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1. Introduction 

1.1 Autoimmune diseases: general features and epidemiology 
Autoimmune diseases (AIDs) comprise a diversity of progressive, chronic inflammatory 

disorders where the immune system attacks the body’s own tissues and organs (Figure 1). 

Today, the prevalence of AIDs is estimated to be approximately 7 - 9 % [1] in the developed 

world, with type 1 diabetes (T1D) and autoimmune thyroid disease (ATD) being the most 

common disorders [2]. Nearly 100 different AIDs are known, and several diseases share 

common symptoms, like malaise, fatigue, fever, joint pain and rash. Co-occurrence of several 

AIDs are also often observed within one individual, making it difficult to diagnose some of 

these patients correctly [3]. Currently, autoimmunity is treated by relieving symptoms, as no 

curative therapy yet exists. 

 

Figure 1: The vast range of AIDs affects a large number of organs and tissues (Figure from [2] with permission). 
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Although many AIDs exist today, more epidemiological data is available for the most well-

known diseases. Geographically, we know that the prevalence rates for 29 AIDs (including 

seven listed in Table 1) span overlapping ranges across countries [1]. These include type 1 

diabetes (T1D), primary biliary cirrhosis (PBC), Crohn’s disease (CD) and systemic lupus 

erythematosus (SLE). However, for multiple sclerosis (MS), autoimmune hepatitis (AH) and 

ulcerative colitis (UC), the prevalence rates are reported to be higher in Europe, North 

America, Australia and New Zealand compared to Asia, Middle East, Caribbean and South 

America. Incidence rates for AIDs report that MS, T1D, PBC, AH, CD, UC and SLE are 

higher in North America and Europe compared to Asia and the Middle East [4].  

AIDs also differ according to ethnicity, age at onset and gender. For example, in the United 

States, where different ethnic groups live in the same area, blacks are at higher risk for 

developing SLE and systemic sclerosis (SSc) compared with whites [5]. In contrast, T1D has 

a lower incidence rate among blacks and Hispanics. Also, blacks and Asians have a lower risk 

of developing MS. White, Hispanics and blacks have similar rates for rheumatoid arthritis 

(RA). The mean age of onset in childhood T1D and juvenile idiopathic arthritis (JIA) is 8-10 

years [5] and around the age of 12  in juvenile myasthenia gravis (MG) [6]. Adult MG, MS 

and Grave´s disease (GD) generally occur between the ages 30-50, whereas AIDs with later 

age of onset (40–70 years) include myositis, thyroiditis, Sjögren disease and RA. Most AIDs 

affect women more frequently, and are among the leading cause of death in the United States 

for young and middle aged women under 65 years of age [7]. The exceptions are CD (1.2:1 

male to female ratio) and primary sclerosing cholangitis (PSC) (2:1), where the prevalence is 

higher in men. The overrepresentation of various autoimmune disorders in women could 

indicate that a hormonal influence is implicated in the development of autoimmunity. Skewed 

X-inactivation has also been proposed as a mechanism associated with AIDs in women 

(reviewed in [8]). 
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Table 1. Prevalence data for seven AIDs, adapted from [1] with permission. This table includes both hospitalized 

and non-hospitalized data. 

 Studies from Europe, North America, 
Australia, New Zealand 

Studies from Asia, Middle East, 
Caribbean, South America 

Disease Rate per 
100,000 

Study Area Rate per 
100,000 

Study area 

Multiple 
sclerosis 

182 
177-358 
121-200 
 
46 
50 

Denmark 
US, Canada 
Italy, Greece, France, 
Ireland 
Norway 
Portugal, New Zealand 

4-20 
13 
11-62 
101 

Colombia, Brazil, 
Argentina 
Japan 
Israel, Kuwait, Jordan, Iran 
Turkey 

Type 1 
Diabetes (all 
ages) 

946 
118 
340-570 

Denmark 
Lithuania 
UK, Sweden, Australia 

- - 

Type 1 
Diabetes (< 20 
years of age) 

87-120 
227-335 
70 

Spain, Germany 
US, New Zealand 
US – American Indian 

31 
110-270 

Bahamas 
Kuwait, Saudi Arabia 

Primary biliary 
cirrhosis 

12 
15-40 
 
4-20 

Denmark 
Norway, Finland, Spain, 
UK 
US, Australia 

4-18 Israel 

Autoimmune 
hepatitis 

45 
11-17 
36 

Denmark 
Spain, Sweden, Norway 
US – Alaska Natives 

3-8 Singapore 

Crohn ś 
disease 

225 
28-53 

Denmark 
Bosnia-Herzegovina, 
Hungary 

6-53 Puerto Rico, Malaysia, 
Lebanon 

Ulcerative 
colitis 

378 
143-294 

Denmark 
US, Hungary, Denmark, 
New Zealand 

6 
102 

Lebanon 
Puerto Rico 

Systemic lupus 
erythematosus 

32 
10-66 
34-150 
42 

Denmark 
US – Native Americans 
US, Spain, Greece 
Canada – 1st Nations 

30 
19 
45 
93 

Philipines 
Saudi Arabia 
Australia 
Australia – aboriginal 

 

1.2 Pathogenesis  
The immune system defends the organism against foreign invaders, and can be divided into 

two branches: innate and adaptive immunity. The innate immune system is non-specific and is 

mainly composed of the skin, epithelial and mucosal linings of the gastrointestinal tract and 

different types of immune cells, such as phagocytes, dendritic cells (DCs) and natural killer 

cells. The adaptive immunity is an acquired defense mechanism that consists of T and B cells. 

B cells can bind to antigens, i.e. proteins capable of inducing a specific immune response, 

with their B cell receptor (BCR). Activation of B cells leads to secretion of antibodies 

specifically directed against this antigen. Similarly, T cells have T cell receptors (TCR) that 
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bind to antigens. However, for TCR recognition, the antigen must be presented in conjunction 

with a human leukocyte antigen (HLA)-molecule. T cells can distinguish between foreign 

peptides originating from e.g. bacteria or viruses and self-peptides, i.e. peptides from the cells 

and organs in the body. The non-responsiveness to self-peptides is due to the body’s tolerance 

mechanisms, and enables the efficient removal of pathogens without harming the organism.  

Although the body has both central and peripheral tolerance mechanisms, autoimmune 

reactions (i.e reactions to self) do occur. In fact, they play a part of the physiological 

functioning of the immune system [9]. Normally, healthy individuals have a small fraction of 

autoreactive T cells [10] and B cells [11] in their bloodstream. Low concentration of natural 

autoantibodies (i.e. self-reactive antibodies) can also be found [12]. These are usually IgM 

isotype antibodies, and the B cells producing these antibodies have not undergone somatic 

hypermutation, a characteristic of T cell-dependent adaptive immune response [9]. These 

natural antibodies are believed to facilitate the removal of senescent cells and autoantigens.  

Autoreactive immune cells are usually strictly controlled and can be rapidly removed by 

immunoregulatory mechanisms [9]. However, if the sophisticated mechanisms of the immune 

system that regulate the maintenance of tolerance are disturbed, they might lead to the 

development of an AID. Disturbances proposed to be involved in the loss of tolerance can be 

failure to delete autoreactive lymphocytes, molecular mimicry, abnormal presentation of self-

peptides, epitope spreading or polyclonal lymphocyte activation.  

AIDs arise when tolerance is lost and a sustained immune response persists against one or 

several self-peptides. Peptides that are no longer recognized by the immune system as “self”, 

are referred to as “autoantigens”. An immunological response against autoantigens can be T- 

or B cell mediated, or both [9]. The autoimmune attack is usually damaging to the targeted 

organ, and either result in a complete loss-of-function (e.g. in T1D or Hashimoto thyroiditis), 

or hyperstimulation or inhibition of its function (e.g. in MS).  

AIDs can be broadly divided into two major groups; systemic or organ-specific. Immune 

responses that are directed against specific organs or tissues are referred to as organ-specific 

AIDs. A well-known organ specific AID is T1D. Established autoantigens in T1D are for 

example insulin [13], non-specific islet cell antigens [14], insulinoma antigen-2 [15] and 

glutamic acid decarboxylase 65 [16]. The autoimmune response can also impair or damage 

several tissues at the same time (e.g. in SLE or SSc). These are referred to as systemic AIDs. 

These are often characterized by immune responses against a large variety of autoantigens, 
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including deoxyribonucleic acid (DNA), cell surface molecules and intracellular proteins. In 

SLE, double-stranded DNA and Sm antigens of the U-1 small nuclear ribonucleoprotein 

complex are considered pathognomonic [17].  

1.3 Etiology 
The etiology of AIDs is largely unknown. Our main understanding is that AIDs develop from 

a combination of genetic susceptibility and environmental factors. Environmental factors are 

biotic or abiotic elements that can influence living organisms, such as diet, pathogens, 

chemicals and climate. Environmental interactions in autoimmunity have for example been 

seen in RA, where smoking has been identified as an important risk factor [18], or in coeliac 

disease, where gluten  leads to pathological changes in the small intestine [19]. Other 

environmental risk factors with less clear roles include nutrition, the microbiota, infectious 

processes and xenobiotics (tobacco smoke, pharmaceutical agents, hormones, ultraviolet light, 

silica solvents, heavy metals, vaccines and collagen/silicone implants [2]). At the epigenetic 

level, mechanisms such as DNA methylation and histone modifications have been found to 

influence gene expression in different AIDs. Hypermethylation of CpGs at the INS locus has 

for example been found in T1D [20] whereas extensive demethylation of the PAD2 promoter 

region was found in MS [21]. Histone H3 and H4 hypoacetylation has also been observed in 

CD4+ T cells in SLE patients [22].  

Epidemiological studies of most AIDs have shown that strong heritability exists [23]. The 

concordance rate of AIDs in monozygotic twins ranges from 12% to 68% [2], and siblings of 

proband cases have an increased risk compared to the general population [23]. This indicates 

that there are genetic risk factors contributing to the development of autoimmunity. I will now 

give an introduction to the field of human genetics, and further describe how genetic, 

interindividual differences can affect health and disease.  

1.4 Genetics of complex diseases  

1.4.1 Human genetic variation and linkage disequilibrium 
The human genome consists of 3.1 billion base pairs (bp) distributed across 23 chromosome 

pairs in the cell nucleus. The genome is estimated to harbor 19000 protein coding genes [24]. 

The vast majority of the genome (99.9%) is identical between any two unrelated individuals. 

However, 0.1% of the human genome varies between individuals, and this variation can be 

divided into simple nucleotide variations (SNVs) and structural variations (SVs). SNVs are 
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smaller sequence variations including single nucleotide polymorphisms (SNPs), where only 

one bp differs between two homologous chromosomes, and small deletions and insertions. 

Larger sequence variations, or structural variants, comprise large indels (100 bp – 1 

kilobasepair (kb)), copy number variations (duplications and deletions > 1 kb in size), and 

rearrangements such as inversions and translocations [25]. 

Genetic variation underlies the differences observed in individual phenotypic traits, such as 

eye color, height or blood type. Genetic variants can also confer susceptibility to a disease. A 

key goal of human genetics is to determine the genetic variants that affect phenotypic 

variation, including disease susceptibility, different response to drugs, treatment and public 

health. SNPs have been widely surveyed in many individuals for this purpose. A SNP can 

vary between two (or sometimes three) alleles, i.e, alternative forms of single nucleotides 

(Figure 2), and is classified as common if the frequency of the minor allele (MAF) is above 1% 

in the population. SNP allele frequencies have been mapped in many populations around the 

world, due to large efforts such as the HapMap project [26] and the 1000 Genomes project 

[27]. The combination of the two SNP alleles that an individual carries on a pair of 

homologous chromosomes is a genotype, and can either be homozygous (A/A or B/B) or 

heterozygous (A/B). 

 

Figure 2: A SNP is a variation in a single base pair at a specific position in the genome, which can differ between 

alleles (SNP model by David Eccles (gringer), CC BY 4.0 https://commons.wikimedia.org/w/index.php?curid=2355125)  

Furthermore, a haplotype is a sequence of multiple alleles along a single chromosome. Two 

SNP alleles are linked if they are transmitted together from parent to offspring more often 

than expected under independent inheritance and in linkage disequilibrium (LD) if, across a 

population as a whole, they are found on the same haplotype more often than expected. On 

the contrary, when two SNP alleles are independently inherited, they are in linkage 
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equilibrium. LD can be measured with r2, which is the square of the statistical correlation 

coefficient between two SNPs. This measure unit has absolute values between 0 and 1 (Figure 

3), and an r2 value of 1 means that the alleles are in perfect LD and are always inherited 

together in the population. Because r2 is bidirectional, this means that the two SNPs can only 

give two possible haplotypes. LD is important when finding genetic association with a trait, as 

the causal SNP can be in LD with the nucleotide position where the association signal is 

detected. 

 

Figure 3: The LD between eight SNPs measured in r2 show how well these SNP are correlated. 

1.4.2 Genetic association studies 

A tremendous advance in identifying genetic risk variants has been through genome-wide 

association studies (GWAS). GWAS is a hypothesis free method that enables the 

simultaneous genotyping of hundreds of thousands of common SNPs. GWAS compares the 

frequencies of SNP alleles in patients and healthy controls to examine whether any variant is 

associated with a trait. Significance threshold for GWAS is usually set at P < 5 x 10-8. 

However, the question of what strength of evidence should be considered significant is 

somewhat controversial [28]. Today, GWAS have identified thousands of genetic risk variants 

associated with a large variety of diseases, where hundreds are associated with immune 

mediated diseases (including AIDs) [29]. All GWASs can be found in the GWAS catalog 
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(https://www.ebi.ac.uk/gwas/), which contains (as of the 12th of May 2018) 3379 publications 

and 61620 unique SNP-trait associations.  

Before GWAS, some of the first and most significant AID susceptibility loci discovered were 

the HLA genes [23]. The HLA genes were further confirmed in most GWAS studies focusing 

on AIDs. In addition, GWAS detected a large number of non-HLA loci with smaller relative 

risks, usually < 1.2 [23]. These are not strong genetic determinants; however, they could give 

an indication of biological pathways leading to disease rather than identifying etiological 

factors.  

Between 2012 and 2015, AID association signals from GWAS were further replicated and 

fine-mapped in a wave of Immunochip studies. The Immunochip is a SNP genotyping array 

with dense marker coverage across 186 genetic regions harboring risk variants for 12 well-

defined AIDs [30]. To date, the use of Immunochip has replicated previously known risk 

SNPs, as well as identified novel risk loci in Ankylosing Spondylitis (AS) [31], RA [32], 

ATD [33], Psoriasis (Ps) [34], Celiac Disease (CeD) [35], Inflammatory Bowel disease (IBD) 

[36], MS [37], Atopic Dermatitis (AD) [38], PSC [39], SSc [40], JIA [41] and T1D [42]. The 

Immunochip has narrowed the association signals in various AIDs [29]. For example in CeD, 

almost half of the known association signals have been narrowed to individual genes or 

subregions of genes [35].  

GWAS and Immunochip studies led us to understand that several risk loci overlap between 

AIDs. Although sharing is common, it is also complex [29]. If two diseases share a SNP or a 

haplotype that increases the risk for both AIDs, the overlap is “correlated and concordant”. 

When a shared locus comprises a haplotype that increases risk for one disease but is 

protective for the other, it is “correlated but discordant”. Finally, if two different haplotypes 

are implicated, it is “non-correlated”. As an example, the six AIDs AS, CeD, IBD, Ps, RA and 

T1D share 71 loci at P < 5 x 10-8 between two or more diseases. Pairwise, 416 risk loci 

overlap, where 45% are correlated and concordant, 14% are correlated but discordant and 42% 

are not correlated [29]. These data led to the understanding that AIDs share a certain range of 

risk genes, which further points at specific immunological pathways [29, 43, 44].  

1.4.3 Functional role of genetic variants 

Although GWAS and Immunochip have given us a list of risk SNPs associated with various 

AIDs, the functional consequences of these risk variants remain elusive. Firstly, association 

signals often locate to large blocks of SNPs in strong LD, which makes it difficult to pinpoint 
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the causal SNP [43]. Secondly, even though the causal risk SNP is evident, many risk SNPs 

are located in non-coding regions of the genome [23]. E.g. in RA, among SNPs in 100 non-

MHC RA risk loci, only 20 % are missense or synonymous variants, whereas approximately 

80% are non-coding (Figure 4). 

 

Figure 4: Functional annotation of SNPs in 100 non-MHC RA risk loci. In fact, 44% of all RA risk SNPs had cis-expression 

quantitative trait loci (eQTL), but 9 of them overlapped with missense or synonymous variants. 35% of them did not overlap 

as indicated by the asterisk. Figure from [45] with permission. eQTLs are described in more detail below. 

The large number of non-coding variants has led to the suggestion that many risk SNPs may 

influence regulatory elements [46]. The next steps in deciphering how the AID risk variants 

contributes to the development of AID have therefore been to understand 1) which tissues and 

cell type the SNPs have an effect in, and 2) what types of regulatory element the SNPs 

interfere with. 

1.4.3.1 Finding the tissues and cell types affected by AID risk variants  

In 2011, Hu et al. sought to understand which tissues and cell types that are affected by the 

AID risk variants. They performed a study where 79 different human tissues were 

investigated, and because human cell types were not easily available at this time point, they 

also included 223 murine-sorted immune cells [47]. They found that GWAS loci associated 

with SLE, CD and RA were enriched with genes expressed mainly in human immune tissues, 

and moreover, in particular murine immune subsets (transitional B cells, epithelial-associated 

stimulated DCs and CD4+ effector memory T cells, respectively) [47]. Later studies have 

confirmed enrichment of genes in susceptibility loci that are preferentially expressed in 

human immune cell types, such as for instance in CD4+ T cell subsets [48].   

1.4.3.2 Finding the regulatory elements affected by AID risk variants 

Furthermore, many studies have tried to understand what kind of regulatory elements that 

could be affected by the AID risk variants. The activity of regulatory elements (such as 

promoters and enhancers) varies depending on the epigenetic landscape around the elements, 
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and also by the presence and level of the corresponding transcriptional regulators binding to 

these sites. The epigenetic landscape is determined by a range of epigenetic factors such as 

DNA methylation and histone modification, as well as by chromatin remodelers and histone 

variants incorporated into the nucleosomes. The epigenetic landscape of each cell can vary 

considerably between loci and contributes to distinct gene expression programs and biological 

functions. Today, large effort has been put in deciphering the functional landscape in various 

human cell types and tissues. I will address two projects that have been actively involved in 

this process: the Encyclopedia of DNA Elements (ENCODE) project and the Roadmap 

Epigenomics project. 

The ENCODE project was established in September 2003 by the National Institutes of Health 

(NIH) National Human Genome Research Institute (NHGRI). The goal of the ENCODE 

project was to identify all functional elements in the human genome sequence. This includes 

annotation of all the genes and their ribonucleic acid (RNA) transcripts (both protein-coding 

and non-coding), and all transcriptional regulatory elements [49]. To achieve these goals, 

NHGRI organized the ENCODE Consortium, an international collaboration of several 

research groups with expertise in producing and analyzing high-throughput functional 

genomic data. To facilitate comparison and integration of all the different data types, 

ENCODE have used selected sets of cell types. These include the widely studied EBV-

immortalized B-lymphoblastoid cell line GM12878, the K562 erythroleukemia cells, the H1 

human embryonic stem cell line (H1-hESC), HeLa-S3 cervical carcinoma cells, HepG2 

hepatoblastoma cells, and primary human umbilical vein endothelial cells. Another set 

comprising more than 100 different cell types 

(https://genome.ucsc.edu/ENCODE/cellTypes.html), used to capture a broader spectrum of 

human biological diversity, is being used in selected assays. Today, the ENCODE project 

contains complementary genome-wide datasets including gene annotation (GENCODE), 

transcriptome analysis, chromatin structure and modifications (H3K27ac, H3K27me3, H3K36 

me3 etc.), transcription factor binding sites, DNaseI footprints and DNA methylation. The 

Consortium releases data rapidly to the UCSC genome browser 

(http://genome.ucsc.edu/ENCODE/) and the ENCODE web portal (http://encodeproject.org).  

A few years later, in 2007, the Roadmap Epigenomics Program was funded through the NIH 

Common Fund and established with the goal of exploring how epigenetics contribute to 

human health and disease [50]. As a first step, the Roadmap Reference Epigenome Mapping 

Consortium has generated a public resource (http://www.roadmapepigenomics.org) of 
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genome-wide epigenetic maps in a broad range of human primary cells and tissues, frequently 

involved in human diseases. Both adult and fetal cells and tissues are represented, including 

stem cells, cells from a number of organs and distinct brain regions, and a variety of purified 

blood cell types (Figure 5). For each tissue and cell type analyzed, a dataset representing a 

“complete epigenome” is provided, including RNA expression, DNA methylation, a panel of 

histone modifications and DNase I hypersensitivity. The next step will be to apply these data 

to clarify the role of epigenetics in the development of complex diseases, and several 

investigators funded by the Roadmap Epigenomics Program are currently addressing these 

matter. The reference epigenomic maps cover a far broader range of human primary cells and 

tissues than was represented by ENCODE, and are immensely valuable to researchers trying 

to investigate how genetic variants contribute to disease. 

 

Figure 5: The cell and tissue types used in the Roadmap Epigenomics project. Figure from [51] with permission. 

These projects have facilitated the functional prediction of variants from genetic association 

studies. For instance, one study in 2013 aimed at determining the localization of 2874 SNPs 

associated with 12 immune-mediated diseases, including both lead SNPs from GWAS studies 

performed in Caucasian individuals (n = 337) and their proxies (n =2537) in perfect LD (r2 = 

1) within a 500 kb region, relative to the gene structure in the genome [46]. They found that 

2.6% of the SNPs mapped to exons, while 42.3% mapped to introns, 2.1% mapped to 

untranslated regions (UTRs) and finally 53% mapped to intergenic regions. When they further 

annotated these SNPs with regulatory sequence data from ENCODE, they found that 7.6% 
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mapped to promoter histone marks, 18.8% map to enhancer histone marks, 32.1% are in 

DNase-hypersensitive sites, 42.3% change motifs and 14.4% map to protein bound regions.  

Furthermore, this study also found that multiple classes of regulatory, non-coding RNA 

molecules (including microRNAs and long intergenic non-coding RNA (lincRNAs)) was 

annotated to the AID risk variants [46]. Among the 2874 SNPs, 1.25% were reported to 

change microRNA binding sites and 8.52% mapped to lincRNAs [46]. LincRNAs is a type of 

long non-coding RNA (lncRNA) which, as specified by its name, is found in between coding 

genes. The definition of a lncRNA is “a non-coding RNA that have at least 200 nucleotides” 

and in humans, lncRNAs are often polyadenylated [52]. The molecular functions of lncRNA 

are highly diverse. LncRNAs can regulate a variety of processes that include transcription, 

splicing, RNA degradation and translation [52]. It has been reported that SNP variation can 

alter lincRNA [46, 53] expression levels and possibly affect downstream transcriptional 

programs. 

Taken together, this clearly suggests that genetic variations that provide susceptibility to 

complex diseases modulate transcriptional regulatory mechanisms, which also means that 

these SNPs may affect the expression of nearby transcripts [46].  

1.4.4 Expression quantitative trait loci  

Many loci contain genetic variants that significantly correlate with gene expression; these are 

termed expression quantitative trait loci (eQTL). eQTL screening is practical for linking 

genetic variation to complex phenotypes [54]. When eQTL SNPs (eSNPs) and SNPs 

associated with complex diseases are located in the same region, this leads to a testable 

hypothesis that a genetic variant influence trait variance by affecting the expression of a given 

gene [54]. This is helpful in detecting potential causal genes for trait-associated variants, 

especially in regions where a large number of genes exist [54]. Usually, eQTLs are assessed 

by investigating SNPs and expression probes located up to 1 Mb apart [55]. These types of 

eQTLs are called cis-eQTLs. Cis-eQTL screens have been performed in many tissues, for 

instance in lymphoblastoid cell lines [56], liver [57], blood [58], brain [59], adipose tissue 

[60], skin [61] and primary fibroblasts [61]. Still today, both cis- and trans-eQTL screens are 

emerging rapidly. Interestingly, it has been reported that many eQTLs (71.3%) are concordant 

[55], meaning that a gene is regulated by a SNP in the same allelic direction with similar 

effect size in different tissues [55]. However, 28.7% of eQTLs are discordant and show tissue-
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dependent gene regulation [55], either by specific regulation, alternative regulation, different 

effect sizes or opposite allelic direction (Figure 6). 

 

Figure 6: Cis-regulation between tissues, figure from [55] (CC BY). 

The NIH GTEX eQTL Browser (http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) and the 

Broad GTEx Portal database (http://www.gtexportal.org/home/) are public databases that 

provide eQTL screens performed in multiple tissues. Another public resource for SNP 

annotations that also offers eQTL information is the HaploReg V4 database.  

HaploReg [62] (http://www.broadinstitute.org/mammals/haploreg/haploreg.php) is a 

comprehensive database which was launched in 2011. This database integrates SNP data with 

GWAS trait associations, eQTL data and functional annotation data from, among others, 

ENCODE and the Roadmap Epigenomics project and therefore enables the systematic 

interpretation of SNPs of interest. In the newest version of HaploReg (V4), chromatin state 

maps for 127 reference epigenomes are available from ENCODE 2012 and Roadmap 
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Epigenomics [63], and eQTL study results from the GTEx pilot analysis v6 and other eQTL 

projects are included. 

Although large consortia have made tremendous efforts in mapping many types of human 

tissue today, not all tissues have yet been completely investigated. In this thesis, I have 

focused on the thymus organ, where the Roadmap Epigenomics project  have established 

different epigenetic maps, however, only three eQTL studies [64-66] have been performed in 

this organ, assessing a small number of AID risk variants (n = 52). Furthermore, high 

throughput RNA sequencing of central thymic cell types, like for instance certain thymic 

antigen presenting cell (APC) types, have to date not been performed. Therefore I will now 

describe this organ in more detail.  

1.5 The thymus 
The thymus is a specialized primary lymphoid organ of the immune system, and the site for 

proliferation and maturation of the T cell precursors, namely the thymocytes. This organ is 

essential for the establishment of “central tolerance”, i.e. the generation of a repertoire with 

functional and self-tolerant T cells. To achieve this, the developing thymocytes need to pass 

several control points in the thymus involving several highly specialized thymic stromal cells. 

A large fraction (90-95%) of all thymocytes is lost due to death in the cortex [67-69], and 

another 50-70% of the positively selected thymocytes is thought to be subject to negative 

selection in the medulla [67, 70]. This reflects the strictly regulated selection process of self-

tolerant T cells that are let out in the periphery. Below I described the journey of a thymocyte 

through the thymus, and further describe in more detail four highly specialized thymic cells 

implicated in the selection process of thymocytes to avoid autoimmunity.  

1.5.1 Thymocytes develop and go through several selection points in thymus 

The thymus is composed of two identical lobes, which can be further divided into several 

small lobules. Each lobule has an outer capsule, a peripheral cortex and an inner medulla.  

Progenitor cells from the bone marrow enter the thymus through the cortex (Figure 7). After 

commitment to the T cell lineage, the thymocytes rearrange their TCR genes and become 

either γ δ or α β thymocytes at the double negative (DN) stage [71]. A fraction of the α β DN 

cells further gives rise to a large number of CD4 and CD8 double positive (DP) thymocytes. 

The TCR genes undergo somatic rearrangement, which results in a diverse repertoire of 
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distinct   TCRs with different specificities. Inside the cortex, the DP thymocytes will 

encounter the first type of specialized APC, namely the cortical thymic epithelial cell (cTEC). 

cTECs present self-peptides to the DP thymocytes by their major histocompatibility complex 

(MHC) molecules. The DP thymocytes with TCRs that do not recognize a self-peptide-MHC 

complex will die by neglect, whereas those with TCRs with intermediate affinity and/or 

avidity for self-peptide-MHC complex will receive a positive selection signal and differentiate

into single positive (SP) CD4+ or CD8+ cells [72].

SP thymocytes progress further into the medulla. The thymic medulla is the site for T cell 

tolerance induction. Any interference with the thymic medulla will manifest in autoimmunity, 

whether it is disruption of the three-dimen ional space, disturbance of the development of the 

medullary cells, disrupted transition of SP thymocytes from the cortex or premature departure 

of thymocytes from the medulla [72]. 

The SP thymocytes encounter at least four different thymic medullary APCs; the medullary

thymic epithelial cells (mTECs), the cluster of differentiation (CD)141+ and CD123+ DCs

and finally, thymic B cells. SP thymocytes with TCRs that bind with too high affinity to the 

self-peptides presented by the medullary APCs are considered potentially harmful to the 

individual, and will be deleted (clonal deletion). Alternatively, SP thymocytes that bind with 

intermediate affinity may differentiate into regulatory T cells (Tregs). The thymocytes with 

low affinity to the self-peptide MHC complex are accepted as tolerant, and will be released 

into the periphery. 

Nevertheless, a small fraction of autoreactive T cells are present in the blood of healthy 

individuals [10], indicating that escape from the strict control mechanisms in the thymus do 

occur. Mechanisms to ensure self-tolerance exist in the periphery as well, such as clonal 

diversion (selection of Tregs), receptor editing and anergy [71], but will not be further 

discussed here. 

s
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Figure 7: The journey of a developing thymocyte in thymus. Figure from [72] with permission.  

1.5.2 Thymic antigen presenting cells in the medulla 

1.5.2.1 medullary thymic epithelial cells 

The mTECs are specialized epithelial cells in the thymic medulla that can transcribe a broad 

range of tissue-specific genes [73]. The expression of genes encoding tissue-restricted 

antigens (TRA) in mTECs contrasts with the tight spatio-temporal control of gene expression 

in peripheral tissues during pre- and post-natal development and is referred to as 

“promiscuous gene expression” [74]. Although many peripheral tissues are presented, a given 

TRA is only expressed in a minority of mTECs (1-3%) at any given time [72]. Also, groups of 

100 - 300 TRA genes are usually co-expressed in subsets of human mTECs [75]. These 

groups of TRAs are often localized together within nuclear subdomains. 
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Around 40% of the TRA genes [76] are expressed under the transcriptional control of the 

autoimmune regulator (AIRE) protein. AIRE is a transcription factor crucial for the 

establishment of central tolerance, and loss-of-function mutations in AIRE in humans cause a 

recessive autoimmune syndrome termed autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy (OMIM: 607358). Although the exact mechanism for how AIRE 

regulates the expression of TRA genes remains elusive, AIRE is believed to recognize histone 

H3 tails hypomethylated at Lys4 (H3K4me0) [77]. This is a histone modification typically 

found in transcriptionally inactive chromatin, such as in the silenced tissue-specific gene loci 

in mTECs. Furthermore, AIRE interacts with P-TEFb [78] and other transcriptional regulators 

(reviewed in [79]) to promote gene expression through the release of stalled RNA polymerase 

[80] and elongation of RNA transcripts. 

The mTECs express and present TRAs in context of both MHC class I and MHC class II 

molecules [67]. In terms of MHC class I presentation, mTECs and their fellow medullary 

APCs express both the housekeeping proteasome (characterized by its β5-unit, encoded by the 

PSMB5 gene) and the immunoproteasome (containing a β5i-unit, encoded by the PSMB8 

gene). For MHC class II presentation, mTECs uses a distinct pathway. Through autophagy 

(“self-eating”), endogenous proteins from the cytoplasm are sequestered into double-

membrane-delimited compartments (termed autophagosomes) and delivered to lysosomes 

responsible for MHC class II loading. There, proteases, such as cathepsin S [81], process the 

substrates before MHC class II loading and presentation on the cell surface. 

1.5.2.2 Dendritic cells 

mTECs are efficient in inducing clonal deletion of thymocytes that bind the MHC-peptide 

complex with high affinity. TRAs expressed in mTECs can also be transferred to and cross-

presented by thymic DCs [81].  

DCs make up 0.5% of the cells in thymus, and are important mediators of central tolerance. 

Both conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are found in thymus, where the 

cDCs constitute around two-thirds of the thymic DC population. The major subset of cDCs 

(roughly 2/3) can further be classified as CD8α+SIRPα- cDCs in mice [72] or CD141+ in 

humans [82]. The CD8+ SIRPα- cDCs are commonly referred to as the resident cDCs, as they 

arise from an intrathymic differentiation pathway [72]. There is also accruing evidence that 

these cDCs can present TRAs that have been transferred by mTECs, although the direct 

handover has been technically challenging to prove [72]. The minor subset of cDCs in thymus 
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(roughly 1/3) can be characterized as CD8- SIRPα+ cDCs in mice and CD11b+ in humans [82, 

83]. These are migratory cDCs which are enriched in cortico-medullary perivascular space 

and also around small vessels, where they effectively capture and present blood borne 

antigens [84]. Finally, the last DC type present in both mouse and human thymus are the 

pDCs (characterized as CD123+ in humans [82]). These are also migratory DCs, which 

capture and transport peptides from the blood stream into the thymus, where they present the 

peptides to the SP thymocytes [85]. DCs of thymic origin have been reported to express an 

endogenous Mtv-encoded superantigen to developing thymocytes to induce negative selection 

[86]. However, we do not know to which extent DCs are capable of transcribing TRAs 

naturally in human thymus. 

1.5.2.3 Thymic B cells 

Approximately 0.3% of the cells in thymus are B cells [72]. Thymic B cells are also capable 

of presenting peptides to the developing thymocytes and induce negative selection [87-90]. 

The origin of thymic B cells is not fully understood, as development from intrathymic 

progenitors [87] and migration from the peripheral circulation [89] have been suggested. Until 

2015, it was believed that thymic B cells were only capable of presenting peptides derived 

from antigens captured through their BCR. However, Yamano et al. then discovered a small 

population of non-epithelial, Aire positive cells, the majority of which also expressed the B 

cell marker CD19 [89]. This subset of thymic B cells was found to transcribe Aire and Aire-

dependent TRAs [89, 91]. Recently, Gies et al. performed high-throughput RNA sequencing 

and confirmed expression of AIRE and a few TRA genes in a subset (5%) of human thymic B 

cells [92]. These findings give us novel insight into the functional role of B cells in thymus. 

 

Taken together, the thymus, and in particular the thymic APCs, have an important role in 

protecting the body against autoimmunity. Furthermore, as risk variants associated with AIDs 

have regulatory roles in immune related cell types, and because trait-associated SNPs from 

GWAS are more likely to be eQTLs [93], it is important to further investigate whether AID 

risk variants can influence the transcriptional landscape in the thymus organ. Now that the 

most important topics have been covered in the introduction, I will further describe the aims 

of this thesis.  
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2. Aims 
 

The overall aim of this thesis was to investigate whether AID risk variants influence thymic 

gene expression. 

  The following objectives were addressed:  

 To assess whether fine-mapped AID risk variants influence the thymic gene 

expression of ERAP1 and ERAP2, encoding two aminopeptidases important for 

peptide processing before loading onto HLA-class I molecules (paper I) 

 To  systematically investigate whether gene expression levels in thymus could be 

influenced by AID risk variants (paper II) 

 To characterize the transcriptomes of four thymic APCs (paper III)  

 To investigate whether genes being thymic eQTLs for AID (paper I and II) were 

expressed in the thymic APCs (paper III). 
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3. Summary of papers 

3.1 Paper I 
Autoimmune risk variants in ERAP2 are associated with gene expression in thymus 

The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 cleave peptides before 

loading onto the MHC class I molecules and presentation on the cell surface. Multiple genetic 

risk variants in ERAP1 and ERAP2 associated with different AIDs (AS [94, 95], CD [96], 

IBD [36], MS [97], Ps [98] and T1D [99]) have been identified through GWAS. GWAS risk 

variants have further been fine-mapped for several AIDs. Since no eQTL screen with ERAP1 

and ERAP2 has yet been performed in thymic tissue, we performed an eQTL screen to 

investigate whether seven fine-mapped AID SNPs in the ERAP-region influence the gene 

expression levels of ERAP1 and ERAP2 in thymus.  

This study correlated genotypes of seven fine-mapped AID SNPs with gene expression levels 

from all probes within a window of +/- 1 Mb in the ERAP-region. The genotypes were 

obtained by Immunochip and gene expression levels from human thymic tissues (n = 42) were 

measured on an Illumina HumanWG-6 v3 microarray. After quality control, six significant 

SNP-probe pairs were evident, involving two eQTL probes (eProbes) binding to ERAP1 and 

ERAP2, respectively. When the eProbes were further tested against all SNPs on the 

Immunochip densely covering the ERAP-region, two independent peak eQTL signals were 

detected in ERAP1 and ERAP2, respectively.  Interestingly, the peak eQTL signal overlapped 

with the AID risk loci in ERAP2 (r2 > 0.94), but were distinct in ERAP1 (r2 < 0.4). We 

discovered that among the SNPs showing the most significant eQTL associations with ERAP2 

(P < 3.4 x 10-20), six were located in transcription factor motifs within an open chromatin 

region that had epigenetic histone marks suggestive of promoter (H3K4m3) and active 

enhancer (H3K27ac) function in human thymus. We also observed an association between the 

haplotype comprising all the risk alleles and the highest level of ERAP2 expression.  

This study therefore reveals highly correlated, fine-mapped AID risk variants that act as 

eQTLs with ERAP2 in thymus, and further highlights potential causal regulatory variants. The 

most significant eQTL in ERAP1 was in low LD with the AID risk variants, and the eQTL 

signals from the AID SNPs were markedly inferior. Hence, the thymic eQTL involving 

ERAP1 is distinct from the ERAP1 associations observed in several AIDs. These findings 

show the importance of thoroughly mapping eQTL signals in tissues. 
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3.2 Paper II 
Genetic variants for autoimmune diseases that influence gene expression in thymus 

GWAS have enabled the identification of hundreds of genetic risk variants for AIDs. The 

majority of these risk variants are located in non-coding regions, thus indicating that they may 

have a role in gene regulation. A common approach to connect genetic variants with the 

pattern of gene expression differences is by performing eQTL analysis. Before the initiation 

of this project, most eQTL studies had been executed in blood, and only three studies [64-66], 

performed in our research group, had addressed the influence of risk variants on gene 

expression levels in thymus. The thymus plays an essential role in the development of 

immune tolerance, as it is the organ where the T-lymphocytes are selected through positive 

and negative selection to avoid the release of autoreactive T cells into the periphery. Failure in 

the immune self-tolerance system is a hallmark of AIDs. In the previous thymic eQTL screen, 

CeD associated risk variants were significantly (P < 0.05) associated with gene expression 

levels in thymus.  

This study, therefore, sets out to determine whether 353 GWAS identified risk variants 

associated with 11 different AIDs influence gene expression in thymus. Genotypes of the 353 

GWAS risk variants were obtained by Immunochip and tested against expression levels, 

measured by the Illumina HumanWG-6 v3 microarray, of surrounding genes (+/- 1 Mb) in 

human thymic tissue (n = 42). Using a stringent significance level, we identified eight eQTLs 

located within seven genetic regions (FCRL3, RNASET2, C2orf74, NPIPB8, SIRPG, SYS1 

and AJ006998.2) where the expression was associated with AID risk SNPs at a study-wide 

level of significance (P < 2.7 x 10-5). In NPIPB8 and AJ006998.2, the eQTL signals appeared 

to be thymus-specific. Furthermore, since GWAS risk variants had later been replicated and 

fine-mapped in several studies employing the Immunochip, we searched for fine-mapped AID 

SNPs (+/- 1 Mb) located within each of the eQTL gene regions. Fine-mapped AID SNPs were 

in strong LD (r2 > 0.8) with the thymic eSNPs within RNASET2 and SIRPG. These fine-

mapped AID SNPs were also associated with the same diseases as our GWAS selected eSNPs. 

Finally, in all eQTL regions, except C2orf74, SNPs underlying the thymic eQTLs were 

predicted to interfere with transcription factors important in T cell development.  

Our study, therefore, provides evidence for autoimmune risk variants that act as eQTLs in 

thymus, and suggest that thymic gene regulation may play a functional role at some AID risk 

loci.  
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3.3 Paper III 
Transcriptomes of antigen presenting cells in human thymus 

Thymic APCs play a crucial role in establishing a repertoire of functional and self-tolerant T 

cells to prevent autoimmunity. To date, most studies concerning thymic APCs have been 

performed in mice. With the exception of thymic B cells, no one has yet explored the 

transcriptomes of human thymic APCs. Therefore, we performed high throughput RNA 

sequencing of four primary APCs in human thymic tissue to compare their transcriptomes and 

investigate specific genes important for APC function.  

We isolated six biological replicates of mTECs, CD19+ B cells, CD141+ and CD123+ DCs 

from human thymic samples. One biological replicate was removed from the mTECs due to 

contamination. We performed high throughput RNA sequencing and used the EdgeR software 

to compare their transcriptomes. We found that thymic CD141+ DCs and mTEC expressed 

the highest and the lowest levels of all classical HLA genes, respectively. Among 21 genes 

encoding proteins involved in the HLA class I and II pathway, we found that 14 (67%) had 

the highest gene expression levels in CD141+ DCs and consistently the lowest levels in 

mTECs. Three transcriptional regulators of TRA expression were also investigated, where 

DEAF1expression was detected in all four APCs but the highest levels were clearly found in 

CD141+ DCs. Expression of AIRE and FEZF2 was mainly found in primary human mTECs. 

We further investigated how the repertoire of “tissue enriched genes” from the Human Protein 

Atlas was distributed between the thymic APCs. These genes were defined as “TRA genes” in 

our study. We detected expressed (Fragments per Kilobase of transcript per Million mapped 

(FPKM) reads > 1) TRA genes in all four APCs, but the mTECs were clearly dominating in 

both the total number and in the number of unique genes expressed. The percentage of 

uniquely expressed TRA genes (FPKM > 1) was 20% in mTECs, 7% in CD19+ B cells, 4% 

in CD123+ DCs and 2% in CD141+ DCs. In the mTECs and B cells, some of the unique 

genes encoding TRAs also overlapped with reported human autoantigens from the literature. 

Finally, we investigated whether any of the previously reported thymic eQTLs associated with 

AID (“AID-eQTLs”) were uniquely expressed in any of the thymic APCs. Expression of the 

eGenes underlying the thymic AID eQTLs were indeed detected in several thymic APCs, 

however, none were uniquely expressed. This study offers, to our knowledge, the first 

transcriptome data of mTECs, CD141+ and CD123+ DCs isolated from human thymic tissue 

and provides an overview of particular genes important in APC function that varies 

significantly between the cell types. 
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4. Methodological considerations 

4.1 Study population 
The thymic tissue samples used in this thesis were obtained from children under the age of 13, 

undergoing cardiac surgery. A total of 42 thymic tissues were included in paper I and II, and 

6 separate tissues were included in paper III. In paper I and II, the gender distribution was 

22 girls and 20 boys. Because gender can be a confounding factor, we did not include any risk 

variants from the GWAS catalog located on the X and the Y chromosomes. Furthermore, the 

age range varied from 4 days to approximately 13 years. As age is a second possible 

confounder, we investigated whether the gene expression levels (and hence the eQTLs) could 

potentially be influenced by the age variation (Figure 8). However, we could not detect any 

specific correlation between age and gene expression for the eQTL genes.  

 

Figure 8: Gene expression levels (log2) of the 9 eGenes underlying the thymic AID eQTLs in paper I and II as a 

function of age 

In paper III, only boys were included (n = 6), which means that there are boy-specific 

differences between the APCs in our dataset, such as expressed genes located on the Y 

chromosome that are not in the pseudoautosomal regions. Moreover, the age range varied 

from 5 days to 1 year and 4 months. Because we are comparing cell types and not individuals, 
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the “age average” (n = 271 days) is equal in the compared groups. The exception is the 

mTECs, where one biological replicate was removed due to contamination by DCs. This 

replicate was 334 days old, and therefore a slightly different “age average” (n = 257 days) is 

found in this cell population, which possibly could have influenced the expression levels in 

our dataset.  

In all three papers, we only included patients without any known syndromes or AIDs, as 

genetic effects on a phenotype can be confounded by the presence of a disease [100]. All 

patients were of Norwegian origin, as ethnical differences can influence allele frequencies in 

genetic analyses. To our knowledge, cardiac diseases or surgery does not affect the gene 

expression profile in thymus. However, this cannot be completely disregarded. Informed 

consent has been given from the parents of the children undergoing heart surgery to use the 

thymic tissue for research purposes. Ethical approval was obtained by the Regional 

Committee for Research Ethics (REK approval number: S-04101). 

4.2 Thymic tissue preparation 

4.2.1 Cell separation 

In paper I and II, whole thymic tissue was used for DNA and RNA extraction. However, in 

paper III, we first isolated four individual APCs from human thymus: mTECs, CD141+ DCs, 

CD123+ plasmacytoid DCs and CD19+ B-cells. The first years of my PhD was used to 

establish a comprehensive protocol to isolate these APCs based on the work of others [101-

105]. The isolation procedure has been described in detail in paper III and is illustrated in 

Figure 9. The aim of our study was to analyse and compare the transcriptomes of primary 

APCs; therefore we isolated the cell populations the same day as the thymectomy. We 

received about 10 g of thymic tissue every time (which corresponds to about half a thymus of 

a child < 1 year).  

The thymus is composed of 98% thymocytes and only 2% APCs [102], however, cell culture 

of the APCs was not an option for us, as cell culture has shown to alter the transcriptional 

profile of other human primary cell types [106]. We wanted an accurate representation of the 

APC transcriptomes, as close as possible to their in vivo representation. In large-scale 

differential expression RNA sequencing studies, it has previously been reported that adding 

biological replicates increases power to detect differentially expressed genes [107]. We 

therefore chose to isolate six biological replicates for each APC type.  



33 
 

 

Figure 9: Procedure of thymic APC purification. *An 11.5% iodixanol solution (ρ = 1.065 g/ml) was made with 
OptiPrepTM and a diluent consistent of Phosphate-Buffered Saline (PBS), Fetal Bovine Serum (FBS) and 
Ethylenediaminetetraacetic acid (EDTA).** The cells were suspended in PBS and OptiPrepTM to make a 15% 
iodixanol solution (ρ = 1.085 g/ml). 
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We started preparing the tissue by removing fat and necrotic material. Furthermore, because 

the thymus is composed of only 2% APCs [102], a combination of gentle enzymatic digestion 

steps and enrichment protocols is required to efficiently isolate the APCs with minimal 

cellular damage and maximal yield [104]. We treated our thymic tissue with two enzymatic 

solutions, first with Collagenase D (Roche Life Science, Switzerland) and then with 

LiberaseTM TM (Roche Life Science) [104] in two C-tubes on a gentleMACS Octo 

Dissociator (Miltenyi Biotec, Germany). In this way, we always managed to completely 

dissolve the entire tissue. Liberase research grade enzymes are in fact a blend of highly 

purified collagenases [104], and the use of collagenases instead of a highly digestive enzyme 

such as trypsinase results in preservation of cell surface markers [103].  

Although the recommended incubation temperature for both Collagenase D and LiberaseTM 

TM is 37°C according to the manufacturer, it has been reported that incubation with 

Collagenase D in room temperature is a more gentle way of handling DCs in order to not 

activate them [101]. We postulated that this treatment would be better for the DC and B cell 

surface markers (CD123, CD141 and CD19), and therefore treated the first C-tube intended 

for DC and B cell isolation at room temperature (~20°C). The second C-tube, intended for 

TEC isolation, was treated at 37°C [102]. We observed high cell viability when counting the 

cells after both 20°C and 37°C treatment; however, whether this difference in temperature 

might have had an implication on the RNA profile of the APCs is hard to say. As the normal 

body temperature is 37°C, genes encoding heat shock proteins are not activated. If anything, 

the cells in the 37°C tube could potentially be slightly more stressed compared to the cell in 

the 20°C tube due to the higher optimal enzyme activity. 

We further separated the APCs from the thymocytes based on the cell density gradient 

medium OptiPrepTM (Axis Shield, Norway). OptiPrepTM is a 60% (w/v) solution of iodixanol in 

water and is used to separate light density cells from tissues such as Peyer’s patches, blood, 

lymph nodes, spleen, thymus and Langerhans cells from skin. The fraction of light density 

cells in thymus is highly enriched in APCs, both DCs and TECs [102]. The clarity of the band 

varied from time to time, indicating that we had variable amounts of APCs from the different 

thymic tissue pieces. 

The “APC bands” (one treated at 20°C and one at 37°C) were further transferred to two new 

respective tubes, before we used magnetic microbead kits to isolate the respective APC types. 

The kits from MACS Miltenyi magnetically label the DCs with antibodies directed against the 
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specific marker (CD141 or CD303) either directly (CD141), or indirectly through antibody-

biotin and anti-biotin-MicroBead complexes (CD303).  

The kit from EasySepTM uses dextran-coated magnetic nanoparticles in addition to bispecific 

tetrameric antibody complexes directed against both dextran and the CD19 surface marker on 

B cells, or the CD45 marker on hematopoietic cells. The latter was used to deplete the tube 

intended for TEC isolation before positive selection with Dynabeads that were coated with the 

monoclonal mouse IgG1 antibody Ber-EP4 (Anti-EpCAM). In this way, fibroblasts and 

endothelial cells that are EpCAM- were removed from the TEC suspension. The cTECs 

(EpCAM+CDR2+) were separated from mTECs (EpCAM+CDR2-) by anti-CDR2-biotin and 

EasySepTM biotin positive selection kit.  

All kits, except the Human CD19 Positive Selection Kit, reported their feasible use on other 

tissues than peripheral blood, as long as a single-cell suspension was made by standard 

preparation methods. However, complex tissues such as thymus have vast cell heterogeneity, 

and all thymic cell types may not have been mapped to date. Using antibodies in these kinds 

of tissues increases the risk of including cell types that express the same markers as our APCs 

of interest. We might therefore have included yet-unidentified thymic cell types in our 

samples (paper III).  

At the end of each isolation, we counted the number of cells we obtained (Table 2) on a 

Countess™ Automated Cell Counter (Thermo Fisher Scientific, USA). 

Table 2: Median cell yields and interquartile range (IQR) from the APC samples. 

APC  Median number of isolated cells (IQR) 

CD123+ DC 32,000 (24,250) 

CD141+ DC 47,500 (47,000) 

CD19+ B cells 90,000 (97,500) 

mTEC 174,000 (147,000) 

 

The final cell populations were stored in RNAprotect® Cell (Qiagen, Germany) after ended 

isolation procedure, which provides immediate stabilization of RNA and thus the gene 

expression profile in the APCs. This usually occurred within 7-8 hours after the thymus had 

been removed from the patient by surgery. The length of the protocol and all the kits used in 

this procedure might have affected the cell viability and the RNA transcriptome profile of our 
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thymic cell types (paper III). The mTEC isolation was particularly long, as they had to go 

through three different processes (CD45 depletion, EpCAM positive selection and finally 

cTEC removal) after the APC band was collected from the centrifuged OptiPrepTM solution, 

as compared to the CD123+ and the CD19+ cells (ready after one kit) or the CD141+ cells 

(ready after two kits).  

A more suitable method for isolating individual thymic cell populations would have been by 

cell sorting on a FACSAria flow cytometer (BD Biosciences). This technology could have 

shortened the isolation procedure with two-three hours, but was unfortunately not accessible 

at our department.  

4.2.3 DNA and RNA extraction 

In paper I and II, DNA and RNA were extracted from whole thymus by using TRIzol® 

reagents (Thermo Fisher Scientific). TRIzol enables the simultaneous isolation 

of RNA, DNA and proteins from biological materials [108]. In paper III, RNA was extracted 

from all cell types with RNeasy Plus Micro Kit (Qiagen, Germany), which purifies all RNA 

molecules over 200 nucleotides. This procedure enriches for messenger RNA (mRNA) and 

lncRNA, as most RNA molecules less than 200 nucleotides (such as 5.8S rRNA, 5S rRNA, 

and tRNAs) are selectively excluded. RNA concentrations and the RNA integrity numbers 

(RIN) were measured on a Nanodrop spectrophotometer (Thermo Fisher Scientific) and on a 

Bioanalyzer 2100 instrument (Agilent Technologies, USA). From the 42 thymic samples 

(paper I and II), we obtained a median RNA yield of 53 ± 24 μg and a median RIN of 7.9 ± 

0.7. For the thymic APCs (paper III), the median RNA yields and RIN are showed in Table 3. 

An unexpected finding was that the mTEC RNA concentrations turned out to be the lowest, 

especially when the median cell number was higher for mTECs compared to the other APCs. 

It has recently been reported that the TRA repertoire in mTECs are overlapping between the 

individual developmental stages [109], suggesting that our finding is not because mTECs vary 

in the amount of TRA transcripts they produce during the different phases of maturation. 

However, one possible explanation for the low RNA yields could be, as mentioned above, the 

long isolation time for these cell types. The RNA concentrations in the mTEC samples were 

unfortunately too low to measure the RIN, restricting the possibility to investigate whether the 

RNA was degraded in these samples.  
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Table 3: Median RNA yields, RIN and IQR from the APC samples after extraction with RNeasy Plus Micro Kit 

(Qiagen). The mTEC concentrations were too low to measure the RIN. 

APC  Median RNA yield (IQR) Median RIN (IQR) 

CD123+ DC 2.6 ng (1.32) 9.1 (1.1) 

CD141+ DC 6.3 ng (14.08) 9.35 (0.52) 

CD19+ B cells 2.6 ng (2.45) 9.5 (0.3) 

mTEC 0.13 ng (0.11) - (-) 

 

4.3 Selection and genotyping of AID risk variants 
In paper I, we searched for risk variants (P < 5 x 10-8) associated with AS [31], ATD [33], 

IBD [36], JIA [41], MS [37], Ps [34], RA [32] and T1D [42] on the Immunochip in the 

ERAP-region (defined as chr5: 95974244-96474244 where coordinates are based on the 

Genome Reference Consortium Human Build 37 (GRCh37) or Hg19). The seven selected 

SNPs were firmly associated with AIDs with P-values < 7 x 10-9. In paper II, risk variants 

associated with AS [42, 94], CD [96, 110, 111], CeD [35, 111, 112], IBD [113, 114], MS 

[115-127], Ps [98, 128-130], RA [131], SLE [132-135], T1D [136-138] and UC [139] were 

selected from the GWAS catalog. The last time we accessed the catalog was January 2012. 

Although the genome-wide significance threshold is P < 5 x 10-8, the GWAS catalog also 

includes individual SNP-trait associations identified in eligible studies with P-values < 1.0 x 

10-5. The 393 selected risk SNPs had AID associations with P-value < 1.0 x 10-6. In both 

paper I and II, we only chose SNPs from AID association studies performed in Caucasians 

since the thymic tissue originated from Norwegian patients. In paper I and II, genotyping of 

the 42 Norwegian thymic tissues was performed on the Illumina Immunochip v1 (Illumina, 

San Diego, CA, USA) array at a core facility in Kiel (http://www.ikmb.uni-

kiel.de/resources/genotyping). The Immunochip is a SNP genotyping array with dense marker 

coverage across 186 genetic regions. The probes on this array cover 195,806 SNPs and 718 

small insertions-deletions [29]. The Immunochip has successfully enabled researchers to 

replicate previous GWAS findings, and also to fine map the peak association signal.  

However, one limitation of the Immunochip is that it was designed using early 1000 Genomes 

Pilot data [29] with only 180 samples. Therefore, the coverage of the Immunochip is not 

complete. Secondly, approximately 10% of SNPs failed the assay design and have therefore 

not been included on the array [29]. Finally, as the Immunochip used was designed in 2009, 

AID associated risk SNPs identified through GWAS after 2009 might not be covered by the 
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Immunochip. We noticed these limitations particularly for the locus harboring the FCRL3 

gene (paper II), where few SNPs (n = 9) were available for the eQTL screen, and where 

novel AID associations have emerged later (for instance, rs2317230 associated with RA [45] 

and located in close vicinity to the FCRL3 probe (28496 bp) was not present on the 

Immunochip). For other loci, the limitations of the Immunochip indicate that we might have 

lost valuable SNP information. 

4.4 Gene expression measurement 

4.4.1 Microarray 

In paper I and II, gene expression levels in the 42 thymic tissues were measured at the 

Norwegian Genomics Consortium using the HumanWG-6 v3 microarray (Illumina, San 

Diego, CA, USA), comprising 48802 probes. The use of microarrays facilitates the 

quantitative measurement of thousands of genes simultaneously. The microarray contains 

multiple microscopic DNA spots, and each spot encompass specific probes for cDNA 

hybridization. Microarrays are suitable for screening high numbers of samples in a relatively 

cost and time efficient manner, hence this was considered to be a good choice at the time.  

However, there are a few disadvantages with microarrays in regard to whole genome 

expression profiling. One limitation is high background levels due to cross-hybridization 

[140]. We therefore examined the binding specificity of all probes giving significant eQTL 

results (discussed in section 4.5 Quality control of the data). Secondly, microarray only allows 

the assessment of known transcripts [140]. The Illumina HumanWG-6 v3 microarray was 

designed some time before the 21rst of May 2008, as this is the date when the microarray 

probe information was published in the Gene expression Omnibus. Therefore we have not 

obtained RNA level measurements from transcripts identified after this date . Lastly, 

microarrays cannot distinguish between transcript isoforms, unless they have been specially 

designed. Distinction between mRNA isoforms would have been valuable to us in order to get 

an indication about whether particular transcripts were causing the difference in gene 

expression observed in the eQTLs. 

4.4.2 RNA Sequencing 

While microarray allows us to assess the RNA content and abundance for all known 

transcripts, RNA sequencing extends the scope and depth of investigation to the entire 

transcriptome of known and novel transcripts [141]. In paper III, we used high throughput 

RNA sequencing to assess the transcriptome of the individual thymic APCs.  
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In practice, RNA is converted to a library of cDNA fragments with adaptors attached to one 

or both ends [140]. When RNA yields are low, each cDNA molecule can be amplified by 

PCR before adaptors are attached. Then the cDNA molecules are sequenced in a high-

throughput manner to obtain short sequences from one end (single end sequencing) or both 

ends (paired end sequencing). The length of the these short sequences called “reads” varies 

between 30 – 400 bp, depending on the sequencing technology used [140]. Reads can then be 

computationally mapped to a reference genome to reveal a transcriptional map, where the 

number of reads aligned to each gene gives a measure of its level of expression [142]. 

Common computational analysis steps in RNA sequencing experiments include quality 

control of the reads, read alignment, assigning reads to genes or transcripts, and estimating 

gene or transcript abundance [141]. The RNA sequencing procedure used for the APCs is 

described in detail in paper III, and only certain aspects about the method will be discussed 

below. 

4.4.2.1 Preparation for RNA sequencing 

Laboratory protocols for the RNA extraction method, cDNA amplification, indexing and 

library sequencing protocol are critical for obtaining good sequence data. As mentioned 

earlier, the APC samples used in paper III suffered from small cell numbers (Table 2) with 

low RNA yields (Table 3). Luckily, a variety of amplification-based methodologies have been 

proposed to handle the issues with low RNA input [143]. We chose to use the SMART-Seq 

v4 Ultra Low Input RNA Kit for Sequencing (Clontech Laboratories), as this kit accepts RNA 

yields down to 10 pg. SMARTer-sequencing technology is based on associating universal 

primer sequences to either ends of the cDNA library followed by global PCR amplification of 

all transcripts by using complementary sequences of the universal primers [144]. We used 100 

pg of RNA from each APC sample to generate and amplify cDNA.  

SMARTer technology exhibit high transcriptome coverage across different amounts of 

mRNA input (1 ng, 100 pg, 50 pg, 25 pg) when it is compared to “standard” RNA sequencing 

(Std. RNA-Seq), using 50 ng of mRNA and no amplification [143]. Approximately 80% of 

the transcriptome was shown to be covered when using 100 pg and the amplification-based 

SMARTer kit [143]. This suggests that we have covered nearly 80% of the in vivo 

transcriptome of the APCs in paper III. Furthermore, the distribution of mapped reads across 

the length of the transcript was also reported to overlap for SMARTer technology and Std. 

RNA-Seq [143]. However, one limitation of SMARTer technology is that it does not 

efficiently amplify transcripts longer than 4 kb [145]. Long transcripts in libraries treated with 
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SMARTer technology exhibited lower read counts in comparison to Std. RNA-Seq [143]. 

This indicates that transcripts over 4 kb in our APC libraries might suffer from length bias. 

Among the genes investigated in paper III, we found 16 genes with transcripts in the 

Ensembl database (GRCh38) with protein-coding transcripts over 4 kb: NRP1, XCR1, THBD, 

ITGAX, CANX, ERAP1, ERAP2, TAP2, CTSS, FCRL3, AHI1, ELMO1, GPR65, IP6K1, 

SLC16A14 and TROVE2. However, among these genes, 9 were < 5000 bp, and only TROVE2 

had a transcript > 6000 bp (n = 7848 nt).  

The final cDNA yields we obtained from the SMART-Seq kit are listed in Table 4.  

Table 4: Median cDNA yields and IQR of the thymic APCs  

APC  Median cDNA yield (IQR) 

CD123+ DC 14.4 ng (8.17) 

CD141+ DC 10.6 ng (8.40) 

CD19+ B cells 18.2 ng (5.68) 

mTEC 8.2 ng (6.69) 

 

Finally, 1 ng from each APC sample was further indexed with MicroPlex Library Preparation 

Kit v2 (Diagenode) before the samples were delivered to the Norwegian Sequencing center 

(NSC). Longer reads increase the level of uniquely mapped reads and paired end sequencing 

has a higher alignment rate. We therefore chose 125 bp paired end sequencing of the APC 

samples, which was performed on an Illumina HiSeq 2500 (Illumina, CA, US) instrument 

with 4 samples per lane.  

After sequencing, we preprocessed and mapped the reads to a genome and a transcriptome 

reference (GRCh38), before quantifying the data. Because reads can be unambiguously 

mapped to unique regions of the genome, RNA sequencing has very low, if any, background 

noise signal compared to microarray [140]. We used STAR [146] to align and map the reads 

from the APC samples. STAR defines the percentage of uniquely mapped read, or mapping 

rate, as the proportion of uniquely mapped reads out of all input reads [147]. A library is 

defined as “very good library” if the uniquely mapped read percentage exceeds 90%, and as 

“a good library” if it exceeds 80% [147]. In paper III, 21 out of 23 APC samples had 

uniquely mapped read percentages > 90%. One CD19+ B cell and one mTEC sample 

contained 83% and 72% uniquely mapped reads, respectively. However, mapping rates need 

to be below 50% to indicate a problem with the library preparations or the data processing 
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[147]. The two samples with the lowest uniquely mapped read percentage had among the 

highest percentage of duplicates. 

As duplicate removal is a common practice in next generation sequencing pipelines [148], 

duplicate aligned reads in our libraries were removed with Picard Tools, MarkDuplicates. 

Artificial duplicates can arise from amplification  during sample preparation [148]. If Smart-

sequencing technology is used, these PCR duplicates are identified computationally as read 

duplicates [149]. However, such read duplicates can also arise by sampling independent 

molecules. The chance that the latter type of read duplicates, or “natural duplicates”, occur for 

a transcript of a given length, increases with expression levels [149]. The danger about 

removing duplicates bioinformatically is therefore that the program can incorrectly mark 

identical reads arising from a highly expressed gene as PCR duplicates arising from the 

library preparation. The MarkDuplicates tool reported both paired and unpaired read 

duplicates in our libraries (Table 5). These duplicates might be PCR duplicates that have 

arisen during amplification with the SMARTer kit or the MicroPlex preparation kit; however, 

they could also be expression reads. Most likely, it is a combination. However, in the latter 

case, we might have lost some valuable information from highly expressed genes in the APCs 

in paper III. 

Table 5: Median number of duplicates  from paired and unpaired reads and IQR of the thymic APCs 

APC  Median number of read pair 

duplicates (IQR) 

Median number of unpaired 

read duplicates (IQR) 

CD123+ DC 21,386,435 (5,660,228) 192,805 (52,040) 

CD141+ DC 23,469,675 (4,179,364) 173,367 (39,834) 

CD19+ B cells 24,999,741.5 (4,588,379) 240,029.5 (29,750) 

mTEC 30,762,761 (8,435,145) 182,245 (78,482) 

 

Finally, paired reads were counted with featureCounts. The featureCounts files were then 

further processed with edgeR. edgeR is a Bioconductor software package for examining 

differential expression of replicated count data [150]. In short, the steps in edgeR involved 

filtering lowly counted reads (less than 1 count-per-million (CPM)) and genes expressed in 

fewer biological replicates than the number of biological replicates in to smallest group. Then 

the library was normalized, and a multidimensional scaling plot (MDS) plot was made in 

order to examine the samples for outliers. The MDS plot is further discussed in Section 4.5 



42 
 

(Quality control of the data). Furthermore, as the group with the smallest number of biological 

replicates in paper III was the mTECs (n = 5), we used a threshold deciding that genes need 

to be present in 5 biological replicates to be included in the APC dataset. However, this 

threshold, which is intended for avoiding false positive findings, actually led to a bias in one 

of our analyses (paper III). When we addressed the number of TRA genes expressed in the 

individual APC, this threshold would in fact restrict the number of TRA genes, because TRAs 

are only expressed in a minority of mTECs (1-3%) at any given time [72]. We therefore 

generated a separate dataset where we lowered the threshold to 1. However, this further leads 

to a new problem, because in addition to lowly expressed TRA genes, we also increase the 

risk of including false positives in the APCs. Nevertheless, as discussed in the article, it is not 

possible to know whether the lowly expressed transcripts are in fact processed to proteins and 

further to peptides presented on the cell surface. More studies are needed to confirm the 

peptide repertoire in the HLA molecules on the thymic APCs, which is currently difficult to 

achieve due to the limited available technology today.  

4.5 Quality Control of the data 
In paper I and paper II, because of the vast number of SNPs interrogated on the Imunochip 

(n = 195806) and the number of probes on the microarray (n = 48802), we performed quality 

control of SNPs and probes after testing the AID associated risk SNPs for eQTL associations 

with surrounding genes (+/- 1 Mb).  

In the list of SNP-probe tests, we controlled that the AID risk SNPs (seven in paper I and 393 

in paper II)  had a genotype success score (GSS) > 90%. In paper I, one SNP (rs30187) 

obtain a GSS of 81%, this SNP was therefore retyped by Taqman allele discrimination assay 

(Thermo Fisher Scientific, USA) to obtain a 100% GSS. In paper II, we found two SNPs 

(rs941576 and rs12261843) that had a GSS = 54.8% and GSS = 0%. We also found one 

variant (rs1156425) that had 100% GSS but was not polymorphic in our thymic population. 

The SNP-probe pairs including these three risk SNPs were excluded from the study. In order 

to test for population stratification, we also verified that all SNPs had Hardy-Weinberg 

equilibrium (HWE) P-values > 0.05. In paper II, we found nine SNPs that had HWE P-

values < 0.05, these were therefore excluded. Furthermore in paper II, two SNPs were 

located on the on the X chromosome and was excluded to avoid gender as a confounding 

factor. SNP-probe pairs in the HLA region (Chromosome 6: 29,705,659-33,817,929 in 

GRCh37) were also excluded, as this gene region is highly polymorphic. Only a few HLA 

probes are present on the microarray and the whole repertoire of alleles at each gene is 



43 
 

therefore not represented. Studies using microarrays have reported differences in the gene 

expression levels of HLA alleles between individuals [151], however, we suspect that the high 

number of polymorphisms causes technical problems and makes it difficult to obtain reliable 

data. Therefore, 26 SNPs in the HLA region and the corresponding SNP-probe pairs were 

therefore excluded. In the end, seven (paper I) and 353 (paper II) AID risk SNPs were tested 

against surrounding probes (+/- 1 Mb), resulting in 215 (paper I) and 15843 (paper II) SNP-

probe tests. 

We also performed quality control of the probes. In paper I and II, because of the risk of 

cross-hybridization on the microarray, we examined the binding specificity of all probes 

giving significant eQTL results. In paper I, the eProbe ILMN_1752145 was binding 

completely (50 bp) to exon 20 in of ERAP1, but also to 24 bp of exon 21 in CAST. The 

binding of 24 bp is most likely not stable enough to resist the washing step after the 

microarray hybridization. However, we cannot completely exclude the possibility that we 

have obtained signals from CAST transcripts on this probe. Furthermore, in paper II, we 

found one unspecific eProbe (ILMN_2209027) which bound to both RPS26 and COL4A3BP, 

and was therefore excluded from the study. Finally, as probes covering common SNPs must 

be interpreted with caution in eQTL analyses [152], the probe sequences underlying the 

significant eQTLs in both paper I and II were aligned against the University of California 

Santa Cruz (UCSC) GRCh37 and investigated for overlap with common SNPs (MAF) > 1%). 

In paper I, one SNP, rs27044, was found within the probe sequence of ILMN_2336220 

binding to ERAP1. This SNP was also in high LD with two other risk SNPs that we tested, 

rs30187 (r2 = 0.7) and rs27432 (r2 = 0.4). We assessed whether these eQTLs were true by 

measuring the ERAP1 expression with the Taqman gene expression assay Hs_00429970 

(Thermo Fisher Scientific. The eQTL associations were found to be non-significant for both 

rs30187 (P-value > 0.24) and rs27432 (P > 0.11), hence the SNP-probe pairs comprising these 

SNPs were excluded. 

We should have removed the probes binding non-uniquely or overlapping with common 

SNPs (MAF > 1%) before the eQTL testing. However, because of the number of probes on 

the microarray (n = 48802), this seemed like a complicated task at the time. Today I know 

that a programmed script could have checked which probes that mapped uniquely to exons in 

the human reference, and whether they interfered with common SNPs (MAF > 1%). This 

could have eliminated spurious SNP-probe pairs before we tested for eQTL associations. 
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In paper III, a MDS plot was made as a quality control in order to examine the APC samples 

for outliers. A MDS plot of the samples represent the distances correspond to leading log-

fold-changes between each pair of samples. The leading log-fold-change is the average (root-

mean-square) of the largest absolute leading log-fold-changes between each pair of samples. 

The MDS plot revealed that one of the mTEC samples has been contaminated by DCs, as it 

was the only “mTEC” sample physically located among the CD141 DC samples (Figure 10). 

This sample was therefore excluded (paper III). 

 

Figure 10: MDS plot displaying the leading log-fold-change distance between the thymic APC samples. One 

mTEC sample was contaminated by DCs in the lab, so this sample clearly changed cluster (marked by arrow). 

4.6 Statistics 
In the three papers of this thesis, we have performed comparisons between groups to detect 

significant differences in gene expression levels. In this regard, hypothesis testing is an 

essential procedure in statistical validation. The null hypothesis, H0, states that there is no true 
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difference between the two groups compared, and is either confirmed or rejected based on the 

P-value and the significance level of the experiment. The P-value is the probability of 

obtaining a result at least as extreme as the one observed in the sample data, assuming H0 is 

true. If for example a study reports a difference with a P-value of 0.04, then this P-value 

indicates that if there were truly no difference, you would still obtain the observed difference 

(or a larger one) in 4% of the same studies due to random sampling error. H0 is rejected if the 

P-value is less than a predefined significance level α. The significance level, denoted as alpha 

or α, is therefore the probability of rejecting the null hypothesis when it is true. If for instance 

the significance level is set at α = 0.05, then there is a 5% chance of finding a difference 

which in fact is a false positive (a type I error) and concluding that this difference exists when 

there is no actual difference.  

Depending on your data, different types of statistical tests can be used. In the eQTL analyses 

(paper I and paper II), the aim was to test whether there was a significant difference in gene 

expression of a given gene between the genotype groups of a specific SNP (A/A, A/B, B/B) in 

the 42 individuals. P-values were given by the Wald test, which is parametric statistical test 

used in PLINK for quantitative trait associations [153]. In paper III, we tested for differential 

gene expression and differential exon usage between the APCs. These tests were performed in 

edgeR, which uses a generalized linear models (GLM) and GLM likelihood ratio tests to 

determine differentially expressed genes between the cell types trough pairwise comparisons 

[150]. Differential exon usage (called differential splicing in paper III) analysis was 

performed by applying the edgeR F-test. 

The significance level α is dependent on the number of tests (n) performed. A higher number 

of tests will require a stricter or more conservative significance level in order to increase the 

probability of detecting a true difference. In paper I and II, to adjust for multiple 

comparisons, we applied conservative Bonferroni correction, which can be set to α = 0.05/n. It 

can be discussed whether Bonferroni is too conservative, because this type of correction 

assumes complete independence between tests. This assumption is not reasonable when LD 

exists between the markers tested. This increases the possibility for type II errors, i.e. falsely 

accepting the null hypothesis. For instance, in paper I, we detected two eQTLs where the 

eSNPs (13003464 and rs10181042) were both associated with the same eGene (C2orf74). 

When we performed conditional analysis, the eQTL signal from rs10181042 displayed the 

strongest statistical significance, whereas rs13003464 obtained a P-value of 0.39, indicating 

that rs13003464 was simply a dependent signal. In this case, these two SNPs should not be 
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counted as two individual tests, which further have contributed to the (too) strict threshold in 

our study. Among the 353 GWAS SNPs tested in paper II, there may also be several more 

SNPs in LD, however this was not taken into account when calculating the significance level 

α. We might therefore have lost true eQTLs in our screens (paper I and II). In paper III, the 

P-values were adjusted for false discovery rate (FDR). FDR is designed to control the 

expected proportion of false positives. This procedure is a less stringent control of type I 

errors compared to Bonferroni correction, which controls the probability of at least one type I 

error. A significance cut off at 0.05 was used for the FDR adjusted P-values. 

The power, or sensitivity, of a test is the probability that the test correctly rejects the null 

hypothesis when it is false. Power is dependent on the sample size, the magnitude of the effect 

of interest in the population and the statistical significance level used in the test. In paper I 

and paper II, we had a limited sample size of thymic tissues (n = 42), and therefore, 

presumably, we did not have the power to detect all AID-eQTLs. If more individuals were 

included in these studies, more genotypes and gene expression levels would have been added 

to the SNP-probe tests, resulting in more robust P-values, possibly helping more SNP-probe 

pairs to pass the strict significance thresholds (3.1 x 10-6 and 2.7 x 10-5) that was set to avoid 

false positive results.  

Likewise, given the limited sample size we did not have the power to perform conditional 

analyses in order to fine map the location of the lead eSNPs causing the eQTL signals (the 

eQTL “peaks”). If we had a larger sample size, the robustness of our observation would also 

have increased, and there might potentially be other eSNPs that would obtain more significant 

P-values than the novel lead SNPs we found (ERAP1 – rs7063, ERAP2 – rs27302, RNASET2 

– rs429083, SYS1 – rs2743414, AJ006998.2 - rs991774). For instance, in paper I, we noticed 

that rs27302 seemed to be the sole SNP that correlated with the highest ERAP2 expression 

level (Figure 11).  

 

Figure 11: A section cut from Figure 1 in paper I showing the LD block with SNPs that obtained the most 

significant P-values with the ERAP2 probe ILMN_1743145. 
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However, rs27302 belonged to a large LD block (r2 > 0.9), including the AID risk variants 

rs2910686, rs1363907, rs27290 and rs27293. The superior P-value of rs27302 turned out to 

be caused by the genotype of one individual in our sample, reflecting the influence of small 

numbers. When we investigated the genotypes for the AID risk variants and the lead SNP (in 

the order rs2910686 - rs1363907 - rs27290 - rs27293 - rs27302) that correlated with the 

highest ERAP2 levels in our population, we found five individuals with the haplotype G-A-G-

A-G, and one individual with the haplotype G-A-G-A-A. In order to test whether it is in fact 

rs27302 that is the real lead eSNP, we could theoretically have performed conditional analysis, 

conditioning on rs27302, to see whether any of the other AID SNPs would obtain a non-

significant P-value (indicating that it is in fact rs27302 that is the lead eSNP) or if they 

remained statistically significant (indicating that another SNP is the lead eSNP). However, to 

do so we would have needed more than one individual with the deviating G-A-G-A-A 

haplotype in order to understand whether it is in fact rs27302, and not any of the other SNPs, 

that represents the causal eSNP.  

4.7 The Human Protein Atlas 
In paper III, we used the Human Protein Atlas to search for TRA genes. Mapping the human 

proteome in all the organs of the body and defining proteins that are “tissue-specific” has been 

a major goal in the research community as this will greatly increase our knowledge of human 

biology and disease [154].  

The Human Protein Atlas portal (www.proteinatlas.org) provides a map of the human tissue 

proteome based on quantitative transcriptomics on tissue and organ level combined with 

protein profiling using microarray-based immunohistochemistry to achieve spatial 

localization of proteins down to the single cell level [154]. The authors behind this project 

have analyzed all major tissues and organs (n = 44, thymus was not included) in the human 

body using 24028 antibodies (producing 13 million immunohistochemistry images) as well as 

RNA sequencing data for 32 of the 44 tissue types. Based on this, the authors classified 20334 

putative protein-coding genes into categories based on their expression levels across the 32 

tissues. 34% of the protein coding genes showed elevated expression levels in at least one of 

the analyzed tissues [154], and were therefore categorized as either: 

(i) Tissue enriched, if the gene was expressed ( > 1 transcript per million (TPM)) in 

one tissue at least five-fold higher than all other tissues  
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(ii) Group enriched, if the gene had a five-fold higher average TPM in a group of two 

to seven tissues compared to all other tissues  

(iii) Tissue enhanced, if the gene had a five-fold higher average TPM in one or more 

tissues compared to the mean TPM of all tissues.  

Furthermore, if a gene had more than 1 TPM in all tissues, the authors termed this gene as 

“expressed in all”. If a gene had less than 1 TPM in all tissues, the gene was “not detected”. 

Lastly, if a gene was detected in at least one tissue but was not belonging to any of the 

categories above, the gene was “mixed”. A pie chart of the number of genes in each category 

is shown in Figure 12. 

The largest number of “tissue-enriched” genes was found in the testis, subsequently followed 

by the brain and the liver [154]. An important point in this study is that the use of the word 

“tissue- specific” has been avoided because this definition depends on arbitrary cut-off levels. 

Many proteins described in the literature as “tissue-specific” were in fact shown to be 

expressed in several tissues [154].  

  

Figure 12: Number of genes classified in each expression category. Figure from [154] with permission. 

In paper III, we downloaded the list 2608 “Tissue enriched” genes from the Human protein 

Atlas, and defined these as “TRA” genes in our study. We further searched for these genes 

among the thymic APCs. We found expression (FPKM > 1) in all four APC types, even in the 

CD141+ DCs and the CD123+ DCs, although the two latter has never been reported to 

transcribe TRA genes before. However, as the tissue-enriched genes are not strictly tissue 

specific, it is maybe not so surprising that we detected TRA gene expression levels in these 

cell types. To address whether these selected TRAs are actually presented by the APCs in 

thymus in order to negatively select thymocytes reacting towards them, a link from the RNA 
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levels seen in the APC and a the peptide repertoire presented by the thymic APCs needs to be 

generated. As mentioned in paper III, these types of experiments are currently limited by 

available technology [155, 156]. 
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5. Discussion 
This thesis addresses AID risk variants that influence the gene expression profile in whole 

thymus and the bioinformatically assessed functional role of these variants. Furthermore, we 

have investigated the transcriptomes of four thymic APCs, with emphasis on genes important 

for APC function and genes of relevance to AID. In this chapter, we have explored whether 

any of the thymic AID-eQTLs can be mapped back to the four thymic APCs.  

5.1 Are the thymic APCs affected by the AID-eQTLs? 
The findings in this project suggest that risk variants associated with AIDs affect gene 

regulation in the thymus organ. The question is which thymic cell types are affected, and 

which cell mechanisms are influenced by the variation in gene expression. Although the 

thymocytes make up approximately 98% of the cells in human thymus [102], the thymic 

APCs have a pivotal role in the fate choices of developing T cells [81] to prevent 

autoimmunity, and therefore we investigated the expression levels of the eight eGenes 

discovered in paper I and paper II in the thymic APCs (paper III). An overview of the 

thymic eGenes and findings from the three papers are summarized in Table 6, Figure 13 and 

15. 

Table 6: The thymic eGenes and findings from the three papers.  

eGene Gene description Thymus-specific eQTL*?  RNA tissue specificity ** 
AJ006998.2 LincRNA Yes - 

C2orf74 Chromosome 2 open reading 

frame 74 

No Expressed in all 

ERAP2 Endoplasmic reticulum 

aminopeptidase 2 

No Mixed 

FCRL3 Fc receptor like 3 No Grouped enriched 

NPIPB8 Nuclear pore complex 

interacting protein family 

member B8 

Yes Tissue enriched 

RNASET2 Ribonuclease T2 No Expressed in all 

SIRPG Signal regulatory protein 

gamma  

No Tissue enhanced 

SYS1 Golgi trafficking protein No Expressed in all 
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*The publically available eQTL resources employed to investigate whether our significant SNP-probe pairs are 

thymus-specific include the GTEx Portal, GTEx eQTL Browser and Haploreg V4 (supplementary table S8 in 

paper II). ** RNA tissue specificity was addressed using the Human Protein Atlas. 

 

Figure 13: Expression levels of the eGenes (paper I and II) in the individual APCs (extracted from paper III). 

Boxplots represent the median and quartiles of the relative RNA expression levels as normalized FPKM. The X-

axis shows the individual thymic APCs and the Y-axis shows the TMM normalized FPKM. In paper III, 

“expressed genes” were defined as genes with an FPKM >1 (red line). Black dots represent the individual 

biological replicates. Black dots encircled in red are outliers. A) AJ009632.2 (or ENSG00000229425.2, the non-

coding DNA sequence from where the transcript AJ006998.2, or ENST00000634644.1 derives) B) C2orf74; C) 

ERAP2; D) FCRL3; E) NPIPB8; F) RNASET2; G) SIRPG; H) SYS1. The dataset used here includes  genes with 

a CPM > 1 and presence in at least one biological replicate. 

Five of the eight eGenes (ERAP2, FCRL3, RNASET2, SIRPG and SYS1) were expressed with 

an FPKM > 1 in at least one APC. AJ009632.2, C2orf74 and NPIPB8 were not expressed 
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according to our expression threshold (FPKM = 1), albeit low levels (FPKM < 1) could be 

observed in some of the thymic APCs. To further understand the function of the eGenes, and 

the potential effect of the eQTLs on cell mechanism, I will address each eGene individually, 

and integrate the findings from the three papers. 

5.2 The individual eGenes 

5.1.1 ERAP2  

The eGene ERAP2 was implicated in the most significant eQTL (P < 8.22 x 10-23) that 

emerged from our eQTL screens. This gene encodes endoplasmic reticulum aminopeptidase 2 

belonging to the M1 family of zinc-metallopeptidase enzymes [157]. This enzyme trims 

peptides to optimal length for binding in the MHC class I molecules before presentation on 

the cell surface to CD8+ T cells. ERAP2 gene function has not been extensively studied 

because of its absence in rodents. However, in 2010, Andrés et al. studied blood samples from 

six human populations and reported that ERAP2 has evolved under balancing selection, 

maintaining two major haplotypes (haplotype B and A) with frequencies 0.56 and 0.44, 

respectively [158]. Similarly to Andrés et al., we also observed two major haplotypes in the 

genotype dataset from the 42 thymic tissues (paper I). The haplotype with the largest 

frequency (0.619 in our study population) included the A allele of the thymic eSNP (rs27302) 

and the protective alleles of the AID SNPs (rs2910686-A, rs1363907-G, rs27290-A and 

rs27293-G) in high LD (r2 > 0.94). Conversely, the second most frequent haplotype (0.369) 

comprised the rs27302-G allele and the risk alleles of the AID SNPs (rs2910686-G, 

rs1363907-A, rs27290-G and rs27293-A). 

Andrés et al. further reported that the ERAP2 transcript expressed by haplotype B (individuals 

carrying the rs2248374 G-allele) undergoes differential splicing, resulting in an isoform 

variant with an extended exon 10 and a premature stop codon. This mRNA is assumed to 

undergo nonsense-mediated decay, as (almost) no protein could be detected by western blot in 

BB homozygotes [158]. In paper I, we noticed that there was moderate to high LD between 

the splice SNP rs2248374 from Andrés et al. and our thymic eSNP rs27302 (r2 > 0.66 in our 

genotype data and r2 > 0.82 in the dataset from the 1000 Genomes phase 3). We also observed 

that the eSNP rs27302 resulted in a more significant eQTL (P = 8.22 x 10-23) than rs2248374 

(P = 2.74 x 10-9), and when we conditioned on rs27302, rs2248374 obtained a non-significant 

P-value (P = 0.22). This suggest that the ERAP2 expression in thymus is first and foremost 
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regulated by rs27302 (or another SNP that has not been tested), and secondly by rs2248374. 

However, this needs to be confirmed by further analysis. 

Finally, Andrés et al. further performed flow cytometry analysis and showed that the 

standardized mean fluorescence intensities from HLA-class I (HLA-A, -B and -C) molecules 

was significantly lower on the CD19+ B cell surface in BB homozygotes (who carry the 

rs2248374-G allele) [158]. In paper I, we found that the lowest gene expression detected for 

ERAP2 was associated with the rs27302-A allele. If individuals homozygous for the rs27302-

A allele and the rs2248374-G allele (the two alleles with the highest frequencies in the 

population) express the aberrant ERAP2 mRNA, this could potentially indicate that these 

individuals also have lower numbers of HLA-class I molecules on the cell surface. 

Conversely, individuals homozygous for the rs27302-G allele (often located on the same 

haplotype as all the AID SNP risk alleles) and the rs2248374-A allele would express the 

mRNA encoding a full- length ERAP2 protein.  

We questioned whether the relationship between ERAP2 expression and HLA-class I gene 

expression could be observed in our APC data (Figure 14). Although there was no clear 

relationship between the expression levels of ERAP2 and HLA-A, HLA-B or HLA-C, we did 

notice that the two individuals (82 and 83) with the lowest levels of ERAP2 also consistently 

had among the lowest levels of the HLA class I genes. However, more than six individuals are 

needed to confirm this hypothesis. Furthermore, edgeR does not recommend comparing the 

expression levels from two genes in one cell type, as edgeR is only concerned with relative 

changes in expression levels between conditions, and not directly with estimating absolute 

expression levels [159]. 
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Figure 14: Analysis of the relationship between ERAP2 and the HLA-class I genes A. ERAP2 B. HLA-A, C. 

HLA-B and D.HLA-C.  Boxplots represent the median and quartiles of the relative RNA expression levels as 

normalized FPKM. The X-axis shows the individual thymic APCs and the Y-axis shows the TMM normalized 

FPKM. Black dots are replaced by the IDs of the individual biological replicates. Black dots encircled in red are 

outliers. 

Taken together, it seems to me that little or no ERAP2 expression is beneficial, whereas 

having ERAP2 expression is associated with AID risk, possibly because of more HLA class I 

molecules on the cell surface. One could further speculate whether it is in fact sufficient to 

have ERAP1? Not many studies have addressed the relationship between the amounts of 

MHC class I molecules and predisposition to autoimmunity, but an interesting hypothesis, 

which has been supported by others, states that there is a link between HLA class I expression 

and the pathogenesis of AID [160, 161]. HLA class I is expressed on all nucleated cells, 

meaning that all cell types in the human thymus might be affected by the variation in ERAP2 

expression. This could possibly have an implication on thymocyte development or self-

antigen presentation by thymic APCs. Further studies on how variation in ERAP2 expression 

influences these cell types will be needed in the future to answer these questions.  

5.1.2 ERAP1 

We found no clear link between the most significant eSNP (rs7063) and the AID risk variants 

(rs27432 and rs10045403) in ERAP1 because of the low LD (r2 = 0.22 and r2 = 0.37, 

respectively). The eQTL signals from the AID SNPs were also markedly inferior. It is 

therefore likely that the AID risk variants at ERAP1 exert their effect in other ways than 

influencing thymic ERAP1 gene regulation. These findings show the importance of 
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thoroughly mapping eQTL signals in tissues, and that although a risk variant correlates with 

an eGene, it doesn’t necessarily mean that the risk variant is the causal eSNP. However, we 

cannot exclude the possibility that other thymic eSNPs in higher LD with rs27432 and 

rs10045403 would be detected if a larger number of thymic tissue samples were analysed and 

more power was added to the study. 

5.1.3 SIRPG 

Which allele of the eSNP rs2281808 that is associated with T1D risk is not reported in the 

GWAS catalog [136]. It was therefore not possible to see which way the risk allele influenced 

the expression of SIRPG. SIRPG encodes the signal-regulatory protein gamma (CD172G), a 

member of the signal regulatory protein family [162]. Unlike its family members SIRPα and 

SIRPβ, SIRPγ is highly expressed in SP CD4+ and CD8+ T cells [162]. SIRPγ on the T-cell 

surface binds to CD47 on other cells to increase cell-cell adhesion [162, 163]. Furthermore, 

interaction between SIRPγ on T cells and CD47 on APCs promotes antigen-specific T-cell 

proliferation and costimulates T-cell activation [163]. Interaction with APCs in thymus is an 

extremely important process for the developing T cells, as this is the way their TCR is tested 

for functionality and self-peptide recognition. It is therefore conceivable that the thymic 

SIRPG eGene from paper II is expressed in the developing thymocytes. Moreover, SIRPγ is 

also expressed in B cells [164]. Consistent with this, we detected SIRPG expression in CD19+ 

B cells among the thymic APCs. Low levels were also detected in both DC subsets. The eSNP 

underlying the SIRPG eQTL was originally an intronic SNP from GWAS associated with type 

1 diabetes, but then the disease signal was further fine-mapped to a missense variant 

(p.Val263Ala) in exon 4 of the gene [42]. Valine and alanine both have aliphatic R groups 

that are non-polar and hydrophobic, it is therefore difficult to interpret the functional impact 

of this amino acid change on SIRPγ, and how it eventually contribute to AID susceptibility.  

5.1.4 FCRL3 

Homozygosity for the eSNP rs3761959-G risk allele in the FCRL3 eQTL led to a decrease in 

gene expression. This eSNP was associated with MS and GD, and in 2013, RA was also 

found associated with FCRL3 [45]. FCRL3 encodes an Fc receptor-like glycoprotein. Fc 

receptors bind to the Fc portion of immunoglobulins and can trigger phagocytic or cytotoxic 

cells to destroy microbes. The Fc receptor-like genes have similar features to Fc receptor 

genes [165]. FCRL3 has both a immunoreceptor tyrosine-based activation motifs and a 

immunoreceptor tyrosine-based inhibition motifs and has therefore been suggested to have an 

activating/inhibitory or a fine-tuning role in regulation of immunologic function [165]. When 
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FCRL3 expression was investigated in cell lines representing different hematopoietic lineages, 

it was only found in mature B cell lines [165]. Consistent with this, expression from the 

FCRL3 eGene was clearly observed in the thymic CD19+ B cells, and low levels were also 

detected in the CD123+ DCs. It is therefore imaginable that the eQTL influence the fine-

tuning role of FCRL3 in thymic CD19+ B cells, and possibly also in CD123+ DCs, perhaps in 

relation to central tolerance. 

5.1.5 RNASET2 

We observed a higher gene expression of RNASET2 in the thymus of individuals that were 

carriers of the eSNP rs415890-C risk allele, associated with CD. GWAS has in addition 

reported RNASET2 as a risk factor for vitiligo [166]. RNASET2 encodes the ribonuclease T2, 

and is a human member of the Rh/T2/S family of acidic hydrolases [167]. Ribonucleases are 

ubiquitous, conserved enzymes that are involved in RNA metabolism [167]. Interestingly, the 

involvement of RNASET2 in the pathogenesis of vitiligo has been addressed [168]. Vitiligo is 

an AID where melanocytes are destroyed, resulting in depigmented skin [166]. A study by 

Wang et al. [168] focused on the fact that RNASET2 is secreted from the cells under stress 

conditions (by for instance ultraviolet irradiation, mechanical injuries and inflammation). This 

was supported by their finding that RNASET2 was overexpressed in the epidermis of vitiligo 

patients compared to healthy controls [168]. Their hypothesis further is that RNASET2 might 

act as an endogenous ligand that activates APCs and further leads to an immune response 

against melanocytes [168]. Another study has shown that omega-1, an RNaseT2 family 

member secreted from the eggs of Schistosoma mansoni, could induce Th2 polarization 

through DC priming [169], and therefore Wang et al. will investigate further whether or not 

the human RNASET2 has similar effects [168]. According to the Human Protein Atlas, 

expression of RNASET2 can be detected in all tissues, and among the thymic APCs, we could 

also detect RNASET2 expression in all APCs, with the highest levels in CD123+ and CD141+ 

DCs. It is of course imaginable that RNASET2 is expressed in thymic tissue as a response to 

stress (for instance because of the cardiac surgery). However, it could also be expressed 

ubiquitously due to its role in RNA metabolism. Nevertheless, there seems to be a link 

between a higher expression of RNASET2/RNASET2 and AID. More studies are needed to 

understand the impact of the thymic RNASET2 eQTL in DCs, and possibly in thymocytes. 

5.1.6 SYS1 

The Ps associated eSNP rs1008953-C risk allele correlated with a higher gene expression of 

SYS1. Although few functional studies have been performed with the SYS1 protein, one study 
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reports that the homologue of SYS1 in Saccharomyces cerevisiae, sys1p, is a Golgi membrane 

protein that possibly forms a complex with the Arf-like GTPase 3p (Arl3p) and targets Arl3p 

to the Golgi apparatus [170]. The human homologue of Arl3p, ADP-ribosylation factor-

related protein 1 (ARFRP1) co-precipitates with the human homologue of sys1p by chemical 

cross-linking [170], suggesting a similar role in humans. A model that emerged from these 

findings suggest that sys1p recruitment of Arl3p will further, through progressive steps 

involving other factors, lead to the capture of vesicles from the endosomes and fusion with the 

trans-Golgi network [171]. Consistent with the fact that SYS1 is expressed in all tissues 

according to the Human Protein Atlas, SYS1 was also expressed in all four thymic APCs. The 

slightly higher SYS1 eGene expression in individuals homozygous for the rs1008953 risk 

allele could possibly affect the trafficking of vesicles from endosomes to the Golgi. In the 

endosomes, processed antigenic peptides and HLA class II proteins are present [172], it is 

therefore tempting to speculate that the variation in SYS1 expression could perhaps indirectly 

interfere with the HLA-class II pathway in the APCs. However, further studies are needed to 

understand the functional consequence of the thymic SYS1 eQTL. 

5.1.7 NPIPB8 

The NPIPB8 eQTL comprised the eSNP rs151181, where the C risk allele was associated 

with CD and a higher NPIPB8 expression. This eQTL was one of the two potentially thymus-

specific eQTLs in paper II. NPIPB8 encodes member B8 of the nuclear pore complex 

interacting protein family. According to the EMBL-EBI database 

(http://pfam.xfam.org/family/npip), the function of this family is unknown. In the Human 

Protein Atlas, NPIPB8 is a tissue-enriched gene expressed in the testis, but it is also detected 

at low levels in the small intestine, duodenum, ovaries, adrenal gland, endometrium, 

epididymis, stomach, cerebral cortex, appendix, prostate, spleen, skin and 15 other tissues 

(https://www.proteinatlas.org/ENSG00000255524-NPIPB8/tissue), suggesting that NPIPB8 is 

an ubiquitous, but lowly expressed protein. Among the thymic APCs, NPIPB8 was not 

expressed (FPKM > 1), albeit low levels could be detected in the CD123+ DCs. This suggests 

that NPIPB8 might be an eQTL in thymocytes. More studies are needed to understand the 

function of this family and particularly this member, and to further investigate the functional 

implication of the potential thymus-specific NPIPB8 eQTL. 

5.1.8 C2orf74 

In C2orf74, we found a higher gene expression in individuals homozygous for the eSNP risk 

alleles (rs13003464-G and rs10181042-A), which are associated with CD. C2orf74 is a gene 
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of yet unknown function. In the Human Protein Atlas, C2orf74 is expressed in all tissues, 

however, in the thymic APCs, C2orf74 was not expressed according to our threshold (FPKM > 

1), although low levels could detected in all four APCs. The SNP-probe pair 10181042-

ILMN_339804 emerged as the strongest eQTL in the screen in paper II, and more studies 

should be performed to understand the functional role of C2orf74 and the implication this 

eQTL can have in thymus. 

5.1.9 AJ006998.2 

Finally, the eSNP rs1736020-C risk allele associated with CD correlated with a lower 

expression level of AJ006998.2. This was the second potentially thymus-specific eQTL in 

paper II. AJ006998.2 is a lincRNA transcript, transcribed from the non-coding lincRNA 

DNA sequence AJ009632.2. AJ009632.2 did not seem to be expressed (FPKM > 1) in the 

thymic APCs, the exceptions were a single outlier in CD141+ and one in CD19+ B cells. 

However, it is not possible to know which transcript that is observed in these outliers, as the 

non-coding sequence AJ009632.2 is reported to have ten different splice variants according to 

the Ensembl database (http://www.ensembl.org). The general lack of AJ009632.2 expression 

in the thymic APCs suggests that the AJ006998.2 eQTL is a thymocyte eQTL. As mentioned 

in the introduction, the molecular function of lncRNAs is highly diverse [52], and lncRNAs 

are known to be expressed in both CD8+ T [173] cells and CD4+ T cells [174]. If AJ006998.2 

is expressed in the thymocytes, the functional implication of this potential thymus-specific 

eQTL in T cell development could be an interesting focus for further studies. 

5.2 Are the eGenes involved in any specific pathways? 
A variety of databases can be used to analyse whether a set of genes are members of the same 

biological pathway. Pathway analysis with risk loci have been performed in several AIDs, 

including RA [175, 176], SLE [176], MS [177], PBC [178], T1D [179] and CD [179]. 

Interestingly, these studies led to the identification of several pathways that were shared 

among the various AIDs [23]. Since our eGenes were associated with risk variants from 

different AIDs (and therefore perhaps a common pathway for all) we analysed these genes 

using the ingenuity pathway (IPA) software. However, this did not result in any significant 

association to a specific pathway. The reason for this could be that the number of eGenes 

emerging from our eQTL screen (n = 8) was be too low, as biological pathways usually 

involve many genes. However, several of the shared pathways between immune-mediated 

diseases are immunological of nature [29, 44], which further supports to study the thymus 

organ in more detail.  
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5.3 Have we found all the AID-eQTLs? 
In paper II, several of the SNP-Probe pairs in our screen which did not pass the significance 

thresholds (3.1 x 10-6 and 2.7 x 10-5) could still be true eQTLs. As discussed in this paper, two 

eQTLs involving IL18RAP (P = 1.8 x 10-3) and IRF5 (P = 0.034) have been reported in earlier 

studies [64, 65], but did not pass the strict significance thresholds in our screen. More AID-

eQTLs could have emerged if we had a larger sample size and if we had taken account of 

certain aspects in the screen. As mentioned in Section 4.5 (Quality Control of the data) and 

4.6 (Statistics), if we had tested only AID risk variants that were not linked by LD, or had 

removed probes that were either binding non-uniquely or overlapping with common SNPs 

(MAF > 1%) before the eQTL testing, fewer SNP-probe pair tests would have been included 

and the threshold of multiple testing would have been less strict. Other thymic eGenes from 

the screen in paper II with suggestive significance (P < 7.33 x 10-4) that have roles in 

inflammation and immune response included for instance CLEC1 [180], ELMO1 [181] and 

TRAIP [182]. Nevertheless, we chose to have a strict significance threshold, and rather accept 

more type II errors than type I errors in our screen. 

5.4 The location of regulatory eSNPs relative to their eGenes 
In the context of cis-eQTL mapping, is a window of 2 Mb (location of eGene ± 1 Mb) enough 

for investigating a sufficient number of SNPs and for finding the causal eSNP? Among the 

nine eQTLs that emerged from paper I and II, we observed that the lead eSNPs that 

correlated with expression of  ERAP1, FCRL3, SIRPG, RNASET2, SYS1 and AJ006998.2 

were positioned either within the eGene itself or upstream from the transcription start site of 

the eGene. The location of these eSNPs supports the theory that many cis-regulatory SNPs 

(>90%) are located within a window of ± 100 kb of the transcription start site [56, 60, 183]. 

The eSNPs that correlated with the expression levels of ERAP2, C2orf74 and NPIPB8 were 

positioned in one, three or five genes away from their respective eGenes, suggesting that cis-

regulatory mechanisms can extend over longer distances, likely due transcriptional processes 

such as chromatin looping [184]. More precisely, these eSNPs were located 124,637 – 

169,068 bp from their eGenes, hence not far from the 100 kb threshold. Although we did not 

have the power in our eQTL screens to pinpoint the causal lead eSNP, these findings suggest 

that a 1 Mb window is more than sufficient in order to find the causal peak eSNP for a gene. 
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Figure 15: A Figure summarizing the eGene functions in the thymic APCs. 

6 Conclusions and future perspectives 
The studies performed here are some of the first to combine findings from GWAS and 

Immunochip studies with gene expression in thymus, and complement them with functional 

annotation from epigenome databases. These studies clearly indicate that thymic gene 

regulation might be influenced by autoimmune susceptibility loci. Some of the eQTLs were 

exclusively found in thymus, indicating that the disease risk SNPs possibly regulate gene 

expression uniquely in this organ. Nevertheless, it is highly likely that many AID-associated 

eQTLs from minor cell populations in thymus might have been lost due to the over-

representation of developing thymocytes (95%). I believe that we have only started to uncover 

the tip of the iceberg, and that many more AID-related QTLs (eQTLs, splicing QTLs, 

transcription factor binding QTLs) would emerge from the transcriptome profiling of different 

thymic cell populations. The thymus is a complex tissue comprising many cell populations, 

and in the future we need to seize a higher resolution of the thymic cell subsets to determine 

which cell types that are affected by the risk SNPs. 
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In future studies, the main focus will be to increase sample size and to test novel AID risk 

variants for eQTL associations in thymus and in the different thymic cell populations. In order 

to achieve this, we need to dissect the thymic tissue by mapping all cell types (for instance by 

CyTOF), obtain higher purity of viable, single thymic cell types (by using a flow cytometry 

cell sorter, such as for example FACs Aria) and address their transcriptional landscape at 

different developmental stages. When more specialized technology has been developed, we 

need to assess the peptide repertoire on the HLA molecules of thymic APCs to confirm which 

TRAs are in fact presented to the developing thymocytes. 

Collectively, these efforts will hopefully increase our understanding of the pathogenic 

mechanisms in AIDs, enabling better therapeutic options for patients. Advancement in the 

field of genetics in combination with understanding the functional role of these risk variants 

could lead to personalized medicine and novel therapeutic approaches that are based on 

particular autoimmune phenotypes and genomic alterations. 
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ERRATA 

The following changes were made after submission of the thesis, but before printing: 

 

Page 23 (Paragraph 1.5.1): «Any interference with the thymic medulla will  manifest in autoimmunity, whether 
it is disruption of the three-dimentional space, …” was changed to “Any interference with the thymic medulla 
will  manifest in autoimmunity, whether it is disruption of the three-dimensional space, …)” 

Paper III: 

Page 10 (Results, under “Genes encoding tissue-enriched proteins in the thymic APCs”) 

“Therefore, we reanalyzed the data with a lower threshold, where genes only needed to be present i  one 
biological replicate…” was changed to “Therefore, we reanalyzed the data with a lower threshold, where genes 
only needed to be present in one biological replicate” 

Page 10 (Results, under “Genes encoding tissue-enriched proteins in the thymic APCs”) 

“Finally, we investigated whether there were any overlap between the TRA genes and human autoantigens 
from the litearture (Fig 4B).” was changed to “Finally, we investigated whether there were any overlap 
between the TRA genes and human autoantigens from the literature (Fig 4B).” 

Page 13 (Discussion): 

“Furthermore, Liu et al. also reports that, for DE studies, sequencing more than 10 mill ion reads per sample 
gives dimishing returns compared with adding replication (Liu et al. 2014)” was changed to “Furthermore, Liu 
et al. also reports that, for DE studies, sequencing more than 10 mill ion reads per sample gives diminishing 
returns compared with adding replication (Liu et al. 2014)” 

Page 16 (Methods, under “Isolation of thymic APCs”) 

“… before TECs were EpCam-positively selected with CELLection TM Epithelial Enrich (Thermo Fischer #16203).” 
was changed to “… before TECs were EpCAM-positively selected with CELLection TM Epithelial Enrich (Thermo 
Fischer #16203).” 

Page 19 (Methods, under “Transcriptional regulator genes and genes encoding autoantigens in the thymic 
APCs”) 

“However, as TRAs are known to be lowly expressed in onl y 1-3% of mTECs at any given time, we lowered the 
fi ltering criterias in edgeR for this analysis and included genes present in at least one biological replicate in the 
dataset.” was changed to “However, as TRAs are known to be lowly expressed in only 1-3% of mTECs at any 
given time, we lowered the fi ltering criteria in edgeR for this analysis and included genes present in at least one 
biological replicate in the dataset.” 

Page 20 (Acknowledgements): 

“Aknowledgements” was changed to “Acknowledgements” 

Supplementary Figure S1:  

“Genes encoding protein markers in A. mTECs (EpCam, FOXN1 and AIRE) and in B. CD19+ B cells (CD19, CD22 
and CD20 (MS4A1)).” was changed to “Genes encoding protein markers in A. mTECs (EpCAM, FOXN1 and AIRE) 
and in B. CD19+ B cells  (CD19, CD22 and CD20 (MS4A1)).” 


