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Introduction

The work leading up to this thesis started with a naïve idea concerning smooth-
ings of certain Stanley–Reisner schemes. Stanley–Reisner schemes are highly
singular projective schemes, whose components are all projective spaces. They
are constructed from a simplicial complex, in such a way that the components
correspond to the maximal faces of the simplicial complex.

If the simplicial complex is homeomorphic to S1, a circle, then a smoothing
of the Stanley–Reisner scheme yields an elliptic curve. Similarly, if the simplicial
complex is a sphere, a smoothing of the Stanley–Reisner scheme will give a K3
surface. Many properties of the simplicial complex correspond to properties of
the Stanley–Reisner scheme and its smoothings.

The mentioned naïve idea was this: what if the simplicial complex is a
triangulated CP2? A smoothing of the associated Stanley–Reisner scheme would
then give us an (algebraic) hyper-Kähler variety, as we explain in Chapter 2.
This would be interesting, since there are very few known families of hyper-
Kähler varieties.

Unfortunately, given a triangulation of CP2 with few vertices, a smoothing
of the Stanley–Reisner scheme turned out to be too difficult to find. Even the
existence of smoothings are in most cases unclear. However, one particular
triangulation of CP2 led us to study the problems in Chapter 3 and 4. This
triangulation, found by Gaifullin [Gai09], is the union of three 4-balls, all of
which are suspensions over joins of hexagons. Leaving the idea of studying
triangulations of CP2, we began studying a triangulation of the 3-sphere.

The join of two hexagons is a triangulated 3-sphere. A smoothing of the
associated Stanley–Reisner scheme X0 is a Calabi–Yau variety. Finding new
Calabi–Yau varieties has become a small industry, which we did not hesitate
to join. This decision turned out to be profitable. The scheme X0 deforms
to several interesting varieties, and three of them are smooth. One of its
deformations, which we have denoted by XY , is a singular Calabi–Yau variety,
whose singularities are all locally-analytically cones over del Pezzo-surfaces.
This discovery motivates the third chapter, in which we study this singularity



Introduction

and its two smoothings. We prove that they are topologically different, and
calculate their Betti numbers.

We construct three smoothings of X0. To define them, recall the definition
of join of two algebraic varieties. It is the closure of the union of all lines
between them. Let M be the join of two copies of P2×P2 (embedded in disjoint
projective spaces). Let N be the join of two copies of P1 × P1 × P1, and let
W be the join of P2 × P2 and P1 × P1 × P1. Define X1 to be M intersected
by a codimension 6 hyperplane. Let X2 be N intersected by a codimension 4
hyperplane, and let X3 be W intersected by a codimension 5 hyperplane.

We show that Xi (i = 1, 2, 3) are all smooth Calabi–Yau manifolds, and
that they are deformations of X0. They have Euler characteristics −72, −48,
and −60, respectively.

To our knowledge, these three Calabi–Yau’s have not been previously de-
scribed. There are many connections to the physics literature, and to works by
other mathematicians. Let us explain some of them.

In [Kap15], Kapustka compiles a list of smooth Calabi–Yau varieties with
PicX = Z. One of the elements of the list is a Calabi–Yau in P11 with the same
Hilbert polynomial as our X1, and with the same Euler characteristic. This
Calabi–Yau was however only conjectured to exist, based on the conjecture that
to every differential equation of “Calabi–Yau type”, there should exist a one
parameter family of smooth Calabi–Yau varieties having that equation as its
Picard–Fuchs differential equation. A list of such equations has been computed
by van Enckevort and van Straten in [ES06].

All of these equations have been made searchable in the online database
[Str]. Entering the invariants H3 = 36, H · c2 = 72 and dim |H| = 12, yield
exactly three matches, corresponding to Calabi–Yau varieties with Euler charac-
teristics −72, −60 and −48, respectively. These numbers are exactly the Euler
characteristics of our Xi (i = 1, 2, 3).

Furthermore, their differential operators are Hadamard products, c ∗ c, a ∗ a
and a ∗ c, which according to van Straten (personal communication) is “mirror
dual” to join.

This seems like a perfect match, confirming the existence predicted by the
conjecture. The only problem is that our varieties seem to have h11 > 1, as
discussed in Chapter 4.

Several questions arise: can our Xi still correspond to these differential
equations, without having h11 = 1? If not, what is their connection to the
conjecture?

There also seem to be connections with discoveries made by physicists. For
example, Braun–Candelas–Davis describe in [BCD10] a Calabi–Yau with small
Hodge numbers, whose mirror dual lies in the same deformation family as our
Xi’s.

We did not have the time to ponder these questions, but would very much
like to see them answered in the future.

vi



Finally, there is the phenomenon of mirror symmetry, which is a sort of
duality between different Calabi–Yau manifolds. Producing mirror candidates
of Calabi–Yau manifolds is a hard problem, and there are many ways to do this.
One heuristic which often works is this: suppose you have a family π : X → S
of Calabi–Yau manifolds, and that some central fiber has a large automorphism
group. One can consider the (often singular) sub-family invariant under this
group. It is then often the case that a resolution of singularities of an invariant
fiber is a mirror to the general fiber of π. This technique is called orbifolding.
We give a brief introduction to mirror symmetry and orbifolding in the first
chapter.

By using the technique of orbifolding, we produce mirror candidates for X1
and X2.

The organization of the thesis is as follows:

• In the first chapter, we gather background material which is relevant for
the next chapters. We have erred on the side of too much background
information rather than too little, serving as a motivation for both myself
and potential young readers. We end with a give a brief sketch of some of
the ideas from mirror symmetry.

• In the second chapter we motivate the original naïve idea about smoothing
triangulations of CP2 to find new hyper-Kähler varieties.
We comment on four already known triangulations of CP2, with the
number of vertices ranging from 9 to 15, and describe the obstacles
encountered in trying to smooth them. We also compute their associated
Stanley–Reisner schemes, and the dimensions of their cotangent modules.
Their obstruction spaces are in all cases large.

• The third chapter is devoted to a special toric singularity, namely the
affine cone C(dP6) over the del Pezzo surface dP6. This singularity has
two topologically different smoothings, and we compute their singular
homology groups using techniques from toric geometry.
We start the chapter by discussing dP6 in some generality. We discuss its
Picard group and two natural embeddings in P1 × P1 × P1 and P2 × P2,
respectively.
It is well known that C(dP6) has two smoothing components. We identify
them as hyperplane complements of P1 × P1 × P1 and of P(TP2), and
use this fact to compute their singular homology groups. In the final

vii
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computation, we use theorems from algebraic topology, such as Poincaré
duality and Lefschetz duality.

• The final chapter is devoted to the construction of new Calabi–Yau
varieties and their mirror candidates.
We start the chapter by discussing the Stanley–Reisner scheme X0, which
comes from the simplicial complex that is the join of two hexagons. We
compute its Hilbert polynomial, and explain how it deforms to a special
singular Calabi–Yau variety XY .
Then we explain the construction of three topologically different smooth-
ings Xi (i = 1, 2, 3) of XY (and hence of X0). They are topologically
different, which we prove using a Macaulay2 computation: it shows that
their topological Euler characteristics are different. The construction is
very similar to that of Rødland [Rød00].
Then we explain the existence of special singular subfamilies of X1 and
X2 which are invariant under a finite subgroup of the big torus. Using
orbifolding and a formula by Roan [Roa89], we propose conjectural mirror
candidates for X1 and X2.
We end with many open questions, which we hope to see answered in the
future.

In the last appendix we include some computations on triangulations of
spheres with 8 vertices. Grünbaum and Sreedharan have computed all such
triangulations [GS67], and we used their list to compute deformation theoretic
invariants for each of the associated Stanley–Reisner schemes of the spheres
with 8 vertices. Unfortunately, there seem to be a few typographical errors in
their article, as some of the complexes in their list turn out not to be spheres.

The source code of the thesis and all computer computations are available
on GitHub at

https://github.com/FredrikMeyer/JoinsOfHexagonsAndCalabiThreefolds.

Notation

If V is a vector space, we denote by P(V ) its projectivisation. We write k for a
field, which is almost always assumed to be C. If X is a projective variety, we
write S(X) for its homogeneous coordinate ring (if the embedding is implicit). If
X is a scheme over k, we write X/k. We will write hi(X,F ) for dimkH

i(X,F ).
All schemes are noetherian. We will often write ∆= for definitions (instead of
“:=”, common in computer science literature). Unless otherwise stated, we use
the definitions from [Har77].

viii
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CHAPTER 1

Preliminaries

In this chapter we introduce the notation and results which will be used later.
Some of the material in this chapter plays the rôle of motivation rather than
preliminary results.

1.1 The join of projective varieties

There are many ways to define the join of two projective varieties X and Y .
We will define it in a particularly general and beautiful way, as described by
Altman and Kleiman in [AK75]. Then we will specialize to our situation.

Fix a base scheme S. Let C be the category of graded, quasi-coherent
OS-algebras, generated in degree 1. The tensor product of two OS-algebras R
and S is naturally graded: the degree d part is given by

(R ⊗OS
S )d =

⊕
p+q=d

Rp ⊗Sq.

Let X = Proj R and Y = Proj S . Then we define the join of the graded
OS-algebras to be

X ∗ Y ∆= Proj(R ⊗OS
S ).

If X and Y are projective varieties over S, they come with graded OS-
algebras R = SymS OX(1) and S = SymS OY (1). Then we define the join of
X and Y to be join of these algebras.

The join construction is a contravariant functor in two variables from the
category of graded OS-algebras and surjective maps to the category of projective
varieties.

Example 1.1.1. Let X = P(E) and Y = P(F ), where E,F are quasi-coherent
OS-modules. Then we have the equality P(E) ∗ P(F ) = P(E ⊕ F ), because of
the linear algebra fact that Sym(E)⊗ Sym(F ) = Sym(E ⊕ F ). ♥
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The algebra R⊗OS
S contains the ideal R⊗S+. The associated subscheme

is denoted by VX , and it is isomorphic to X = Proj R. We define VY similarly.
We call VX and VY the fundamental subschemes of X ∗ Y .

There is a geometric definition of the join, as described in section (C11) in
[AK75]. Let E,F be quasi-coherent OS-modules1. Suppose X and Y are closed
subschemes of P(E) and P(F ), respectively. Then X ∗ Y is a closed subscheme
of P(E ⊕ F ). Identify X and Y with their fundamental subschemes in X ∗ Y .
Then it is not difficult to see that X ∗ Y is the (closure of the) locus of points
lying on the lines of P(E ⊕ F ) determined by pairs of points from X and Y .

Proposition 1.1.2. Suppose X/k ⊂ Pn and Y/k ⊂ Pm are smooth projective
schemes. Then their join, X ∗Y has dimension dimX+dimY +1. The singular
locus is of dimension max{dimX,dimY } and consists of the disjoint union of
VX and VY .

Proof. Let SX =
⊕

d≥0H
0 (X,OX(d)) and SY =

⊕
d≥0H

0 (Y,OY (d)) be the
homogeneous coordinate rings of X and Y , respectively. We have that X ∗ Y ⊂
Pn+m+1.

Denote by C(X ∗ Y ) the scheme Spec(SX ⊗k SY ), which is the affine cone
over X ∗Y . It is a general fact that if A, B are two algebraic varieties, then the
singular locus of the product is equal to the union Sing(A)×B ∪A× Sing(B).
It follows that the singular locus of C(X ∗ Y ) = C(X)× C(Y ) is equal to

SingC(X)× C(Y )
⋃
C(X)× SingC(Y ).

Since X and Y are smooth, the only singular point on the affine cones are
the origins. Hence

Sing (C(X ∗ Y )) = {0} × Sing(C(Y ))
⋃

Sing(C(X))× {0}.

Projectivizing, we find that Sing(X ∗ Y ) = VX t VY , since (0, . . . , 0) is the
only common point of the affine cones. �

Recall that a scheme X is Cohen–Macaulay if all its local rings OX,x are
Cohen–Macaulay. This means that depth and codimension agree everywhere on
X. One implication of being Cohen–Macaulay is that X will have a dualizing
sheaf ωX . If the dualizing sheaf is a line bundle, then we say that X is
Gorenstein.

If the homogeneous coordinate ring of a projective variety X is a Gorenstein
ring, we say that X is arithmetically Gorenstein. In that case, the canonical
sheaf can be computed as the sheaf associated to the graded module

ExtcodimX
R (SX , SX(− dimN − 1)) = SX(−d),

1In our case, S = Spec k always. So E,F are just vector spaces.

2



1.2. Toric geometry

where R is the homogeneous coordinate ring of projective space. The last
equality is true by definition of Gorenstein graded rings (see [Eis95, page 550]).
The number d is the degree of the anticanonical embedding.

If X and Y are two arithmetically Gorenstein schemes, then their join is
also arithmetically Gorenstein. Furthermore, we can compute the canonical
sheaf in terms of the canonical sheaves of X and Y .

Proposition 1.1.3. Let X = ProjR and Y = ProjS be arithmetically Goren-
stein projective schemes with dualizing sheaves ωX , ωY , respectively (here R,S
are graded k-algebras). Let ΩX ,ΩY be R- and S-modules corresponding to ωX
and ωY , respectively.

Then X ∗ Y is arithmetically Gorenstein with dualizing sheaf ωX∗Y given by
the sheaf associated to the R⊗kS-module j∗1ΩX⊗R⊗kS j

∗
2ΩY (the homomorphism

j1 : R→ R⊗k S is given by r 7→ r ⊗ 1, and similarly j2).

Proof. The statement follows from Theorem 4.2 in [HHS16], where the authors
prove that the canonical module of a tensor product is the tensor product of
the canonical modules. �

Remark 1.1.4. If X and Y are arithmetically Gorenstein projective schemes,
their canonical modules are OX(n) and OY (m) for some m,n, respectively. It
follows from the above proposition that ωX∗Y = OX∗Y (m+ n). �

1.2 Toric geometry

Toric geometry lies somewhere in the intersection between algebraic geometry,
combinatorics and convex geometry. Toric varieties and their geometry can
be described completely in terms of explicit finite combinatorial data. This
makes toric geometry well suited for examples and explicit computations. In
this section we give a quick and dirty introduction to toric geometry.

Definition 1.2.1. A toric variety is an irreducible normal variety containing
the torus T = (C∗)n as a dense subset, such that the action of the torus on
itself extends to an action on the variety.

We fix some notation that will be used throughout. Details and proofs can
be found in [CLS11; Ful93]. Each toric variety comes with two dual lattices.
The lattice of 1-parameter subgroups N and the character lattice M . A one-
parameter subgroup is a morphism λ : C∗ → T that is a group homomorphism.
The set of one-parameter subgroups is a lattice isomorphic to Zn. A character
is a morphism χ : T → C∗ that is a group homomorphism. The set of characters
is a lattice M isomorphic to Zn which is naturally dual to N .

Let V be an R-vector space. Let V ∨ be the dual vector space. A convex
polyhedral cone is a subset σ of V of the form

3



1. Preliminaries

σ

(a) The cone
σ = 〈(1, 0), (1, 2)〉.

σ∨

(b) The dual cone σ∨.

Figure 1.1: A cone and its dual cone, defining an affine toric variety.

σ = {r1v1 + · · ·+ rsvs | ri ≥ 0 for all i},

where the vi’s are a finite set of vectors in V and the ri’s are real numbers. A
rational polyhedral cone is a cone such that the vectors vi can be taken to have
rational coordinates.

The dual cone σ∨ lives in V ∨, and is defined as the set of functionals that
are positive on σ:

σ∨
∆= {u ∈ V ∨ | 〈u, v〉 ≥ 0, v ∈ σ}.

Cones have two descriptions: either as the positive hull of a finite set of vectors
(as above), or implicitly, as the intersection of finitely many half-spaces. If the
ui’s generate σ∨, then it is true that

σ = σ∨
∨ = {v ∈ V | 〈ui, v〉 ≥ 0 for all i}.

The vectors ui are the inner normal vectors of the facets of σ.
A (commutative) semigroup is a set S with an associative, commutative

binary operation S × S → S, together with an identity element 0 ∈ S. Given a
cone σ ⊂ N , we can form a semigroup S ∆= σ∨ ∩M ⊆M . From this semigroup
S, we can form the semigroup algebra C[S]: it is the algebra generated by the
elements of S, with multiplicative structure inherited from S. We then define
Uσ as SpecC[σ∨ ∩M ], and call it the affine toric variety associated to σ.

We thus have a contravariant functor from the category of cones to the
category of affine toric varieties, sending σ to Uσ. This is an equivalence of
categories.

Example 1.2.2. Let σ = 〈(1, 0), (1, 2)〉 ⊂ R2. Then

σ∨ = 〈(2,−1), (0, 1)〉 ⊂ R2.

4



1.2. Toric geometry

σ0σ1

σ2

Figure 1.2: The fan corresponding to the toric variety P2.

See Figure 1.1. Then the semigroup ring Sσ is C[σ∨ ∩M ] = C[x, y, x2/y],
where we have identified x and y with the standard basis of R2. This ring is
isomorphic to C[a, b, c]/(a2 − bc), which is a quadric cone. ♥

General toric varieties are described using collections of cones called fans.
A set Σ of cones is called a fan if it closed under intersections and faces of
cones: if σ, σ′ ∈ Σ, then we also have σ ∩ σ′ ∈ Σ, and if σ′ ⊂ σ is a face with
σ ∈ Σ, then σ′ ∈ Σ also. Thus, given a fan Σ, we get a collection of affine toric
varieties Uσ for each cone σ ∈ Σ. We have inclusions Uσ∩σ′ ⊂ Uσ, and using
these inclusions we may glue the affine open sets Uσ to get a separated toric
variety.

If the fan is complete (meaning that the union of its cones is equal to N),
the corresponding toric variety is complete. A toric variety is smooth if and
only if all of its cones are smooth, and we say that a cone is smooth if it is
generated by part of a Z-basis for N .

Remark 1.2.3. Note that since the matrix formed by (1, 0) and (1, 2) have
determinant 2 ( 6= 1), we can observe directly (without computing the dual cone)
that the variety in Example 1.2.2 is singular. �

Remark 1.2.4. The category of fans and morphisms between them is equivalent
to the category of toric varieties and torus-invariant morphisms. �

Example 1.2.5. Consider Figure 1.2. This is the fan corresponding to the
toric variety P2. The dual cones σ∨i give rise to the algebras C[x, y], C[ 1

x ,
y
x ]

and C[xy ,
1
y ]. Their spectra glue to form P2. More complicated fans give rise to

exponents in the monomial generators. ♥

Projective toric varieties can be constructed from lattice polytopes. We
describe the procedure here. Let ∆ be a lattice polytope in M ' Zn. Let
M ′ = M ⊕ Z, and embed ∆ in M ′ by sending v to (v, 1). Let C(∆) be

5
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the cone over ∆ in M ′. Then C[C(∆) ∩M ′] is a Z-graded algebra. We let
X∆

∆= ProjC[C(∆) ∩M ′] be the associated projective variety.
If ∆ is a normal polytope, the projective variety X∆ is a toric variety. The

defining fan is the normal fan of ∆. This is described in Chapter 2 of [CLS11].
Note that X∆ comes with an ample line bundle O∆(1). The global sections

correspond to the lattice points of ∆.

1.2.1 Divisors and Picard groups of toric varieties

Recall that a Weil divisor is a formal linear combination of codimension 1
subvarieties of a scheme X (satisfying the “star” condition in Hartshorne
[Har77]). The group of Weil divisors modulo linear equivalence is the class
group of X, and is denoted by Cl(X). The group of line bundles modulo
isomorpism is the Picard group of X, and is denoted by Pic(X). The two groups
coincide for smooth varieties. They are in general very hard to compute, but
for toric varieties the computation is exceptionally easy, relying only on the
structure of the rays in the fan Σ defining the toric variety.

We describe the divisors on toric varieties. The description will be used in
Chapter 3, where we work out the geometry of the two smoothings of the affine
cone over the del Pezzo surface of degree 6.

Let X be a smooth toric variety, and let Σ(1) denote the set of one-
dimensional cones (called rays) in the fan Σ defining X. For each ray ρ,
let uρ ∈ N denote the primitive ray generator of ρ. Then one can show that
the torus-invariant divisors on X are in one-to-one correspondence with the
rays ρ ∈ Σ(1). Furthermore, every divisor on X is linearly equivalent to a
torus-invariant divisor. Using these two facts, one can prove the following:

There is an exact sequence:

0 M ZΣ(1) Pic(X) 0,C

where the rows of the matrix C are the vectors uρ. See [CLS11], Chapter 4, for
a proof.

There is also a description of the Cartier divisors on X in terms of support
functions on N : a support function is a function ϕ : |Σ| → R such that the
restriction ϕ

∣∣
σ
of ϕ to each cone in Σ is linear. A support function is integral

with respect to N if ϕ(|Σ| ∩N) ⊂ Z. This means that for each cone σ, there is
an mσ ∈M , such that ϕ(v) = 〈v,mσ〉 if v ∈ σ.

The set of support functions is an abelian group under addition, and by
Theorem 4.2.12 in [CLS11], there is an isomorphism between the group of
integral support functions on Σ and the torus invariant Cartier divisors on X.

Here is how one associates a support function to a divisor on a toric variety Y
(we assume that the fan of the toric variety is full-dimensional and complete). Let

6



1.3. Deformation theory and the Hilbert scheme

D =
∑
aρDρ be a Cartier divisor on Y . For each maximal cone σ ∈ Σ(dimY ),

one can show that there is an mσ ∈M such that

〈mσ, uρ〉 = −aρ
for all ρ ∈ σ(1). The collection {mσ}σ∈Σ(n) is called the Cartier data of D.

Given Cartier data of a divisor, we can define a convex function by the rule
u 7→ ϕD(u) = 〈mσ, u〉 if u ∈ σ.

1.3 Deformation theory and the Hilbert scheme

Deformation theory is the infinitesimal study of algebro-geometric objects
varying in families. Examples of such objects can be families of schemes,
families of projective schemes (respecting the embedding), families of vector
bundles, and so on.

In this section we will review some notation and motivation from defor-
mation theory. Although results from deformation theory are not central in
this thesis, many of the methods and objects have roots from or connections
with deformation theory. A reference for deformation theory is the book by
Hartshorne [Har10]. For a leisurely popular account connecting deformation
theory to other parts of mathematics, the article [Maz04] by Mazur is a nice
read.

Definition 1.3.1. Given a scheme X0 over C, a family of deformations of X0 is
a flat morphism π : X → (S, 0) with S connected such that π−1(0) = X0. If S is
the spectrum of an artinian C-algebra, then π is an infinitesimal deformation. If
S = SpecC[ε]/ε2, then π is a first order deformation. An embedded deformation
of an embedded scheme X0 ⊂ Pn is a deformation π : X → (S, 0) with
X ⊂ Pn × S such that π is the restriction of the projection π : Pn × S → S. A
deformation is trivial if it is isomorphic to the projection X0 × S → S.

A smoothing of X0 is a deformation of X0 over a curve, such that the general
fiber is smooth.

The sets of first-order embedded deformations have interpretations in terms
of “familiar” objects. See the first chapter of [Har10] for proofs.

Proposition 1.3.2. The set of all first order embedded deformations of a pro-
jective scheme X is in one-to-one correspondence with the group H0(X,NX/Pn),
where NX/Pn is the normal sheaf of X in Pn.2

Proposition 1.3.3. The set of all first order deformations of a smooth scheme
X is in one-to-one correspondence with the group H1(X, TX).

2Recall that this is by definition HomOX
(I/I2,OX), where I is the ideal sheaf of X.
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Remark 1.3.4. The intuition behind this result is the following. From the
normal sequence

0→ TX → TP
∣∣
X
→ NX/Pn → 0,

we get a surjection (for n ≥ 2):

H0(X, TP
∣∣
X

)→ H0(X,NX/Pn)→ H1(X, TX)→ 0.

The interpretation is that abstract deformations correspond to embedded defor-
mations modulo infinitesimal automorphisms of Pn. �

If we denote by Def(X) (resp. EmbDef(X)) the “space” of all (resp. em-
bedded) deformations of a scheme X, then the above proposition tells us that
H1(X, TX) (resp. H0(X,NX/Pn)) is the tangent space of the point [X] in
Def(X) (resp. EmbDef(X)).

There is a complex, called the cotangent complex, associated to A-algebras
B and B-modules M , that measures various deformation theoretic aspects of
SpecB. These are modules T i(B/A,M) for i ≥ 0. Only the first three will be
relevant to us, and we will present some ad hoc definitions.

Let B be an A-algebra, where A is a commutative ring. Let R be a
polynomial ring surjecting onto B and let I be the kernel. Let F be a free
R-module surjecting onto I, and let Q be its kernel. Then we have an exact
sequence

0→ Q→ F
j−→ I → 0.

There is a “Koszul” submodule F0 of F generated by the elements aj(b)− bj(a),
for a, b ∈ F . Note that j(F0) = 0, which implies that F0 ⊂ Q. Let L2

∆= Q/F0.
Let L1 = F ⊗R B, and let L0 = Ω1

R/A ⊗R B. These are the first few terms of
the cotangent complex:

L• : L2
d2−→ L1

d1−→ L0
0−→ 0.

The map d2 is induced by the inclusion Q→ F . The map d1 is the composition
of j : F → I with the derivation R→ Ω1

R/A.
For any R-module M , we now define

T i(B/A,M) ∆= Hi(HomB(L•,M)).

There are many things to be checked, but the details are all in [Har10].
We list a few of the important properties of the T i-functors here:

• We have an equality T 0(B/A,M) = DerA(B,M). If M = B, this is the
tangent module of B over A.
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1.3. Deformation theory and the Hilbert scheme

• If A = k[x1, . . . , xn] and B = A/I, then we have an exact sequence

Hom(Ω1
A/k,M)→ Hom(I/I2,M)→ T 1(B/k,M)→ 0. (1.1)

This gives us a way to compute T 1(B/k,M) which is amenable to computer
algebra software. Algorithms for computing T i(B/k,B) for i = 0, 1, 2 are
implemented in the Macaulay2 package VersalDeformations written
by Nathan Ilten [Ilt12].

• The module T 1(B/k,B) classifies first order deformations of the affine
scheme SpecB. It is a finite-dimensional k-vector space if SpecB has
only isolated singularities. Both T 1(B/k,B) and T 2(B/k,B) are zero if
B is smooth.

• The module T 2(B/k,B) contains “obstructions” for lifting infinitesimal
deformations to larger artinian rings.

• If B and M are graded, then T i(B/A,M) are graded as well.

If X is a projective variety and SX its homogeneous coordinate ring, let UX
denote SpecSX . Then the deformation theory of the affine cone and X itself
is closely related. This is studied for example in Schlessinger’s article [Sch73],
from which the following useful result can be deduced:

Proposition 1.3.5. Let X/k be a smooth projective Calabi–Yau variety, and
let SX be its homogeneous coordinate ring. Then we have an isomorphism

T 1(SX/k, SX)0 ' H1(X, TX),

where TX is the tangent sheaf of X, and the subscript denotes the degree zero
part of the module.

Proof. This is a combination of Theorem 2.5 and Corollary 2.6 in [DFF15],
using the fact that X is Calabi–Yau and smooth. �

This result makes computing Hodge numbers of projective smooth Calabi–
Yau’s amenable to computer calculations.

We include a somewhat lengthy example of how to compute the T i modules
for a relatively simple ring.

Example 1.3.6. Let B = k[x, y]/(x2, xy, y2) be the coordinate ring of the
double point in A2. We want to compute T i(B/k,B) for i = 0, 1, 2.

We have that T 0(B/k,B) = Derk(B,B), and this can be identified with the
kernel of the map

HomB(Ωk[x,y]/k, B) ϕ−→ HomB(I/I2, B).

9
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See Proposition 3.10 in [Har10]. The map ϕ can be identified with the
transpose of the Jacobian matrix of I. The module to the left is free, generated
by ∂

∂x and ∂
∂y . Up to scalars, ϕ is given by

ϕ =

x 0
y x
0 y

 .

Thus T 0(B/k,B) is equal to the set of (f, g) ∈ R2 annihilated by the ideal
m = (x, y) in B. But since R is k[x, y]/m2, this is equal to m ⊕ m. Thus
dimk Derk(B,B) = 4, corresponding to the fact that a fat point can move by
moving its support and also by moving its “tangent arrow”.

We can use the exact sequence (1.1) to compute T 1(B/k,B). We see that
T 1(B/k,B) is the cokernel of ϕ. We must first identify HomB(I/I2, B).

To compute this module, we start with a free resolution of I over P = k[x, y]:

0→ P 2

d1=

 y 0
−x y
0 −x


−−−−−−−−−−−−→ P 3

d0=

x2

xy
y2


−−−−−−−−→ I → 0.

It is then true that HomB(I/I2, B) can be identified with ker(d∨1 ⊗B). An easy
argument shows that this is m⊕m⊕m.

But the image of ϕ is a two-dimensional subset of HomB(I/I2, B). Hence
dimk T

1(B/k,B) = 6− 2 = 4.
The computation of T 2(B/k,B) is usually the hardest. We can identify

T 2(B/k,B) with HomB(Q/F0, B)/im (d1 ⊗B)∨, where F0 is the module of
Koszul relations and Q = im d1. Let us first compute HomB(Q/F0, B).

We start with finding a presentation for Q/F0. The module F0 is the
submodule of F = P 3 generated by the columns of the matrix

ψ =

 y2 xy 0
0 −x2 y2

−x2 0 xy

 .

The image of d1 is isomorphic to R2. Using this isomorphism, Q/F0 fits into
an exact sequence

R3

(
x y 0
0 x y

)
−−−−−−−−−→ R2 → Q/F0 → 0.

Applying HomB(−, B) is left-exact, so we get an exact sequence:

0→ HomB(Q/F0, B)→ B2

x 0
y x
0 y


−−−−−−−→ B3

10



1.4. Simplicial complexes and Stanley–Reisner schemes

It follows that HomB(Q/F0, B) = m ⊕ m. The image of d∨1 ⊗ B kills off
three of the four generators, so that T 2(B/k,B) is a 4 − 3 = 1-dimensional
vector space over k. This reflects the fact that the fat point correspond to a
singular point in its Hilbert scheme.

As we can see, already for this small example, there is a lot of computation
involved. Especially the computation of a free resolution is resource demanding
when the ideal have more than just two generators. Therefore computer algebra
software is invaluable when doing experiments in deformation theory. ♥

1.3.1 A few words about Hilbert schemes

The Hilbert scheme HP (t) parametrizes projective schemes with a given Hilbert
polynomial P (t). The proof of its existence is non-trivial, and was first given by
Grothendieck in [Gro95]. The proof was later simplified by Mumford [Mum66].
It is often just as easy to work with the functorial description of the Hilbert
scheme – namely with the functor it represents rather than the scheme itself.

The functor that the Hilbert scheme represents is the following: hP (t)(S)
is the set of all flat families X ⊂ S × Pn → S where the fibers have Hilbert
polynomial P (t). With this definition, it is not difficult to show for example
that the tangent space of HP (t) at a point corresponding to a scheme X is given
by H0(X,NX/Pn), where NX/Pn is the normal sheaf of X. Thus for a “generic”
scheme, the dimension of the component on the Hilbert scheme on which it lies,
is given by h0(X,NX/Pn).

Note that two different points on HP (t) might represent isomorphic schemes.
Two schemes are different if they occupy different points in Pn. We often
write Hilb(X) for the component of the Hilbert scheme containing a scheme X.
With this notation, allowing deformations outside Pn corresponds to applying
the forgetful functor Hilb(X) → Def(X), where Def(X) is the “space” of all
deformations of X.

1.4 Simplicial complexes and Stanley–Reisner schemes

Stanley–Reisner schemes are certain degenerate projective schemes modelled on
simplicial complexes.

Let [n] denote the set of numbers {0, . . . , n}. The power set of [n] is called
the n-simplex and is denoted by ∆n.

Definition 1.4.1. A simplicial complex is a subset K ⊆ ∆n (for some n), such
that if f ∈ K and g ⊆ f , then g ∈ K. The subsets of K of cardinality one are
called the vertices of K. The subsets of codimension one are called facets of K.
The subsets of K are called faces. The dimension of a face f is equal to |f | − 1.

11
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It is often convenient to organize the number of faces of various dimensions in
the f-vector. It is a tuple (f0, f1, . . . , fd), where fi is the number of i-dimensional
faces of K.

To every simplicial complex we can associate a Stanley–Reisner scheme as
follows.

Let k be a field, and let PK be the polynomial ring over k with variables
indexed by the vertices of K. Then the face ring or Stanley–Reisner ring of
the simplicial complex K is the quotient ring AK = PK/IK, where IK is the
ideal generated by monomials corresponding to non-faces of K. Note that AK
is generated as an algebra by monomials corresponding to faces of K.

The ideal IK is graded since it is defined by monomials. This leads us to
define the Stanley–Reisner scheme P(K) as ProjAK.
Remark 1.4.2. The ideal IK is generated by the non-faces of K, but it is
minimally generated by the minimal non-faces of K, just as a simplicial complex
is determined by its maximal facets. �

Example 1.4.3. Let K be the triangle with vertices {v1, v2, v3}. Its maximal
faces are v1v2, v2v3 and v1v3. The Stanley–Reisner ring is k[v1, v2, v3]/(v1v2v3).

Note that Proj(AK) deforms to a smooth cubic curve. ♥

Example 1.4.4. Let K be a hexagon with vertices {v1, . . . , v6}, indexed cycli-
cally. The minimal non-faces are the edges vivi+2 and vivi+3 (indices taken mod-
ulo 6). Thus the Stanley–Reisner ring is k[v1, . . . , v6]/ (vivi+2, vivi+3)i=1,...,6.
Its Proj is a degenerate elliptic curve. ♥

The join of two simplicial complexes K and K′ is defined as

K ∗ K′ ∆= {f t g | f ∈ K, g ∈ K′} ,

where t denotes the disjoint union. We have that P(K ∗ K′) = P(K) ∗ P(K′),
where the second star means the join of two projective varieties.

If f ⊂ K is a face, the link of f in K is the simplicial complex defined by

lk(f,K) ∆= {g ∈ K | f ∩ g = ∅, f ∪ g ∈ K}.

If D+(xf ) ⊂ P(K) denotes the distinguished open set corresponding to the
monomial xf , we have that D+(xf ) = A(lk(f,K))× (k∗)dim f .

Every simplicial complex has a geometric realization, which as a set is defined
as follows:

|K| ∆=
{
α : [n]→ [0, 1] | supp(α) ∈ K,

n∑
i=1

α(i) = 1
}
.

This is an example of a piecewise linear manifold. For more on piecewise
linear manifolds and combinatorial topology, we refer the reader to one of
[Gla70; Spa66; Hud69].
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(a) A non-manifold simplicial
complex. The link at the two
right vertices are not spheres.

(b) A simplicial mani-
fold.

Figure 1.3: Two examples of simplicial complexes.

Motivated by this, we single out a class of simplicial complexes:

Definition 1.4.5. A simplicial complex K is called a manifold if the geometric
realization of every link lk(K, v) (v is a vertex) is homeomorphic to a sphere.

See Figure 1.3 for a non-example and an example of simplicial manifolds.
A good reference for more on simplicial complexes is Stanley’s green book

[Sta96].

1.4.1 Smoothings of Stanley–Reisner schemes

Because many properties of smooth varieties are easier read off from their
degenerations, it is an interesting problem to study smoothings of Stanley–
Reisner-schemes (or conversely: degenerations of smooth schemes to Stanley–
Reisner schemes). They are highly singular, but their ideal structure is much
simpler than that of smooth schemes.

We state a few lemmas to give a feel for how the theory of simplicial
complexes relate to their deformations.

Lemma 1.4.6. If K is a simplicial complex, then Hi(K; k) ' Hi(P(K),OP(K)).

The lemma is essentially due to Hochster, and is proved (in a different form)
in Stanley’s book [Sta96]. This is true essentially because the Čech complex
computing the simplicial cohomology and the Čech complex computing sheaf
cohomology look exactly the same.

Lemma 1.4.7. If K is a 3-dimensional simplicial sphere, then a smoothing of
X0 = P(K) will be Calabi–Yau.
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Proof. Let π : X → S be a smoothing. Since K is a sphere, it follows from
Lemma 1.4.6 that Hi(X0,OX0) = k for i = 0, 3, and zero for i 6= 0, 3. The
triviality of the canonical bundle is proved in Theorem 6.1 in [BE91]. Since
H1(K; k) = H2(K; k) = 0, it follows from the semicontinuity theorem (Theorem
12.8 in Chapter III in [Har77]) that Hi(Xt,OXt) = 0 for all t ∈ S. Similarly, if
ω0 ' OX0 , all nearby fibers must have trivial canonical bundle as well. �

It is an important fact that since Stanley–Reisner rings are defined by
monomial ideals, their coordinate rings and all important modules associated
to them are multigraded, meaning that they are graded not only by Z, but by
Zn. If M is a multigraded module, we write Ma for the component of M in
degree a ∈ N. Given a weight vector c ∈ Zn, we can write c uniquely as a − b
with a,b ∈ N0, such that a and b have disjoint supports3. The support [K] of
a simplicial complex K is defined by:

[K] = {i ∈ [n] | {i} ∈ K}.

The following is a result by Altmann and Christophersen ([AC10, Theorem
4.6]. It expresses the deformation theory of Stanley–Reisner schemes purely in
terms of their combinatorial data. We refer the reader to the original article for
the details.

Theorem 1.4.8. If K is a simplicial manifold, and c = a − b (with disjoint
supports a and b), then

dimk T
1 (AK/k,AK)c =

{
1 if a ∈ K and b ∈ B(lk(a,K))
0 otherwise.

Here B(K) is defined as follows:

Definition 1.4.9. The set B(K) is the set of b ⊆ [K] with |b| ≥ 2 such that

1. K = L ∗ ∂b, where |L| is an (n− |b|+ 1)-sphere, if b 6∈ K.

2. K = L ∗ ∂b ∪ ∂L ∗ b̄ where |L| is an (n− |b|+ 1)-ball, if b ∈ K.

The theorem is useful in that it says that certain faces of a simplicial complex
contribute more than others to the space of deformations. There is also a similar
result for T 2(AK/k,AK), saying that certain kinds of faces contribute to the
obstruction space.

3The support of a vector a is the set of its non-zero coordinates.
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1.5 Calabi–Yau manifolds and mirror symmetry

The main contribution of this thesis is concerned with the construction of
new Calabi–Yau manifolds. In this chapter we define what they are, and give
examples on how to construct them.

Definition 1.5.1. A Calabi–Yau manifold is an irreducible complex projective
variety X such that ωX ' OX and Hi(X,OX) = 0 for i = 1, . . . ,dimX − 1.

We will always have dimX = 3. Beware that the literature often requires
Calabi–Yau manifolds to be smooth, or to have only certain kinds of singularities.

Mathematically, Calabi–Yau varieties are interesting because they are among
the varieties having Kodaira dimension zero. This means that they have trivial
canonical models, making them harder to study.

Before the 90’s there were only sporadic constructions of Calabi–Yau varieties,
but after the advent of toric geometry and the construction of Batyrev in [Bat94],
thousands of new examples were found, all of which were anticanonical sections
in Fano toric varieties.

Let Ω1
X be the sheaf of holomorphic one-forms on X, and assume that

dimX = 3. Let hij denote the dimension of Hj(X,Ωi
X). Here Ωi

X is by
definition the wedge product ∧iΩ1

X . Then we can form the Hodge diamond of
X:

h00

h01 h10

h02 h11 h20

h03 h12 h21 h30

h13 h22 h31

h23 h32

h33

Because of the Calabi–Yau condition, we have that hj0 = 0 for 0 < j < 3,
and also that h00 = h0d = 1. It follows by Serre duality (see [Har77, Corollary
7.7, Chapter III]) that hij = h3−i,3−j . Note that this amounts to a horizontal
symmetry of the Hodge diamond. Since X was assumed to be a complex
manifold, it follows by complex conjugation that hij = hji. This amounts to
vertical symmetry of the Hodge diamond. It follows that for 3-dimensional
Calabi–Yau varieties, the Hodge diamond simplifies to
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1
0 0

0 h11 0
1 h12 h12 1

0 h11 0
0 0

1

.

The Hodge decomposition theorem [Voi02, page 142] states that the singular
cohomology groups decomposes as

Hk(X,C) =
dimX⊕
i+j=k

Hi(X,ΩjX).

The topological Euler characteristic is defined as

χ(X) =
2 dimX∑
k=0

(−1)k dimCH
k(X,C).

For 3-dimensional Calabi–Yau varieties, it follows from the above discussion
that χ(X) can be computed as 2(h11 − h12).

Example 1.5.2. The canonical example of a Calabi–Yau variety is the quintic
in P4. Let X = V (f) be the zero locus of a general element in H0 (P4,OP4(5)

)
.

Then X is a smooth threefold, and by the adjunction formula we have

ωX = ωP4
∣∣
X
⊗ det

(
(f)/(f)2)∨ = ωP4

∣∣
X
⊗ OX(5) = OX(−5)⊗ OX(5) = OX ,

so the canonical bundle is trivial. By the ideal sheaf sequence, we find that
Hi(X,OX) ' Hi (X,OP4(−5)), for i ≥ 0, which by [Har77, Theorem 5.1,
Chapter III] implies the required vanishing of the structure sheaf cohomology
groups.

The Euler characteristic can be computed as the degree of the top Chern
class of X. If Y is a degree d hypersurface in Pn, the following formula holds:

cn−1(TX) = hn−1
((

n+ 1
n− 1

)
− d
(
n+ 1
n− 2

)
+ d2

(
n+ 1
n− 3

)
+ . . .

)
,

where h is the class of a hyperplane. Putting n = 4 and d = 5, we find that
χ(X) = −200.

To compute h11, we consider the conormal sequence:

0→ OX(−5)→ Ω1
P4

∣∣
X
→ Ω1

X → 0.
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Then we see that H1(X,Ω1
X) ' H1(X,Ω1

P4

∣∣
X

). Finally, consider the re-
stricted Euler sequence:

0→ Ω1
P4

∣∣
X
→ OX(−1)5 → OX → 0.

By considering the associated long exact sequence, we see easily that h11 = 1,
and since χ(X) = 2(h11 − h12) we find that h12 = 101. ♥

In general it is very hard to compute the Hodge numbers of Calabi–Yau
varieties, with the exception of hypersurfaces in four-dimensional toric varieties.
Often the best one can hope for is the topological Euler characteristic χ(X),
which is much easier to compute.

A variety Y is Fano if the anticanonical line bundle ω−1
Y is ample. Recall

the statement of Kodaira vanishing, which says that if L is an ample invertible
sheaf, then Hq(Y,L ⊗ Ωp

Y ) = 0 for p + q > d, where d = dimY . Putting
L = ω−1

Y , and p = d, we find that Hq(Y,OY ) = 0 for q > 0. This fact will be
used in the proof below.
Remark 1.5.3. Kodaira vanishing only holds for smooth varieties, but since
dimkH

q(Y,OY ) is upper semi-continuous, it follows that all smoothable Fano
varieties have Hq(Y,OY ) = 0 as well. �

Given a Fano variety, there is an associated family of complete intersection
Calabi–Yau varieties:

Proposition 1.5.4. Let Y ⊂ PN be an n-dimensional Fano variety with
ωY = OY (−k). Suppose n > 1. Then a general section X of OY (1)⊕k is
an n− k-dimensional Calabi–Yau variety.

Proof. The triviality of the canonical bundle follows from the adjunction formula,
which says that

ωX = ωY
∣∣
X
⊗

k∧
(IX/I2

X)∨.

A general section of OY (1)⊕k is a complete intersection, and the normal
bundle is then equal to OX(1)⊕k. It is then true that ∧kOX(1)⊕k = OX(k),
from which it follows that the canonical bundle is trivial.

From Remark 1.5.3 we have that the cohomology groups Hi(Y,OY ) = 0
for i > 0 when Y is a Fano variety. The vanishing of the cohomology groups
Hi(X,OX) for i = 1, . . . , n− k can be seen as follows. The structure sheaf OX
has a Koszul resolution of the form

0→ OY (−k)→ OY (−k + 1)⊕( k
k−1) → . . .→ OY

⊕k(−1)→ IX → 0.

Note that all terms OY (−j) with 0 < j < k are cohomologically trivial, in
the sense that H∗(Y,OY (−j)) = 0. An induction argument then shows that
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Hp(Y, IX) ' Hp+k−1(Y,OY (−k)) (1.2)

for all p. Consider the ideal sheaf sequence

0→ IX → OY → OX → 0.

The beginning of the associated long exact sequence is

0→ H0(Y, IX)→ H0(Y,OY )→ H0(X,OX)→ H1(Y, IX).

It follows by (1.2) that the first group is equal to

Hk−1(Y,OY (−k)) Serre' Hn−k+1(Y,OY ) = 0

for k > 0. The right term is equal to

Hk(Y,OY (−k)) Serre' Hn−k(Y,OY ) = 0.

Now assume i > 0. Then we find that Hi(X,OX) ' Hi+1(Y, IX). From the
observation above, this group is non-zero only when n− k − i = 0. Thus

Hi(X,OX) =


k i = 0
0 i < n− k
k i = n− k.

Since X has dimension n− k, we have now proved that X is Calabi–Yau, since
we have checked the triviality of the canonical sheaf and the vanishing of the
middle cohomology groups. �

1.5.1 Mirror symmetry

After the invention of string theory in the late 60’s, Calabi–Yau varieties caught
the attention of theoretical physicists. They predict that space-time is really
10-dimensional, and locally looks like R4×X, where X is a Calabi–Yau manifold
of complex dimension 3.

They predicted that every Calabi–Yau manifold X has a “mirror partner”
X◦ in such a way that there is a natural isomorphism between the moduli
space of complex structures on X (whose dimension is h11(X)), and the moduli
space of Kähler structures on X◦ (whose dimension is h12(X◦)), and vice
versa. It follows that their Hodge numbers satisfy h11(X) = h12(X◦) and
h12(X) = h11(X◦).

This correspondence was named mirror symmetry because by going from X
to X◦, the Hodge diamond is “mirrored” horizontally.
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In the 90’s, Candelas et al. constructed the mirror of the general quintic
[Can+91]. They calculated certain Hodge theoretic invariants on the mirror, and
used them to count rational curves of all degrees on the general quintic. This
greatly surprised the mathematical community, because earlier this computation
had only been done for low degree curves.

The mathematical proof of this curve counting led to the invention of
Gromov–Witten-invariants and homological mirror symmetry. Today mirror
symmetry is often best understood as an equivalence between two derived
categories.

Mirror symmetry is a fascinating and notoriously technical topic. There
are several good introductions, depending upon taste and technical proficiency.
Two of the most comprehensive introductions are [CK99] and [Hor+03].

Explicitly constructing mirrors of Calabi–Yau manifolds have become a
small industry in the mathematics community. In the last chapter of this thesis,
we propose mirror candidates for two of our Calabi–Yau constructions.

1.5.2 The mirror construction Ansatz

In many cases of interest, given a construction of a Calabi–Yau manifold, the
following Ansatz produces a mirror.

Let K be a simplicial complex, with associated Stanley–Reisner scheme X0.
Let G be the automorphism group (or a subgroup of the automorphism group)
of K. Then G induces an action on T 1

X0

∆= T 1(SX0/k, SX0) in the following way:
each element of T 1

X0
can be represented by a φ ∈ Hom(I/I2, A), and then g · φ

is given by (g · φ)(f) = g · φ(g−1 · f).
There is an action of Tn = (C∗)n+1/C∗ on Pn, and since IX0 is generated

by monomials, the action restricts to an action on X0 as well.
Given a smoothing family with general fiber X and special fiber X0, we

can consider a subfamily with only isolated singularities on which G act. Let
H ⊂ Tn be the subgroup of the torus acting on this family. Then the mirror
candidate to X is given by a crepant resolution of Yt = Xt/H.

Though it is often overlooked (or stated differently) in the literature, even
the mirror construction of the famous quintic arises this way. Briefly, the quintic
Calabi–Yau is given by the zero locus of a general element in H0(P4,OP4(5)).
The special quintic given by the zeroes of f = x0x1x2x3x4 is the Stanley–Reisner
scheme associated to the 3-simplex. The automorphism group is S5, and an
invariant 1-parameter family is given by ft =

∑4
i=0 x

5
i + tx0x1x2x3x4. The fiber

at t =∞ is the Stanley–Reisner scheme.
There is an H ∆= (Z/5)5/Z5-action on Xt = Z(ft) given by coordinate-wise

multiplication by fifth roots of unity. Thus H is a subgroup of T5. The general
element of the family Xt is smooth, so the only singularities of the quotient
Yt = Xt/H comes from points with non-trivial stabilizer. These can be resolved
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by methods from toric geometry. For details, see for example the first chapter
of Ingrid Fausk’s thesis [Fau12].

In the last chapter of this thesis, we use this Ansatz to produce mirror
candidates for two of our Calabi–Yau constructions.
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CHAPTER 2

Hyper-Kähler manifolds and
triangulations of CP2

This chapter will not contain any new results of any significance, but is rather
a report on an idea which branched off to the explorations in the next two
chapters.

We explain an interesting connection between the topological space CP2

and degenerations of hyper-Kähler manifolds.

2.1 Hyper-Kähler manifolds

One often divides varieties into three types: those with positive, negative or
trivial canonical class. Of those with trivial canonical class, three prominent
types stand out: Calabi–Yau-manifolds, hyper-Kähler manifolds and complex
tori.

Calabi–Yau manifolds look cohomologically like spheres (in the sense that
Hi(X,OX) ' H2i(Sn; k)). Complex tori (which are Cn modulo a lattice), have
structure sheaf cohomology Hi(X,OX) = ∧iCn, and trivial tangent bundle.
Hyper-Kähler manifolds have trivial fundamental group, as do Calabi–Yau
manifolds, but non-trivial structure sheaf cohomology, as do complex tori.

Definition 2.1.1. A hyper-Kähler manifold X is a simply connected com-
pact Kähler1 complex manifold such that H0(X,Ω2

X) is generated by a non-
degenerate 2-form σ : TX × TX → C.

Remark 2.1.2. Because of the non-degeneracy of the symplectic form σ ∈
H0(X,Ω2

X), hyper-Kähler manifolds only occur in even dimensions: the de-
terminant of the skew-symmetric form σ is detσ = (−1)n detσ, implying
(−1)n = 1, so that n has to be even. �

1Recall that a complex manifold is Kähler if it is equipped with a Hermitian metric h
whose associated two-form σ is closed. The two-form σ is defined by σ(u, v) = <h(iu, v).



2. Hyper-Kähler manifolds and triangulations of CP2

Remark 2.1.3. Since the two-form σ is non-degenerate, it follows that the
canonical sheaf ωX = ΩnX/C is trivial. The map 1 7→ σn/2 gives an isomorphism
OX → ωX . �
Remark 2.1.4. In dimension 2, there is no difference between Calabi–Yau
varieties and hyper-Kähler manifolds. These are the K3 surfaces2. �

For our purposes it will be useful to define a class of varieties similar to the
class of hyper-Kähler manifolds.

Definition 2.1.5. Suppose X is a smooth projective variety over C satisfying

1. H1(X,OX) = 0 and

2. H0(X,Ω2
X) is generated by a non-degenerate 2-form σ : TX × TX → C.

Then we call X an algebraic hyper-Kähler manifold.

The first condition is an algebraic condition mimicking the π1(X)-condition
for hyper-Kähler manifolds.

Proposition 2.1.6. If X is a projective hyper-Kähler manifold, then X is an
algebraic hyper-Kähler manifold.

Proof. By Hodge decomposition, we have H1(X;C) = H0(X,Ω1
X)⊕H1(X,OX).

The left group is zero because it is equal to π1(X)/[π1(X), π1(X)]⊗Z C, which
by definition is trivial. It follows that both terms on the right-hand side are
zero as well. �

Only a few explicit families of hyper-Kähler manifolds are known. Below we
sketch the construction of two such families.

2.1.1 The Hilbert square S[2]

Let S be a K3 surface with symplectic form σ, and let S(2) be its symmetric
square: S × S/{(p, q) ∼ (q, p)}. Let πi : S × S → S be the two projections
(i = 1, 2). Then the 2-form π∗1σ + π∗2σ is Z/2-invariant. It follows that it
descends to a 2-form τ on S(2).

The space S(2) is singular along the diagonal: locally it is isomorphic to
C2 ×

(
C2/(x ∼ −x)

)
. The second factor is a quadric cone, so a single blowup

along the diagonal will resolve the singularities. The form τ lifts to a non-
degenerate form on the blowup Bl∆ S(2), which we denote by S[2]. It can be
shown that it is in fact a hyper-Kähler variety of dimension 4. The resulting
space is denoted by S[2], and is called the Hilbert square of S, or the Hilbert
scheme of two points on S. It parametrizes length two subschemes of S.

For more details on this construction, see Beauville’s original paper [Bea83].
2K3 surfaces are named after Kummer, Kähler and Kodaira.
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2.2. Connection to the complex projective plane

2.1.2 Lines on hypersurfaces

There is another construction of hyper-Kähler varieties that is relevant to us.
Let X be a smooth cubic fourfold in P5. Let F (X) denote the set of lines
contained in X. It is the Fano variety of lines on X, and is a closed subset of
the Grassmannian G(1,P5).

Proposition 2.1.7. If X is a smooth cubic fourfold in P5, then F (X) is a
4-dimensional (algebraic) hyper-Kähler variety.

In the article [BD85], Beauville and Donagi shows that F (X) is deformation
equivalent to S[2] for some K3 surface S. They also show that if X is a pfaffian
hypersurface, then F (X) is actually isomorphic to S[2] for some K3 surface S.
Furthermore, the family {F (X)} obtained this way is 19-dimensional, and is a
hypersurface in the deformation space of S[2].

For more details on hyper-Kähler manifolds and their constructions, we
recommend the lecture notes by Lehn [Leh04].

2.2 Connection to the complex projective plane

Let X be a topological space. Recall that the symmetric product X(2) is defined
as follows:

X(2) ∆= X ×X/{(x, y) ∼ (y, x)}.
If X = S2, we have that X(2) is naturally isomorphic to CP2, which can be

seen as follows: S2 can be identified with P1
C. Unordered pairs of points in P1

correspond to degree 2 polynomials up to scalar multiplication. Hence we have
identifications

(S2)(2) = (P1)(2) = {(P,Q) ∈ P1 × P1}/Z2 = P
(
H0(OP1(2))

)
= CP2.

Here is an observation.

Lemma 2.2.1. If K is a simplicial complex that is a manifold, isomorphic to
S2, then a smoothing of K is K3 surface.

Proof. See the article [BE91] by Eisenbud–Bayer. �

Stanley–Reisner degenerations of K3 surfaces correspond to triangulated
2-spheres. Since the symmetric square of a sphere is CP2, a Stanley–Reisner
degeneration of the symmetric square of a K3 surface should correspond to a
triangulated CP2.

Thus a naïve idea is this: since F (X) is deformation equivalent to S[2], we
would like to find the ideal of F (X), and then find a square-free monomial
degeneration of F (X). This would correspond to a Stanley–Reisner triangulation
of CP2:
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2. Hyper-Kähler manifolds and triangulations of CP2

Proposition 2.2.2. Suppose K is a triangulation of CP2 and X0 = P(K) is
its associated Stanley–Reisner-scheme. Then a smoothing X of X0 will be an
algebraic hyper-Kähler manifold.

Proof. The dimensions of the groups Hi(X,OX) are in this case constant in
flat families. Because of the triviality of the canonical bundle, we have that
h0 = h4 = 1. Also, h1 = h3 = 0, and by semi-continuity h0 and h4 can not
drop. Since H0(X,Ω2

X) = H2(X,OX) = H2(K;C) = C (the first equality is
complex conjugation), we have that H0(X,Ω2

X) is generated by a single 2-form.
It is non-degenerate since ωX ' OX .

It follows that X is an algebraic hyper-Kähler manifold. �

2.3 Smoothing Stanley–Reisner schemes associated to
triangulations of CP2

If K is a triangulation of CP2 and P(K) is the associated Stanley–Reisner-scheme,
a smoothing of P(K) will give an algebraic hyper-Kähler manifold. Using this
idea, and the Macaulay2 package VersalDeformations (by Nathan Ilten, see
[Ilt12]), we tried to find potentially new hyper-Kähler varieties. Unfortunately,
it looks like all the triangulations we experimented with were not smoothable.

In the next four subsections we describe four different triangulations of
CP2, their ideal structure, and compute some of their deformation theoretic
invariants. In all cases we conclude that the corresponding Stanley–Reisner
scheme is probably not smoothable.

Before we go on to describe the triangulations, we recall some basic facts
about combinatorial manifolds.

We can decompose CP2 into three four-dimensional closed balls Bj , whose
pairwise intersections are solid tori Πij

∆= Bi ∩Bj , and whose triple intersection
is a two-dimensional torus T . The closed ball B0 is defined as

B0 =
{

[x0 : x1 : x2] ∈ CP2 | x0x0 ≥ x1x1, x0x0 ≥ x2x2
}
,

and similarly for B1 and B2. This is called the equilibrium decomposition of
the complex projective plane.

A triangulation of CP2 is equilibrium if the closed balls, the solid tori, and
the torus T are subcomplexes of the triangulation. Several of the triangulations
below are equilibrium.

2.3.1 The 15-vertex triangulation

A very interesting triangulation T of CP2 is discovered in [Gai09] by Alexander
Gaifullin. Gaifullin describes a triangulation of CP2 using 15 vertices. One
reason it is interesting is that the corresponding Stanley–Reisner scheme P(T )
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has the same Hilbert-polynomial as F1(X), the Fano variety of lines on a cubic
hypersurface. This means that they live in the same Hilbert scheme, and one
could naively hope that they live in the same component as well, meaning that
there exists a degeneration of F1(X) to P(T ).

We will spend some time describing this triangulation, since parts of it
inspired our construction of the Calabi–Yau’s in the last chapter. We cite the
definition ad verbatim from [Gai09].

Definition 2.3.1. Let V4 ⊂ S4 be the Klein four group. The vertex set of T
is defined as

V = (V4\{e}) t ({1, 2, 3, 4} × {1, 2, 3}) .
Thus the vertices of T are the permutations (12)(34),(13)(24) and (14)(23) and
the pairs of integers (a, b) with 1 ≤ a ≤ 4 and 1 ≤ b ≤ 3. The maximal faces
are spanned by the sets

ν, (1, b1), (2, b2), (3, b3), (4, b4)

with ν ∈ V4\{e} and 1 ≤ ba ≤ 3 (a = 1, 2, 3, 4) such that bν(a) 6= ba for
a = 1, 2, 3, 4.

See Appendix A.4 for a SAGE [Wil17] script for computing the maximal
facets of T . The face-vector is (15, 90, 240, 270, 108).

The triangulation T is the union over the cones over three 3-spheres Sj , so
that T is an equilibrium triangulation. Each Sj is a very simple 3-sphere. It is
the join of two hexagons (recall that S1 ∗ S1 ≈ S3).
Remark 2.3.2. It is the Stanley–Reisner-scheme of Sj and some if its defor-
mations that is studied in Chapter 4, leading to constructions of some new
Calabi–Yau manifolds. �

We compute some deformation-theoretic invariants of P(T ), the Stanley–
Reisner scheme associated to T .

Proposition 2.3.3. We have:

dimC T
1(SP(T )/k, SP(T ))0 = 90

dimC T
2(SP(T )/SP(T ))0 = 306.

The normal sheaf NP(T )/P14 has 300 global sections.

The proof is a computation in Macaulay2. We remark that since P(T ) is
not Cohen–Macaulay, some standard comparison theorems does not hold. In
our case we only have an inclusion T 1(SP(T )/k, SX)0 ↪→ T 1, where the right
module parametrizes all first-order deformations. See the article of Kleppe
[Kle79] and his Theorem 3.9. This means that there might be deformations of
P(T ) that are not induced from the ambient projective space.
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2. Hyper-Kähler manifolds and triangulations of CP2

Because of the high number of parameters, we have not been able to say
anything meaningful regarding the deformations of P(T ). However, it is possible
to deform P(T ) into the union of three toric varieties, each being deformations
of the Stanley–Reisner scheme P(Bj). This is not surprising, since Bj is a
triangulation of the normal polyhedron of the corresponding toric variety. This
deformation reduces the number of components of P(T ) from 108 to 3.

It is not clear however if this union of toric varieties can be further deformed.

2.3.2 Kühnel’s 9-vertex triangulation

The minimal triangulation T9 of CP2 is a 9-vertex triangulation with f-vector
(9, 36, 84, 90, 36). This implies that the associated Stanley–Reisner scheme P(T9)
lives in P8 and is of degree 36. The automorphism group of T9 is a group of
order 54, and it can be realized as a semidirect product (Z3×Z3)nZ3nZ2. For
a very readable account of the construction and motivation of this triangulation,
consult the article [KB83] by Kühnel–Banchoff.

The ideal has a resolution of the form (in Macaulay2 format):

0 1 2 3 4 5 6
total: 1 36 90 84 37 9 1

0: 1 . . . . . .
1: . . . . . . .
2: . . . . . . .
3: . 36 90 84 36 9 1
4: . . . . . . .
5: . . . . 1 . .

This means that the ideal of P(T9) is generated by 36 cubic monomials, and
there are 90 relations between them, lying in OP(T9)(−5), et cetera. Since the
resolution is not symmetric, we see immediately that P(T9) is not arithmetically
Gorenstein.

Proposition 2.3.4. We have

dimC T
1(SP(T )/k, SP(T ))0 = 21

dimC T
2(SP(T )/k, SP(T ))0 = 126.

The normal sheaf NP(T9)/P8 has 93 global sections.

We can compute the action of the automorphism group on T 1. Using SAGE,
we find that the 21 deformation parameters split in two orbits, one of size 3
and one of size 18.

We have not been able to lift any first-order deformation of P(T9) to a family
over SpecC[t].
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2.3.3 The minimal equilibrium triangulation

In [BK92], Banchoff and Kühnel construct a 10 vertex equilibrium triangulation
T10 of CP2. They start with the minimal 7-vertex triangulation of the torus,
and then they construct T10 by taking cones over unions of three tori.

The automorphism group is of order 42, and comes from the symmetries of
the torus.

The Betti table of the resolution of the ideal of P(T10) is the following:

0 1 2 3 4 5 6 7
total: 1 38 128 177 123 46 10 1

0: 1 . . . . . . .
1: . 3 2 . . . . .
2: . . . . . . . .
3: . 35 126 175 120 45 10 1
4: . . . 2 3 . . .
5: . . . . . 1 . .

Again we see that the ideal is not Gorenstein.

Proposition 2.3.5. We have

dimC T
1(SP(T )/k, SP(T ))0 = 42

dimC T
2(SP(T )/k, SP(T ))0 = 105.

The normal sheaf NP(T10)/P8 has 132 global sections.

In fact, it is possible to lift the versal family of deformation parameters to an
honest family over SpecC[t1, · · · , t42], using the VersalDeformations package.
Surprisingly, even though the T 2-module is big, there are no obstructions in the
family (in the sense that the base space is A42). However, the generic member
of this family is reducible (verified in Macaulay2 for “random” values of the
deformation parameters), implying that P(T10) is not smoothable.

The automorphism group act transitively on the natural basis of T 1, so that
dimC T

1(SP(T )/k, SP(T ))0
G = 1.

2.3.4 The Bagchi–Datta triangulation

There is another 10-vertex triangulation TBD of CP2, which is obtained as a
Z/2-quotient of a triangulation of S2 × S2. It is described in the article [BD11]
by Bagchi–Datta. The automorphism group is the alternating group A4. The
face-vector is (10, 45, 110, 120, 48).

The triangulation is bistellarly equivalent to both the 9-vertex triangulation
and the 10-vertex triangulation above.
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Proposition 2.3.6. We have

dimC T
1(SP(T )/k, SP(T ))0 = 41

dimC = T 2(SP(T )/k, SP(T ))0 = 180.

The normal sheaf NP(TBD)/P8 has 131 global sections.

We have not been able to find any meaningful lifting of the first-order
deformations here either.

2.4 Naïve attempt to degenerate

Degenerating the ideal of F1(X) ⊂ PN to a square-free monomial ideal should
give a triangulation of CP2. Since F1(X) sits inside G(1, 5), and there are many
known degenerations of G(1, 5), we hoped that maybe F1(X) would degenerate
inside G(1, 5). Unfortunately, we did not succeed, mainly because we could not
see any structure in the ideal of F1(X).

It was possible to explicitly compute F1(X) for some hypersurfaces, both
pfaffian and non-pfaffian. However, the ideals were too complicated and the
Gröbner bases too big to find any initial ideals with only square-free generators
(and even their existence is unclear).

2.5 Conclusion

It would be interesting to study other triangulations of CP2. One way to proceed
would be to start with existing triangulations, and analyze which faces of a
given triangulation corresponds to basis elements of the T 2 module, perhaps
using the results by Altmann–Christophersen from [AC10]. Then one can do
bistellar flips away from these combinations, ideally obtaining triangulations
corresponding to unobstructed Stanley–Reisner schemes.

This is an interesting and very hard question. Even with an unobstructed
triangulation, it is not clear how to proceed to smooth it in a computationally
feasible way. Already with Gröbner bases with 50 elements (for deformations
of the 15-vertex triangulation, they had around 70 elements), computations
take far too long (and consume too much memory) to be feasible to work with.

Without the presence of any good parallel processing Gröbner basis algo-
rithms (which would allow the use of clustered super–computers), there is need
for either more patience or smarter solutions to computational algebra problems.
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CHAPTER 3

The two smoothings of C(dP6)

In this chapter we study the toric singularity that is the cone over the del Pezzo
surface of degree 6. It has two topologically different smoothings, which we
haven’t seen studied in some detail before.

We describe the smoothings and show that they are topologically different.
We also compute their singular cohomology groups in the classical topology,
using techniques from toric geometry.

3.1 The del Pezzo surface dP6

We start this chapter by talking about the del Pezzo surface of degree 6 in some
generality. We first recall the definition of a del Pezzo surface:

Definition 3.1.1. A del Pezzo surface is a smooth surface with ample anti-
canonical bundle. In other words, it is a 2-dimensional Fano variety.

Denote by dP6 the blow-up of P2 in three non-collinear points. These points
can be chosen to be the coordinate points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).
Since the coordinate points are invariant under the natural torus action on P2,
it follows that the dP6 is a toric variety.

As a toric variety, it can be described as the toric variety defined by the
planar hexagon depicted in Figure 3.1(a). The normal fan is in Figure 3.1(b).

The class of the anti-canonical sheaf is −K = 3H − E1 − E2 − E3. It is
proved in Hartshorne that this divisor is ample. Thus dP6 is in fact a del Pezzo
surface. Computing (−K)2, we find that it has degree 6.

3.1.1 The Picard group

We will need a description of the Picard group of dP6. By the description of
dP6 as a blowup in three points Pi of a projective space, it follows that it is
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generated by the hyperplane section H and the three exceptional divisors Ei
(i = 1, 2, 3), so that Pic dP6 ' Z4.

If we order the basis of Pic dP6 = Z4 as {H,E1, E2, E3}, then the matrix of
the intersection form (D,D′) 7→ D ·D′ is given by


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

There are three other (−1)-curves on dP6. Let Lij be the line connecting
Pi and Pj . By abuse of notation, denote by Lij also the pullback of Lij in the
blowup. See Figure 3.2.

Since Lij intersects Pi and Pj exactly once, it intersects Ei and Ej exactly
once in the blowup. Thus Lij = H − Ei − Ej in the Picard group, and we can
compute that the self-intersection L2

ij of Lij is −1, where we have read off the
coefficients from the intersection matrix.

Here is an interesting calculation (which we won’t use later, but we found
it interesting). There is an automorphism of dP6 which is induced from the
Cremona transformation (x0 : x1 : x2) 7→

(
1
x0

: 1
x1

: 1
x2

)
on P2. It induces a

permutation of the lines in Figure 3.2: the exceptional divisors {E1, E2, E3}
are switched with the lines Lij .

This induces a linear automorphism of the Picard group, which in matrix

(a) The hexagon corresponding
to dP6.

(b) The fan over the polar poly-
tope.

Figure 3.1: Toric description of dP6.
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3.1. The del Pezzo surface dP6

E1

L12L13

E2E3

L23

Figure 3.2: The six (−1)-lines in dP6.

form is 
2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 .

The effect on the hexagon is a horizontal reflection.

3.1.2 Embedding in P1 × P1 × P1

Blowing up is “transitive”, in the sense that blowing up two points is the same
as blowing up one point, and then blowing up the inverse image of the second
point. It follows that one way to find equations describing dP6, is to blow up
each point separately. Let x0, x1, x2 be coordinates of P2. Then the blowup of
P2 in the point (1 : 0 : 0) can be realized as the closed subscheme of P2 × P1

given by the equation r0x1 − r1x2 = 0, where r0, r1 are coordinates on P1. We
can repeat this procedure on the two other points (0 : 1 : 0) and (0 : 0 : 1)
to obtain similar equations. Collecting these, we see that dP6 is given by the
matrix equation

M~x =

 0 r0 −r1
s1 0 −s0
−t0 t1 0

x0
y0
z0

 = 0

in P2×P1×P1×P1. Since ~x is non-zero, it follows that we must have detM = 0.
It is not difficult to see that M cannot have rank 1 or lower, because that would
force some of the P1-coordinates to be all zero. Consider the projection forgetting
the P2-factor:

π : P2 × P1 × P1 × P1 → P1 × P1 × P1.

The image of dP6 is the hypersurface detM = 0 in P1 × P1 × P1. Any
solution to this equation gives a unique solution to the equation M~x = 0: if
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→

Figure 3.3: The projection of a cube onto a hexagon.

•

Figure 3.4: The inclusion of a hexagon in an octahedron.

detM = 0, we must have that M is of rank 2. Thus there is a line of solutions,
spanned by (x0, y0, z1). Projectivizing, this correspond to a unique point in
P2. Thus the restriction of π to dP6 is an isomorphism onto the hypersurface
detM = r0s0t0 − r1s1t1 = 0 in P1 × P1 × P1. Hence we have proven that dP6
naturally embeds in P1 × P1 × P1.

It is also interesting to see how this embedding arises from a toric perspective
using polytopes. Since P1 is the toric variety associated with the interval
[−1, 1] ⊂ R, it follows that M = P1 × P1 × P1 is the toric variety associated
with the cube ∆ = [−1, 1]3 ⊂MR = R3. The inclusion of dP6 in M induces a
surjection of coordinate rings C[M ] → C[dP6]. This corresponds to the fact
that there is a lattice projection of the cube onto the hexagon. See Figure 3.3.

Conversely, if N1 is the fan of dP6, and N2 is the fan of P1 × P1 × P1, we
have an inclusion of lattices N1 ↪→ N2, which is induced by an inclusion of
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3.1. The del Pezzo surface dP6

convex polytopes, as in Figure 3.4.
The inclusion N1 ↪→ N2 can be seen to be given by the matrix

A =
(

1 1 0
−1 0 1

)
. (3.1)

Note that there are essentially four inclusions of the hexagon into the
octahedron, because each inclusion is given by choosing a line through opposite
faces of the cube (the line spanned by the normal vector of the hexagon), and
there are 8 faces, hence 4 lines through opposite faces.

3.1.3 Embedding in P2 × P2

On the other hand, blowups can also be realized as closures of graphs of rational
maps. Let ϕ : P2 P2 be the Cremona transformation given by

(x0 : x1 : x2) 7→
(

1
x0

: 1
x1

: 1
x2

)
.

Let Γ ⊂ P2 × P2 be the closure of the graph of ϕ. Then, in coordinates
(a0 : a1 : a2)× (b0 : b1 : b2) on P2 × P2, the equations a0b0 = a1b1 = a2b2 hold
on Γ. These are the equations of the blowup along the indeterminacy locus of
the rational map ϕ. The indeterminacy locus is exactly the three coordinate
points. Hence dP6 can also be realized as the intersection of two (1, 1)-divisors
in P2 × P2.

There is also in this case a description in terms of polytopes. The polytope
associated with P2×P2 is ∆2×∆2, the product of two 2-simplices. Also in this
case, there is a projection onto a hexagon in R2. This is harder to visualize, but
can be described as follows: if we order the vertices of ∆2 by v1, v2, v3, then
the vertices of ∆2 ×∆2 are of the form (vi, vj). The projection is then given by
identifying the vertices (vi, vi).

Hence, using the Segre embedding, dP6 lives naturally in both
(
P1)3 ↪→ P7

and P2 × P2 ↪→ P8.
Remark 3.1.2. Intersecting P2 × P2 with a single (1, 1)-divisor gives us the
projective space bundle corresponding to the tangent bundle of P2, which we
denote by P(TP2). This follows from the exact sequence

0→ OP2

x0
x1
x2


−−−−−→ OP2(1)3 → TP2 → 0.

Since P(OP2(1)3) = P2 × P2, the projective bundle P(TP2) can be realized as
the subset of P2 × P2 such that a0b0 + a1b1 + a2b2 = 0. The space P(TP2) is a
non-toric Fano 3-fold. �
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= + +

=
+

Figure 3.5: Minkowski-decompositions of the hexagon.

3.2 The cone over dP6 and its two smoothings

The singularity Z
∆= C(dP6) is one of the most studied singularities with

an obstructed deformation space. For example, in the paper [Alt97], Klaus
Altmann describe a method to study the versal deformations of isolated affine
Gorenstein toric singularities using only the combinatorial data of the toric
singularity. He shows that different components of the base space correspond to
different ways of writing the defining polytope as a Minkowski sum of smaller
polytopes. See the illustration in Figure 3.5 for a decomposition of the hexagon.

Let SZ denote the affine coordinate ring of C(dP6). It has a natural
Z-grading, coming from the embedding in P6. From Altmann’s article, or
by using Macaulay2, ones computes that dimk T

1(SZ/k, SZ) = 3, and that
dimT 2

k (SZ/k, SZ) = 2. The versal base space decomposes into a union of a line
and a plane. Both components are smoothing components.

It is worthwhile to note that both smoothings of Z arise by “sweeping out
the cone”: if X is a projective variety in Pn, and Y is equal to X ∩H, where
H is a section of OPn(1), then the affine cone over Y deforms to a general
hyperplane section of the affine cone over X. See the introduction of [Ste03] for
more details.

3.2.1 Equations of smoothings

Using the Segre embedding of P2×P2 and substituting from the linear equations
in the description from Section 3.1.3, we can write the equations of dP6 inside
P6 as
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3.2. The cone over dP6 and its two smoothings

∣∣∣∣∣∣
y x1 x2
x4 y x3
x5 x6 y

∣∣∣∣∣∣ ≤ 1, (3.2)

where ≤ 1, means taking all 2× 2-minors.
On the other hand, dP6 can be realized as a subvariety of P1 × P1 × P1 as

well, as we described in Section 3.1.2. The equations can be described as follows:
draw a cube, and let each vertex correspond to a variable. Then the equations
of P1 × P1 × P1 in its Segre embedding are given by taking all “minors” along
all sides of the cube together with the three long diagonals. See Figure 3.6, in
which we look at the cube from the front face. To get dP6, one identifies two
opposite corners, corresponding to the equation a000 = a111 inside P1×P1×P1.
Thus in total there are 8− 1 = 7 variables, just as above.

The first smoothing is obtained by perturbing the equations of dP6 as a
subvariety of P2 × P2. It can be described by perturbing two of the entries of
the matrix shown below: ∣∣∣∣∣∣

y x1 x2
x4 y + t1 x3
x5 x6 y + t2

∣∣∣∣∣∣ ≤ 1. (3.3)

For t1 = t2 = 0, we get the cone over dP6, while for generic ti, we get a
smooth variety. In fact, we can compute that the discriminant locus (the set
of points in A2

t1,t2 with singular fiber) are the t1-axis, the t2-axis and the line
t1 = t2. Notice that the total space is equal to the cone over P2 × P2.

Call (any) smooth fiber Z2.

Lemma 3.2.1. Let M = P(TP2) be the projective space bundle associated to
the tangent sheaf on P2. Then the smoothing Z2 is isomorphic to M\dP6.

a000 a100

a110a010

a001 a101

a111a011

Figure 3.6: A 2× 2× 2-tensor.
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3. The two smoothings of C(dP6)

Proof. First homogenize the equations (3.3) with respect to a new variable y1.
Call the homogenized variety N . Put y′0 = y, y′1 = y + ty1 and y′2 = y + t2y1.
Then we have the relation

h
∆= (t1 − t2)y0 + t2y

′
1 − t1y′2 = 0.

Hence we see that N = P2 × P2 ∩ V (h). Let P2 × P2 have coordinates z0, z1, z2
and z′0, z′1, z′2. Then h can be written as

(t1 − t2)z0z
′
0 + t2z1z

′
1 − t1z2z

′
2 = 0 = (z0, z1, z2) · ((t1 − t2) z′0, t2z′2, t1z′2) .

in P2 × P2. As long as t1 6= t2 and t1, t2 6= 0, we can do a change of coordinates
in P2

z′0z
′
1z
′
2
, so that h transforms to

(z0, z1, z2) · (z′0, z′1, z′2) = 0.

Hence we see that M is isomorphic to the total space of the Grassmannian of
lines in P2 (each point in one of the P2’s gives a line in the other P2). This is in
turn isomorphic to P(TP2), since each tangent vector through a point determines
a line through it.

What have we gained by homogenizing? The divisor at infinity is y1 = 0,
which is a dP6 again. In our new coordinates this is equivalent to y′1 = y′2 =
y′0. �

The other smoothing is obtained by replacing one of the corners of the cube
in Figure 3.6 with a′000 = a000 + t. The total space is now the affine cone over
P1 × P1 × P1.

Call this smoothing Z1.

Lemma 3.2.2. The smoothing Z1 is isomorphic to P1 × P1 × P1\dP6.

Proof. The proof is almost identical to the previous proof. �

The following fact is well-known, and follows from the above two lemmas.

Proposition 3.2.3. The two smoothings are topologically different.

Proof. The Euler characteristic of P(TP2) is 6, which follows from the next
lemma.

This lets us calculate the Euler characteristics of the smoothings. Note that
χ(P1) = 2. By the Künneth formula, the Euler characteristic is multiplicative
on products, so that χ(P1×P1×P1) = 8. By additivity of Euler characteristics
we have χ(Z1) = 2 and χ(Z2) = 0, since χ(dP6) = 6.

It follows that the two smoothing components correspond to topologically
different smoothings, since the Euler characteristic is a topological invariant. �
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3.2. The cone over dP6 and its two smoothings

3.2.2 Topology of the smoothings

In this final section, we compute the simplicial homology groups of the two
smoothings.

Lemma 3.2.4. The cohomology ring of P(TP2) is Z[x, y]/(x3, y2 + 3y + 3),
where x and y have degree 2. In particular, the cohomology of P(TP2) is given
by (1, 0, 2, 0, 2, 0, 1).

Proof. The first claim follows from the Leray-Hirch theorem. See [BT82, page
270]. The next claim follows since x and y both have degree 2. �

We first need a preliminary lemma from toric geometry. We state it in a
general form, since we could not find a proper reference.

Lemma 3.2.5. Let Y i
↪−→ X be a closed immersion of smooth toric varieties,

corresponding to a map of fans Σ1
A−→ Σ2. Let M1 and M2 be the corresponding

character lattices. Then we have a commutative diagram:

0 M2 ZΣ2(1) Pic(X) 0

0 M1 ZΣ1(1) Pic(Y ) 0

R1

AT CT
i∗

R2

Here i∗ : Pic(X)→ Pic(Y ) is the map of Picard groups induced by the closed
embedding.

Proof. The horizontal rows are well-known. See for example Theorem 4.1.3 in
[CLS11].

The matrix CT is defined as follows: each primitive ray generator of cones
in Σ1(1) can be thought of as lying in N2 via the embedding A. The image lies
in a unique minimal cone in Σ2(1), and as such, can be written as a unique
linear combination of primitive ray generators from this cone. Let the columns
of C be the coefficients of this linear combination. Then, by definition, the first
square commutes.

It follows that there is an induced map of Picard groups. We must show
that the induced map is exactly the one induced by the closed embedding. To
see this, note that what the map C does, is to write divisors on Y as a linear
combination of divisors on X, which correspond to the restriction to X (which
is what the map i∗ is).
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3. The two smoothings of C(dP6)

Alternatively, consider the commutative diagram dual to the diagram in the
lemma:

0 Hom(PicY,Z) ZΣ1(1) N1 0

0 Hom(PicX,Z) ZΣ2(1) N1 0

RT
1

C A

RT
2

In Proposition 6.2.7 in [CLS11], there is a description of the induced Cartier
divisor in terms of support functions. The proposition says that given a support
function ϕ : N1 → R corresponding to a divisor D, the support function
corresponding to i∗(D) is given by composition with A. Our C is exactly a
lift of the map A, and globally linear functions are trivial in Hom(PicY,Z).
Thus the statement that i∗ is the induced function on Picard groups is just
a reformulation of the Proposition in [CLS11] in terms of divisors (instead of
support functions). �

Example 3.2.6. Let us see how we can use Lemma 3.2.5 to find an explicit
form of the induced map on Picard groups coming from the inclusion dP6 →
P1×P1×P1. We use the matrix A from Equation (3.1). The rows of R1 are the
coordinates of the primitive ray generators of the rays of the fan of P1×P1×P1.
They are also the vertices of the octahedron in Figure 3.4.

The rows in R2 are the coordinates of the hexagon in Figure 3.1(a).
In order to compute explicit cokernels, we need to find splittings of Z6 as

Z6 = Z3 ⊕ Pic(P1 × P1 × P1) and Z6 = Z2 ⊕ Pic(dP6), respectively.
This can be done explicitly by Gaussian elimination. We illustrate this with

the first map. We start with the matrix (R1, I6), and after Gaussian elimination
(row operations), we get the matrix (R′1, B).


1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1

 ∼


1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 1


The last three rows of B give a map π1 : Z6 → Z3 with kernel equal to the
image of R1. We do the same with the pair (R2, I6).
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3.2. The cone over dP6 and its two smoothings

Figure 3.7: The edge graph of ∆×∆. The red vertices are the diagonal vertices
vii.

We find that the induced map i∗ : Z3 → Z4 is given by the matrix

Q =


0 1 0
1 1 0
1 0 1
0 1 1

 .

The matrix Q represents an injective map with non-torsion cokernel. We will
use this information below in the proof of the next theorem. ♥

Example 3.2.7. We repeat the previous example, with the embedding dP6 ↪→
P2 × P2 instead. On the level of coordinate rings, it is induced by a projection
of polytopes ∆2 ×∆2 → H (where H denotes the hexagon in Figure 4.1).

The anticanonical polytope of P2 is the convex hull of the points v1 = (−1, 2),
v2 = (−1,−1) and v3 = (2,−1). It follows that the anticanonical polytope of
P2 × P2 is the convex hull of the 9 vertices vij

∆= vi × vj ∈ R4.
We want a projection sending the vertices vii (i = 1, 2, 3) to the origin in

R2. In Figure 3.7, we have visualized the edge graph of ∆2 ×∆2. The three
vertices that are sent to zero are marked in red.

By demanding that v12 7→ (1, 0) and v23 7→ (0, 1), together with vii 7→ (0, 0),
we get a system of 8 linear equations, corresponding to a unique map R4 → R2

with the required properties. We get:
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3. The two smoothings of C(dP6)

A′T = 1
3

(
0 1 0 −1
−1 0 1 0

)
.

The image generates a sublattice 1
3Z

2 ⊂ Z2. Replace A′ by A
∆= 3A′, and

consider only the sublattice.
The images of the rays of the fan of dP6 under AT are exactly the 6 rays of

the fan of P2 × P2. This means that the map CT in the Lemma is the identity
matrix I6, and we have a diagram

0 Z4 Z6 Pic(P2 × P2) = Z2 0

0 Z2 Z6 Pic(dP6) = Z4 0

R1

AT I6 i∗

R2

(3.4)

It follows from the snake lemma that i∗ is injective with zero cokernel. ♥

We are now ready to compute the (ranks of) singular cohomology groups of
the two smoothings.

Theorem 3.2.8. The two affine smoothings are topologically different. The
homology groups are:

Group 0 1 2 3 4 5 6 Euler-characteristic
Hi(Z1,Z) 1 0 2 1 0 0 0 2
Hi(Z2,Z) 1 0 1 2 0 0 0 0

Proof. The singular cohomology ofM = P1×P1×P1 is given by (1, 0, 3, 0, 3, 0, 1),
which can be computed by the Künneth formula (see [Hat02], page 275). The
cohomology of dP6 is given by (1, 0, 4, 0, 1).

We will use the Lefschetz duality theorem [Spa66], which in this case says
that Hq(M\dP6;Z) ' H6−q(M,dP6;Z). The long exact sequence of the pair
(M,dP6) ([Hat02], page 200) takes the form:

40



3.2. The cone over dP6 and its two smoothings

0 H0(M,D;Z) Z Z

H1(M,D;Z) 0 0

H2(M,D;Z) Z3 Z4

H3(M,D;Z) 0 0

H4(M,D;Z) Z3 Z

H5(M,D;Z) 0 0

H6(M,D;Z) Z 0

δ

δ

δ

δ

δ

δ

From the exactness of the sequence, we immediately find H0(Z1;Z) = Z.
Also, since H0(M ;Z)→ H0(dP6;Z) is an isomorpism (both are connected), it
follows that H6(Z1;Z) = H5(Z1;Z) = 0.

The other groups depend upon the explicit form of the maps

H2(M ;Z)→ H2(dP6;Z) and H4(M ;Z)→ H4(dP6,Z).

The map H2(M ;Z)→ H2(dP6;Z) can be identified with the map

i∗ : Pic(M)→ Pic(dP6)

induced by the inclusion. This map was computed in Example 3.2.6. It is
an injective map with torsion-free cokernel, and it follows from the long-exact
sequence and the Lefschetz theorem that H3(Z1;Z) ' H3(M,dP6;Z) ' Z, and
also that H4(Z1;Z) = 0.

To compute the map H4(M ;Z) → H4(dP6;Z), note that H4(M ;Z) is
Poincaré dual to H2(M ;Z), and this group is generated by P1 × {pt} × {pt}
(and permutations). Also, H4(dP6;Z) ' H0(dP6,Z) = Z. In this description,
pullback corresponds to intersection, and one sees that the map is given by
(a, b, c) 7→ a+ b+ c, since the three P1’s intersect dP6 in a single point each1.
This map has two-dimensional kernel, and we conclude that H2(Z1;Z) '
H4(M, dP6;Z) = Z2, and that H1(Z1;Z) = 0.

The computations for Z2 are similar. We first note that the Picard group of
M = P(TP2) is generated by the pullbacks F,G of the generators of

Pic(P2
x0x1x2

× P2
y0y1y2

).

Say F is represented by V (x0) and G is represented by V (y0).
1We thank the math.stackexchange user nefertiti for this argument.
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3. The two smoothings of C(dP6)

Again we compute the intersections of F and G with dP6. Intersecting
with F is computed by decomposing the ideal (x0, x1y0 − x2y1, x1y0 − x0y2)
in k[x0, x1, x2, y0, y1, y2] and saturating by (x0, x1, x2) and (y0, y1, y2). This
can either be done by hand or by using Macaulay2. Either way, we find that
F
∣∣
dP6

= E3 + L23 + E2 = H, using the notation from earlier this chapter.
Similarly G

∣∣
dP6

= L23 + L12 + E2 = 2H − E1 − E2 − E3. Hence the map on
cohomology is given by the matrix

H2(M ;Z) ' H4(M ;Z) ' Z2


0 −1
0 −1
0 −1
1 2


−−−−−−−−→ Z4 ' H2(dP6;Z) ' H2(dP6;Z).

This is an injective map, and as above, we conclude that H3(Z2;Z) '
H3(M,dP6;Z) ' Z2, and also that H4(Z1;Z) = 0.

Another way to see this, is to consider the composition

Pic
(
P2 × P2)→ PicP(TP2)→ Pic dP6 .

The first map is just the identity map. The composition is the map from
Example 3.2.7. It follows from the example that the map

H4(M ;Z) ' PicM → Pic dP6 ' H2(dP6;Z)

is injective. �

Remark 3.2.9. In fact, the Andreotti–Frankel theorem [AF59] states the follow-
ing: if V is any smooth affine variety of complex dimension n, then it has the
homotopy type of a CW complex of real dimension n. Thus it comes for free
that Hj(Zi,Z) = 0 for j > 3. �
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CHAPTER 4

New Calabi–Yau varieties and
mirror symmetry

In this chapter we describe the construction of three topologically different
smoothings of a singular Calabi-Yau manifold. They correspond to different
components of the Hilbert scheme of threefolds in P11 with Hilbert polynomial
p(t) = 6t3 + 6.

We first describe a degenerate Calabi–Yau X0 in the form of a Stanley–
Reisner scheme P(K), which has a quite large symmetry group. We show that
X0 has several topologically distinct smoothings Xi (i = 1, 2, 3), which lie on
different components of the Hilbert scheme in P11.

In the last section, we propose mirror candidates for two of the constructions,
based on orbifolding. We end with some open questions.

4.1 A Stanley–Reisner sphere

Let E6 be the hexagon as a simplicial complex. The associated Stanley–Reisner
scheme P(E6) is a degenerate elliptic curve in P5. If P5 have coordinates
x0, . . . , x5, the equations of P(E6) are xixi+2 = xixi+3 = 0, where i is taken
modulo 6. This gives a total of 9 quadratic equations.

Lemma 4.1.1. The Hilbert polynomial of P(E6) is h(t) = 6t.

Proof. We want to count the dimension of SP(E6) in degree t. Any monomial
in SP(E6) has support on the simplicial complex E6, so its support is either a
vertex or an edge. In the first case, the monomial has the form xti, so there are
six of these.

In the other case, it has the form xai x
b
i+1, with a + b = t and a, b 6= 0.

Counting, there are 6(t − 1) of these monomials. In total, the dimension is
6 + 6(t− 1) = 6t. �



4. New Calabi–Yau varieties and mirror symmetry

Remark 4.1.2. Alternatively, we could note that P(E6) smooths to an elliptic
curve of degree 6. Since Hilbert polynomials are constant in flat families, it
follows from the Riemann–Roch theorem that

h(t) = deg OP(E6)(6t)− 1 + 1 = 6t.

�
Note that the Hilbert polynomial only differs from the Hilbert function for

t = 0, since h(0) = 0, while dimC (SP(E6))0 = 1.
We now introduce the central fiber in the discussions onward. Let K be the

simplicial complex E6 ∗ E6. It is a triangulation of the 3-sphere.
Denote the vertices of the left E6 by x1, . . . , x6, and the vertices of the right

E6 by z1, . . . , z6. Then the maximal faces of K are of the form xixi+izjzj+1,
where i, j ∈ Z6. The number of i-faces are easy to compute:

Lemma 4.1.3. The f -vector of K is (12, 48, 36).

Proof. There are 12 vertices, and 6 × 6 = 36 maximal facets. Since K is a
3-sphere, it follows that 12− f1 + 36 = χ(S3) = 0 so that f1 = 48.1 �

Lemma 4.1.4. The Hilbert polynomial of P(K) is h(t) = 6t3 + 6t.

Proof. The homogeneous coordinate ring SP(K) =
⊕

t≥0 St of P(K) is the graded
tensor product of SP(E6) with itself. It follows from Lemma 4.1.1 that

dimSt =
∑

i+j=t,ij 6=0
36ij + 12t,

where the last term is a correction term because h(t) 6= 1. It is now a routine
computation using formulas for sums of squares to verify the claim. �

Corollary 4.1.5. Any smoothing of P(K) satisfy dim |H| = 12, c2 ·H = 72,
and H3 = 36.

Proof. All these invariants can be read off from the Hilbert polynomial. �

Either by using Macaulay2 or by using the more combinatorial description
of the T i-modules from [AC10], we can compute to give the following result:

Proposition 4.1.6. We have that

dimk T
1(SP(K)/k, SP(K))0 = 84

dimk T
2(SP(K)/k, SP(K))0 = 72.

1Here we used that in a cell complex, the Euler characteristic is also the alternating sum
of the number of cells in each dimension. This is Theorem 2.44 in [Hat02].
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4.2. A partial smoothing of P(K)

Proof. We will prove this using the techniques and notation from [AC10].
Our goal is to compute the degree zero part of T 1

AK
. We will do this using

Theorem 1.4.8.
First notice that all links of vertices of K = E6 ∗E6 are double suspensions

over hexagons (they are denoted by ΣE6 in [AC10]).
According to Table 1 in Christophersen’s and Altmann’s article, double

suspensions over hexagons contribute with one dimension to T 1
AK

, namely in
degree x2

i /xi−1xi+1 (if a = x2
i ). In total there are 6 + 6 = 12 contributions of

this form.
Taking the link at the vertex xizj produces a square with vertices xi+1,zj+1,xi−1,

and zj−1 (in that order). According to Table 1 in the article, these links con-
tribute with dimension 2 to T 1

AK
. The contributions have degrees xizj/xi+1xi−1

and xizj/zj+1zj−1. There are 2 · 6 · 6 = 72 contributions of this form.
Thus, in total, T 1

AK
have C-dimension 84.

We now compute T 2
AK

. The contributions come from choosing a = x2
i and

a = xixi+1, respectively. If |a| = 1 (as in the first case), the results from
the article imply that Lb := ∩b′⊂blk(b′, lk(xi,K)) must have more than one
connected component (the contribution comes from H̃0(Lb,C)). This is the
case if b consist of two opposite vertices in the suspended circle. In total there
are 2 · 6 · 3 = 36 contributions of this form.

If |a| = 2, the contributing links are hexagons, and in this case the contribu-
tions come from b such that Lb = ∅. Again choosing b to consist of opposite
vertices of the hexagon, we find three pairs b with Lb = ∅ for each hexagon.
Thus in total there are 2 · 6 · 3 = 36 contributions of this form.

In sum, T 2
AK

is 36 + 36-dimensional. �

The automorphism group of K is D6×D6×Z2, and have order 12·12·2 = 288.
It is not difficult to see that the induced action on the basis of T 1(SX0/k, SX0)
have two orbits under Aut(K), corresponding to first order deformations of the
form xixi−2 + txi+1zj and xi−1xi+1 + tx2

i , respectively.

4.2 A partial smoothing of P(K)

Consider Figure 4.1. It is the 2-dimensional polytope associated to the del Pezzo
surface of degree 6. The fan over this polytope correspond to a unimodular
regular triangulation of the polytope, and it follows by Theorem 8.3 in [Stu96],
that dP6 degenerates to the Stanley–Reisner scheme P(E6 ∗ {pt}), where {pt}
correspond to the origin. Concretely, the equations of dP6 are given by xixi+2−
yxi+1 = xixi+3 − y2 = 0 inside P6. The degeneration to P(E6 ∗ {pt}) is given
by setting the second terms equal to zero.

Now form the join of two copies of dP6, to get a new variety Y ⊂ P13.
By Proposition 1.1.2, this is a 2 + 2 + 1 = 5-dimensional toric variety with
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4. New Calabi–Yau varieties and mirror symmetry

singular locus consisting of two copies of dP6. Since the coordinate ring is just
the tensor product of two copies of S(dP6), it follows that Y degenerates to
P(E6 ∗ {pt} ∗ E6 ∗ {pt}) = P(K ∗∆1).

The following holds:

Proposition 4.2.1. There is a deformation of the Stanley–Reisner scheme
X0 to an irreducible Calabi–Yau variety XY ⊂ Y with 12 isolated singularities.
The singularities are locally isomorphic to cones over del Pezzo surfaces. More
precisely: let (U, pi) be the germ of XY at pi in the analytic topology. Then
(U, pi) ' (C(dP6), 0).

Proof. Since X0 is a complete intersection inside P(K ∗∆1), it follows that X0
deforms to a complete intersection inside any deformation of P(K ∗∆1). We
explained above that P(K ∗∆1) deforms to the join Y of two del Pezzo surfaces,
and it follows that X0 deforms to Y intersected with two generic hyperplanes.

Since Y has singular locus of dimension 2 and is of degree 6 + 6 = 12, it
follows by Bertini’s theorem [Har77, Chapter II, Theorem 8.18] that XY has
twelve isolated singularities pi.

To see how the singularities look locally, we argue as follows. Locally, Y
looks like A2

a1,a2
× C(dP6)xi , where the subscripts refer to the coordinates.

The claim now follows from two applications of Theorem 3.1.5 in [Bat94],
which says that the singularities on Σ-regular toric hypersurfaces are inherited
from the ambient toric variety. �

Since the cone over dP6 deforms in two topologically different ways, we
might expect that XY does so too. This is indeed true.

4.3 Three different smoothings of XY

By embedding dP6 in different spaces, we obtain different smoothings of XY as
subvarieties of the join of these spaces.

Figure 4.1: A hexagon.

46



4.3. Three different smoothings of XY

4.3.1 The block matrix construction

We are inspired by the construction in Rødland’s thesis [Rød00]2.
Let E be a 3-dimensional vector space. Let {e1, e2, e3} be a basis for E.

Then we can form the vector space V = (E⊗E)⊕(E⊗E), which has dimension
18. Let P17 = P(V ). Choose coordinates x1, . . . , x18 on P17.

Thinking of E ⊗ E as 3× 3-matrices, we can think of the elements of P17

as pairs of 3× 3-matrices up to a scalar, not both zero. Concretely, two pairs
of matrices (A′, B′) and (A,B) are equivalent if (A′, B′) = (λA, λB) for some
λ ∈ C∗.

We can also interpret P17 as the geometric join of P(E⊗E) with itself. This
is the set of all lines connecting pairs of 3× 3-matrices.

There is a natural rational map π : P17 P8 × P8, which is the identity on
coordinates, given by dividing out by the antidiagonal C∗-action: λ′ · (A,B) =
(λ′, λ′−1

B).
Remark 4.3.1. Denote by V1 and V2 the subspaces x1 = . . . = x9 = 0 and
x10 = . . . = x18 = 0, respectively. Blow up P17 in V1 ∪ V2, to get P̃17. The
spaces Vi are exactly the indeterminacy locus of π, so π extends to a map
π : P̃17 → P8×P8. Denote by π1 and π2 the two natural projections to P8. Then
it is true that P̃17 = PP8×P8(π∗1OP8(1)⊕π∗2OP8(1)) = P(OP8×P8⊕OP8×P8(1,−1)).
This is explained further in Section C7 in [AK75]. �

Let M be the closure of the set of pairs (A,B) where rankA = rankB = 1.

Proposition 4.3.2. The variety M is the join of two copies of P2 × P2 ⊂ P8,
and has singular locus P2 × P2 ⊂ Vi of dimension 4.

The canonical sheaf is ωM = OM (−6), so that M is a Fano toric variety.

Proof. If P17 have coordinates x1, . . . , x18, let M1 and M2 be the matrices

M1 =

x1 x2 x3
x4 x5 x6
x7 x8 x9

 and M2 =

x10 x11 x12
x13 x14 x15
x16 x17 x18

 .

Then M is defined by the zeros of the 2× 2-minors of M1 and M2. Then
it is clear that M is the projective join of two copies of P2 × P2 ↪→ P8 ⊂ P17,
since the sets of variables are disjoint.

The variety M is 9-dimensional: the affine cone over M , C(M), is equal
to C(P2 × P2)× C(P2 × P2). This variety has dimension 5 + 5 = 10, hence its
projectivization M is 9-dimensional.

The singular locus of M consists of the pairs (0, B), and (A, 0), where
rankA = rankB = 1, hence dim SingM = dim

(
P2 × P2) = 4. See also

Proposition 1.1.2.
2Rødland’s construction is a linear subvariety of P(E ∧ E), where E is 7-dimensional.
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4. New Calabi–Yau varieties and mirror symmetry

By Remark 1.1.4, it follows that ωM = OM (−6), since

ωP2×P2 = OP8(−3)
∣∣
P2×P2 .

�

Here comes our first construction. Let X1 be the intersection of M with a
generic P11. Then the following is true.

Proposition 4.3.3. X1 is a smooth Calabi–Yau variety with χ(X1) = −72.

Proof. The singularities of M are of dimension 4. By Bertini’s theorem, inter-
secting M with a codimension 6 hyperplane gives a smooth variety X1.

The fact that X1 is Calabi–Yau follows from Proposition 1.5.4.
To find the topological Euler characteristic, we compute in Macaulay2.

Computing the whole cotangent sheaf of X1 is infeasible with current computer
technology3. Instead we make use of standard exact sequences. Let I be the
ideal sheaf of M in P17. First, we have the exact sequence

0→ I /I 2∣∣
X1
→ Ω1

P17

∣∣
X1
→ Ω1

M

∣∣
X1
→ 0.

The restriction to X1 is exact since I /I 2 is locally free on the smooth locus.
The Macaulay2 command eulers computes the Euler characteristics of

generic linear sections of a sheaf F (behind the scene, this is equivalent to
computing the Koszul resolution of the relative ideal sheaf IX1/M ). Using this
command, we find that χ(I /I 2

∣∣
X1

) = −180. Using the exact sequence

0→ Ω1
P17

∣∣
X1
→ OX1(−1)18 → OX1 → 0,

we find that the Euler characteristic of Ω1
P17

∣∣
X1

is −216 = −12 · 18. It follows
from the first exact sequence that Ω1

M

∣∣
X1

has Euler characteristic −36.
Since X1 is a complete intersection in M , the conormal sequence is

0→ OX1(−1)6 → ΩM
∣∣
X1
→ Ω1

X1
→ 0.

Hence χ(Ω1
X) = −36 + 72 = 36.

It follows that the topological Euler characteristic is χ(X1) ∆= χ(TX1) =
−2χ(Ω1

X1
) = −72. �

Remark 4.3.4. We can give explicit equations for a flat family with special fiber
XY and general fiber X1. Let y0 = h1(x1, . . . , x12) and y1 = h2(x1, . . . , x12) be
the generic linear forms in P13 defining XY as a subscheme of Y . Let gi (for

3An external computer has been trying to compute this sheaf for several months now
without terminating.
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i = 1, . . . , 6) be generic linear forms in P11. Then such a flat family is defined
by the 2× 2-minors of the two matrices below:

A1 =

h1 + tg1 x2 x3
x4 h1 + tg2 x6
x7 x8 h1 + tg3

 and A2 =

h2 + tg4 x11 x12
x13 h2 + tg5 x15
x16 x17 h2 + tg6

 .

For t = 0, we get XY . Note that the subscheme defined by the minors of

A1 =

y1 x2 x3
x4 y1 x6
x7 x8 y1

 and A2 =

 y2 x11 x12
x13 y2 x15
x16 x17 y2


is the join of dP6 with itself. Since XY ⊂ dP6 ∗dP6, we see that X1 lies in a
deformation of dP6 ∗ dP6. �

Remark 4.3.5. We have not been able to rigorously compute the Hodge numbers
of X1. However, over several finite fields we have computed the dimension of
the degree zero part of the T 1-module in Macaulay2. By Proposition 1.3.5, we
have that (T 1(SX1/k, SX1))0 = H1(X1,Ω2

X).
After about a week of computation on a modern desktop computer, the

answer turns out to be dimFp
(T 1(SX1/Fp, SX1))0 = 39 for several large primes

p.
This is plausible because of the following heuristic moduli count: X1 is

parametrized by the Grassmannian G(12, (E ⊗ E)⊕2), which has dimension
(18−12)·12 = 72. Each E-factor is acted upon by GL(E). There are four of these
factors, so we have an action of

∏4 GL(E) on the Grassmannian. There is a torus
subgroup (C∗)4 acting by (v⊗w, r⊗s) 7→ (t1t2v⊗w, t3t4r⊗s) on P17. Elements
of (C∗)4 satisfying t1t2 = t3t4 act trivially, forming an isotropy subgroup K.
Hence we have an action of the quotient group G ∆=

(∏4
i=1 GL(4)

)
/K on the

Grassmannian. This quotient group has dimension 9 · 4− 3 = 33.
We form the quotient space G(12, (E ⊗ E)⊕2)/G, which has dimension

72− 33 = 39.
If this is true, then X1 has Hodge numbers h11 = 3 and h12 = 39, since we

have computed the Euler characteristic. It is not clear which other divisors
there are besides the hyperplane divisor. �

Remark 4.3.6. Since X1 avoids the fundamental subscheme V1 ∪ V2, the inverse
image π−1(X1) ⊂ P̃17 is isomorphic to X1. Thus we can realize X1 as a
subvariety of a smooth variety. Unfortunately, X1 is cut out by non-ample
divisors in P̃17. �

49



4. New Calabi–Yau varieties and mirror symmetry

a000 a100

a110a010

a001 a101

a111a011

Figure 4.2: A 2× 2× 2-tensor, seen from “above”.

4.3.2 The three-tensor construction

The construction in the previous section used the embedding of dP6 in P2 × P2

to deform XY . There is also the embedding of dP6 in P1 × P1 × P1 to exploit.
The construction is similar.

Let F be a 2-dimensional vector space with basis {f0, f1}. Then we can
form the vector space V = (F ⊗F ⊗F )⊕2. Let P15 = P(V ). Choose coordinates
aijk = (fi ⊗ fj ⊗ fk, 0) and bijk = (0, fi ⊗ fj ⊗ fk) (i, j, k = 0, 1) for P15.

The elements of P15 are pairs (A,B) of 2 × 2 × 2 tensors, not both zero.
There is also in this case a natural map π : P15 → P7 × P7, given by dividing
out by the antidiagonal C∗-action.
Remark 4.3.7. Just as above, let V1 and V2 be the subspaces A = 0 and
B = 0, respectively. Let P̃15 be the blowup of P15 in V1 ∪ V2. The Vi’s
are exactly the indeterminacy locus of π, so π extends to a morphism π :
P̃15 → P8 × P8, which is a P1-bundle. In this case it is also true that P̃15 =
P (OP7×P7 ⊕ OP7×P7 (1,−1)). �

Let N be the closure of the set of pairs (A,B) where both A and B have
tensor rank 14.

Proposition 4.3.8. The variety N is the join of two copies of P1×P1×P1 ⊂ P7,
and has singular locus P1 × P1 × P1 ⊂ Vi of dimension 3.

The canonical sheaf is ωN = ON (−4), so that N is a Fano toric variety.

Proof. A pure 2× 2× 2-tensor can be visualized as a cube with vertices aijk.
See the diagram in Figure 4.2.

The equations of the set of rank 1 tensors in P(F ⊗ F ⊗ F ) are obtained
as the “minors” along the 6 sides of the cube, together with the minors along

4An element of F⊗3 has rank 1 if it is a pure tensor. It has rank ≤ k if it can be written
as a sum of k pure tensors.
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with the 3 long diagonals, giving a total of 9 binomial equations. We write this
symbolically as [aijk] ≤ 1.

Hence the equations for N are given by [aijk] ≤ 1, together with [bijk] ≤
1. Since these are equations in a disjoint set of variables, it is clear that
N =

(
P1 × P1 × P1)∗2.

The claim about the singular locus and the canonical sheaf follows as in the
proof of Proposition 4.3.2. �

Let X2 be the intersection of N with a general P11.

Proposition 4.3.9. X2 is a smooth Calabi–Yau variety with χ(X2) = −48.

Proof. The proof is identical to the proof of Proposition 4.3.3. �

Remark 4.3.10. A heuristic moduli count works also in this case.
X2 lies in a P11 in P((F ⊗ F ⊗ F )⊕2). Such planes are parametrized by

G(12, 16), the Grassmannian of 12-planes in k16. This space is 12·(16−12) = 48-
dimensional. There is an action of the group

∏6
i=1 GL(F ) on (F ⊗ F ⊗ F )⊕2.

There is also in this case a torus subgroup acting trivially, namely the elements
satisfying t1t2t3 = t4t5t6. Call this subgroup K. Thus we really have an action
of the group

(∏6
i=1 GL(F )

)
/K, which has dimension 6 · 4− 5 = 19. Thus in

total we have 48− 19 = 29 moduli parameters.
Since we know the Euler characteristic, we predict the Hodge numbers to

be (h11, h12) = (5, 29). �

4.3.3 The mixed smoothing

In the above cases, we formed the join of equal varieties. We mix things up: let
V = (E ⊗ E)⊕ (F ⊗ F ⊗ F ). Then let P16 = P(V ).

Now let W be the set of “mixed” rank 1 tensors. In a way similar to above,
we find that W is a singular Fano toric variety of dimension 8. The singular
locus is of dimension 4, so a 5-fold complete intersection is again a smooth
Calabi-Yau variety X3.

Proposition 4.3.11. X3 is a smooth Calabi–Yau variety with χ(X3) = −60.

Proof. The proof is identical to the proofs above. �

Remark 4.3.12. Again we give a heuristic moduli count. The Grassmannian in
this case is 60-dimensional. The group acting on it is

∏2
i=1 GL(E)×

∏3
i=1 GL(F ).

Here the trivially acting torus subgroup consists of the elements satisfying
t1t2 = t3t4t5. It follows that the parameter space is 60 − (18 + 12 − 4) = 34-
dimensional.

Hence we predict the Hodge numbers to be (h11, h12) = (4, 34). �
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4. New Calabi–Yau varieties and mirror symmetry

Remark 4.3.13. Even though we did not find a satisfying proof that the Euler
characteristics of the Xi’s were −72, −48 and −60, respectively, there is an
internal consistency here. The first smoothing, X1, of XY , correspond to
smoothing all the cones over del Pezzo-surfaces. They are cut out and replaced
by the smoothing corresponding to the largest smoothing component. This
smoothing, Z2, had Euler characteristic zero. If we instead smoothed by glueing
in the other smoothing of C(dP6), the Euler characteristic would increase
by 12 · 2 = 24. Thus we would have a smoothing with Euler characteristic
−72 + 24 = −48, which is exactly what happens. �

4.4 Degeneration of XY

Consider the construction of X1 from above, and the explicit equations from
Remark 4.3.4. Putting t = 0 and h1 = h2, gives a degeneration of XY to
another, more singular, variety, which we denote by XY ′ . Explicitly, it is given
by the 2× 2-minors of the following two matrices, where h is a generic linear
form in the variables.

A1 =

 h x2 x3
x4 h x6
x7 x8 h

 and A2 =

 h x11 x12
x13 h x15
x16 x17 h

 .

We can realize XY ′ as a hypersurface in the toric variety Y ′ as follows.
Introduce a new variable y, and consider the variety defined by the 2× 2-minors
of

A1 =

 y x2 x3
x4 y x6
x7 x8 y

 and A2 =

 y x11 x12
x13 y x15
x16 x17 y

 .

This is a 4-dimensional toric variety. It is the toric variety associated to the
polytope ∆ with vertices the columns of the matrix

−1 1 0 1 0 −1 0 0 0 0 0 0
0 0 −1 −1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 1 0 −1
0 0 0 0 0 0 0 0 −1 −1 1 1

 .

A computation shows that Y ′ has 1-dimensional singular locus, and it is a
graph of P1’s: take two hexagons, and join each vertex of one of them with all
vertices of the other one. This makes in total 48 P1’s.

The variety Y ′ is a Fano toric variety, and as such, it has an anticanonical
section XY ′ which is a singular Calabi–Yau variety. A local computation shows
that XY ′ has 12 singularities that are locally isomorphic to C(dP6), and 36
double points. This can also be seen torically: the cones in the fan of Y ′
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corresponding to the singular locus comes in two types. The first type is a
cone over a hexagon, and the other type is a cone over a square. These give
(algebro-geometrically) cones over dP6 and double points, respectively.

Since Y ′ is a four-fold, it follows that XY ′ has a maximal projective crepant
resolution of singularities (a MPCP-desingularization), which we denote by X̃Y ′ .
This is proved in [CK99].

A computation using PALP [KS04] shows that X̃Y ′ has Hodge numbers
(44, 8) and Euler-characteristic 72.
Remark 4.4.1. There is a heuristic surgical reason for the Euler characteristic
being +72. Our XY ′ deforms to X1, which has Euler characteristic −72.
This is obtained by starting with XY ′ , smoothing 36 double points and 12
cones over del Pezzo surfaces. By the inclusion-exclusion principle, it follows
that a small resolution of the singularities of XY ′ has Euler characteristic
χ(X1) + 2 · 36 + 6 · 12 = 72. �
Remark 4.4.2. The variety XY ′ has also been described elsewhere. The polar
polytope ∆◦ is equal to the product of two hexagons, and it follows that P∆◦ is
equal to the product of two del Pezzo surfaces. An anticanonical hypersurface
in dP6×dP6 has Euler characteristic −72 (see for example Theorem 3.1 in
[Hüb92]).

In the article [BCD10], Braun et al. study this hypersurface and a group
action on it. They also describe, in detail, a crepant resolution of singularities
of XY ′ . �
Remark 4.4.3. In [CD10], the authors study Calabi–Yau complete intersections
admitting free actions by finite groups, and certain transitions between them
(these are similar to Morrison’s extremal transitions). They find that there is a
Calabi–Yau with Hodge numbers (3, 39) and a Calabi–Yau with Hodge numbers
(8, 44) belonging to the same family of transitions, both admitting Z/3-actions.
It is not clear to us if their (3, 39)-manifold is the same as our X1. �

4.5 Invariant Calabi–Yau’s and a mirror construction

In this section, we will explain natural group actions on the Xi’s constructed
above. Using the mirror construction Ansatz from above, we propose mirror
candidates for X1 and X2.

4.5.1 Invariant subfamily of X1

Let us first consider M = (P2 × P2)∗2. Recall that M can be thought of as
pairs of rank one 3× 3-matrices up to a scalar. We will describe several natural
finite group actions on M .

There is a natural Z/3-action on M , defined as follows. If E is a 3-
dimensional vector space with basis {e0, e1, e2}, then we can define ei 7→ ωiei,
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4. New Calabi–Yau varieties and mirror symmetry

where ω is a fixed third root of unity. This action extends to an action on
E ⊗ E by the rule eij 7→ ωi+jeij

5. Furthermore, it extends to an action on
(E ⊗ E)⊕ (E ⊗ E) by (v, w) 7→ (gv, gw). Call a generator for this group for g.

There is also a non-toric permutation action defined as follows. Let 〈σ〉 ⊂ S3
be the cyclic permutation action on {e0, e1, e2} defined by ei 7→ ei+1, where
σ is a generator for this subgroup. Again, we get an action on E ⊗ E by
eij 7→ ei+1,j+1, and by extension an action on (E ⊗ E)⊕ (E ⊗ E).

Furthermore, there is a Z/2-action switching the E ⊗ E-factors. Call the
generator for this group for τ .

All these groups commute up to a scalar, so we get a Z/3×Z/3×Z/2-action
on P(E ⊗ E ⊕ E ⊗ E). Let G be the abelian group generated by g and σ. Let
G′ be the group generated by g, σ and τ .

For the G-action to restrict to X1 = M ∩ H, we must choose H to be
invariant under the group action. We describe a family of G-invariant P11’s:
denote a unit matrix in the first factor of (E ⊗E)⊕ (E ⊗E) by e0

ij , and denote
a unit matrix in the second factor by e1

ij , where 0, 1 are taken modulo 2.
Now consider the Ht = P11 spanned by the following matrices:

fαij = eαij + tαi−je
α+1
−i−j,−i−j ∈ (E ⊗ E)⊕ (E ⊗ E), (4.1)

where i 6= j ∈ Z3 and α ∈ Z2, and tαi+j is a parameter. Note that g·fαij = ωi+jfαij ,
so that H is spanned by eigenvectors of the Z/3-action. This gives us a 4-
parameter family of G-invariant planes. However, multiplying all the tαi−j by
the same number yield isomorphic families, so we really have a 3-parameter
family.

Denote the intersection between M and H by XHt . Denote by Pi the
coordinate points (0 : . . . : 1 : . . . : 0). Then 〈σ〉 ' Z/3 acts without fixed
points outside these points (this can be computed in Macaulay2). A Macaulay2
computation also shows that for ti 6= 1, 0, the family has 48 isolated singularities:
the Pi, and 36 other points, which come in two orbits under the G-action. These
are all double points, which can be verified by local computations.

Lemma 4.5.1. There exists a minimal resolution of XHt (t 6= 0, 1), respecting
the group action by G, leaving the dualizing sheaf trivial.

Proof. Analytically, a small resolution is a local operation. The singularities
come in 3 orbits under the action, so it is enough to do the resolution on one
singularity in each orbit.

Since the singularity is small, the change happens in codimension 2. The
holomorphic 3-form on XHt

extends holomorphically to all of the resolution by
Hartog’s theorem from complex analysis. �

5We write eij for ei ⊗ ej .
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Lemma 4.5.2. After resolving the double points as above, the action of g has
24 fixed points on X̃Ht

, two on each of the P1’s of the initial fixed points.
Furhermore, the resolution has Euler characteristic 24.

Proof. To see that the Z/3-action has two fixed points on the P1’s coming from
the initial fix points, we find local equations of XHt . This is done in Macaulay2.
By writing the equations of XHt as xiu+g = 0, where u is a unit locally around
each fixed point, we can eliminate the variable xi locally. Doing this repeatedly,
we end up with a single local equation for XHt

: (we’re now looking in the chart
where x1 6= 0)

x10x11 − x8x12 + (higher order terms).

The coordinates of the corresponding P1 are given by (up to flops):

[z0 : z1] = [x10 : x8] = [x11 : x12].

The action of g on the xi are given by g ·x8 = ω2x8, g ·x10 = x10, g ·x11 = ω2x11
and g · x12 = x12. This makes g · [z0 : z1] = [z0 : ω2z1], which shows that the
Z/3-action has two fixed points (the points [1 : 0] and [0 : 1]).

Similar local equations are given in the eleven other charts.
The Euler characteristic of a small resolution is given by χ(X̃Ht) = χ(Xt)+2s,

where s is the number of double points, and Xt is a smooth member of a
smooth smoothing family of XHt (which we know exists by construction, and
is X1 from above). There are 48 double points, so the Euler characteristic is
−72 + 2 · 48 = 24. �

These resolutions are still Calabi–Yau manifolds. One reference for this fact
is [Cle83].

Let Z/3 denote the torus subgroup acting on X̃Ht
.

Theorem 4.5.3. Let X◦1 be a minimal resolution of X̃Ht
/(Z/3). Such a

resolution exists, and it has Euler-characteristic +72, making it a potential
mirror for X1.

Proof. The existence of a resolution of this kind of quotient singularity is proved
in Roan’s article [Roa96]. Furthermore, in his article [Roa89], Roan proves a
formula for the Euler characteristic of such resolutions (let V = X̃Ht

):

χ
(

˜V/(Z/3)
)

= 1
3
∑

g,h∈Z/3

χ(V g ∩ V h),

where V g refers to the fixed points of g.
For (g, h) 6= (e, e), χ(V g ∩V h) is just the finite set of fixed points. There are

24 of these. For (g, h) = (e, e), χ(V e ∩ V e) = χ(V ) is the Euler characteristic
of the resolution of XHt

, which is 24.
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In sum, we find

χ(X◦1 ) = 1
3 (24 + 8 · 24) = 72.

�

Remark 4.5.4. We still have the cyclic permutation action σ. Since σ commutes
(up to scalar) with g, it acts on the mirror as well. It can be checked that it has
no fixed points on XHt . Thus the induced Z/3-action is free, and we can form
the quotients XHt/〈σ〉 and X◦Ht

/〈σ〉. These will have Euler characteristics 24
and −24, respectively. However, the fundamental group will be non-trivial. �

4.5.2 Invariant subfamily of X2

In this case we are also able to produce a mirror candidate. We start by
describing natural group actions on N , and then describe a natural invariant
subfamily.

Recall that F is a 2-dimensional vector space with basis f0, f1. There is,
like above, a natural Z/2-action given by fi 7→ (−1)ifi. Concretely, Z/2 acts by
sending f0 to itself and multiplying f1 by −1. This action extends in a natural
way to an action on P(F⊗3 ⊕ F⊗3).

Furthermore, there is another Z/2-action given by fi 7→ fi+1 (indices taken
modulo 2).

Using the same notation as in the previous section, define Kt to be P11

spanned by the following matrices:

gαijk = eαijk + ti,j,ke
α+1
i+j+k,i+j+k,i+j+k (4.2)

for (i, j, k) 6= (0, 0, 0), (1, 1, 1) and α = 0, 1. These matrices span a P11. As
above, the gαijk are eigenvectors for the Z/2-action.

For ti,j,k = 1 for all i, j, k the variety XKt

∆= N ∩Kt has 36 double points.
Using the same arguments as in the previous section, it follows that a small res-
olution of XK1 has Euler-characteristic 24 as well. Again, using Roan’s formula,
we find that a small resolution of the quotient XK1 has Euler characteristic
+48. Thus we have a mirror candidate for X2 as well.

Proposition 4.5.5. There exists a mirror candidate for X2 as well. More
precisely, there exists a Calabi–Yau desingularization X◦2of the quotient X̃Kt

/H
in such a way that the Hodge numbers satisfy χ(X2) = −χ(X◦2 ) = −48.

4.5.3 Comment about X3

The same mirror construction does not work for X3, at least not directly. In
the cases of X1 and X2, there were natural finite group actions on E and F ,
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respectively. The actions extended to P
(

(E ⊗ E)⊕2
)
and P

(
(F ⊗ F ⊗ F )⊗2

)
,

and we intersected with invariant P11’s to get special Calabi–Yau’s.
In the case of X3, there is no natural finite group action on the ambient

projective space coming from the join factors, so the same construction does
not apply.

4.6 Conclusion and further questions

In this final chapter we constructed several smooth Calabi–Yau manifolds. Three
of them, X1, X2 and X3 lie in the same flat family. They are all smoothings of
XY , a complete intersection in a 5-dimensional toric variety Y . This XY has
a maximally crepant resolution of singularities which is a smooth Calabi–Yau.
We constructed mirror candidates and finite group quotients of X1 and X2.

We end with a few open questions that we would like to see answered in the
future.

The Calabi–Yau with Hodge numbers (44, 8) in Section 4.4 seem to have
some connection with our X1. Its mirror dual X8,44 is a complete intersection
in P2×P2×P2×P2, while X1 is a complete intersection in (P2×P2) ∗ (P2×P2)
with the same Euler characteristic. There seem to be some kind of duality going
on, which is unfortunately not described (to our knowledge) in the literature.

We have a morphism π : X1 → P2×P2×P2×P2 defined by (v⊗w, r⊗s) 7→
v⊗w⊗ r⊗ s. The morphism is generically 1− 1. We have not been able to see
what the image is (or if the morphism is an isomorphism).

The same situation occurs withX2. Here there is a morphism π : X2 → (P1)×6.
We do not know what the image is. Also here there should be a connection
with X8,44, since X8,44 can also be realized as a complete intersection in (P1)×6.
See the introduction of [BCD10].

It would also be interesting to find proofs of the Euler characteristics
being −72,−60 and −48 not involving computer calculations. In all cases the
Grassmannian parameterizing the Xi have dimension 72, 60, and 48, though
we haven’t seen the connection yet.

Assuming that our, or rather our computer’s, calculation of the Hodge
numbers of the Xi are correct, what are representatives of the generators of
PicXi? (being Z3, Z5 and Z4, respectively)

Can our construction via joins be generalized to produce other (potentially
new) Calabi–Yau varieties?
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APPENDIX A

Computer code

Extensive use of computer software such as Macaulay2 [GS] and SAGE [Wil17]
has been invaluable during my work. Especially the Macaulay2 package
VersalDeformations [Ilt12] has been useful for experiments (lifting defor-
mations to higher order, looking at base spaces, etc.).

In this Appendix we collect computer code for reproducing some of my
calculations. Not everything is reproduced here. For all my code, consult my
GitHub account at https://github.com/FredrikMeyer/m2files.

A.1 Computing the singular locus

In some cases, equations simplify significantly in affine charts. Therefore, using
the naive command singularLocus in Macaulay2 often takes unnecessarily
long time (and sometimes the computations never finish), as it computes the
minors of a very large Jacobian matrix. Restricting to each affine chart, we can
use the command minimalPresentation to eliminate variables to produce a
new ring isomorphic to the first one, but with fewer equations.

The following code produces a list of the components of the singular locus
of the projective scheme with homogeneous ideal I.

https://github.com/FredrikMeyer/m2files


A. Computer code

1 fastSingularities = I -> (
R := ring I;

3 n := numgens R;
gensR := gens R;

5 singlist := {};
for i from 0 to (n-1) do {

7 affineChart := I + ideal(gensR_i - 1);
singloc := singularLocus minimalPresentation affineChart;

9 sing := radical ideal mingens ideal singloc;
inv := affineChart.cache.minimalPresentationMap;

11 singlist = singlist | {(homogenize(preimage(inv,sing),gensR_i))};
};

13 saturate intersect(singlist)
)

The method works by computing the singular locus in each affine chart,
taking the radical, and then pulling back to the homogeneous coordinate ring.
Finally, we get a list of singular loci in each affine chart. We return the
(saturation of) the intersection of the ideals of the singular loci of each affine
chart.

The script is especially fast when computing the singular locus of toric
varieties with a low-dimensional singular locus.

The following code finds the singular locus of the projective cone C(P2×P2) ⊂
P9.

R = QQ[x_0..x_8,x_9]
2 M = genericMatrix(R,3,3)
I = minors(2,M)

4 time fastSingularities I
time radical ideal singularLocus I

Our function performs significantly faster than the native function singularLocus.
On a modern MacBook Pro, the times are 1.14 seconds versus 4.31 seconds,
respectively.

Here is a more involved example. Let Y ′ be the four-dimensional singular
toric variety from Chapter 4. It is defined by the 2× 2-minors of two matrices
with variables. In Macaulay2 we can define it as follows:

1 S = QQ[x_1..x_6,z_1..z_6,y]
M1 = matrix{{y,x_1,x_2},{x_4,y,x_3},{x_5,x_6,y}}

3 M2 = matrix{{y,z_1,z_2},{z_4,y,z_3},{z_5,z_6,y}}
J = minors(2,M1) + minors(2,M2)

Here the difference in performance is even more striking. Our function com-
putes the singular locus in 7.29 seconds, but the built-in function singularLocus
used more than 22 minutes (at which point we interrupted the computation).
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A.2. Torus action

A.2 Torus action

The following lines checks whether a projective scheme with ideal sheaf IX
admits an action of a subtorus of G = (C∗)n ⊂ Pn. To check this, we check if
the equations are still valid after a torus action. Since G is abelian, it acts on
functions by λ · f(x0, . . . , xn) = f(λ0x1, . . . , λnxn).

Lemma A.2.1. Suppose {f1, . . . , fr} is a homogeneous generating set for
IX = IX. Then the subgroup of G acting on X ⊂ Pn is generated by those
λ ∈ G such that λ · fi = cfi for some c ∈ C∗.

Proof. Let H be the subgroup of G fixing the ideal IX . Let H ′ be the subgroup
of g ∈ G acting on the fi’s by scalar multiplication: g ·fi = cfi. Clearly H ′ ⊆ H.
Now suppose g ∈ H. Then

g · f1 =
∑
j

ajfj

for some constants aj . We have that g · f1 = f1(λ1x1, . . . , λnxn). Suppose the
leading term of f1 is xb1

1 · · ·xbn
n . Then comparing leading terms in the left hand

side and the right hand side, we see that a1 = λb1
1 · · ·λbn

n := λm. Hence the
right hand side is λmf1 + other terms. But there are the same number of terms
on each side of the equation, meaning that the “other terms”-part must be zero.

Hence H = H ′. �

It follows that to find the subgroup of G acting on X, we have to find the
λ ∈ G such that the fi are simultaneous eigenvectors for them.

Example A.2.2. Let X be defined by f = x0x1x2x3x4 +
∑5
i=0 x

5
i in P4. Then

for C4 to act on it, we must have λ0λ1λ2λ3λ4 = λ5
0 = . . . = λ5

4. By setting
λ0 = 1, we see that all the λi’s are fifth roots of unity. Hence the subgroup acting
on H is the subgroup of (Z/5)5/Z5 given by {(a0, . . . , a5) |

∑
ai = 0}. ♥

The following code find the subtori of G acting on X in this way, by equating
terms in the polynomials defining X.
loadPackage "Binomials"

2 torus = ideal apply(flatten apply(
apply(

4 apply(flatten entries gens IX, monomials),
v -> flatten entries v),

6 j -> subsets(j,2)),
s -> s_0-s_1)

8 toruskomps = BPD torus
toruskomps = select(toruskomps, I -> dim I == 1)
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A. Computer code

Explanation. In order to have g · f = λf , all terms of the polynomial must
be eigenvectors of g. Then as in Example A.2.2, this translates into equating
all monomials in the generators. The code first makes a list of all pairs of
monomials in generators of IX. Then we make the ideal of differences between
each pair. Putting all the differences equal to zero, we find the subset of the
torus acting on X.

The ideal torus is the ideal generated by the differences of terms in the
polynomials defining X.

The Macaulay2 package Binomials [Kah12] can decompose binomials over
cyclic extensions of Q with the command BPD. In the last line we select the
components corresponding to finite subgroups of the torus.

Then we check manually if these actually correspond to non-trivial actions.
There will be one component for each generator of the cyclic group acting on
X. �

A.3 Computing fixed points

Computing fixed points of a torus action is often just as easy to do by hand,
but to save time and potential for error, we mostly did this in Macaulay2.

To check if a point P ∈ Pn is a fixed point of a group action, we lift P to
P ∈ Cn+1. Then P is a fix point if and only if g · P = λP for some λ ∈ C∗.

To compute all fix points, we consider the ideal generated by xi − λ(g · xi)
for each generator xi. The fixed locus correspond to a primary decomposition
of this ideal.

Below is the code to compute the fixed points of the Z/2-action on the
invariant subfamily of X2. We create the ideal, then saturate by the maximal
ideal (x1, . . . , xn) (since not all coordinates are allowed to be zero). Then we
use the decompose command in Macaulay2 to get a primary decomposition.

1 S = R[lambda]
M1 = matrix{{x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11,x_12}}

3 nnnnnM2 = matrix{{x_1*lambda,x_2*lambda,-x_3*lambda,x_4*lambda,-x_5*lambda,-
x_6*lambda,-lambda*x_7,-x_8*lambda,lambda*x_9,-lambda*x_10,lambda*x_11,
lambda*x_12}}

5 Ifiks = saturate(ideal (M1-M2), sub(ideal gens R,S))
decompose(Ifiks + IX)

The result is a list of 12 ideals, corresponding to the 12 fixed points.

A.4 Computing the Gaifullin triangulation

Below is a short SAGE script computing the 15 vertex triangulation of CP2

as described in [Gai09]. The last line returns a SimplicialComplex object in
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A.5. Construction of the Xi

SAGE.
#Defines the Klein 4 group.

2 V4 = PermutationGroup([Permutation("(1,2)(3,4)"),Permutation("(1,3)(2,4)")])

4 def isValidFace(F):
’’’

6 Assumes the first vertex is a permutation.
Then checks if F satisfies the condition in the

8 definition of T.
’’’

10 g = F[0]
for v in (1,2,3,4):

12 if (F[g(v)][1] == F[v][1]):
return False

14 return True

16
# Makes a list of all possible maximal faces of the correct form

18 candidates = [(g,(1,a1),(2,a2),(3,a3),(4,a4)) for g in V4.list()[1:] for a1 in
(1,2,3) for a2 in (1,2,3) for a3 in (1,2,3) for a4 in (1,2,3)]

20 # Filters out the faces not fulfilling the condition
maximalFacets = filter(lambda F: isValidFace(F), candidates)

22
# Renames the vertices

24 S = SimplicialComplex(maximalFacets)
vertexSet = S.vertices()

26 D = dict([(F,i) for i,F in enumerate(vertexSet)])
renamedMaximalFacets = [[D[v] for v in F] for F in maximalFacets]

28 SS = SimplicialComplex(renamedMaximalFacets)

To get the Stanley–Reisner ideal, one can write:

list(SS.stanley_reisner_ring().defining_ideal().gens())

The returned value is a list of the monomials generating the Stanley–Reisner
ideal of T . This can then be copied into Macaulay2 for further analysis.

A.5 Construction of the Xi

In this section we describe an efficient way to present the Calabi–Yau varieties
Xi from Chapter 4 in Macaulay2.

A.5.1 Construction of X1

Recall the construction of X1: it is the intersection of a toric variety M ⊂ P17

with a generic P11. The variety X1 parametrizes pairs of rank 1 + 1 tensors in
this P11.
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A. Computer code

We can think of elements of E ⊗ E ⊕ E ⊗ E as pairs of 3 × 3 matrices,
which we denote by (A,B). To span the P11, we choose block matrices (A,B)i
(i = 1, . . . , 12). Then we form the sum

A
∆=

12∑
i=1

(A,B)ixi,

with variables xi. This matrix has rank 1 + 1 if all the 2× 2-minors of A and
B vanish, and neither A nor B is zero (which for generic (A,B) won’t happen).

Below is a short Macaulay2 script implementing this construction.
kk = ZZ/3001

2 R = kk[x_1..x_12]

4 generateX2 = () -> (
K = random(R^18,R^12);

6 a = transpose gens gb K; -- same image
b = entries a;

8 b = apply(0..11, i-> apply(b#i, z -> z*x_(i+1)));
bb = sum toList b;

10 bb1 = bb_{0..8};
bb2 = bb_{9..17};

12 M1 = matrix toList apply(0..2,
i-> toList apply(0..2, j-> bb1#(3*i+j)));

14 M2 = matrix toList apply(0..2,
i-> toList apply(0..2, j-> bb2#(3*i+j)));

16 I1 = minors(2, M1);
I2 = minors(2, M2);

18 I1+I2
)

Listing A.1: Code for X1

We explain each step. First we create a random 18 × 12-matrix with
coefficients from the field kk. Then we replace the random matrix with its
Gaussian reduced form, which have the same image in k18, but is much simpler.

Next, we use the matrix to create 18 random linear forms in the variables
xi. These are then inserted into two 3 × 3 matrices M1 and M2. Finally, we
return the ideal which is the sum of the ideal of the minors of the two matrices
M1 and M2. This is the ideal of X1.

Remark A.5.1. Replacing the matrix K with its Gaussian reduced form is the
same as letting GL(k12) act on the left. This significantly reduces the size of
the resulting Gröbner basis. Without this simplification, the resulting Gröbner
basis has 49 elements, but with it, it has 19 elements.

As an example, computing the degree zero part of T 1(SX1/k, SX1) takes
about a week on a modern computer before simplification. With the smaller
Gröbner basis, the same computation takes just a couple of hours. �
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A.5.2 Construction of X2

The construction of X2 is very similar. Again, we create 12 random elements
of (F ⊗ F ⊗ F )⊕2 spanning a P11. This correspond to the 12 columns of the
random matrix K.

As with X1, we replace K with its Gaussian reduced form. This matrix
spans the same P11, but has a lot more zeroes.

Then we form the sum
12∑
i=1

(T1, T2)ixi,

where T1 and T2 are 2× 2× 2-tensors. We return the ideal generated by the
“minors” of this sum.

1 minors222tensor = (L) -> ( -- L is a list of lists of lists
eqs = {L#0#0#0*L#1#0#1 - L#0#0#1*L#1#0#0,

3 L#1#0#0*L#1#1#1 - L#1#1#0*L#1#0#1,
L#1#1#0*L#0#1#1 - L#1#1#1*L#0#1#0,

5 L#0#1#0*L#0#0#1 - L#0#1#1*L#0#0#0,
L#1#0#1*L#0#1#1 - L#1#1#1*L#0#0#1,

7 L#1#0#0*L#0#1#0 - L#1#1#0*L#0#0#0};
eqs = eqs | {L#0#0#0 * L#1#1#1 - L#0#0#1*L#1#1#0,

9 L#1#0#0*L#0#1#1 - L#1#0#1*L#0#1#0,
L#0#0#1*L#1#1#0 - L#1#0#1*L#0#1#0};

11 ideal eqs
)

13
generateX2 = () -> (

15 K = random(R^16,R^12);
a = transpose gens gb K;

17 b = entries transpose K;
b = entries a;

19 b = apply(0..11, i-> apply(b#i, z -> z*x_(i+1)));
bb = sum toList b;

21 bb1 = bb_{0..7};
bb2 = bb_{8..15};

23 I1 = minors222tensor {{{bb1#0,bb1#1},{bb1#2,bb1#3}},
{{bb1#4,bb1#5},{bb1#6,bb1#7}}};

25 I2 = minors222tensor {{{bb2#0,bb2#1},{bb2#2,bb2#3}}
{{bb2#4,bb2#5},{bb2#6,bb2#7}}};

27 I1+I2
)

Listing A.2: Code for X2

Constructing X3 in Macaulay2 is entirely similar to the above two construc-
tions, so we omit the code.

Remark A.5.2. Using a finite field when computing T 1 is essential. Without a
limit on the size of the coefficients, the amount of necessary computer RAM is
way beyond current technology. �
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A.6 Constructing the invariant subfamilies

Below is Macaulay2 code for constructing the invariant Calabi–Yau families
described in Chapter 4.

A.6.1 Code for XHt

Z = QQ[x_1..x_12]
2
pars = {2,3,5}

4 fija = (i,j,a) -> (
Eij := (id_(Z^3))_{i} * transpose (id_(Z^3))_{j};

6 Eij’ := (id_(Z^3))_{(-i-j) % 3} * transpose (id_(Z^3))_{(-i-j) % 3};
if (a == 0) then (

8 Eij | pars#((i-j)%3) * Eij’
)

10 else (
pars#((i-j)%3) * Eij’ | Eij

12 )
)

14
MG = x_1*fija(0,1,0) + x_2*fija(0,2,0) + x_3*fija(1,0,0) +

16 x_4*fija(1,2,0) + x_5*fija(2,0,0) + x_6*fija(2,1,0) +
x_7*fija(0,1,1) + x_8*fija(0,2,1) + x_9*fija(1,0,1) +

18 x_10*fija(1,2,1)+ x_11*fija(2,0,1)+ x_12*fija(2,1,1)

20 IX = minors(2,MG_{0..2}) + minors(2,MG_{3..5})

Listing A.3: Code for XHt

The function fija takes as inputs the indices in the definition of fαij in
Equation (4.1). The elements of the list pars are parameters. Only if the
parameters are all equal to 1 do the variety obtain more singularities.

A.6.2 Code for XKt

For the invariant subfamily of the X2-family, the code is shorter (but uglier).
We manually entered the equations of the invariant 2× 2× 2-tensors gαijk from
Equation (4.2), and then computed the 2× 2× 2-minors.
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pars = {2,3,5}
2 L1 = {{{pars#0 * x_7 + pars#1 * x_8 + pars#2 * x_10,x_1},

{x_2,x_3}},{{x_4,x_5},
4 {x_6,pars#2 *x_9 + pars#1 * x_11 + pars#0 * x_12}}}
L2 = {{{pars#0 * x_1 + pars#1 * x_2 + pars#2 * x_4,x_7},

6 {x_8,x_9}},{{x_10,x_11},
{x_12,pars#2 *x_3 + pars#1 * x_5 + pars#0 * x_6}}}

8
IX = (minors222tensor L1) + (minors222tensor L2)

Listing A.4: Code for XKt
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APPENDIX B

Triangulations of spheres with 8
vertices

In the article [GS67], Grünbaum–Sreedharan enumerates all simplicial 4-polytopes
with 7 and 8 vertices. There are 5 combinatorial types of triangulations of the
4-sphere with 7 vertices, and there are 37 combinatorial types of triangulations
with 8 vertices.

In her thesis [Fau12], Ingrid Fausk considered the polytopes with 7 vertices,
and their associated Stanley–Reisner schemes. She showed that four out of
the five possible Stanley–Reisner schemes of triangulations of 4-spheres with
seven vertices admit a smoothing. These smoothings correspond to Calabi–Yau
varieties with Hodge numbers (1, 73), (1, 73), (1, 61) and (1, 50), respectively.
The last one is Rødland’s construction.

In this Appendix, we perform deformation theoretic calculations on the
37 triangulations with 8 vertices. Unfortunately, most of them appear to be
non-smoothable, at least with naïve techniques.

Unfortunately, there seems to be a mistake in Grünbaum–Sreedharan’s list.
Two of the spheres listed have H3(K; k) = 0, which should not occur if they
were spheres.

In [Kap15], Kapustka compiles a list of smooth Calabi–Yau varieties with
PicX = Z. Several of the smoothings we find below occur in that list. There is
also the paper [Cou+16], where Coughlan–Gołębiowski–Kapustka–Kapustka
make a list of arithmetically Gorenstein Calabi–Yau threefolds in P7, which
they conjecture is the complete list of such threefolds. One can ask if all of
these are smoothings of one of the Stanley–Reisner schemes from the below list.

B.0.1 Technique

We manually entered the maximal facets from each triangulation P 8
i (in Grün-

baum’s notation) into Macaulay2. Then we used Nathan Ilten’s package [Ilt12]



B. Triangulations of spheres with 8 vertices

to compute their first order deformations and the obstruction spaces, T 1 and
T 2, respectively.

Those with T 2 = 0 are perhaps the most interesting, as they correspond to
smooth points on the Hilbert scheme. Having T 2 = 0 means that all first-order
deformations lift to a second-order deformation. In many cases this implies
that it lifts automatically to an honest family over SpecC[t1, . . . , tN ] (where
N = dimk T

1).
However, even in non-obstructed cases, we might have power series solutions,

meaning that lifting the equations one step at a time will never terminate.
Then we compute the T i modules for the other triangulations. We also

compute their automorphism groups, using SAGE.

B.1 Table of information

Here is the whole table of T i-dimensions together with some other information.
Compare with the list in [Kap15].

Number degree c2 ·H T 1 T 2 Aut(T ) Comment
P 8

1 14 − − − − Not a sphere.
P 8

2 14 68 98 9 Z/2× Z/2
P 8

3 14 68 108 24 D6
P 8

4 15 66 95 17 Z/2× Z/2
P 8

5 15 64 88 32 Z/2×D4
P 8

6 15 66 88 9 Z/2× Z/2
P 8

7 15 − − − − Not a sphere.
P 8

8 16 64 78 9 1
P 8

9 16 64 82 17 Z/2
P 8

10 16 64 92 32 Z/4
P 8

11 17 62 74 18 Z/2
P 8

12 17 62 77 25 Z/2
P8

13 15 66 83 0 S3 ×D5 Smooths to X113 ⊂ G(2, 5).
P 8

14 16 64 80 18 D4
P 8

15 16 64 88 32 Z/2× Z/4
P8

16 16 64 72 0 Z/2× Z/2
P8

17 16 64 72 0 Z/2× Z/2× Z/2
P 8

18 17 62 72 17 Z/2× Z/2
P 8

19 17 62 72 17 Z/2
P 8

20 17 62 67 9 Z/2
P 8

21 17 62 80 32 D4
P8

22 17 62 62 0 Z/2
P 8

23 18 60 63 17 Z/2
P 8

24 18 60 18 18 Z/2
P 8

25 18 60 67 25 1
P8

26 17 62 62 0 D6
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B.1. Table of information

Number degree c2 ·H T 1 T 2 Aut(T ) Comment
P 8

27 18 60 58 9 Z/2
P 8

28 18 60 58 9 Z/2× Z/2
P 8

29 18 60 58 9 Z/2× Z/2
P 8

30 19 58 63 33 Z/2
P 8

31 19 58 59 26 1
P 8

32 19 58 55 18 Z/2
P 8

33 19 58 60 27 Z/2× Z/2
P8

34 16 64 72 0 S4 × (Z/2)4 Smooths to X2222 ⊂ P7.
P 8

35 20 56 72 64 D8
P 8

36 20 56 64 50 Z/4
P 8

37 20 56 61 43 Z/2
M 20 56 53 27 S3

The notations X112 and X2222 mean a complete intersection of degrees 1, 1, 2
(resp. 2, 2, 2, 2) in X.
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