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Chapter 1

Introduction

The objective of this master thesis is to conduct a survey on valuation theories for unit-
linked life insurance policies based on economic theories. Life insurance companies
are subjected to two major sources of uncertainty, namely mortality risk and financial
risk. In traditional actuarial practice, financial risk is not treated explicitly. In recent
years, new life insurance products are being introduced. The so-called unit-linked in-
surance is the kind of insurance where the amount of benefits for the policy-holder is
linked to some specified reference portfolio whose market value fluctuates rather ran-
domly. Thus we model the amount of such benefits by a stochastic process in connec-
tion to the price of stocks. Since the work of Black and Scholes [3], the classical way
is to apply the Black-Scholes market dynamic where the volatility process is constant
or deterministic. However it has become clear from observed prices that the Black-
Scholes model is inconsistent with the reality of the market. Gradually, more sophis-
ticated models have been introduced such as local volatility models [5] [8] where the
volatility process is taken as a deterministic function of time and asset price. While the
Hull and White model [14], the Heston model [12] and the SABR model [11] consid-
ered the volatility as an Itô process driven by an additional Brownian motion. In terms
of the smoothness of the volatility process, these models have sample paths close as
that of a Brownian motion. However, the recent result in [9] shows that based on statis-
tical analysis of historical data that the volatility is much rougher. In fact, the authors
showed that the rough fractional stochastic volatility model, where the log-volatility
process is modeled by a fractional Brownian motion with Hurst parameter H of order
0.1, consistently reflects the behavior of financial time series data.

As a self-contained survey, we will first introduce all the necessary concepts and
knowledge. Chapter 2 covers the foundation of probability theory, stochastic analysis,
mathematical finance and related theories. Chapter 3 serves as a refresher of Life
insurance mathematics. Chapter 4 will explain theories of simulation of fractional
Brownian motion.

The rough fractional stochastic volatility model (RFSV) and related concepts will
be introduced in Chapter 5. Chapter 6 carries out the simulation and the discussion of
results. And finally we will review possible future work in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we shall give an introduction to parts of probability theory, stochas-
tic analysis and some basic concepts about insurance market that are relevant for this
thesis. It can be skipped for readers familiar with such concepts.

2.1 Measure Theory and Probability Theory
Definition 2.1. (σ-algebra) A σ-algebra A is a family of subsets of a given non-empty
set Ω with properties:

(i) ∅ ∈ A .

(ii) If A ∈ A , then A{ ∈ A .

(iii) If A1, A2, . . . ∈ A and Ai 6= Aj for i 6= j, then A ≡
∞⋃
n=1

An ∈ A .

Remark 2.2. In the life insurance setting, we could consider A as the entirety of market
information at a certain time t, and the elements A ∈ A are called market events

Definition 2.3. (σ-algebra generated by U) Consider any family U of subsets of Ω, the
smallest σ-algebra

HU :=
⋂
{H;Hσ-algebra of Ω, U ⊂ H}

is called the σ-algebra generated by U .

Example 2.4. (Borel σ-algebra) The σ-algebra generated by all open sets of a topo-
logical space Ω is called the Borel σ-algebra on Ω, and is denoted B(Ω). Its elements
are called Borel sets.

Example 2.5. (σ-algebra generated by a function) For allX : Ω→ Rn , the σ-algebra
generated by X is

{X−1(B);B ∈ B}.

Definition 2.6. (Measure, measurable space, measure space, probability measure and
probability space) Let Ω be a set and A a σ-algebra of subsets of Ω. A measure µ on
A is an extended real-valued function with properties:

3
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(i) µ(A) ≥ 0, for all A ∈ A .

(ii) µ(∅) = 0 .

(iii) If A1, A2, . . . ∈ A and Ai ∩ Aj = ∅ for i 6= j, then µ(
∞⋃
n=1

An) =
∑∞
n=1 µ(An)

.

The pair (Ω,A) is called a measurable space and the triplet (Ω,A, µ) is called a
measure space. If µ(Ω) = 1, we call µ a probability measure and denote it by P, and
(Ω,A, P ) is then called a probability space.

Example 2.7. (Dirac measure)For a set A, the so-called Dirac measure is defined by:

δω(A) :=

{
1, if ω ∈ A,
0, if ω /∈ A.

Example 2.8. (Lebesque-Borel measure on [0, 1]) Let Ω = [0, 1],A = {A∩[0, 1] : A ∈
B(R)} where B(R) is the borel σ-algebra on R, then there exists a unique probability
measure

λ : A→ [0, 1]

such that
λ([a, b]) = b− a, for all 0 ≤ a ≤ b ≤ 1.

Remark 2.9. The law of a uniformly distributed random variable on [0, 1] is the
Lebesgue measure on [0, 1].

Definition 2.10. (Measurable function) If (Ω,A, P ) is a given probability space, then
a function X : Ω→ Rn is called A-measurable if

X−1(B) := {ω ∈ Ω;X(ω) ∈ B} ∈ A

for all borel sets B ∈ Rn.

Definition 2.11. (Random variable) A random variable is an A-measurable function
X : Ω→ Rn. The probability law of X, denoted µX(B), is defined by

µX(B) = P (X−1(B)).

Definition 2.12. (Integral with respect to a measure) Let X be a positive random
variable, then

E[X] :=

∫
Ω

X(ω)P (dω)

:= lim
n→∞

n·2n∑
i=1

i · 2−nP (Ai,n),

where

Ai,n :=

{
{(i+ 1)2−n > X ≥ i · 2−n}, i = 0, · · · , n · 2n − 1,

{X ≥ n}, i = n · 2n.

For general X , we can always write X = X+ −X− where

X+ = max(X, 0), X− = max(−X, 0),
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if E[X+], E[X−] <∞ then we define:

E[X] :=

∫
Ω

X(ω)P (dω)

and X is called P-integrable

Definition 2.13. (Expectation) if
∫
Ω

|X(ω)|dP (ω) <∞ for a random variableX , then

the expectation of X is

E[X] =

∫
Ω

X(ω) dP (ω) =

∫
Rn

x dµX(x)

Definition 2.14. (Independence)

• Two events A,B ∈ F are called independent if

P (A ∩B) = P (A) · P (B).

• A collection of familiesHi of measurable sets is independent if

P (Hi1 ,∩ · · · ∩Hik) = P (Hi1) · · ·P (Hik), for all i, k

where i is the index for the families and k is the index of the sets within each
family i.

• A collection of random variablesXi is independent if the collection of generated
σ-algebrasHXi is independent.

Definition 2.15. (Stochastic process) A stochastic process is a parameterized collec-
tion of random variables

{Xt}t∈T

defined on a probability space (Ω,A, P ). T is the parameter space, and we consider a
finite timeline[0, T ] where T > 0 is usually the exercise time of a stock.

Note that for each

• t ∈ T fixed, we have a random variable

ω → Xt(ω); ω ∈ Ω.

• ω ∈ Ω fixed, we have a function

t→ Xt(ω); t ∈ T

which is called a path of Xt .

Remark 2.16. Intuitively, we can think of t as time and ω as an individual of “parti-
cle”, therefore Xt(ω) would then represent the position of the particle ω at time t. It
is sometimes cognitively convenient to think of Xt(ω) as a function of two variables
X(t, ω) from T× Ω into Rn.
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Theorem 2.17. (Kolmogorov’s extension theorem) Let vt1,...,tk be probability mea-
sures on Rnk for all t1, . . . , tk ∈ T, k ∈ N, if

(i) vtσ(1),...,tσ(k)(A1 × · · · ×Ak) = vt1,...,tk(Aσ−1(1) × · · · ×Aσ−1(k))

for all permutations σ on
{

1, 2, . . . , k
}

.

(ii) vt1,...,tk(A1×· · ·×Ak) = vt1,...,tk,tk+1,...,tk+m(A1×· · ·×Ak×Rn×· · ·×Rn),
for all m ∈ N.

then there exists a probability space (Ω,A, P ) and a stochastic process
{
Xt

}
on

Ω, Xt : Ω→ Rn such that

vt1,...,tk(A1 × · · · ×Ak) = P (Xt1 ∈ A1, · · · , Xtk ∈ Ak)

for all ti ∈ T, k ∈ N and all Borel sets Ai.

2.2 Martingale Theory
Definition 2.18. (Filtration and filtered space) A filtration F = {Ft}t≥0 on (Ω,A) is
a family of σ-algebras Ft ⊂ A such that

Fs ⊂ Ft ‘ for all

i.e. {Ft} is increasing.
A probability space (Ω,A, P ) equipped with a filtration {Ft}t≥0 is called a filtered

probability space and denoted (Ω, {Ft}t≥0,A, P ).

Definition 2.19. (Adaptedness) A stochastic process {Xt}t≥0 defined on a filtered
probability space (Ω, {Ft}t≥0,A, P ) is called Ft-adapted if, for each t ≥ 0, the ran-
dom variable Xt is Ft-measurable.

Definition 2.20. (Conditional expectation) Let(Ω,A, P ) be a probability space, X :
Ω → Rn be a random variable such that E[|X|] < ∞. If H ⊂ A is a σ-algebra, the
conditional expectation of X given H is a function, denoted by E[X|H],from Ω to Rn
such that

(i) E[X|H] isH-measurable.

(ii)
∫
H

E[X|H] dP =
∫
H

X dP , for all H ∈ H

Consider another random variable Y : Ω → Rn such that E[|Y |] < ∞, a, b ∈
R and G a σ-algebra such that G ⊂ H. The conditional expectation has following
properties:

(i) E[aX + bY |H] = aE[X|H] + bE[Y |H]

(ii) E[E[X|H]] = E[X]

(iii) E[X|H] = E[X] if X is independent ofH

(iv) E[X|H] = X if X isH measurable

(v) E[Y ·X|H] = Y · E[X|H] if Y isH measurable
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(vi) E[X|G] = E[E[X|H]|G]

Definition 2.21. (Martingale) An n-dimensional stochastic process {Xt}t≥0 defined
on a filtered probability space (Ω, {Ft}t≥0,A, P ) is called a martingale if

(i) E[|Xt|] <∞, for all t.

(ii) E[Xs|Ft] = Xt, for all s ≥ t

Definition 2.22. (Stopping time) Consider a filtration F = {Ft}t≥0, a random vari-
able τ : Ω→ R≥0 is called a F-stopping time, if

{τ ≤ t} = {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft; for all t ∈ R≥0

Definition 2.23. (Local martingale) A stochastic process {Xt} on (Ω, {Ft}t≥0,A, P )
is called a local martingale if there exists an increasing sequence of F-stopping times
τk such that

τk →∞ a.s. as k →∞

and
X(t ∧ τk) is an F-martingale , for all k.

Definition 2.24. (Semi-martingale) A stochastic processX(t) is called a semi-martingale
if there exist two adapted process {ut, t ∈ T} and {vt, t ∈ T} such that

∫ t
0
u(s)2 ds ≤

∞,
∫ t

0
|v(s)|ds ≤ ∞ a.s. for all t ∈ T = [0, T ], and

Xt = X0 +

∫ t

0

us dBs +

∫ t

0

vs ds, X0 ∈ R

Mt =
∫ t

0
us dBs and Vt =

∫ t
0
vs ds are the local martingale part and bounded varia-

tion part of X, respectively.

2.3 Brownian Motion and Fractional Brownian Motion

2.3.1 Brownian Motion
Definition 2.25. (Brownian motion) A Brownian motion is a stochastic process {Bt}t≥0

on Ω for a probability space (Ω,A, P ) such that

(i) B0 = 0 almost surely.

(ii) Bt has continuous paths t→ Bt(ω).

(iii) Bt has independent increments.

Bt2 −Bt1 , . . . , Btk −Btk−1
are independent for all 0 ≤ t1 < t2 < · · · < tk.

(iv) Bt has stationary Gaussian increments and is a Gaussian process

• (Bt −Bs)
d
= Bt−s ∼ N(0, t− s), for all 0 ≤ s ≤ t ≤ T

• For all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, the random variableZ = (Bt1 , . . . , Btk) ∈
Rnk has a multi-normal distribution
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2.3.2 Fractional Brownian Motion
Fractional Brownian motion was originally studied by Kolmogorov with in a Hilbert
space framework. It’s properties makes it especially suitable for modeling fractional
noise in mathematical finance. We will give an introduction of it’s definition and prop-
erties here.

Definition 2.26. (Fractional Brownian motion) A centered and continuous Gaussian
Process BH = {BHt , t ≤ 0} is called a fractional Brownian motion(fBm) of Hurst
parameter H ∈ (0, 1) if it has the covariance

ρH(t, s) = E(BHt B
H
s ) =

1

2
(s2H + t2H − |t− s|2H). (2.1)

Fractional Brownian motion has the following properties:

(i) BH0 = 0 and E[BHt ] = 0,for all t ≥ 0.

(ii) BHt is self-similar.

For any constant a > 0, the process {a−HBHat, t ≥ 0} and {BHt , t ≥ 0} have
the same distribution.

(iii) BHt has stationary increments.

It can be shown that the variance of increment in an interval [s, t] is:

E(|BHt −BHs |2) = |t− s|2H

i.e. BHt −BHs has the same distribution as BHt−s, for all 0 ≤ s ≤ t ≤ T .

(iv) BHt is a Gaussian process with variance E[(BHt )2] = t2H , for all t ≥ 0.

In addition to these properties, we also note that

(i) BHt does not have independent increments for H 6= 1
2 .

For H = 1
2 , the covariance can be written as ρ 1

2
(t, s) = t ∧ s, and the process

B
1
2 is a standard Brownian motion.

However for H 6= 1
2 , set Xn = Bn − Bn−1, n ≥ 1,the increment process

{Xn}n≥1is then a Gaussian stationary sequence with covariance function

ρH(n) =
1

2
((n+ 1)2H + (n− 1)2H − 2n2H).

called fractional Gaussian noise.

This implies

• For H > 1
2 , the increments are positively related, and Xn exhibits long

range dependence, i.e.

lim
n→∞

ρH(n)

H(2H − 1)n2H−2
= 1

and
∞∑
n=1

ρH(n) =∞.
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• For H < 1
2 , the increments are negatively related and

∞∑
n=1

|ρH(n)| ≤ ∞.

(ii) BHt is not a semi-martingale for H 6= 1
2 .

The proof is omitted. As a consequence, the usual Itô stochastic calculus does
not apply. The concept of Itô stochastic calculus will be introduced later.

2.4 Stochastic Analysis

2.4.1 Itô Integral
Consider a generalized model of the form

dX

dt
= b(t,Xt) + σ(t,Xt) · “noise”,

where b and σ are given functions.The random noise can be represented by a stochastic
process Wt, then we have

dX

dt
= b(t,Xt) + σ(t,Xt) ·Wt. (2.2)

ideally for real life applications, we would want Wt to have the properties

(i) Wti and Wtj are independent for i 6= j

(ii) {Wt} is stationary, i.e. the joint distribution of {Wt1+t, · · · ,Wtk+t} does not
depend on t.

(iii) E[Wt] = 0 for all t.

However, it can be proven that such stochastic process does not have continuous paths.
We then consider a discrete version of (2.2) for 0 < t0 < t1 < · · · < tm = t such that

Xk−1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)Wk∆tk, (2.3)

where
Xj = X(tj), Wk = Wtk , ∆tk = tk−1 − tk

in hope to replace Wk∆tk with ∆Vk = Vtk+1
− Vtk where {Vt}t≥0 is a suitable

stochastic process. It turns out that the Brownian motion Bt is exactly such process
that satisfies the requirement of having stationary independent increments with mean
0. By replacing Vt with Bt, from equation(2.3), we have

Xk = X0 +

k−1∑
j=0

b(tj , Xj)∆tj +

k−1∑
j=0

σ(tj , Xj)∆Bj . (2.4)

It can then be proven that the limit of the right hand side of equation(2.4) exist in
probability and we write ∫ t

0

σ(s,Xs) dBs.

We obtain

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs. (2.5)
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2.4.2 Itô Formula
We will utilize Itô formula to calculate Itô integral explicitly.

Definition 2.27. (Itô process) LetBt be a 1-dimensional Brownian motion on (Ω,A, P ).
An Itô process is a stochastic process Xt on (Ω,A, P ) of the form

Xt = X0 +

∫ t

0

u(s, ω) ds+

∫ t

0

v(s, ω) dBs (2.6)

where

P

[ ∫ t

0

v(s, ω)2 ds <∞ for all t ≥ 0

]
= 1

and

P

[ ∫ t

0

|u(s, ω)|ds <∞ for all t ≥ 0

]
= 1

Xt can be written in the differential form, that is

dXt = udt+ v dBt (2.7)

Definition 2.28. (Itô formula) Let Xt be an Itô process of the form

dXt = udt+ v dBt.

Let g be a twice continuously differentiable function on [0,∞)× R. Then

Yt = g(t,Xt)

is also an Itô process, and

dYt =
∂g

∂t
dt+

∂g

∂x
dXt +

1

2

∂2g

∂x2
· (dXt)

2, (2.8)

where (dXt)
2 = (dXt) · (dXt) is computed in accord with the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

The proof is omitted here.

2.4.3 SDEs with respect to Brownian Motion
Black and Scholes assumed in their work that the price of the underlying stock varies
like the price of a bond, which yields a continuously compounding rate of return µ that
is then randomly distorted by σB(t). This model is called geometric Brownian motion,
to put it in mathematical terms, we have the following definition:

Definition 2.29. (Black-Scholes model for stock prices) For t ∈ T, let St be given by

St = S0exp(µt + σBt), (2.9)

where µ is the drift of the stock and σ is the volatility. The current stock price is S0,
and Bt is standard Brownian motion.
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Consider the geometric Brownian motion in Black-Scholes model

St = S0exp(µt+ σBt),

apply Itô formula to it, note
St = f(t, Bt),

and

∂f(t, Bt)

∂t
= µf(t, Bt),

∂f(t, Bt)

∂Bt
= σf(t, Bt),

∂2f(t, Bt)

∂B2
t

= σ2f(t, Bt),

we have

df(t, Bt) = µf(t, Bt) + σf(t, Bt) dBt +
1

2
σ2f(t, Bt)(dBt)

2.

Since (dBt)
2 = dt, we then have

dSt =

(
µ+

1

2
σ2

)
St dt+ σSt dBt. (2.10)

However, if we instead look for the solution to the stochastic differential equation of
the form

dSt = µSt dt+ σSt dBt,

a similar calculation will result in

St = S0exp
((

µ− 1

2
σ2

)
t+ σBt

)
. (2.11)

2.5 Finance

2.5.1 Mathematical Finance
Definition 2.30. (Contingent T-claim) A contingent T-claim as a financial contract
that pays the holder a random amount Y at time T , is a lower-bounded FT -adapted
random variable,where T is called the exercise time of the contingent claim and FT is
a general filtration.

Note that insurance policies of the form Y = f(St), where f is some function, are
contingent claims. Y is FT -adapted since Y is dependent on St and therefore Bt.

Consider a financial market consisting of a stock, a bond and a contingent claim,
where the price of the stock is modeled by the Black-Scholes model (2.9) i.e.

dSt = µSt dt+ σtSt dBt,

the price of the bond by
dRt = rRt dt, R0 = 1,

where r is the continuously compounding rate of return, which translate to an actuarial
rate of return of

ra = exp(r)− 1,

and let Yt denote an adapted stochastic process of the price of the contingent claim.
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A portfolio strategy (a, b, c) consists of at, bt and ct numbers of stocks, bonds and
contingent claims respectively, has the value at time t

Vt = atSt + btRt + ctYt.

Vt is then also an adapted stochastic process.
Now we will consider the more general and formal definitions.

Definition 2.31. (Financial market) A market is an Ft-adapted (n + 1)-dimensional
Itô process {Xt}t∈T = (X

(0)
t , X

(1)
t , · · · , X(n)

t ); t ∈ T, which is assumed to be of the
form

dX
(0)
t = ρ(t, ω)X

(0)
t dt; X

(0)
0 = 1

and

dX
(i)
t = µi(t, ω) dt+

m∑
j=1

σij(t, ω) dBjt

= µi(t, ω) dt+ σi(t, ω) dBt; X
(i)
t = xi,

where σi is row number i of the n×M matrix [σij ]; 1 ≤ i ≤ n.
The market is called normalized if X(0)

t ≡ 1

X
(i)
t = Xi(t, ω) represents the price of asset number i at time t. The asset number

0 is called a risk-free asset and represents for example an investment in bonds, the
return rate of it ρ(t, ω) is assumed to be bounded for simplicity. The assets number
1, · · · , n are called risky assets representing for example investments in stocks.

If we regard the price of the risk-free assets as the unit price, and calculate the
prices of other assets accordingly, we can always normalize the market. Since

X
(0)
t = exp

(∫ t

0

ρ(s, ω) ds

)
define

ξ(t) = X
(0)
t

−1
= exp

(
−
∫ t

0

ρ(s, ω) ds

)
we have

{Xt}t∈T = ξ(t){Xt}t∈T = (1, X
(0)

t , · · · , X(n)

t ); t ∈ T

and

dX
(i)

t = d(ξ(t)X
(i)
t ) = ξ(t)[(µi − ρXi) dt+ σi dBt]; 1 ≤ i ≤ n.

Definition 2.32. (Self-financing portfolio) A portfolio in the market {Xt}t∈T is a (n+
1)-dimensional (t, ω)-measurable and Ft-adapted stochastic process

{θt}t∈T = (θ0(t, ω), θ1(t, ω), · · · , θn(t, ω)).

The value of a portfolio θt at time t is also a (t, ω)-measurable and Ft-adapted
stochastic process

V θ(t, ω) = θt ·Xt =

n∑
i=0

θ
(i)
t X

(i)
t .
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We refer to it as the value process.
The portfolio is called self financing if

dVt = θt · dXt =

n∑
i=0

θ
(i)
t dX

(i)
t

i.e.

Vt = V0 +

∫ t

0

θs · dXs = V0 +

∫ t

0

n∑
i=1

θ
(i)
t dX(i)

s .

The term
∫ t

0
θs ·dXs is also a (t, ω)-measurable andFt-adapted stochastic process

refereed to as the return process.

Definition 2.33. (Admissibility) A self-financing portfolio {θt}t∈T is called admissible
if the corresponding value process Vt is a.s. bounded from below w.r.t. (t, ω), i.e. there
exists Kθ <∞ such that

V θ(t, ω) ≥ −Kθ for (t, ω) ∈ T× Ω.

Definition 2.34. (Arbitrage) An admissible portfolio {θt}t∈T is called an arbitrage if
the corresponding value process Vt satisfies

V0 = 0, Vt ≥ 0 a.s. and P [Vt > 0] > 0

Theorem 2.35. (Arbitrage-free market) if there exist a measure Q on FT such that
P ∼ Q and the normalized market {Xt}t∈T is a local martingale w.r.t. Q. Then the
market {Xt}t∈T has no arbitrage. And Q is called an equivalent martingale measure.

The goal is to find self-financing portfolios to hedge or replicate the contingent
claims in an arbitrage-free market.

Lemma 2.36. Let Xt = ξ(t)Xt be a normalized price process, if θt is an admissible
portfolio in the market {Xt}t∈T with value process

V θt = θt ·Xt = V θ0 +

∫ t

0

θs · dXs; t ∈ T

then θt is also an admissible portfolio for the normalized market {Xt}t∈T with value
process

V
θ

t = θt ·Xt = ξ(t)V θt = V θ0 +

∫ t

0

θs · dXs; t ∈ T

and vise versa.

Theorem 2.37. Suppose a process u(t, ω) satisfies

a)

E

[
exp

(
1

2

∫ T

0

u2(s, ω) ds

)]
<∞

b)
σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)Xt for a.a. (t, ω)

with the market Xt = (X
(0)
t , X

(1)
t , · · · , X(n)

t )
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Define measure Q on F (m)
T by

dQ(ω) = exp

(
−
∫ T

0

u(t, ω) dBt −
1

2

∫ T

0

u2(t, ω) dt

)
dP(ω)

then

(i) The market Xt = (X
(0)
t , X

(1)
t , · · · , X(n)

t ) has no arbitrage.

(ii)

B̃t :=

∫ t

0

u(s, ω) ds+Bt

is a Brownian motion w.r.t Q.

(iii) The normalized market {Xt}t∈T = ξ(t){Xt}t∈T = (1, X
(0)

t , · · · , X(n)

t ) has
representation in terms of B̃

dX
(0)

t = 0

dX
(i)

t = ξ(t)σ
(i)
t dB̃t; 1 ≤ i ≤ n.

Definition 2.38. (Attainability, replicating portfolio and completeness)

• The contingent claim Y is called attainable if there exists an admissible portfolio
θt and a real number z such that

Y = V θz (T, ω) := z +

∫ T

0

θt · dXt a.s.

and

V
θ

z(T, ω) = z +

∫ t

0

θs · dXs,which by calculation

= z +

∫ t

0

ξ(t)

n∑
i=1

θ(i)
s σ(i)

s dB̃s; t ∈ T is a Q-martingale

where

B̃t :=

∫ t

0

u(s, ω) ds+Bt

is a Ft-Brownian motion w.r.t Q.

• If such θt exists, it is called a replicating or hedging portfolio for Y .

• The market {Xt}t∈T is complete if every T -claim is attainable.

2.5.2 Pricing Theory

Consider two kinds of European options for a claim Y with strike price K:
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• the European call option, where

Y (ω) = (Xi(T, ω)−K)+.

This option gives the owner the right to buy one unit of security i at strike price
K at time T . For each security i, if Xi(T, ω) > K at T , the owner will sell the
security and obtainXi(T, ω)−K, otherwise not selling is the logical choice and
results in a payoff of 0.

• the European put option, where

Y (ω) = (K −Xi(T, ω))+.

This option gives the owner the right to sell one unit of security i at strike price
K at time T . The calculation of payoff is similar.

As we can see, the European options guarantee an amount of Y (ω) for the owner
at time T . Suppose the buyer is willing to pay the price y for the claim, thus go into a
debt of −y at time 0, the debt can then be hedged to time T with value V θ−y(T, ω). For
the investment to not be unprofitable, it requires

V θ−y(T, ω) + Y (ω) ≥ 0 a.s.

Therefore, the maximum price p(Y ) the buyer is willing to pay is

sup{y| ∃ϕ such that V ϕ−y(T, ω) := −y +

∫ T

0

ϕs dXs ≥ −Y (ω) a.s.}.

On the other hand, the seller sells the claim for the price z and the fortune can then
be hedged to time T with value V θz (T, ω). Since the seller will need to pay the buyer
Y (ω) at time T , for the transaction to not be unprofitable, it requires

V θz (T, ω) ≥ Y (ω) a.s

and thus the minimum price q(Y ) the seller is willing to accept is

inf{z| ∃ψ such that V ψz (T, ω) := z +

∫ T

0

ψs dXs ≥ Y (ω) a.s.}

.

Theorem 2.39. Let {Xt}t∈T be a complete market. Suppose the conditions in Theorem
2.37 are met and we have Q,B as in the theorem. Let Y be a European claim such that
EQ[ξ(t)Y ] <∞. Then the price of Y is

p(Y ) = q(Y ) = EQ[ξ(t)Y ].

2.6 Monte Carlo Simulation
Later on in this thesis, we will rely on Monte Carlo method to simulate various pro-
cesses. We will give a brief introduction of the method here. The fundamental principle
of Monte Carlo method is the law of large numbers.
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Theorem 2.40. Let {Xn}n∈N be an infinite sequence of i.i.d. random variables where

E[Xn] = µ, for all n ≥ 0.

Then

Xn =
1

i

n∑
i=1

Xi
a.s.−−→ µ as n→∞.

In practice, we seek to reduce the problem we are interested in to the expected value
of some transformation φ(·) of {Xn}n∈N, such that

E[φ(Xn)] ≈ 1

i

n∑
i=1

φ(Xi),

for a large n.
We give a simple algorithm here:

Algorithm 2.1: Monte Carlo
Input: function φ(·), distribution Θ, a large n ∈ N

1 Draw Xi ∼ Θ, i ∈ [0, n]

2 φ← 1
i

∑n
i=1 φ(Xi)

3 return φ



Chapter 3

Life Insurance

Life insurance is a contract between the insurer and the holder of the insurance policy,
upon which the insured pays premiums (or a single premium) to the insurer in exchange
for the promise of payment when certain time is reached and/or conditions are met. Life
insurance provides financial security for the policyholder and/or the beneficiaries of the
policy against life-contingent events. It is characteristic of life insurance that the pay-
ment stream is strongly related to the state (e.g. alive or deceased, active or disabled)
the insured is in. For example, consider the state space S = {∗, �, †} where ∗, �, †
represent that the insured is alive, disabled and deceased respectively. Life insurance
requires the assessment and managements of life-contingent risks which relies heavily
on probability theory and mathematical finance. We have introduced basic concepts
in both fields in Chapter 2, and will in this chapter focus specifically on introducing
concepts most central to life insurance.

First we will give some examples of the most common types of insurance offered
by typical life insurance companies

• Life insurance

Consider a person x years of age, future life time of the individual is denoted by

T = T (x),

the age of death is then x + T . Under a life insurance contract, the time and
amount of the payment(s) given to the dependant of the insured are subject to the
random source T , and can be regarded as random variables.

Most commonly, we will consider:

Example 3.1. (Pure endowment) The insured pays premium for a certain pe-
riod of time, and receives a lump sum payment if he/she survives till the age of
maturity of the policy. There is no payment otherwise.

Example 3.2. (Term/permanent life insurance) In contrast to a pure endowment,
the beneficiary of the insured receives payments if the insured dies before the age
of maturity of the policy. There is no payment in the case of term life insurance if
the insured survived till the age of maturity of the policy. However, for permanent
life insurance there is always a payout no matter the time of death of the insured.

Example 3.3. (Endowment) A combination of pure endowment and term/per-
manent life insurance which covers early death and also yields a payment if the
insured reaches the age of maturity of the policy.

17
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Life insurance contract provides financial security to the dependant of the in-
sured.

• Pension Insurance

Example 3.4. (Pension) The insured pays premium till the age of maturity of the
policy and is thereafter payed a stream of payments referred to as life annuities
by the insurer till death.

Pension insurance contract finances the living standard of the insured after re-
tirement.

• Disability insurance

Disability insurance provides indemnity on disablement instead of death. The
difference here is that an initial waiting period is often introduced since in most
cases the person recovers quickly from the temporary disability after an acci-
dent or illness. The introduction of the waiting period reduces the price of such
policies.

Modern life insurance deals increasingly with the so-called unit-linked insurance.
In an unit-linked policy, some or all of the premium is invested in an underlying stock
index or fund, the death benefit depends on the performance of the equity investment
but no lower than the benefit floor(investment guarantee). Thus the policyholder gets
to take advantage of the equity investment in conjunction with mortality protection. In
this case, we can consider it as if the insurance company issues a put option on its fund,
and the pricing of such policies in essentially the pricing of put options.

Example 3.5. (Guaranteed Minimum Maturity Benefit (GMMB))
In GMMB, the payoff for the policyholder is

max(G,Ft)

where G is the guaranteed minimum return and Ft is the value of the fund at exercise
time t. And then insurer’s liability is

max(G− Ft, 0),

which is equivalent to a put option with strike price G.

In this thesis, we consider mostly regular insurance models

Definition 3.6. (Regular insurance model) A regular insurance model would consist
of

• a regular Markov chain {Xt}t∈T with a state space S,

• payout functions aij(t) and ai(t),

• right continuous interest intensities ρt of bounded variation.

In the following sections, the definition of relevant concepts will be introduced.
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3.1 Markov Chains
If we consider an insured person who is in a state at time t, the state he/she is in can be
represented by a stochastic process takes value in S, where S is the state space of the
insurance policy with all the possible relevant states an insured could be in.

Definition 3.7. (Markov chain) Let {Xt}t∈T be a stochastic process on a probability
space (Ω,A, P ) with state space S and parameter space T = [0, T ] ∈ R. It is called a
Markov chain if

(i) P
(
Xt0 = s0, · · · , Xtn = sn

)
> 0;

(ii) P
(
Xtn = sn|Xt0 = s0, · · · , Xtn−1

= sn−1

)
= P

(
Xtn = sn|Xtn−1 = sn−1

)
.

for all t0 < · · · < tn ∈ T, s0, · · · , sn ∈ S.

That is, the conditional probability of the state the insured would be in only depends
on the last state, but not the path before. We say that Markov chain is a process "without
memory".

Definition 3.8. (Homogeneous Markov chain) A Markov chain {Xt}t∈T is called ho-
mogeneous if

P
(
Xs+h = j|Xs = i

)
= P

(
Xt+h = j|Xt = i

)
h > 0

for all s, t and i, j ∈ S, provided that P (Xs = i), P (Xt = i) 6= 0

Definition 3.9. (Transition probability) Let {Xt}t∈T be a stochastic process on (Ω,A, P ),
then

pij(s, t) := P
(
Xt = j|Xs = i

)
, 0 ≤ s ≤ t ≤ T, i, j ∈ S

is called the transition probability from state i at time s to state j at time t.

Theorem 3.10. (Chapman-Kolmogorov equation) Let{Xt}t∈Tbe a Markov chain with
state space S and parameter space T = [0, T ] ∈ R, if P (Xs = i) > 0 for 0 ≤ s ≤ t ≤
u ≤ T, i, k ∈ S, then

pik(s, u) =
∑
j∈S

pij(s, t)pjk(t, u)

In matrix form it can be written as

P(s, u) = P(s, t)×P(t, u).

See e.g. [17, p. 11] for proof.

Definition 3.11. (Transition probability matrix ) The matrix P(s, t) = (pij(s, t))i,j∈S
is called transition (probability) matrix if

(i) pij ≥ 0.

(ii)
∑
j∈S

pij(s, t) = 1.
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(iii) pij(s, s) =

{
1, i = j,

0, i 6= j,
if P (Xs = i) > 0.

(iv) pik(s, u) =
∑
j∈S pij(s, t)pjk(t, u) for 0 ≤ s ≤ t ≤ u ≤ T, i, k ∈ S and

P [Xs = i] > 0.

Definition 3.12. (Transition rate) Let{Xt}t∈T be a Markov chain on a finite state space
S. {Xt}t∈T is called regular, if

qij(t) = lim
∆t→0

pij(t, t + ∆t)
∆t , i 6= j, i, j ∈ S

qi(t) =
∑

j 6=i,j∈S
qij(t) = lim

∆t→0

1− pii(t, t + ∆t)
∆t , i ∈ S

are well defined and continuous in time.
Furthermore

qii(t) := −qi(t), i ∈ S.
The functions qij(t) and qi(t) are called transition rates of the Markov chain.

Remark 3.13. qij(t) can be perceived as the probability of transitioning from state i to
state j at the instant of time t, and qi(t) can be perceived as the probability of leaving
state i at the instant of t.

Definition 3.14. (Transition rate matrix) The matrix Q(t) = (qij)i,j∈S is called tran-
sition rate matrix if

• qij ≥ 0 for i 6= j.

• 0 ≤ −qii ≤ ∞.

•
∑
j∈S

qij = 0.

Theorem 3.15. (Kolmogorov equations) Let {Xt}t∈T be a Markov chain on a finite
state space S. Then we have

• (Backward differential equation)

d

ds
pij = qi(s)pij(s, t)−

∑
k 6=i

qik(s)pkj(s, t),

d

ds
P(s, t) = −Q(s)P(s, t).

• (Forward differential equation)

d

dt
pij(s, t) = −pij(s, t)qj(t) +

∑
k 6=i

pik(s, t)qkj(t),

d

dt
P(s, t) = P(s, t)Q(t).

See e.g. [17, p. 16] for proof.

Remark 3.16. Theorem 3.15 bridges the transition probabilities with the the transition
rates. In practice, transition rate(e.g. mortality rate in life insurance) can be estimated
based on historical data, and we can obtain the transition probabilities thereafter.
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3.2 Interest Rate
It is of great importance for the insured to know the guaranteed interest of their insur-
ance policies promised by the insurer and the so-called technical interest rate plays a
significant role in determining the premiums. It can be modeled by a deterministic or
a stochastic model. If it is deterministic, we denote it by it, t ≥ 0. It is a stochastic
process {it}t≥0 otherwise.

Definition 3.17. (Interest rate, conversion period, nominal interest rate, effective in-
terest rate) Interest is credited at the end of every conversion period. Interest rate is
the percentage of money on a deposit or loan that is credited. If the conversion period
coincide with the basic time unit(e.g. most commonly a year), the interest rate is called
effective. Otherwise, the interest rate is called nominal.

Example 3.18. Consider an effective annual interest ik at year k, an assets of value
Vk will, by the end of year k, have value

Vk+1 = (1 + ik)× Vk.

However, if instead ik is nominal, and for example the conversion period is 3
months, then

Vk+1 = (1 +
ik
4

)4 × Vk

Definition 3.19. (Discount rate) Let ik be the interest rate at year k, then

ξk =
1

1 + ik

is called the discount rate at year k.

In continuous time, we assume that the interest in payed continuously and we define
the concept of interest intensity.

Definition 3.20. (Interest intensity and continuous discount rate) The interest intensity
at time t is denoted by ρt such that an asset of value Vt will have value

Vt+∆t = exp

(∫ t+∆t

t

ρτ dτ

)
Vt.

The discount rate in continuous time is then

ξt = exp

(
−
∫ t+∆t

t

ρτ dτ

)
.

In addition we can define the discount rate from t to 0,

ξ(t) = exp

(
−
∫ t

0

ρτ dτ

)
.

Remark 3.21. We can interpret ρ(t) as the nominal interest rate with respect to the
time period [t, t + ∆t]. And for a stochastic interest rate, the notation ρt = ρ(t, ω)
would represent a stochastic process.
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Remark 3.22. Note the notion ξt denotes only the discount from time t+ ∆t to time t,
while ξ(t) discounts all the way back to 0.

For discrete case we can define a similar concept in the form of

ξ(t) = ξ0 · ξ1 · · · ξt−1,

where the interest rate need not to be constant, and we will later encounter the case
where the interest rate depends on the state of a Markov chain.

3.3 Cash Flow

3.3.1 Deterministic Cash Flow
Definition 3.23. (Function of bounded variation) Let [a, b] ⊂ R be a bounded interval
partitioned by

a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn ≤ b.

For a function f : [a, b]→ R, the total variation of f over all partitions of [a, b] is

V
[
f, [a, b]

]
:= sup

n∑
i=1

|f(bi)− f(ai)|

.
The function f is of bounded variation on [a, b], if V

[
f, [a, b]

]
<∞.

In a life insurance setting, functions are mostly defined on a finite time line T =
[0, T ], where T is the age the insured is last alive.

A function of bounded variation f : [a, b]→ R has following properties:

(i) f corresponds to a measure on R. In life insurance setting, we refer to it as
payout measure.

(ii) there exist two positive, increasing and bounded functions g, h such that f =
g − h. We can interpret them as inflow and outflow of cash respectively in life
insurance setting.

(iii) f as the measure can be decomposed uniquely into a discrete measure µ and a
continuous measure ν.

(iv) If T ∈ [a, b], then f × 1T is also a function of bounded variation, where 1T is
the indicator function defined as

1T (t) :=

{
1, if t ∈ T,
0, if t /∈ T.

Definition 3.24. (Payout function) A deterministic payout functionAt : T → R is a
right continuous function of bounded variation. It represents the total payment the
insurer has payed to the insured up to time t.

Definition 3.25. (Value of a cash flow) Let A be a deterministic cash flow and t ∈ T =
[0, T ] ⊂ R, the value of A at time t is

V (t, A) :=
1

ξ(t)

∫ ∞
0

ξ(τ) dAτ .
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The value of the future cash flow is

V +(t, A) : = V (t, A× 1(t,∞])

=
1

ξ(t)

∫ ∞
t

ξ(τ) dAτ .

which is also referred to as prospective reserve.

3.3.2 Stochastic Cash Flow

Definition 3.26. (Stochastic cash flow) A stochastic cash flow is a stochastic process
{At}t∈T on (Ω,A, P ) where almost all sample paths i.e. t 7→ At(ω), for all ω ∈ Ω
are functions of bounded variation.

Let F : R× Ω→ R be a bounded and product measurable function, then

(F ·A)t(ω) =

∫ t

0

F (τ, ω) dAτ (ω).

Definition 3.27. (Policy functions)

1. Continuous time:

(i) Generalized pension payments ai(t):
ai(t) is the sum of the payments to the insured up to time t given that the
insured has always been in state i.

(ii) Generalized capital benefits aij(t):
aij(t) is the payment at time t in case of a state change from i to j, i, j ∈ S
at time t

2. Discrete time:

(i) Generalized pension payments aPrei (t):
aprei (t) is the payment at time t given that the insured is in state i at time t.

(ii) Generalized capital benefits aPostij (t):

aPostij (t) is the payment at time t + 1 in care of a state change from i to j,
i, j ∈ S at time t.

Definition 3.28. (Policy cash flow) The stochastic cash flow corresponding to an in-
surance policy with state space S and bounded payout functions aij(t) and ai(t) is
defined as

A(t, ω) =
∑
i∈S

Ai(t, ω) +
∑

(i,j)∈S×S,i6=j

dAij(t, ω),

where

• For continuous time

Aij(t, ω) :=

∫ t

0

aij(s) dNij(s, ω),
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is the increase of liabilities caused by transition from state i to j, and Nij(t, ω)
is the number of jumps from i to j in the time interval [0, t] defined as

Nij(t, ω) =

t∑
s>0

1{Xs−=i,Xs=j}, Xs− := lim
n→∞

Xs− 1
n

and

Ai(t, ω) :=

∫ t

0

1i(s, ω) dai(s)

is the liability caused by the insured staying in the state i, 1i(t, ω) is the indicator
function with respect to a stochastic process {Xt}t∈T defined as

1i(t, ω) :=

{
1, if Xt(ω) = i,

0, if Xt(ω) 6= i.

• For discrete time, similarly

Aij(t, ω) :=

t∑
s=0

1{Xs=i,Xs+1=j}a
Post
ij (s),

Ai(t, ω) :=

t∑
s=0

1i(s, ω)aPrei (s).

Definition 3.29. (Stochastic prospective reserve) If A and ξ are stochastic processes
on
(Ω, {Ft}t≥0,A, P ), then the prospective reserve is defined by

V +
F (t, A) = E

[
V +(t, A)|Ft

]
Remark 3.30. For a Markov chain, the conditional expectation with respect to Ft
depends only on the state at time t, in this case

V +
j (t, A) = E[V +(t, A)|Xt = j]

3.4 Mathematical Reserve
Mathematical reserve is the present value of the future cash flows of insurance policies
and the total expected liability which insurer is required to reserve offsetting assets for.
With the definition of cash flows, we can define the mathematical reserve.

Definition 3.31. (Mathematical reserve)

• For continuous time, the mathematical reserve of being in state g is the expected
present value of all payments in time interval T ⊂ R given Xt = j and defined
by

Vj(t, Ag) = E

[
ξ−1(t)

∫
T

ξ(τ) dAg(τ)|Xt = j

]
.
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Similarly, the reserve of transitioning from g to h ∈ S is

Vj(t, Agh) = E

[
ξ−1(t)

∫
T

ξ(τ) dAgh(τ)|Xt = j

]
.

The total mathematical reserve of a certain state j is

Vj(t, A) =
∑
g∈S

Vj(t, Ag) +
∑

g,h∈S,g 6=h
Vj(t, Agh).

where ξ(t) is the continuous discount rate defined as in Definition 3.20.

• For discrete time, similarly we have

Vj(t, A
Pre
g ) = E

[
ξ−1(t)

n∑
i=1

ξ(τi)∆Ag(τi)|Xt = j

]

Vj(t, A
Post
gh ) = E

[
ξ−1(t)

n∑
i=1

ξ(τi+1)∆Agh(τi)|Xt = j

]
.

Vj(t, A) =
∑
g∈S

Vj(t, A
Pre
g ) +

∑
g,h∈S,g 6=h

Vj(t, A
Post
gh ).

In order to calculate the mathematical reserve we need the following result

Theorem 3.32. Let {Xt}t∈T be a regular Markov chain on (Ω,A, P ) where s < t and
T ⊂ [s,∞], then for i, j, k ∈ S and function of bounded variation A(t)

(i) E[

∫
T

a(τ) dNjk(τ)|Xs = i] =

∫
T

a(τ)pij(s, τ)qjk(τ) dτ

(ii) E[

∫
T

1i(τ, ω) dA(τ)|Xs = i] =

∫
T

pij(s, τ) dA(τ)

For the discrete time case,

(i) E[

n∑
i=1

a(τi)∆Njk(τi)|Xs = i] =

n∑
i=1

a(τi)pij(s, τi)pjk(τi, τi+1)

(ii) E[

n∑
j=1

1j(τi)∆Aτi |Xs = i] =

n∑
i=1

pij(s, τi)∆A(τi)

where ∆Njk(τi) := Njk(τi+1)−Njk(τi) and ∆Aτi = Aτi+1
−Aτi .

Based on these results, we have the following theorem:

Theorem 3.33. (Explicit formula for the mathematical reserves) Consider a regular
insurance model with deterministic interest intensities,

• For continuous time,
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(i) Vi(t, Aj) = ξ−1(t)

∫
T

ξ(τ)pij(t, τ) daj(τ).

(ii) Vi(t, Ajk) = ξ−1(t)

∫
T

ξ(τ)ajk(τ)pij(t, τ)qjk(τ) dτ .

• For discrete time,

(i) Vi(t, Aj) = ξ−1(t)

n∑
i=1

ξ(τi)pij(t, τi)a
Pre
j (τi).

(ii) Vi(t, Ajk) = ξ−1(t)

n∑
i=1

ξ(τi+1)pij(t, τi)pjk(τi, τi+1)aPostjk (τi).

Correspondingly we have the following result:

Theorem 3.34. (Explicit formula for the prospective reserves)

V +
j (t) = ξ−1(t)

∫
(t,∞)

ξ(τ)
∑
g∈S

pig(t, τ)×

dag(τ) +
∑

S3h6=g
agh(τ)qgh(τ) dτ

 .

However, this formula is in general difficult to evaluate numerically in practice, one
possible solution is to utilize difference or differential equations.

Theorem 3.35. (Recursion formula) Let {Xt}t∈Tbe a regular insurance model with
deterministic interest intensities and state spaceS, j ∈ S and s < t < u, then

W+
j (t) =

∑
g∈S

pjg(t, u)W+
g (u)+

∫
(t,u]

ξ(τ)
∑
g∈S

pig(t, τ)×

dag(τ) +
∑

S3h6=g
agh(τ)µgh(τ) dτ

 .

where
W+
j (t) := ξ(t)V +

j (t).

Theorem 3.36. (Thiele’s difference equation) For a discrete time Markov model,

V +
i (t) = aPrei (t) +

∑
j∈S

ξtpij(t, t+ 1)
{
aPostij (t) + V +

j (t+ 1)
}
.

Theorem 3.37. (Thiele’s differential equation) Let {Xt}t∈T be a regular insurance
model and the payout function Ag(t) be continuous, assume a deterministic interest
intensity, then

(i) W+
g (t) continuous for all g ∈ S.

(ii) Thiele’s differential equation

∂

∂t
W+
j (t) =− ξ(t){aj(t) +

∑
g∈S,g 6=j

µjg(t)ajg(t)}+ µj(t)W
+
j (t)

−
∑

g∈S,g 6=j
µjg(t)W

+
g (t).
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(iii)

V +
j (t) =ξ(t)−1

[∫ u

t

ξ(s)pjj(t, τ)

aj(τ) +
∑

g∈S,g 6=j
µjg(τ)[ajg(τ) + V +

g (τ)]

ds

+ ξ(u)pjj(t, u)V +
j (u)

]
.

Remark 3.38. We can interpret parts in Theorem 3.37 (iii) as

• aj(τ) : reserve for pension and premiums for being in state j.

• µjg(τ)ajg(τ) : transition cost from state j to g.

• µjg(τ)[ajg(τ) + V +
g (τ)] : the total reserve needed for the transition from state

j to g.

• ξ(u)pjj(t, u)V +
j (u) : reserve needed for the case where the insured stayed in

state j after [t, u].

3.4.1 Distribution of Mathematical Reserves
The calculation of premium reserves is based on the assumption that an expected aver-
age value of total losses could be sufficient to cover the insurer’s liabilities. However,
if the variance of the total loss is extreme, the reserve calculated with expectation may
not be enough to meet the requirement at certain time points. Thus it is important for
the insurer to measure the risk in the variation of the total loss or more generally to be
aware of the distributional characteristics of the mathematical reserve.

From Definition 3.29 we know that the prospective reserve of the discrete Markov
model is given by

V +
t = ξ−1(t)

∑
n≥t

∑
j∈S

ξ(n)1j(n)aPrej (n) +
∑
j,l∈S

ξ(n+ 1)1{Xn=j,Xn+1=l}a
Post
jl


where

ξ(t) = ξ0 · ξ1 · · · ξt−1

and

ξt =
∑
j∈S

1j(t)ξ
(j)
t ξ

(j)
t :=

1

1 + i
(j)
t

, where the interest rate depends on the state j

Now consider the distribution of V +
t , given Xt = i :

Pi(t, u) : = P
(
V +
t < u|Xt = i

)
(3.1)

=
1

P (Xt = i)

(∑
l∈S

P
(
v+
t < u,Xt = i,Xt+1 = l

))

=
1

P (Xt = i)

(∑
l∈S

P
(
v+
t < u,Xt = i,Xt+1 = l

))
·
P
(
Xt = i,Xt+1 = l

)
P
(
Xt = i,Xt+1 = l

)
=
∑
l∈S

pil(t, t+ 1)P
(
V +
t < u

∣∣∣Xt = i,Xt+1 = l
)
. (3.2)
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We know from the definition of V +
t that

V +
t =

ξ(t+ 1)

ξ(t)
· V +

t+1 +
∑
j∈S

1j(t)a
Pre
j (t) +

∑
j,k∈S

ξ(t+ 1)

ξ(t)
1{Xt=j,Xt+1=k}a

Post
jk ,

(3.3)
where

ξ(t+ 1)

ξ(t)
= ξt =

∑
j∈S

1j(t)ξ
(j)
t .

Combining (3.2) and (3.3) we have,

Pi(t, u) =
∑
l∈S

pil(t, t+ 1)P
(
ξ

(i)
t · V +

t+1 + aPrei (t) + ξ
(i)
t aPostil (t) < u

∣∣∣Xt = i,Xt+1 = l
)

=
∑
l∈S

pil(t, t+ 1)P

(
V +
t+1 < (ξ

(i)
t )−1

(
u− aPrei (t)

)
− aPostil (t)

∣∣∣∣Xt = i,Xt+1 = l

)
=
∑
l∈S

pil(t, t+ 1)P

(
V +
t+1 < (ξ

(i)
t )−1

(
u− aPrei (t)

)
− aPostil (t)

∣∣∣∣Xt = i

)
=
∑
l∈S

pil(t, t+ 1)Pl

(
t+ 1, (ξ

(i)
t )−1

(
u− aPrei (t)

)
− aPostil (t)

)
Note the third equality is achieved by the Markov property and the last equality is
achieved by equation (3.1. We thereby have the recursion:

Theorem 3.39. (Thiele’s difference equation for distribution of the reserves)

Pi(t, u) =
∑
l∈S

pil(t, t+ 1)Pl

(
t+ 1, (ξ

(i)
t )−1

(
u− aPrei (t)

)
− aPostil (t)

)
.

Remark 3.40. Depending on the different types of insurance, various boundary con-
ditions are required.

Similarly for the continuous case, we introduce without proof:

Theorem 3.41. (Thiele’s differential equation for distribution of the reserves)
Let

Pj(t, u) := P
(∫ ∞

t

exp(−
∫ s

t

ρτ dτ) dA(s) ≤ u
∣∣∣Xt = j

)
be the distribution function of the prospective reserve given Xt = j, then

Pj(t, u) =
∑

k∈S,k 6=j

∫ ∞
t

{
exp
(
−
∫ s

t

∑
l 6=j

qjl(τ) dτ
)
qjk(s)

· Pk
(
s, exp

(
ρj(s− t)

)
u−

∫ s

t

exp
(
ρj(s− τ)

)
daj(τ)− ajk(s)

)}
ds

+ exp
(
−
∫ ∞
t

∑
l 6=j

qjk(τ) dτ
)
· 1{ ∫ n

t
exp
(
−ρj(τ−t)

)
daj(τ)≤u

}.
As we can see, the equations for the continuous case are very cumbersome and

difficult to handle, it is merely introduced as the counterpart for the discrete case.
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3.5 Unit-linked Policies
It is mentioned above that modern life insurance, with increasing interest, deals with
unit-linked policies where the policyholder participates in the performance of an un-
derlying fund. The pricing of unit-linked policies is central to this thesis, we will give
a more detailed introduction of such policies in this section.

Recall as in Definition 3.29, that the prospective reserve is the present value of all
pension and benefit payments with respect to the time interval [t,∞] under the scenario
of various outcomes of Xs for s > t, defined as

V +
F (t, A) = E

[
V +(t, A)|Ft

]
where

Ft = σ(Xs, 0 ≤ s ≤ t)
is the smallest σ-algebra containing all information of Xs up to time t. In a Markovian
setting,

V +
j (t, A) = E[V +(t, A)|Xt = j]

And

V +(t, A) : = ξ−1(t)

∫ ∞
t

ξ(s) dA(s)

=
∑
i∈S

∫ ∞
t

1i(s)π
(i)
t (s) ds+

∑
(i,j)∈S×S,i6=j

∫ ∞
t

π
(ij)
t (s) dNij(s) (3.4)

where

π
(i)
t :=

ξ(s)

ξ(t)
· dai(s), and π(ij)

t (s) :=
ξ(s)

ξ(t)
aij(s)

are the present values at time t of the deterministic generalized pension payments
daj(s) and the generalized benefit payments aij(s) respectively, for s > t.

Example 3.42. Consider a term insurance policy with state space S = {∗, †}, where
∗, † represents the insured being alive and deceased respectively, then by Theorem 3.33
we have

V +
∗ (0) =

∫ ∞
0

π0(s)p∗∗(0, s)q∗†(s) ds

where

π0(s) :=
ξ(s)

ξ(0)
C(s)

and
C(s) := a∗†(s).

However, in the case that the term insurance is unit-linked, C(t) is tied to the value
of a fund or stock S(s), for 0 ≤ s ≤ t. For example,

C(t) = max
(
S(t), G(t)

)
,

where

G(t) :=

∫ t

0

exp
(
γ(t− s)

)
da∗(s)

is the refund guarantee of the paid premiums with an additional interest rate of γ. C(t)
is no longer deterministic but stochastic.
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For the rest of the section, when considering the prospective value, we will assume
the following,

(i) Ft = σ(Gt,Ht) where
Ht = σ(Xs, 0 ≤ s ≤ t)

is the collection of information of the insurance events, and

Gt = σ(Ss, 0 ≤ s ≤ t,N )

with
N := {N : P (N) = 0}

is the collection of all information of the market events including stock prices
and extremely rare events.

(ii) Insurance events are independent of financial events.

Example 3.43. The prospective reserves of a unit-linked term insurance is defined as

V +
F (t, A) = EX [

∫ ∞
t

π∗†t (s) dN∗†|Xt]

=

∫ ∞
t

π∗†t (s)p∗∗(t, s)q∗†(s) ds

where EX denotes the expectation with respect to Xs (i.e. π∗† is regarded as deter-
ministic here).

Unit-linked policy usually are handled with a single premium, by setting t = 0, we
obtain such premium given by

V +
∗ (0) = V +

F (0, A) =

∫ ∞
0

π∗†0 (s)p∗∗(0, s)q∗†(s) ds

.



Chapter 4

Simulation of Fractional
Brownian Motion

As introduced in Chapter 2, a fractional Brownian motion is a zero-mean Gaussian
process with a certain covariance structure. Because of the non-Markovian nature of
fractional Brownian motion, many traditional techniques do not apply and the need of
simulation scheme arises. In this section, we will give an introduction on the exact
methods that capture the true covariance structure of fractional Brownian motion with
a focus on fast Fourier transformation method due to its higher efficiency.

4.1 Hosking Method
The Hosking method (also known as the Durbin or Levinson method) generates a gen-
eral stationary Gaussian process through the conditional distribution of the multivariate
Gaussian distribution and can also be applied to any stationary Gaussian process other
than fBms. In this case, the fractional Brownian motion sample is obtained by taking
cumulative sums of the generated fractional Gaussian noise sample {Xn}.

Let γ(k) be the autocovariance function of a stationary zero-mean Gaussian process
seen as in Chapter 2:

γ(k) := E[XnXn+k] =
1

2
((k + 1)2H + (k − 1)2H − 2k2H)

for n, k = 0, 1, · · · , and γ(0) := 1. Furthermore, let Γ(n) = [γ(i − j)]i,j=0,1,··· ,n be
the autocovariance matrix, then we have the following recursion

Γ(n+ 1) =


1 γ(1) γ(2) . . . γ(n+ 1)

γ(1) 1 γ(1) . . . γ(n)

γ(2) γ(1)
. . .

...
...

...
...

...
. . .

...
γ(n+ 1) γ(n) . . . . . . 1


=

[
1 c(n)′

c(n) Γ(n)

]
=

[
Γ(n) F (n)c(n)

c(n)′F (n) 1

]

31
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where the prime denotes vector transpose, c(n) is the (n + 1)-column vector with
elements c(n)k = γ(k + 1), k = 0, . . . , n, and F (n) = [1i=n−j ]i,j=0,1,··· ,n is the
matrix

F (n) =


0 . . . 0 1
0 . . . 1 0
...

. . .
...

...
1 0 0 0


We seek to compute the conditional distribution of Xn+1 given Xn, . . . , X0. It can

be shown that this distribution is Gaussian with expectation µn and variance σ2
n given

by

µn := c(n)′Γ(n)−1


Xn

...
X1

X0

 , σ2
n := 1− c(n)′Γ(n)−1c(n).

Define d(n) = Γ(n)−1c(n), then the inverse of Γ(n+ 1) satisfies:

Γ(n+ 1)−1 =
1

σ2
n

[
1 −d(n)′

−d(n) σ2
nΓ(n)−1 + d(n)d(n)′

]
=

1

σ2
n

[
σ2
nΓ(n)−1 + F (n)d(n)d(n)′F (n) −F (n)d(n)

−d(n)′F (n) 1

]
.

With the distribution known, we obtain the fGn sample by generating a standard
normal random variable X0 and simulate X1, . . . , Xn recursively. Taking the matrix
inversion every step is obviously computationally expensive, the algorithm proposed
by Hosking [13] avoids doing so by computing d(n) recursively. Assume µn, σ2

n and
τn := d(n)′F (n)c(n) = c(n)′F (n)d(n) are known, then σ2

n satisfies the recursion

σ2
n+1 = σ2

n −
(γ(n+ 2)− τn)2

σ2
n

and the recursion for d(n+ 1) = Γ(n+ 1)−1c(n+ 1) is:

d(n+ 1) =

[
, d(n)− φnF (n)d(n)

φn

]
where

φn =
γ(n+ 1)− τn

σ2
n

.

Start the recursion with µ0 = γ(1)X0, σ
2
0 = 1−γ(1)2 and τ0 = γ(1)2, µn+1, σ

2
n+1

and τn+1 can be computed readily. And the fBm sample is thereafter the cumulative
sum of the fGn sample. The advantage of this algorithm is that it’s rather simple to
implement and can generate sample path without needing to know the sample size
beforehand. However, its complexity of order N2 is prohibitive.

4.2 Cholesky Method
With the covariance structure given in matrix form, it is a natural approach to take
advantage of the Cholesky decomposition. The idea is to decompose the covariance
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matrix Γ(n) into the product of an (n+ 1)× (n+ 1) lower triangular matrix L(n) and
its conjugate transpose L(n)′. L(n) is called lower triangular if its element lij > 0 for
all i > j and i, j = 0, . . . , n. It can be proven such decomposition exist if Γ(n) is a
symmetric positive definite matrix.

Let

L(n) =



l00 0 0 . . . 0
l10 l11 0 . . . 0

l20 l21 l22
. . .

...
...

...
...

. . . 0

ln0 ln1 ln2

... lnn


then L(n)′ =


l00 l10 l20 . . . ln0

0 l11 l21 . . . ln1

0 0 l22 . . . ln2

...
...

...
. . .

...
0 0 0 0 lnn


and their product being

γ(0) γ(1) γ(2) . . . γ(n)
γ(1) γ(0) γ(1) . . . γ(n− 1)
γ(2) γ(1) γ(0) . . . γ(n− 2)

...
...

...
. . .

...
γ(n) γ(n− 1) γ(n− 2) . . . γ(0)


gives the easy realization that l00 = γ(0) for i = j = 0. Furthermore, l10l00 = γ(1)
and l210 + l211 = γ(0) for i = 1. And the rest of entries can be calculated thereafter for
i ≥ 1 by

li0 =
γ(i)

l00
,

lij =
1

ljj

(
γ(i− j)−

j−1∑
k=0

likljk

)
, 0 < j ≤ n.

Let{Zk}be an (n + 1)-column vector of i.i.d. standard normal random variables,
the we can simulate the fGn by

Xn+1 =

n+1∑
k=0

ln+1,k · Zk

or in matrix form by X(n) = L(n)Z(n). And the covariance of X(n) satisfies

Cov(X(n)) = Cov(L(n)Z(n)) = L(n)Cov(Z(n))L(n)′ = L(n)L(n)′ = Γ(n).

The Cholesky method enjoys pleasant theoretical simplicity and is easy to imple-
ment, however in practice to store L(n) in every step of the recursion is computation-
ally uneconomical. We will introduce one more exact method who shares the funda-
mental idea as the Cholesky method, but with a more efficient decomposition.

4.3 Fast Fourier Transformation Method
Using Cholesky decomposition to simulate Gaussian process with a given covariance
matrix is the most intuitive approach, but it is slow and inefficient. To improve upon the
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speed, Davies and Harte [4] proposed the idea of utilizing fast Fourier transformation,
the algorithm was developed further by Dietrich and Newsam [7] and Wood and Chan
[24].

Similar to the Cholesky method, the Fast Fourier Transformation(FFT) method
aims at finding the decomposition Γ = GG′, then the sample is generated by X = GZ
for a standard normal random variable Z. The covariance of X satisfies

Cov(X) = Cov(GZ) = GCov(Z)G′ = GG′ = Γ.

The idea is to embed Γ in a so-called circulant matrix.

Definition 4.1. (Circulant Matrix) A circulant martix is an n× n matrix of the form

C =


c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 . . . c2
c2 c1 c0 . . . c3
...

...
...

. . .
...

cn−1 cn−1 . . . c1 c0


which is specified by the column vector c as the first column of C.

The polynomial P (x) = c0 + c1x+ · · ·+ cn−1x
n−1is called the associated poly-

nomial of C.

Definition 4.2. (Generating circulant matrix) The circulant matrix G is defined by

G :=



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0


.

Remark 4.3. With simple calculation we can see,

G2 =



0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 . . . 1 0 0


.

Tt can be viewed that G2 is achieved by shifting elements in each column by one ele-
ment down. Arbitrary powers of G can be obtained accordingly.

C is then generated by

P (C) = c0(I)n + c1G+ c2G
2 + · · ·+ cn−1G

n−1.

Definition 4.4. (Fourier matrix) The Fourier matrix is defined as

FN =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω2×2 . . . ω2(n−1)

...
...

...
. . .

...
1 ω(n−1) ω2(n−1) . . . ω(n−1)2


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where ω is the conjugate of the n-th unity root e−2πi 1
n , i =

√
−1.

Remark 4.5. Note ωn = e−2πi = 1, FN can be written as

FN =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω2×2 . . . ωn−2

...
...

...
. . .

...
1 ω(n−1) ωn−2 . . . ω

 .

Multiply the Fourier matrix with the generating circulant matrix G, we then have

FG =


1 1 . . . 1 1
ω ω2 . . . ωn−1 1
ω2 ω2×2 . . . ωn−2 1
...

...
...

. . .
...

ωn−1 ωn−2 . . . ω 1



=


1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω . . . 0
...

...
...

. . .
...

0 0 0 . . . ωn−1




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω2×2 . . . ωn−2

...
...

...
. . .

...
1 ω(n−1) ωn−2 . . . ω


= ΛF,

where Λ is a diagonal matrix with k-th diagonal valued ωk for 0 ≤ k ≤ n− 1.
Furthermore

FGF−1 = Λ

means that F diagonalizes G with eigenvalues {ωk}0≤k≤n−1.

Since C = P (G), we have the following theorem:

Theorem 4.6. (Fourier decomposition of general circulant matrix) The circulant ma-
trixC is decomposable by the Fourier matrixF with eigenvalue matrix Λ = {P (ωk)}k=0,...,n−1.
i.e.

FCF−1 = Λ =


P (1) 0 0 . . . 0

0 P (ω) 0 . . . 0
0 0 P (ω2) . . . 0
...

...
...

. . .
...

0 0 0 . . . p(ωn−1)

 .

Theorem 4.6 provides the theoretical foundation for the FFT method. In prac-
tice,following the methodology of Davies and Harte, for a sample of size N = 2g, g ∈
N (the power of 2 is required by the calculation of FFT) we embed the covariance
matrix

Γ =


γ(0) γ(1) . . . γ(N − 1)
γ(1) γ(0) . . . γ(N − 2)

...
...

. . .
...

γ(N − 1) γ(N − 2) . . . γ(0)


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into a M ×M 1 circulant covariance matrix C defined by

C :=



γ(0) γ(1) . . . γ(N − 1) 0 γ(N − 1) . . . γ(1)
γ(1) γ(0) . . . γ(N − 2) γ(N − 1) 0 . . . γ(2)

...
...

. . .
...

...
...

. . .
...

γ(N − 1) γ(N − 2) . . . γ(0) γ(1) γ(2) . . . 0
0 γ(N − 1) . . . γ(1) γ(0) γ(1) . . . γ(N − 1)

γ(N − 1) 0 . . . γ(2) γ(1) γ(0) . . . γ(N − 2)
...

...
. . .

...
...

...
. . .

...
γ(1) γ(2) . . . 0 γ(N − 1) γ(N − 2) . . . γ(0)


,

where each row is a cyclic permutation achieved by moving the elements in the previ-
ous row one element right and Γ is embedded in the top left corner of C.

C can then be decomposed into QΛQ∗ given Q the unitary matrix defined by

(Q)j,k :=
1√
2N

exp

(
−2πi

jk

2N

)
for j, k = 0, . . . , 2N − 1

and Λ the eigenvalue matrix defined by the eigenvalues:

λk =

2N−1∑
j=0

(C)1,j+1 exp

(
2πi

jk

2N

)
for k = 0, . . . , 2N − 1.

Assuming that C is positive definite and symmetric, the resulting eigenvalues will
be positive and real. Let S = QΛ

1
2Q∗ where Λ

1
2 is the matrix with eigenvalues√

λ1, . . . ,
√
λ2N−1, since Q is unitary we readily see that SS∗ = SS′ = C. Thus

we finally obtain the matrix we search for, and are ready to simulate.

Algorithm 4.1: Simulation of fGn with FFT
Input : Hurst parameterH , Number of simulations N
Output: A path of fBm with hurst parameter H of size N

1 Generate the covariance matrix Γ
2 Construct the circulant matrix C with Γ
3 Compute the eigenvalues λk, k = 0, . . . , 2N − 1 using FFT
4 Calculate W = Q ∗ V
5 Compute Z = QΛ

1
2W

6 Recover fBm form fGn using recursion.
7 Return fBm

The main advantage of the FFT method is the speed, the number of computation
required for a sample of size N is only of order Nlog(N), it is ideal for simulation of
financial data that require many paths with limited computing power.

Figure 4.1 shows examples of fractional Brownian motion with various H simulated
using FFT method.

1M ≥ 2(N − 1), see [22], choosing M = 2N for simplicity here
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Figure 4.1: fBms with different H
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Chapter 5

Rough Fractional Stochastic
Volatility Model

In this master thesis we propose a model for pricing unit-linked life insurance policies
in connection with stock prices with stochastic volatility to better capture the dynamics
of stock prices in the so-called "turbulent" stock markets.

Recall the classical Black-Scholes model for stock prices St of the form:

St = S0exp
(

(µ− 1

2
σ2)t+ σBt

)
, 0 ≤ t ≤ T,

where S0 is the initial value of the stock, µ the mean return, σ the volatility andBt, 0 ≤
t ≤ T a one-dimensional Brownian motion.

The risk-neutral dynamics of the stock prices St under a risk-neutral measure is
given by

St = S0exp
(

(r − 1

2
σ2)t+ σBt

)
, 0 ≤ t ≤ T,

where r is a constant overnight market interest rate.
In this thesis, we will consider a model where the volatility is stochastic, the result-

ing model is thus

St = S0exp
( ∫ t

0

(
r − 1

2
σ2
s

)
ds+

∫ t

0

σs dBs

)
(5.1)

where the dynamics of the stochastic volatility σt is modeled by

σt = g(Xt)

for a non-negative Borel-measurable function g : R→ R and a (unique weak) solution
{Xt}t∈T to the SDE:

Xt = y +

∫ t

0

b(Xu) du+ βBHt (5.2)

where b : R → R is a Borel measurable function, y ∈ R and β > 0. Furthermore
BHt , 0 ≤ t ≤ T is a fractional Brownian motion with Hurst parameter H ∈ (0, 1)
assumed to be independent of Bt, 0 ≤ t ≤ T in (5.1) .

Recall the covariance function of BHt is given by

ρH(t, s) = E(BHt B
H
s ) =

1

2
(s2H + t2H − |t− s|2H)
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and that for H 6= 1
2 the increments of the process are correlated. The process is non-

Markovian and with memory, Thiele’s differential equation no longer applies, and we
must resort to Monte Carlo simulation. It is also known that the paths of BHt become
rougher as the Hurst parameter H becomes smaller (see e.g. [18]).In order to capture
the rough behavior of the dynamics of stochastic volatility in turbulent stock markets,
it makes sense to choose a small Hurst parameter H < 1

2 , in our study, we choose
H = 0.14 based on the work in [9].

We then proceed to the calculation of net single premium and premium reserves of
unit-linked life insurance policies with respect to the stock prices. For example in the
case of a unit-linked term insurance premium reserves can be computed by means of
the present value of the death benefits

C(s) = max(S(s), G(s)),

whereG(s) is a deterministic refund guarantee (at time s) of the paid premiums. Using
techniques from life insurance mathematics, the present value π0(s) of the death benefit
can be defined as

π0(s) = E[ξ(s)C(s)],

where
ξ(t) := exp(−tr)

is the continuous discount rate.
We will discuss the specifications of the model in the next section.

5.1 Specifications of the Model
In [9], it is shown with empirical evidence that the increments of the log-volatility has
a scaling property with a constant smoothing parameter and their distribution is close
to Gaussian. This suggest a natural choice of g(Xt)

g(Xt) = exp({Xt}t∈T)

where Xt satisfies equation (5.2). Setting b(Xt) = 0 for simplicity, we have

σt = η exp
(
βBHt

)
(5.3)

where η = exp(y).
To calculate the present value of future claims, we will consider the following:

(i) The Guarantee is constant i.e. G(t) ≡ G for all t ∈ T, which can be seen as
setting the interest rate to 0.

(ii) The most common case in practice where the insured receives a minimum return
R promised by the insurer on their investment i.e.

G(t) := G0 exp(Rt)

for t ∈ T.



Chapter 6

Implementation of the Model
and Results

6.1 Simulation Procedure
We wish to calculate the single net premium of a unit-linked life insurance policy in
relation to the stock prices under stochastic volatility, the procedure is as follows:

1. For different number of iterations M , we generate M paths of the fractional
Brownian motion with Hurst parameter H = 0.14 on the interval T = [0, T ] =

[0, 10] where T is partitioned into N := 2520 business days with ∆t =
T
N

representing one business day in the span of 10 years.

2. We then calculate the paths of volatility process under different model. For the
classic Black-scholes model the volatility is set to constant σ. For the model pro-
posed by this thesis, we will set η and β to different values. For the model pro-
posed in [9], we take the parameters suggested by the authors as ν = 0.3,m =
−5 and α = 5× 10−4.

3. Next we calculate
∫ s

0

(r − 1

2
σ(i)
u ) du for all paths of volatility σ

(i)
t , for i =

1, . . . ,M . Here we take the overnight market interest r as 0.01.

4. We proceed to calculating
∫ s

0

σ(i)
u dBu for all paths of volatility σ(i)

t , with M

generated paths of standard Brownian motion B(i)
t . This is achieved by assume

the approximation ∫ s

0

σ(i)
u dBu ≈

N∑
j=1

σ(i)
uj (Buj+1

−Buj )

where
0 = u1 < u2 < · · · < uN = T.

5. We can then calculate the paths of stock price S(i)(s) where S(t) is defined as
in (5.1) with S0 = 50000.
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6. The paths of present value of future claims can be calculated by

π∗†0 (s) = E[e−r·s max(S(s), G(s))] (6.1)

≈ i = 1

M

M∑
i

e−r·s max((S(i)(s), G(i)(s)) (6.2)

where G takes different forms as discussed in the previous chapter with G =
G0 = 50000, the return rate R will take different values as we observe its effect.
For the case with no guarantee,

π∗†0 (s) ≈ 1

M

M∑
i=1

e−r·sS(i)(s)

.

7. Finally we calculate the premium reserve by

V +
∗ (0) =

∫ T

0

π∗†0 (s)p∗∗(0, s)q∗†(s) ds

Here we consider a 50 years old Norwegian man in year 2016 as example. Using
the data from the world health organization, the mortality rate q∗†(t) from age
50 to 54 is constant at 0.003 and from age 55 to 59 is constant at 0.005, we take
0.004 as the constant mortality rate for age 50-59. The surviving probability is
calculated by

p∗∗(0, t) = exp(−t · 0.004)

We repeat this process for different numbers of iterations of M to test the conver-
gence of the Monte Carlo simulation.

6.2 Results
First we consider the proposed model with η = 0.2 and β = 0.3. The results are shown
in Figure 6.1. The uppermost subplot shows the generated paths of stock prices S(i)(t)
and the red line is the average of the simulated prices. It is presented in the middle
subplot for a clearer view. Averaging over 1000 paths, the extreme outliers have rather
mitigated effect on the process. The corresponding path of the present value of claims
is shown in the lowermost subplot with return rate promised by the insurance company
set equal to the market overnight interest rate at 0.01. For comparison, we simulated
1000 paths each for the case of extreme volatility values where η = 0.01 and η = 0.5
respectively. The results are presented in Figure 6.2.

Figure 6.3 shows the premium reserve required under these different values of η.
As shown in the graphs, in a less volatile market, the present value of future claims is
more predictable and a smaller premium reserve is required, and vice versa.

Next we investigate the effect of return rate R on the present value of claims. We
simulate 10000 paths of prices with η = 0.2, β = 0.3, then for these 10000 paths, we
calculate the paths of present value of claims for each R = 0, 0.01, 0.025, 0.05, 0.1,
together with the case of no guarantee. The corresponding premium reserves are shown
in Figure 6.5. As we can see, the guarantee smooth out the curve significantly. Figure
6.5 further shows that the return R is a significant factor in determining the premium
reserve.
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Figure 6.4: Effect of different values of R on the present value of claims
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Figure 6.6: The paths of present values with various numbers of simulations

We proceed to check the convergence of the present value process with different
numbers of simulations M = 10, 100, 1000, 5000, 10000, the results are shown in
Figure 6.6. From our simulation scheme it is intuitive to see that because of the law
of large numbers, the paths will converge almost surely as M increases. Figure 6.6
confirms the convergence.
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Extension and Future Work

7.1 Different Models for Xt

We investigated the stochastic volatility model where the dynamics of the stochastic
volatility is modeled by

σt = g(Xt)

for a non-negative Borel-measurable function g and {Xt}t∈T is modeled by the weak
solution to the SDE,

Xt = y +

∫ t

0

b(Xu) du+ βBHt . (7.1)

In our model, we considered b(Xt) = 0 as a simplification, the function b(Xt) warrants
further study, especially for the case where b(Xt) is discontinuous.

Consider b to be of the form:

b(z) = a11(a,∞)(z) + a21(−∞,a] (7.2)

where a1, a2 and a are constants, and a is called the threshold.

• For a1 = a2 = a, we have

Xt = y + at+ σtB
H
t .

This introduces a linear term to Xt, which describes a constant "trend" of the
market. Note if a ≡ 0, we recover the model discussed before.

• For a1 6= a2, the resulting model could describe the so-called regime switching
effect on the financial market due to e.g. natural catastrophes, financial crises
and drastic regulatory changes. a1 corresponds to the "level" the market is at
before the shock and a2 corresponds to the situation the market is in after the
crisis.

By capturing the regime switching effects, the extended model is able to "react"
to sudden changes in the market. In fact by Girsanov’s theorem with respect to the
fractional Brownian motion, it is shown in [19] that for b as in equation (7.2), there
exists a weak solution to SDE (7.1). As for strong solutions, we refer readers to [1].

Another possibility is to consider Xt, t > 0 to be a fractional Lévy process given
by

Xt = BhΓt
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where Γt, t ≥ 0 is a Gamma process. As for the definition and application of Lévy
process, the reader may consult [21]

7.2 Optimizing G(t) and Stochastic Interest Rate
As shown in Chapter 6, the choice of parameters of the Guarantee G(t) i.e. the return
R and the initial value G0 affects the present value of claims significantly. In practice,
it is of great interest to the insurance company to determine the optimal choice of such
parameters. This raises a optimization problem to be further studied.

In our model, we choose r = 0.01 in 5.1 i.e.

St = S0exp
( ∫ t

0

(
r − 1

2
σ2
s

)
ds+

∫ t

0

σs dBs

)
and the return R is also set to be constant. It is more realistic to invest both parameters
in a stochastic setting.

For example, we could consider:

(i) The model where rt involves a Brownian motion with drift:

rt = r + δBt.

(ii) The Vasicek-model where rT is the solution to the SDE:

rt = r0 +

∫ t

0

a(b− rs) ds+ δBt, t ≤ 0.

(iii) The Norberg-model with rt defined by

rt =
∑
j∈S

1{Xt=j}rj(t)

where Xt is a Markov chain with state space S and rj(t) is a deterministic func-
tion.



Appendix A

Code

The code used to produce various plots are as follows

pkg <- c("somebm","stats","pracma","ggplot2",
"reshape2","scales")

lapply(pkg,require, character.only = TRUE)

#Number of iterations
M <- 10000

# Simulations
#Hurst Parameter
H = 0.14

#time Span
T = 10

#Step of the Paths
N = 2520

#time squence
t <- seq(0,T,length.out = N)

#market interest rate
r = 0.01

#return rate promised by the insurance company
R = 0.01

#initiavalue of stock price
s0 <- 50000

#Values of the guarantee

G0 <- 50000
G <- G0*exp(R*t)
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#paremeters of the model
eta <- 0.2
beta <- 0.3

#initiate matrices
PI <- matrix(ncol = M, nrow = N )
S <- matrix(ncol =M,nrow =N)

for (i in 1:M){
#generating Brownian motion and fractional
#Brownian motion
x <- rnorm(n = N-1, sd = sqrt(10/N))
Bm <- c(0, cumsum(x))
fBm <- fbm(hurst = H, n = N - 1)
fBm[1] <- 0

#the form eta * exp(beta * fbm)
sigma <- eta*exp(beta*fBm)
sigma <- as.numeric(sigma)

#case 3 constant volatility
#sigma <-rep(0.2,N)

#calculate the integral of r - 1/2 * sigma^2 from 0 to t
#here used trapezoidal integration with pracma package
s_1 <- cumtrapz(t,r - 1/2 * sigma^2)

#calculate the stochastic integral of sigma form 0 to t
s_2 <- cumsum(sigma * c(0,diff(Bm)))

#calculate the stock price
s <- s0 * exp(s_1 + s_2)
S[,i] <- s

#calculate the single premiums
pi <- exp(-r*t)*pmax(s,G)
PI[,i] <- pi

}

PI <- data.frame(PI)
S <- data.frame(S)

PV <- rowMeans(PI)
ST <-rowMeans(S)

#plot for the stock prices and present values
qplot(t,ST,geom = ’line’, xlab = "Time",
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ylab = "Price" )
qplot(t,PV,geom = ’line’,xlab = ’Time’,

ylab = ’Present value of Claims’)

#id variable for position in matrix
S$id <- 1:nrow(S)

#reshape to long format
data_st <- melt(S,id.var="id")

#plot the generated stock prices
ggplot(data_st, aes(x=id,y=value,group=variable)) +

geom_line(linetype = "solid") +
stat_summary(aes(y = value,group=1), fun.y=mean,

colour="red", geom="line",group=1)+
xlab("Number of days") + ylab("Prices")

#plot the premium reserve for different R

v = matrix(ncol= 6 , nrow = N)
for (i in 1:M){

pi <- exp(-r*t)*S[,i]
PI[,i] <- pi

}
PV <- rowMeans(PI)
v[,1] <- cumtrapz(t,PV*exp(0.004*-t)*0.004)

j = 2
for (R in c(0,0.01,0.025,0.05,0.1)){

G <- G0*exp(R*t)

for (i in 1:M){
pi <- exp(-r*t)*pmax(S[,i],G)
PI[,i] <- pi

}
PV <- rowMeans(PI)
qplot(t,PV,geom = ’line’,xlab = ’Time’,

ylab = ’Present value of Claims’)
v[,j] <- cumtrapz(t,PV*exp(0.004*-t)*0.004)
j <- j+1

}

v <- as.data.frame(v)
v$id <- 1:nrow(v)
data_v <- melt(v,id.var="id")
plot_1 <-ggplot(data_v, aes(x=id,y=value,group=variable,

color = variable)) +
geom_line(linetype = "solid") +
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xlab("Time") + ylab("Value")

p2 <-plot_1 +
scale_color_discrete(labels = c("No guarantee","R = 0",

"R = 0.01","R = 0.025",
"R =0.05","R = 0.1"))
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