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Abstract 

Breast cancer is the most prevalent type of cancer affecting females in world today and poses 

a serious public health problem worldwide. Even though the overall survival has increased 

significantly the last decades, the high incidence of breast cancer signifies the importance of 

improvements in diagnostics and treatment. Like all types of cancers, breast cancer is a result 

of accumulation of genetic and epigenetic alterations that leads to repression of tumor 

suppressor genes and activation of oncogenes.  

Over the past decades, several studies have highlighted alterations in DNA methylation 

patterns as hallmark events in many cancer types including breast cancer (1). Among the 

major types of breast cancers, the estrogen receptor positive tumors which accounts for 70 % 

of all breast cancers tend to display more pronounced changes in their DNA methylation 

landscape than the ER negative tumors when compared to normal adjacent tissue (2-4). It is 

well known that alterations in DNA methylation may affect the expression of genes, 

depending on where the changes occur. For instance, changes in DNA methylation at CpGs in 

cis-regulatory regions such as promotors tend to repress the expression of its associated gene. 

Furthermore, CpGs as far as 100 kb away from the transcription start site have been 

demonstrated to be associated with gene expression (5). Therefore, CpGs in intergenic and 

enhancer regions may play key roles in breast cancer pathogenesis through the regulation of 

expression of their associated genes. Enhancer methylation has been shown experimentally to 

be associated with gene expression, and these genomic regions are considered to be the most 

differentially methylated genomic regions during carcinogenesis and cancer progression (5, 

6). Enhancers are known to bind cell type specific proteins called transcription factors (TFs) 

which are proteins involved in the regulation of gene transcription. However, the role of DNA 

methylation at enhancer regions regarding TF binding and breast cancer pathogenesis is still 

not fully understood.  

Genome-wide expression-methylation quantitative trait loci (emQTL) analysis have 

previously been shown to identify significant correlations between the level of DNA 

methylation at CpG sites and gene expression due to intertumoral heterogeneity within ER 

positive and ER negative tumors (7). It has also been shown to be a valuable tool in the 

identification of key gene regulatory networks involved in breast cancer pathogenesis (7). To 
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take this further, the same approach was applied to the ER positive breast tumors only, to 

investigate whether any differences within the ER positive tumors in respect to DNA 

methylation and gene expression could be observed.  

The study resulted in the identification of CpG-gene pairs in which the level of DNA 

methylation was significantly correlated with gene expression. Hierarchical clustering of the 

significant associations led to the discovery of a previously undiscovered cluster of CpG-gene 

associations. Gene set enrichment analysis indicated an enrichment of the genes in EMT-

related processes, while the CpGs were highly enriched in enhancer regions. The CpGs in this 

EMT-cluster was divided into CpG-cluster A and CpG-cluster B based on whether their mean 

methylation value was more or less than 0.5 respectively. The CpGs in both clusters were 

shown to be differentially methylated among the ER positive tumors. Further characterization 

of the CpG-clusters by ChIP-seq peaks enrichment analysis revealed that CpG-cluster A 

CpGs were enriched within ChIP-seq peaks of TFs associated with EMT such as TEAD1, 

FOSL1, TWIST1, SIX2, YAP1 and PPARG. To investigate whether the difference in DNA 

methylation was associated with any phenotypic feature associated with EMT in the tumors, 

an EMT score was utilized and correlated with the mean methylation of CpG-cluster A CpGs. 

The mean methylation was negatively correlated with the EMT score, meaning that lower 

methylation was associated with more mesenchymal-like characteristic of the tumor samples. 

These findings suggest that EMT-related CpG-gene pairs discovered in this study are 

associated with gene regulatory networks wired by EMT related TFs through a relationship 

between DNA methylation at their target DNA binding regions in enhancers, and gene 

expression of their target genes. This study highlights the CpGs identified as potential 

contributors to EMT-related cancer pathogenesis in the ER positive breast tumors and 

constitute interesting regions for further investigations. However, these in silico findings still 

require better validation in vitro. The identification of cancer-causing epigenetic changes may 

open up possibilities of targeted treatment by utilization of technologies such as CRISPR to 

edit epigenetic cancer-causing mutations to inhibit tumor growth in the future.  
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1 Introduction 

1.1 Cancer 

Cancer is a general term used to describe a condition in which the cells in a body acquire the 

ability to grow and divide in an uncontrollable way. Eventually, as a tumor progress the cells 

may start to destroy nearby healthy tissues and spread to distal parts of the body and establish 

secondary tumors. If left untreated, the disease will eventually become a major burden for the 

body and will cause death. Cancer may affect anyone independent of age, lifestyle and 

familial history. In Norway, 36 % of men and 30 % of females are expected to be affected by 

cancer prior to the age of 75 (8).  

Tumors are highly heterogenic and consists of a diverse bulk of cells with distinct molecular 

signatures and responses to cancer treatment. The unique biology of each tumor reflects the 

importance of research on the developmental process of the disease, risk factors associated 

with increased predisposition, classification of patients, treatments and the side effects 

associated with the treatments. 

1.1.1 The hallmarks of cancer 

For a cell to become cancerous, it must acquire some traits in a multistep process that allows 

it to gain a selective advantage compared to normal cells, as described by Douglas Hanahan 

and Robert A. Weinberg in year 2000 (9). Six essential alterations in the cell physiology must 

occur so it can develop into a malignant neoplasm. First, the cell must become self-sufficient 

in growth signals. Production and release of growth promoting signals are tightly regulated 

in normal cells to ensure homeostasis of cell number and tissue structure, and they are 

essential for the normal cells to shift from a quiescent to an active proliferative state. 

Molecular events to achieve this involves alteration of extracellular signals, transcellular 

transducers or intracellular circuits. In addition to growth factors, normal tissue cells express 

multiple antiproliferative signals that keep normal cells in a quiescent state to maintain tissue 

homeostasis. Cancer cells must be able to block antigrowth signals to divide. Antigrowth 

signals can block proliferation by forcing the cell out of the active proliferative cycle and into 

a quiescent state or by inducing the cell to enter a postmitotic state associated with gain of 

specific differentiation-associated traits. Achievement of this involves the alterations of 
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factors negatively regulating cell proliferation, such as tumor suppressor genes. Cancer cells 

must also be able to avoid programmed cell death which is triggered in response to various 

physiological stresses. Normal cells can only divide a limited number of times before it enters 

cell senescence or apoptosis, a mechanism associated with telomere shortening. To overcome 

this, the majority of human cancers have induced the expression of telomerase enzymes that 

lengthens the telomeres at the chromosome DNA ends thereby providing the ability of 

cancer cells to replicate limitlessly. For an emerging tumor to thrive, the ability to induce 

angiogenesis is essential to provide vital nutrients to ensure cancer cell survival in a densely 

packed tumor. Sooner or later in the tumor development, cancer cells acquire the ability to 

metastasize to other parts of the body and invade distinct tissues to establish secondary 

tumors.  

In addition to these six hallmarks, increased understanding of the disease and cancer research 

progression have led to the addition of four additional hallmark capabilities reviewed in the 

updated paper of hallmarks of cancer by Hanahan and Weinberg that was published in 2013.  

 

 

Figure 1. The hallmarks of cancer. The ten hallmarks of cancer common to most malignancies according to the 

updated paper of Hannahan and Weinberg published in 2013. These ten hallmarks include: the ability to sustain 

proliferative signaling, evade growth suppressors, avoiding immune destruction, enable replicative immortality, 

induce tumor promoting inflammation, deregulation of cellular energetics, resist cell death, genome instability 

and mutations, induce angiogenesis and activate invasion and metastasis. The order in which these traits are 

acquired differs from cancer to cancer. Reprinted from Hallmarks of Cancer (10).  
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Genomic instability and increased mutation rate are observed in cancer and is caused by 

increased sensitivity of cancer cells to mutagenic agents and/or the alteration of cell 

machinery components responsible for genomic maintenance. Moreover, cancer cells tend to 

display a deregulation of the cellular energetics. In many cases, cancer cells limit their 

energy metabolism largely to glycolysis and increases the glucose import into the cytoplasm, 

as first described by Otto Warburg (11-13).  

These two last emerging hallmarks involves tumor promoting inflammation, and the ability 

to evade immune destruction. The immune surveillance theory propose that the immune 

system is continuously monitoring cells and tissues in the body and may eliminate highly 

immunogenic incipient cancer cells. This selection process of cells known as immunoediting 

leaves behind weakly immunogenic cancer cells that may avoid immune destruction and 

advance to become a solid tumor. Tumor tissues are known to contain immune cells in 

various densities with similar characteristics of non-neoplastic inflammation (14). Immune 

cell infiltration has been known for antitumoral response, but paradoxically they may also 

enhance tumorigenesis. Immune cells may supply the tumor microenvironment with 

biological molecules such as survival factors, growth factors, proangiogenic factors and 

extracellular matrix modifying enzymes. These factors may attract inflammatory cells, such as 

neutrophils, that can release highly mutagenic chemicals such as reactive oxygen species to 

further enhance carcinogenesis (15). In addition, such factors may facilitate angiogenesis and 

epithelial-mesenchymal transition (EMT) leading to invasion, metastasis and increased 

resistance to apoptosis (15-20). The ten hallmarks of cancer described by Hanahan and 

Weinberg is summarized in Figure 1.  
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1.2 Breast cancer 

1.2.1 Incidence and survival 

Breast cancer (Lat: Cancer mammae) is the most frequently occurring cancer type in women 

worldwide today with an estimated 1.67 million new cancer cases diagnosed in 2012 (25% of 

all cancers). The same year, breast cancer claimed 522,000 lives and was thereby ranked as 

the fifth cause of cancer death in the world (21). The global incidence of breast cancer 

increased from 641,000 in 1980 to 1,643,000 cases in 2010, which is a 3.1 % increase in 

annual rate (22). In Norway, 32,827 people were diagnosed with cancer in 2016, in which 

3,402 of these incidences represented breast cancer. Females represents the great majority of 

these cases as only 31 of the affected were males (23). 

The breast cancer incidence has increased significantly the last decades (Figure 2), but also 

the five-year overall survival (24). This is probably partly due to early disease detection and 

improvement in diagnostics and treatments. At the same time as the incidence have increased, 

the mortality of the disease has decreased from about 30 deaths to less than 25 deaths per 

100,000 people in 2015. The observable decrease in mortality after 1996 may be partly due to 

the mammography-screening program that started in 1996 in Norway.  

 

 

Figure 2. Trends in incidence, mortality rates and 5-year relative survival for Norwegian females from 1965 to 

2015. Reprinted from Cancer in Norway 2016, The Cancer Registry of Norway (23). 
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1.2.2 Risk factors contributing to breast cancer development 

It is usually not possible to pinpoint the exact cause of why someone develop cancer. But 

intensive research the last decades have elucidated several factors that may predispose a 

person to cancer development which includes genetic (inherent) factors and extrinsic factors. 

It is well known that familial history is an important genetic factor of breast cancer 

predisposition, even though most women developing breast cancer have no familial history of 

the disease. Only about 13 % of women diagnosed with breast cancer had a first-degree 

female relative with breast cancer (25). The most commonly mutated genes responsible for 

the familial cases of breast cancer includes the tumor suppressor genes BRCA1 and BRCA2, in 

which their gene products are involved in repair of damaged DNA (26). Females with somatic 

mutations in BRCA1 are more likely to obtain additional genetic alterations that may lead to 

cancer. The life time risk of females with BRCA1 or BRCA2 mutations is estimated to be 

approximately 75 % (27). In sporadic breast cancers however, somatic mutations in these 

genes are rarely detected (28). In addition to familial BRCA1 and BRCA2 mutations, several 

rare hereditary syndromes are associated with breast cancer susceptibility such as Cowden 

syndrome caused by germline PTEN mutations (29), Li-Fraumeni syndrome with germline 

mutations of the tumor suppressor gene TP53 (30), Peutz-Jeghers syndrome with mutations in 

the germline of the genes STK11/LKB1 (31), Ataxia-telangiectasia caused by germline 

mutations in the ATM gene (32). 

In addition to genetic predisposition, researchers have revealed that immigrants from low 

breast cancer risk countries have an increased risk of getting breast cancer towards that of the 

destination countries (33). This strongly emphasize the impact of environmental factors and 

lifestyle on breast cancer predisposition. Life style factors such as overweight, diet, alcohol 

consumption and smoking can affect the risk of developing breast cancer. Alcohol 

consumption is showed to be associated with the risk of getting breast cancer. The exact 

mechanism is still a bit unclear, but the breast seems to be more susceptible to the 

carcinogenic effects of alcohol for patients with moderate to high intake (34). Studies have 

shown conflicting results between dietary fat and breast cancer risk (35-38). However, there is 

substantial evidence for the link between overweight and breast cancer risk. Overweight and 

obese postmenopausal women have 1.5 times and 2 times, respectively, larger risk compared 

to normal weight women to develop breast cancer (39). This link between overweight and 
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breast cancer risk is likely to be caused by estrogen hormones. The main source of estrogen in 

postmenopausal women is the adipose tissue (40).  

1.2.3 Breast anatomy and breast cancer progression 

The breasts are paired structures found on the anterior thoracic wall and extend from the 

second rib superiorly to the sixth rib inferiorly (41). Most of the female breasts are made up of 

adipose tissue extending from the collarbone, down to the underarm and across the middle of 

the ribcage. The adipose tissue is surrounded by a network of ligaments, fibrous connective 

tissue, lymph vessels, lymph nodes, blood vessels and nerves (41, 42). The female breasts are 

exocrine glands consisting of milk producing cavities called alveoli that clusters into groups 

called lobules (41). Each breast contains about 20 milk secreting lobules (43). The lobules are 

connected to the nipples by lactiferous ducts that allows passage of the milk to the nipples. 

The majority (~75 %)  of breast cancers forms at this site (44). Ducts and lobules are 

surrounded by suspensory ligaments that functions as structural support for the breasts. The 

major characteristics of the anatomy of the adult female breast is illustrated in Figure 3. 

 

Figure 3. Anatomy of the adult female breast. The lobules produce milk that is transported to the nipple. 

Adipose tissue surrounds the functional tissue of the breasts. Adapted from (45). 
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Breast cancer development is a multistep process altered by genetic- and epigenetic changes 

as well as a changing tumor microenvironment. Such changes may alter the growth of cells 

surrounding the ducts or lobules inside the breasts. The stepwise conversion from normal 

epithelial tissue to an invasive carcinoma is described in Figure 4. Under normal conditions, 

the ducts and lobules in the breasts are surrounded by two layers cells, the outer luminal 

epithelial cells and the inner myoepithelial cells lining the basement membrane. More than 

two layers of cells in the ducts or lobules describes a condition called lobular hyperplasia or 

ductal hyperplasia. The hyperplasia may eventually display histological abnormal 

characteristics including the accumulation of normal looking luminal epithelial cells within 

the lobules or ducts, a condition known as atypical hyperplasia. The atypical hyperplasia 

lesion is not yet defined as cancerous, but the condition is associated with 4-5 times increase 

in breast cancer risk (46). The cells may further progress by increased proliferation leading to 

a condition called carcinoma in situ, more specific ductal carcinoma in situ (DCIS) or lobular 

carcinoma in situ (LCIS). Another form of breast cancer is breast sarcomas. Breast sarcomas 

accounts for less than 1% of all breast cancers (47). 

‘ 

 

Figure 4. Breast cancer progression. (A) represents a normal duct in the breast of a healthy individual. During 

the early steps of breast cancer abnormal tissue patters occur characterized by histological abnormalities (B-C). 

Increased cell proliferation may eventually lead to DCIS (D). If left untreated, the DCIS may become invasive 

(E). Modified from (48). 

 

A DCIS or LCIS is defined as a non-invasive neoplasm of epithelial cells separated from the 

breast stroma by the basement membrane. If left untreated a significantly proportion of these 

neoplasms will undergo a biological process termed the invasion-metastasis cascade. Early 

stages of this cascade involve the gain of mesenchymal cell characteristics of epithelial-like 
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tumor cells by EMT. Over time the mesenchymal-like tumor cells will be able to break 

through the basement membrane and disseminate from the primary tumor and migrate into the 

surrounding tissues (49). Eventually the cancer cells will intravasate into the lumen of blood 

vessels and lymphatic vessels. At this stage the area of abnormal cell growth is defined as an 

invasive ductal- or invasive lobular carcinoma. Breast cancer tumor cells tend to intravasate 

into the lymphatic vessels due to their high permeability (50). Tumor cell selection determines 

which cell that survives the transport through the vasculature. The tumor cell may extravasate 

into the parenchyma of distant organs and initially survive in the foreign microenvironment 

by initiating their proliferative characteristics and develop into a secondary tumor (51).  

1.2.4  Breast cancer classification 

Breast cancer is a heterogenous disease with diverse morphological features, variable clinical 

outcome and variable response to therapeutic treatment. Classification of breast cancer is 

essential to understand the underlying biological mechanisms driving the disease. Breast 

cancer classification is widely used in the clinic to determine the optimal treatment for each 

patient, and to provide information about treatment response as well as the expected 

prognosis. By identifying patients with a worse overall prognosis, one may be able to early 

consider the need for a more aggressive treatment.  

TNM-classification 

TNM classification is used to determine the cancer stage by combining information about 

primary tumor size (T), regional lymph node involvement (N) and distant metastases (M) as 

shown in Table 1. The guidelines for TNM staging is published in the 7th edition of the AJCC 

Cancer Staging Manual (52). Tumors are categorized as either non-detectable (T0), carcinoma 

in situ (Tis), smaller than 20 mm in greatest dimension (T1), larger than 20 mm but smaller 

than 50 mm (T2) or larger than 50 mm (T3). T4 is characterized as a tumor of any size with 

extension to the chest wall and/or the skin. N0 represents no detection of tumor cells within 

the lymph nodes, while N1, N2 and N3 display increased number of regional lymph nodes 

with increasing distance from the primary tumor. No distant metastases are represented as 

M0, while M1 represents metastasis detection.  
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The TNM value combinations are combined 

to give an overall stage from 0 to IV, in 

which stage IV is the highest stage with a 

more advanced cancer than for lower stages. 

Table 1 summarizes the characteristics of 

the different stages of breast cancer. Stage 0 

is characterized by the presence of 

carcinoma in situ. Stage I disease is a T1 

tumor with N0 or detection of 

micrometastases in the lymph nodes. Stage 

II disease can be T0-T3 tumor with no or 

little spread to the lymph nodes. Stage III 

includes T0-T4 tumors with more 

pronounced spread to lymph nodes. Stage 

IV disease represents any T or N and the 

detection of distant metastases. The prognosis is usually not so good for higher stages (53). 

Sometimes the stages are subdivided into A and B (53) as annotated in Table 1. 

Histological grade 

Tumor grading is used as an indicator of how likely a tumor is to grow and spread. Tumor 

grade is based on the tumor tissue morphology compared to normal tissue under a 

microscope. The grade may help to predict disease prognosis and treatments that may be 

beneficial for the patient. A scoring system is used to set tumor grade based on three features 

determined by tumor examination including the appearance of the glandular and tubular 

formation, nuclear pleomorphism and mitotic count (54). Each category is given a score 

between 1 and 3. A total score of 3-5 is considered to be grade 1, a score of 6-7 is grade 2 and 

a score of 8-9 is a grade 3 (55). Grade 1 tumors are slow growing and normal breast cell 

looking, while grade 3 tumors tend to grow faster, be poorly differentiated and look different 

from normal breast tissue. Grade 2 tumors are usually moderately differentiated with an 

intermediate appearance of grade 1 and grade 3 tumors. 

 

Table 1.  Summary of TNM classification. 

Stage T N M 

Stage 0 Tis N0 M0 

Stage IA T1* N0 M0 

Stage IB T0 N1mi M0 

 T1* N1mi M0 

Stage IIA T0 N1** M0 

 T1* N1** M0 

 T2 N0 M0 

Stage IIB T2 N1 M0 

 T3 N0 M0 

Stage IIA T0 N2 M0 

 T1* N2 M0 

 T2 N2 M0 

 T3 N1 M0 

 T3 N2 M0 

Stage IIB T4 N0 M0 

 T4 N1 M0 

 T4 N2 M0 

Stage IIIC Any T N3 M0 

Stage IV Any T Any N M1 

*T1 includes T1mi 

**T0, T1 nodal micrometastases are only excluded 

from stage IIA and are classified as Stage IB. 
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Hormone receptor status 

There are two main types of hormone receptors are typically involved in breast cancer which 

includes the estrogen receptor (ER) and progesterone receptor (PR) (56). Both receptors are 

steroid hormone receptors mainly found in cytosol. The steroid hormone estradiol can diffuse 

through the cell membrane and bind to ER, which leads to receptor migration into the nucleus 

where it dimerizes and binds to DNA. DNA binding causes activation of estrogen-responsive 

genes (57). There are two different forms of the estrogen receptor, α and β, which are encoded 

by two different genes called ESR1 and ESR2, respectively (58). The clinical relevance of the 

ER β-form is still unknown (59), so the abbreviation ER will later be referred to as the 

estrogen receptor α-isoform. The PR receptor also exists in two isoforms; PRA and PRB. 

PRA is a truncated version of PRB but they share similar functions (60). Breast cancers can 

be classified based on hormone receptor status of cells evaluated from biopsy or surgery. A 

tumor is classified as estrogen receptor positive (ER+) if the estrogen receptor is upregulated, 

and ER negative (ER-) if the receptor is downregulated in the tumor cells. Around 70 % of all 

breast tumors are ER positive tumors (4). The same principle is true for the progesterone 

receptor.  

HER2 

Human epidermal growth factor receptor 2 (HER2) is a transmembrane protein receptor with 

tyrosine kinase activity encoded by the ERBB2 gene. HER2 overexpression is observed in 20-

30 % of all breast cancers and is often caused by ERBB2 amplification (61). Growth factor 

binding to the HER2 receptor leads to dimerization and autophosphorylation in which the 

tyrosine residues on the cytoplasmic domains becomes phosphorylated. This modification 

leads to activation of various signaling pathways such as the mitogen-activated protein kinase 

(MAPK) pathway involved in cell proliferation and the phosphoinositide 3-kinase pathway 

involved in cell survival (62). HER2 amplification is associated with metastasis and reduced 

survival (63). 

Classification by gene expression 

Development of cDNA microarray technology made it possible to classify breast cancer 

patients based on gene expression pattern. Perou et al. (64) described one such approach and 

made to classify 65 breast cancer specimens into intrinsic subtypes associated with ER status 

and other ER related genes. Parker et al (65) formalized gene expression subtyping to include 
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five subtypes derived from the expression of 50 genes: luminal A, luminal B, basal-like, 

HER2-enriched and normal-like (64, 66).  

The luminal A subtype is the most commonly occurring breast cancer subtype and accounts 

for 50 % of all invasive breast cancers (67, 68). Luminal A tumors tend to be ER positive 

and/or PR positive, HER2 negative and to have a low Ki67 index (proliferating cell nuclear 

antigen necessary for cell proliferation) (67). They tend to display low histological grade, low 

degree of nuclear pleomorphism and are associated with a good prognosis (69, 70). Luminal 

A tumors tend to express high levels of ER (ESR1), luminal epithelial markers such as 

cytokeratin 8 (KRT8) and cytokeratin 18 (KRT18) and other genes associated with ER 

function such as forkhead box protein A1 (FOXA1), GATA-binding protein 3 (GATA3) and 

zinc transporter ZIP6 (SLC39A6) (71).  

Luminal B tumors in contrast tend to display a more aggressive phenotype with 

characteristics including higher histological grade, variable expression of HER2 (positive or 

negative), higher proliferative Ki67 index compared to luminal A and a worse prognosis (68, 

72). The main difference between the luminal subtypes is the increased expression of 

proliferation-related genes such as lysosome-associated transmembrane protein 4-beta 

(LAPTM4B), avian myeloblastosis viral oncogene homolog (MYB), nuclease sensitive 

element binding protein 1 (YBX1) and cyclin E1 (CCNE1). Tumors of the luminal subtypes 

are considered to be among the most differentiated tumor subtypes (73, 74). 

HER2-enriched breast cancer tumors are commonly ER-/PR- and HER2 positive. 

Morphologically, HER2-enriched breast cancer tumors tend to display high proliferation and 

high histological- and nuclear grade. In addition to high expression of HER2, genes 

associated with the HER2 pathway tend to be upregulated as well (67). The overall survival 

associated with the HER2-enriched subtype is similar to that of luminal B (75). 

Basal-like tumors usually express low levels of ER, PR and HER2, a term referred to as 

triple-negative tumors in the pathology. Basal-like tumors are associated with high 

histological grade, high nuclear grade, high Ki67 index and worse survival than the luminal B 

subtype (69, 76, 77). The tumors tend to have a high expression of cytokeratin 5 (KRT5), 

cytokeratin 14 (KRT14) and cytokeratin 17 (KRT17) (78). 
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Normal-like tumors tend to be hormone receptor positive (ER+ and/or PR+), HER2 negative 

and have expression profiles similar to normal breast tissue (79). Normal-like breast cancers 

have an intermediate prognosis (69).  

These five subtypes may be predicted by the differential expression of 50 genes by prediction 

Analysis Microarray (PAM50) (65). An emerging PAM50-based subtype classifier and risk 

model now included in the international clinical practice guidelines is the Prosigna® PAM50 

assay made by NanoString. Prosigna® has shown promising results in classifying breast 

cancer patients into prognostic groups. The Prosigna® assay is a genomic test that analyzes 

the activity of 50 PAM50 genes. Based on the activity of these genes a risk of recurrence 

(ROR) score is estimated, allowing the categorization of patients into a low, intermediate and 

high-risk groups (80). A study published in 2017 by Ohnstad et al. (81) showed that PAM50 

intrinsic subtype- and ROR score classification improves classification of breast cancer 

subtypes into prognostic groups. It provides a more precise indication of future recurrence 

risk and may improve the basis for adjuvant treatment decisions (81).  

TP53 

TP53 is a tumor suppressor gene encoding tumor protein p53, which is involved in response 

to cell stress by inducing pathways leading to cell cycle arrest, DNA repair and apoptosis. 

About 30 % of all breast carcinomas contains TP53 mutations, and more than 75 % of the 

mutations is caused by missense mutations (82, 83). TP53 status have been shown to have a 

high prognostic value in which mutations in TP53 is associated with worse disease-free and 

overall survival (84).  

Other molecular classifications 

DNA copy number alterations (CNAs) occurs when larger portions of the genome are 

duplicated or deleted. This may alter the expression of genes as the DNA fragment to be 

duplicated or deleted may contain genes. Duplications and deletions may also disrupt 

proximal or distal regulatory regions which may alter the properties of the cell. Copy number 

alterations have previously been shown to be associated with cancer progression (85).  Breast 

cancer classification based on DNA copy number alterations have previously been performed. 

The classification was based on complex rearrangements (complex arm aberration index; 

CAAI) and whole-arm gains and losses (whole-arm aberration index; WAAI). By applying 
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CAAI and WAAI, eight subgroups were identified with distinct prognosis (86). Another 

approach classified breast cancers based on the integration of DNA copy number and gene 

expression data of loci where gene expression was affected by DNA copy number alterations. 

This approach revealed ten integrative clusters associated with different prognosis. One 

subgroup mainly consisting of luminal A and luminal B tumors was identified with poor 

prognosis and was associated with cis-acting CNAs at 11q13/14. Another subgroup devoid of 

CNAs was associated with good prognosis (87). 

1.2.5 Breast cancer treatment 

The main goal of breast cancer treatment is to completely cure the disease, and if this is 

unachievable, to provide a prolonged life for the breast cancer patient and at the same time 

maintaining a good quality of life. The primary treatment for most patients with breast cancer 

is surgery. There are two main types of surgery; breast-conserving surgery (lumpectomy) in 

which only part of the breast is removed including the cancer and surrounding normal tissue, 

and mastectomy in which the entire breast is removed including all breast tissue (88). 

Chemotherapy, radiation therapy, hormone therapy or targeted therapy may be included in 

addition, both before surgery (neoadjuvant treatment) and after surgery (adjuvant treatment).  

Chemotherapy targets cells growing and dividing rapidly such as cancer cells but also affect 

other rapidly dividing normal cells which may contribute to its side effects. Chemotherapy is 

usually preferred at the early stage of invasive breast cancer and advanced-stage breast cancer 

(89). Radiation therapy use high-energy radiation to damage cancer cells as well as the nearby 

normal cells (90). Since cancer cells are less organized than healthy cells, DNA damage 

caused by the radiation therapy is harder for the cancer cell to repair than for normal healthy 

cells. The aim of hormone treatment is to either lower the estrogen level in the body or to 

block the action of estrogen on breast cancer cells in hormone-receptor-positive breast cancers 

(91). Estrogen is a major contributor to the growth of hormone-receptor-positive breast 

cancers (92). Receptor status determination is important when deciding treatment options for 

the patient, as hormone therapy will not affect hormone receptor negative tumors. For these 

patients, chemotherapy is often suggested (93). Hormone receptors such as ER and PR binds 

estrogen and progesterone respectively and promotes tumor growth (60, 94). By knowing the 

receptor status of a breast cancer one can use drugs specifically targeting these receptors 

either by lowering of hormone level or to block the hormone from binding to these receptors 
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in hormone positive tumors. The FDA approved humanized monoclonal antibody drug 

trastuzumab (Herceptin) is an example of targeted cancer therapy which targets HER2 

positive breast cancers by blocking growth signals (95). Breast cancer classification is 

essential to map potential targets of drug treatments that will benefit the patient the most. 

1.3 Epigenetics 

Cell types within multicellular organisms may 

accomplish highly distinct functions and 

display very different morphology, but still 

they share the same genome. Cell types within 

and organism are distinct from one another 

because they synthesize and accumulate 

different sets of RNA and protein molecules. 

This phenomenon can be explained by 

epigenetics. The term epigenetics can be 

defined as regulatory mechanisms that 

influence gene expression without altering the 

DNA sequence (97). Epigenetic modifications 

are essential for normal development and 

tissue specific gene expression in mammals 

(98). Changes in epigenetics have the 

potential to alter gene expression by several 

mechanisms including histone modification, 

nucleosome positioning and DNA methylation 

(Figure 5). Improper modifications may have 

adverse health effects and lead to diseases such as cancer (99). Some of these alterations can 

be transferred between generations (100). 

1.3.1 Chromatin  

Chromatin is the compact organization of DNA within the cell nucleus and consisting of 

DNA and proteins. The main role of chromatin is to effectively package DNA in the nucleus, 

reinforce DNA during cell cycle, prevent DNA damage and control DNA replication and 

 

Figure 5. Epigenetic modifications of the DNA. The 

cytosine bases of DNA can either be methylated or 

unmethylated while the histone tails can be modified by 

chemical groups. The chromatin can be densely- or 

loosely packaged. Reprinted from (96). 
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transcription. There are two states of chromatin; euchromatin which is a lightly packed form 

of chromatin associated with transcriptional activity, and tightly packed heterochromatin 

associated with gene silencing and protection of chromosome integrity (101). The 

fundamental unit of chromatin is the nucleosome that consists of a core particle and an 

internucleosomal region linking the core particles together. A nucleosome consists of DNA 

wrapped around a histone octamer composed of a H3/H4 tetramer flanked by two H2A-H2B 

dimers (102). Each histone has a protruding N-terminal tail (H2A and H2B also have a C-

terminal tail). The nucleosome is the first level of organization of chromatin and look like 

“beads on a string” forming fibers of approximately 10 nm with a DNA packing ratio (length 

of DNA/length of unit) around 6. The 10-nm fibers are condensed into 30-nm fibers in a 

solenoid like structure stabilized by the linker histone H1 that binds to DNA entry and exit 

sites of the nucleosome with a DNA packing ratio of 35-40 (102, 103). 

Histones tails are subjected to various types of post-translational modifications including 

methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, 

deamination and proline isomerization (104). Acetylation at amino acid position 4, 9, 14 at 

H3 lysines and at position 5, 16 at H4 lysines are common targets of acetylation associated 

with transcriptional activation (105, 106). Histone acetylation is catalyzed by histone 

acetylase enzymes and reversed by histone deacetylases. Phosphatases are involved in histone 

tail phosphorylation a modification associated with regulation of transcription and DNA 

damage response. E.g. Phosphorylation of the H2A(X) histone at serine at position 139 

triggers DNA-damage response pathways eventually leading to non-homologous end joining, 

homologous recombination or replication-coupled DNA repair (107). Serine phosphorylation 

on H3 at amino acid position 10 and 32 have been associated with transcription of the proto-

oncogenes c-fos, c-jun and c-myc (108-110). The modification of histone tails by methylation 

mainly occurs at lysines or arginines and is linked to both transcriptional activation and 

inactivation. Lysines may be mono-, di- or tri-methylated while arginine may be mono-, 

symmetrically- or asymmetrically demethylated in a process catalyzed by histone 

methyltransferases (111). H3K9me3, H3K27me3 and H3K79me3 are associated with 

transcriptional repression while H3K4me3, H3K36me3 and H4K20me3 are associated with 

transcriptional activation (112, 113). 

Histone modifications may exert their effects either by directly influencing the local structure 

of chromatin or by interacting with effector molecules. Acetylation and phosphorylation of 
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histones disrupts the electrostatic interactions between the positively charged histone and the 

negatively charged DNA. This causes a less compact chromatin structure which may allow 

the transcriptional machinery to access DNA and initiate transcription (111). In addition, 

many chromatin-associated factors have domains that recognize specific histone tail 

modifications. For instance, the tandem chromodomains of chromodomain-helicase-DNA-

binding protein 1 can bind trimethylated H3K4. The protein is an ATP-dependent remodeling 

enzyme involved in nucleosome repositioning (114). Acetylated histones may be recognized 

by the bromodomain of chromatin remodeling complexes such as Swi2/Snf2 complex to 

loosen the chromatin structure, thereby allowing transcription to occur (115). Some 

remodeling complexes are also associated with gene repression by changing the local 

chromatin structure, blocking the transcription factor machinery from binding (116). One 

such remodeling complex is the mammalian ISWI chromatin remodeling ATPase SNF2H 

(117). 

1.3.2 DNA methylation 

DNA methylation is the process of adding a methyl group (-CH3) to the C-5 position of the 

pyrimidine ring of cytosine in DNA as indicated in Figure 6. The process is facilitated by a 

DNA methyltransferase enzyme (DNMT) (118). There are two different types of DNMTs 

involved in DNA methylation in mammals. DNMT1 is involved in the maintenance of the 

methylation pattern of DNA, mainly by methylating the unmethylated DNA strand of 

hemimethylated double stranded DNA after DNA replication. In contrast to this, DNMT3 

prefer de novo methylation of DNA (119, 120). However, mounting evidences indicates that 

DNMT3 may also play a role in maintenance methylation during replication (120).  

 

Figure 6. Cytosine methylation. DNMT catalyzes the reaction in which a methyl group is donated from S-

adenosyl-L-methionine to the 5 position of the cytosine pyrimidine ring. 
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DNA methylation occurs primarily at CpG sites in DNA. CpG sites are parts of DNA where 

the cytosine (C) nucleotide is followed by a guanine (G) nucleotide. The p in CpG stands for 

the phosphate bond connecting these two nucleotides together. In the human genome, many 

CpGs are found enriched in certain regions called CpG islands (CGI). More than half of the 

human genes contain CGIs, while the rest of the genome generally is depleted of CpGs (121). 

These CGIs are enriched in regulatory regions such as promotors (122). Promotor methylation 

is associated with the repression of gene expression. For gene transcription to occur, the 

promoter region needs to be easily accessible for transcription factors and other components 

of the transcription machinery. Transcription factors will generally not bind to methylated 

promoters unless they have a methyl-CpG binding domain (123). In addition, methylated 

CpGs may attract proteins that can bind to the methyl groups of the promotor to recruit 

repressing remodeling complexes (119, 124). A consequence of this alteration is chromatin 

compaction which is associated with gene silencing (125, 126). 

DNA methylation of cytosines in DNA is a reversible process. Demethylation involves 

enzymes such as ten-eleven translocation enzymes (TET). TET enzymes are hydroxylases 

that can oxidize 5-methylcytosine (5mCs) to 5-hydroxymethylcytosine (5hmC) or further 

oxidize it to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Alternatively, 5mC could 

be deaminated by AID/APOBEC family member enzymes to create a thymidine base, or on 

5hmC to produce 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmU), all 

which may be recognized as base mismatches (106, 127). Such mismatches may be replaced 

by unmethylated cytosines by glycosylase enzymes in a process called base excision repair 

(127). The exact mechanisms behind demethylation of 5-methylcytosines to cytosine is not 

fully understood. 

1.3.3 DNA methylation in cancer 

Epigenetic features such as DNA methylation and chromatin states are often found to be 

altered in cancer cells (128). Appropriate DNA methylation is essential for development and 

appropriate cell function. Abnormalities in the DNA methylation pattern may lead to various 

diseases, such as cancer (129). Both global hypomethylation and DNA hypermethylation is 

observed in cancer. Global hypomethylation contributes to genomic instability. For instance, 

normal cells are highly methylated at satellite sequences and repetitive DNA sequences (E.g. 

LINE, SINE and Alu elements) within the genome, which maintains genomic stability and 
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integrity (130, 131). In many tumors, the loss of DNA methylation has activated transposable 

elements (132). Transposable elements may integrate at random sites within the genome 

which may cause mutations and genomic instability. In addition, loss of DNA methylation at 

promoters may activate oncogenes. Contradictory to global hypomethylation, certain genes 

are inactivated by hypermethylation of CGIs in their regulatory regions (133).  

1.3.4 DNA methylation in breast cancer 

Several studies have reported that DNA methylation may be an early event in breast 

carcinogenesis, which may lead to oncogene activation and silencing of tumor suppressor 

genes (134-137). More than 100 genes have been reported to be aberrantly methylated in 

breast carcinomas and many of them have been associated with gene repression. BRCA1 have 

been found to be frequently inactivated in sporadic breast cancers due to promoter 

hypermethylation. Another gene, the CDKN2A tumor suppressor gene tend to be more 

frequently hypermethylated among the ER negative breast cancers than the ER positives 

(138). CDKN2A is a member of a family of proteins that binds to and block the cyclin D/cdk4 

complex activity and induces G1 cell cycle arrest in cells with a functional retinoblastoma 

protein (139). In addition to hypermethylation, global hypomethylation have been associated 

with tumor stage, size and grade (140). Although hypomethylation of cis-regulatory regions in 

cancer is much less frequent than hypermethylation of CGIs overlapping promoters, a few 

genes have been reported to be frequently hypomethylated in breast cancers (140, 141). Some 

of them includes IL-10 (142), MDR1 (135) and CDH3 (143), in which hypomethylation in 

their promoter region have been associated with increased gene expression. In addition to 

promoters, several published papers the past years have elucidated the link between aberrant 

DNA methylation at enhancers to tumor progression and plasticity (6, 144, 145). Enhancers 

are cis-regulatory regions known to regulate gene expression through the binding of cell-type 

specific TFs that can recognize specific sequences of DNA (146, 147). TF binding to 

enhancers is also known to be influenced by DNA methylation at the TF binding sites (148).  

In the last decade, technological advances in high-density microarray technology and high-

throughput DNA sequencing has made extensive genome-wide analyses achievable. This 

enables more comprehensive studies of the role of DNA methylation in breast cancer. 

Numerous papers have been published investigating global DNA methylation differences in 

relation to breast cancer subtypes and clinical features (3, 149, 150). One study identified a 
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significant association between the methylation of RECK, SFRP2, UAP1L1, ACADL, ITR and 

UGT3A1 and relapse-free survival (151). Another made a model based on five biomarkers 

that could distinguish HER2 overexpressing subtypes (Luminal B and ERBB2 positive) and 

basal-like tumors. In HER2 overexpressing tumors NPY, HS3ST2, RASSF1, FGF2 and Let-7a 

were hypermethylated, while basal-like tumors displayed lack of methylation (2). In addition, 

large scale methylation analyses have shown that breast cancers can be classified into three 

clusters. Each cluster were associated with different ER status, TP53 mutation status, 

molecular subtype and overall survival (2, 3, 136, 152, 153). A DNA methylation signature 

(SAM40) has also been developed that segregated luminal A patients based on their 

prognosis, thereby identifying one subgroup that may benefit from more aggressive treatment 

and another one that would benefit from less (154). DNA methylation is a robust biomarker, 

more stable than RNA and proteins and is therefore an appealing target for development of 

new approaches for diagnosis and prognosis of breast cancer. Since DNA methylation is 

critical for gene expression, DNA methylation may provide an additional layer of information 

that may provide better breast cancer classification and clinical information in the future.  

1.4 Genome-wide expression-methylation quantitative trait loci analysis 

Genome-wide expression methylation quantitative trait loci (emQTL) analysis is a 

bioinformatical approach used to identify and characterize significant correlations between 

the level of DNA methylation at CpG sites and gene expression (emQTLs). Fleischer, Tekpli 

et al. (7) demonstrated this method for the first time in 2017 and revealed a hitherto unknown 

connection between the epigenome, transcription factor activity and gene expression in breast 

cancer. DNA methylation at enhancers at ERα, FOXA1 and GATA3 binding regions was 

found to be a breast cancer subtype specific feature (7).  

Significant correlations between the level of DNA methylation and gene expression were 

identified using Pearson correlation and Bonferroni correction. The Bonferroni corrected p-

values were clustered by unsupervised clustering to identify their biological relevance. From 

this they discovered two distinct bi-clusters of CpG-gene associations with different 

biological characteristics; Cluster 1 genes were found to be enriched in processes related to 

immune response and Cluster 2 genes were enriched in processes associated with estrogen 

response. In addition, ChromHMM segmentation data from the MCF7 cell line revealed that 

the CpGs from Cluster 1 and Cluster 2 were enriched in enhancer regulatory regions within 



20 
 

the genome. Since enhancers are known carry DNA sequences (motifs) recognized by cell 

type specific transcription factors, they sought for ChIP-seq peaks enriched within a close 

proximity to Cluster 1 and Cluster 2 CpGs. ChIP-seq data from the MCF7 cell line revealed 

that Cluster 1 CpGs were significantly enriched in TF binding regions of TFs involved in 

immune cell homeostasis such as RUNX1 (155), FLI1 (156) and ERG (157, 158). Cluster 2 

CpGs were found to be enriched in TF binding regions of TFs associated with estrogen 

signaling such as FOXA1 (159), GATA3 (160) and ERα (161). They are TFs well known to 

play key roles in breast cancer pathogenesis (160, 162). 

Further investigation of the level of DNA methylation for the CpGs in Cluster 2 regarding 

histopathological features and molecular classification was performed by unsupervised 

clustering of Cluster 2 CpGs. The level of methylation clearly distinguished the ER positive 

tumors from the ER negative tumors. Two CpG sub-clusters appeared as well, CpG-Cluster 

2A and CpG-Cluster 2B. CpG-Cluster 2A CpGs were enriched in the binding regions of ERα, 

FOXA1 and GATA3 and showed lower methylation in the ER positive tumors compared to 

ER negative tumors. The methylation pattern in CpG-Cluster 2B CpGs showed inverse 

methylation pattern. In addition, the methylation pattern was compared to the normal tissue 

CpGs in CpG-Cluster 2A and CpG-Cluster 2B and showed that CpG-Cluster 2A CpGs are 

hypomethylated in ER positive tumors while CpG-Cluster 2B CpGs are hypermethylated in 

ER positive tumors. Overall, this suggested that the methylation patterns of CpGs in Cluster 2 

are features acquired during carcinogenesis.  

Unsupervised clustering of the expression level of the genes in Cluster 2 was also performed, 

almost perfectly separating ER positive tumors from ER negative tumors. Two gene sub-

clusters were identified with differential expression according to ER status. Further 

investigation of the Cluster 2 genes revealed that 32% of the genes in Cluster 2 were paired 

with a minimum of one CpG locally (within ±10 kb window). This suggested that the genes 

of Cluster 2 are locally regulated through DNA methylation of enhancers that carries 

transcription factor binding regions for TFs such as FOXA1, GATA3 and ERα. CpG-Cluster 

2A CpGs with a low methylation level in ER positive tumors were locally paired with genes 

with high expression in ER positive patients, and the CpGs with a low methylation in ER 

negative tumors were locally paired with genes with high expression in ER negative patients. 

Gene knockdown experiments of FOXA1 and GATA3 in addition to Global Run On 

sequencing data revealed that 67% of genes in Cluster 2 were targets of ERα, FOXA1 and 
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GATA3. These target genes were significantly higher expressed in ER positive tumors, and 

the gene expression was higher in the Luminal A and Luminal B subtypes versus Normal-like 

and Basal-like breast cancer subtypes, thereby highlighting the link between Cluster 2 and 

estrogen signaling. Further assessment of the link between DNA methylation at enhancers and 

the expression of target genes was performed using ChIA-PET Pol2 data sets. ChIA-PET Pol2 

data sets contains experimentally defined data containing information about long-range 

chromatin interaction genome wide. Cluster 2A-CpGs in emQTL with Cluster 2A genes were 

enriched in ChIA-PET Pol2 loops and provided additional evidence for the regulation of the 

expression of target genes through DNA enhancer methylation containing transcription factor 

binding regions.  

Finally, unsupervised clustering of the genes in Cluster 1 associated with immune processes 

was performed. The level of lymphocyte infiltration was assessed using the in silico 

nanodissection algorithm (http://nano.princeton.edu/) to quantify the level of lymphocyte 

infiltration based on gene expression data. The unsupervised clustering of Cluster 1 genes did 

not segregate the breast cancer patients based on the PAM50 subtype or ER status, but it did 

segregate the patients based on the level of lymphocyte infiltration in the tumor sample. 

1.5 EMT in breast cancer 

Multiple lines of evidence the past decades have suggested that epithelial cancers can 

transform into a more mesenchymal-like phenotype in a process called epithelial-to-

mesenchymal transition (EMT). Several studies have highlighted EMT as an important 

contributor to cancer progression, metastasis and drug resistance (163-168). Tools to study 

EMT in cancer may therefore provide insight into the development of cancer during 

tumorigenesis as well as the molecular mechanisms behind EMT. Such knowledge may 

contribute to improved treatments of mesenchymal cancers. 

EMT is a biological process in which an epithelial cell undergoes multiple biochemical 

changes that enables it to lose apical-basal cell polarity and cell-cell adhesion to assume a 

mesenchymal-like migration prone phenotype. EMT eventually leads to tumor cell 

dissemination from the primary site, allowing invasion of malignant breast cancer cells into 

secondary sites in a reversible process called mesenchymal-epithelial transition (MET)(49). 

There are three main types of EMT programs; type 1 is involved in embryogenesis, 

http://nano.princeton.edu/
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gastrulation and neural crest formation. Type 2 is associated with wound healing and tissue 

regeneration, and type 3 is related to cancer malignancy, invasion and metastasis (169). In 

breast cancer, EMT has been found associated with cancer stem cell properties including 

abilities of self-renewal, resistance to chemotherapy and expression of stem cell associated 

CD44
+
/CD24

-
 antigenic profile, thereby contributing to a more aggressive breast cancer 

phenotype (170-173). Today, stemness and EMT are considered to be functionally 

interconnected via gene expression (174).  

EMT is orchestrated by a set of pleiotropically acting TFs such as Twist, Snail, Slug and 

Zeb1/2 (9). Other EMT-related TFs includes TEAD1 (175), FOSl1 (175), SIX2 (176), YAP1 

(175) and PPARG (177). The EMT-associated TFs are expressed in various combination in 

malignant tumors and they have been shown experimentally to be important during tumor cell 

invasion. Ectopically overexpression of several of these transcription factors has been 

observed to elicit metastasis (9, 178-180). For instance, Snail overexpression and binding to 

the E-cadherin promotor have been shown to strongly suppress the expression of E-cadherin 

(181). Loss of E-cadherin expression is a major event during EMT (182). Twist1 

overexpression has been shown to induce EMT and to reduce tumor cell proliferation (183, 

184). Interestingly, accumulating evidences suggests that EMT attenuates proliferation (185-

189). Other characteristics of EMT includes downregulation of cytokeratin, ZO-1 and 

upregulation of mesenchymal markers such as N-cadherin, fibronectin, vimentin and FOXC2 

(190, 191).  
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2 Aims 
 

An essential part of cancer research today is to identify and understand the molecular 

mechanisms driving the tumorigenesis towards malignancy. Identification of such causal 

pathways may enable the identification of new potential therapeutic targets that may inhibit 

cancer progression or hopefully cure the disease once and for all. Besides the major goal of all 

cancer research, that is to completely cure the disease with minimal side effects for the 

patient, the more specific goal of this project has been to: 

• Identify differences within ER positive breast cancers in respect to DNA methylation 

 levels of CpGs and gene expression by genome-wide expression-methylation 

 quantitative trait loci (emQTL) analysis. 

• Understand how DNA methylation and transcription factors contributes to 

 carcinogenesis in luminal breast cancers. 

• Identify CpG-gene pairs that represents candidates as cancer promoting alterations. 

• Validate the in silico findings in a cell line model system 
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3 Materials and methods 

3.1 Patient materials 

All molecular profiles utilized in this study were from ER positive primary breast tumors of 

luminal A- or luminal B subtype.  

3.1.1 Oslo2 

The Oslo2 (OSL2) breast cancer cohort is a consecutive study aiming to collect material from 

breast cancer patients with primary operable disease (T1-T2) in several south-eastern 

Norwegian hospitals. Patient inclusion to the study started in 2006 and is still ongoing. The 

cohort consists of gene expression, DNA methylation and clinical data from more than 300 

sporadic breast tumors (7, 192). All patients have provided written consent for use of the 

material for research purposes (193).  Gene expression data and clinical data can be obtained 

from GEO with access number GSE58215. DNA methylation profiles can be found at GEO 

with access number GSE84207.  

3.1.2 TCGA 

The Cancer Genome Atlas (TCGA) is a publicly funded project that aims to discover and 

catalogue cancer-causing genomic alterations in order to create a comprehensive genomic 

“atlas” of cancer profiles (194). The cohort consisting of data from more than 500 patients 

with both sporadic and familial breast cancer disease with gene expression (RNA-seq) and 

DNA methylation data profiles. The DNA methylation data profiles used in this study was 

generated using Illumina HumanMethylation450K. The molecular data for TCGA is publicly 

available and can be obtained from the TCGA data portal. Level 3 DNA methylation and 

RNA-seq data were utilized in this study. 

3.1.3 METABRIC 

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort is 

a collaboration project between Canada and the United Kingdom that aims to classify breast 

tumors into additional subcategories based on molecular signatures that may help to 
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determine optimal course of treatment (87, 195). The cohort consists of more than 1900 fresh 

frozen breast cancer samples with different grade, stage and molecular markers. Gene 

expression data from METABRIC can be obtained from EGAD with access number 

EGAD00010000210.  

3.2 Statistical computing and bioinformatical analyses using R 

All the analyses were conducted using the R software (R version 3.4.0) (196). R is a free 

software environment used for statistical computation and graphics. R provides collection of 

statistical and graphical techniques including classical statistical testing, linear and non-linear 

modeling, classification and clustering. R contains a core set of packages that is included in 

the installation of R, but more than 15,000 user-created packages are available and can be 

downloaded and applied in the program. 

3.3 Statistical tests and principles 

3.3.1 Correlation analysis and linear regression 

Correlation analysis is a statistical method used to investigate whether there is a possible 

linear association between two continuous variables. A correlation coefficient represents the 

extent of the association between the variables. There are two main types of correlation 

coefficients. Spearman’s rank correlation coefficient is used when both variables are skewed, 

or ordinal and extreme values are present. Spearman’s correlation is used to determine the 

direction and strength of a monotonic relationship between two variables. A Spearman 

correlation rho value of +1 or -1 indicates that the variable is a perfect monotone function of 

the other variable. Pearson’s product-moment coefficient is used when both variables being 

studied are normally distributed. In contrast to Spearman correlation that considers a 

monotone relationship, Pearson correlation determines the direction and strength of a linear 

relationship between two variables. A correlation coefficient of +1 or -1 suggests a perfect 

linear relationship, while a correlation coefficient of zero indicates the absence of a linear 

relationship between two continuous variables. For Spearman- and Pearson correlation; a 

positive correlation is associated with a positive correlation coefficient (i.e. if the value of a 

variable goes up, the value of the other variable also tends to). On the other hand, a negative 
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correlation is characterized by a negative correlation coefficient (i.e. if the value of a variable 

goes up, the value of the other variable tends to go down). Correlation analyses must be 

performed by care as a statistical relationship between two variables does not necessarily 

imply a causal relationship between them. 

3.3.2 Hierarchical clustering 

Hierarchical clustering analysis is a method used to cluster groups of features with similar 

characteristics into clusters. There are two types of hierarchical clustering strategies that 

exists; divisive clustering and agglomerative clustering (197). By divisive clustering or top 

down clustering, each observation starts in their own cluster and splits are performed 

repetitively as one moves down the hierarchy. Agglomerative or bottom up clustering is the 

most commonly used approach in which all observations are assigned to their own cluster and 

each cluster pairs are merged as one moves up the hierarchy.  

To determine which clusters that should be combined (agglomerative) or where the clusters 

should be split (divisive), a measure of dissimilarity of the observations is required (198). To 

determine this an appropriate distance metric and linkage criterion is applied. Distance 

metrices are different functions that defines the distance between data points and the choice 

influences the shape of the clusters. Some commonly used distance metrices includes 

Euclidean distance, Manhattan distance, Binary and Maximum distance. After this the linkage 

criterion determines the distance between each cluster. Average linkage is a possible choice as 

an agglomerative linkage criterion in which the distance between two clusters is the average 

distance between each datapoint in one cluster to every datapoint in the other cluster. The 

output of hierarchical clustering is usually presented in a dendrogram. The length of the 

branches usually represents the similarity between the samples. Dendrograms are often 

combined with heatmaps. Heatmaps are visual representations of data, in which each spot in 

the heatmap represents the value of the measured variable for each sample.  

3.3.3 Kruskal-Wallis test 

Kruskal-Wallis test is a rank-based non-parametric statistical test determining if there is a 

statistically significant difference between a categorical independent variable with two or 

more groups and a continuous variable. Non-parametric means that the test does not assume 
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normal distribution. A significant Kruskal-Wallis test indicates that there is a statistical 

difference between at least two of the groups, but it cannot imply which ones. Differences 

between two groups can be tested by a Mann-Whitney test.   

3.3.4 Boxplots 

Boxplots are non-parametric visual representations depicting groups of numerical data by 

their quartiles. In addition, boxplots may contain extended lines vertically from the boxes that 

indicates variability exterior the lower and upper quartiles. The line crossing the box is the 

median. Any outliers are commonly displayed as individual points in the boxplot. The 

interquartile range defined by the space between the first and third quartile in the boxplot 

indicates the degree of data skewness and dispersion.  

3.3.5 Scatterplots 

Scatterplots are mathematical diagrams used to display the relationship between two different 

quantitative variables. The relationship between each variable is displayed as points, in which 

the horizontal axis position is determined by one variable and the vertical axis position is 

determined by the other variable. Scatterplots can visually display various kinds of 

correlations between variables with a specified confidence interval. 

3.4 Molecular subclassification of tumors into PAM50 subtypes 

PAM50 molecular subclassification of tumor samples was performed by utilization of the R 

package genefu (function molecular.subtyping). The genefu R package uses gene expression 

data from the PAM50 gene set to identify the PAM50 subtype of the tumors(199). 

3.5 Genome-wide correlation analysis 

Genome-wide correlation analysis was performed using Pearson correlation to identify 

significant CpG-gene associations between the level of DNA methylation at CpGs and gene 

expression for the ER positive tumors with a luminal A and luminal B breast cancer disease 

from the OSL2 breast cancer cohort (n=177). Correlation coefficients were estimated using 

the R function cor. The significance of the correlation coefficients was calculated 
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independently and was based on t-distribution of the test statistic: t= r√n-2 √1-r2⁄  in which n 

is the number of samples and r is the correlation coefficient. The two-sided p-value was then 

calculated with the R function pt. 

The genome-wide correlation analysis was not limited by any distance parameters, which 

means that CpGs could be associated with genes expressed in cis (same chromosome) or in 

trans (different chromosome). 173,654 CpGs with an interquartile range of more than 0.1 and 

all genes (18,551) were included in the analysis. An association was considered to be 

significant if the Bonferroni corrected p-value was less than 0.05 (nominal p-value < 1.55e-

11). Validation of significant associations in OSL2 was performed by reanalyzing the 

associations in the ER positive tumor samples from the TCGA breast cancer cohort with 

luminal A and luminal B disease (n=304). Associations with a Bonferroni corrected p-value 

less than 0.05 (nominal p-value < 6.41e-08) were considered to be significant. Only 

associations confirmed in both datasets were included in the further analysis.  

3.6 Hierarchical clustering analysis of emQTLs 

Hierarchical clustering of the validated associations from the genome-wide correlation 

analysis was performed. Only CpGs and genes with one or more significant association were 

included in the analysis. The data matrix of p-values was converted to a binary form and 

clustered using binary as distance metric (function designdist, R package vegan) and average 

linkage as linkage criterion (function hclust).  

3.7 Bi-cluster identification 

DBSCAN is density-based clustering method that can be used to identify bi-clusters within a 

dataset. A cluster is a dense region of points surrounded by a low-density region of points. 

Low-density regions are required to separate clusters. Points in these sparse areas are usually 

considered to be noise or border points. The DBSCAN algorithm is based on connecting 

points within a distance threshold (epsilon) and will only connect points that satisfies a 

density criterion (minpts). A cluster is then defined as all density-connected points including 

points within the distance threshold. Bi-cluster identification was performed using the R 

package DBSCAN, setting the distance threshold to 15 and density criterion to 1. 
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3.8 Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) is a computational method used to identify classes of 

genes that are over-represented in a large set of genes, and that may be associated with a 

particular biological phenotype. Gene set enrichment analysis was performed using the 

molecular Signatures Database v6.0 (MSigDB; http://software.broadinstitute.org/gsea/index. 

jsp). Gene overlaps were computed against the hallmark gene set collection (H) and gene 

ontology (GO) gene set collection (C5). The C5 gene set collection is derived from gene 

ontology (GO) annotations based on GO terms and their association to human genes. GO 

annotations are statements that describes the function of specific genes, using concepts of 

Gene Ontology. The GO terms belong to one of three GO ontologies; biological process, 

molecular function and cellular component, and the collection is grouped into smaller GO 

collections accordingly. The hallmark gene set collection consists of a collection of 50 refined 

gene sets derived from many founder gene sets, each representing a specific biological state or 

process. Founder gene sets refers to the original overlapping gene sets in which the hallmark 

gene sets were derived from (C1-C6 collection) (200). MSigDB uses the hypergeometric 

distribution to calculate the probability of over-representation which is presented as p-values. 

In addition, false discovery rate (FDR) is estimated by multiple testing correction using the 

Benjamini and Hochberg method (201).  

3.9 ChromHMM segmentation 

ChromHMM is a multivariate hidden Markov model-based machine learning software that 

can be used to characterize chromatin states within the genomes of one or more cell types. 

Multiple chromatin datasets (e.g. ChIP-seq data) of different histone modification 

combinations associated with different chromatin states can be used by the software to learn 

to discover de novo re-occurring patterns in a cell type of interest. ChromHMM segmentation 

data for the MCF7 cell line was obtained from the work of Taberlay et al. (202) They 

collected the data by using ChIP-seq to generate signatures of key histone modifications 

(H3K4me1, H3K4me3, H3K27me3, H3K27ac) and regulatory factors (CTCF, RNA Pol II). 

They annotated the MCF7 genome into nine distinct chromatin states (heterochromatin, 

enhancer, enhancer + CTCF, promoter, promoter + CTCF, promoter_poised, repressed, 

transcribed and CTCF) based on the multivariate hidden Markov model (202).  

http://software.broadinstitute.org/gsea/index.%20jsp
http://software.broadinstitute.org/gsea/index.%20jsp
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In this study, the ChromHMM segmentation data was used to investigate whether the 

emQTL-CpGs were enriched within any particular regulatory region within the genome. This 

would suggest whether the emQTL-CpGs may have regulatory functions in the cell. Fold 

enrichment and statistical significance of CpGs in different genomic locations were calculated 

as the ratio between the frequency of emQTL-CpGs or CpGs in a cluster, located within a 

particular genomic segment type over the expected frequency for the same of CpGs from the 

Illumina HumanMethylation450k array or all hg19-CpGs. The significantce of the enrichment 

was estimated by hypergeometric test (R function phyper). 

3.10 Heatmap generation of CpG-methylation profiles 

Heatmap generation was accomplished using the R package pheatmap (203) to visualize the 

level of DNA methylation of the selected CpGs for the tumor samples. The CpGs were 

divided into two clusters; CpG-cluster A (mean methylation value>0.5; n=770) and CpG-

cluster B (mean methylation value≤0.5; n=427). The CpGs in the rows of the heatmap were 

ordered such that the mean methylation value of CpG-cluster A CpGs decreased down the y-

axis of the heatmap. A similar approach was applied to the columns of the heatmap in which 

the tumor samples were ordered by their mean methylation values of CpG-cluster A CpGs 

such that the mean methylation value decreased from the left of the heatmap towards the right 

side. The patients were then divided into three equally large patient groups: patient group A 

(n=59), patient group B (n=59) and patient group C (n=59). 

3.11 ChIP-seq peaks enrichment analysis 

ChIP-seq experiments was not performed in this thesis but was instead obtained from publicly 

available sources based on ChIP-seq experiments performed by other scientists. Chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) is a method that can be used for 

genome-wide mapping of DNA-protein interactions within any sequenced genome. This 

technique usually involves formaldehyde treatment of a desired cell type in vivo which leads 

to the reversible crosslinking of DNA-binding proteins to DNA. The cells are then lysed, and 

the chromatin is isolated and sheared into pieces of around 200-1000 bp in size (204). An 

antibody specific for the DNA-binding protein of interest can then be used to 

immunoprecipitated the DNA-protein complex. The crosslinks between DNA and protein is 
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reversed and the DNA is purified. The resulting DNA fragments can then be sequenced and 

aligned to a reference genome. A peak-calling algorithm can be used to identify areas within 

the genome that are enriched with aligned reads to determine the specific DNA-binding 

proteins binding loci (205). Mapping of DNA-protein interactions and epigenetic marks 

within the genome is essential for the understanding of transcriptional regulation. Precise 

maps for binding sites of DNA binding proteins such as TFs is important to elucidate the gene 

regulatory networks that underlies various biological processes (206).  

ChIP-seq peak regions for the human reference genome hg19 is publicly available and was 

downloaded in narrowPeak format from the ReMap 2018 catalog (http://tagc.univmrs.fr/ 

remap/). Data with merged peaks from 346 cell lines were utilized in this study. ChIP-seq 

peak enrichment was determined using the hypergeometric test (R function phyper) with 

Illumina Infinium HumanMethylation450 Bead Chip CpGs as background. False discovery 

rate (FDR) was estimated by the Benjamini-Hochberg method using the R function p.adjust.  

3.12 Characterization of tumor samples using gene signatures 

Development of gene expression signatures revealing the characteristics of biological samples 

is an area of active research today. In recent years, numerous gene signatures associated with 

different biological phenotypes and biological processes have been developed to differentiate 

tumors based on their gene expression.  

3.12.1 EMT score 

An EMT score was calculated using a pan-cancer EMT signature (207) to determine whether 

the tumors displayed epithelial-like or mesenchymal-like characteristics. The EMT signature 

consists of 77 genes (Appendix A, Table 6) of which 25 are associated with an epithelial-like 

phenotype and the remaining 52 genes are associated with a mesenchymal-like phenotype.  

The EMT score was calculated by taking the mean expression of mesenchymal marker genes 

(M) subtracted by the mean expression of epithelial marker genes (E). A positive EMT score 

will therefore be associated with a mesenchymal phenotype, and a negative EMT score will 

be associated with an epithelial phenotype.  

http://tagc.univmrs.fr/%20remap/
http://tagc.univmrs.fr/%20remap/
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−
1

|𝐺𝐸|
∑ 𝑒𝑔𝑖

𝑔∈𝐺𝐸

 

Formula 1. The EMT score (𝑺𝒊) equation. Annotating the standardized expression for gene 𝒈 in sample 𝒊 to be 

 𝒆𝒈𝒊, the set of M markers in the signature is 𝑮𝑴 (Total of |𝑮𝑴|  genes) and the set of E markers is 𝑮𝑬  (total of 

|𝑮𝑬|  genes). 

3.12.2 Stemness score 

A stemness score was calculated for each tumor sample by taking the mean expression of 11 

genes known from the literature to be associated with a stem cell-like phenotype. This 

includes NANOG (208), SOX2 (209), POU5F1 (210), BMI1 (211), CD44 (212), HOXB4 

(213), KIT (214), HOXA9 (215) , HOXA10 (215), MEIS1 (216) and TIE2 (217). The mean 

expression values of the stemness genes for each tumor sample was then centered.   

3.12.3 Proliferation score 

A proliferation score was generated using the 11-gene proliferation score contained within the 

PAM50 assay by taking the mean expression for each tumor sample (218). These genes 

includes BIRC5, CCNB1, CDC20, CDCA1, CEP55, KNTC2, MKI67, PTTG1, RRM2, TYMS 

and UBE2C (219). 

3.13 ChIA-PET data 

Chromatin Interaction Analysis with Paired-End-Taq (ChIA-PET) sequencing is an analysis 

method that can be used for genome-wide mapping of long-rage chromatin interactions bound 

by protein factors (220). Mapping of such long-range chromatin loops may provide insight 

into transcriptional regulation of specific genes linked to human diseases. In this method, the 

DNA binding proteins are cross-linked to DNA by formaldehyde treatment prior to chromatin 

isolation. DNA fragments tethered to each chromatin complex are then connected with DNA 

linkers by proximity ligation before the Paired-End Tags are extracted and sequenced. The 

resulting ChIA-PET sequences are then mapped to a reference genome to identify remote 

chromosomal regions brought together by protein factors (220, 221).  

ChIA-PET data for long range chromatin interactions in the MCF7 cell line was obtained 

from ENCODE (220). An emQTL was considered to be in a ChIA-PET loop if the genomic 
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distance between the CpG and the transcription start site of the gene was in the same genomic 

interval as for the corresponding Pol2 loops. 

3.14 D492 and D492M cell lines 

The human breast epithelial compartment comprises two distinct linages; the myoepithelial 

linage and the luminal epithelial linage. A putative precursor of the luminal epithelial 

compartment has been identified and isolated by Thorarinn Gudjonsson et al. (222). The 

D492 cell line is an immortalized human breast epithelial derived cell line with stem cell 

properties that can differentiate into luminal cells and myoepithelial cells in culture. Co-

culture of D492 with breast endothelial cells have been demonstrated to generate spindle-like 

colonies of D492 cells with EMT-like characteristics such as enhanced ability to migrate 

(190, 223). Such spindle-like cells derived from D492 have been isolated by Sigurdsson et al. 

(190) and is referred to as the D492M cell line. D492M characteristics includes the lack of 

epithelial markers such as E-cadherin, keratins and the presence of mesenchymal markers 

such as N-cadherin, fibronectin, vimentin and FOXC2 (190). In addition, D492M display 

stem cell associated characteristics such as increased CD44
high

/CD24
low

 ratio, anchorage 

independent growth and increased resistance to apoptosis (190). The D492 and D492M cell 

lines were obtained from the Department of Tumor Biology at the Norwegian Radium 

Hospital.  

3.14.1 Identification of candidate CpGs for pyrosequencing assays 

The selection of candidate CpG targets for DNA methylation status analysis by 

pyrosequencing was based on the several criteria. (1) The CpG must be found in CpG-cluster 

A (2) and have a mean methylation value that is lower in patient group C compared to patient 

group A. (3) The CpGs must be located within enhancer regions defined by the ChromHMM 

data from the MCF7 breast cancer cell line (4) and be found within ChIP-seq peaks of TFs 

associated with EMT. In addition, (5) the CpG must be in long-range chromatin interaction 

loop (ChIA-PET Pol2 loops) with a gene associated with EMT. Genes were considered to be 

involved in EMT if they were present in the HALLMARK_EPITHELIAL_MESENCHYM-

AL_TRANSITION gene set from the MSigDB v6.0 (http://software.broadinstitute.org 

/gsea/index.jsp) or from the publicly available Epithelial-Mesenchymal Transition Gene 

Database (dbEMT; http://dbemt .bioinfo-minzhao.org/index.html). 
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DNA sequences upstream and downstream from the candidate CpGs (±100 bp) in the human 

genome (GRCh37/ hg19) was obtained from the University of California Santa Cruz genome 

browser at http://hgdownload.soe.ucsc.edu/golden Path/hg19/chromosomes/ (Downloaded: 

13. August 2018).  

3.14.2 DNA isolation from the D492 and D492M cell lines 

AllPrep DNA/RNA/Protein Mini Kit from QIAGEN was used to isolate genomic DNA from 

the human D492 and D492M cell lines. In total, 350 µl RLT buffer was added to the cell 

pellets for resuspension. The DNA isolation was performed according to the manufacturers 

protocol (December 2014). DNA yield was measured by NanoDrop One spectrophotometer 

(Nanodrop One, Thermo Fisher scientific). 

3.14.3 Bisulfite conversion 

Bisulfite sequencing is a method involving bisulfite conversion of DNA to determine the 

exact position of 5-methylcytosines. Bisulfite conversion is the process of converting cytosine 

to uracil in single stranded DNA treated with sodium bisulfite, in a process in which 5-

methylcytosine residues remains unaffected. Subsequently, the DNA sequence of interest is 

amplified by PCR with primers specific to the bisulfite converted target sequence. QIAGEN 

EpiTect Fast Bisulfite Conversion Kit was used for complete bisulfite conversion and cleanup 

of 150 ng DNA. Following the manufacturers protocol (May 2012 edition) 40 µl DNA 

solution was added to the reaction mixture containing 85 µl bisulfite solution and 15 µl DNA 

protection buffer. Bisulfite conversion was performed using a thermal cycler (LifeECO 

Thermal Cycler, BIOER v2.01) according to the manufacturers protocol followed by DNA 

cleanup of the bisulfite converted DNA.  

3.14.4 PCR 

Polymerase chain reaction (PCR) is a method used to exponentially amplify specific segments 

of DNA. PCR is a highly sensitive method in which only trace amounts of DNA are needed to 

generate enough copies necessary to be analyzed in the lab. Each PCR assay requires template 

DNA, nucleotides (adenine, thymine, cytosine and guanine), primers and DNA polymerase 

enzymes. The components are mixed in PCR tubes and placed in a PCR machine (thermal 

http://hgdownload.soe.ucsc.edu/golden%20Path/hg19/chromosomes/
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cycler) that amplifies DNA in three main steps. In the first step the reaction mixture is usually 

heated above the melting point of the complementary DNA strands of the target DNA, 

allowing double stranded DNA to denature. Then the temperature is lowered which allows the 

primers to anneal to the target complementary DNA segments. In the last step the temperature 

is raised to a temperature in which the DNA polymerase optimally can extend the primers by 

adding nucleotides to the new emerging DNA strand that are complementary to the DNA 

template strand. The number of copied DNA molecules rises exponentially for each repeated 

cycle (224).  

PCR of bisulfite converted DNA was performed using the PyroMark PCR Kit from Qiagen. 

Following the manufacturers protocol (May 2009), MgCl2 was added to the reaction mixture 

to a final concentration of 5.0 mM for each reaction. Primers for PCR were designed in 

PyroMark Assay Design software version 2.0 (Qiagen) using DNA sequences of ±100bp from 

the target CpGs in hg19 reference genome. The designed primer sequences among with the 

primer-specific temperature utilized during PCR can be found in Appendix B, Table 7. The 

rest of the program for the thermal cycler was set according to the manufacturers protocol. 

3.14.5 Pyrosequencing 

Pyrosequencing is a quantitative sequence-by-synthesis system commonly used for analyzing 

methylation status of CpG sites within an amplicon in real time. The method is based on the 

sequential addition of nucleotides to template DNA in a specific order. An apyrase enzyme is 

responsible for the continuous degradation of unincorporated nucleotides between the 

additions of a new nucleotides. A DNA polymerase catalyzes the addition of the nucleotides 

to template DNA. When correct nucleotide is added to the DNA template, a pyrophosphate is 

released and converted to ATP by an ATP sulfurylase enzyme. The luciferase enzyme 

converts ATP and luciferin to oxyluciferin in the presence of O2 in a process that generates a 

light signal. The light intensity is proportional to the number of incorporated nucleotides. The 

methylated cytosine bases will correspond to the signal from C, and the extra thymidine bases 

will correspond to the unmethylated cytosines.  

Primers for methylation analysis were designed in PyroMark Assay Design software version 

2.0 (Qiagen) using DNA sequences of ±100bp from the target CpGs in hg19 human reference 

genome. The primer sequences used for pyrosequencing can be found in Appendix C, Table 
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7. Pyrosequencing was carried out in the PyroMark Q96 ID system using the PyroMark Q96 

software version 2.5.8. 25µl amplified PCR product was added to each PCR-plate well 

containing a mixture of 2 µl Streptavidin Sepharose HP beads, 40 µl 1x Binding buffer and 13 

µl Milli-Q H2O. A master mix for all CpG assays was then prepared by adding 11.2 µl 1x 

Annealing buffer to 0.8 µl primer (10µM) and added to the pyrosequencing plate. The rest of 

the experiment was performed according to the PyroMark® Q96 ID User Manual 2016. 

3.15 Tumor purity estimation by ASCAT 

A tumor biopsy extracts tumor cells from the tumor itself, but also non-cancerous cells 

surrounding and infiltrating the tumor. Such non-cancerous components of the tumor may 

influence the data obtained from the tumor samples and can alter the biological interpretation 

of the results if not taken into consideration. In the recent years, several bioinformatical 

approaches have been developed to assess the purity of tumor samples, including Allele-

Specific Copy Number Analysis of Tumors (ASCAT) (225-227).  

ASCAT is a bioinformatical approach using single nucleotide polymorphism array data to 

dissect the allele-specific copy number of solid tumors, and at the same time estimating and 

adjusting for both non-aberrant cell admixture and tumor ploidy (226). This method allows 

the calculation of genome-wide allele specific copy-number profiles that reveals differences 

in aberrant tumor cell fraction, ploidy, losses, gains, copy number-neutral events and loss of 

heterozygosity. The ASCAT data used in this study to estimate tumor purity in the OSL2 

breast cancer cohort was obtained from the work of Ragle Aure et al (228). 

3.16 In silico nanodissection 

The tumor microenvironment surrounding the tumor tissue consists of a heterogenous 

population of cell types infiltrating the tumor. Cell heterogeneity within a tissue may have a 

considerable effect on their gene expression profiles. Each cell type contains a wide diversity 

of cell types, each expressing a distinct repertoire of genes thereby making them different 

from one another. By identifying gene expression patterns unique to such infiltrating cells, 

one may be able to estimate the relative proportion of these cells in tumor tissue based on 

gene expression data from the bulk tumor. 
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In silico nanodissection algorithm v1.0 (http://nano.princeton.edu/) was used to predict 

lymphocyte infiltration. It is a genome-scale iterative machine learning approach used to 

predict human genes with cell-linage specific expression. The breast collection data (May 

2013) containing 17,940 genes measured on 622 arrays was estimated for overlap with genes 

specifically expressed in lymphocytes (n=476), and not expressed in mammary epithelium 

(n=79) and mammary gland (n=777). Only genes with a probability of more than 65 % to be 

positive lymphocyte-specific standard genes as opposed to mammary epithelium and 

mammary gland were included for further analysis. Each OSL2 sample was scored for 

lymphocyte infiltration by the mean expression of the lymphocyte-specific genes. 

3.17 CIBERSORT 

In recent years several new improved deconvolution tools able to identify cell types within 

complex tissues have emerged with higher accuracy of prediction than before (229-232). One 

such deconvolution tool is Cell-type Identification By Estimating Relative Subsets Of RNA 

Transcripts (CIBERSORT) which is a computational deconvolution tool used to estimate the 

relative fraction of diverse cell subsets. CIBERSORT uses gene signatures from the cell type 

of interest in addition to supervised learning frameworks through linear support vector 

regression to estimate the relative proportions of the cell type in the tumor tissue. Negative 

support vector regression coefficients are set to 0 while the remaining regression coefficients 

are normalized to sum to 1. The CIBERSORT software comes with one leukocyte gene 

signature matrix (LM22) on its own containing 547 genes that can distinguish 22 human 

hematopoietic cell phenotypes including natural killer (NK) cells, plasma cells, memory B 

cells, several types of T cells and myeloid subsets (233). The tool is publicly available and 

can be accessed from https://cibersort.stanford.edu/. CIBERSORT have been proven to 

outperform many other methods in respect to noise, closely related cell types, and unknown 

mixture content (233, 234). 

CIBERSORT was performed to estimate the relative proportions of the 22 human 

hematopoietic cell types from the LM22 leukocyte gene signature matrix. The value of the 

relative cell type fraction was then correlated by Pearson’s correlation with the mean 

methylation of the CpG-cluster A CpGs. False discovery rate was adjusted by Benjamini-

Hochberg procedure. 

http://nano.princeton.edu/
https://cibersort.stanford.edu/
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3.18 Survival analysis in METABRIC 

Survival analysis was performed by using survival data and gene expression data from 

patients from the METABRIC cohort. The overall survival was considered in regard to EMT 

score and mean expression of EMT-cluster genes. The luminal A and luminal B tumors were 

independently separated into two equally large groups based on the median of the variables.  
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4 Results 

4.1 Identification and validation of significant CpG-gene associations 

Genome-wide correlation analysis between the level of DNA methylation of CpG sites and 

gene expression in the OSL2 discovery cohort (n=177) lead to the discovery of 778,976 

significant CpG-gene associations (emQTLs), in which 497,445 associations were validated 

in the independent TCGA breast cancer cohort (n=304). Due to missing CpG methylation 

values or gene expression values, 1,491 of the non-validated associations could not be tested. 

The validated associations included significant associations between the gene expression level 

of 2,991 genes and the DNA methylation level of 15,029 CpGs. The biological relevance of 

the emQTLs were investigated by hierarchical clustering. The clustering led to the discovery 

of two major clusters of significant CpG-gene associations (Figure 7). Cluster 1 consisted of 

412 genes and 4,477 CpGs while Cluster 2 consisted of 453 genes and 1,197 CpGs. 

 

Figure 7. Unsupervised clustering of the Bonferroni corrected p-values from the genome-wide correlation 

analysis revealed two major clusters of CpG-gene associations. Rows represent genes (n=2,991) and columns 

represent CpGs (n=15,029). Colored and grey spots represent significant CpG-gene associations. 
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4.2 Biological characterization of the emQTL clusters 

Gene set enrichment analysis showed high overlap between Cluster 1 genes and GO gene sets 

such as GO_IMMUNE_SYSTEM_PROCESS, GO_IMMUNE_RESPONSE, GO_REGULA-

TION_ OF_IMMUNE_SYSTEM_PROCESS and GO_POSITIVE_REGULATION_OF_IM-

MUNE_ SYSTEM_PROCESS (Figure 8A). Cluster 2 genes were enriched in gene sets 

involved in EMT and cell-cell adhesion, such as GO_EXTRACELLULAR_MATRIX, 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION, GO_PROTEINACEOUS_ 

EXTRACELLULAR_MATRIX and GO_EXTRACELLULAR_STRUCTURE_ORGANIZA 

TION (Figure 8B). The immune cluster was first described by Fleischer, Tekpli et al. 2017 

(7), and 83.2% of their immune cluster genes were found to overlap with the immune cluster 

discovered in this study. Therefore, the further project mainly focuses on the EMT-cluster. 

 

 

Figure 8. Characterization of the genes in the emQTL clusters. A Gene set enrichment analysis of the Cluster 

1 genes (n=412) and the B Cluster 2 genes (n=453) using the Molecular Signatures Database (H and C5 gene set 

collections). The length of the bars represents the log-transformed Benjamini-Hochberg corrected p-values 

obtained by hypergeometric distribution. 
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4.3 Enrichment of emQTL-CpGs within ChromHMM-MCF7 regulatory regions 

Further characterization of the EMT-cluster involved the utilization of ChromHMM 

segmentation data to investigate whether the emQTL- and EMT-cluster CpGs were enriched 

within any functional genomic region of the genome (Figure 9). The emQTL-CpGs were 

found to be enriched in CTCF+Enhancer, heterochromatin, transcribed and enhancer 

regions(p-values=1.05e-06, 2.46e-23, 5.76e-29 and <1.0e-30 respectively), while the EMT-

cluster CpGs were significantly enriched in heterochromatin, transcribed and enhancer 

regions (p-values=7.28e-14, 6.33e-6 and 3.41e-22 respectively).  

Figure 9. Enrichment of emQTL-CpGs within ChromHMM regulatory regions. Barplot showing the fold 

enrichment of the emQTL-CpGs and EMT-cluster CpGs in ChromHMM annotated genomic regions. Fold 

enrichment was calculated as the ratio between the frequency of emQTL-CpGs or EMT-cluster CpGs, located 

within a particular segment type over the expected frequency for the same of CpGs from the Illumina 

HumanMethylation450 array or all hg19-CpGs. Statistically significant enrichment (p<0.05) was determined by 

hypergeometric test and is marked with an asterisk. 
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4.4 Methylation profiles of the EMT-cluster CpGs in OSL2 

A heatmap was generated to visually assess the DNA methylation level of the EMT-cluster 

CpGs for the 177 OSL2 ER positive luminal tumors (Figure 10A). A significant difference in 

the mean methylation of the CpG-cluster A CpGs and CpG-cluster B CpGs were observed 

between patient group A, B and C (Figure 10B-C). The same methylation pattern was 

observed for the same CpGs in the ER positive breast tumors from the TCGA breast cancer 

cohort (Appendix C, Figure 17A) and the difference in mean methylation of CpG-cluster A 

CpGs and CpG-cluster B CpGs between patient groups were significant (Appendix C, Figure 

17B-C). 

 

Figure 10. A DNA methylation level of the 1,197 EMT-cluster CpGs for the 177 ER positive breast tumor 

samples from OSL2. The columns show the tumor samples annotated with PAM50 subtype and patient group. 

The rows represent the EMT-cluster CpGs which are annotated as either CpG-cluster A CpGs (mean methylation 

value>0.5; n=770) or CpG-cluster B CpGs (mean methylation value<0.5; n=427). The CpGs in the rows of the 

heatmap were ordered such that the mean methylation value of CpG-cluster A CpGs decreased down the y-axis 

of the heatmap. The columns were ordered by the mean methylation of CpG-cluster A CpGs such that the value 

decreased from the left side of the heatmap towards the right side of the heatmap. Red dots represent methylation 

values close to 1 while blue spots represent methylation values close to 0. White spots represent an intermediate 

value close to 0.5. Figure B and C shows boxplots of the mean DNA methylation of CpG-cluster A CpGs and 

CpG-cluster B CpGs respectively, in patient group A, B and C. 
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4.5 ChIP-seq peaks enrichment analysis of CpG-cluster A and CpG-cluster B CpGs 

ChIP-seq peaks enrichment analysis using ChIP-seq data revealed that CpG-cluster A CpGs 

are enriched within ChIP-seq peaks of TFs associated with EMT, such as TEAD1, FOSL1, 

TWIST1, SIX2, YAP1 and PPARG (Table 2). The most significantly enriched ChIP-seq 

peaks around the CpG-cluster B CpGs were associated with TFs such as FOXA1, GATA3, 

TLE3 and among other TFs such as ESR1 and PGR (Table 3). 

Table 2. TFs with binding regions enriched at CpGs in CpG-cluster A. q represents the number of TF 

binding regions that overlaps with CpGs in CpG-cluster A and m represents the number of TF binding regions 

that overlap with all CpGs in the Illumina Human methylation 450K array. The rows are ordered by p-value and 

TFs with a fold enrichment less than 1.5 are not included. 

 

TF 
 

q 
 

m 
 

Fold enrichment 
 

P-value 

 

FDR corrected 

p-value 

TEAD1 92 17472 3.32 7.78e-24 3.27e-21 

NFIC 143 41072 2.20 2.49e-19 5.22e-17 

FOXO1 137 46135 1.87 4.05e-13 4.25e-11 

TP73 30 4264 4.44 6.17e-12 5.19e-10 

FOSL1 88 26009 2.13 1.55e-11 1.04e-09 

MYOD1 96 29569 2.05 1.74e-11 1.04e-09 

CEBPB 212 88548 1.51 9.00e-11 4.73e-09 

TWIST1 118 43548 1.71 4.89e-09 2.28e-07 

OTX2 11 1033 6.71 1.55e-07 6.51e-06 

SIX2 37 10848 2.15 7.55e-06 2.64e-04 

LHX2 12 1893 4.00 1.49e-05 4.83e-04 

YAP1 39 12357 1.99 2.58e-05 7.75e-04 

PPARG 70 27058 1.63 3.03e-05 8.49e-04 
 

Table 3. TFs with binding regions enriched at CpGs in CpG-cluster B. q represents the number of TF 

binding regions that overlaps with CpGs in CpG-cluster B and m represents the number of TF binding regions 

that overlap with all CpGs in the Illumina Human methylation 450K array. The rows are ordered by p-value and 

TFs with a fold enrichment less than 1.5 are not included. 

 

TF 
 

q 
 

m 
 

Fold enrichment 
 

P-value 

 

FDR corrected 

p-value 

FOXA1 298 147683 2.29 1.56e-63 6.62e-61 

GATA3 212 83908 2.87 1.39e-53 2.94e-51 

TLE3 41 1554 30.00 7.83e-48 1.11e-45 

FOXA2 180 79747 2.57 8.06e-37 8.55e-35 

GATA2 201 98429 2.32 6.66e-36 5.65e-34 

NRIP1 105 30339 3.94 9.56e-35 6.75e-33 

PGR 179 83218 2.45 7.96e-34 4.82e-32 

AR 284 187912 1.72 1.02e-31 5.43e-30 

ESR1 222 127133 1.99 2.58e-30 1.21e-28 

AHR 63 12175 5.88 4.46e-30 1.89e-28 

ZNF217 26 1483 19.93 1.28e-26 4.94e-25 

DAXX 69 18219 4.31 6.04e-25 2.14e-23 

PIAS1 127 56576 2.55 2.60e-24 8.47e-23 
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4.6 EMT- and stemness score associated with CpG-cluster A methylation 

The link between DNA methylation of CpG-cluster A and tumor phenotype in relation to 

EMT was investigated by utilizing an EMT score and a stemness score and correlating them 

with the mean methylation value of CpG-cluster A CpGs. The EMT score was found to be 

correlated with the mean methylation of CpG-cluster A CpGs (Figure 11A, p-value = 8.9e-

12), the same was true for the stemness score (Figure 11B, p-value = 2.5e-07). In addition, the 

EMT score was significantly higher in the luminal A tumors compared to luminal B tumors 

(Figure 11C, p-value=0.00099). 

 

 

Figure 11. Scatterplots showing the Pearson’s correlation between the mean methylation of CpG-cluster A 

CpGs versus EMT score A and stemness score B. C shows a boxplot of the overall difference in EMT score 

between the luminal A (n=115) and luminal B subtype (n=62). 

4.7 Proliferation score and ESR1 expression associated with CpG-cluster A 

methylation 

From current literature one knows that the Luminal B subtype is mainly distinct from the 

luminal A subtype when it comes to proliferation. The heatmap showed that there was an 

uneven distribution of the tumor subtypes across the x-axis (Figure 10A). In addition, the 

luminal A tumors were shown to have a significantly higher EMT score than luminal B 

tumors, and many studies have suggested that EMT attenuates proliferation. Therefore, it was 

reasonable to investigate the correlation in mean methylation of CpG-cluster A with the 

proliferative phenotype of the tumor samples as well. The proliferation score was correlated 

with the mean methylation of CpG-cluster A CpGs. A significant positive correlation was 

observed (Figure 12A, p-value = 2.5e-06). The expression of ESR1 was also correlated with 

the mean methylation of CpG-cluster A CpGs as it is known to be a contributor to tumor cell 
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proliferation in ER positive breast cancers. The mean methylation of CpG-cluster A CpGs 

was positively correlated with the expression of ESR1 (Figure 12B, p-value=2.8e-05). 

 

Figure 12. Scatterplots showing the Pearson correlation between the mean methylation of CpG-cluster A CpGs 

versus proliferation score A and ESR1 expression B. 

4.8 ASCAT and in silico nanodissection associated with CpG-cluster A methylation 

Considering the DNA methylation data, several cell types within the tumor sample may 

contribute to the resulting methylation value. The infiltration of non-tumor cells such as 

lymphocytes may differ significantly from one tumor to another, and the quantity of these 

non-tumor cells may lead to an altered methylation value of CpGs that does not represent the 

signal from the tumor itself. In order to take this into account in the analysis, tumor purity 

from ASCAT was correlated with the mean methylation of CpG-cluster A CpGs (Figure 

13A). A significant but low correlation between the mean methylation of CpG-cluster A 

CpGs and tumor purity was observed (p-value=0.00063). The estimated lymphocyte 

infiltration in the tumor samples based on the expression of lymphocyte specific genes 

predicted by in silico nanodissection showed no significant correlation between mean 

methylation of CpG-cluster A CpGs (Figure 13B, p-value=0.36). 
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Figure 13. Scatterplots showing the correlation between tumor purity A and the level of lymphocyte infiltration 

B with respect to mean methylation of CpG-cluster A CpGs.  

4.9 Hematopoietic cell type composition associated with CpG-cluster A methylation 

CIBERSORT was performed to estimate the relative proportion of 22 human hematopoietic 

cell types from the LM22 leukocyte gene signature matrix and correlated using Pearson 

correlation with the mean methylation of CpG-cluster A CpGs (Table 4). This could indicate 

whether leucocyte infiltration potentially could be a factor contributing to the reduced 

methylation of CpG-cluster A CpGs and the EMT-phenotype. The results showed a 

significant negative correlation between the relative proportion of resting CD4+ memory T 

cells, resting mast cells and monocytes with the mean methylation of CpG-cluster A CpGs 

(Table 4, p-value=7.31e-08, 9.03e-04 and 3.08e-03 respectively). In addition, a significant 

positive correlation between these variables were discovered for activated mast cells and 

resting NK cells and neutrophils. The CIBERSORT estimate of relative proportion of the 22 

human hematopoietic cell types in the OSL2 tumors can be found in Appendix D, Table 8. 

Table 4. Overview of the significant Pearson correlations between the relative proportions of the human 

hematopoietic cell types correlated with mean methylation of CpG-cluster A. The correlation coefficient and p-

values are annotated in addition to the FDR corrected p-values obtained by Benjamini-Hochberg procedure. 

Cell type 
Correlation 

coefficient 
P-value 

FDR corrected  

p-value 

T cells CD4+ memory resting -0.39118 7.31e-08 1.61e-06 

Mast cells resting -0.24735 9.03e-04 9.93e-03 

Mast cells activated 0.22124 3.08e-03 2.26e-02 

NK cells resting 0.20811 5.44e-03 2.83e-02 

Monocytes -0.19964 7.72e-03 2.83e-02 

Neutrophils 0.20010 7.58e-03 2.83e-02 
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4.10 Survival analysis 

Univariate survival analysis was performed in METABRIC by using Kaplan-Meier modeling 

to investigate the link between the EMT score and mean expression of the EMT-cluster genes, 

with overall survival. In the first analysis overall survival was considered in respect to the 

EMT score of the patient tumors. No statistical significant correlation within the luminal A 

subtype was found (Figure 14A, p-value=0.86), but a significant difference in overall survival 

was observed in the luminal B (Figure 14B, p-value=0.034). In the second analysis, overall 

survival was investigated regarding mean expression of the EMT-cluster genes. No significant 

difference in overall survival was observed within the luminal A- or luminal B subtypes 

(Figure 14C-D, p-value=0.75 and 0.091 respectively), but the survival trend was similar to 

that observed for the EMT score. The data utilized for the survival analysis in METABRIC 

can be found in Appendix E, Table 9. 

 

Figure 14. Survival analysis in METABRIC. A and B shows the difference in overall survival of luminal A 

(A, n=354) and luminal B (B, n=230) patients in respect to the EMT score. The two patient groups reflect 

whether the EMT score for the tumor sample was above or beneath the EMT score median. C, D displays the 

difference in overall survival in luminal A (C, n=354) and luminal B (D, n=230) patients based on their mean 

expression of the EMT cluster genes. The patients were divided into two groups based on whether their mean 

expression of EMT cluster genes was lower or higher than the median.  

 



50 
 

4.11 Generation of a correlation matrix 

To summarize the in silico findings, a correlation matrix displaying the correlations between 

the main variables considered in this thesis was constructed (Figure 15). The plot presents the 

correlation between the variables: mean methylation of CpG-cluster A CpGs, proliferation 

score, ESR1 expression, tumor purity, stemness score, EMT score and the level of lymphocyte 

infiltration. Some of the correlations with the highest correlation coefficient include the 

negative correlation between mean methylation of CpG-cluster A CpGs with EMT score, and 

stemness score, the negative correlation between EMT score and proliferation score, and the 

negative correlation between tumor purity and lymphocyte infiltration. A positive correlation 

was observed between the EMT score and the stemness score. An overview of data used to 

generate the correlation matrix can be found in Appendix F, Table 10. 

 

Figure 15. Correlation matrix showing the correlation between the main variables considered in this thesis. 

Rows and columns indicate variable type. Each number in the boxes display the correlation coefficient for each 

pair of variables independent of whether the correlation is positive or negative. A red color indicates high 

correlation, while a white color indicates no or low correlation. 
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4.12 Identification of differentially methylated CpGs in ChIA-PET Pol2 loops 

As observed from the previous results, the CpGs in CpG-cluster A were enriched within 

enhancers and ChIP-seq peaks of TFs associated with EMT. Moreover, the methylation of 

these CpGs were lower in patient group C compared to patient group A. The EMT score was 

also correlated with mean methylation of CpG-cluster A CpGs. It was therefore of interest to 

identify potential CpGs in which the level of methylation was associated with EMT.  

Several of the CpGs in the EMT cluster were found to be located near the binding sites of 

EMT-related TFs and to be in ChIA-PET Pol2 loops with genes known to promote EMT in 

cancer cells. In addition, all CpGs identified were located within ChromHMM-MCF7 

enhancers. Six of these CpGs were selected from CpG-cluster A CpGs and are illustrated in 

Table 5. The methylation values for each CpG was correlated with the expression of the looped 

gene.  

Table 5. The table shows the CpGs selected from CpG-cluster A that had a reduced methylation in patient group 

C compared to patient group A. TFs with DNA binding sites found to overlap the specific CpG determined from 

ChIP-seq data is also annotated in addition to which gene it is looped to. The p-values included are obtained by 

correlating the methylation level of the CpGs with the expression level of the genes they are in ChIA-PET loops 

with. FDR corrected p-values were estimated using Benjamini-Hochberg correction. 

Transcription 

factor 
Probe 

Gene in 

ChIA-PET 

loop 

Mean 

methylation 

difference 

p-value 

FDR 

corrected 

p-value 

Correlation 

coefficient 

CEBPB cg06947286 PDLIM4 0.216 2.65e-08 1.50e-07 -0.4031 

FOSL1 cg06947286 PDLIM4 0.216 2.65e-08 1.50e-07 -0.4031 

PPARG cg06947286 PDLIM4 0.216 2.65e-08 1.50e-07 -0.4031 

TWIST1 cg10233454 LRP1 0.177 3.00e-07 1.28e-06 -0.3737 

TEAD1 cg20909017 ITGA5 0.138 7.44e-04 2.11e-03 -0.2512 

CEBPB cg16888565 TPM1 0.205 1.00e-03 2.13e-03 -0.2452 

TWIST1 cg16888565 TPM1 0.205 1.00e-03 2.13e-03 -0.2452 

CEBPB cg12232146 PHLDA1 0.136 1.05e-01 1.28e-01 -0.1222 

FOSL1 cg12232146 PHLDA1 0.136 1.05e-01 1.28e-01 -0.1222 

PPARG cg12232146 PHLDA1 0.136 1.05e-01 1.28e-01 -0.1222 

TEAD1 cg12232146 PHLDA1 0.136 1.05e-01 1.28e-01 -0.1222 

YAP1 cg12232146 PHLDA1 0.136 1.05e-01 1.28e-01 -0.1222 

CEBPB cg05223441 VEGFA 0.161 2.54e-01 2.54e-01 0.0862 

TEAD1 cg05223441 VEGFA 0.161 2.54e-01 2.54e-01 0.0862 

YAP1 cg05223441 VEGFA 0.161 2.54e-01 2.54e-01 0.0862 
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4.12.1 Identification of differential methylation in the D492 and D492M cell line by 

pyrosequencing. 

The methylation status of the differentially methylated CpGs in Table 5 were investigated in 

two different cell lines; the D429 with epithelial characteristics and D492M with 

mesenchymal characteristics. Differential DNA methylation of the target CpGs was 

investigated by pyrosequencing. The results are summarized in Figure 16. No prominent 

difference in DNA methylation of target CpGs were observed between the D492 and D492M 

cell line. Cg06947286, cg05223441, cg12232146, cg16888565 and cg20909017 seems to be 

unmethylated in the majority of DNA in the samples for both cell lines. The most pronounces 

difference in methylation of the target CpGs in the cell lines is observed at cg10233454 and 

cg20909017. Cg10233454 was the only methylated CpG, in both cell lines. Appendix G, 

Table 11 contains the pyrograms for each target CpG. 

 

 
Figure 16. DNA methylation at the target CpGs. The figure shows the level of methylation for each target 

CpG selected in the D492 (blue bars) and the D492M (red bars). 
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5 Discussion 
 

EMT is believed to play a key role in cancer progression in both pre-invasive and invasive 

state. However, much of the work on studying EMT in breast cancers up to date have mainly 

focused on the non-luminal subtypes and metastatic cancers such as the basal-like breast 

cancers. These are considered to be among the most aggressive and deadly breast cancers and 

tend to display mesenchymal-like characteristics, higher chemotherapy resistance and higher 

abilities to metastasize compared to the other breast cancer subtypes (77, 169). The 

reversibility and plasticity of EMT and MET suggest that epigenetic changes may play a 

pivotal role in this process, but only a limited number of studies have interpreted the 

dynamics of EMT-related epigenetic alterations. In this study we were able to identify 

alterations in DNA methylation associated with EMT in ER positive breast cancers in silico. 

These findings are important in order to understand the biological process underlying EMT 

and provide insight into the role of EMT in breast cancer pathogenesis. The identification of 

these EMT-related epigenetic alterations may open for future possibilities of epigenetic 

therapy for mesenchymal-like tumors. 

5.1 Biological considerations 

Genome-wide emQTL analysis have previously been shown to identify significant 

correlations between the level of DNA methylation at CpG sites and gene expression due to 

intertumoral heterogeneity within ER positive and ER negative breast tumors and to be a 

valuable tool in the identification of key gene regulatory networks involved in breast cancer 

pathogenesis (7). To take this further, the same approach was applied to the ER positive 

breast tumors only, to investigate whether any differences within the ER positive tumors in 

respect to DNA methylation and gene expression could be observed. By testing all possible 

Pearson’s correlations between DNA methylation level of CpGs and gene expression prior to 

hierarchical clustering of the associations, we were able to discover two major clusters 

associated with two very distinct biological processes. Both processes are well known to be 

involved in breast cancer pathogenesis. One of the clusters were enriched for genes associated 

with immune response, while the other was associated with genes involved in EMT. The 

major cluster of interest for this study was the EMT-cluster as the immune cluster had already 

been described by Fleischer, Tekpli et al (7).  
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Several papers published in recent years have elucidated the link between aberrant DNA 

methylation at enhancers to tumor progression and plasticity (6, 144, 145). Interestingly, the 

EMT-cluster CpGs were found to be significantly enriched in distal regulatory regions in the 

genome overlapping with ChromHMM-MCF7 enhancers. A further subdivision of the EMT-

cluster CpGs into two clusters in respect to DNA methylation also showed significant 

differences in average DNA methylation between the patient groups, thereby highlighting 

these CpGs as putative drivers of carcinogenesis within a subgroup of ER positive breast 

cancers.  

The differential methylation of the CpG-cluster A and CpG-cluster B CpGs observed between 

the patient groups raised two major hypotheses. The first hypothesis was that the difference in 

DNA methylation was a result of tumor infiltration by non-tumor cells such as immune cells. 

When considering DNA methylation and gene expression data it is important to keep in mind 

that tumors are surrounded by a highly heterogenous populations of non-tumor cells such as 

immune cells. The degree of infiltration by non-tumor cells such as immune cells are known 

to vary from tumor to tumor and is also known to be subtype specific (235). Cell types 

infiltrating the tumor may affect the quantitative data obtained from tumor biopsies such as 

DNA methylation and gene expression data. For instance, if some cell-types infiltrating the 

tumor were unmethylated at CpG-cluster A CpGs or methylated at CpG-cluster B CpGs, this 

may affect the overall DNA methylation level of these CpGs depending on the extend of the 

infiltration. The ASCAT data showed a low correlation between tumor purity and the mean 

methylation levels of the CpG-cluster A CpGs, and in silico nanodissection showed no 

correlation at all. However, in silico nanodissection can only estimate lymphocyte infiltration, 

but it cannot imply which cell type. This again, may affect the output. To study even more 

cell types in silico, CIBERSORT was performed. This deconvolution tool has been shown to 

outperform many other methods in respect to unknown mixture content, noise and closely 

related cell types. Interestingly, the relative proportion of resting memory T cells, resting mast 

cells and monocytes were correlated with the mean methylation of CpG-cluster A CpGs, 

thereby indicating that these cell types may potentially affect the methylation level of the 

CpG-cluster A CpGs. 

The second hypothesis is that the difference in DNA methylation was a result of tumor cell 

heterogeneity, in which there exists different populations of tumor cells within the tumor that 

are differentially methylated at the EMT-cluster CpG sites. This theory implies that the extend 
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of the reduction in DNA methylation observed between the patient groups in the CpG-cluster 

A CpGs is relative to the proportion of the tumor that is demethylated at these CpG sites.  

The previous results showed an enrichment of the EMT-cluster CpGs in ChromHMM-MCF7 

enhancers. One way the EMT-cluster CpGs may contribute to tumor progression and 

plasticity is through the regulation of TF binding to their associated enhancers, which again 

may regulate the expression of genes associated with EMT. Enhancers are known to regulate 

gene expression through the binding of cell type specific TFs that can recognize specific DNA 

sequences within the enhancers (146). TF binding to enhancers is also known to be influenced 

by DNA methylation at TF binding sites (148). However, little is known about the causality 

between DNA methylation and TF binding, and the answer seems to be more complex than 

previously anticipated by scientists. According to the traditional view, TFs tend to bind non-

methylated DNA motifs in open chromatin regions. In vivo experiments investigating the 

association between hypermethylation and TF binding has shown that this tend to be the case 

for most TFs (148, 236, 237). Methylation of DNA itself may function as a physical barrier of 

TF binding, and even more important, affect chromatin organization through interaction with 

other factors associated with histone modifications, polycomb complexes, nucleosome 

positioning and chromatin remodeling proteins (119, 124). DNA methylation have previously 

been reported to induce compactization and increased rigidity of DNA which may suppress 

nucleosome structure dynamics and consequently lead to reduced TF accessibility and gene 

silencing (113, 125, 126). Alternatively, specific proteins called methyl-CpG binding domain 

proteins can bind methylated DNA motifs either in a sequence dependent or sequence 

independent fashion, thereby competing off TFs by their higher affinity to methylated CpGs 

(124, 148). Newly emerging scenarios challenges this view by suggests that some TFs lacking 

methyl-CpG binding domains are able to interact with methylated DNA (238-241). However, 

very little is still known about TFs with affinity for methylated DNA. Only a few TFs have 

been published to be implicated in this scenario so far (148).  

In the subsequent analysis, enrichment of ChIP-seq peaks within the EMT-cluster CpGs was 

assessed. Such an analysis could indicate whether the EMT-cluster CpGs were targets of TFs 

associated with specific cellular states or processes. Interestingly, the ChIP-seq peaks 

enrichment analysis revealed that CpG-cluster A CpGs were enriched within binding sites of 

TFs associated with EMT such as TEAD1, FOSL1, TWIST1, SIX2, YAP1 and PPARG while 

CpG-cluster B CpGs were enriched within the binding sites of FOXA1, GATA3 among other 
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TFs such as ESR1. ESR1, GATA3 and FOXA1 are TFs already known to play key roles in 

breast cancer pathogenesis (160, 162). They are considered to be within the same interacting 

pathway and are major drivers of growth in ER positive breast cancers (160).  

To elucidate the role of DNA methylation and TF activity in context of tumor phenotype, 

several scoring systems were applied based on gene signatures associated with specific 

cellular states or processes. Many of the TFs associated with CpG-cluster A binding were 

related to EMT while several of the most enriched TFs associated with CpG-cluster B binding 

were involved in cell proliferation. The EMT score and proliferation score were used to 

investigate these two features further. Intriguingly, the EMT score was positively correlated 

with the mean methylation of CpG-cluster A CpGs. This may suggest that reduced 

methylation at these sites allows access of EMT-related TFs to bind to the enhancers leading 

to the induction of transcription of EMT-related genes. Moreover, this EMT-feature was 

significantly more prominent in the luminal A subtype compared to the luminal B. EMT is a 

process well known to be linked with a stemness phenotype in human tumors, but still, little is 

known about the mechanisms wiring these two mechanisms together (172, 173). A stemness 

score was made as a second layer of proof for the EMT-phenotype concept and it could also 

support the second hypothesis; that the change in mean methylation of CpG-cluster A CpGs 

and CpG-cluster B CpGs is due to tumor heterogeneity. Consistent with this hypothesis and 

current literature, the EMT score and stemness score were positively correlated. The stemness 

score was also correlated with the mean methylation of CpG-cluster A CpGs. 

What is interesting about these result is that luminal breast tumors in general are considered to 

be among the most differentiated tumors as they commonly are derived from more committed 

progenitor cells compared to the more mesenchymal-like and aggressive basal-like tumors 

(73, 74). However, several studies have reported evidences of dedifferentiation to occur in 

luminal tumors during breast cancer progression. One study highlighted EMT as a possible 

mechanism behind the dedifferentiation observed in several breast cancer tumors (242). In yet 

another study a dedifferentiation-like process was observed in which a part of a previously 

luminal tumor transformed into a basal-like carcinoma (ER-/PR-/HER2-) with myoepithelial 

characteristics (243). Since breast cancers are driven mainly by aberrant hormone-dependent 

pathways, some studies have the recent years investigated whether the loss of estrogen 

receptor expression may result in dedifferentiation from an epithelial to a mesenchymal 

phenotype in ER positive breast cancers (244, 245). Interestingly, siRNA-mediated silencing 
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of ER in the MCF7 cell line have been observed to promote morphological changes, increased 

motility and increased expression of vimentin (244). This is highly consistent with our results, 

as the expression of ESR1 was found anticorrelated with the EMT- and stemness score.  

Accumulating evidence suggests that proliferation and EMT are antagonistic features. EMT 

have been shown to attenuate proliferation in many, but not all systems (185-189). This 

appears in a recent published paper demonstrating that breast cancer stem cells located at the 

invasive part of the tumor primarily are quiescent, while the more central regions of the 

tumors are proliferative and retain the ability to transit between these two states (246). 

Moreover, an antiproliferative drug called cisplatin has been demonstrated to induce EMT 

(247). All this together is in agreement with the results from this study, as the proliferation 

score was negatively correlated with the EMT score. 

As observed, the in silico findings showed that mean methylation of CpG-cluster A CpGs was 

negatively correlated with the EMT score of the ER positive breast tumors. In other words, 

higher EMT score is associated with lower mean methylation of CpG-cluster A CpGs. In an 

attempt to validate these in silico findings in a biological model system, the D492 and D492M 

cell lines were utilized as they are shown to display an epithelial-like and mesenchymal-like 

phenotype, respectively. The idea behind this was to investigate if the CpGs of the EMT-

cluster was differentially methylated in the two cell lines. This could have elucidated the link 

between the DNA methylation of these CpGs and the EMT phenotype in the cell lines. 

Unfortunately, no pronounced difference in DNA methylation of the target CpGs were 

detected and surprisingly, seven of the eight CpGs were unmethylated at these CpGs. This 

was quite unexpected, as the reduced methylation of these CpGs were associated with tumors 

with a more mesenchymal-like phenotype. There are several possible explanations for this. 

First of all, the D492 and D492M cell lines do not directly represent ER positive breast 

cancer. Therefore, it is possible that the EMT signaling is regulated by different mechanisms 

in this cell type than ER positive tumors, and the CpGs identified here are not important in 

this specific cell line. Indeed, contrary to most of the ER positive tumors, the D492 cells were 

unmethylated in all but one of the measured CpGs. In addition, all the CpGs selected as 

targets for pyrosequencing were found within enhancers, but enhancer methylation will 

minimally affect expression of EMT-related genes if the promotor is highly methylated. 

Moreover, it may be that DNA methylation of these CpGs are only partly explaining the 

expression of these EMT-related genes, and that other factors such as the level of expression 
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of the TFs may be more important factors contributing to the expression of those genes. 

Therefore, the methylation status of the promotors and enhancers upstream in this regulatory 

pathway regulating the genes encoding these TFs may be more direct contributors to EMT. 

From here, the rest of the discussion will discuss the methods used in this master thesis, step 

by step. In the end, a conclusion is presented including thoughts and future perspectives.  

5.2 Methodological considerations 

5.2.1 Patient material 

Gene expression and DNA methylation data from ER positive sporadic breast tumors utilized 

in the emQTL analysis were obtained from the OSL2 discovery cohort. All emQTLs 

discovered were reanalyzed in ER positive tumors from the independent TCGA breast cancer 

cohort. It is important to add that in contrast to OSL2, the determination of whether the breast 

tumor was of sporadic or familial disease has not been considered in TCGA. In other words, 

the TCGA breast cancer cohort is likely to consist of breast tumors of both sporadic and 

familial disease. About 10 % of all breast cancers are caused by inherited genetic factors (26). 

However, this should not affect the results from the emQTL validation in TCGA, as only 

already existing emQTLs from sporadic ER positive breast cancers will be confirmed. Any 

familial breast cancer specific emQTLs will therefore not be present. 

5.2.2 emQTL analysis, hierarchical clustering and cluster characterization 

The emQTL analysis requires several considerations to be made during the workflow that 

may affect the quality and precision of the result. Early in the workflow the emQTLs were 

clustered by hierarchical clustering, an approach requiring the choice of distance metric and 

linkage criterion. Binary is a distance metric commonly used in contexts requiring a decision 

to be made, that is in this case whether a CpG-gene association is significant or not. 

Significant associations in the correlation matrix of the p-values were set to 1, while non-

significant associations were set to 0. However, such a conversion will cause information loss, 

as the binary classification does not provide information about the strength of the 

associations. Hierarchical clustering performed for such large datasets utilized in this study 

requires extensive computational power which may be a limitation for such large analyses. 

Therefore, the conversion to binary numbers was necessary. The selected linkage criteria for 
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the hierarchical clustering was average linkage as it provided the most dense and isolated 

clusters, thereby including minimal CpGs and genes lacking emQTLs within the defined 

clusters.  

Subsequently in the emQTL analysis, DBSCAN was used to identify emQTL bi-clusters. The 

benefits of using this algorithm is that DBSCAN can discover any number of clusters with 

varying shape, size and shape but also detect and ignore outliers in the data. This algorithm 

requires two parameters to be set: a distance threshold (epsilon) and a density criterion 

(minpts). DBSCAN is very sensitive to the choice of epsilon. If epsilon is too small, a sparse 

cluster could be labeled as noise, and if epsilon is to large, then dense clusters could be 

merged together. However, since the clusters identified by DBSCAN were very isolated and 

dense, the choice of epsilon was not very sensitive and provided similar output. 

One disadvantage is that most of these considerations are subjective and may provide slightly 

different results depending on the viewer. However, since the emQTL analysis is such a 

statistical powerful method including a large number of breast cancer tumors with extensive 

molecular profiles and uses strict p-value thresholds determined with Bonferroni correction, 

the major biological findings will be conserved.  

5.2.3 ChromHMM segmentation 

ChromHMM segmentation data provided information of the genomic locations of different 

chromatin states occurring throughout the MCF7 genome. ChromHMM is one of many other 

methods available that can be used to identify co-occurrence of chromatin marks. Some other 

methods are ChromaSig (248) and Segway (249). ChromaSig in contrast to Segway and 

ChromHMM does not provide genome-wide segmentation, and therefore such data would be 

inadequate to use since the emQTL analysis is genome-wide. Segway in contrast to 

ChromHMM provides a finer genome segmentation and handles missing data better, but the 

disadvantage of this method is that it requires more chromatin marks than ChromHMM to 

perform. ChromHMM segmentation data was preferred since the data was already generated 

for an appropriate ER positive breast cancer cell line (MCF7) by Taberlay et al (202), and 

ChromHMM provides satisfying resolution that covers the approximate size of nucleosomes 

(~200 bp). 
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ChromHMM segmentation data was utilized to determine if the emQTL-cluster CpGs or 

EMT-cluster CpGs were enriched within any particular functional genomic region. However, 

even though the ChromHMM-MCF7 enhancers should accommodate ER positive breast 

cancers, it is important to keep in mind that tumors are highly dynamic and may harbor very 

different biology. These data are indicatory and are the closest estimates we have for the 

location of regulatory regions in ER positive breast cancers.  

5.2.4 Gene set enrichment analysis 

The Molecular Signatures Database is one of the most comprehensive and widely used 

database for gene set enrichment analysis. Performing gene set enrichment analysis requires 

the consideration of which gene sets to include in the analysis. For this study, gene overlap 

was computed against the hallmark gene set collection (H) and gene ontology gene set 

collection (C5). The GO gene set collection (C5) was used to investigate the detailed 

characteristics of the genes such as molecular function, the cellular component where they 

exert their functions and the biological process. When performing gene set enrichment 

analysis, one should limit the inclusion of gene sets. Redundancy is a common issue and 

occurs when gene sets share a large portion of their genes. This may lead to another type of 

redundancy occurring when gene sets partly overlapping in which their annotations refer to 

the same or similar biological process. A consequence of this redundancy is that GSEA 

generates a long list of statistically significant results with many occurrences of the almost 

same biological process. Such gene sets may dominate on the top of the result and hide away 

other relevant findings further down on the list. Overrepresentation of top gene sets reflecting 

the same biological process may skew the tail of the observed distribution of enrichment 

scores, leading to an increased significance of scoring of the gene set on the top that 

represents the same signal (200). The hallmark gene sets describe well defined biological 

processes and prevents challenges such as redundancy by emphasizing genes displaying 

coordinate expression from prior knowledge.  

5.2.5 ChIP-seq peaks enrichment analysis 

Due to the limited mapping of TF specific binding sites within cell lines closely resembling 

ER positive breast cancers such as the MCF7, merged ChIP-seq peaks from 346 different cell 

lines were used. The advantage of using such data is that it provides information about 
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potential TF binding sites across several human cell lines derived from different parts of the 

body. Tumors are highly heterogenous, and since they are so different, merged peaks from 

several human cell lines may cover a broader landscape of protein-DNA interactions that may 

occur within the genome of a cancer cell.  

5.2.6 Characterization of tumor samples using gene signatures 

Tumor characterization can be performed by assessing the expression of gene signatures 

uniquely associated with a specific altered or unaltered biological process. In this study, a 

pan-cancer EMT gene signature was used to investigate the phenotype of the tumor samples. 

The gene signature was derived from 11 types of cancers including breast cancer. Instead of 

being just a pure quantitatively measurement of one given phenotype the scoring takes into 

consideration the concerted expression of epithelial and mesenchymal signature genes. The 

tumor samples were scored by using 11-genes from the literature known to be associated with 

a stem cell-like phenotype. Several stem cell gene signatures exist, but several were found to 

contain genes associated with stem cell differentiation and proliferation and will therefore be 

of limited value for the purpose of this thesis as current literature indicates that EMT may lead 

to a dedifferentiation like process to occur in luminal tumors. However, the genes used to 

score the tumors includes strong candidate genes supported by many studies to be associated 

with stem cell-like characteristics. The proliferation score used in this thesis was based on the 

11-gene proliferation score contained within the PAM50 assay and have been widely used as 

a measure of proliferation based on gene expression data from breast cancer tumors.  

5.2.7 ChIA-PET data 

Mapping of genomic interactions occurring between regulatory regions and coding genes 

within the genome may provide insight into the mechanisms governing the expression of 

genes associated with disease. One of the most basic unsupervised methods used to predict 

promoter-enhancer interactions have been performed by simply selecting the enhancer closest 

to the promoter. However, only around 40 % of enhancers interacts with the nearest promotor 

(250, 251). ChIA-PET is an unbiased method used to map precise protein-mediated DNA-

DNA interactions occurring within the genome. One major disadvantage with ChIA-PET is 

that it can only be used to identify global interactions mediated by one selected protein for 

each experiment. This makes the mapping of the interactome costly and time consuming. 
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However, extensive mapping of genomic interactions has already been applied to the MCF7 

breast cancer cell line, and the utilization of these data was therefore preferred. 

5.2.8 Validation of differential methylation in D492 and D492M 

To validate the in silico findings in a biological model system two proper cell lines were 

require; one cell line with epithelial-like characteristics and another with mesenchymal-like 

characteristics. For the purpose of this study, D492 and D492M were selected. One major 

disadvantage using these cell lines is that they are derived from normal cells and will 

therefore not reflect the extensive epigenetic and genetic alterations occurring during 

carcinogenesis and cancer progression. A better cell line with epithelial characteristics could 

be for instance the MCF7 breast cancer cell line. And the more optimal model for ER positive 

breast cancer with mesenchymal characteristics could be a cell line derived from MCF7 with 

mesenchymal-like characteristics. Noteworthy, such a cell line already exists and would be of 

major interest for validation of the in silico findings from this study in the future (252). 

However, the experiment with the D492 and D492M was performed since the cell lines had 

many of the desired characteristics, they were easily accessible and the experiments was of 

low cost.  

5.2.9 ASCAT, in silico nanodissection and CIBERSORT 

Existing methods for tumor purity estimation exists which are based on gene expression, 

DNA methylation and copy number data from either high-throughput DNA sequencing or 

SNP arrays (227). For this analysis, ASCAT data was used as an estimate of tumor purity for 

the OSL2 samples. ASCAT have been shown to yield accurate estimates of tumor purity, and 

have even been shown in some cases to better estimate tumor purity than by pathological 

examination and other techniques (253). Since tumor purity was correlated with mean 

methylation of CpG-cluster A, it was of interest to identify potential cell types that could be 

responsible for this.  

There are many in silico methods that can be used to estimate tumor infiltration. Two of these 

are in silico nanodissection and CIBERSORT. In silico nanodissection utilizes a small set of 

gene markers of varying quality and a compendia of gene expression data and uses support 

vector machines within an iterative framework to find cell type specific genes. The output 
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from in silico nanodissection provides a list of genes predicted to be specific for lymphocytes 

and an estimated probability that those genes are lymphocyte specific. For this analysis, only 

genes with a probability of more than 65 % of being lymphocyte specific was included to 

estimate the level of lymphocyte infiltration. CIBERSORT is another method that can be used 

to estimate the relative proportions of cells, but this method uses a defined signature gene 

matrix of the immune cell types as input that is based on differential gene expression analysis. 

CIBERSORT is a robust deconvolution tool that have shown to outperform several other in 

silico deconvolution methods and should be a better measurement of tumor infiltration. 

5.2.10 Survival analysis 

Several studies have highlighted EMT as an important contributor to cancer progression, 

metastasis and drug resistance (163-165). Therefore, it was reasonable to investigate whether 

the EMT score was associated with overall patient survival. Overall survival regarding mean 

expression of the EMT-cluster genes was also included in the analysis.  

Due to the size of the METABRIC cohort and the extensive follow-up of the patients, this 

cohort was the preferred to use for the survival analysis. No difference in overall survival was 

observed in the luminal A subtype regarding EMT score and mean expression of the EMT-

cluster genes. Patients with luminal A breast cancer subtype have in general a very good 

prognosis, and differences within this subtype may be therefore hard to find (254). No 

significant difference in overall survival regarding mean expression of EMT-cluster genes 

were discovered in the luminal B tumors. However, the EMT score was found to be 

associated with survival in luminal B tumors. Noteworthy, the EMT score and mean 

expression of the EMT-cluster genes showed a similar pattern in survival. Another analysis 

that would be interesting to investigate in the future is the prognostic value of DNA 

methylation of the EMT-cluster CpGs. 
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6 Conclusions and future perspectives 
 

Today it is well known that one major feature separating the ER positive breast tumors from 

one another is proliferation, and this feature tend to be more pronounced in the luminal B 

breast cancer subtype. However, in this master thesis it has been demonstrated that EMT may 

be another major feature separating the ER positive breast tumors. This feature was found to 

be more prominently displayed in the luminal A subtype, and to be an antagonistic feature of 

proliferation. In agreement with previously published studies, EMT seemed to be dependent 

on the expression level of ESR1.  

Genome-wide emQTL analysis lead to the discovery of CpG-gene associations associated 

with EMT. As observed, there was a low but significant correlation between the level of DNA 

methylation of CpG-cluster A CpGs with the relative proportion of memory T-cells, mast 

cells and monocytes which may affect the methylation of these CpGs in some degree. But it 

should not be decisive as the EMT score and mean methylation value of CpG-cluster A CpGs 

were correlated with the stemness score that includes genes associated with a stem cell-like 

phenotype and are related to functions such as self-renewal and regulation of differentiation. 

These are features not to expect from immune cells. In addition, the CpGs in CpG-cluster A 

was enriched in ChIP-seq peaks of TFs associated with EMT. Further investigation of the 

impact of the cell types correlated with mean methylation of CpG-cluster A CpGs on DNA 

methylation level of CpG-cluster A CpGs measured from the tumor samples would be 

valuable to study in the future.  

The CpGs of the EMT-cluster were shown to be enriched in enhancer regions. In addition, the 

level of DNA methylation seemed to be connected to the EMT-phenotype thereby proposing 

the existence of gene regulatory networks connecting these two factors together. Indeed, 

CpG-cluster A CpGs were found to be highly enriched within ChIP-seq peaks associated with 

EMT related TFs. A few of these CpGs were picked out for validation in D492 and D492M 

without any success, but there are many factors that could be optimized in a future study. 

Another cell line such as the breast cancer derived epithelial MCF7 cell line and a 

mesenchymal-like MCF7 derived cell line may be better choices to validate the link between 

DNA methylation of the CpG-cluster A CpGs and EMT-phenotype in the future. In addition, 

genome-wide DNA methylation- and gene expression profiling of the cell lines could be more 

informal to interpret the results next time.  
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The CpGs identified in the EMT-cluster may be major contributors to the EMT related breast 

cancer pathogenesis and constitute interesting regions for further investigations. The 

identification of cancer-causing epigenetic changes will be of major interest and could open 

up possibilities of targeted treatment by utilization of technologies such as CRISPR to edit 

epigenetic cancer-causing mutations to inhibit tumor growth. 
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Appendix A: The pan-cancer EMT signature 

 

Table 6. The pan-cancer EMT signature. Each gene is annotated with a certain characteristic describing 

whether the gene is associated to an epithelial phenotype (E) or a mesenchymal phenotype (M). 

Gene Characteristic Gene Characteristic 

ADAM12 M FSTL1 M 

ADAMTS12 M GALNT3 E 

ADAMTS2 M GPC6 M 

AEBP1 M GPR56 E 

ANGPTL2 M GRHL2 E 

ANTXR1 M GYPC M 

AP1G1 E HOOK1 E 

ATP8B1 E HTRA1 M 

AXL M INHBA M 

BNC2 M IRF6 E 

CALD1 M ITGA11 M 

CDH1 E LOXL2 M 

CDH2 M LRRC15 M 

CDS1 E MAP7 E 

CGN E MARVELD2 E 

CLDN4 E MARVELD3 E 

CMTM3 M MMP2 M 

CNOT1 E MSRB3 M 

CNRIP1 M MYO5B E 

COL10A1 M NAP1L3 M 

COL1A1 M NID2 M 

COL1A2 M OCLN E 

COL3A1 M OLFML2B M 

COL5A1 M PCOLCE M 

COL5A2 M PDGFRB M 

COL6A1 M PMP22 M 

COL6A2 M POSTN M 

COL6A3 M PRSS8 E 

COL8A1 M SPARC M 

CTNND1 E SPINT1 E 

DACT1 M SPOCK1 M 

DYNC1LI2 E SULF1 M 

EMP3 M SYT11 M 

ERBB3 E THBS2 M 

ESRP1 E VCAN M 

ESRP2 E VIM M 

F11R E ZEB2 M 

FAP M   

FBN1 M   

FN1 M   
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Appendix B: PCR and pyrosequencing primers 

 

Table 7. Overview of the primers designed by PyroMark Assay Design software version 2.0 (Qiagen) for PCR amplification and pyrosequencing reactions. The utilized 

annealing temperatures for the respective PCR amplifications are also shown. 

CpG Gene PCR primer forward PCR primer reverse 
Temperature 

PCR (⁰C) 
Pyrosequencing primer 

cg05223441 VEGFA GTTGATTAGAATTTTTTGGATTTTGTGG TACTCTCTTACTCATAACCCCCAAC 55 TGGATTTTGTGGGTG 

cg06947286 PDLIM4 AGAGTTGGTAGTATTTTAGTTATTATTGT ACTCAACCAACACAAAAAATACATT 55 GTTATTATTGTTTTTAAGAAATTTT 

cg10233454 LRP1 TTGAAGGAAATTAAAGATAGGTTTTAGT AAACCCCTATCCCACAACAA 55 AATATTAGTTTTGATAGGAAG 

cg12232146 PHLDA1 ATTATAGGTTTATTAGTAAGGATAGAAATT CCCTCCATAAACCATAACTATCTATA 55 CCAAAAATACTAAATAACCCTTC 

cg16888565 TPM1 GTGTGTTATTAATGGTATTTGGTTTTGTAT ACATCCAAAAAAAATATAACTCTTCACAA 50 ACATCCAAAAAAAATATAACTCTTCACAA 

cg20909017 ITGA5 AGTTAAAGGAATTGAATAGTTTGTGTAATA ATATAACTCTCATTTCCCCTAAATCAC 55 GTGTAATATTTTTTGTTTTTGTTTG 
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Appendix C: DNA methylation profiles of EMT-cluster CpGs in TCGA 
 

 

Figure 17. A DNA methylation level of the 1,197 EMT-cluster CpGs for the 304 ER positive breast tumor 

samples from the TCGA breast cancer cohort. The columns show the tumor samples from TCGA annotated with 

PAM50 subtype. The tumor samples were also divided into three groups; patient group A (n=101), patient group 

B (n=102) and patient group C (n=101) based on their mean methylation value of CpG-cluster A CpGs. The 

columns are ordered based on their mean methylation value of the CpG-cluster A CpGs such that this value 

decreases from the left of the heatmap towards the right. The rows of the EMT-cluster CpGs (n=1,197) are 

annotated as either CpG-cluster A CpGs (mean methylation value>0.5; n=770) or CpG-cluster B CpGs (mean 

methylation value<0.5; n=427). Red spots represent methylation values close to 1 while blue spots have a value 

close to 0. White spots have an intermediate value of these which is 0.5. Figure B and C shows the average DNA 

methylation of CpG-cluster A and CpG-cluster B CpGs respectively in-patient group A, B and C.  
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Appendix D: Relative cell-type infiltration in tumors estimated by CIBERSORT 

 

Table 8. Overview of estimated relative proportion of the 22 human hematopoietic cell types in the ER positive OSL2 tumor samples (n=177).  

Sample ID 
B cells 

naive 

B cells 

memory 

Plasma 

cells 

T cells 

CD8 

T cells 

CD4 

naive 

T cells 

CD4 

memory 

resting 

T cells 

CD4 

memory 

activated 

T cells 

follicular 

helper 

T cells 

regulatory  

Tregs 

T cells 

gamma 

delta 

NK 

cells 

resting 

NK cells 

activated 
Monocytes 

Macrophages 

M0 

Macrophages 

M1 

Macrophages 

M2 

Dendritic 

cells 

resting 

Dendritic 

cells 

activated 

Mast 

cells 

resting 

Mast 

cells 

activated 

Eosinophils Neutrophils 
P 

value 

Pearson 

Correlation 
RMSE 

OSL2U-0442 0.0721 0.0000 0.0237 0.0000 0.2130 0.0000 0.0000 0.0000 0.0377 0.0000 0.0916 0.0000 0.0106 0.0000 0.0000 0.1370 0.0067 0.0494 0.0000 0.1426 0.0918 0.1238 0.67  0.0166 1.08 

OSL2U-0090 0.0198 0.0200 0.0430 0.2023 0.1410 0.0000 0.2401 0.0000 0.0000 0.1148 0.0251 0.0000 0.0000 0.0007 0.0760 0.0173 0.0000 0.0483 0.0460 0.0000 0.0000 0.0055 0.00  0.3486 0.95 

OSL2U-0358 0.0000 0.1321 0.0496 0.0000 0.1245 0.0000 0.0434 0.0000 0.0760 0.0952 0.0245 0.0000 0.0000 0.0365 0.0403 0.0000 0.0000 0.0000 0.3778 0.0000 0.0000 0.0000 0.01  0.2661 0.99 

OSL2R-3002 0.0000 0.0000 0.0938 0.0000 0.3169 0.0000 0.0000 0.0000 0.0000 0.0000 0.1009 0.0000 0.0000 0.0486 0.0000 0.0000 0.0177 0.0000 0.4218 0.0000 0.0000 0.0002 0.25  0.0885 1.09 

OSL2U-0407 0.0000 0.0000 0.1801 0.0000 0.0000 0.0071 0.0000 0.0000 0.0528 0.0000 0.1992 0.0000 0.0000 0.0000 0.0000 0.1189 0.0000 0.0000 0.0835 0.2033 0.0733 0.0819 0.20  0.0973 1.07 

OSL2U-0059 0.0588 0.0000 0.0000 0.0000 0.1540 0.0000 0.0000 0.1575 0.0000 0.0000 0.2726 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026 0.0000 0.3156 0.0390 0.0000 1.00 -0.1534 1.25 

OSL2U-0534 0.0445 0.1124 0.0000 0.0840 0.0751 0.0000 0.1765 0.0479 0.0000 0.1112 0.0000 0.0338 0.0000 0.1106 0.1346 0.0400 0.0186 0.0000 0.0000 0.0000 0.0000 0.0107 0.00  0.4587 0.89 

OSL2U-0334 0.0076 0.0092 0.0000 0.2511 0.0038 0.0000 0.2904 0.0000 0.0000 0.2436 0.0000 0.0003 0.0000 0.0494 0.0545 0.0319 0.0023 0.0019 0.0318 0.0000 0.0000 0.0222 0.00  0.3964 0.93 

OSL2U-0262 0.0000 0.0790 0.0491 0.0000 0.0000 0.0858 0.0000 0.0000 0.0000 0.1617 0.0000 0.0029 0.0000 0.0000 0.0332 0.1218 0.0374 0.0128 0.3491 0.0113 0.0000 0.0559 0.01  0.3002 0.97 

OSL2U-0289 0.0000 0.1329 0.1155 0.0000 0.0885 0.0000 0.0000 0.0000 0.1239 0.2865 0.0000 0.0000 0.0000 0.0000 0.0580 0.0000 0.0000 0.0000 0.0000 0.1302 0.0096 0.0550 0.98 -0.0385 1.12 

OSL2U-0472 0.0000 0.0898 0.0000 0.0000 0.0629 0.0000 0.0000 0.0619 0.1295 0.0000 0.1103 0.0174 0.0000 0.0000 0.0000 0.0000 0.1377 0.0221 0.0000 0.2482 0.0452 0.0751 0.71  0.0122 1.10 

OSL2U-0486 0.0000 0.0000 0.1921 0.0000 0.4598 0.0000 0.0000 0.0000 0.0000 0.0000 0.1377 0.0000 0.0000 0.0000 0.0000 0.0726 0.0000 0.0000 0.0000 0.0509 0.0870 0.0000 1.00 -0.1319 1.16 

OSL2R-3030 0.1870 0.0000 0.0517 0.0116 0.0000 0.0000 0.0000 0.0461 0.0617 0.0000 0.0000 0.0785 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5255 0.0000 0.0050 0.0329 0.06  0.1611 1.08 

OSL2U-0269 0.0000 0.0699 0.0000 0.0000 0.2268 0.0000 0.0000 0.0134 0.0753 0.1025 0.0551 0.0000 0.0000 0.2067 0.0000 0.0000 0.0476 0.0000 0.0000 0.2028 0.0000 0.0000 0.01  0.2985 0.97 

OSL2U-0020 0.0232 0.0352 0.0000 0.0614 0.0260 0.0000 0.4156 0.0000 0.0000 0.1590 0.0000 0.0000 0.0256 0.0571 0.0364 0.0788 0.0000 0.0000 0.0758 0.0000 0.0000 0.0059 0.00  0.3532 0.94 

OSL2U-0392 0.0000 0.0190 0.0432 0.2619 0.0000 0.0390 0.0834 0.1803 0.0000 0.3083 0.0000 0.0000 0.0000 0.0000 0.0368 0.0000 0.0000 0.0109 0.0000 0.0000 0.0172 0.0000 0.01  0.2828 1.02 

OSL2U-0370 0.0000 0.1497 0.0000 0.0000 0.0919 0.0000 0.0000 0.1279 0.0000 0.0000 0.2104 0.0000 0.0693 0.0000 0.0000 0.0000 0.0223 0.0000 0.0000 0.2671 0.0615 0.0000 0.87 -0.0063 1.13 

OSL2U-0383 0.0000 0.0037 0.0667 0.0000 0.2888 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0563 0.0221 0.0000 0.0000 0.4264 0.0195 0.0000 0.0000 0.0000 0.0000 0.1166 0.99 -0.0409 1.12 

OSL2U-0101 0.0000 0.0273 0.0000 0.0000 0.2928 0.0000 0.0000 0.0000 0.1274 0.0000 0.1968 0.0000 0.0133 0.0000 0.0000 0.0755 0.0000 0.0000 0.0000 0.1767 0.0794 0.0109 1.00 -0.1562 1.19 

OSL2U-0064 0.0000 0.0000 0.0082 0.0000 0.0956 0.1875 0.0000 0.0000 0.1306 0.0000 0.1501 0.0000 0.0390 0.0000 0.0000 0.0000 0.0000 0.0838 0.0000 0.1373 0.1680 0.0000 1.00 -0.1997 1.19 

OSL2U-0364 0.1553 0.0000 0.0000 0.0000 0.2974 0.0000 0.0000 0.0000 0.0000 0.0000 0.1974 0.0000 0.0000 0.0000 0.0000 0.1452 0.0000 0.0000 0.0347 0.0000 0.0563 0.1136 1.00 -0.0745 1.13 

OSL2A-6181 0.1214 0.0000 0.0873 0.1574 0.0365 0.0000 0.0909 0.1254 0.0000 0.0882 0.0000 0.0000 0.0000 0.0993 0.0182 0.0000 0.0473 0.0217 0.0000 0.1029 0.0000 0.0037 0.95 -0.0289 1.10 

OSL2U-0488 0.0951 0.0000 0.0499 0.0000 0.1783 0.1592 0.0000 0.0000 0.0000 0.0000 0.2788 0.0000 0.0000 0.0000 0.0000 0.1232 0.0225 0.0000 0.0000 0.0930 0.0000 0.0000 1.00 -0.2422 1.23 

OSL2U-0229 0.0521 0.0000 0.1866 0.0000 0.2499 0.0000 0.0000 0.0000 0.0800 0.0000 0.1090 0.0000 0.0000 0.3216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.94 -0.0207 1.11 

OSL2U-0422 0.1004 0.0263 0.0370 0.0469 0.0000 0.0378 0.2216 0.0000 0.0059 0.1383 0.0000 0.0410 0.0000 0.0235 0.0839 0.0633 0.0000 0.0850 0.0703 0.0000 0.0000 0.0190 0.00  0.4955 0.87 

OSL2U-0489 0.0937 0.0000 0.0000 0.0000 0.0099 0.0000 0.0000 0.1642 0.0000 0.0000 0.2378 0.0000 0.1095 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2332 0.0576 0.0941 1.00 -0.1165 1.19 

OSL2U-0079 0.0000 0.1313 0.0000 0.0659 0.1412 0.0000 0.1228 0.0000 0.0793 0.1800 0.0000 0.0676 0.0000 0.0781 0.0403 0.0000 0.0000 0.0113 0.0640 0.0000 0.0054 0.0128 0.00  0.5564 0.83 

OSL2U-0179 0.1153 0.0000 0.0000 0.0000 0.0000 0.2506 0.0000 0.0000 0.1073 0.0000 0.0000 0.0000 0.1400 0.0000 0.0000 0.0068 0.0000 0.0000 0.0000 0.2324 0.0737 0.0740 0.88 -0.0093 1.11 

OSL2R-3052 0.0254 0.0000 0.0000 0.1753 0.0091 0.0000 0.0531 0.0652 0.0000 0.1712 0.0000 0.0438 0.0000 0.1138 0.0556 0.1163 0.0000 0.0446 0.0000 0.0481 0.0000 0.0785 0.01  0.3035 0.97 

OSL2A-6133 0.0000 0.0560 0.0442 0.3605 0.0000 0.0000 0.0872 0.0978 0.0000 0.1694 0.0000 0.0278 0.0000 0.0542 0.0572 0.0000 0.0000 0.0006 0.0452 0.0000 0.0000 0.0000 0.01  0.2439 1.02 

OSL2U-0342 0.0343 0.0030 0.0421 0.1541 0.1649 0.0360 0.1760 0.0000 0.0000 0.2589 0.0000 0.0000 0.0000 0.0285 0.0999 0.0000 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 0.00  0.5355 0.84 

OSL2U-0027 0.0000 0.2112 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3041 0.0000 0.0105 0.0025 0.0000 0.2861 0.0941 0.0000 0.0019 0.0000 0.0895 0.0000 0.0000 0.0000 0.95 -0.0265 1.11 

OSL2U-0325 0.0000 0.0000 0.0000 0.0000 0.0883 0.0649 0.0000 0.0000 0.0000 0.0000 0.1177 0.0000 0.0180 0.0754 0.0000 0.1093 0.0000 0.0199 0.0000 0.1737 0.0824 0.2504 0.06  0.1708 1.05 

OSL2U-0379 0.0000 0.0577 0.1261 0.1405 0.0000 0.0000 0.1311 0.0176 0.0000 0.1264 0.0000 0.0148 0.0439 0.2013 0.0410 0.0123 0.0049 0.0482 0.0339 0.0000 0.0000 0.0002 0.06  0.1647 1.02 

OSL2U-0544 0.0000 0.0000 0.0375 0.0000 0.2146 0.1479 0.0000 0.0000 0.2237 0.0103 0.1589 0.0000 0.0000 0.0365 0.0000 0.0000 0.0000 0.0000 0.0000 0.0961 0.0746 0.0000 1.00 -0.1670 1.20 

OSL2U-0242 0.0675 0.0000 0.0000 0.0000 0.3338 0.0000 0.0000 0.0319 0.0000 0.0000 0.3730 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1520 0.0416 0.0000 1.00 -0.0991 1.23 

OSL2U-0209 0.0000 0.2837 0.0000 0.1826 0.0244 0.0000 0.0000 0.0000 0.1552 0.2419 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0198 0.0000 0.0760 0.0000 0.0149 0.0000 0.43  0.0423 1.11 

OSL2U-0120 0.0145 0.0000 0.0000 0.0000 0.0859 0.1421 0.0000 0.0000 0.0000 0.0000 0.1197 0.0386 0.0000 0.0000 0.0000 0.4122 0.0209 0.0000 0.0000 0.0101 0.0670 0.0891 1.00 -0.0491 1.13 

OSL2U-0519 0.0000 0.2729 0.0000 0.0000 0.1911 0.0000 0.0000 0.0000 0.0000 0.2174 0.0000 0.0000 0.0000 0.0000 0.0000 0.0749 0.0618 0.0000 0.0000 0.1348 0.0342 0.0129 1.00 -0.0906 1.14 

OSL2U-0086 0.0000 0.0342 0.0000 0.1797 0.0000 0.0000 0.0000 0.1527 0.0448 0.0000 0.0000 0.2729 0.0000 0.0000 0.0000 0.0000 0.0881 0.0000 0.0000 0.1373 0.0561 0.0343 0.34  0.0673 1.15 

OSL2U-0296 0.0000 0.1535 0.0000 0.0000 0.0774 0.0000 0.0000 0.0781 0.0000 0.0000 0.2320 0.0000 0.0000 0.0702 0.0000 0.1883 0.0169 0.0000 0.0000 0.1422 0.0000 0.0413 0.98 -0.0393 1.12 

OSL2U-0171 0.0000 0.0000 0.0000 0.0000 0.0552 0.0000 0.0000 0.0000 0.5798 0.0000 0.0000 0.1261 0.0000 0.2388 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00 -0.1146 1.22 

OSL2R-3053 0.0000 0.0000 0.0535 0.0000 0.1659 0.0000 0.0000 0.0534 0.0000 0.0000 0.0000 0.2187 0.1077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2986 0.0697 0.0324 0.95 -0.0225 1.19 

OSL2A-6166 0.0000 0.0000 0.0000 0.0000 0.0137 0.0000 0.0000 0.0000 0.1795 0.0000 0.2572 0.0000 0.0060 0.0265 0.0000 0.0000 0.0153 0.0000 0.0000 0.2329 0.1742 0.0948 0.65  0.0185 1.14 

OSL2U-0280 0.0000 0.1940 0.0000 0.0202 0.0344 0.0820 0.2016 0.0000 0.0000 0.1879 0.0000 0.0019 0.0000 0.0154 0.1497 0.0553 0.0000 0.0575 0.0000 0.0000 0.0000 0.0000 0.00  0.3330 0.96 

OSL2U-0250 0.0000 0.0712 0.0000 0.2800 0.0000 0.0000 0.0368 0.0912 0.0796 0.0000 0.0000 0.0583 0.0000 0.0000 0.1368 0.1857 0.0000 0.0000 0.0328 0.0000 0.0000 0.0276 0.01  0.2548 0.99 

OSL2U-0285 0.0000 0.0972 0.1026 0.1304 0.0000 0.0000 0.0032 0.0433 0.0024 0.2400 0.0000 0.0595 0.0000 0.1731 0.0377 0.0379 0.0000 0.0000 0.0728 0.0000 0.0000 0.0000 0.00  0.3332 0.95 

OSL2U-0318 0.0000 0.0500 0.0000 0.0000 0.0000 0.0229 0.0000 0.2016 0.0000 0.0000 0.1574 0.0000 0.0282 0.0000 0.0000 0.0688 0.0989 0.0035 0.0000 0.1946 0.0918 0.0824 0.34  0.0651 1.07 

OSL2U-0484 0.1456 0.0000 0.0000 0.0000 0.2139 0.0000 0.0000 0.0000 0.1103 0.0000 0.1538 0.0000 0.0112 0.0000 0.0000 0.0000 0.0172 0.0388 0.0000 0.1677 0.1415 0.0000 1.00 -0.0811 1.14 

OSL2U-0232 0.0000 0.0000 0.1453 0.0000 0.2321 0.1338 0.0000 0.0000 0.0840 0.0582 0.1575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0188 0.0000 0.0000 0.0868 0.0836 0.0000 1.00 -0.1555 1.18 

OSL2U-0069 0.0000 0.0972 0.0000 0.0514 0.0000 0.1471 0.0000 0.0000 0.1449 0.1137 0.0000 0.0000 0.0000 0.1143 0.0805 0.0262 0.0905 0.0000 0.0859 0.0000 0.0000 0.0483 0.01  0.2277 0.99 

OSL2U-0328 0.0000 0.0000 0.0407 0.1886 0.0000 0.0000 0.1202 0.0059 0.0000 0.2414 0.0000 0.0936 0.0000 0.0000 0.0641 0.0845 0.0291 0.0000 0.1306 0.0000 0.0000 0.0012 0.00  0.3298 0.97 

OSL2U-0223 0.0000 0.1079 0.0000 0.0000 0.1928 0.0627 0.0000 0.0000 0.0000 0.0000 0.2491 0.0000 0.0000 0.0000 0.0000 0.0087 0.0000 0.0000 0.0000 0.0738 0.0000 0.3050 1.00 -0.0703 1.19 

OSL2U-0083 0.0000 0.0745 0.1754 0.1623 0.1295 0.0000 0.0000 0.0809 0.0224 0.0000 0.1262 0.0000 0.0000 0.0216 0.0000 0.0549 0.0000 0.0000 0.0000 0.1522 0.0000 0.0000 0.67  0.0151 1.10 

OSL2U-0291 0.0000 0.0000 0.0000 0.0000 0.0313 0.0281 0.0000 0.0878 0.0000 0.1575 0.0002 0.0000 0.0242 0.0631 0.0000 0.0000 0.0229 0.0000 0.4405 0.1285 0.0158 0.0000 0.01  0.2553 1.04 

OSL2U-0260 0.0000 0.0000 0.0000 0.1040 0.0405 0.0000 0.0000 0.0000 0.3028 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0156 0.0000 0.0000 0.0000 0.2815 0.1393 0.1116 1.00 -0.0887 1.18 

OSL2U-0299 0.0000 0.1181 0.0000 0.0000 0.1661 0.0000 0.0000 0.0000 0.0000 0.0428 0.0000 0.0997 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4692 0.0831 0.0210 0.0000 0.08  0.1564 1.10 

OSL2U-0174 0.1794 0.0000 0.0000 0.0000 0.0000 0.1809 0.0000 0.0000 0.1223 0.0000 0.1878 0.0000 0.0145 0.0000 0.0000 0.0000 0.0493 0.0000 0.0000 0.1506 0.0474 0.0679 1.00 -0.1145 1.16 

OSL2U-0477 0.0000 0.2732 0.0000 0.0648 0.0119 0.0148 0.0904 0.0290 0.1079 0.2206 0.0000 0.0000 0.0000 0.1028 0.0783 0.0000 0.0000 0.0064 0.0000 0.0000 0.0000 0.0000 0.01  0.2450 1.00 

OSL2U-0367 0.0000 0.2357 0.0000 0.0000 0.1669 0.0000 0.0000 0.0500 0.0000 0.0000 0.0000 0.0963 0.0000 0.0000 0.0000 0.0000 0.0608 0.0000 0.1097 0.1896 0.0909 0.0000 1.00 -0.0621 1.15 

OSL2U-0243 0.1963 0.0067 0.0000 0.0000 0.3706 0.0000 0.0000 0.0000 0.0000 0.0455 0.0000 0.0662 0.0445 0.0000 0.0000 0.0000 0.0517 0.0000 0.1742 0.0000 0.0444 0.0000 0.76  0.0038 1.10 

OSL2U-0548 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0519 0.1533 0.0000 0.1673 0.0000 0.0000 0.3795 0.0000 0.0000 0.0000 0.0000 0.0000 0.1844 0.0000 0.0636 0.04  0.1998 1.05 
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OSL2U-0553 0.0000 0.0000 0.0591 0.0000 0.2625 0.0000 0.0000 0.0000 0.0940 0.0000 0.2126 0.0000 0.0478 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1649 0.1592 0.0000 1.00 -0.1996 1.20 

OSL2U-0491 0.0000 0.0000 0.0000 0.0576 0.0000 0.1862 0.0000 0.1262 0.0000 0.0000 0.0000 0.0804 0.0000 0.0000 0.0615 0.1911 0.0000 0.0133 0.0490 0.0000 0.0000 0.2348 0.73  0.0070 1.11 

OSL2U-0197 0.0958 0.0000 0.0000 0.0000 0.1199 0.0000 0.0000 0.0000 0.1621 0.0000 0.0570 0.0000 0.0000 0.2508 0.0000 0.0000 0.0000 0.0044 0.1348 0.0317 0.0000 0.1435 0.76  0.0033 1.10 

OSL2U-0400 0.0204 0.1272 0.0000 0.0000 0.2299 0.0000 0.1957 0.0000 0.0000 0.0973 0.0453 0.0000 0.0043 0.0364 0.1197 0.0601 0.0000 0.0599 0.0000 0.0000 0.0000 0.0037 0.04  0.2018 1.01 

OSL2U-0053 0.0000 0.0741 0.0987 0.0000 0.0127 0.0000 0.0000 0.0647 0.0388 0.0000 0.0267 0.0000 0.0000 0.3561 0.0179 0.0325 0.0000 0.0000 0.0000 0.1376 0.0253 0.1150 0.06  0.1609 1.05 

OSL2U-0096 0.0000 0.0000 0.0431 0.0000 0.0151 0.0000 0.0000 0.0890 0.0642 0.0000 0.0307 0.0000 0.0000 0.0242 0.0000 0.0795 0.1316 0.0000 0.4930 0.0166 0.0000 0.0131 0.00  0.3326 0.97 

OSL2U-0393 0.0000 0.0442 0.0000 0.0000 0.2780 0.0000 0.0000 0.0000 0.0000 0.0000 0.1558 0.0000 0.0000 0.3203 0.0000 0.0615 0.0000 0.0000 0.0000 0.1402 0.0000 0.0000 0.88 -0.0121 1.13 

OSL2U-0037 0.0000 0.1854 0.0211 0.0000 0.0224 0.4019 0.0000 0.0000 0.0000 0.0040 0.0172 0.0000 0.0087 0.0000 0.0000 0.0099 0.1591 0.0000 0.0539 0.1165 0.0000 0.0000 0.06  0.1719 1.02 

OSL2U-0267 0.0000 0.0000 0.0000 0.0000 0.0687 0.0000 0.0000 0.0000 0.2339 0.0000 0.0000 0.0834 0.0135 0.0936 0.1256 0.0000 0.0728 0.0000 0.0000 0.2083 0.1002 0.0000 0.43  0.0436 1.11 

OSL2U-0126 0.0000 0.1524 0.0000 0.2790 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0641 0.0000 0.0000 0.0000 0.0000 0.0302 0.0000 0.4324 0.0000 0.0000 0.0420 0.77  0.0028 1.14 

OSL2U-0324 0.0000 0.0121 0.0000 0.0000 0.0963 0.0000 0.0000 0.0000 0.1895 0.0000 0.0819 0.0000 0.0000 0.3245 0.1615 0.0021 0.0252 0.0000 0.0000 0.1070 0.0000 0.0000 0.18  0.1092 1.08 

OSL2U-0225 0.0708 0.0000 0.0000 0.0000 0.0550 0.0000 0.0800 0.0000 0.0000 0.0642 0.0400 0.0000 0.0462 0.3914 0.0167 0.1556 0.0000 0.0415 0.0370 0.0000 0.0000 0.0015 0.00  0.7149 0.72 

OSL2U-0056 0.0000 0.0957 0.0000 0.0000 0.1647 0.0173 0.1505 0.0000 0.0600 0.0595 0.0018 0.0125 0.0000 0.0792 0.1087 0.0000 0.0000 0.0000 0.2502 0.0000 0.0000 0.0000 0.00  0.4723 0.88 

OSL2U-0275 0.0000 0.0578 0.0000 0.1070 0.0000 0.0000 0.0000 0.0000 0.0614 0.1435 0.0000 0.1295 0.1180 0.1290 0.1041 0.0997 0.0000 0.0000 0.0258 0.0000 0.0000 0.0242 0.06  0.1616 1.05 

OSL2U-0130 0.0170 0.0791 0.0078 0.0000 0.0000 0.0000 0.1061 0.2106 0.0358 0.0690 0.0000 0.0907 0.0000 0.1083 0.2368 0.0000 0.0242 0.0015 0.0130 0.0000 0.0000 0.0000 0.00  0.3250 0.97 

OSL2A-6134 0.0282 0.0599 0.0000 0.0000 0.1459 0.0624 0.2988 0.0000 0.0000 0.0000 0.0446 0.0009 0.0388 0.0000 0.0000 0.0939 0.0034 0.0182 0.2032 0.0000 0.0000 0.0018 0.37  0.0506 1.06 

OSL2U-0109 0.0000 0.0204 0.0003 0.0000 0.0000 0.0301 0.0000 0.0000 0.0330 0.1146 0.0305 0.0000 0.0000 0.1796 0.0000 0.2729 0.0000 0.0000 0.0000 0.0881 0.0072 0.2233 0.10  0.1452 1.07 

OSL2U-0112 0.0000 0.1059 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0628 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4385 0.1655 0.0000 0.1161 0.25  0.0874 1.15 

OSL2U-0554 0.0000 0.0624 0.0787 0.0000 0.0000 0.2544 0.0000 0.0343 0.0407 0.0000 0.1177 0.0000 0.0613 0.0000 0.1007 0.0000 0.0000 0.0000 0.0992 0.0769 0.0738 0.0000 0.01  0.2125 1.00 

OSL2U-0438 0.0000 0.0054 0.0395 0.2923 0.0000 0.0054 0.0000 0.0120 0.0000 0.1049 0.0000 0.0546 0.0048 0.0000 0.0936 0.0853 0.0335 0.0000 0.2231 0.0000 0.0000 0.0455 0.06  0.1668 1.04 

OSL2U-0128 0.0000 0.1220 0.0000 0.0808 0.0000 0.0417 0.0000 0.0000 0.0459 0.0000 0.0000 0.0604 0.0282 0.0000 0.0133 0.1691 0.1383 0.0000 0.0000 0.1013 0.0399 0.1591 0.06  0.1672 1.02 

OSL2U-0085 0.0000 0.0615 0.1546 0.0795 0.0000 0.0003 0.0200 0.0000 0.0347 0.1954 0.0000 0.0042 0.0170 0.1461 0.0712 0.0000 0.0020 0.0094 0.1546 0.0474 0.0019 0.0000 0.04  0.1978 1.01 

OSL2U-0249 0.0000 0.0134 0.0000 0.0000 0.1689 0.0000 0.0000 0.0000 0.0442 0.0000 0.1160 0.1095 0.0568 0.0000 0.0000 0.0000 0.0000 0.0000 0.4912 0.0000 0.0000 0.0000 0.88 -0.0089 1.18 

OSL2U-0248 0.0000 0.0946 0.1797 0.0115 0.0000 0.0212 0.1185 0.0134 0.0689 0.0000 0.0000 0.1160 0.0624 0.0000 0.1758 0.0000 0.0164 0.0263 0.0234 0.0719 0.0000 0.0000 0.00  0.4806 0.88 

OSL2U-0268 0.0000 0.1288 0.0000 0.1008 0.0652 0.0000 0.0000 0.0000 0.0618 0.2571 0.0000 0.0194 0.0000 0.0000 0.0000 0.0000 0.2172 0.0000 0.0000 0.0859 0.0639 0.0000 0.88 -0.0106 1.11 

OSL2U-0463 0.0251 0.0000 0.0000 0.0000 0.0509 0.1595 0.0000 0.0000 0.0597 0.0000 0.2376 0.0000 0.0160 0.0000 0.0000 0.0000 0.0218 0.0000 0.0000 0.2523 0.0130 0.1641 1.00 -0.1300 1.21 

OSL2U-0186 0.0000 0.0000 0.0758 0.0000 0.4726 0.0000 0.0000 0.0198 0.0000 0.0000 0.1189 0.0000 0.0674 0.0000 0.0000 0.0000 0.0000 0.0290 0.0000 0.1624 0.0539 0.0000 1.00 -0.1529 1.18 

OSL2A-6132 0.0000 0.0477 0.0646 0.2103 0.0000 0.0000 0.2011 0.0393 0.0114 0.0359 0.0000 0.0726 0.0031 0.0436 0.1526 0.0440 0.0367 0.0000 0.0287 0.0000 0.0000 0.0084 0.00  0.5215 0.85 

OSL2U-0430 0.1857 0.0000 0.0000 0.0000 0.2616 0.0000 0.0000 0.0000 0.0000 0.0545 0.1780 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2031 0.0677 0.0494 1.00 -0.0937 1.17 

OSL2U-0537 0.0000 0.0000 0.1205 0.0000 0.2810 0.0000 0.0000 0.0000 0.0081 0.0000 0.2089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0311 0.0000 0.2060 0.1248 0.0196 0.0000 0.37  0.0525 1.10 

OSL2U-0290 0.3112 0.0000 0.0000 0.0000 0.2154 0.0000 0.0000 0.0000 0.0442 0.0000 0.0000 0.0946 0.0000 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0799 0.1293 0.1224 1.00 -0.1387 1.18 

OSL2U-0227 0.0000 0.1667 0.0000 0.0000 0.2620 0.0000 0.0000 0.0000 0.0000 0.0000 0.3457 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2256 0.0000 0.0000 1.00 -0.1758 1.26 

OSL2U-0182 0.0051 0.0000 0.0000 0.2600 0.0055 0.0000 0.0000 0.0000 0.3094 0.0662 0.0000 0.0000 0.0000 0.2680 0.0000 0.0000 0.0000 0.0000 0.0178 0.0000 0.0680 0.0000 0.95 -0.0261 1.14 

OSL2U-0531 0.0101 0.0000 0.0000 0.0000 0.0000 0.2232 0.0000 0.0000 0.0190 0.0000 0.1128 0.0000 0.0000 0.3563 0.0000 0.0000 0.0000 0.0000 0.0000 0.1747 0.0000 0.1040 1.00 -0.1080 1.20 

OSL2U-0159 0.0047 0.0872 0.0000 0.2903 0.0115 0.0000 0.2094 0.0000 0.0000 0.1131 0.0000 0.0148 0.0000 0.0518 0.0789 0.0387 0.0000 0.0358 0.0502 0.0000 0.0000 0.0135 0.00  0.5693 0.83 

OSL2U-0045 0.0223 0.0000 0.0829 0.0000 0.0000 0.0089 0.0000 0.2300 0.0000 0.0000 0.0989 0.0019 0.0000 0.0000 0.0000 0.1033 0.0000 0.0000 0.0000 0.1338 0.2107 0.1073 0.22  0.0963 1.06 

OSL2U-0065 0.0000 0.0000 0.0940 0.0000 0.3598 0.0000 0.0000 0.0000 0.0000 0.0000 0.0777 0.0000 0.0467 0.0000 0.0000 0.0000 0.0000 0.0000 0.2786 0.0380 0.1052 0.0000 0.92 -0.0170 1.12 

OSL2U-0462 0.0103 0.0000 0.0205 0.1087 0.0000 0.0280 0.0000 0.0000 0.0384 0.0000 0.0000 0.0586 0.0000 0.0000 0.0000 0.1027 0.0281 0.0000 0.5415 0.0000 0.0000 0.0631 0.01  0.2927 1.00 

OSL2U-0177 0.0000 0.0215 0.0081 0.0000 0.0000 0.3404 0.0000 0.0000 0.0000 0.0728 0.0000 0.1118 0.0000 0.0002 0.0000 0.1380 0.0221 0.0000 0.2221 0.0036 0.0000 0.0594 0.35  0.0610 1.08 

OSL2U-0103 0.0710 0.0000 0.0000 0.0000 0.1646 0.0000 0.0000 0.0000 0.0000 0.0000 0.0525 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5029 0.0808 0.1282 0.0000 0.29  0.0773 1.15 

OSL2U-0009 0.0000 0.0358 0.0057 0.0146 0.1268 0.0000 0.0731 0.0744 0.0203 0.1438 0.0000 0.0401 0.0000 0.2782 0.1382 0.0000 0.0000 0.0000 0.0116 0.0000 0.0000 0.0373 0.01  0.2613 0.99 

OSL2U-0152 0.0000 0.0000 0.0000 0.0095 0.0000 0.0949 0.0000 0.0000 0.0187 0.0000 0.0000 0.0180 0.0517 0.0538 0.0000 0.3437 0.0000 0.0000 0.0000 0.0887 0.1256 0.1955 0.01  0.2531 1.01 

OSL2U-0208 0.0000 0.1676 0.1559 0.0157 0.0331 0.0668 0.0254 0.0000 0.0467 0.1214 0.0000 0.0000 0.0000 0.1227 0.0350 0.1564 0.0000 0.0000 0.0296 0.0000 0.0000 0.0236 0.00  0.4490 0.90 

OSL2U-0040 0.0737 0.0000 0.0000 0.0000 0.2300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0993 0.0575 0.2799 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1250 0.1345 0.0000 1.00 -0.0639 1.14 

OSL2U-0514 0.0000 0.0643 0.0000 0.0000 0.0512 0.4666 0.0000 0.0000 0.0153 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0921 0.2137 0.0968 0.0000 0.95 -0.0289 1.15 

OSL2U-0496 0.0000 0.0000 0.0000 0.0000 0.1340 0.0000 0.0000 0.0000 0.0906 0.0000 0.1709 0.0000 0.0000 0.0110 0.1512 0.0000 0.0724 0.0860 0.1489 0.0000 0.0000 0.1349 0.10  0.1505 1.05 

OSL2U-0347 0.0061 0.0000 0.0218 0.0132 0.1772 0.0167 0.0842 0.0194 0.0000 0.2349 0.0000 0.0217 0.0000 0.0200 0.2090 0.0000 0.0186 0.0227 0.1345 0.0000 0.0000 0.0000 0.00  0.5402 0.84 

OSL2U-0557 0.0089 0.0000 0.1630 0.0000 0.2390 0.0850 0.0000 0.0000 0.1481 0.0000 0.0676 0.0118 0.0019 0.1721 0.0000 0.0256 0.0000 0.0420 0.0352 0.0000 0.0000 0.0000 0.34  0.0669 1.06 

OSL2U-0323 0.0350 0.0000 0.0303 0.2297 0.0711 0.0000 0.1593 0.0000 0.0443 0.1421 0.0000 0.0459 0.0298 0.0627 0.0454 0.0580 0.0097 0.0000 0.0367 0.0000 0.0000 0.0000 0.00  0.4622 0.89 

OSL2U-0549 0.0000 0.3406 0.0634 0.0000 0.2170 0.0428 0.0000 0.0010 0.0000 0.1492 0.0000 0.0691 0.0105 0.0000 0.0150 0.0000 0.0000 0.0001 0.0858 0.0000 0.0056 0.0000 0.01  0.3124 0.97 

OSL2U-0221 0.0000 0.0000 0.0000 0.1035 0.0000 0.0893 0.0000 0.0000 0.0233 0.0000 0.0000 0.0451 0.0182 0.0000 0.0000 0.0000 0.0489 0.0000 0.6627 0.0000 0.0000 0.0090 0.00  0.4690 0.91 

OSL2U-0087 0.0000 0.0000 0.0655 0.0869 0.0260 0.0000 0.0000 0.0000 0.0000 0.1612 0.0000 0.1090 0.0000 0.0000 0.0002 0.0000 0.0080 0.0000 0.5239 0.0000 0.0000 0.0193 0.00  0.4232 0.93 

OSL2U-0447 0.1995 0.0340 0.0000 0.0000 0.0027 0.1605 0.1704 0.0000 0.0000 0.0708 0.0000 0.0000 0.0423 0.0000 0.0000 0.0833 0.0000 0.0476 0.1361 0.0000 0.0529 0.0000 0.19  0.1054 1.03 

OSL2R-3005 0.0063 0.0000 0.0000 0.2271 0.0000 0.0000 0.0512 0.0000 0.1024 0.0081 0.0000 0.0180 0.0249 0.2776 0.0923 0.0777 0.0289 0.0000 0.0000 0.0085 0.0000 0.0770 0.01  0.2919 0.98 

OSL2U-0091 0.1839 0.0000 0.0000 0.0000 0.2454 0.0000 0.1327 0.0015 0.0000 0.0860 0.0000 0.0379 0.0000 0.0397 0.1272 0.0000 0.0000 0.0000 0.1335 0.0000 0.0122 0.0000 0.51  0.0314 1.09 

OSL2U-0391 0.0000 0.1875 0.0000 0.1660 0.0000 0.0000 0.0000 0.0000 0.0000 0.1796 0.0000 0.0000 0.0288 0.0490 0.0000 0.0000 0.1016 0.0000 0.0000 0.1599 0.1277 0.0000 1.00 -0.0657 1.13 

OSL2U-0123 0.0537 0.0000 0.0319 0.0878 0.0000 0.0128 0.1844 0.0424 0.0002 0.0692 0.0000 0.0185 0.0055 0.0997 0.1128 0.0000 0.0333 0.0017 0.2461 0.0000 0.0000 0.0000 0.00  0.3818 0.92 

OSL2R-3043 0.0000 0.0000 0.0000 0.3184 0.0000 0.0000 0.0000 0.0000 0.0502 0.0000 0.0424 0.0000 0.0000 0.0000 0.0000 0.0000 0.0877 0.0000 0.0000 0.2320 0.1787 0.0906 1.00 -0.0676 1.16 

OSL2U-0030 0.2078 0.0000 0.0000 0.0000 0.0731 0.0000 0.0000 0.0317 0.1152 0.0000 0.0892 0.0000 0.0000 0.3165 0.0000 0.0000 0.0000 0.0000 0.0000 0.1368 0.0000 0.0296 1.00 -0.0607 1.14 

OSL2A-6146 0.0215 0.0000 0.0000 0.2797 0.0036 0.0000 0.0135 0.0674 0.0000 0.2677 0.0000 0.0565 0.0000 0.0512 0.0926 0.0349 0.0000 0.0000 0.0097 0.0000 0.1017 0.0000 0.00  0.4014 0.94 

OSL2U-0520 0.0000 0.0000 0.1205 0.0555 0.0000 0.2653 0.0000 0.0000 0.0000 0.0366 0.0000 0.0000 0.0267 0.0000 0.0000 0.0539 0.0000 0.0000 0.2857 0.1558 0.0000 0.0000 0.00  0.4632 0.89 

OSL2U-0515 0.0148 0.0000 0.0917 0.0705 0.2079 0.0000 0.0000 0.0000 0.0000 0.0000 0.1671 0.0000 0.0227 0.2900 0.0000 0.0000 0.0368 0.0000 0.0000 0.0664 0.0322 0.0000 0.95 -0.0275 1.12 

OSL2R-3013 0.0000 0.0000 0.0000 0.0000 0.0991 0.0000 0.0000 0.0373 0.0884 0.2031 0.0000 0.0000 0.0000 0.4595 0.0517 0.0000 0.0037 0.0000 0.0000 0.0572 0.0000 0.0000 0.00  0.3193 0.98 

OSL2R-3028 0.0000 0.1186 0.0000 0.0000 0.1083 0.0000 0.0000 0.0000 0.0367 0.0000 0.2311 0.0040 0.1559 0.1168 0.0000 0.0000 0.0000 0.0000 0.0000 0.2167 0.0117 0.0000 1.00 -0.0832 1.16 

OSL2U-0288 0.0000 0.0901 0.0000 0.0000 0.3257 0.0000 0.0000 0.0000 0.1739 0.0000 0.2071 0.0000 0.0655 0.0000 0.0000 0.0000 0.0000 0.0000 0.0695 0.0432 0.0249 0.0000 1.00 -0.1245 1.18 

OSL2U-0365 0.3147 0.0000 0.0000 0.0000 0.2556 0.0000 0.0000 0.0000 0.0000 0.0000 0.0437 0.0000 0.0000 0.0000 0.0000 0.0599 0.0000 0.0000 0.1198 0.0000 0.0000 0.2063 1.00 -0.1303 1.17 

OSL2U-0190 0.0254 0.1112 0.0000 0.0000 0.2897 0.0961 0.2312 0.0000 0.0000 0.1095 0.0000 0.0000 0.0285 0.0402 0.0507 0.0000 0.0000 0.0167 0.0008 0.0000 0.0000 0.0000 0.00  0.3444 0.95 

OSL2U-0485 0.0000 0.0000 0.0477 0.0000 0.0000 0.1272 0.0000 0.0000 0.1365 0.0362 0.0000 0.0598 0.0000 0.0000 0.0000 0.1108 0.0000 0.0000 0.4187 0.0000 0.0000 0.0632 0.05  0.1834 1.04 

OSL2U-0450 0.0000 0.0899 0.0000 0.1697 0.0000 0.1000 0.0722 0.0000 0.0155 0.1193 0.0000 0.0861 0.0223 0.0057 0.0323 0.0690 0.1198 0.0297 0.0000 0.0080 0.0356 0.0251 0.00  0.3256 0.96 

OSL2U-0145 0.0000 0.0360 0.0350 0.0000 0.0331 0.1661 0.0088 0.0000 0.0000 0.1540 0.0000 0.0465 0.0000 0.0000 0.0396 0.1485 0.0288 0.0000 0.3036 0.0000 0.0000 0.0000 0.23  0.0943 1.06 

OSL2U-0026 0.0000 0.0966 0.0000 0.0046 0.0841 0.0000 0.0203 0.0000 0.0121 0.0168 0.0205 0.0000 0.0458 0.4338 0.0000 0.1647 0.0386 0.0000 0.0608 0.0000 0.0000 0.0013 0.05  0.1919 1.05 

OSL2U-0222 0.0000 0.1033 0.0000 0.2530 0.0401 0.0000 0.0155 0.0000 0.0302 0.2213 0.0000 0.0058 0.0000 0.0000 0.1466 0.0578 0.0012 0.0000 0.1214 0.0000 0.0000 0.0036 0.00  0.5676 0.82 

OSL2U-0217 0.0000 0.0000 0.2286 0.0000 0.2073 0.2210 0.0000 0.0000 0.0000 0.0000 0.1138 0.0000 0.0000 0.0000 0.0000 0.0845 0.0286 0.0000 0.0497 0.0663 0.0003 0.0000 1.00 -0.0842 1.12 

OSL2U-0251 0.0000 0.1286 0.0273 0.0000 0.0000 0.0999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0077 0.0744 0.0000 0.0000 0.0000 0.0492 0.0000 0.5650 0.0331 0.0064 0.0084 0.00  0.4408 0.92 

OSL2U-0437 0.0000 0.0000 0.0000 0.0000 0.0000 0.0329 0.0000 0.0242 0.1379 0.0000 0.1053 0.0000 0.0164 0.4192 0.0000 0.0000 0.0388 0.0000 0.0000 0.1331 0.0922 0.0000 0.06  0.1668 1.06 
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Sample ID 
B cells 

naive 

B cells 

memory 

Plasma 

cells 

T cells 

CD8 

T cells 

CD4 

naive 

T cells 

CD4 

memory 

resting 

T cells 

CD4 

memory 

activated 

T cells 

follicular 

helper 

T cells 

regulatory  

Tregs 

T cells 

gamma 

delta 

NK 

cells 

resting 

NK cells 

activated 
Monocytes 

Macrophages 

M0 

Macrophages 

M1 

Macrophages 

M2 

Dendritic 

cells 

resting 

Dendritic 

cells 

activated 

Mast 

cells 

resting 

Mast 

cells 

activated 

Eosinophils Neutrophils 
P 

value 

Pearson 

Correlation 
RMSE 

OSL2U-0198 0.0000 0.0000 0.2138 0.1461 0.0942 0.1093 0.0000 0.0000 0.0000 0.0000 0.0000 0.0737 0.1316 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1587 0.0726 0.0000 0.64  0.0198 1.09 

OSL2U-0457 0.0000 0.1697 0.0000 0.1171 0.2598 0.0000 0.0000 0.0000 0.1450 0.0000 0.0000 0.0205 0.0000 0.1952 0.0000 0.0000 0.0000 0.0000 0.0000 0.0927 0.0000 0.0000 0.56  0.0283 1.10 

OSL2U-0226 0.3872 0.0000 0.0210 0.0000 0.2077 0.1620 0.0000 0.0327 0.0000 0.0000 0.0774 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1121 0.0000 0.0000 0.94 -0.0210 1.15 

OSL2U-0352 0.0000 0.1951 0.0000 0.2325 0.1889 0.0932 0.0000 0.0000 0.0531 0.0920 0.0000 0.0234 0.0395 0.0000 0.0224 0.0000 0.0000 0.0000 0.0305 0.0000 0.0295 0.0000 0.01  0.2201 1.03 

OSL2U-0411 0.0000 0.0000 0.0983 0.0000 0.0308 0.2104 0.0000 0.0000 0.0865 0.0000 0.0000 0.0714 0.0124 0.1006 0.0000 0.0000 0.0077 0.0000 0.3819 0.0000 0.0000 0.0000 0.44  0.0403 1.10 

OSL2U-0445 0.0504 0.0482 0.0000 0.0709 0.0034 0.4301 0.1192 0.0000 0.0000 0.0000 0.0000 0.0173 0.1204 0.0084 0.0337 0.0000 0.0000 0.0000 0.0981 0.0000 0.0000 0.0000 0.00  0.3449 0.95 

OSL2U-0420 0.0000 0.0134 0.1224 0.0929 0.0000 0.2359 0.0000 0.0000 0.0000 0.1467 0.0000 0.0561 0.1929 0.0000 0.0000 0.0000 0.0000 0.0000 0.1199 0.0182 0.0016 0.0000 0.36  0.0532 1.08 

OSL2U-0093 0.0000 0.0000 0.0000 0.0000 0.3831 0.0000 0.0000 0.0052 0.0502 0.0000 0.1764 0.0000 0.0000 0.2979 0.0000 0.0000 0.0000 0.0000 0.0000 0.0479 0.0393 0.0000 0.31  0.0719 1.10 

OSL2U-0340 0.0125 0.0529 0.0000 0.0893 0.0052 0.2622 0.0933 0.0000 0.0000 0.2705 0.0000 0.0000 0.0000 0.0000 0.0669 0.0000 0.0000 0.0206 0.1253 0.0000 0.0014 0.0000 0.00  0.5519 0.83 

OSL2U-0157 0.0000 0.0243 0.0288 0.0000 0.1303 0.0000 0.1146 0.0723 0.0467 0.0000 0.0664 0.0000 0.0210 0.2887 0.1660 0.0000 0.0000 0.0314 0.0040 0.0054 0.0000 0.0000 0.01  0.2369 1.01 

OSL2U-0353 0.0000 0.0000 0.0357 0.2160 0.0842 0.0000 0.0000 0.0000 0.0797 0.0000 0.0000 0.1549 0.0000 0.0701 0.1110 0.0000 0.0000 0.0000 0.2484 0.0000 0.0000 0.0000 0.23  0.0926 1.09 

OSL2U-0263 0.0420 0.1166 0.0059 0.0000 0.1650 0.0000 0.0000 0.1303 0.0000 0.0000 0.0000 0.0363 0.0000 0.3484 0.0000 0.0000 0.0000 0.0000 0.0000 0.1555 0.0000 0.0000 0.35  0.0642 1.10 

OSL2U-0464 0.0127 0.0000 0.0038 0.0000 0.2089 0.2833 0.0000 0.0000 0.0000 0.0000 0.1044 0.0000 0.0000 0.0000 0.0000 0.1687 0.0000 0.0000 0.1970 0.0000 0.0212 0.0000 0.96 -0.0292 1.12 

OSL2U-0043 0.0000 0.2649 0.3166 0.0933 0.0000 0.0000 0.0000 0.0000 0.0711 0.0434 0.0000 0.0129 0.0000 0.0000 0.0522 0.0070 0.0000 0.0026 0.1061 0.0000 0.0000 0.0301 0.00  0.3858 0.92 

OSL2U-0220 0.0092 0.3315 0.0000 0.0000 0.1863 0.0755 0.0325 0.0000 0.0000 0.2059 0.0000 0.0198 0.0000 0.0005 0.0586 0.0000 0.0000 0.0294 0.0000 0.0244 0.0262 0.0000 0.00  0.3908 0.93 

OSL2U-0552 0.0389 0.2517 0.0000 0.0188 0.1083 0.2243 0.1414 0.0000 0.0000 0.0000 0.0419 0.0000 0.0000 0.0097 0.0000 0.0391 0.0000 0.0179 0.1008 0.0000 0.0000 0.0073 0.06  0.1742 1.02 

OSL2U-0319 0.0459 0.1801 0.0000 0.3688 0.0108 0.0000 0.1402 0.0098 0.0325 0.0586 0.0047 0.0300 0.0000 0.0000 0.0992 0.0000 0.0000 0.0000 0.0194 0.0000 0.0000 0.0000 0.06  0.1689 1.05 

OSL2U-0390 0.0000 0.0000 0.0000 0.1049 0.0000 0.2316 0.0000 0.1577 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0694 0.0000 0.0000 0.2508 0.0861 0.0290 0.0705 0.80 -0.0001 1.12 

OSL2U-0173 0.0000 0.0484 0.0000 0.1066 0.0000 0.1160 0.0136 0.0000 0.0000 0.0768 0.0000 0.0826 0.0670 0.0221 0.0352 0.0398 0.0700 0.0000 0.3220 0.0000 0.0000 0.0000 0.00  0.3469 0.95 

OSL2U-0110 0.0869 0.0000 0.0238 0.3371 0.0000 0.0000 0.0000 0.0000 0.1739 0.0000 0.0000 0.0713 0.0000 0.0265 0.0124 0.0708 0.0000 0.0175 0.1797 0.0000 0.0000 0.0000 0.16  0.1126 1.06 

OSL2U-0441 0.0000 0.0321 0.1760 0.0000 0.0000 0.1440 0.0000 0.0000 0.0578 0.0446 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0030 0.0011 0.5410 0.0000 0.0000 0.0000 0.00  0.3971 0.94 

OSL2U-0175 0.0248 0.0000 0.0402 0.0000 0.0000 0.0793 0.0256 0.0000 0.0867 0.1759 0.0000 0.0387 0.0274 0.0000 0.0000 0.0203 0.0163 0.0257 0.4391 0.0000 0.0000 0.0000 0.09  0.1530 1.06 

OSL2U-0117 0.0000 0.2294 0.0000 0.0000 0.1191 0.0085 0.0000 0.0000 0.1136 0.0000 0.2392 0.0000 0.0476 0.0742 0.0000 0.0000 0.0000 0.0155 0.0000 0.0901 0.0242 0.0386 1.00 -0.1856 1.18 

OSL2U-0360 0.1631 0.0000 0.0000 0.0000 0.1335 0.1811 0.0978 0.0000 0.0000 0.0000 0.1922 0.0000 0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1307 0.0806 0.0000 1.00 -0.0940 1.16 

OSL2U-0100 0.0000 0.0500 0.0637 0.0375 0.0000 0.0225 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0467 0.0000 0.0000 0.0069 0.0150 0.0000 0.6488 0.0901 0.0000 0.0171 0.00  0.5988 0.82 

OSL2U-0104 0.0000 0.1824 0.0842 0.1012 0.0000 0.1481 0.0367 0.0205 0.0000 0.1535 0.0000 0.0000 0.0000 0.0000 0.0124 0.0710 0.0636 0.0000 0.0912 0.0000 0.0000 0.0354 0.00  0.3669 0.93 

OSL2U-0406 0.0050 0.1141 0.0000 0.2759 0.0778 0.0489 0.0746 0.0000 0.0000 0.1876 0.0000 0.0520 0.0000 0.0009 0.0448 0.0119 0.0000 0.0041 0.1024 0.0000 0.0000 0.0000 0.00  0.4940 0.87 

OSL2U-0132 0.0000 0.0000 0.0543 0.0000 0.1077 0.0610 0.0639 0.0000 0.0000 0.0309 0.0000 0.0000 0.0329 0.0000 0.0000 0.0000 0.0171 0.0000 0.6322 0.0000 0.0000 0.0000 0.00  0.4500 0.92 

OSL2U-0017 0.0210 0.0000 0.0000 0.0143 0.1298 0.0000 0.0000 0.0000 0.0995 0.0000 0.0678 0.1018 0.1235 0.0000 0.0000 0.0000 0.0000 0.0000 0.2204 0.2038 0.0179 0.0000 0.25  0.0878 1.12 

OSL2U-0142 0.0414 0.0000 0.0000 0.0000 0.0000 0.3659 0.0000 0.0000 0.0000 0.0000 0.0000 0.1741 0.0266 0.0197 0.0000 0.0000 0.0000 0.0000 0.1019 0.2463 0.0240 0.0000 0.17  0.1093 1.12 

OSL2U-0201 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3079 0.0000 0.0000 0.0000 0.0980 0.0000 0.3339 0.1998 0.0000 0.0000 0.0000 0.0000 0.0283 0.0321 0.0000 0.23  0.0943 1.11 

OSL2U-0073 0.0000 0.2078 0.0000 0.1155 0.0615 0.0017 0.1523 0.0358 0.0000 0.1583 0.0000 0.0826 0.0360 0.0073 0.0701 0.0045 0.0291 0.0004 0.0352 0.0000 0.0019 0.0000 0.00  0.3898 0.93 

OSL2U-0183 0.0166 0.0000 0.0848 0.0000 0.0000 0.1732 0.0000 0.0000 0.1276 0.0000 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000 0.0313 0.0000 0.4889 0.0216 0.0000 0.0000 0.01  0.2336 1.03 

OSL2U-0513 0.1055 0.0000 0.0000 0.0000 0.0114 0.1837 0.0000 0.0000 0.1763 0.0000 0.1578 0.0000 0.1469 0.0767 0.0001 0.0000 0.0057 0.0000 0.1357 0.0000 0.0000 0.0000 0.94 -0.0206 1.10 

OSL2U-0461 0.0000 0.0296 0.0000 0.0392 0.0318 0.2531 0.0000 0.0000 0.0000 0.0570 0.0000 0.0230 0.0000 0.0000 0.0000 0.0000 0.0382 0.0000 0.4049 0.0837 0.0395 0.0000 0.10  0.1432 1.08 

OSL2U-0148 0.0083 0.0986 0.0062 0.1182 0.0000 0.3492 0.1874 0.0081 0.0000 0.0000 0.0000 0.0000 0.0043 0.0240 0.1067 0.0000 0.0310 0.0074 0.0449 0.0000 0.0000 0.0056 0.00  0.4847 0.87 

OSL2U-0431 0.0000 0.1631 0.1088 0.0281 0.0000 0.3124 0.0000 0.0000 0.0000 0.1725 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0252 0.0000 0.1898 0.0000 0.0000 0.0000 0.37  0.0482 1.08 

OSL2U-0550 0.0208 0.0000 0.0147 0.0000 0.1858 0.0425 0.0000 0.0084 0.0000 0.0000 0.0751 0.0000 0.1959 0.2688 0.0000 0.1853 0.0000 0.0000 0.0000 0.0027 0.0000 0.0000 0.25  0.0875 1.08 

OSL2U-0310 0.0303 0.0488 0.0000 0.0000 0.0094 0.3495 0.0969 0.0000 0.0000 0.0905 0.0000 0.0502 0.0213 0.0000 0.0191 0.0833 0.0000 0.0397 0.1355 0.0000 0.0256 0.0000 0.03  0.2064 1.01 

OSL2U-0337 0.0000 0.0276 0.0000 0.0027 0.0000 0.2687 0.0000 0.0000 0.0000 0.0134 0.0000 0.0736 0.0000 0.0000 0.0000 0.1101 0.1020 0.0000 0.4018 0.0000 0.0000 0.0000 0.00  0.4290 0.91 
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Appendix E: Data generated for survival analysis in METABRIC 

 

Table 9. Overview of the data used in survival analysis in the METABRIC patient cohort. Each patient is 

annotated with PAM50 subtype, mean expression of the EMT-cluster genes and EMT score. 

Sample ID PAM50 subtype Mean expression of EMT-cluster genes EMT score 

MB-2901 Luminal B -2.750 -1.292 

MB-4838 Luminal B -2.633 -1.058 

MB-0471 Luminal A -2.605 -0.977 

MB-0472 Luminal B -2.470 -0.778 

MB-0173 Luminal B -2.454 -0.708 

MB-0060 Luminal B -2.292 -0.428 
MB-0570 Luminal B -2.219 -0.708 

MB-5271 Luminal B -2.248 -0.398 

MB-0492 Luminal B -2.253 -0.850 

MB-3487 Luminal B -2.175 -0.369 

MB-3350 Luminal B -2.181 -0.615 

MB-0454 Luminal A -2.137 -0.743 

MB-7216 Luminal B -2.100 -0.591 

MB-0368 Luminal B -2.082 -0.471 

MB-0370 Luminal B -2.076 -0.443 

MB-7188 Luminal B -2.088 -0.423 

MB-0184 Luminal A -2.105 -0.270 
MB-0095 Luminal B -2.055 -0.356 

MB-5628 Luminal B -2.036 -0.384 

MB-7138 Luminal B -2.042 -0.430 

MB-0304 Luminal B -2.029 -0.584 

MB-7086 Luminal B -2.013 -0.308 

MB-7185 Luminal A -2.007 -0.432 

MB-0577 Luminal B -2.013 -0.347 

MB-7236 Luminal B -1.979 -0.487 

MB-5086 Luminal A -1.924 -0.466 

MB-6011 Luminal B -1.873 -0.271 

MB-4374 Luminal A -1.866 -0.550 

MB-4630 Luminal B -1.815 -0.174 
MB-0325 Luminal B -1.824 0.088 

MB-4906 Luminal A -1.804 -0.560 

MB-7157 Luminal B -1.785 -0.201 

MB-4849 Luminal A -1.781 -0.244 

MB-4970 Luminal B -1.760 -0.153 

MB-0125 Luminal B -1.767 -0.283 

MB-0225 Luminal B -1.719 -0.309 

MB-5617 Luminal A -1.710 -0.509 

MB-4091 Luminal A -1.697 -0.424 

MB-4017 Luminal B -1.648 -0.473 

MB-5160 Luminal B -1.668 -0.133 
MB-5370 Luminal B -1.674 -0.025 

MB-5244 Luminal B -1.632 -0.280 

MB-4602 Luminal B -1.588 -0.098 

MB-4912 Luminal B -1.624 0.178 

MB-0321 Luminal A -1.646 -0.590 

MB-5463 Luminal B -1.627 -0.020 

MB-7231 Luminal A -1.625 -0.258 

MB-4339 Luminal B -1.573 -0.404 

MB-0270 Luminal B -1.602 -0.342 

MB-5266 Luminal B -1.547 -0.058 

MB-4802 Luminal B -1.568 -0.224 

MB-4898 Luminal A -1.565 -0.132 
MB-0448 Luminal B -1.524 0.149 

MB-5291 Luminal B -1.538 0.105 

MB-5215 Luminal B -1.580 -0.187 

MB-2730 Luminal B -1.531 -0.261 

MB-4328 Luminal A -1.519 -0.200 

MB-7266 Luminal B -1.537 -0.057 

MB-7199 Luminal B -1.514 -0.193 

MB-3840 Luminal B -1.500 -0.085 

MB-5638 Luminal A -1.515 -0.006 

MB-5062 Luminal B -1.502 0.044 

MB-0427 Luminal A -1.496 0.339 
MB-6075 Luminal B -1.452 0.026 

MB-5636 Luminal B -1.470 -0.198 

MB-6154 Luminal B -1.441 0.012 

MB-5590 Luminal B -1.419 0.225 

MB-5121 Luminal B -1.460 0.032 

MB-0146 Luminal B -1.463 -0.305 

MB-0028 Luminal B -1.416 0.156 

MB-6213 Luminal A -1.437 -0.061 

MB-6183 Luminal B -1.412 0.167 

MB-0053 Luminal B -1.353 0.176 

MB-5514 Luminal A -1.433 -0.175 
MB-7132 Luminal B -1.379 0.250 

MB-3437 Luminal B -1.379 0.016 

MB-4998 Luminal B -1.371 -0.204 

MB-5502 Luminal B -1.321 0.149 

MB-5645 Luminal A -1.344 0.087 

MB-5140 Luminal B -1.313 -0.216 

MB-0119 Luminal B -1.354 0.303 

MB-6008 Luminal B -1.277 0.250 

MB-4675 Luminal A -1.323 -0.196 

MB-5550 Luminal A -1.295 0.083 

MB-2779 Luminal A -1.285 -0.556 

MB-5211 Luminal B -1.259 0.228 
MB-7263 Luminal B -1.319 0.196 

MB-4357 Luminal A -1.239 0.223 

MB-5604 Luminal B -1.260 0.023 

MB-4688 Luminal B -1.262 -0.001 

MB-0526 Luminal B -1.273 0.369 

MB-7226 Luminal B -1.238 0.067 

MB-4969 Luminal A -1.236 0.279 

MB-5122 Luminal A -1.258 -0.060 

MB-6012 Luminal A -1.179 -0.123 

MB-7037 Luminal A -1.271 -0.112 

MB-0630 Luminal B -1.218 0.174 
MB-0877 Luminal B -1.188 0.149 

MB-7229 Luminal A -1.221 0.050 

MB-7297 Luminal B -1.181 0.118 

MB-0440 Luminal B -1.216 0.122 
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Sample ID PAM50 subtype Mean expression of EMT-cluster genes EMT score 

MB-7186 Luminal B -1.162 0.270 
MB-6145 Luminal B -1.150 -0.202 

MB-0513 Luminal A -1.222 0.084 

MB-6016 Luminal A -1.167 0.045 

MB-0434 Luminal B -1.192 -0.165 

MB-5101 Luminal B -1.166 -0.178 

MB-7253 Luminal B -1.142 0.227 

MB-7130 Luminal B -1.127 0.177 

MB-7234 Luminal B -1.196 -0.098 

MB-4930 Luminal B -1.133 0.146 

MB-4421 Luminal A -1.116 0.163 

MB-0324 Luminal A -1.111 -0.153 

MB-0064 Luminal B -1.056 0.525 
MB-3824 Luminal B -1.133 0.026 

MB-5562 Luminal B -1.108 0.354 

MB-5556 Luminal B -1.104 0.478 

MB-5646 Luminal B -1.057 0.098 

MB-4306 Luminal A -1.047 0.145 

MB-0056 Luminal B -1.018 0.456 

MB-0147 Luminal A -1.049 0.493 

MB-5341 Luminal B -1.032 0.219 

MB-5464 Luminal A -1.078 0.035 

MB-7094 Luminal B -1.000 0.188 

MB-6271 Luminal A -1.069 0.021 
MB-4213 Luminal B -1.041 0.175 

MB-0455 Luminal B -0.998 0.419 

MB-7124 Luminal A -1.029 0.515 

MB-5068 Luminal A -1.030 -0.033 

MB-3781 Luminal A -1.001 0.224 

MB-6026 Luminal B -0.958 0.361 

MB-3272 Luminal B -0.975 0.162 

MB-6124 Luminal A -1.004 0.131 

MB-0880 Luminal A -1.013 0.392 

MB-6149 Luminal A -0.953 0.179 

MB-0385 Luminal B -0.950 0.055 

MB-4996 Luminal A -0.939 -0.266 
MB-3092 Luminal B -0.942 0.146 

MB-3167 Luminal A -0.938 0.361 

MB-5433 Luminal A -0.926 0.256 

MB-0606 Luminal B -0.949 0.277 

MB-0167 Luminal B -0.898 0.708 

MB-7170 Luminal A -0.921 0.162 

MB-5434 Luminal B -0.851 0.347 

MB-4001 Luminal A -0.849 0.070 

MB-0097 Luminal A -0.881 -0.297 

MB-7099 Luminal B -0.873 0.388 

MB-4730 Luminal A -0.876 0.227 
MB-5601 Luminal A -0.839 0.621 

MB-3388 Luminal B -0.819 0.004 

MB-5580 Luminal A -0.840 0.627 

MB-4616 Luminal A -0.795 0.326 

MB-0046 Luminal A -0.821 0.000 

MB-7072 Luminal B -0.787 0.187 

MB-4148 Luminal B -0.750 0.301 

MB-5186 Luminal A -0.799 -0.145 

MB-6079 Luminal B -0.747 0.337 

MB-4965 Luminal A -0.791 0.350 

MB-2803 Luminal B -0.769 0.609 

MB-5251 Luminal A -0.772 0.253 
MB-4956 Luminal B -0.748 0.164 

MB-7171 Luminal B -0.724 0.330 

MB-5167 Luminal B -0.754 0.468 

MB-5525 Luminal B -0.770 0.366 

MB-5475 Luminal B -0.765 0.677 

MB-4642 Luminal B -0.742 0.093 

MB-4767 Luminal B -0.725 0.551 

MB-4749 Luminal A -0.738 0.432 

MB-0541 Luminal A -0.736 0.553 

MB-0646 Luminal B -0.724 0.468 

MB-5152 Luminal A -0.719 0.825 
MB-4744 Luminal B -0.762 0.379 

MB-0134 Luminal B -0.706 0.680 

MB-5396 Luminal B -0.680 0.614 

MB-0412 Luminal B -0.667 0.567 

MB-7095 Luminal A -0.693 0.402 

MB-5592 Luminal B -0.662 0.527 

MB-7276 Luminal A -0.666 0.494 

MB-4735 Luminal A -0.666 0.270 

MB-6001 Luminal A -0.592 0.397 

MB-0642 Luminal A -0.680 0.639 

MB-4323 Luminal A -0.584 0.377 
MB-0360 Luminal B -0.642 0.676 

MB-5197 Luminal A -0.595 0.451 

MB-4649 Luminal B -0.558 0.315 

MB-0328 Luminal B -0.615 0.424 

MB-7193 Luminal B -0.583 0.575 

MB-0258 Luminal A -0.611 0.664 

MB-6179 Luminal A -0.604 0.477 

MB-4737 Luminal B -0.632 0.324 

MB-5163 Luminal A -0.661 0.802 

MB-2990 Luminal A -0.580 0.136 

MB-5305 Luminal A -0.586 0.512 

MB-4233 Luminal B -0.577 0.617 
MB-0654 Luminal A -0.596 0.599 

MB-0501 Luminal A -0.572 0.725 

MB-5399 Luminal A -0.562 0.718 

MB-7011 Luminal B -0.575 0.935 

MB-7197 Luminal B -0.527 0.582 

MB-0637 Luminal B -0.515 1.006 

MB-3365 Luminal A -0.539 0.686 

MB-4977 Luminal A -0.543 0.636 

MB-2999 Luminal A -0.478 0.523 

MB-4829 Luminal B -0.510 0.603 

MB-5410 Luminal A -0.488 0.392 
MB-5290 Luminal A -0.479 0.341 

MB-2613 Luminal B -0.438 0.613 

MB-4564 Luminal A -0.482 0.488 

MB-4908 Luminal B -0.482 0.573 

MB-5647 Luminal A -0.496 0.574 

MB-4313 Luminal A -0.432 0.425 

MB-7162 Luminal A -0.489 0.517 

MB-2984 Luminal B -0.478 0.475 

MB-4333 Luminal A -0.421 -0.180 

MB-3088 Luminal A -0.510 0.464 

MB-5518 Luminal B -0.464 0.612 

MB-3021 Luminal A -0.508 0.427 
MB-3050 Luminal B -0.446 0.562 

MB-4834 Luminal B -0.426 0.725 

MB-4845 Luminal A -0.514 0.418 
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Sample ID PAM50 subtype Mean expression of EMT-cluster genes EMT score 

MB-5273 Luminal B -0.457 0.841 
MB-4787 Luminal A -0.456 0.317 

MB-0185 Luminal B -0.450 1.012 

MB-5563 Luminal A -0.462 0.690 

MB-3102 Luminal A -0.430 0.122 

MB-4858 Luminal A -0.452 0.346 

MB-4750 Luminal B -0.441 0.568 

MB-7280 Luminal A -0.394 0.222 

MB-4999 Luminal A -0.424 0.042 

MB-5270 Luminal A -0.430 0.533 

MB-4618 Luminal B -0.434 0.559 

MB-7235 Luminal A -0.447 0.416 

MB-0586 Luminal A -0.434 0.299 
MB-5540 Luminal B -0.408 0.569 

MB-6083 Luminal A -0.365 0.265 

MB-5654 Luminal B -0.427 0.893 

MB-2858 Luminal B -0.385 0.831 

MB-5228 Luminal B -0.423 0.529 

MB-6288 Luminal B -0.393 0.654 

MB-5444 Luminal A -0.407 0.678 

MB-2947 Luminal A -0.373 0.326 

MB-7060 Luminal A -0.318 0.224 

MB-5486 Luminal B -0.360 0.563 

MB-4018 Luminal A -0.331 0.818 
MB-0123 Luminal B -0.301 0.597 

MB-4234 Luminal A -0.326 0.656 

MB-2618 Luminal B -0.241 0.848 

MB-0485 Luminal A -0.328 0.181 

MB-4644 Luminal B -0.306 0.258 

MB-2686 Luminal B -0.279 1.092 

MB-5369 Luminal A -0.317 0.673 

MB-7288 Luminal B -0.324 0.702 

MB-3351 Luminal A -0.320 1.103 

MB-5554 Luminal A -0.310 0.734 

MB-3253 Luminal B -0.286 0.865 

MB-0574 Luminal A -0.319 1.039 
MB-5221 Luminal A -0.281 0.889 

MB-7010 Luminal A -0.310 0.902 

MB-4872 Luminal A -0.305 0.994 

MB-0261 Luminal B -0.327 0.917 

MB-4752 Luminal A -0.295 0.791 

MB-0327 Luminal A -0.281 0.628 

MB-7219 Luminal A -0.251 0.526 

MB-4641 Luminal A -0.267 0.561 

MB-7137 Luminal A -0.243 0.553 

MB-6300 Luminal B -0.298 0.871 

MB-5626 Luminal A -0.254 0.824 
MB-5384 Luminal A -0.191 0.627 

MB-5011 Luminal A -0.239 0.746 

MB-0083 Luminal B -0.140 0.711 

MB-5322 Luminal A -0.261 0.557 

MB-0553 Luminal A -0.217 0.539 

MB-4846 Luminal B -0.209 1.122 

MB-4873 Luminal B -0.204 0.982 

MB-0882 Luminal B -0.170 1.003 

MB-0143 Luminal A -0.183 0.965 

MB-0172 Luminal A -0.138 0.319 

MB-5571 Luminal A -0.156 1.097 

MB-4994 Luminal B -0.211 0.975 
MB-3104 Luminal A -0.138 0.124 

MB-5049 Luminal B -0.207 0.793 

MB-2819 Luminal A -0.144 0.925 

MB-0406 Luminal B -0.155 0.720 

MB-0312 Luminal B -0.149 0.907 

MB-5144 Luminal B -0.171 0.771 

MB-3852 Luminal A -0.076 0.839 

MB-5623 Luminal B -0.070 0.919 

MB-0609 Luminal A -0.097 0.392 

MB-0126 Luminal A -0.175 0.753 

MB-0589 Luminal B -0.136 0.506 
MB-5048 Luminal A -0.122 0.602 

MB-5204 Luminal A -0.182 0.850 

MB-2952 Luminal A -0.076 0.288 

MB-5338 Luminal B -0.070 1.169 

MB-4771 Luminal A -0.121 0.631 

MB-0535 Luminal A -0.088 0.933 

MB-7015 Luminal B -0.091 0.804 

MB-2781 Luminal B -0.099 0.706 

MB-0232 Luminal A -0.093 0.672 

MB-4298 Luminal B -0.046 0.528 

MB-5105 Luminal A -0.088 0.683 
MB-0536 Luminal B -0.041 1.189 

MB-7056 Luminal A -0.108 0.863 

MB-5261 Luminal B -0.082 1.273 

MB-3007 Luminal B -0.041 0.847 

MB-0353 Luminal A -0.049 0.818 

MB-5451 Luminal A -0.047 0.538 

MB-3110 Luminal A -0.038 0.934 

MB-5472 Luminal A -0.077 1.038 

MB-6211 Luminal A -0.033 0.894 

MB-0449 Luminal A 0.001 0.323 

MB-4691 Luminal A -0.003 0.986 

MB-5454 Luminal B 0.034 1.119 
MB-7042 Luminal B -0.010 1.119 

MB-5632 Luminal B 0.024 1.204 

MB-4801 Luminal A 0.050 0.963 

MB-4716 Luminal A 0.033 1.050 

MB-5074 Luminal A -0.018 0.793 

MB-3402 Luminal B -0.013 0.496 

MB-4011 Luminal A 0.044 0.841 

MB-2760 Luminal B -0.002 1.263 

MB-0614 Luminal A 0.020 1.243 

MB-0309 Luminal A -0.024 0.918 

MB-7299 Luminal B 0.055 1.160 
MB-3016 Luminal B 0.028 1.053 

MB-5553 Luminal B 0.055 1.093 

MB-7150 Luminal B 0.088 0.762 

MB-5377 Luminal B 0.035 0.987 

MB-5519 Luminal A 0.045 1.121 

MB-4230 Luminal A 0.085 0.843 

MB-4266 Luminal A 0.042 0.765 

MB-5404 Luminal A 0.084 1.092 

MB-0529 Luminal A 0.083 0.687 

MB-5585 Luminal A 0.062 0.501 

MB-0260 Luminal A 0.047 0.814 

MB-5206 Luminal A 0.085 0.855 
MB-0059 Luminal A 0.059 0.939 

MB-6344 Luminal B 0.094 0.981 

MB-2960 Luminal A 0.137 0.736 
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Sample ID PAM50 subtype Mean expression of EMT-cluster genes EMT score 

MB-4687 Luminal A 0.136 0.822 
MB-5459 Luminal B 0.146 0.814 

MB-5402 Luminal A 0.171 1.115 

MB-3711 Luminal A 0.138 1.080 

MB-5182 Luminal A 0.093 0.670 

MB-4173 Luminal A 0.131 1.028 

MB-0459 Luminal B 0.143 0.907 

MB-5060 Luminal B 0.102 0.823 

MB-7164 Luminal A 0.150 0.690 

MB-0176 Luminal A 0.176 0.339 

MB-5360 Luminal A 0.147 1.073 

MB-4623 Luminal A 0.194 0.959 

MB-2614 Luminal A 0.207 0.812 
MB-2791 Luminal A 0.172 0.954 

MB-5040 Luminal B 0.234 1.062 

MB-4853 Luminal A 0.209 0.833 

MB-0144 Luminal B 0.154 1.082 

MB-3026 Luminal A 0.187 1.456 

MB-0544 Luminal B 0.162 0.991 

MB-4282 Luminal A 0.237 0.660 

MB-5189 Luminal A 0.222 0.920 

MB-0631 Luminal A 0.208 0.808 

MB-0571 Luminal A 0.222 1.279 

MB-0336 Luminal B 0.214 0.982 
MB-0413 Luminal A 0.200 1.049 

MB-7062 Luminal A 0.189 0.896 

MB-0591 Luminal B 0.200 0.898 

MB-0295 Luminal A 0.216 0.603 

MB-5388 Luminal A 0.240 1.005 

MB-0585 Luminal B 0.294 1.226 

MB-0317 Luminal A 0.191 1.205 

MB-4721 Luminal A 0.243 0.833 

MB-0162 Luminal A 0.282 1.084 

MB-3028 Luminal B 0.217 1.270 

MB-7278 Luminal A 0.303 0.609 

MB-0550 Luminal B 0.277 0.966 
MB-4627 Luminal A 0.283 0.905 

MB-5131 Luminal A 0.276 0.981 

MB-0301 Luminal A 0.282 1.550 

MB-4825 Luminal A 0.257 1.358 

MB-6171 Luminal A 0.326 0.921 

MB-5603 Luminal A 0.310 0.993 

MB-5397 Luminal A 0.318 1.108 

MB-5424 Luminal A 0.345 1.020 

MB-2610 Luminal A 0.354 0.714 

MB-6029 Luminal A 0.333 1.212 

MB-5349 Luminal A 0.298 1.114 
MB-5576 Luminal B 0.367 1.429 

MB-5318 Luminal B 0.309 0.927 

MB-2863 Luminal A 0.381 0.794 

MB-2747 Luminal A 0.291 1.297 

MB-4709 Luminal A 0.322 0.810 

MB-0202 Luminal A 0.339 1.096 

MB-4666 Luminal A 0.373 0.828 

MB-0507 Luminal A 0.383 0.823 

MB-7032 Luminal A 0.347 0.955 

MB-7254 Luminal A 0.406 0.799 

MB-7286 Luminal B 0.335 1.360 

MB-4860 Luminal A 0.393 1.326 
MB-6071 Luminal A 0.446 1.155 

MB-2642 Luminal B 0.433 1.348 

MB-5118 Luminal A 0.388 0.886 

MB-4805 Luminal A 0.409 1.292 

MB-0117 Luminal A 0.433 0.964 

MB-5583 Luminal A 0.440 1.241 

MB-3033 Luminal A 0.377 1.093 

MB-6207 Luminal A 0.382 0.951 

MB-7041 Luminal A 0.404 0.993 

MB-2801 Luminal A 0.491 1.018 

MB-5629 Luminal A 0.495 1.414 
MB-0514 Luminal B 0.462 1.391 

MB-5382 Luminal A 0.476 1.536 

MB-0180 Luminal A 0.403 1.242 

MB-3360 Luminal B 0.495 1.221 

MB-0122 Luminal A 0.449 0.861 

MB-4986 Luminal A 0.448 0.979 

MB-5597 Luminal A 0.442 1.012 

MB-7006 Luminal A 0.472 0.865 

MB-5227 Luminal A 0.503 0.972 

MB-4033 Luminal A 0.506 1.185 

MB-5284 Luminal A 0.472 1.053 
MB-5455 Luminal A 0.538 0.914 

MB-3490 Luminal B 0.497 1.302 

MB-5195 Luminal A 0.508 1.313 

MB-0218 Luminal B 0.515 1.532 

MB-4633 Luminal A 0.475 1.161 

MB-0006 Luminal B 0.528 1.174 

MB-0598 Luminal B 0.512 1.099 

MB-5635 Luminal A 0.502 1.254 

MB-0359 Luminal A 0.500 0.875 

MB-5226 Luminal B 0.553 1.063 

MB-0503 Luminal A 0.497 0.953 

MB-2711 Luminal A 0.517 1.009 
MB-2708 Luminal B 0.524 1.449 

MB-6018 Luminal A 0.579 1.196 

MB-2750 Luminal A 0.480 1.044 

MB-0124 Luminal A 0.546 1.051 

MB-0345 Luminal A 0.524 0.748 

MB-5591 Luminal A 0.540 1.284 

MB-4681 Luminal A 0.551 0.902 

MB-5050 Luminal A 0.503 1.036 

MB-5158 Luminal A 0.520 1.288 

MB-0356 Luminal A 0.555 1.327 

MB-3547 Luminal A 0.574 0.984 
MB-7005 Luminal B 0.548 1.343 

MB-6150 Luminal B 0.602 1.087 

MB-5059 Luminal A 0.547 0.972 

MB-4862 Luminal B 0.576 1.645 

MB-0397 Luminal A 0.628 0.868 

MB-0197 Luminal B 0.577 1.505 

MB-4961 Luminal A 0.594 1.279 

MB-3235 Luminal B 0.651 1.251 

MB-5613 Luminal B 0.635 1.571 

MB-4698 Luminal A 0.627 1.149 

MB-0268 Luminal B 0.628 1.093 

MB-0010 Luminal B 0.641 1.155 
MB-4705 Luminal A 0.651 0.751 

MB-0383 Luminal B 0.648 1.264 

MB-2786 Luminal A 0.593 1.223 
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MB-6232 Luminal A 0.603 1.319 
MB-7128 Luminal A 0.665 1.169 

MB-3002 Luminal A 0.623 1.164 

MB-3344 Luminal A 0.636 0.748 

MB-6024 Luminal A 0.689 1.065 

MB-0607 Luminal A 0.657 0.942 

MB-6225 Luminal A 0.665 1.288 

MB-4832 Luminal A 0.675 1.181 

MB-2971 Luminal A 0.699 1.311 

MB-2838 Luminal A 0.777 1.344 

MB-4822 Luminal A 0.702 1.451 

MB-3439 Luminal A 0.709 1.319 

MB-0166 Luminal A 0.683 0.985 
MB-0419 Luminal A 0.661 1.296 

MB-3037 Luminal A 0.668 1.256 

MB-3008 Luminal A 0.715 1.231 

MB-7220 Luminal B 0.759 1.538 

MB-6322 Luminal B 0.735 1.236 

MB-2953 Luminal B 0.788 1.649 

MB-4870 Luminal A 0.741 1.364 

MB-0579 Luminal B 0.708 1.500 

MB-5499 Luminal A 0.787 1.320 

MB-6238 Luminal A 0.731 1.329 

MB-3049 Luminal A 0.811 1.266 
MB-0099 Luminal B 0.904 1.596 

MB-0904 Luminal A 0.777 1.454 

MB-6233 Luminal B 0.729 1.443 

MB-0899 Luminal A 0.815 1.257 

MB-7106 Luminal A 0.796 1.037 

MB-3871 Luminal A 0.818 1.100 

MB-5330 Luminal A 0.745 1.472 

MB-7004 Luminal A 0.757 1.295 

MB-2626 Luminal B 0.923 1.443 

MB-5053 Luminal A 0.829 1.360 

MB-0408 Luminal A 0.897 1.416 

MB-0341 Luminal A 0.846 1.141 
MB-0226 Luminal A 0.897 1.176 

MB-5589 Luminal A 0.884 1.325 

MB-6195 Luminal A 0.904 1.481 

MB-7093 Luminal A 0.904 1.481 

MB-4212 Luminal A 0.921 1.045 

MB-4867 Luminal A 0.933 1.520 

MB-5395 Luminal A 0.929 1.371 

MB-3103 Luminal B 0.962 1.431 

MB-3430 Luminal A 1.008 1.067 

MB-2931 Luminal B 0.968 1.711 

MB-0605 Luminal A 0.973 1.368 
MB-5324 Luminal A 0.944 1.187 

MB-0236 Luminal A 0.975 1.109 

MB-0580 Luminal A 0.990 1.395 

MB-0374 Luminal B 0.966 1.536 

MB-6297 Luminal A 0.984 1.476 

MB-0133 Luminal A 0.970 1.077 

MB-2994 Luminal A 1.050 1.328 

MB-0398 Luminal B 1.024 1.737 

MB-5489 Luminal A 1.072 1.377 

MB-5143 Luminal A 1.004 1.192 

MB-0170 Luminal A 0.994 1.432 

MB-6118 Luminal A 1.149 1.511 
MB-0382 Luminal A 1.091 1.480 

MB-5428 Luminal A 1.133 1.317 

MB-0243 Luminal B 1.087 1.617 

MB-0491 Luminal A 1.114 1.555 

MB-0386 Luminal A 1.102 1.650 

MB-4762 Luminal A 1.088 1.673 

MB-3266 Luminal B 1.146 1.958 

MB-7091 Luminal A 1.174 1.298 

MB-5092 Luminal A 1.193 1.203 

MB-4967 Luminal A 1.187 1.626 

MB-0266 Luminal A 1.164 1.500 
MB-2767 Luminal B 1.197 1.713 

MB-4293 Luminal A 1.208 1.428 

MB-5614 Luminal A 1.236 1.458 

MB-4966 Luminal B 1.208 1.880 

MB-0463 Luminal A 1.185 1.707 

MB-3403 Luminal A 1.221 1.697 

MB-3379 Luminal A 1.220 1.806 

MB-7244 Luminal A 1.160 1.746 

MB-3754 Luminal B 1.318 1.876 

MB-7217 Luminal A 1.299 1.561 

MB-6230 Luminal A 1.239 1.640 
MB-0425 Luminal A 1.207 1.788 

MB-0239 Luminal A 1.202 1.572 

MB-6273 Luminal A 1.242 1.347 

MB-3301 Luminal B 1.258 1.541 

MB-0130 Luminal A 1.260 1.405 

MB-2848 Luminal A 1.333 1.851 

MB-3252 Luminal A 1.294 1.183 

MB-3823 Luminal A 1.320 2.018 

MB-5267 Luminal A 1.330 1.239 

MB-0891 Luminal A 1.312 1.558 

MB-0636 Luminal A 1.285 1.641 

MB-6051 Luminal A 1.385 1.456 
MB-0649 Luminal A 1.376 1.628 

MB-2969 Luminal A 1.449 1.936 

MB-5184 Luminal A 1.360 1.442 

MB-2916 Luminal A 1.396 1.520 

MB-5264 Luminal A 1.446 1.583 

MB-0138 Luminal A 1.426 1.441 

MB-0256 Luminal A 1.434 1.518 

MB-2624 Luminal A 1.507 1.679 

MB-0145 Luminal A 1.407 1.366 

MB-0511 Luminal A 1.432 1.685 

MB-0224 Luminal A 1.477 1.622 
MB-2772 Luminal B 1.486 2.023 

MB-7077 Luminal A 1.506 1.711 

MB-6168 Luminal A 1.555 1.801 

MB-4941 Luminal A 1.545 1.709 

MB-4779 Luminal A 1.523 1.873 

MB-2669 Luminal A 1.537 1.864 

MB-6108 Luminal A 1.654 1.603 

MB-4883 Luminal A 1.627 1.700 

MB-3254 Luminal A 1.636 1.822 

MB-4981 Luminal A 1.658 1.827 

MB-0111 Luminal A 1.646 1.655 

MB-4764 Luminal A 1.632 1.805 
MB-0411 Luminal A 1.739 1.673 

MB-6138 Luminal B 1.763 2.283 

MB-5191 Luminal A 1.723 1.693 
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Sample ID PAM50 subtype Mean expression of EMT-cluster genes EMT score 

MB-0505 Luminal A 1.781 1.695 
MB-5412 Luminal A 1.740 1.903 

MB-3228 Luminal A 1.770 1.856 

MB-5541 Luminal A 1.975 1.966 

MB-0247 Luminal A 2.055 2.352 

MB-0204 Luminal A 2.028 2.047 

MB-0315 Luminal A 2.184 1.962 

MB-0599 Luminal A 2.471 2.129 
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Appendix F: Overview of the data generated for OSL2 

 

Table 10. Overview of the generated OSL2 data. The table provides an overview of all the information 

generated for the OSL2 patient cohort in this study including the dedicated patient group of the samples, tumor 

purity estimated by ASCAT, PAM50 subtype, EMT score, Infiltration level from in silico nanodissection, 

proliferation score, stemness score, ESR1 expression and CpG-cluster A and CpG-cluster B mean methylation. 

Sample ID Patient group Tumor purity 
PAM50 

subtype 
EMT score 

Infiltration 

level 

Proliferation 

score 
Stemness score 

ESR1 

expression 

CpG-cluster A 

mean 

methylation 

CpG-cluster B 

mean 

methylation 

OSL2U-0442 A 0.41 Luminal B -1.5330 -0.1169 1.9883 -0.4709 0.256 0.83 0.24 

OSL2U-0090 A 0.48 Luminal B -1.9322 0.8955 1.3036 -0.2409 -1.190 0.82 0.22 

OSL2U-0358 A 0.57 Luminal B -2.4278 -0.2070 1.4959 -0.8037 2.334 0.82 0.22 

OSL2R-3002 A NA Luminal B -1.6927 -0.8339 2.0854 -0.9296 0.754 0.82 0.24 

OSL2U-0407 A 0.32 Luminal B -1.8849 -0.6896 1.7176 -1.9796 0.065 0.82 0.18 

OSL2U-0059 A 1.00 Luminal B -1.6947 -0.9976 1.1435 -1.3043 1.828 0.82 0.24 

OSL2U-0534 A 0.67 Luminal B -0.9391 1.0327 0.5286 -0.0798 1.365 0.82 0.26 

OSL2U-0334 A 0.52 Luminal B -0.0667 1.5553 1.0417 -0.0415 -0.624 0.81 0.31 
OSL2U-0262 A NA Luminal B -0.5375 0.5361 0.7641 -0.3153 0.476 0.80 0.34 

OSL2U-0289 A 0.78 Luminal B -0.7743 -0.0539 1.1160 -1.5593 0.391 0.80 0.17 

OSL2U-0472 A 0.61 Luminal A -1.0818 -0.5085 0.0053 0.9277 0.720 0.80 0.24 

OSL2U-0486 A 0.71 Luminal B -1.2018 -1.2158 0.4895 0.4241 0.524 0.79 0.28 

OSL2R-3030 A NA Luminal A -0.5992 -0.8375 -1.2076 0.4448 1.153 0.79 0.22 

OSL2U-0269 A 0.66 Luminal B 1.0867 0.0045 0.1496 -0.0707 -0.053 0.79 0.36 

OSL2U-0020 A 0.54 Luminal B -1.0926 0.7012 1.6416 -1.2036 1.899 0.78 0.15 

OSL2U-0392 A 0.73 Luminal A -0.8449 0.2650 -2.0041 1.0011 -0.722 0.78 0.22 

OSL2U-0370 A 0.74 Luminal A -1.6056 -0.8494 -0.1125 -1.8553 1.592 0.78 0.22 

OSL2U-0383 A 0.46 Luminal A -0.7667 -0.4166 -1.4580 -1.9952 -0.035 0.78 0.35 

OSL2U-0101 A 0.78 Luminal B -0.3348 -1.1354 0.4687 0.3887 1.900 0.78 0.33 

OSL2U-0064 A 0.51 Luminal B -1.0737 -0.5827 1.5933 -1.2623 -1.668 0.77 0.19 
OSL2U-0364 A 0.68 Luminal B -0.6741 -0.5223 1.1865 -1.7171 0.605 0.77 0.36 

OSL2A-6181 A NA Luminal B -1.2020 -0.1587 1.9214 -0.7258 1.606 0.77 0.27 

OSL2U-0488 A 0.64 Luminal B -0.0176 -0.5645 0.8276 -0.4200 -2.202 0.77 0.25 

OSL2U-0229 A NA Luminal B 0.1003 -1.1245 0.3225 0.7883 -0.363 0.77 0.43 

OSL2U-0422 A 0.45 Luminal B -0.2587 1.3125 0.6899 0.8276 0.520 0.77 0.30 

OSL2U-0489 A 0.79 Luminal A -0.3907 -0.8930 -2.1765 1.6634 -0.046 0.77 0.27 

OSL2U-0079 A 0.39 Luminal B 1.1179 1.2650 -0.4163 0.0257 -1.313 0.77 0.35 

OSL2U-0179 A NA Luminal A 0.7550 -0.5423 -0.3315 -0.5588 -0.749 0.77 0.34 

OSL2R-3052 A NA Luminal B 0.3704 0.4973 0.3305 -0.6212 -1.737 0.77 0.25 

OSL2A-6133 A NA Luminal B -1.6661 1.8586 0.9310 -1.1944 0.352 0.76 0.28 

OSL2U-0342 A 0.63 Luminal B -0.9985 1.3739 0.8244 0.5898 1.124 0.76 0.22 
OSL2U-0027 A NA Luminal A 0.1100 -0.1821 -0.7509 -0.8755 -0.803 0.76 0.43 

OSL2U-0325 A 0.44 Luminal B 0.9513 -0.2519 0.4382 -0.7442 0.951 0.75 0.35 

OSL2U-0379 A 0.45 Luminal B -0.5169 1.2285 0.6858 1.0066 1.820 0.75 0.22 

OSL2U-0544 A 0.58 Luminal B 0.0905 -0.6001 1.2526 1.1968 -0.709 0.75 0.25 

OSL2U-0242 A NA Luminal A -1.3569 -1.0795 -0.5257 -0.5902 0.508 0.75 0.32 

OSL2U-0209 A 0.72 Luminal B -1.3463 -0.3604 0.2454 -1.8133 1.606 0.75 0.24 

OSL2U-0120 A NA Luminal A -0.8570 -0.6308 -1.9881 -1.9588 0.992 0.75 0.33 

OSL2U-0519 A 0.69 Luminal A 0.1465 -0.4686 -0.8341 -0.7298 0.499 0.75 0.31 

OSL2U-0086 A 0.62 Luminal A 0.4978 -0.4870 -0.3248 -0.3530 -0.611 0.75 0.30 

OSL2U-0296 A 0.59 Luminal A -0.9812 -0.6495 0.9062 -1.2477 0.786 0.75 0.37 

OSL2U-0171 A 0.74 Luminal A -0.2158 -0.7149 -0.1442 -1.0443 0.892 0.75 0.27 

OSL2R-3053 A 0.81 Luminal A 0.0596 -0.3737 -0.3986 0.4627 0.544 0.74 0.29 
OSL2A-6166 A NA Luminal A -1.5970 -0.9540 0.4484 0.4106 1.399 0.74 0.29 

OSL2U-0280 A 0.61 Luminal B -0.4792 0.7772 2.1096 -0.7303 0.257 0.74 0.23 

OSL2U-0250 A 0.62 Luminal B 0.1381 0.3785 0.4791 -2.1167 1.097 0.74 0.29 

OSL2U-0285 A 0.50 Luminal B -0.0508 0.7411 -0.0332 -0.7587 -0.639 0.74 0.27 

OSL2U-0318 A 0.60 Luminal A 0.3675 -0.0686 0.2808 0.7452 -1.091 0.74 0.31 

OSL2U-0484 A 0.49 Luminal B -0.7852 -0.5471 0.3271 -1.0146 1.207 0.74 0.22 

OSL2U-0232 A 0.69 Luminal A -0.3639 -1.0955 -0.0748 -1.1896 -0.063 0.74 0.29 

OSL2U-0069 A 0.68 Luminal B 0.2745 0.1487 0.8379 0.1442 -0.503 0.74 0.31 

OSL2U-0328 A 0.67 Luminal A 0.2630 0.3442 -0.0698 -1.0844 1.460 0.73 0.36 

OSL2U-0223 A 0.52 Luminal A 1.0007 -0.6906 -0.1393 -0.9150 -0.462 0.73 0.31 

OSL2U-0083 A 0.55 Luminal A 0.3996 -0.5514 -0.3384 -1.3535 0.324 0.73 0.27 
OSL2U-0291 A 0.58 Luminal B -0.2099 -0.4783 0.4654 -0.4806 0.777 0.73 0.25 

OSL2U-0260 A 0.65 Luminal A 0.0371 -0.4022 -0.3447 -0.8518 0.810 0.72 0.28 

OSL2U-0299 A 0.71 Luminal A 0.1393 -0.5494 -1.8714 -0.6077 0.966 0.72 0.29 

OSL2U-0174 A 0.75 Luminal A -0.0018 -0.9369 0.5534 -1.6769 0.910 0.72 0.31 

OSL2U-0477 A 0.53 Luminal B -0.4109 0.8256 1.0960 0.7877 -0.266 0.72 0.21 

OSL2U-0367 B 0.53 Luminal B 0.0933 -0.5728 0.1743 0.1366 0.638 0.72 0.29 

OSL2U-0243 B NA Luminal A -0.7927 -0.3625 0.5567 1.1205 -0.567 0.72 0.31 

OSL2U-0548 B 0.71 Luminal B -0.4951 -0.3944 0.6240 -0.8579 -1.229 0.72 0.37 

OSL2U-0553 B 0.77 Luminal A -2.8997 -1.2572 -0.1466 -2.6356 2.231 0.72 0.31 

OSL2U-0491 B 0.71 Luminal B 0.1708 -0.0150 -0.1733 -0.1859 0.601 0.72 0.33 

OSL2U-0197 B 0.70 Luminal A 1.0963 -0.7314 0.1747 -0.3942 0.574 0.72 0.35 
OSL2U-0400 B 0.46 Luminal B -1.5888 0.4323 1.1875 -1.1523 -0.484 0.71 0.32 

OSL2U-0053 B 0.65 Luminal A 1.3537 -0.2461 -0.1171 -0.9474 1.119 0.71 0.29 

OSL2U-0096 B 0.43 Luminal A -0.7335 -0.1310 1.2689 -0.6277 0.804 0.71 0.34 

OSL2U-0393 B 0.61 Luminal A -1.9202 -0.7368 -0.3914 -0.0242 1.350 0.71 0.30 

OSL2U-0037 B 0.61 Luminal A 1.0176 0.2554 -0.9979 0.3109 0.095 0.71 0.35 

OSL2U-0267 B 0.52 Luminal B 0.5494 -0.2564 1.7886 -0.7282 -0.847 0.71 0.31 

OSL2U-0126 B 0.71 Luminal A 1.6318 -0.5771 -1.9358 1.8808 -2.014 0.71 0.32 

OSL2U-0324 B 0.55 Luminal B -0.0084 -0.2716 1.5306 -0.9869 -0.421 0.71 0.43 

OSL2U-0225 B NA Luminal B 1.6624 0.4726 0.6527 0.7537 -0.365 0.71 0.39 

OSL2U-0056 B NA Luminal A 0.9664 0.3756 -0.2532 -0.0595 0.410 0.70 0.35 

OSL2U-0275 B 0.64 Luminal B 1.4105 0.8671 0.9184 -0.7474 -0.157 0.70 0.28 

OSL2U-0130 B 0.66 Luminal B -0.7687 0.5621 1.6473 0.7628 0.512 0.70 0.31 
OSL2A-6134 B NA Luminal A 2.0330 0.6223 -0.0318 -0.0103 -2.839 0.70 0.40 

OSL2U-0109 B 0.71 Luminal B -0.1639 0.1247 0.7400 0.2699 0.067 0.70 0.32 

OSL2U-0112 B NA Luminal A 0.1188 -0.6494 -0.2001 0.1715 1.090 0.70 0.28 

OSL2U-0554 B 0.65 Luminal A -0.3240 -0.2565 -0.8331 -0.0546 -0.419 0.70 0.36 

OSL2U-0438 B 0.68 Luminal A 0.9424 0.1194 -2.4952 2.2465 -0.870 0.70 0.35 

OSL2U-0128 B NA Luminal B 0.6730 0.0241 0.1244 0.6897 0.747 0.70 0.32 

OSL2U-0085 B NA Luminal A 0.6751 0.2236 -0.5611 0.6489 0.088 0.69 0.36 

OSL2U-0249 B 0.60 Luminal A 0.1501 -0.6963 -0.3367 0.1964 0.647 0.69 0.34 

OSL2U-0248 B NA Luminal A 0.4194 0.5667 -0.1955 -0.7618 -0.735 0.69 0.34 

OSL2U-0268 B 0.55 Luminal A -1.0567 -0.0816 -1.1964 -0.6914 1.362 0.69 0.33 

OSL2U-0463 B 0.72 Luminal A -0.8359 -0.8688 -0.8557 0.6406 0.615 0.69 0.35 
OSL2U-0186 B NA Luminal A -0.9390 -0.5320 0.3859 0.9699 0.090 0.69 0.26 

OSL2A-6132 B NA Luminal A 0.6882 2.1047 1.9501 -0.6163 -2.747 0.69 0.30 

OSL2U-0430 B 0.71 Luminal B 0.1525 -0.9268 0.4764 0.5099 0.680 0.69 0.36 

OSL2U-0537 B 0.91 Luminal A -0.3339 -1.2234 -0.1043 -0.4248 0.918 0.69 0.20 

OSL2U-0290 B 0.68 Luminal B -0.0828 -0.8607 1.0603 1.3311 -0.104 0.68 0.26 

OSL2U-0227 B 0.69 Luminal A -0.1443 -1.5629 -1.5554 0.2100 1.533 0.68 0.31 

OSL2U-0182 B 0.50 Luminal A -0.1516 -0.4157 -0.2290 -0.0046 0.889 0.68 0.34 

OSL2U-0531 B 0.72 Luminal A -0.3191 -1.0721 0.4039 0.0565 1.020 0.68 0.29 
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Sample ID Patient group Tumor purity 
PAM50 

subtype 
EMT score 

Infiltration 

level 

Proliferation- 

score 
Stemness score 

ESR1 

expression 

CpG-cluster A 

mean 

methylation 

CpG-cluster B 

mean 

methylation 

OSL2U-0159 B NA Luminal B 0.6278 1.3791 0.2941 -0.2677 0.090 0.68 0.29 

OSL2U-0045 B NA Luminal A 0.3803 -0.4036 -1.6638 -0.4889 -0.540 0.68 0.32 

OSL2U-0065 B NA Luminal A 0.1613 -0.6936 -1.2199 1.6853 -0.469 0.68 0.35 

OSL2U-0462 B 0.72 Luminal A 1.6740 -0.0872 -1.3800 0.3309 -1.715 0.68 0.32 

OSL2U-0177 B 0.57 Luminal A 0.9459 -0.1111 -1.3159 0.5987 -0.535 0.68 0.39 

OSL2U-0103 B 0.69 Luminal B -0.8681 -1.1253 0.9457 -0.3605 1.414 0.68 0.23 

OSL2U-0009 B 0.63 Luminal B 0.8815 0.4345 1.8419 1.0420 -0.413 0.68 0.33 

OSL2U-0152 B NA Luminal A 0.1595 0.0019 -0.1445 -0.2493 -0.995 0.68 0.30 

OSL2U-0208 B 0.47 Luminal B 0.0559 0.8852 0.4211 -1.3604 -0.129 0.67 0.37 

OSL2U-0040 B NA Luminal A -0.2930 -1.0997 -2.1598 1.1700 1.080 0.67 0.30 

OSL2U-0514 B 0.66 Luminal A 1.0977 -0.7796 -0.9630 0.6711 0.444 0.67 0.36 
OSL2U-0496 B 0.63 Luminal A -0.2715 -0.3704 0.7411 -1.6004 0.205 0.67 0.30 

OSL2U-0347 B 0.28 Luminal A -0.1923 0.5716 0.0332 -0.4392 -0.151 0.67 0.40 

OSL2U-0557 B 0.55 Luminal B -0.6351 -0.4948 1.4868 -0.6088 0.303 0.67 0.29 

OSL2U-0323 B 0.33 Luminal A 1.0898 1.0588 -0.5690 1.5779 -0.381 0.67 0.41 

OSL2U-0549 B 0.41 Luminal A -0.1914 0.3484 0.2651 0.2624 -1.221 0.67 0.36 

OSL2U-0221 B 0.53 Luminal A 1.2469 -0.4777 -0.6690 -0.5722 -0.696 0.67 0.34 

OSL2U-0087 B 0.48 Luminal B 0.9246 -0.1246 -0.1222 0.0726 -1.267 0.66 0.25 

OSL2U-0447 B 0.60 Luminal A -0.7390 0.0283 0.7841 -1.0624 -0.497 0.66 0.29 

OSL2R-3005 B 0.67 Luminal A 0.8053 0.3578 -0.0725 -0.9552 -0.734 0.66 0.32 

OSL2U-0091 B 0.37 Luminal A -0.0540 -0.0486 0.1543 1.8780 1.882 0.66 0.37 

OSL2U-0391 B 0.82 Luminal A 0.3778 -0.3221 -0.8107 1.0270 -0.466 0.66 0.30 
OSL2U-0123 C 0.32 Luminal B -1.0082 0.7245 2.3623 -0.8152 1.468 0.66 0.39 

OSL2R-3043 C 0.72 Luminal B 0.2499 -0.4401 1.1649 -0.9281 -0.395 0.66 0.20 

OSL2U-0030 C 0.54 Luminal B 0.7901 -0.8479 1.8100 -0.6702 -0.457 0.66 0.39 

OSL2A-6146 C NA Luminal B 0.0024 0.5583 0.2815 -0.5618 1.037 0.65 0.37 

OSL2U-0520 C 0.51 Luminal A -0.2522 -0.3118 -0.2089 2.3692 -0.373 0.65 0.41 

OSL2U-0515 C 1.00 Luminal A -0.2666 -0.5757 -1.1587 2.5965 -0.820 0.65 0.33 

OSL2R-3013 C 0.55 Luminal B 0.1828 -0.0159 1.0858 0.0286 -0.303 0.65 0.35 

OSL2R-3028 C NA Luminal A 0.9068 -0.6205 -0.7082 0.5849 0.035 0.65 0.36 

OSL2U-0288 C 0.74 Luminal B -0.4403 -0.7033 1.6604 -0.4710 -0.468 0.65 0.30 

OSL2U-0365 C 0.49 Luminal A 0.5895 -0.8633 -0.4405 0.9277 0.883 0.65 0.34 

OSL2U-0190 C NA Luminal A -0.2490 1.1073 1.0620 -1.0622 -0.388 0.65 0.42 

OSL2U-0485 C 0.63 Luminal A 0.0302 -0.2960 -1.0133 1.9893 -0.628 0.65 0.19 
OSL2U-0450 C 0.49 Luminal A 0.8287 0.6059 -0.7531 -0.3970 -1.238 0.65 0.39 

OSL2U-0145 C NA Luminal A 0.2223 0.1395 -1.1401 0.7761 0.184 0.65 0.44 

OSL2U-0026 C 0.39 Luminal A 0.6134 0.5142 -0.2546 -0.0434 0.113 0.65 0.36 

OSL2U-0222 C 0.43 Luminal A 0.5447 1.0373 0.4715 1.1579 -0.082 0.64 0.44 

OSL2U-0217 C 0.38 Luminal A -0.0036 -0.2883 0.4082 0.3905 -0.390 0.64 0.38 

OSL2U-0251 C 0.57 Luminal A 0.3204 -0.0374 -1.3515 0.6908 -0.649 0.64 0.31 

OSL2U-0437 C 0.59 Luminal A 0.7545 -0.5841 -0.4851 -1.4822 -0.188 0.64 0.24 

OSL2U-0198 C 0.43 Luminal A 0.9817 -0.3847 -0.2251 -0.1724 0.099 0.64 0.43 

OSL2U-0457 C 0.62 Luminal A 0.6038 -0.2684 -0.7278 2.1384 1.419 0.64 0.35 

OSL2U-0226 C 0.63 Luminal A 0.3356 -0.5387 -0.9084 0.0277 -0.924 0.64 0.38 

OSL2U-0352 C 0.57 Luminal A -0.2352 -0.0466 0.2019 0.2470 -0.693 0.63 0.29 
OSL2U-0411 C 0.94 Luminal A 0.5318 -0.5897 0.2476 0.4780 -1.831 0.63 0.32 

OSL2U-0445 C 0.48 Luminal A 0.5074 0.5564 -1.1632 0.6511 -1.648 0.63 0.42 

OSL2U-0420 C 0.47 Luminal A 0.0218 -0.1857 -2.1664 0.6276 0.050 0.63 0.42 

OSL2U-0093 C NA Luminal A 0.7228 -0.8336 -0.6226 0.4182 -0.440 0.63 0.34 

OSL2U-0340 C 0.37 Luminal A -0.0030 0.9669 0.0340 0.5560 -0.137 0.63 0.36 

OSL2U-0157 C 0.54 Luminal A -0.4542 0.5624 -0.2633 0.0125 0.927 0.63 0.26 

OSL2U-0353 C 1.00 Luminal A 0.1562 -0.0454 -0.2558 0.0129 -1.363 0.63 0.37 

OSL2U-0263 C 0.60 Luminal A 0.0680 -0.6086 -1.0854 1.9539 0.462 0.63 0.43 

OSL2U-0464 C 0.52 Luminal A 0.6628 -0.3978 -0.8145 1.2844 -0.044 0.62 0.44 

OSL2U-0043 C 0.46 Luminal A 1.2237 0.4178 -0.0772 -0.5970 -1.654 0.62 0.34 

OSL2U-0220 C 0.30 Luminal A -0.0650 0.9873 -0.7130 -0.0947 0.511 0.62 0.44 

OSL2U-0552 C 0.45 Luminal A -0.2082 0.2581 -0.4422 0.5360 -1.940 0.62 0.38 
OSL2U-0319 C 0.53 Luminal A -0.9099 0.3469 -1.1067 1.5254 -0.662 0.62 0.26 

OSL2U-0390 C 0.45 Luminal A -0.2573 -0.2391 0.1746 -0.7908 1.337 0.62 0.34 

OSL2U-0173 C NA Luminal A 2.0959 0.3975 -0.1446 1.6972 -0.552 0.60 0.39 

OSL2U-0110 C NA Luminal A 0.8903 -0.0127 -0.5014 0.4335 -0.255 0.60 0.32 

OSL2U-0441 C 0.43 Luminal A 0.8714 -0.0621 -0.3152 -0.0389 -0.905 0.60 0.39 

OSL2U-0175 C 0.51 Luminal A -1.8088 0.1704 -1.1824 0.3657 -0.119 0.60 0.27 

OSL2U-0117 C 0.57 Luminal B 0.2039 -0.4948 0.2981 0.2121 0.908 0.60 0.24 

OSL2U-0360 C 0.54 Luminal A 0.1023 -0.5052 0.5686 1.1982 -0.157 0.60 0.38 

OSL2U-0100 C 0.28 Luminal A 1.7846 -0.2373 -0.5351 1.5442 -2.228 0.59 0.39 

OSL2U-0104 C 0.31 Luminal A 0.0074 0.9523 0.1000 -0.4470 -0.346 0.59 0.44 

OSL2U-0406 C 0.38 Luminal A 0.5342 0.9579 -1.3551 0.1450 -1.792 0.59 0.44 
OSL2U-0132 C NA Luminal A 0.8002 -0.3421 -0.7557 0.8504 0.324 0.59 0.43 

OSL2U-0017 C 0.47 Luminal A 1.1531 -0.8620 -1.7697 0.5228 -0.832 0.58 0.41 

OSL2U-0142 C 0.48 Luminal A 0.7311 -0.3421 0.3641 0.2694 -0.442 0.57 0.32 

OSL2U-0201 C 0.45 Luminal B 1.1869 -0.1980 0.4395 -0.8098 -0.317 0.57 0.43 

OSL2U-0073 C 0.37 Luminal A 0.1799 1.3934 0.6913 1.0553 -0.719 0.57 0.47 

OSL2U-0183 C NA Luminal A 1.3545 -0.5888 -1.1180 1.5615 -1.264 0.57 0.46 

OSL2U-0513 C 0.34 Luminal A 0.4056 -0.1349 -0.8998 0.5861 -0.458 0.56 0.48 

OSL2U-0461 C 0.37 Luminal A 0.0990 -0.4877 -1.1052 0.2969 0.378 0.55 0.45 

OSL2U-0148 C 1.00 Luminal A -0.1011 0.7253 -0.1095 -0.5126 -0.204 0.55 0.50 

OSL2U-0431 C 0.32 Luminal A 0.6979 0.0235 -0.8791 1.8836 -1.062 0.54 0.49 

OSL2U-0550 C 0.31 Luminal A 0.5402 -0.4149 -1.1021 -0.2116 -1.603 0.53 0.52 
OSL2U-0310 C 0.81 Luminal A 1.4782 0.4552 -0.5122 1.0644 0.343 0.53 0.54 

OSL2U-0337 C 0.31 Luminal A 1.2864 -0.2385 -1.1360 0.7441 -0.424 0.53 0.48 
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Appendix G: Pyrograms of the local DNA sequence around the target CpGs 

for D492 and D492M 

 

Table 11. Pyrograms of the local DNA sequence of the target CpGs for the D492 and D492M cell lines. The 

value in the blue boxes represents the percent of the DNA fragments in the sample that were methylated. 
 

Assay: cg06947286 

Sample: D492 

Sequence to analyze: TTTYGTTTATAGAAGTTTGAATGTATTTT 

 
 

Assay: cg06947286 

Sample: D492M 

Sequence to analyze: TTTYGTTTATAGAAGTTTGAATGTATTTT 

 
 

 

Assay: cg05223441 

Sample: D492 

Sequence to analyze: TTAYGGGTTTTTTGGTTTGGATTTA 

 



99 
 

Assay: cg05223441 

Sample: D492M 

Sequence to analyze: TTAYGGGTTTTTTGGTTTGGATTTA 

 
 

 

 

 

Assay: cg12232146 

Sample: D492 

Sequence to analyze: TTACRTATAATTCACTTTAAAATAAATTTC 

 
 

Assay: cg12232146 

Sample: D492M 

Sequence to analyze: TTACRTATAATTCACTTTAAAATAAATTTC 
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Assay: cg16888565 

Sample: D492 

Sequence to analyze: GTYGGTTTTTTGGAAAGGATTTTTTAGT 

 
 

 

 

Assay: cg16888565 

Sample: D492M 

Sequence to analyze: GTYGGTTTTTTGGAAAGGATTTTTTAGT 

 
 

Assay: cg20909017 

Sample: D492 

Sequence to analyze: TGTTAYGGTTTTGGTTTTTTAGAATTGTGGG 
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Assay: cg20909017 

Sample: D492M 

Sequence to analyze: TGTTAYGGTTTTGGTTTTTTAGAATTGTGGG 

 
 

Assay: cg10233454 

Sample: D492 

Sequence to analyze: TTTTTTTAYGTATTTTTTTGTAATTTTTGTGTTG 

 
 

 

 

Assay: cg10233454 

Sample: D492M 

Sequence to analyze: TTTTTTTAYGTATTTTTTTGTAATTTTTGTGTTG 





 
 

 


