snort
	Hostapd and ISC server configurations
	Configuring Beats on RPi
	Setup ELK on Openstack
	Snort Instances and Gnuplot
	Snort Eth0 configurations
	Snort Eth0 Sample Rules

