
vol . 1 9 2 , no . 1 the amer ican natural i st july 20 1 8
Genomic Contingencies and the Potential for

Local Adaptation in a Hybrid Species
Anna Runemark,1,2,* Laura Piñeiro Fernández,3 Fabrice Eroukhmanoff,1 and Glenn-Peter Sætre1

1. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo; 2. Department of Biology,
Lund University; 3. Institut für Systematische und Evolutionäre Botanik, University of Zürich

Submitted December 8, 2017; Accepted February 14, 2018; Electronically published April 23, 2018

Online enhancements: appendix, supplemental material. Dryad data: https://dx.doi.org/10.5061/dryad.615s9q5.
abstract: Hybridization is increasingly recognized as a potent evo-
lutionary force. Although additive genetic variation and novel com-
binations of parental genes theoretically increase the potential for
hybrid species to adapt, few empirical studies have investigated the
adaptive potential within a hybrid species. Here, we address whether
genomic contingencies, adaptation to climate, or diet best explain di-
vergence in beak morphology using genomically diverged island popu-
lations of the homoploid hybrid Italian sparrow Passer italiae from Crete,
Corsica, and Sicily. Populations vary significantly in beak morphol-
ogy both between and within islands of origin. Temperature season-
ality best explains population divergence in beak size. Interestingly,
beak shape along all significant dimensions of variation was best ex-
plained by annual precipitation, genomic composition, and their in-
teraction, suggesting a role for contingencies. Moreover, beak shape
similarity to a parent species correlates with proportion of the genome
inherited from that species, consistent with the presence of contingen-
cies. In conclusion, adaptation to local conditions and genomic con-
tingencies arising from putatively independent hybridization events
jointly explain beak morphology in the Italian sparrow. Hence, hybrid-
ization may induce contingencies and restrict evolution in certain direc-
tions dependent on the genetic background.

Keywords: adaptation, beak shape, climate, diet, genetic constraints,
Passer italiae.

Introduction

Adaptation to divergent ecological niches is a major factor in
population divergence and speciation (Schluter 2000; Grant
and Grant 2008; Schluter 2009). Adaptation in key traits
where novel morphologies can allow for the invasion of
new niches (Dumont et al. 2012) are of particular interest be-
cause divergence in these can drive speciation (Hunter 1998).
In birds, key traits can also enable coexistence with closely
related species (Miraldo and Hanski 2014) and hence spur
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adaptive radiations and promote diversification (Schluter
2000; Jarvis et al. 2014). The beak is such a key trait, since
beak shape adaptations have significantly contributed to
the niche diversity in birds (Mallarino et al. 2012). Varia-
tion in beak size and shape is important for both feeding
efficiency (Benkman 2002, 2016) and thermoregulation (Sy-
monds and Tattersall 2010). It also affects song (Derryberry
et al. 2012) and can hence be a target of sexual selection (Huber
and Podos 2006). A classical example of beak morphology
adaptation is the radiation of Darwin’s finches on the Gala-
pagos Islands, where divergent selection between groups of
birds with different dietary preferences has caused a dramatic
beak shape diversity (Grant and Grant 2006). Interestingly,
hybridization can also generate new beak shapes that allow
more efficient use of specific dietary resources (Grant and
Grant 1996; Lamichhaney et al. 2015, 2016).
Hybridization is increasingly recognized as an important

source of novel genetic variation (Mallet 2005, 2007; Abbott
et al. 2013). It can spur novel adaptations by increasing ge-
nomic diversity and through changing the constraints on
the direction of evolution (Selz et al. 2013; Lucek et al.
2016). Hybrids are expected to have more additive genetic
variation than the parental species’ genomes, and this in-
crease is highest when the parent species are fixed for differ-
ent alleles at each locus (Bailey et al. 2013; Eroukhmanoff
et al. 2013a; Seehausen 2013). Furthermore, the mosaic ge-
nome from the combination of the two parental genome
complexes (Rieseberg 2003) can give rise to phenotypes that
are either intermediate or mosaic versions of the parents or
transgressive phenotypes, which are beyond the range of
the parental species (Rieseberg et al. 1999; Dittrich-Reed
and Fitzpatrick 2012). The increase in additive genetic var-
iation and the novel combinations of parental genes may in-
crease the potential for hybrids to adapt (Rieseberg 2003;
Eroukhmanoff et al. 2013a). Interestingly, different hybrid
populations can attain strongly divergent genomic composi-
tion (Roy et al. 2015; Runemark et al. 2018b). However, hybrid
species can also be subjected to contingencies resulting from
mosaic patterns of parental inheritance (Eroukhmanoff et al.
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2013a). For instance, the allele frequency change for a trait
with selection for alleles of one parent species may depend
on the genome-wide proportion of alleles from that parent
species. Hybrid genomes are under selection to purge incom-
patible allele combinations (Eroukhmanoff et al. 2017), and
this could lead to selection for backcrossing toward one par-
ent species (Baack and Rieseberg 2007). Under a scenario
where multiple sites across the genome are selected to be
compatible with amajority of alleles from the one parent spe-
cies, the possibilities to increase the frequency of an allele
from the other parent species in to response to selection for
a trait value similar to that of the other parent species may
be constrained. Here, we refer to this pattern as a genomic
contingency (cf. Eroukhmanoff et al. 2013a). Tightly linked
loci—for instance, those linked to an inversion—are not
likely to be affected by recombination following hybridization,
and for such pairs of loci parental allele combinations would
persist (Kirkpatrick and Barton 2006) and thereby could po-
tentially constitute genomic constraints in hybrid species.
Moreover, depending on the type of selection acting on the
parent species’ phenotypes, hybrid morphology is expected
to be more or less restricted. For traits under stabilizing selec-
tion in parents, hybrids are expected to be more free to evolve
toward a variety of different potential fitness optima, even
those extending beyond those of the parents (Bailey et al.
2013). However, when directional selection has contributed
to parent species differences, hybrid phenotypes are predicted
to be intermediate of the parent taxa and restricted to evolve
along the axis of divergence between them (Bailey et al. 2013).
Directional selection on parent species could facilitate conver-
gence toward parental phenotypes (Bailey et al. 2013). In this
situation, populations of hybrid species could be restricted to
trait values reflecting the relative proportion of the genome
inherited from the parent species, depending on genomic
background, linkage, and constraints associated with genomic
architecture.

Hybrid populations differing in genomic composition
can be divergent because of genomic contingencies where
allele frequencies are most strongly affected by the selection
for compatibility with the rest of the genome (Baack and
Rieseberg 2007; Eroukhmanoff et al. 2017). Alternatively, pop-
ulations can be divergent because they have adapted to local
selection pressures if the ecological selection is strong enough
to cause the locally most adaptive alleles to increase in fre-
quency, in spite of potential opposing genomic background
selection. If genomic contingencies are important, we pre-
dict an association between the proportion of the genome
inherited from one parent species and the phenotypic sim-
ilarity to that parent species. In the absence of contingen-
cies, populations experiencing the same selection pressures
are expected to develop similar phenotypes (Grenier and
Greenberg 2005; Ravinet et al. 2012; Runemark et al. 2014,
2015). If contingencies are not important, we expect ecolog-
This content downloaded from 129.24
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ical factors to best explain phenotypic variation between
genomically differentiated populations. Tests for the pres-
ence of such genomic contingencies in hybrid species have,
however, rarely been made.
Here, we address the relative importance of genomic

contingencies and ecology for hybrid phenotypes through
testing the predictions outlined above. We investigate how
diet, climate, and genomic composition affect beak shape
and size in a hybrid species. Our study species, the Italian
sparrow, is a homoploid hybrid resulting from interbreed-
ing between the Spanish sparrow (Passer hispaniolensis) and
the house sparrow (Passer domesticus; Elgvin et al. 2011; Her-
mansen et al. 2011; Trier et al. 2014). Beak morphology is af-
fected by both diet (Benkman 2002, 2016) and thermoregula-
tion and climate (Allen 1877; Symonds and Tattersall 2010).
As beak morphology differs with dietary niche in commensal
and noncommensal subspecies of the house sparrow (Riyahi
et al. 2013), it is likely to be influenced by dietary niche in the
Italian sparrow as well. Moreover, the recent shift to an an-
thropogenic niche by the house sparrow could potentially
have caused directional selection in one parent species (cf.
Riyahi et al. 2013), a scenario under which genomic contin-
gencies in the hybrid species are more likely to arise (Bailey
et al. 2013). To be able to address whether there are genomic
contingencies from the relative proportion of parental alleles
affecting beakmorphology,we use three island populations of
Italian sparrow from each of the islands Crete, Corsica, and
Sicily that show strong differences in genomic composition
and appear to represent independent hybridization events
(Runemark et al. 2018b). These populations are allopatric from
both parent species, and we find no indications of gene flow
between these spatially widely separated populations (Rune-
mark et al. 2018b). In linewith the predictions outlined above,
we expect beak size and shape to correlate with local diet or
climate measures if there is strong ecological selection on
the beak (Grenier and Greenberg 2005) and genomic contin-
gencies are not important in the system. On the other hand, if
contingencies are important, we predict that island origin (re-
flecting genomic composition) better explains beakmorphol-
ogy. Finally, an interaction between these factors could mold
beak shape. Diet (Grant andGrant 1996; Neto et al. 2016), cli-
mate (Eroukhmanoff et al. 2013b; Gardner et al. 2016), song
(Huber and Podos 2006; Badyaev et al. 2008), and phyloge-
netic inertia (Shao et al. 2016) have previously been found
to affect beak morphology, although the phylogenetic inertia
is not likely to be relevant for within-species divergence. Her-
itability of beak morphology is very high in the house spar-
row, with a heritability of 0:985 0:19 SE for beak length
and 0:765 0:35 SE for beak depth (Jensen et al. 2003). Beak
morphology heritability is also high for flycatchers (Merilä
and Sheldon 2000), and several studies in Darwin’s finches
have identified large effect genes underlying beak morphol-
ogy differences in hybrid species (Lamichhaney et al. 2015).
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Taken together, this strongly suggests a large genetic com-
ponent in beak morphology variation, but we cannot ex-
clude that phenotypic plasticity (Wund 2012) could contrib-
ute to differences between populations. If plasticity is the
sole mechanism affecting beak morphology, no contingen-
cies in the form of correlations between proportion of pa-
rental alleles in the genome and similarity to the parent spe-
cies in beak morphology are expected. In the other extreme
case, if contingency fully explains differences, we would ex-
pect the proportion of parent alleles to be perfectly predic-
tive of similarity to parent phenotype, regardless of any local
factor. Predictions for plasticity are clearly different from
those of genomic contingencies, but it is not possible to rule
out that locally adaptive beak morphology might partly be
explained by phenotypic plasticity. An entirely plastic re-
sponse is highly unlikely, given that we find evidence for el-
evated differentiation and signals of selection on FGF10 (a
candidate gene involved in beakmorphology) between these
populations (Runemark et al. 2018b).

The effects of climate and diet on beak morphology have
not been studied in genomically divergent populations of a
hybrid species. Investigating these factors jointly will shed
light on whether population differences within hybrid spe-
cies could be adaptive or may be restricted to values along the
axis of parental divergence. Investigating the extent of sexual
dimorphism may shed light on the extent of competition
and resource partitioning between the sexes (cf. Bolnick
and Doebeli 2003; Cooper et al. 2011). The extent of sexual
dimorphism may also reflect whether there is male-specific
selection on song (cf. Huber and Podos 2006).We used stable
isotopes as a proxy for diet, a set of climatic variables previ-
ously shown to influence beak size in the Italian sparrow
(Eroukhmanoff et al. 2013b), and whole genome estimates
of relative parental proportions from an earlier study on the
island populations (Runemark et al. 2018b) to address which
factors shape phenotypic variation in a hybrid species.
Material and Methods

We sampled three populations of Italian sparrows from
each island of Crete, Corsica, and Sicily during spring 2013
(fig. 1A).We caught 14–38 birds in each population (for sam-
ple sizes and sex, see table A1; tables A1, S1–S6 are available
online) using mist netting and took digital pictures of the
right side of each birds’ head with a Nikon D-500 16.2 mega-
pixel camera. The background was 1-mm2 paper, and we en-
sured that the head of the bird was not tilted. Geometric
morphometrics was used to analyze beak shape. We used the
thin plate spline–based programs developed by Rohlf (1998)
for file conversion (tpsUTIL) and digitization of landmarks
(tpsDIG2). Five homologous landmarks were placed on the
beak, and we drew an outline with seven equidistant points
(i.e., semilandmarks) to further capture beak shape (fig. A1;
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All use subject to University of Chicago Press Term
figs. A1, S1–S5 are available online). PAST (Hammer et al.
2001) was used to estimate relative warps (RWs) and centroid
size. The data set used to estimate the RWs included both pa-
rental species as well as all Italian sparrow populations in-
cluded in the study. Relative warps are principal components
of shape (Zelditch et al. 2004) and were extracted (n p 32)
and imported to R for further analysis. All further statistical
analyses were performed in R (R Development Core Team
2013). Because feathers for female stable isotope analysis were
sampled for only one population on each island, we performed
all tests on two additional data sets to ensure that this did
not bias our findings. The two data sets included one set with
only one population from each island with both males and
females and one set with all nine populations including only
males. Sexual dimorphism in beak morphology was small,
and the findings based on these data sets were consistent with
these from the whole data set (data not shown).
First, we established whether there were significant dif-

ferences in beak size and shape using centroid size and the
four RWs deviating from the noise floor (table S1) as re-
sponse variables in ANOVA and MANOVA, respectively.
We tested both for the presence of overall population var-
iation and for variation among populations within islands
using models with population nested within island.
Next, we investigated which factors best explain size and

shape variation. We used stable isotopes as a proxy for die-
tary differentiation. The combination of d15N and d13C iso-
tope ratios provides a comprehensive picture of diet; d15N dif-
ferentiation increases with each trophic level and is indicative
of the trophic position in the food web (reviewed in Caut
et al. 2009). d13C varies between C3 and C4 plants (Fry 2006),
and d13C ratios in plants decrease with rainfall (Stewart et al.
1995; Ferrio and Voltas 2005); therefore, d13C values are a
proxy for dietary source. To obtain stable isotope values, we
sent great covert feathers sampled during spring (March–
June; 1 5 20:2 mg finely cut samples in tin capsules; arti-
cle D1008, Elemental Microanalysis, Devon, UK) for d13C
and d15N analysis at the Stable Isotope Facility (University
of California, Davis). Because the aim was to examine pop-
ulation differences, and because sparrows feed on a wide
variety of resources, we did not attempt to examine isoto-
pic contents of potential diet items but rather whether diet
differed. Because baseline climatic differences could affect iso-
topic contents, we examined whether values clustered within
islands. This was not the case (data not shown), and dietary
differences were therefore not overrun by baseline signa-
tures. We also used climatic factors previously shown to
correlate with beak size measurements in Italian sparrows
(Eroukhmanoff et al. 2013b) as proxies for local climate. We
extracted climate variables (annual temperature, annual pre-
cipitation, temperature seasonality, and precipitation sea-
sonality) from theWorldClim database (Hijmans et al. 2005);
table S3) using the R packages raster (Hijmans and van Etten
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Figure 1: Description of the study system and beak morphology divergence. The Italian sparrow is a hybrid between the house sparrow and
the Spanish sparrow. A, Independent, genetically divergent populations are found on the islands of Crete, Corsica, and Sicily (Runemark et al.
2018b). Three populations were sampled from each island (for coordinates, see table A1, available online). B, Hybrid index (i.e., the prob-
ability of house sparrow origin based on whole genome data) differs between populations, with Crete being most house-like and Sicily most
Spanish-like. C, Pairwise mean beak shape differences between populations (size differences are scaled). D, Population divergence in size is
not merely reflecting island of origin. E, Major axis of shape variation is not predicted by island of origin either.
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2016), rgdal (Bivand et al. 2016), and foreach (Calaway et al.
2015). Island hybrid index estimates were retrieved from
Runemark et al. (2018b), and they show that the Italian spar-
row populations on the three studied islands are strongly
genetically diverged with independent evolutionary trajecto-
ries (Runemark et al. 2018b).

Briefly, for the Muratello (Corsica), Cos (Sicily), and Perama
(Crete) populations, Illumina sequence reads were mapped
to a repeat-masked version of the house sparrow genome
(Elgvin et al. 2017) using BWA 0.7.8 (Li and Durbin 2009)
and the BAM file sorted using SAMTOOLS version 1.0 (Li
et al. 2009). Duplicates were identified and filtered out with
MARKDUPLICATES from PICARD-TOOLS version 1.107
(http://broadinstitute.github.io/picard/), indels were identi-
fied using RealignerTargetCreator, and local realignments
around these were performed with IndelRealigner, both com-
ponents of GATK3.3.0 (Van der Auwera et al. 2002;McKenna
et al. 2010). Final sequencing coverage of these final BAM
files was approximately eight times per individual. Variants
were then called using the GATK HaplotypeCaller and then
GATK GenotypeGVCFs. This left 49,237,560 variable sites.
Indels were first filtered out using VCFtools version 0.1.12b
(Danecek et al. 2011), and hard filtering according to the
Broad Institute’s recommendations was performed with
bcftools-1.2 (Li et al. 2009). In addition, we filtered out sites
with a mean number of reads per individual less than three,
with a genotype quality!20 or with amapping quality lower
than 20 using VCFtools version 0.1.12b (Danecek et al.
2011). Genetic admixture was estimated using ADMIX-
TURE version 0.911 (Alexander et al. 2009). The VCF file
was converted to plink’s PED format using VCFtools ver-
sion 0.1.12b (Danecek et al. 2011) and plink version 1.07
(Purcell et al. 2007). Log likelihood values for K, the number
of genetic clusters in the data sets, supported two clusters
in the data set, and analyses were run for this value.We link-
age disequilibrium–pruned the data set; siteswithin a 50 SNP
stepping window with a correlation coefficient higher than
0.1were omitted.Thepruningwas performedwith plink ver-
sion 1.07 and left 438,443 sites for analysis. The admixture
analysis was performed individually for each island popula-
tion together with the two parent species. The probability of
house sparrow origin was then used as the hybrid index. For
a detailed explanation of these genomic methods, see Rune-
mark et al. (2018b). The genomic hybrid index differed be-
tween all islands, and within-island genetic differentiation
was significant but very low and significantly lower than be-
tween island differentiation (table S2). Hence, if beak shape
similarity to the parent species corresponds to genomic re-
semblance, the island hybrid index would be an important
factor in the models. Thus, these variables were used as ex-
planatory factors in our models.

To ensure that genetic differentiation within islands was
negligible compared with differences between islands, restric-
This content downloaded from 129.24
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tion site–associated DNA (RAD) sequencing data (A. Cuevas
and F. Eroukhmanoff, unpublished manuscript) was used
to retrieve within- and between-population FST. Low within-
island FST but with some evidence for local structure would
also suggest that allele frequency differentiation and hence
local adaptation is feasible at the spatial scale studied.
Centroid size and shape were used as dependent vari-

ables. Two models were run for shape: one with only the
main axis of divergence (RW1) explaining 160% of the var-
iation in shape and another including all four relative warps
that deviate from the noise floor. Because climate is identical
for all individuals within a population whereas diet may vary
between individuals within a population, one population-
level data set was created to address the effects of both diet
and climate, and one individual-level data set was created
solely with individual diet estimates. To test which models
best explain size and shape, we used a model selection frame-
work based on applicable information criteria.
Population-Level Analyses

For the population-level analyses, we first tested which eco-
logical factors best explain population divergence in beak
size and shape. For the models with centroid size as the de-
pendent variable, corrected Akaike information criterion
(AICc) and importance were estimated using the R package
MuMIn (Barton 2016). AICc is a version of AIC (Akaike
1974) that is especially suited for small data sets, and im-
portance is the sum of Akaike weights (Wagenmakers and
Farell 2004) over all models, including the explanatory vari-
able. The variables with highest importance were used in
subsequentmodels.We then tested which of all possible mod-
els best explained data based on AICc, with sex, hybrid in-
dex, and their interactions as explanatory variables. The same
model was repeated for shape, with the major axis of shape
divergence RW1 (reflecting a change from a wide to a nar-
row basal part of the beak; fig. S1) as a response variable. We
also performed a shape analysis including the four main RWs
(fig. S1), where selection was based on AIC on MANOVA.
Here, we first tested models including only one climate or
diet variable and then tested whether adding sex, hybrid in-
dex, and/or their interactions improved the model.
Individual-Level Analyses

For the individual-level data set, model selection was per-
formed as in the population-level analyses but on mixed
models, with population as a random factor and with cen-
troid size and RW1 as response variables. We used the lmer
command from the R package lme4 (Bates et al. 2016) for
these analyses. We first tested which of the ecological var-
iables best explained the model and then explored whether
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adding hybrid index, sex, and/or the interactions improved
the model in the same manner as the population-level analy-
ses. To retrieve F and P values for the mixed models, we
used themixed function supplied in the R package afex (Sing-
man et al. 2016).

For the shape analyses, including all four main RWs, the
R packageMCMCglmm (Hadfield 2010) was used.When the
number of groups is low, the posterior distribution of the var-
iance becomes increasingly tail heavy, causing poor mix-
ing of the Markov chain Monte Carlo (MCMC) chain. To
mitigate this, we used parameter expansion (Hadfield 2010)
on the MCMCglmm algorithm to speed up the rate of con-
vergence in the MCMC chain. This entails using informa-
tion from a run with an uninformative prior on the same
data to choose proper values for the prior means and prior
covariance matrix (alpha mean and variance) to be specified
in the parameter expanded run. We then used a Cauchy prior
as recommended for the parameter expanded run (Had-
field 2010), with the alpha variance set to the square of the
standard deviation in the posterior distribution from the
uninformative prior. The posterior sampling was run for
200,000 iterations with a burn-in of 40,000 and a thinning of
100. The MCMC chain was plotted and inspected for proper
mixing, and autocorrelation remained low (!0.1) between
successive samples in the chain. Three chains were run to
ensure consistency in parameter estimation. Model selection
for these models was performed on the basis of deviance in-
formation criterion. To estimate how much of the variation
was explained by each variable, variance components were
estimated from sum of squares for linear models from the
MCMCglmm posterior for multivariate mixed models and
with the VCA package version 1.3.3 (Schuetzenmeister and
Dufey 2017) for mixed models with univariate response var-
iables.

Finally, we addressed whether the variation among Ital-
ian sparrow populations is aligned with the axis of paren-
tal divergence or if the phenotypic values attained deviate
from this. We used PAST (Hammer et al. 2001) to esti-
mate RWs and centroid size for a data set including both the
Italian sparrow populations and one reference population of
each parent species. For size, we used an ANOVA with cen-
troid size from this analysis as a response variable and spe-
cies as a grouping factor. For shape, we performed a discrim-
inant function analysis based on parental values only in
PAST (Hammer et al. 2001) and then transformed RW scores
for the Italian sparrow individuals into discriminant scores
using the factor loadings of the discriminant axis between
parent species. We then tested whether the position along
the score axis was affected by hybrid index, thus reflecting
a correlation between genomic and phenotypic similarity to
the parent species using a linear regression. This will shed
light on whether genomic composition constrains phenotypic
adaptation within the Italian sparrow.
This content downloaded from 129.24
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Results

Sex did not significantly affect beak size or shape and was
not included in any of the best models for the data set with
both females and males in all populations (table S3); there-
fore, we proceeded with our analyses using the full data set.
There was variation in climate variables among populations
within islands as well as between islands (table S4), which
makes it possible to disentangle effects from climatic factors
from these of genomic composition.
Population Divergence in Hybrid Index,
Beak Size, and Beak Shape

Independent island populations from Crete, Corsica, and
Sicily differ in the proportion of the genome inherited from
house sparrow (Runemark et al. 2018b; fig. 1B). Beak size var-
ies between populations (size: F8, 127 p 18:75, P p 2E216;
shape: F32, 508 p 2:81, P p 1:05E206; fig. 1C–1E). These dif-
ferences persist if population is nested within island for both
size (island: F2, 127 p 22:56, P p 4:12E209; population nested
within island: F6, 127 p 17:48, P p 1:13E214) and shape (is-
land: F8, 250 p 6:94, P p 2:97E208; population nested within
island: F24, 508 p 1:69, P p :022). The presence of significant
variation within islands shows that differences do not merely
reflect genomic composition (fig. 1C–1E) but are influenced
by other factors.
Beak Size

Temperature seasonality was the factor best explaining pop-
ulation divergence in beak size and had DAICc of more than
6 to the second-best model (tables 1, 2; fig. 2A). Because all
individuals in a population experience the same climate, we
also tested which factors affect beak size at the individual
level, excluding climate variables. The best model for indi-
vidual variation includes d15N, genomic hybrid index, and
the interaction between these factors (fig. 2B), reflecting that
d15N changes do not affect individual beak size in the same
manner across islands. Two models were within DAICc of
2 of this best model (tables 1, 2). One included sex and the
interaction between sex and hybrid index in addition to the
above-mentioned factors, whereas the other included d15N,
genomic hybrid index, sex, and the interaction between ge-
nomic hybrid index and sex. Hence, patterns of individual
beak size variation are complex, and no clear best explana-
tory variables emerge.
Beak Shape: The Major Axis of Divergence

The best model for population divergence along the main
axis of shape variation, reflecting a change from a wide to a
narrow basal part of the beak (fig. S1), included only d13C, and
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Size analyses at population level:

Size
 Population
 d13C
 None
 3.63
 .085

Size
 Population
 d15N
 None
 3.1
 .129

Size
 Population
 Annual_Temp
 None
 2.3
 .180

Size
 Population
 Annual_Prec
 None
 2.7
 .155

Size
 Population
 Temp_Seas
 None
 −4
 .840

Size
 Population
 Prec_Seas
 None
 3
 .135

Size
 Population
 Island
 None
 7.2
 .019
Size analyses at individual level:

Size
 Individuals
 d13C
 Population
 2140.6
 !.01

Size
 Individuals
 d15N
 Population
 2142.5
 .0126

Size
 Individuals
 d15N + HI + d15N × HI
 Population
 −166.6

Size
 Individuals
 d15N 1 sex 1 HI 1 d15N #

HI 1 HI # sex

Population
 2165.6
Size
 Individuals
 d15N 1 HI 1 sex 1 HI # sex
 Population
 2164.6

Univariate shape analyses

at population level:

RW1
 Population
 d13C
 None
 −42.40
 .737

RW1
 Population
 d15N
 None
 236.00
 .103

RW1
 Population
 Annual_Temp
 None
 241.80
 .678

RW1
 Population
 Annual_Prec
 None
 236.10
 .106

RW1
 Population
 Temp_Seas
 None
 235.70
 .088

RW1
 Population
 Prec_Seas
 None
 240.20
 .476

RW1
 Population
 Island
 None
 236.00
 .103
Univariate shape analyses
at individual level:
RW1
 Individuals
 d13C
 Population
 −337.0
 .176

RW1
 Individuals
 d15N
 Population
 2311.9
 !.01

RW1
 Individuals
 d13C 1 HI
 Population
 2335.8

RW1
 Individuals
 d13C 1 sex
 Population
 2334.9
Multivariate shape analyses
at population level:
RW1–4
 Population
 d13C
 None
 2240.1

RW1–4
 Population
 d15N
 None
 2231.1

RW1–4
 Population
 Annual_Temp
 None
 2239.5

RW1–4
 Population
 Annual_Prec
 None
 2243.5

RW1–4
 Population
 Temp_Seas
 None
 2239.4

RW1–4
 Population
 Prec_Seas
 None
 2237.2

RW1–4
 Population
 Annual_Prec # HI
 None
 −312.4

RW1–4
 Population
 Annual_Prec 1 HI
 None
 2284.1
Multivariate shape analyses
at individual level:
RW1–4
 Individuals
 d13C
 Population
 5,792

RW1–4
 Individuals
 d15N
 Population
 5,789

RW1–4
 Individuals
 d15N 1 HI
 Population
 5,790

RW1–4
 Individuals
 d15N 1 d13C
 Population
 5,788

RW1–4
 Individuals
 d15N # HI
 Population
 5,792

RW1–4
 Individuals
 d15N # d13C
 Population
 5,790

RW1–4
 Individuals
 d15N # d13C # HI
 Population
 5,792

RW1–4
 Individuals
 d15N 1 d13C 1 HI
 Population
 5,790

RW1–4
 Individuals
 d15N # d13C 1 HI
 Population
 5,791
Note: Dependent variable, replicated unit (reflecting whether the analysis was performed at the population or individual level), explanatory factors included
in the model, whether a random factor was included, corrected Akaike information criterion (AICc) values, and, when relevant, importance values on which the
model selection was based are included. Each set of tests has its own headline, and the best model is presented in bold. DIV, deviance information criterion.
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explained the data significantly better than the second-best
model (DAICc 1 2; tables 1, 2; fig. 2C). Individual-level var-
iation in beak shape was also best explained by d13C dif-
ferences (fig. 2D), with DAICc to the second-best model of
14 (tables 1, 2).
Beak Shape: All Significant Axes of Divergence

The first four RWs reflecting beak shape variation deviated
from the noise floor (fig. S1). The model best explaining this
shape variation included annual precipitation, genomic hy-
brid index, and the interaction between these terms (fig. S2A–
S2D; tables 1, 2). We also tested which factors affect beak
shape at the individual level, excluding climate variables. In-
dividual shape differences were best explained by a model
including only d15N (fig. S2E–S2H; tables 1, 2). Variance com-
ponents show that while ecological factors explain a large
degree of the variation at the population level, only a small
fraction of the variation between individuals is explained by
the factors investigated. Variance components for all models
are presented in table S5.
Parental Phenotypes and the Extent
of Genomic Contingencies

We estimated the axis discriminating the parent species on
the basis of the four RWs deviating from the noise floor (ta-
ble S6) and scored the hybrids on this axis. We found a signif-
icant correlation between hybrid index and score along the
parental axis of variation (estimate p 9:085 2:95, F1, 199 p
9:50, P p :002, R2 p 0:05), implying that populations that
are genomically similar to house sparrows also have a more
house sparrow–like beak shape. Because hybrid index ex-
plains only 5% of the variation, it might not be a major ex-
planation to beak morphology, even if it has a significant ef-
fect. Breaking up shape into the individual axes of variation,
This content downloaded from 129.24
All use subject to University of Chicago Press Term
we find intermediacy and hence potential constraints in
only the third and fourth shape components, reflecting shifts
from a proximal to a distal placement of landmark 5 and a
high upper mandible to a high lower mandible, respectively
(see fig. S1). Italian sparrows attain values outside of the pa-
rental range for the first and second axis of variation (fig. S3).
Centroid size was nearly significantly correlated with hybrid
index (estimate p 0:115 0:058, F1, 199 p 3:64, P p :058,
R2 p 0:01; fig. S4). Data are deposited in the Dryad Digital
Repository: https://dx.doi.org/10.5061/dryad.615s9q5 (Rune-
mark et al. 2018a).
Discussion

Both beak size and beak shape vary significantly between
Italian sparrow populations as well as between islands, but
there is no strong sexual dimorphism in either size or shape.
Consistent with the hypothesis that hybridization allows for
adaptive divergence between populations, we find support for
the prediction that ecological factors best explain between-
population variation for both beak size and the major axis
of beak shape variation. This highlights a new and interest-
ing role for hybridization in generating adaptive divergence
within species, and although this pattern may partly be ex-
plained by plasticity, we find several lines of evidence indica-
tive of a substantial genetic component. Additionally, we find
some evidence consistent with the prediction for genetic con-
tingencies. Although ecological factors best explain beak shape
along the major axis of variation, beak shape divergence for
all significant axes of variation is significantly affected by ge-
nomic hybrid index, reflecting island of origin and poten-
tially contingencies. The fact that there is a correlation be-
tween position along the discriminant axis separating the
parent species’ shape and the genomic similarity to the par-
ent species is also consistent with a role for contingencies. The
presence of such contingencies for shape but not size at the
Table 2: Properties of the best models
Dependent variable
 Factor
 Estimate
0.091.077 o
s and Condi
F

n February 20, 
tions (http://ww
df
2019 08:54:37 AM
w.journals.uchicago
P/pmcmc
.edu/t-and-c).
Model R2
Population-level analyses:

Size
 Temperature seasonality
 .052
 10.26
 1, 7
 .015
 .59

Warp1
 d13C
 8.01
 1, 7
 .025
 .47

Warp1–4
 Annual precipitation
 2.002
 2.78
 5, 3
 .21
 .82
HI
 .025

Annual precipitation # HI
 24.56E205
Individual-level analyses:

Size
 d15N
 2.092
 2.94
 1, 128.89
 .09
 .72
HI
 21.28
 2.72
 1, 43.75
 .11

d15N#HI
 .16
 2.89
 1, 128.95
 .09
Warp1
 d13C
 44,774.00
 1, 29
 .008
 .07

Warp1–4
 d15N
 8.41
 NA
 1, 129
 .0368
 NA
Note: Data include F values, degrees of freedom, P values (for lm and lmer models), and pmcmc values (for the MCMCglmm model) and model R2 for the
models where it is applicable. NA, not applicable.
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population level is consistent with the finding that shape
is less evolvable than size in the fossil record (Hunt 2007).
Patterns of individual axes of variation suggest that there
may be contingencies in some but not all directions of var-
iation (figs. S3, S4). Overall, these findings suggest that hy-
brid species phenotypes are shaped by an interplay between
selection for a functional genome and a locally adaptive phe-
notype, and this is an interesting venue for hybridization re-
search.

Interestingly, size and shape are not best explained by
the same factors at the population level. While beak size is
strongly affected by temperature seasonality, the main axis
of beak shape variation is best explained by variation in car-
bon isotopic ratios. When subjected to strong directional se-
lection pressures, head size and shape may evolve in con-
cert to achieve a function such as strong bite force (Runemark
This content downloaded from 129.24
All use subject to University of Chicago Press Term
et al. 2015), in contrast to the pattern observed here. There
are various reasons temperature regime could affect beak size.
Temperature variation could affect the size spectrum of the
available diet. There is mounting evidence that beaks play
an important role in thermoregulation because blood flow
through the network of supportive blood vessels beneath the
keratinized surface is augmented at high temperatures and
restricted in the cold (Symonds and Tattersall 2010; Campbell-
Tennant et al. 2015). For instance, beak sizes vary as expected
from Allen’s rule (Allen 1877), which posits that the relative
size of body extremities is smaller in colder environments
for ectotherms to reduce thermoregulatory costs (Symonds
and Tattersall 2010). Even if the effect of smaller beaks can-
not explain a high proportion of total heat loss, as in the
toucan (Tattersall et al. 2009), using the beak for thermo-
regulation could potentially be important during summers
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Figure 2: Factors best explaining size and shape variation. A, Temperature seasonality is the best predictor of centroid size at the popula-
tion level, and the relationship is highly significant (F1, 7 p 10:26, P p :015, R2 p 0:59). B, d13C best explained population divergence along
the main axis of variation (F1, 7 p 8:01, P p :025, R2 p 0:47). C, At the individual level, centroid size was best explained by a model in-
cluding both d15N and genomic hybrid index and their interaction, as the relationship between d15N and centroid size varied between islands
(model R2 p 0:72). D, Individual-level shape divergence along the axis of largest variation was, as for the population level, best explained by
d13C (R2 p 0:07).
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on these arid Mediterranean islands. Furthermore, the fit-
ness advantage of large bill size could differ depending on
local temperature profiles and humidity, even in small pas-
serine birds (Gardner et al. 2016). Individual-level divergence
is affected by a more complex combination of factors, and
no clear best model emerged, although both nitrogen isoto-
pic composition and genomic hybrid index were included
in all models. This relationship could therefore be complex
and involve many factors of small effect or variables that we
have not measured. Individual behavioral plasticity is another
possible explanation for the observed pattern (cf. Brown and
Robinson 2016), and if such phenotypic plasticity is impor-
tant, different age groups could possibly differ in beak shapes
if they have experienced different climatic conditions.

Annual precipitation pattern is the ecological factor best
explaining beak shape. Interestingly, both general beak shape
as well as how precipitation patterns affect beak shape are
significantly affected by genomic hybrid index. Precipitation
patterns could affect seed size (Moles et al. 2005) and the
hardness of seeds (Mohamed-Yasseen et al. 1994). Seed size
is known to affect beak size evolution in passerines (Grant
and Grant 1993), including in sparrows (Riyahi et al. 2013).
In addition, beak shape affects bite force (Herrel et al. 2005),
and the correlation between annual precipitation and beak
shape could reflect adaptation to deal with harder seeds. As
the significant genomic hybrid index term and interaction
between genomic hybrid index and annual precipitation sug-
gest, there may be a genomic contingency implying that re-
sponses to a similar precipitation regimemay differ depending
on island of origin. The same increase in annual precipita-
tion does not result in the same shape response across the
islands. The correlation between genomic similarity to a par-
ent species and shape similarity to that species suggests that
this could potentially be due to genomic contingencies.

Nitrogen isotopic composition is the only factor in the
model that best explained individual beak shape differences
along all dimensions. Differentiation in isotopic composi-
tion between a consumer and dietary items is low, predict-
able, and conserved across trophic levels (i.e., typically 1‰
difference; Peterson and Fry 1987). Therefore, it allows for
accurate discrimination of dietary contributions from dif-
ferent nitrogen sources (Newsome et al. 2007). Thus, stable
isotope signatures may reflect dietary differences in birds,
which in turn may also influence beak shape (Neto et al.
2016). Beak specialization for foraging in different selective
regimes are well established in birds (Grant and Grant 1996;
Benkman 2002, 2016). The Italian sparrow is an opportunis-
tic human commensal species, which feeds on wild seeds,
crop plants, and insects. Specialization enabling foraging on
prey from different trophic levels or differences in propor-
tions in individual diet within populations could potentially
explain the effect of nitrogen isotopic composition on beak
shape. Although all sampled individualswere breeding adults,
This content downloaded from 129.24
All use subject to University of Chicago Press Term
stable isotope composition reflects diet at molt the previous
autumn, and the birds could have belonged to different age
classes at this point in time.
There could, of course, be unmeasured variables that con-

tribute to beak shape differences. Among the other factors
known to cause beak shape differences, phylogenetic inertia
(Shao et al. 2016) is unlikely because it is a within-species
comparison, and if divergent song preferences (Huber and
Podos 2006; Badyaev et al. 2008) would cause beak morphol-
ogy to differ from the ecological optimum, we could expect
sexual dimorphism because males are more frequently vo-
calizing and are the only sex expressing song motifs (Wang
et al. 2014). Because we do not find significant sexual dimor-
phism, selection on song is probably not strongly affecting
the beak shape in these sparrow populations.
Interestingly, one of the genes that was most divergent be-

tween Crete and Sicily in a study of the genomic composition
of the island populations was FGF10 (Runemark et al. 2018b).
This candidate gene for beak shape shown to be important
in beak divergence in Darwin’s finches (Lamichhaney et al.
2015) is strongly differentiated between the two populations
with the largest shape differences. Together, the correlation
between ecological differences and beak morphology and
the genomic signature of purifying selection (low Tajima’sD;
Runemark et al. 2018b) for this gene associatedwith beak phe-
notype in Darwin’s finches makes a strong case that the sort-
ing of parental variants allows hybrid species to locally adapt.
Regardless, we cannot entirely exclude that population di-
vergence in beak shape is partly driven by plasticity. How-
ever, previous results (which include a PST-FST analysis) suggest
that population divergence in beak shape, at least between
islands, is driven by selection (Helén 2016). These PST-FST

values were calculated according to the methods applied by
Brommer (2011) and Kaeuffer et al. (2012) and do hence
not assume that differences between populations are entirely
genetic (e.g., as in Merilä 1997). Whole genome data was used
for FST stimates in the PST-FST by Helén (2016). Because the
RADs with high quality and coverage preferentially map to
conserved areas, whole genome data yields higher divergence
estimates and will hence give more conservative estimates
in the PST-FST analyses. The PST-FST approach allows the in-
ference of local adaptation while controlling for different val-
ues of heritability and additive genetic variation across pop-
ulations (Brommer 2011). It is thus possible to make robust
conclusions about the role of selection in driving pheno-
typic divergence, irrespective of the extent to which the phe-
notypic trait is plastic. Here, we show that across island pop-
ulations, irrespective of the degree to which beak shape is
heritable, divergence has been driven by selection in many
instances as PST exceeds FST irrespective of the c/h2 ratio
(fig. S5). This pattern is consistent with previous findings in
populations on mainland Italy (Eroukhmanoff et al. 2013b).
Moreover, there is population structure within islands, even
0.091.077 on February 20, 2019 08:54:37 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



20 The American Naturalist
if this differentiation is lower than that between islands (ta-
ble S2), illustrating that allele frequencies differ between
these populations and hence could allow to some extent for
at least locally adaptive frequencies of alleles for beak mor-
phology.

The island populations of Italian sparrow from this study
have contingencies in the proportion of inheritance from
each parent species (Runemark et al. 2018b), resulting from
mosaic patterns of parental inheritance or conditions during
initial hybridization and genome stabilization (cf. Eroukh-
manoff et al. 2013a). We find that hybrid taxa are inter-
mediate between parent species for both size and shape, al-
though not for all shape components, because means for
the major axis of divergence (RW1) are outside of the 95%
confidence interval of the parent species for both Sicily and
Crete (fig. S3a), and RW2 tends to be higher for Crete than
any parent species and lower for Sicily (fig. S3b). This is con-
sistent with the pattern predicted for traits, where directional
selection contributes to parent species differences in which
hybrids are expected to differentiate along the parental axis
of divergence (Bailey et al. 2013). Furthermore, the propor-
tion of the parental genome inherited from each species, here
measured as hybrid index, was significantly correlated with
similarity to the parent species beak shape. Taken together,
that genomic hybrid index is involved in the best model ex-
plaining population divergence in beak shape and is signif-
icantly correlated with position along the parental axis of
variation suggests that constraints may affect evolutionary
trajectories and evolutionary potential following hybridi-
zation. There are, however, two shape dimensions that are
transgressive, with Italian sparrows from Sicily and Crete
having more negative values for the major axis of shape di-
vergence (RW1) and the Crete population having higher and
the Sicily population lower values of the second axis of shape
divergence than the parental populations (fig. S3). RW1 re-
flects a change from a high beak with a low base to a lower
beak with a smaller base for higher values, and RW2 reflects
a change from a blunt to a more pointed beak shape. The
presence of such transgression demonstrates a release of pa-
rental constraint for some components of shape and is con-
sistent with the predicted patterns of divergence for traits
under stabilizing selection in the parents (Bailey et al. 2013).

In conclusion, this study provides evidence of putative
adaptive local divergence within a hybrid species but shows
that genomic contingencies could affect the evolutionary po-
tential to respond to selection in a hybrid species. Size and
shape divergence are best explained by different selective fac-
tors, with temperature patterns affecting size and precipita-
tion patterns and proportion inherited from different par-
ent species predicting shape. Interestingly, we find evidence
for constraint in only shape and not size, consistent with pat-
terns in the fossil record suggesting that size is more evolv-
able than shape (Hunt 2007).
This content downloaded from 129.24
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