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Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target
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Proton inelastic scattering of ">7*Ni and 7*%Zn ions at energies around 235 MeV/nucleon was performed at the
Radioactive Isotope Beam Factory and studied using y-ray spectroscopy. Angular integrated cross sections for
direct inelastic scattering to the 2] and 47 states were measured. The Jeukenne-Lejeune-Mahaux folding model,
extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle
random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron
to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential
were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus
conserving the Z = 28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes,
pointing to the conservation of the N = 50 gap approaching "®Ni. These results are in agreement with QRPA and
large-scale shell-model calculations.
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L. INTRODUCTION structure of nuclei under extreme isospin conditions. One of
the most important results achieved is that the shell closures,
which give rise to the magic numbers 2, 8, 20, 28, 50, 82, and
126 near the line of S stability, change with varying number
of protons and neutrons [1]. This so-called shell-evolution has
been widely studied, in particular on the neutron-rich side of the

“Present address: RIKEN Nishina Center, 2-1 Hirosawa, Wako, nuclear chart. Experimental evidence suggests the appearance
Saitama 351-0198, Japan; liliana@ribf.riken.jp of new magic neutron numbers at N = 32,34 in Ca isotopes

Recent experimental studies have exploited the use of
radioactive ion beams to gain a deeper understanding of the
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[2—4], although interpretation is still under debate [5]. A new
magic number N = 16 has also been proposed [6-8], while
there is experimental evidence of the disappearance of the shell
closureat N = 8 [9-12], N = 20[13,14],and N = 28[15,16]
in various neutron-rich isotopes. The next magic number,
N = 50, is still under investigation and its possible weakening
or disappearance, particularly around "®Ni, is of current interest
in nuclear structure as well as in astrophysics, as it is related to
the waiting points of the rapid neutron-capture process [17]. In
spite of the great interest in "3Ni, direct evidence of its magicity
is still unavailable. Different theoretical predictions suggest a
weakening of the Z = 28 proton gap when approaching the
N = 50 neutron shell closure [18], as well as the already
confirmed inversion of the mp3/, and 7 f5/, proton single-
particle energy levels [19,20]. More recent calculations suggest
the appearance of a new island of inversion at N = 50 for
isotopes with Z < 26 [21].

For isotopes with open shells, quadrupole correlations give
rise to collectivity. Therefore, shell evolution near magic
numbers can be studied by evaluating the degree of quadrupole
collectivity, which is related to the quadrupole deformation
parameter, ,. These quantities can be obtained by measuring
the transition probability between the ground state and the 2
state using either electromagnetic or hadronic probes [22].
Measurements of electromagnetic strengths provide access
only to the proton transition matrix element but not to the neu-
tron counterparts. However, the contribution of the neutrons
to the collectivity, and, more importantly, the ratio between
proton and neutron matrix elements, becomes particularly
relevant to characterize isotopes with single proton or neutron
closed shells [23-25]. Therefore, it is desirable to perform
measurements that allow us to probe both nucleons, such as
proton inelastic scattering.

For the case of the Ni isotopic chain, the reduced transition
probability, B(E2)? = B(E?2; Og's — 2;”), measured between
N =28 and N = 40, shows a parabolic trend which indicates
a subshell closure at N =40 [26]. A measurement of the
B(E2)t value of "°Ni reported an enhanced collectivity for
N =42 [27]. This was claimed to indicate a possible weak-
ening of the Z = 28 gap towards "*Ni. In contrast to this
result, recent measurements on ’>74Ni [28,29] show a reduced
B(E2)? value for these isotopes, which would corroborate the
magic character of the N = 50 and Z = 28 shell gaps. For the
N = 50 isotones between Z = 30 and Z = 40, previously re-
ported Coulomb excitation measurements show no indication
of a reduction in the N = 50 shell gap at Z = 30 [30,31].

The present work reports on proton inelastic scattering
of isotopes in the vicinity of 7Ni, namely 7>7*Ni and
768071, using a thick liquid hydrogen target at energies above
200 MeV /nucleon in inverse kinematics. Section II describes
the experimental set up. Section III gives the details on the
extraction of the cross sections. In Sec. IV, the interpretation
of the experimental cross sections in terms of a microscopic
and a phenomenological reaction models is presented. Section
V is dedicated to the discussions of the results obtained.
The summary and perspectives of this work are given in
Sec. VL.

II. EXPERIMENTAL DETAILS

The experiment was performed at the Radioactive Isotope
Beam Factory, operated by the RIKEN Nishina Center and the
Center for Nuclear Study of the University of Tokyo. A 233U
primary ion beam with an energy of 345 MeV/nucleon and
an average intensity of 12 pnA impinged on a 3-mm-thick
Be target at the entrance of the BigRIPS separator [32].
The fragments of interest were selected using the Bp-AE-Bp
technique using two wedge-shaped aluminium degraders of
8 and 2 mm situated at the dispersive focal planes of Bi-
gRIPS. The ions were identified on an event-by-event basis
by an energy loss measurement in an ionization chamber,
position and angle measurements performed using parallel
plate avalanche counters at different focal planes, and the time-
of-flight measured between two plastic scintillators placed
46.5 m apart. Two different settings were applied to BigRIPS.
From the first one, centered on >Co, the isotopes 72.74Nji and
767Zn were analyzed, and from the second, centered on "°Cu,
807n was analyzed. Due to the existence of an isomeric state
of ®Zn [33], ( p,p’) cross sections could not be determined for
this isotope.

The ions were focused on the MINOS device [34],
composed of a 102(1)-mm-long liquid hydrogen target
surrounded by a Time Projection Chamber (TPC) and placed
at the entrance of the ZeroDegree spectrometer [32]. The liquid
hydrogen was kept at a temperature of 20 K, resulting in a target
thickness of 735(8) mg/cm?. The entrance and exit windows
were made of mylar and had a combined thickness of 275 yum.
Pressure differences resulted in a 2-mm deformation of the
entrance window, which was measured and taken into account
in the analysis. MINOS was designed to track (p,2 p) reactions.
For the case of (p, p’) reactions, the energies of the scattered
protons were such that they were predominantly stopped in the
target before reaching the TPC. Therefore, a very low efficiency
was achieved. For this reason, the information of the TPC was
not used in the present analysis. The lack of information from
the TPC introduced an uncertainty on the position, as well as
in the velocity of the particle at the moment of y decay. Both
factors affected the Doppler correction significantly. A typical
resolution [full width at half maximum (FWHM)] obtained
using the full capabilities of MINOS is around 9% for 1 MeV
gamma rays, while resolutions on the order of 14% were
obtained in the present study, where the decay was assumed to
occur at the center of the target. Examples of the performance
of MINOS can be found in Refs. [35,36].

Behind the target, reaction products were identified using
the ZeroDegree spectrometer using the same technique as in
BigRIPS. Deexcitation y rays were detected with the DALI2
array [37], which surrounded the MINOS target. It consisted
of 186 Nal(Tl) detectors covering angles from 7° to 115°
(integrated along the target length) relative to the beam axis.
Standard ®°Co, #¥Y, and '*”Cs sources were used to perform the
energy calibration. The full-energy-peak efficiency of the array
was determined using a detailed Geant4 [38] simulation and
was found to be 14% at 1.33 MeV with an energy resolution of
6.2% (FWHM) for a stationary source. It was necessary to use

044315-2



INELASTIC SCATTERING OF NEUTRON-RICH Ni AND ...

PHYSICAL REVIEW C 97, 044315 (2018)

(a) BigRIPS PID
Z
311 . 76Zn
30
29
281
27
(b) ZeroDegree PID
V4
"zn =

L LRG| RS SR g SRR Tl ) R
2.5 2.55 2.6 2.65 2.7
A/Q

FIG. 1. Particle identification plot obtained for (a) the incoming
ions, performed with the BigRIPS separator, and (b) the outgoing
fragments, measured with the ZeroDegree spectrometer, for the first
setting. In each case, 10° events were used to make the plot. The
isotopes of interest ("*7*Ni and "®Zn for this setting) are clearly
identified by both spectrometers.

a simulation for determining the efficiency of the array due to
the extended size of the target. Previously reported efficiency
values were in agreement (<6% error) with the simulation
[39-41].

Figure 1 shows as an example the particle identification
plot obtained with the BigRIPS and ZeroDegree spectrometers
for the first setting. A sample of 10° events is shown. The
number of (p,p’) events was determined as the number
of ions identified event by event both in BigRIPS and
ZeroDegree. As particle losses due to secondary reactions
were not be identified in the ZeroDegree spectrometer, which
provided the trigger, the transmission did not affect the

TABLE 1. Total number of ions in the (p, p’) channel and energy
in front (E;,) and at the exit (E,,) of the MINOS target for each of
the isotopes of interest.

Isotope Ni "Ni %Zn 807n
Number of ions 5018715 1619460 159030 9571520
Ein MeV/u) 271.0 263.5 275.5 263.4
Eou MeV /u) 205.3 198.3 204.3 193.8

cross-section measurements. Table I shows the total number
of ions measured in the (p, p’) channel for each isotope under
consideration as well as the average values of their energy at
the entrance and exit of the target.

III. RESULTS

Doppler-corrected y-ray energy spectra corresponding to
the (p,p’) channel of the isotopes of interest were obtained
assuming that the decay occurred at the center of the target and
using the velocity of the ions at this position. These velocities
were obtained on an event-by-event basis from the velocity
measured in the ZeroDegree spectrometer plus a constant offset
obtained using a LISE++ simulation [42], which took into
account the energy lost by the ions in the target and in the
different detectors along the beam line. In order to improve the
peak-to-total ratio and the detection efficiency, the energies of
y ray deposited in neighboring detectors, up to 15 cm, were
added back.

The histograms in Fig. 2 show the spectra obtained for
7274Ni, as well as their partial level schemes. The 2] — 05,

and 47 — 27 transitions were observed at 1100(5) keV and
850(3) keV for "*Ni, and 1029(7) keV and 744(3) keV for
"4Ni, in agreement with the adopted values [43]. In order
to extract the cross sections, each y-ray spectrum was fitted
with the simulated response of DALI2 to the 2" — 0f

transition (solid red line) and the 4 — 2" — 0J cascade
(solid green line). To properly describe the spectra, three
additional transitions at higher energies were also considered
in the fit (dashed lines). A double exponential function was
used to model the low-energy atomic background and the
high-energy background from other sources such as reactions
of scattered protons (dashed black line). The exponential
function describing the atomic background was chosen the
same for all the isotopes, scaled with the number of incident
ions and the square of the projectile charge.

For 7?Ni, the transition at 2210(15) keV is consistent with
the decay of a recently reported candidate for a 2 state [44].
Such a state was reported to have y ray at 1125 keV for the
27 — 2] decay and at 2220 keV for the 25 — 0, decay.
The presence of such a state is confirmed by the coincidence
analysis shown in Fig. 3: The events in the gate between 1020
and 1100 keV are in coincidence with the 47 — 2| transition.
When the gate is placed at 1100-1170 keV, corresponding to
the 25 — 2| decay, the spectrum shows to be coincident with
the2| — 0, transition. The feeding of this state was taken into
account by using the reported branching ratio of 67(11)% to
the 2;’ — ZT and 33(6)% to the 2;“ — Ogs decays [44]. Due to
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FIG. 2. Doppler corrected spectra obtained for (a) "’Ni and
(b) 7Ni. Each spectrum was fitted by the convolution of the simulated
response of DALI2 to the 2] — O; transition (solid red line) and the
47 -2 — Ogs cascade (solid green lines), a double exponential
function which models the background (long dashed black line) and
three additional transitions (dashed lines) used to obtain a better fit to
the data. Levels and decay energies are taken from Refs. [43,44]. See
text for details.

the similar structure of 7>Ni and 7#Ni, it is reasonable to assume
that the line at 2242(63) keV fitted for "*Ni corresponds to the
decay of a 2;“ state. The energy resolution of DALI2 and limited
statistics for this isotope did not allow for the unambiguous
identification of this decay. Although no such state has been
reported, following the case of 72Ni, we assume feeding from
this state to the ZT state, with the same values for the branching
ratios.

The line at around 3000 keV fitted for both isotopes could
correspond to a 3~ state, which is usually populated by proton
inelastic scattering. The fitted energies, 2825(44) keV for "*Ni
and 3120(38) keV for "*Ni, are consistent with the 3= — 05,
decay of lighter Ni isotopes [43]. However, the energy resolu-
tion of DALI2 and the low statistics did not allow us to clearly
separate these transitions or perform a coincidence analysis.

N
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FIG. 3. Coincidence spectra for °Ni. The events in the gate
between 1020 and 1100 keV shows a clear coincidence with the
47 — 27 transition, while the gate on 1100-1170 keV only shows
events in coincidences with the 21 — Ogs transition, suggesting the
population of the 25 state.

To take into account possible feeding from this transition,
50% feeding was assumed and the error bar was calculated in
order to account for the extreme cases of no feeding and 100%
feeding. The line at around 5000 keV fitted for both spectra
does not correspond to any known transition, and in the present
study we limit its interpretation to the consideration of its
possible feeding to the 2| state. In this case, such feeding was
taken into account in the same way as for the possible 37 states.
The possible feeding contributions mentioned above were
taken into account in the size of the experimental uncertainties.

Exclusive cross sections were calculated based on the num-
ber of y rays in each transition after the feeding corrections and
the number of incoming ions. Besides the statistical uncertainty
given by the fit and the number of incident ions, the systematic
uncertainty in the calculated cross sections include 2% due to
the background selection, 6% for the simulated efficiency of
DALI2, and 2% uncertainty in the target thickness. For "*Ni,
values of 2.2(7) mb and 0.8(1) mb were obtained for the cross
sections to populate the 2] and 4] states, respectively. For
the same states in 7*Ni, values of 2.7(10) mb and 0.6(2) mb
were extracted. The cross section to populate the 2 state was
determined as 0.7(3) mb for 7>Ni and 0.9(5) mb for 7*Ni. For
the possible 37 states cross sections of 0.3(1) mb and 0.6(2)
mb were determined, and for the transitions at 5000 keV values
of 0.1(1) mb and 0.2(1) mb were evaluated for 7>Ni and #Ni,
respectively.

Figure 4 shows the Doppler corrected y-ray spectra ob-
tained for 7°Zn, together with its partial level scheme. The
21 — 0 transition at 593(10) keV and the 47 — 2 transi-
tion at 708(16) keV, in agreement with the known values, were
observed.

The simulated response of DALI2 to the 2] — OJr transi-

tion (solid red line) and the 4+ — 2+ — O;r cascade (solid
green line) were fitted, together with the double exponential
function to model the background. No additional transition
was required to accurately fit the spectrum. Cross sections of
1.9(10) mb and 1.3(6) mb were obtained for the ZT and 4T
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FIG. 4. Doppler-corrected spectra obtained for 7*Zn. The spec-
trum was fitted by the convolution of the simulated response of DALI2
to the 2 — 0 transition (solid red line) and the 4 — 2 — 0]
cascade (solid green line) and a double exponential function which
models the background (long dashed black line). Levels and decay
energies are taken from Ref. [43]. See text for details.

states, respectively. The large uncertainties arise from the low
statistics for this isotope.

Figure 5 shows the spectra obtained for 8Zn. In order to
limit the atomic background at low energies, only detectors
at forward angles were considered. A peak at 1487(8) keV,
consistent with the previously reported 2;” — 0, transition
[30], was observed, as well as a peak at 487(3) keV, which
corresponds to the recently reported 4] — 2 transition [45].

Counts (30 keV/bin)

[ \
4000 5000
Energy (keV)

S \ \
1000 2000 3000

FIG. 5. Doppler corrected spectra obtained for #Zn. The spec-
trum was fitted by the convolution of the simulated response of DALI2
to the 2 — 0 transition (solid red line) and the 4 — 2 — 0],
cascade (solid green line) and a double exponential function which
models the background (long dashed black line). Two previously
reported transitions (dashed dark red lines) and two high-energy
transitions (dashed lines) were used to obtain a better fit to the data.

Levels and decay energies are taken from Ref. [45]. See text for details.

TABLE II. Inelastic proton-scattering cross section to populate
the 2] and 4] states deduced for 7>7*Ni and "*%Zn in the present
work. The values obtained for the 2] state are also listed for ">7*Ni.
Cross sections obtained using a microscopic JLM/QRPA calculation
are also presented. Such values correspond to an average over the
energy of the beam before and after the target to take into account the
energy loss.

Cross section (mb) 2Ni T4Ni 57n 807n
oyt (expt) 2.2(7) 2.7(10) 1.9(10) 1.3(3)
oyt (theo) 1.42 1.56 — 2.01
oyt (expt) 0.8(1) 0.6(2) 1.3(6) 1.1(2)
oyt (theo) 0.31 0.29 — 0.46
0ot (expt) 0.7(3) 0.9(5) — —
05+ (theo) 0.60 0.65 — 0.15

The response of DALI2 to the 2] — 0, transition (solid red
line) and to the 47 — 2 — 0, cascade (solid green line)
were taken into account for the fit. For the case of the 4T — 2T
transition, the half-life of 136J_r2% ps reported by Ref. [45], was
included. Previously reported transitions at 841 keV and 1195
keV [45] were used in the fit (dashed dark red lines). These
transitions are reported to feed the 4T state, and therefore
they were not considered to directly feed the 2/ state. Two
high-energy transitions, at 3280(20) and 3690(30) keV, were
necessary to obtain a better description of the spectrum. The
origin of these lines could not be determined, and in this
analysis we only consider their possible feeding to the 27
state. As for the case of the Ni isotopes, 50% feeding was
assumed. Values of 1.3(3) mb and 1.1(2) mb for the population
of the 2] and 4] states were obtained, respectively. For the
two high-energy transitions, cross sections of 0.3(1) mb and
0.2(1) mb were measured. The observed cross sections for the
2;”, 4?’, and 2;“ states are summarized in Table II.

IV. ANALYSIS

The cross sections measured in the present work were
analyzed considering two reaction models. First, a micro-
scopic approach, based on transition densities obtained from
quasiparticle random-phase approximation (QRPA) and the
Jeukenne-Lejeune-Mahaux (JLM) potential [46], was used to
calculate inelastic-scattering cross sections. Theoretical results
were compared to experimental findings to infer neutron to
proton matrix element ratios. Next, deformation lengths for
the first quadrupole excitation were determined using the
phenomenological collective model for nucleon scattering and
compared to deformations previously reported for lighter Ni
and Zn isotopes.

A. Microscopic model for inelastic scattering

The measured cross sections were compared to calculations
from a microscopic reaction model based on the JLM folding
method [46]. The JLM model relies on a finite-range two-
body effective interaction inferred from a Brueckner-Hartree-
Fock (BHF) optical potential calculation in nuclear matter for
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FIG. 6. Proton scattering on >*Ni. The two top curves show
ratios of differential elastic-scattering cross sections to the Rutherford
cross sections (left y axis). The two bottom curves show differential
cross sections for direct inelastic scattering to the 2} state (right
y axis). Full black curves are calculated with the reaction model
described in Sec. IV A. Dashed curves are calculations from the KD02
potential. Incident energies are specified in the plot in MeV. Exper-
imental data are from Refs. [52-54] for elastic scattering and from
Refs. [55-57] for inelastic scattering. Cross sections are scaled by the
factors indicated in the plot.

nucleon incident energies up to 160 MeV. This interaction is
folded with nuclear matter densities, measured or obtained
from nuclear structure approaches, to obtain local optical
potentials for finite nuclei. These complex potentials contain
a central part, with isoscalar and isovector components, and
an ad hoc spin-orbit potential. A common procedure consists
in multiplying each term of this potential with a factor A,
which remains close to unity, in order to fit elastic-scattering
observables. In 2001, Bauge et al. [47] provided a global
parametrizaion of these A factors, as functions of target mass
and incident energy, that reproduces both proton and neutron
elastic and quasi-inelastic-scattering observables for energies
ranging from E = 1 keV to 200 MeV and target nuclei with
mass in the range A = 40-209. This JLM folding model has
then been intensively and successfully used to interpret many
nucleon inelastic-scattering data for energies up to 200 MeV
in a DWBA or coupled-channels framework using transition
densities stemming, for instance, from (Q)RPA calculations
[48-50].

In the present work, the average energy of the beam in
front of the target was ~270 MeV and the energy at the
target exit was around 200 MeV. To treat such high energies,
an empirical procedure was devised to obtain an effective
two-body interaction within a folding procedure equivalent to
that of the JLM model by extrapolating the components of the
JLM potential up to 340 MeV. The procedure for extracting
the various components of the BHF of the JLM model will be
fully explained in a forthcoming article [51]. Figure 6 shows a
sample of the results obtained for the elastic scattering of 3Ni
at 250 MeV and 295 MeV, as well as the inelastic scattering

to the 2} state for ®Ni at 178 and 333 MeV. Experimental
data are shown by the symbols, while the full black lines show
the present calculations performed using the “extended”-JLM
folding model. As can be seen from the plot, the extended
calculation shows a good agreement with the experimental data
and encourages us to use it for the present analysis.

Angular integrated inelastic-scattering cross sections for
the various excitations of 7>7*Ni and Zn have thus been
extracted within this model using neutron and proton transition
densities calculated with QRPA. Such calculations were based
on the Gogny D1M force and were performed in a cylindrical
harmonic oscillator basis with 11 major shells [58]. The
calculations were limited to ">7*Ni and 3°Zn, for which the
underlying mean field displays a spherical or near-spherical
symmetry. The extraction of accurate transition densities for
deformed nuclei, such as °Zn, would require further work.
Cross sections were calculated for each isotope in the energy
range indicated in Table I and averaged to account for the
energy loss along the thick target. The obtained results are
compared to experimental data in Table II.

The experimental cross sections for the 2?’ state of ">74Ni
are slightly underpredicted by the model, while for the 2] state
in3Zn, the model gives a value significantly higher than the ex-
periment. A good agreement is found for the 2;“ state of /274N,
but the model systematically underestimates the cross sections
for the 4 state of the three isotopes. This last discrepancy is
hard to interpret and may indicate that large uncertainties are
associated to both the nuclear structure ingredients and to the
procedure used to extract the experimental value of the cross
section. Indeed, the QRPA model may need to be extended
to account for two-phonon (four quasiparticles) excitations to
properly represent the 4T state. Besides, indirect feeding to
the 4] state may have been underestimated resulting in an
overestimated experimental value of the cross section. Both of
those aspects need to be fully understood before conclusions
on this comparison can be provided. For the ZT states, however,
the QRPA approach, which considers a coherent sum of two
quasiparticle states, is believed to include the relevant physics.
Additionally, the uncertainties related to the indirect feeding
are better controlled than for the 4fL state and have been
taken into account to extract the experimental cross sections.
Therefore, for the 2] state, the disagreement between theory
and experiment provides information on the accuracy of the
neutron and proton transition densities used in the folding
model.

The neutron (proton) matrix element is defined from the

neutron (proton) radial transition density, ,oz(p )(r), as [59]

M) :/pz(p)(r)rurzdr. €))

The proton transition densities can be tested by comparing
calculated and experimental reduced transition probabilities,
B(E2)t = 2L + l)Mg. This comparison, displayed in Ta-
ble III, shows a slight difference between the B(E2)1 cal-
culated with QRPA and the experimental measurements. The
reaction modeling can be corrected to take into account this
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TABLEII. B(E2)? valuesand Ry,z = (M,/M,)/(N/Z)forthe
isotopes of interest. For B(£2)1, the experimental value [28,29,60]
as well as QRPA and LSSM prediction are displayed. For the Ry,
predictions using QRPA and LSSM calculations are shown together
with the results obtained in the present work using the JLM/QRPA
microscopic approach.

Ni 7Ni 7n
B(E2)t (QRPA)(¢? fm*) 453 482 984
B(E2)t (LSSM)(e? fm*) 598.2 540.7 934.7
B(E2)1 (exp)(e? fm*) 370(50) 642128 730(90)
Ry/z(QRPA) 1.13 1.15 0.80
Ry;z(LSSM) 1.085 1.086 0.435
Ry)z(JLM/QRPA) 1.80(57) 140708 0.72(31)

difference by scaling M, with the a factor

_ | BEDExp)
Ir =\ BE21QrEAY @

After scaling M, the value of M), can be scaled by a factor
fn, selected to reproduce the experimental cross section. This
procedure was performed for all the isotopes of interest. In this
way, reevaluated values of M, /M, and of the ratio

M, /M,
(N/Z)

were extracted from the microscopic JLM calculation, the
experimental B(E2)t values, and the measured cross sec-
tions. Table III compares the values of Ry,; predicted by
QRPA and the ones obtained from the scaling procedure,
Ry/z(JLM/QRPA) = (f,/f»)Rn;z(QRPA). The error bars as-
sociated to Ry,z (JLM/QRPA) account for the reported errors
of B(E2)? in the normalization of M, and the subsequent
changes of M,,. These values will be discussed in Sec. V.

3

Ry,z =

B. Deformation in the collective model

The deformation length of each isotope, 6, ), was obtained
from the measured cross section using the nuclear reaction
code ECIS-97 [61,62]. The calculations included a first-order,
harmonic vibrational model implemented with the KDO02
global optical potential [63]. This potential is based on a large
set of measurements of stable isotopes with beam energies
up to 200 MeV/nucleon. However, the smooth variation of the
model parameters in the energy range 150-200 MeV permit the
assumption that the KDO2 potential can be safely extrapolated
at energies up to a few tens of MeV beyond 200 MeV. As it
is shown in Fig. 6, the results obtained with this potential for
proton elastic scattering on *3Ni at energies beyond 200 MeV
(dashed curves) provide a good description of experimental
angular distributions. The KDO02 potential was thus considered
suitable for the present study, although a careful check of its
pertinence for energies beyond 200 MeV and exotic isotopes
is still required.

From the resulting deformation lengths, a deformation
parameter B,(p, p’) was obtained using the relation &, ,) =
B2(p,p)R, where R = 1.2A'/3, As the protons in the target
interact with all the nucleons of the projectile, B,(p,p’)

03+ :
(a) Zn
~
QL
& 02 1
o
g ;
é 0.1 1
EM —m—
(pp) —o—
0 ‘ ‘ (p,p’) This work —@—
(b) Ni
:‘\
X
& 02r 1
N
s ?
=
= 0.1} 1
(pp) ——
(p,p’) This work —e&—
0 (p,p’) Aoietal. —4—

28 32 36 40 44 48
Neutron Number N

FIG. 7. Adopted values for the deformation parameter 8,(EM)
[28,60] as a function of neutron number and S,(p, p’) obtained using
proton inelastic scattering for (a) Zn isotopes and (b) Ni isotopes. The
red full circles are the results of the present work. The filled triangle
corresponds to a previous measurement at 80 MeV/nucleon [64].
The purple circles represent an average of previous measurements
[56,65-76].

represents the matter deformation. Measurements using elec-
tromagnetic (EM) probes, such as Coulomb excitation, are
only sensitive to the protons and therefore would yield a
charge deformation, B,(EM). In that case deformations can
be deduced from the B(E2)1 value as

T7.p0 Y BEDT. @)

Figure 7 shows the adopted values of 8,(EM) [28,60] as a
function of neutron number for even-even Ni and Zn isotopes,
along with the deformation parameters 8,(p, p) extracted from
this work.

For the Ni isotopes, the values obtained for the matter
deformation are slightly higher than 8,(EM), although for 7#Ni
the values agree within error bars. For 74Ni, our estimated
deformation agrees with the value obtained from a previous
experiment performed at 80 MeV/nucleon and analyzed within
the collective model [64], as shown by the blue triangle in
the figure. The increased matter deformation compared to the

B2(EM) =
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charge deformation is consistent with the results obtained from
previous measurements in lighter Ni isotopes, as shown by the
purple points in the figure. These points represent the average
of different available results [56,65-76] with the error bar
calculated as the standard deviation of the measurements added
in quadrature with the error of individual measurements, when
reported.

For the the case of the Zn isotopes, the present measure-
ments are below S,(EM). Previous measurements on stable
Zn isotopes [66,70,72,74,75,77-83] show similar values of
B2(EM) and B,(p, p’) for ®7°Zn and hint at a small increase
on Ba(p, p') for ©4667n,

V. DISCUSSION

In the collective model for vibration, the nucleus is modeled
as a homogeneous proton-neutron fluid. This implies that
(i) proton and neutron densities have the same deformation, (ii)
M,/M, = N/Z, and (iii) B,(p, p") remains close to S>(EM).

The systematic enhancement of 8,(p, p) over B,(EM) has
been reported for stable proton-closed-shell isotopes [84] and
can be related to the significance of the contribution of the
neutrons to the collectivity of such nuclei. As illustrated in
Fig. 7, this behavior seems to be maintained for neutron-rich Ni
isotopes. This suggests that in this region of the nuclear chart,
the Ni isotopes still behave as proton-closed-shell isotopes,
which in turn indicates the conservation of the Z = 28 gap.
For the case of 8Zn, with N = 50, B2(p,p’) turns out to be
lower than B,(EM). This results is in line with an increased
contribution of the protons to the collectivity. An equivalent
behavior has been observed for stable neutron-closed-shell
isotopes [84] and is consistent with the conservation of the
N = 50 magic number in the vicinity of *Ni. However, it
is pointed out that the results obtained using the first-order
vibrational model have to be interpreted with care, since
the validity of this model for very neutron-rich isotopes has
not been definitively established. Moreover, various kinds of
reaction model analysis were used to extract to 8,(p, p’) values
from previous works reported in Fig. 7. This could lead to very
different systematic uncertainties that are not always quoted
completely. To ensure the validity of the information inferred
from the comparison of various B,(p, p’) values, the exact same
reaction model should be used to extract 8, from the various
(p,p’) cross sections. Such a work, is beyond the scope of the
present paper.

In Sec. IV A, values of Ry,; were obtained from a mi-
croscopic reaction model calculation, based on the QRPA
nuclear structure approach, constrained by both experimental
reduced transition probabilities, and the experimental proton
inelastic-scattering cross sections from the present work. As
shown in Table III, the results obtained for 72.74Nji, labeled
Ry ,z(JLM/QRPA), indicate that M,, /M, > N /Z. In spite the
large error bars, these results point to the fact that for the
Ni isotopes, the M, /M, = N /Z assumption of the collective
model for vibration is not valid and that the contribution of
the neutrons to the collectivity is more significant than the one
of the protons. For 8°Zn, the ratio M, /M, is lower than N/Z,
indicating the increased role of the protons to the collectivity of
this nucleus. This analysis is rooted in a microscopic reaction

model which takes all nuclear structure details into account.
Therefore, it allows us to draw firmer conclusions on the
respective neutron and proton contributions to the collectivity.

The predictions from the QRPA model, labeled
Ry;7z(QRPA) in Table III, are in agreement within error
bars with the previous conclusions. However, the deviation
of Ry,z from unity of these predictions is weaker than the
one shown by Ry;z(JLM/QRPA) if the mean values are
considered. From a nuclear structure point of view, this
reveals that the neutron-to-proton collectivity ratio may be
underpredicted within the present QRPA model.

Reduced transition probabilities and matrix elements ratios
obtained with QRPA were also compared to results from
large scale shell model (LSSM) calculations. Values of Ry, z
predicted within this model, as well as the corresponding
B(E2)? value, are displayed in Table III. For this calcula-
tion, an effective interaction based on a G-matrix obtained
from a realistic nucleon-nucleon interaction, modified with
an empirical correction of the monopole part was employed,
together with effective charges of e, = 1.31 and e, = 0.46
[85]. For the Ni isotopes, calculations were performed using a
*8Ca core and considering the full pf shell for protons and the
0fs/2, 1p3;2, 1 p1/2, 0goy2, and 1ds,, orbits for neutrons [86].
For the Zn isotopes, the model space considered a ®’Ca core,
the full pf shell for protons, and the full sdg shell for neutrons
[21]. It is pointed out that with the interaction used in the LSSM
approach the magicity of "®Ni is preserved, although shape
coexistence is predicted for this region [21].

For the Ni isotopes, the predictions of QRPA and LSSM for
Ry /7 differ by less than 6%. In the case of 807n, Ry /z(LSSM)
is a factor 0.54 smaller than Ry,7(QRPA). This indicates
that the LSSM neutron matrix element is roughly half of the
QRPA one. In spite of these differences, both models predict an
increased role of neutrons to the collectivity of the Ni isotopes,
and of the protons in the case of 807n, although the mean values
of Ry,;z(JLM/QRPA) are still not reproduced. Such behavior
indicates that the neutron-to-proton collectivity ratio is not
accurately predicted by the theoretical models; however, the
large uncertainties associated to the measured cross sections
prevent firmer conclusions on the accuracy of nuclear structure
calculations.

Extracting properties of isotopes in the region around "®Ni
presents different challenges for the theoretical models as well
as for the experimental measurements. A first step towards the
determination of Ry, was undertaken within this work. In
the future, high accuracy B(E2)? as well as proton inelastic-
scattering measurements are desired to reveal the underlying
physics and to help improving nuclear structure modeling.

VI. SUMMARY

We have studied the evolution of 2 — 04 transition matrix

elements around "®Ni by means of proton inelastic scattering
on ">7*Ni and 7*%°Zn in inverse kinematics at energies above
200 MeV /nucleon. Direct proton inelastic-scattering cross
sections to the 2| and 4, states were derived from the y-ray
spectrum of each isotope. For ">74Ni, the (p, p’) cross section
for a possible 27 state was also measured. An extension of the
JLM folding model above 200 MeV/nucleon was developed
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for the first time. This model, together with nucleon matter
densities from QRPA was used to analyze the measured cross
sections of the 2| state of "*"*Ni and **Zn to obtain M,/M,,
values. The results suggest that for the Niisotopes (M, /M) >
(N/Z), which implies that the contribution of the neutrons
to the collectivity is enhanced. For 8071, the calculation
yields (M,,/M,)/(N/Z) < 1, which is in agreement with an
increased role of the protons to the collectivity. Deformation
lengths obtained within a vibrational model as well as large-
scale shell-model calculations support these findings. The
observed behavior of the Ni isotopes is consistent with the
conservation of the Z = 28 gap for neutron-rich Ni isotopes.
In turn, the results for 8Zn suggest that the shell closure for
N = 50 is conserved when approaching Z = 28.

Studies on proton inelastic scattering in inverse kinematics
at high energies have become available thanks to the improve-
ments on the intensity of radioactive ion beam facilities. Due
to the high energies and large isospin values, the interpretation
of the data becomes challenging and demands new theoretical
tools. In this work, a step towards a consistent interpretation of
the (p, p’) data has been undertaken, which will be beneficial
for the analysis of future proton inelastic-scattering data and

to the extraction of useful physics parameters linked to nuclear
structure calculations.
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