

Canadian Journal of Earth Sciences

Ordovician mafic magmatism in an Ediacaran arc complex, Sibak, NE Iran: the eastern tip of the Rheic Ocean

Journal:	Canadian Journal of Earth Sciences
Manuscript ID	cjes-2018-0072.R1
Manuscript Type:	Article
Date Submitted by the Author:	31-May-2018
Complete List of Authors:	Moghadam, Fereshteh; Shahid Beheshti University, 19839-63113 Tehran, Masoudi, Fariborz; Shahid Beheshti University Faculty of Earth Sciences Corfu, Fernando; Department of Geosciences, Homam, Seyed ; Ferdowsi University of Mashhad Department of Geology
Keyword:	granite, gabbro, Ediacaran, Ordovician, Rheic Ocean
Is the invited manuscript for consideration in a Special Issue? :	Not applicable (regular submission)

SCHOLARONE[™] Manuscripts

	1
Ordovician mafic magmatism in an Ediacaran arc	2
complex, Sibak, NE Iran: the eastern tip of the Rheic	3
Ocean	4
	5
F. Ranjbar Moghadam ¹ , F. Masoudi ¹ , F. Corfu ² , and S.M. Homam ³	6
¹ Shahid Beheshti University, Faculty of Earth Sciences, 19839-63113 Tehran, Iran	7
² University of Oslo, Department of Geosciences and CEED, Oslo, Norway	8
³ Ferdowsi University of Mashhad, Faculty of Science, Mashhad, Iran,	9
	10
	11
	12
Corresponding author:	13
Fernando Corfu, University of Oslo, Department of Geosciences and CEED	14
Postbox 1047 Blindern, N-0316 Oslo NORWAY	15
fernando.corfu@geo.uio.no	16
Tel: (+47) 22 85 66 80, Fax: (+47) 22 85 42 15	17
	18
	19
	20
	21
	22
	23
other e-mail addresses:	24
Fereshteh Moghadam fereshtehmoghadam@yahoo.com	25
Fariborz Masoudi drfmasoudi@yahoo.com	26
Seyed Massoud Homam <u>homam@um.ac.ir</u>	27
	28
	29

Abstract: The assembly of Gondwana in the Ediacaran was concluded by	30
extensive arc magmatism along its northern margin. Extensional events in the Early	31
Paleozoic led to rifting and the eventual separation of terranes which were later	32
assimilated in different continents and orogens. The Sibak area of northeastern Iran	33
records these events, including Late Precambrian volcanic-sedimentary processes,	34
metamorphism, and magmatism. A granite at Chahak in the Sibak Complex yields a	35
zircon U-Pb age of 548.3 ± 1.1 Ma whereas a spatially associated gabbro has an age	36
of 471.1 ± 0.9 Ma. The latter corresponds to the earliest stages of rifting in the	37
nearby Alborz domain with the deposition of clastic sedimentary sequences, basaltic	38
volcanism, and, as indicated by indirect evidence, coeval granitic plutonism. The	39
Chahak gabbro is thus one of earliest witnesses of the rifting processes which	40
eventually led to the development of the Rheic Ocean, and were indirectly linked to	41
subduction of Iapetus at the Laurentian margin and the early development of the	42
Appalachian orogen.	43
	44
	45
	46
Keywords: Granite, Gabbro, Ediacaran, Ordovician, Rheic Ocean	47

Introduction	48
Gondwana reached its major extension in the late Precambrian through the	49
amalgamation of several cratons and accretion by arc magmatism, especially along	50
its northern margin (e.g., Cawood and Buchan 2007). In the Early Paleozoic arc	51
accretion was followed by the gradual separation of ribbon terranes and the opening	52
of new oceanic basins (Fig. 1A; Stampfli and Borel 2002; Neubauer 2002; Nance et	53
al. 2010; Domeier and Torsvik 2014; von Raumer et al. 2015; Domeier 2017). In the	54
west, the Avalonian terranes drifted off, opening the large Rheic (Ran) Ocean, and	55
eventually accreting to Baltica and Laurentia in a complex succession of events	56
including the Taconic, Salinic, Acadian and Neoacadian orogenies (e.g. van Staal et	57
al. 2009, 2012; Nance et al. 2010; Macdonald et al. 2017). Opening of the	58
Paleotethys in the Devonian (Stampfli et al. 2013) corresponds to the major	59
separation of the Variscan terranes (also referred to as Cadomian or as the Hun	60
superterrane of Stampfli and Borel 2002), which now are dispersed through most of	61
central and western Europe (Neubauer 2002; Torsvik and Cox 2013; von Raumer et	62
al. 2015). The exact identity and timing of development of the various Paleozoic	63
seaways at the border of the main Panthalassa Ocean, however, remain poorly	64
defined and different names have been variously used for the same geographic	65
features (Rheic, Ran, Proto-Tethys, Paleotethys, Palaeo-Asian oceans). The Early	66
Paleozoic extensional processes also affected the central and eastern margins of	67
Gondwana, but the exact mechanisms and the extent of the separation remain	68
speculative. In detail the plate aggregation and splitting processes were complex	69
reflecting the variable interactions of subduction, convergence and divergence.	70
Our study is focused on a metamorphic complex in northeastern Iran that	71
records the final stages of growth of the Gondwanan margin at the Precambrian-	72
Cambrian boundary and the emplacement of Ordovician gabbros, which herald the	73
transition to the extensional processes mentioned above.	74
	75
Geological setting	76
The Central Iranian Terrane (Ramezani and Tucker 2003) is a collage of	77
three major crustal domains: the Lut, Tabas and Yazd blocks (Fig. 1B). They are	78
composed of crust formed mainly between 600 and 520 Ma by arc magmatism (e.g.	79
Ramezani and Tucker 2003; Hassanzadeh et al. 2008; Shafaii Moghadam et al.	80

2015a, 2017a). Arc magmatism was followed by the development of a stable 81 82 passive margin with epicontinental shelf sedimentation including evaporite and 83 carbonate deposits, shallow-water arkosic sandstones and shales, and eventually marine carbonates (Berberian and King 1981; Alavi 1996). Extensional processes 84 are recorded in the Ordovician, and especially in the Silurian, in the eastern Alborz 85 86 zone by rift-related clastic sedimentary rocks and basaltic magmatism (Ghavidelsyooki and Winchester-Seeto 2002; Derakhshi and Ghasemi 2015). The crust was 87 subsequently affected by a number of events including Carboniferous rifting 88 processes and formation of oceanic crust (Shafaii Moghadam et al. 2015b), 89 Permian-Triassic closing of the Paleotethys, followed by a sequence of Mesozoic 90 and Cenozoic magmatic and tectonic stages recording subduction of oceanic crust 91 during closing of the Neotethys and collision with the Arabic plate (Stöcklin 1968; 92 Berberian and King 1981; Sengör et al. 1988; Sengör 1990; Stampfli et al. 1991; 93 94 Bagheri and Stampfli 2008; Fard and Davydov 2015). The study area (Fig. 1C) in the northeast of Iran is situated at the edge of the 95 Lut block in the Central Iranian Terrane. It comprises an amphibolite facies 96 metamorphic succession, the metavolcanic and sedimentary Sibak Complex, a 97 metamorphosed dolomite (Soltanieh), and granitic and gabbroic rocks (de Gramont 98 et al. 1984). The general trend of the rocks is NW-SE and the contacts are mainly 99 faulted. These basement units are locally covered by the Jurassic Shemshak 100 Formation, a molasse-type unit deposited at the end of the Cimmerian orogeny, by 101 Early Cretaceous orbitolina limestone with interlayers of dark shale, Late 102 Cretaceous sandstone, conglomerate and limestone, Paleocene and Eocene volcanic 103 rocks with marl, sandstone, gypsum and conglomerate and Miocene clastic 104 sedimentary rocks (de Gramont et al. 1984). 105 The basal Neoproterozoic metapelitic units are exposed in a narrow 106 107 elongated belt which widens to the north-west. The most complete section of the metamorphic series can be observed in the northwestern corner of the 1/100000 108 scale Kariz Now geological map (de Gramont et al. 1984). These units are 109 composed of a thick series of micaschists, characterized by the presence of large 110 crystals of andalusite and/or sillimanite, cordierite and garnet formed at the upper 111 limit of the amphibolite facies under low pressure - high temperature regional 112 metamorphic conditions (Ranjbar 2010). Although there are no direct age 113 constraints the geological relationships suggest that metamorphism occurred in the 114 latest Ediacaran. Horizons of highly recrystallized limestone interlayered with115micaschist, and small lenses of pegmatites with large crystals of tourmaline are116locally present in the metamorphic series. Gneissose rocks are the other variety of117the series, mainly of a quartz-feldspathic nature. Sheared gneisses are lighter in118color and finer grained than mica schists.119

The Sibak Complex comprises metavolcanic rocks, schists and marble (de120Gramont et al. 1984). The contact between the Sibak Complex and andalusite mica121schist of the metapelitic unit is faulted. The complex is also in faulted contact with122the granitic and gabbroic intrusions and with the Soltanieh recrystallized dolomites123farther south. A NW-SE trending, subvertical, post-overthrusting fault system124separates the Sibak complex and andalusite schists from the uplifted dolomitic unit.125

Granitic and gabbroic intrusions are widespread and show sharp faulted 126 contacts to metavolcanic rocks, schists and metasandstones of the Sibak Complex 127 and to the adjacent recrystallized dolomites. According to de Gramont et al. (1984) 128 the Sibak Complex comprises granitic to quartz-dioritic bodies of irregular shape 129 130 and extent, commonly with a gneissose, blastomylonitic texture, and difficult to separate from the enclosing rocks, with which they frequently form migmatite-like 131 associations. The most continuous outcrop of intrusives is located in the south-132 eastern part of the complex. One granitic body of very restricted extent is observed 133 to cut across the dolomite unit in the northwestern part of the map. The main granite 134 occurrence near Chahak is an irregular body, about 15 km long and maximum 1 km 135 wide (Fig. 2A). Partovifar (2012) described the granitic rocks as medium potassic 136 calc-alkaline I-type whereas Ranjbar (2010) considered the granitic rocks as S-type. 137 A zircon U-Pb age of 630-650 Ma is mentioned in de Gramont et al. (1984), but the 138 139 data are not published. In light of our new results reported below it is likely that this date, likely still obtained using large mg-size bulk fractions, is too old because the 140 analysis included some inherited zircon grains, also seen in our work. 141

Metagabbros to quartz-diorites appear next to the main granitic intrusion as142small bodies with similar color and morphology as rocks units in the Sibak143Complex, making it difficult to map the outcrops (Fig. 2B). The contacts between144gabbro and granite are also faulted, but Homam (2015) concluded that gabbros are145younger than the granite.146

147

Petrography	148
Metapelites	149
This unit is dominated by andalusite mica schists, characterized by the	150
presence of large andalusite porphyroblasts. Three different mineralogical	151
assemblages can be distinguished, from the north towards the south of the study	152
area (abbreviations after Kretz 1983).	153
1: $Qtz + Bt + Pl + Ms + And + Crd + Grt.$	154
2: $Qtz + Pl + Bt + Ms + And + Sil \pm Grt \pm Crd.$	155
3: $Qtz + Pl + Bt + Ms + Kfs + And + Sil \pm Grt \pm Crd.$	156
Cordierite porphyroblasts show rounded shapes with sector twinning and are	157
mostly replaced, completely or partially, by micaceous aggregates. Andalusite	158
porphyroblasts are either poikiloblastic with no well-formed crystal faces or	159
idioblastic chiastolite. Garnet crystals vary in size and show idioblastic to	160
xenoblastic forms. Sillimanite is common as fibrolitic intergrowths in biotite,	161
muscovite and plagioclase, as needles and as long prisms growing from the	162
groundmass. Larger sillimanite crystals form by coarsening of fibrolite radiating out	163
from quartz and feldspar grain boundaries. In the third assemblage there are also	164
coarse perthitic K-feldspar crystals with inclusions of biotite, quartz and muscovite.	165
	166
Sibak Complex	167
The metavolcanic rocks in the Sibak Complex include metarhyolite,	168
porphyritic andesite and intermediate and mafic tuffite. Metamorphic conditions	169
range from lower greenschist to amphibolites facies.	170
The felsic metavolcanic rocks are hololeucocratic in hand specimen.	171
Deformed grains of quartz, with undulose extinction and locally recrystallization to	172
a microgranoblastic texture, occur besides embayed quartz phenocrysts and slightly	173
sericitized K-feldspars. Zoned and variously sericitized plagioclase phenocrysts	174
have deformed twinning lamellae and are partly recrystallized. Biotite, epidote, iron	175
oxide and carbonate minerals are also present in the rhyolites and with additional	176
hornblende in the dacites. The accessory minerals are zircon, epidote and iron	177
oxides.	178
Meta-andesites are fine grained and variously porphyritic rocks. The	179
phenocrysts include plagioclase, pyroxene and biotite with accessory epidote,	180

clinozoisite and iron oxide in a groundmass of sericitic plagioclase and glass.	181
Myrmekitic textures are present. Most pyroxene phenocrysts have been replaced by	182
hornblende, and secondary carbonate is also observed.	183
Tuffitic rocks are mainly green and generally strongly altered. They mostly	184
consist of volcanic rock fragments, with amphibole, secondary chlorite and	185
carbonate. Based on the size of lithic fragments the rock classifies as lapilli tuff.	186
	187
Chahak granite	188
The granite is a light pink, medium grained rock, frequently gneissose or	189
blastomylonitic (Fig. 2A). It exhibits a hypidiomorphic granular texture and consists	190
of quartz, sodic plagioclase, biotite, epidote, chlorite, hornblende and accessory iron	191
oxide, zircon, titanite, apatite and calcite. The most common mineral is medium to	192
coarse grained quartz with subidiomorphic to anhedral shapes. Some quartz crystals	193
have undulose extinction as an effect of the progressive deformation, and locally	194
exhibit chessboard extinction, subgrain and new grain deformation lamellae The K-	195
feldspar occurs as large perthitic microcline porphyroclasts and exhibits some	196
argillic alteration. Zoning and different degrees of sericitization and saussuritization	197
are observed in the plagioclase, which is sodic and has deformed twinning lamellae	198
(Fig. 2D). In some samples a myrmekitic texture is also present. Biotite flakes are	199
variously chloritized. Rare hornblende crystals are present but muscovite is absent.	200
	201
Gabbro	202
In the study area, the original gabbro has been dynamically metamorphosed	203
to amphibolite gabbro. The rock is medium- to fine-grained and is composed of	204
plagioclase, pyroxene, hornblende, biotite, and olivine as major minerals and	205
apatite, ilmenite and magnetite as minor minerals. The most dominant texture is	206
hypidiomorphic granular, but intergranular and porphyric textures are also present.	207
Plagioclase (oligoclase) occurs as subhedral to euhedral crystals ranging in size	208
from 0.1 to 0.6 mm and showing sericitic alteration. Euhedral to subhedral	209
phenocrysts of diopside comprise 15-20% of the rock (Fig. 2C). Primary hornblende	210
occurs as dark brown and deep green subhedral crystals. Some amphiboles show	211
rhythmic overgrowths which represent deep-seated crystallization in volatile-rich	212
magma under conditions of high but varying gas pressure (Homam 2015).	213
Secondary pale green actinolite is present, in part pseudomorphing pyroxen or as	214

overgrowths on hornblende containing a core of exsolved pyroxene. In most of the	215
examples, hornblende and biotite also form corona textures around plagioclase,	216
pyroxene and olivine, while plagioclase, pyroxene and olivine show obvious	217
corrosion features. These relationships most probably reflect reactions of early	218
formed crystals with aqueous fluid or evolved melt and/ or solid-state fluid-	219
enhanced metamorphic reactions.	220
	221
Geochemistry	222
Four samples of the granite were selected from outcrops close to Chahak	223
village (Fig. 1C) for chemical analysis (1-F,2-F, 3-F, 4-F). Chemical data for the	224
gabbro have been reported previously (Homam 2015) but their main characteristics	225
are discussed below. The samples were prepared at Shahid Beheshti University,	226
Teheran. Fresh rock chips were powdered to 75 μ m using a tungsten carbide ball	227
mill, dried in an oven at 100 °C, and kept in a desiccator before analysis. Major	228
element oxides were determined with X-ray fluorescence (XRF) and an inductively	229
coupled plasma emission spectrometer (ICP-MS (MA250) was used for trace	230
elements in same samples. The latter analyses were carried out by Bureau Veritas	231
Mineral Laboratories, Vancouver (Canada).	232
The chemical analyses for the granite are reported in table 1. The SiO_2	233
content ranges from 69 to 71 wt.% and in the classification diagram of De la Roche	234
et al. (1980, not shown) the data plot in the fields of granite to granodiorite. The	235
samples are calc-alkaline and peraluminous, with ASI [molar Al ₂ O ₃ /(CaO + K_2O +	236
Na ₂ O)] ranging from 1 to 1.1.	237
In the spider diagram (Fig. 3B) the Chahak granite samples reveal an	238
enrichment in large ion lithophile elements (LILEs), negative anomalies for Nb and	239
Ta, positive spikes at Pb, Zr and Y and a negative one at Sr. The REE patterns (Fig.	240
3A) are characterized by a fractionation between light and heavy REEs and an	241
absent or weak negative Eu anomaly. In the diagrams of Y+Nb vs. Rb and Y vs. Nb	242
(Fig. 4) the granites show an arc affinity.	243
Chemical analyses of the gabbro are reported in Homam (2015) and are also	244
plotted in Fig. 3, for comparison with the granite data. The samples exhibit SiO_2	245
contents ranging from 49 to 52 wt.%. In the spider diagram the data show	246
enrichment in the LILE, but no or only very weak negative Nb-Ta anomalies. There	247

https://mc06.manuscriptcentral.com/cjes-pubs

are small positive anomalies for Sr and Y, and a major positive anomaly for Pb. The	248
REE show a moderate fractionation with a weak positive Eu anomaly. Homam	249
(2015) shows that the gabbros are tholeiitic and he displays a number of trace	250
element plots suggesting an island arc affinity of the magmas.	251
	252
U-Pb geochronology	253
Analytical technique	254
The analyses were carried out by the ID-TIMS U-Pb technique (Krogh	255
1973). Zircon was separated by crushing, pulverizing, Wilfley table, magnetic	256
separation and heavy liquids. Suitable grains were subjected to either air abrasion	257
(Krogh 1982) or chemical abrasion (Mattinson 2005). The grains were dissolved in	258
HF at 195°C, after addition of a mixed ²⁰² Pb- ²⁰⁵ Pb- ²³⁵ U spike, and processed	259
through ion exchange resin separation and solid source mass spectrometry. Details	260
are described in Corfu (2004). The data are calculated with the decay constants of	261
Jaffey et al. (1971) and plot with the program of Ludwig (2009).	262
	263
Granite (sample G3-F)	264
The zircon population consists of euhedral, prismatic or equant crystals, with	265
strongly developed {100} and {101} crystal faces (Fig. 2E). They are mostly clear,	266
but with inclusions of other minerals and melt. The analyses show some scatter that	267
reflects the combination of inheritance and slight Pb loss (Table 2, Fig. 5).	268
Inheritance is evident mainly in one short zircon prism. By contrast, a fraction of	269
long prisms yields a concordant analysis with a concordia age of 548.3 ± 1.1 Ma.	270
The other two analyses are broadly consistent with it, but show some slight	271
deviations interpreted to reflect small amounts of inheritance and Pb loss. The age	272
of 548.3 ± 1.1 Ma is considered the best estimate for crystallization of the granite.	273
	274
Gabbro	275
The gabbro yielded just few zircon grains, mostly fragments with few	276
preserved crystal faces. The grains are generally turbid and metamict, but with some	277
domains of more clear and transparent zircon (Fig. 2F). Air abrasion liberated some	278
of these domains of good quality zircon, and two analyses yield concordant and	279
overlapping data giving a Concordia age of 471.1 ± 0.9 Ma (Fig. 5, Table 2). The	280

overall morphology of the population and the variations in U content and degree of

281

metamictization are fairly common in zircon of gabbroic rocks, and thus support an 282 283 indigeneous origin of the grains. The age is therefore interpreted to date magmatic formation of the gabbro. 284 285 Discussion 286 Geochemical affinity 287 The granites in the Sibak Complex are mostly peraluminous, calc-alkaline, 288 and with low levels of Ni, MgO, V and Cr (Table 1). Their geochemical features are 289 compatible with an origin by arc magmatism (Fig. 3), which is also supported by the 290 291 presence of the mafic minerals biotite and hornblende. The presence of xenocrystic 292 zircon, however, implies a certain degree of crustal contamination. The gabbro has fractionated REE and also relatively elevated LILE. It lacks 293 distinct Nb-Ta negative anomalies, but Homam (2015) presents diagrams such as Y 294 vs. Cr where the data are clearly indicative of an arc affinity. Plots of other elements 295 296 given in Homan (2015) are, however, more ambiguous on the tectonic affinity. 297 Neoproterozoic arc magmatism and Ordovician rifting 298 The Chahak granite intruded at 548.3 ± 1.1 Ma and corresponds thus to an 299 intensive period of Cadomian arc magmatism recorded throughout the Central 300 Iranian Terrane and the other fragments of the original Gondwanan active margin 301 (Ramezani and Tucker 2003; Hassanzadeh et al. 2008; Badr et al. 2013; 302 Bagherzadeh et al. 2015; Shafaii Moghadam et al. 2015a). The granite intrudes the 303 volcanic - metasedimentary Sibak Complex, which likely formed in earlier 304 magmatic stages of the arc. The metamorphism of the andalusite - sillimanite mica 305 schists that reached upper amphibolite facies conditions was not directly dated, but 306 the migmatite-like interlayering of schists and granite described by de Gramont et 307 al. (1984), and the lack of contact metamorphism, imply that peak metamorphism 308 309 and intrusion of the granite were likely essentially coeval. The more interesting result of the study is the discovery of Mid Ordovician 310 gabbro (471.1 \pm 0.9 Ma) in the Sibak Complex. The geochemical features presented 311 by Homam (2015) and discussed above show that the gabbro has some magmatic 312 arc affinity, which would suggest a protracted end of the subduction processes along 313

the northern Gondwanan margin. The alternative is that the specific signature of the	314
mafic magma simply reflects that of a previously metasomatized mantle source (e.g.	315
Murphy et al. 2008). A comparison of the gabbro's geochemical features with those	316
reported by Derakhshi and Ghasemi (2015) for the Late Ordovician-Silurian Soltan	317
Maidan basalts, 400-1200 m thick, in the rift zone north of our field area shows	318
many similarities between the two sets, most notably comparable abundances for	319
SiO ₂ , Na ₂ O and K ₂ O, similar REE patterns with moderate fractionation and lack of	320
significant Eu anomalies. There are also similarities in some trace elements, for	321
example in a Zr/Y vs. Zr diagram (Pearce and Norry 1979) both data sets plot in the	322
field of 'within plate basalt'. Derakhshi and Ghasemi (2015) show that the	323
volcanism was in part submarine and in part subaerial as indicated by the	324
occurrence of pillow basalts and columnar jointing, respectively. They conclude that	325
the Soltan Maidan volcanic rocks are transitional to mildly alkaline and were	326
derived from an enriched mantle source in a rifting and crustal thinning	327
environment. The time of intrusion of the gabbro in the Sibak Complex at 471 Ma	328
corresponds to a precocious stage in these processes of extension recorded	329
immediately to the north by rifting, clastic sedimentation and eruption of basalt;	330
these processes reached their most intense level of activity in the Silurian (Alavi	331
1996; Ghavidel-Syooki and Winchester-Seeto 2002; Ghaviden-Syooki et al. 2011;	332
Ghobadi Pour et al. 2011; Derakhshi and Ghasemi 2015). The early basalts were	333
examined by Shahri (2008) in the vicinity of Shahrood. He deduced an extensional	334
setting with deposition of turbidite facies sedimentary rocks and initially the	335
eruption of sporadic basaltic flows with intraplate characteristics. There are thus	336
analogies between the basalts in the E-W trending rift and the gabbro emplaced in	337
the outer flank of the rift. A U-Pb study of detrital zircon in sedimentary rocks of	338
the Ordovician Qelli Formation in the Alborz reported abundant Mid Ordovician	339
grains, which along with the Mid-Ordovician granitic clasts in conglomerates of the	340
region attest to the importance of Mid Ordovician magmatism during these	341
extensional events (Shafaii Moghadam et al. 2017b).	342
	343
Paleogeographic implications	344
This Ordovician magmatism is the expression of complex extensional	345
processes, in part associated with arc magmatism and collision, which have been	346
described for many terranes derived from the northern margin of Gondwana (Fig.	347

1A; e.g., Valverde-Vaquero and Dunning 2000; Trombetta et al. 2004; Okay et al.3482008*a*, *b*; Nance et al. 2008). These terranes belong broadly to three families which349separated from Gondwana and accreted to other continents at different times: the350Avalonian terranes, which separated in the Late Cambrian to Early Ordovician, the351Variscan terranes in the Devonian, and the Turkish and Central Iranian terranes in352the Triassic-Jurassic.353

The Late Cambrian to Early Ordovician separation of the Avalonian terranes 354 opened the Rheic Ocean which expanded at a fast rate, a process linked to slab pull 355 (Nance et al. 2010). This activity was simultaneous with, and preseumably related to 356 subduction of the Iapetus oceanic crust at the Laurentian margin where it resulted in 357 the extensive development of ophiolites and arc sequences, associated with 358 accretionary tectonics (e.g. van Staal et al. 2009, 2012). Segments of this Early 359 Paleozoic Laurentian margin were eventually transferred to the British and 360 Scandinavian Caledonides (e.g. Dunning and Pedersen 1987; Pedersen et al. 1992; 361 Chew and Strachan 2014). 362

The mechanisms responsible for the Early Paleozoic extensional processes at 363 the Gondwanan margin are not always evident. Neubauer (2002) suggests 364 development of back arcs and eventual separations, based mainly on a consideration 365 of Cambrian activity in the Variscan terranes now embedded in the Alpine Orogen. 366 Murphy et al. (2006) argued that previous sutures controlled the pattern of 367 separation, the Avalonian terranes representing more juvenile crust than the 368 Variscan terranes. Although they did not drift away from Gondwana until later, the 369 evidence for Early Paleozoic extensional activity is well documented in the two 370 youngest groups of terranes, as we demonstrate in this paper for northeast Iran. 371 Extension was locally followed by Ordovician compressional phases and 372 development of unconformities attributed to arc accretion and collision (von 373 374 Raumer et al. 2015). In the NE-Iranian segment of the Gondwanan margin, however, there is no evidence for Ordovician or Silurian compressional stages. 375

The rift widened, and in the Devonian it developed into a full oceanic basin,376the Paleotethys branch of the Rheic Ocean. It is at this stage that the Variscan377terranes driften away from Gondwana. They eventually accreted to Laurussia and378the remaining parts of the Paleotethys closed in the Triassic (Stampfli and Borel3792002). The third period of rifting at the Gondwana margin opened up the Neotethys380

starting in the Triassic, detaching, among others, the Central Iranian Terrane from	381
Gondwana.	382
	383
Conclusions	384
The Late Precambrian Sibak Complex and associated mica-schist and	385
dolomite were metamorphosed and intruded by granite at 548.3 ± 1.1 Ma. This	386
event reflects the intense arc magmatism affecting the northern margin of	387
Gondwana. Gabbro spatially associated to the granite intruded later, in the Middle	388
Ordovician at 471.1 ± 0.9 Ma. This event was related to initial rifting along the	389
Alborz region evolving with clastic sedimentation and increasing emplacement of	390
basaltic volcanic rocks. On the larger scale of the northern Gondwanan margin these	391
events fit into a pattern of general extension, locally related to arc and back-arc	392
development, eventually leading to the separation of ribbon microcontinents and	393
coinciding with the opening of the Rheic Ocean. The processes were thus	394
geodynamically linked to subduction of Iapetus oceanic crust at the Laurentian	395
margin and the early development of the Applachian orogen.	396
	397
Acknowledgements	398
We thank Brendan Murphy for his constructive review and appreciate	399
suggestions by editor Ali Polat.	400
	401

References	402
Alavi, M. 1996. Tectonostratigraphic synthesis and structural style of the Alborz	403
mountain system in northern Iran. Journal of Geodynamics, 21: 1-33.	404
Badr, M.J., Collins, A.S., Masoudi, F., Cox, G., and Mohajjel, M. 2013. The U-Pb	405
age, geochemistry and tectonic significance of granitoids in the Soursat	406
Complex, Northwest Iran. Turkish Journal of Earth Science, 22: 1-31, ©	407
TÜBİTAK doi:10.3906/yer-1001-37	408
Bagheri, S., and Stampfli, G.M. 2008. The Anarak, Jandagh and Posht-e-Badam	409
metamorphic complexes in central Iran: New geological data, relationships	410
and tectonic implications. Tectonophysics, 451: 123-155.	411
Bagherzadeh, R.M., Karimpour, M.H., Farmer, G.L., Stern, C.R., Santos, J.F.,	412
Rahimi, B., and Shahri, M.R.H. 2015. U-Pb zircon geochronology,	413
petrochemical and Sr-Nd isotopic characteristic of Late Neoproterozoic	414
granitoid of the Bornaward Complex (Bardaskan-NE Iran). Journal of Asian	415
Earth Sciences, 111: 54-71.	416
Berberian, M., and King, G.C.P. 1981. Towards a paleogeography and tectonic	417
evolution of Iran. Canadian Journal of Earth Science, 8: 210–265.	418
Cawood, P.A., and Buchan, C. 2007. Linking accretionary orogenesis with	419
supercontinent assembly. Earth-Science Reviews, 82: 217–256.	420
Chew, D.M. and Strachan, R.A, 2014. The Laurentian Caledonides of Scotland and	421
Ireland. In New Perspectives on the Caledonides of Scandinavia and Related	422
Areas. Edited by Corfu, F., Gasser, D. and Chew, D.M. Geological Society	423
of London, Special Publications No. 390, pp. 45-91, doi 10.1144/SP390.16	424
Corfu, F. 2004. U-Pb age, setting and tectonic significance of the Anorthosite-	425
Mangerite-Charnockite-Granite Suite, Lofoten-Vesterålen, Norway. Journal	426
of Petrology, 45: 1799-1819. doi: 10.1093/petrology/egh034.	427
de Gramont X.B., Guillou Y., Maurizot, P., Vaslet, D., and de la Villeon, H. 1984.	428
Geological map of Kariznow. Geological Survey of Iran. Scale 1/100000,	429
sheet 8060.	430
De la Roche, H., Leterrier, J., Grandclaude, P., and Marchal, M. 1980. A	431
classification of volcanic and plutonic rocks using R1,R2-diagrams and	432
major element analysis-its relationships with current nomenclature,	433
Chemical Geology, 29 : 183–210.	434

Derakhshi, M., and Ghasemi, H. 2015. Soltan Maidan Complex (SMC) in the	435
eastern Alborz structural zone, northern Iran: magmatic evidence for	436
Paleotethys development. Arabiam Journal of Geosciences, 8: 849-866, DOI	437
10.1007/s12517-013-1180-2	438
Domeier, M. 2016. A plate tectonic scenario for the Iapetus and Rheic Oceans.	439
Gondwana Research, 36: 275-295.	440
Domeier, M. 2017. Early Paleozoic tectonics of Asia: Towards a full-plate model.	441
Geoscience Frontiers, 9: 789-862.	442
Domeier, M., and Torsvik, T.H. 2014. Plate tectonics in the late Paleozoic.	443
Geoscience Frontiers, 5: 303-350.	444
Dunning, G.R. and Pedersen, R.B. 1987. U/Pb ages of ophiolites and arc-related	445
plutons of the Norwegian Caledonides: Implications for development of	446
Iapeus. Contributions to Mineralogy and Petrology, 98:13-23.	447
Fard, S.A., and Davydov, V.I. 2015. New Permian Aliyak and Kariz Now	448
formations, Alborz Basin, NE Iran: correlation with the Zagros Mountains	449
and Oman. Geological Journal, 50 : 811–826.	450
Ghavidel-Syooki, M., and Winchester-Seeto, T. 2002. Biostratigraphy and	451
palaeogeography of Late Ordovician chitinozoans from the northeastern	452
Alborz Range, Iran. Review of Palaeobotany and Palynology, 118: 77–99.	453
Ghavidel-Syooki, M., Hassanzadeh, J., and Vecoli, M. 2011. Palynology and	454
isotope geochronology of the Upper Ordovician-Silurian successions (Ghelli	455
and Soltan Maidan Formations) in the Khoshyeilagh area, Eastern Alborz	456
Range, Northern Iran; stratigraphic and palaeogeographic implications.	457
Review of Palaeobotany and Palynology, 164: 251–271.	458
Ghobadi Pour, M., Kebriaee-Zadeh, M.R., and Popov, L.E. 2011. Early Ordovician	459
(Tremadocian) brachiopods from the Eastern Alborz Mountains, Iran.	460
Estonian Journal of Earth Sciences, 60: 65-82. doi: 10.3176/earth.2011.2.01	461
Hassanzadeh, J., Stockli. D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M.,	462
Schmitt, A.K., and Walker, J.D. 2008. U-Pb zircon geochronology of late	463
Neoproterozoic-early Cambrian granitoids in Iran: Implications for	464
paleogeography, magmatism, and exhumation history of Iranian	465
basement. Tectonophysics, 451: 71-96.	466

Homam, M. 2015. Petrology and geochemistry of late Proterozoic hornblende	467
gabbros from southeat of Fariman. Khorasan Razavi province, Iran. Journal	468
of Economic Geology, 7: 91-111.	469
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M. 1971:	470
Precision measurement of half-lives and specific activities of ²³⁵ U and ²³⁸ U.	471
Physical Review, C4: 1889-1906.	472
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68:	473
277-279.	474
Krogh, T.E. 1973. A low-contamination method for hydrothermal decomposition of	475
zircon and extraction of U and Pb for isotopic age determinations.	476
Geochimica et Cosmochimica Acta, 37: 485-494. doi.org/10.1016/0016-	477
7037(73)90213-5.	478
Krogh, T.E. 1982. Improved accuracy of U-Pb zircon ages by the creation of more	479
concordant systems using an air abrasion technique. Geochimica et	480
Cosmochimica Acta, 46 : 637-649.	481
Ludwig, K.R. 2009. Isoplot 4.1. A geochronological toolkit for Microsoft Excel.	482
Berkeley Geochronology Centre Special Publications, No. 4, p. 76.	483
Macdonald, F.A., Karabinos, P.M., Crowley, J.L., Hodgin, E.B., Crockford, P.W.,	484
and Delano, J.W. 2017. Bridging the gap between the foreland and the	485
hinterland II: Geochronology and tectonic setting of Ordovician magmatism	486
and basin formation on the Laurentian margin of New England and	487
Newfoundland: American Journal of Science, 317: 555-596.	488
doi.org/10.2475/05.2017.02	489
Mattinson, J.M. 2005. Zircon U-Pb chemical abrasion ("CA-TIMS") method:	490
Combined annealing and multi-step partial dissolution analysis for improved	491
precision and accuracy of zircon ages. Chemical Geology, 220: 47-66.	492
doi.org/10.1016/j.chemgeo.2005.03.011.	493
Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie,	494
J.D., Quesada, C., Strachan, R.A., and Dostal, J. 2006. Origin of the Rheic	495
Ocean: rifting along a Neoproterozoic suture? Geology, 34: 325–328.	496
Murphy, J.B., Dostal, J., and Keppie, J.D. 2008. Neoproterozoic-Early Devonian	497
magmatism in the Antigonish Highlands, Avalon terrane, Nova Scotia:	498
Tracking the evolution of the mantle and crustal sources during the evolution	499
of the Rheic Ocean. Tectonophysics, 461 : 181–201.	500

Nance, R.D., Murphy, J.B., Strachan, R.A., Keppie, J.D., Gutiérrez-Alonso, G.,	501
Fernández- Suárez, J., Quesada, C., Linnemann, U., D'Lemos, R.,	502
Pisarevsky, S.A. 2008. Neoproterozoic-early Paleozoic tectonostratigraphy	503
and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West	504
African connection. In The boundaries of the West African Craton. Edited	505
by N. Ennih and JP. Liégeois. Geological Society of London, Special	506
Publication No. 297, pp. 345–383.	507
Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B.,	508
Quesada, C., Strachan R.A., and Woodcock, N.H. 2010. Evolution of the	509
Rheic Ocean. Gondwana Research, 17: 194–222.	510
Neubauer, F. 2002. Evolution of late Neoproterozoic to early Paleozoic tectonic	511
elements in Central and Southeast European Alpine mountain belts: review	512
and synthesis. Tectonophysics, 352 : 87–103.	513
Okay, A.I., Bozkurt, E., Satır, M., Yiğitbaş, E., Crowley, Q.G., and Shang, C.K.	514
2008a. Defining the southern margin of Avalonia in the Pontides:	515
Geochronological data from the Late Proterozoic and Ordovician granitoids	516
from NW Turkey. Tectonophysics, 461 : 252–264.	517
doi:10.1016/j.tecto.2008.02.004	518
Okay, A.L., Satir, M., and Shang, C.K., 2008b. Ordovician metagranitoid from the	519
Anatolide-Tauride Block, northwest Turkey: geodynamic implications.	520
Terra Nova, 20 : 280–288, doi: 10.1111/j.1365-3121.	521
Partovifar, F. 2012. Petrology and geochemistry studies of granitic rocks from	522
Chahak village. Kariznow area, southeast of Fariman, Iran. M.Sc thesis,	523
Ferdowsi University, Mashhad, Iran, 145 pp.	524
Pearce, J.A., and Norry, M.J. 1979. Petrogenetic implications of Ti, Zr, Yand Nb	525
variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69:	526
33-47.	527
Pearce, J.A., Harris, N.B.W., and Tindle, A.G. 1984. Trace element discrimination	528
diagrams for the tectonic interpretation of granitic rocks. Journal of	529
Petrology, 25 : 956-983.	530
Pedersen, R.B., Bruton, D.L. and Furnes, H. 1992. Ordovician faunas, island arcs	531
and ophiolites in the Scandinavian Caledonides. Terra Nova, 4: 217-222.	532

Ramezani, J., and Tucker, R.D. 2003. The Saghand Region, Central Iran: U-Pb	533
Geochronology, Petrogenesis and Implications for Gondwana Tectonics.	534
American Journal of Science, 303: 622-665, doi.org/10.2475/ajs.303.7.622	535
Ranjbar, F. 2010. Petrology and petrogenesis of metamorphic rocks of east and	536
southeast of Ghandab. M.Sc thesis. Ferdowsi University, Mashhad, Iran.	537
Sengör, A.M.C., 1990. A new model for the late Palaeozoic - Mesozoic tectonic	538
evolution of Iran and implication for Oman. In The Geology and	539
Tectonics of the Oman region. Edited by A.H.F. Robertson, M.P. Searle and	540
A.C. Ries. Geological Society of London, Special Publication No. 49, pp.	541
797-831.	542
Sengör, A.M.C., Altiner, D., Cin, A., Ustaömer, T., and Hsü, K.J. 1988. Origin and	543
assembly of Tethyside orogenic collage at the expense of Gondwana Land.	544
In Gondwana and Tethys. Edited by M.G Audley-Charles and A. Hallam.	545
Geological Society of London, Special Publication No. 37, pp. 119-181.	546
Shafaii Moghadam, H., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F., Wu, Y.	547
2015a. Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–	548
Biarjmand metamorphic complex (Iran): Magmatism along the northern	549
active margin of Gondwana. Gondwana Research, 27: 439-452.	550
Shafaii Moghadam, H.S., Li, XH., Ling, XX., Stern, R.J., Khedr, M.Z.,	551
Chiaradia, M., Ghorbani, G., Arai, S., Tamura, A., 2015b. Devonian to	552
Permian evolution of the Paleo-Tethys Ocean: new evidence from U-Pb	553
zircon dating and Sr-Nd-Pb isotopes of the Darrehanjir-Mashhad	554
"ophiolites", NE Iran. Gondwana Research, 28: 781–799.	555
Shafaii Moghadam, H., Li, XH., Santos, J.F., Stern, R.J., Griffin, W.L., Ghorbani,	556
G., Sarebani, N. 2017a. Neoproterozoic magmatic flare-up along the N.	557
margin of Gondwana: The Taknar complex, NE Iran. Earth and Planetary	558
Science Letters, 474: 83–96.	559
Shafaii Moghadam, H., Li, XH., Griffin, W.L., Stern, R.J, Thomsen, T.B.,	560
Meinhold, G., Aharipour, R., and O'Reilly, S.Y. 2017b. Early Paleozoic	561
tectonic reconstruction of Iran: Tales from detrital zircon geochronology.	562
Lithos, 268–271 : 87–101.	563
Shahri, H.M. 2008. Pre-rifting evidence of Paleotethys in the southwest of	564
Shahrood, northeastern Iran. World Applied Sciences Journal, 3: 154-161,	565

Stampfli, G.M. and Borel, G.D. 2002. A plate tectonic model for the Paleozoic and	566
Mesozoic constrained by dynamic plate boundaries and restored synthetic	567
oceanic isochrons. Earth and Planetary Science Letters, 196: 17-33.	568
Stampfli, G.M., Marcoux, J., and Baud, A. 1991. Tethyan margins in space and	569
time. Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 373-409.	570
Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., and von Raumer, J. 2013. The	571
formation of Pangea. Tectonophysics, 593: 1-19.	572
Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. American	573
Association of Petroleum Geologists Bulletin, 52: 1229–1258.	574
Sun, SS., and McDonough, W.F. 1989. Chemical and isotopic systematic of	575
oceanic basalts: implications for mantle composition and processes. In	576
Magmatism in the Ocean Basins. Edited by A.D. Saunders and M.J. Norry.	577
Geological Society of London, Special Publications No. 42, pp. 313-345.	578
Torsvik, T.H. and Cocks, L.R.M. 2013. Gondwana from top to base in space and	579
time. Gondwana Research, 24: 999-1030.	580
Trombetta, A., Cirrincione, R., Corfu, F., Mazzoleni, P., and Pezzino, A. 2004. Mid-	581
Ordovician U-Pb ages of porphyroids in the Peloritan Mountains (NE	582
Sicily): palaeogeographic implications for the evolution of the Alboran	583
microplate. Journal of the Geological Society, London, 161: 265-276.	584
Valverde-Vaquero, P., and Dunning, G.R. 2000. New U-Pb ages for early	585
Ordovician magmatism in central Spain. Journal of the Geological Society	586
of London, 157 : 15–26.	587
van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., and Rogers,	588
N. 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along	589
the Laurentian margin of the northern Appalachians. In Ancient orogens and	590
modern analogues Edited by Murphy, J.B., et al., Geological Society of	591
London, Special Publications No. 327, pp. 271-316.	592
Van Staal, C.R., Barr, S.M., and Murphy, J.B. 2012. Provenance and tectonic	593
evolution of Ganderia: constraints on the evolution of the Iapetus and Rheic	594
oceans. Geology, 40 : 987-990.	595
von Raumer, J.F., Stampfli, G.M, Arenas, R., and Sánchez Martínez, S. 2015.	596
Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their	597
tectonic interpretation. Internation Journal of Earth Sciences, 104: 1107-	598
1121. doi 10.1007/s00531-015-1142-x	599

600

Figure captions

	601
Fig. 1. (A) Paleogeographic plate model at 470 Ma showing the general situation a	long the 602
Gondwanan margin (right hand side). The different perspective on the left-	hand side 603
illustrates the relationships between Laurentia, Baltica, Gondwana and the	604
intervening Rheic and Iapetus oceans (from Domeier 2016, 2017). (B) Sket	ch map 605
showing the distribution of the main tectonic elements of Iran. (C) Simplifi	ed map 606
of the study area south of Fariman, with sample locations (from de Garmon	it et al. 607
1984).	608
Fig. 2: (A) Sheared dyke in Chahak granite: (B) Locally sheared gabbro. (C) Miner	ral 609
assemblage in gabbro, with diopside locally surrounded by brown hornblen	de and 610
partially retrogressed to actinolite along fractures. The light mineral is plag	ioclase. 611
(D) Zoned and partially altered plagioclase crystal in granite. (E) Typical zi	ircon 612
morphology in granite. The more equant grains contain older components.	(F) 613
Appearance of the sparse zircons extracted from gabbro, few with euhedral	shapes 614
and most as fragments. The brown domains are U-rich and altered parts. The	ne 615
analyses were done on clear domains liberated by air abrasion. Grains in E	and F are 616
betweent 100 and 300 um long.	617
Fig. 3. (A) Plot of REE normalized to CI chondrite values of Sun and McDonough	(1989) 618
for the granite (thick lines) and the gabbro (thin lines; from Homam 2015))	. (B) 619
spider diagram for granite and gabbro compositions, normalized to primitiv	re mantle 620
values of Sun and McDonough (1989).	621
Fig. 4. Trace element discrimination diagrams for granite data (after Pearce et al. 1	984); 622
ORG = ocean ridge granites, VAG = volcanic arc granites, WPG = within p	plate 623
granites, $COLG = collision$ granites.	624
Fig. 5. Concordia diagrams with zircon U-Pb data for granite and gabbro. Ellipses	indicate 625
2 sigma uncertainty.	626

Fig. 1

Fig. 2

Fig. 4

Fig. 5

[%]	1-F 2-F		3-F	4-F
SiO ₂	69.52	69.91	71.24	71.17
Al_2O_3	13.90	14.09	13.73	12.45
Fe_2O_3	5.37	4.80	4.45	4.05
MgO	0.89	0.79	0.66	0.51
CaO	1.60	1.40	0.96	1.24
K ₂ O	2.31	2.75	3.04	2.98
Na ₂ O	4.83	4.42	4.31	4.15
TiO ₂	0.46	0.44	0.34	0.32
MnO	0.07	0.06	0.05	0.05
P_2O_5	0.09	0.08	0.07	0.07
LOI	0.68	0.86	0.85	2.74
[ppm]	1-F	2-F	3-F	
Cs	3.10	3.80	4.30	
Rb	82	92	103	
Ва	640	793	853	
Th	13.7	9.4	9.6	
U	1.50	1.00	0.90	
Nb	10.7	9.2	8.8	
Та	0.70	0.70	0.60	
La	27.5	16.3	27.3	
Ce	58.5	31.5	54.2	
Pb	7.4	11.1	13.4	
Pr	7.0	3.9	6.2	
Sr	124	135	109	
Nd	28.2	15.1	24.8	
Zr	370	310	294	
Sm	6.50	3.40	5.30	
Eu	1.40	1.00	1.00	
Gd	5.60	3.20	5.10	

Тb

1.00

0.40

0.80

Table 1. Geochemica	I data for	r Chahak grani	te.
---------------------	------------	----------------	-----

[ppm]	1-F	2-F	3-F
Dy	6.40	3.00	4.50
Но	1.20	0.60	0.90
Er	3.50	1.70	2.40
Tm	0.6	0.3	0.3
Yb	3.20	1.70	2.10
Υ	32.9	17.0	24.7
Lu	0.50	0.20	0.30
Li	18.9	28.9	26.2
Ве	2.00	3.00	2.00
Ga	19.4	19.4	17.5
Ni	3.80	4.10	5.50
Zn	55.0	57.3	49.3
Cu	5.1	4.1	6.4
Мо	1.0	1.1	1.4
Со	4.3	4	3.5
Cr	24.0	23.0	29.0
Sn	2.80	2.10	2.40
Sc	11.40	7.70	8.60
S	<0.04	< 0.04	<0.04
V	25.0	24.0	21.0
Cd	0.04	0.03	0.06
Sb	0.8	1.37	1.81
Bi	<0.04	0.06	<0.04
W	0.5	0.3	0.5
In	0.07	0.05	0.07
Re	0.008	<0.002	<0.002
Se	<0.3	<0.3	<0.3
Те	<0.05	<0.05	<0.05
ΤI	0.38	0.43	0.48

Table 2. U-Pb data.

Properties	Weight	U	Th/U	Pbc	206/204	207/235	2 sigma	206/238	2 sigma	rho	207/206	2 sigma	206/238	2 sigma	207/235	2 sigma	206/207	2 sigma
	[ug]	[ppm]		[pg]			[abs]		[abs]			[abs]	[Ma]	[abs]	[Ma]	[abs]	[Ma]	[abs]
(a)	(b)	(b)	(C)	(d)	(e)	(f)	(f)	(f, g)	(f)	(f)	(f,g)	(f)						
G3-F - granite																		
Z eu tips CA [5]	4	262	0.47	0.4	13536	0.71161	0.00178	0.08825	0.00018	0.89	0.05848	0.00007	545.2	1.1	545.7	1.1	547.8	2.5
Z eu lp-fr CA [6]	6	384	0.45	1.5	8624	0.71586	0.00191	0.08878	0.00018	0.84	0.05848	0.00009	548.3	1.1	548.2	1.1	547.9	3.2
Z eu lp-fr CA [10]	24	360	0.49	1.3	36733	0.72349	0.00172	0.08881	0.00018	0.94	0.05909	0.00005	548.5	1.1	552.7	1.0	570.3	1.9
Z eu sp CA [1]	4	301	0.44	1.4	5027	0.80156	0.00233	0.09578	0.00020	0.81	0.06070	0.00010	589.6	1.2	597.7	1.3	628.6	3.7
Gabbro																		
Z eu fr pk AA [1]	1	1446	2.73	1.4	4813	0.59110	0.00199	0.07585	0.00018	0.79	0.05652	0.00012	471.3	1.1	471.6	1.3	472.8	4.6
Z eu fr pk AA [1]	1	671	1.66	1.6	1995	0.59129	0.00255	0.07577	0.00017	0.63	0.05660	0.00019	470.8	1.0	471.7	1.6	476.0	7.5

a) Z = zircon; eu = euhedral, lp = long prismatic; sp = short prismatic; fr = fragment; pk = pink; CA = zircon treated with chemical abrasion (Mattinson 2005), AA = zircon treated with air abrasion (Krogh 1982)

b) weight and concentrations are known to better than 10%.

c) Th/U model ratio inferred from 208/206 ratio and age of sample

d) Pbi = initiall Pb (corrected for blank); Pbc = total common Pb in sample (initial + blank)

e) raw data, corrected for fractionation and spike

f) corrected for fractionation, spike and blank (206/204=18.59; 207/204=15.24); error calculated by propagating the main sources of uncertainty; The U-Pb ratio of the spike used for this work is adapted to 206Pb/238U = 0.015660 for the ET100 solution as obtained with the ET2535 spike at NIGL.

J'ary

https://mc06.manuscriptcentral.com/cjes-pubs