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Chapter 1

Introduction

My thesis is devoted to the study of the algebraic deformation theory and the
combinatorial structure of pairs (X,L), where X is a projective scheme formed
as a disjoint union of toric varieties glued together equivariantly along toric
prime divisors, and L is an ample line bundle. Specifically we ask if the pair is
smoothable. Examples of such schemes are the stable toric varieties of Alexeev
[Ale02; Ale15], and the central fibers of toric degenerations of Calabi Yau varieties
from the Gross-Siebert program for mirror symmetry [GS06; GS10]. With our
objective in mind, it will be useful to study the deformation functor of pairs
Def(X,L). The structure of the universal base space of Def(X,L) can potentially
shed light upon moduli considerations in this context. Thus the existence and
structure of its smoothing components is particularly relevant.

The type of schemes we shall consider has an abstract classification, and a
combinatorial counterpart. Abstractly, X is a projective, seminormal scheme
equipped with an ample line bundle L over an algebraically closed field k of
characteristic 0, such that the normalization X comes equipped with the action
of an algebraic torus T with finitely many orbits and connected stabilizers. We
also assume that the conductor locus is T -invariant. Let ν : X → X denote
the normalization map. If C ⊆ X is the closure of a T -orbit O, we furthermore
assume that C → ν(C) is the normalization of ν(C), and that O → ν(C) is
injective. In addition we require that the induced automorphisms of orbit closures
over ν(C) are T -equivariant.

Our definition above is a slight generalization of the notion of stable toric
varieties; the difference is that we do not require that the action of T on X
descends to an action on X. There is a hierarchy of similar but increasingly
general notions, the most basic of which are Stanley-Reisner schemes associated to
simplicial complexes. The irreducible components of such schemes are projective
spaces, and the question of smoothability in this case was addressed in [Chr10].
As already mentioned, these generalized stable toric varieties we are considering
also appears as the central fiber of the toric degenerations X → T of Calabi Yau
varieties, initially defined by Gross and Siebert in [GS03]. We will be preoccupied
exclusively with the combinatorics and the deformation theory of the central
fiber X0, and apart from this relation we will not pursue their program.

We will associate to the pair (X,L) a combinatorial object called a polyhedral
set, and the study of these will be our primary consideration. The natural
situation is when the polyhedral set realizes to an orientable manifold, in which
case the dualizing sheaf ωX is trivial. The combinatorial classification of pairs
(X,L) is the following. First, let P denote the category of lattice polytopes
defined as follows: an object of P is a full-dimensional lattice polytope P ⊆ Rn,
denoted (P, n), and a morphism (P, n) → (Q,m) in P is an injective affine
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1. Introduction

transformation f : Zn → Zm identifying P with a face of Q and an associated
character λf : Zn+1 → Gm. One can associate to a pair (X,L) a category M
with finite skeleton, and a functor p : M → P such that X is isomorphic to
the colimit lim−→s∈M Xp(s) of toric varieties, where XP denotes the toric variety
associated to the polytope P . This gives an explicit description of X as a union of
toric varieties with torus orbits glued together along torus equivariant morphisms
XP → XQ (induced by morphisms in P). The polytopes p(s) are determined
up to affine equivalence by the ample invertible sheaf L. If we furthermore
require that the functor p is a discrete fibration in the categorical sense, then
M is uniquely determined up to isomorphism. In fact, there is a bijective
correspondence between equivalence classes of pairs (X,L) and equivalence
classes of discrete fibrations p : M → P satisfying the following property: (∗)
for any object s ∈ M , AutM (s) = {ids}. This equivalence is expressed as an
equivalence of groupoids in Corollary 3.3.8. Although not pursued, that may
have implications for the moduli problem of parametrizing equivalence classes
of pairs (X,Θ), where Θ is an ample Cartier divisor subject to certain mild
assumptions (analogous to the moduli situation of stable toric pairs [Ale15]).

There is a categorical equivalence between discrete fibrations p : M → P and
presheaves M : Pop → Set. This will be exploited since presheaves are easier to
work with. We call a presheaf M satisfying the property (∗) a polyhedral set, and
we let X = P(M) denote its face scheme. For each P ∈ P, let Γ(P ) denote the
homogeneous coordinate ring of the toric variety XP . Then we may alternatively
write P(M) as Proj Γ(M), where Γ(M) = lim←−s∈M Γ(p(s)). This is called the
face ring of M . The category P comes equipped with the monoidal operation ?
of join of polytopes (technically we need to add the empty-polytope for ? to be a
monoidal product). The induced Day convolution product extends this operation
to the subcategory C ⊆ Pre(P) of polyhedral sets. The face ring and face scheme
constructions can be defined categorically as the monoidal Yoneda extensions
of the functors P 7→ Γ(P ) and P 7→ XP , inducing functors Γ : C → Ring
and P : C → Schk, such that Γ(M ? N) ∼= Γ(M) ⊗k Γ(N). The functor P is
particularly well-behaved, in the sense that it preserves intersections, unions
and finite colimits (in particular group quotients). Moreover, it takes injections
to closed immersions, and surjections to surjections. A polyhedral set M also
has an associated topological realization |M | = lim−→s∈M p(s), and a number of
properties of P(M) and Γ(M) are determined by the topological properties of
|M |. The most important basic properties we show are the following:

1) There are natural isomorphisms Hi(|M |, k) ∼= Hi(P(M),OP(M)) for each
integer i (Theorem 3.4.1).

2) There is a natural isomorphism
Pic(P(M)) ∼= H1(|M |,Gm)× lim←−

s∈M
Pic(Xp(s)),

where lim←−s∈M Pic(Xp(s)) is a finitely generated free abelian group (Theo-
rem 3.5.2).
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3) If |M | is a homology manifold, then P(M) is locally Gorenstein, and the
dualizing sheaf satisfies ω⊗2

P(M)
∼= OP(M). Moreover, ωP(M) ∼= OP(M) if

and only if |M | is an orientable homology manifold (Theorem 6.5.4).

4) If |M | is a homology sphere, then Γ(M) is Gorenstein.

Polyhedral sets generalizes the notion of polyhedral complexes, and the face
ring Γ(M) coincides with the ordinary face ring of a polyhedral complex [BG09].
In particular, if K is a simplicial complex, then Γ(K) coincides with the Stanley-
Reisner ring of K. Thus 3) is a generalization of the corresponding statement
for simplicial complexes[BE91, Theorem 6.1]. It is a classical result[Rei76]
by Reisner that the Cohen-Macaulayness of the Stanley-Reisner ring Γ(K) is
characterized by certain combinatorial conditions on K, which can be translated
into topological conditions on its geometric realization |K|. Namely that for all
i < dimK, H̃i(|K|; k) = 0 and Hi(|K|, |K|\p; k) = 0 for all points p ∈ |K|. In
Theorem 6.3.3, we show that the same criteria also characterizes the unimodular
polyhedral sets M for which its face ring Γ(M) is Cohen-Macaulay (M is called
unimodular if p(s) is a unimodular simplex for each s ∈ M). We also give
necessary and sufficient conditions for the unimodular M for which Γ(M) is
Gorenstein in Theorem 6.4.6, which coincides with the conditions provided for
simplicial complexes[Sta96] by Hochster, namely that M ∼= S ? ∆n, where S
is a unimodular homology sphere and ∆n a unimodular simplex. These two
theorems are logically separate from our main objective, and should be viewed
as independent results generalizing classical ones.

Local properties of the face scheme P(M) for a general polyhedral set M
can be deduced by deformation to face schemes associated to unimodular sets.
Using the existence of unimodular subdivisions of multiples of polytopes([BG09,
Theorem 3.17]), we show that there exists an integer d > 0 such that the pair
(P(M),OP(M)(d)) is deformation equivalent to a pair (P(N),OP(N)(1)) as the
central fiber, where N is a simplicial complex (Theorem 2.9.9). Here N is a
subdivision of a scaling of M , implying that |M | ∼= |N |. Thus properties stable
under deformation, such as being locally Cohen Macaulay or locally Gorenstein,
can be verified via the topology of |M |, since we have deduced suitable topological
criteria in the case of unimodular sets.

In Chapter 4, we extend the definition of a face scheme from polyhedral sets
to more general combinatorial structures, called open categories over P . An open
category over P is a category U equipped with a discrete Conduché fibration
p : U → P [Joh99]. Discrete Conduché fibrations generalizes the notion of
discrete fibrations, by relaxing the requirement on p. The rationale for the term
open category is the following: any open category U can be universally completed
into a polyhedral set M , inducing an open immersion A(U)→ P(M). A local
isomorphism φ : U → V between open categories is a morphism which induces an
isomorphism on comma categories (s ↓ U)→ (φ(s) ↓ V ). The relevance of these
definitions is that in this situation, we can prove that A(φ) : A(U)→ A(V ) is
an étale morphism of schemes. This result will allow us to refine the face scheme
P(M) of a polyhedral set M with an étale cover {A(Ms) → P(M)}, where
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1. Introduction

Ms = (s ↓M) is an open category, called the local category at s ∈M . Another
interesting fact is that if M is a polyhedral set, then the covering spaces of |M |
are in 1-to-1-correspondence with local isomorphisms S →M of polyhedral sets
(Proposition 5.4.3).

In Chapter 5, we define the link lkM (s) of a polyhedral set M at a face s (we
require that the polytopes of M are smooth). It generalizes the ordinary link
construction[MS05] for simplicial complexes K at a face s, which is defined as

lkK(s) = {t ∈ K : t ∪ s ∈ K and t ∩ s = ∅}.

The link lkM (s) is generally unimodular, and is defined as a certain left Kan
extension. The topology of | lkM (s)| determines the topology of |M | locally, which
allows us to translate certain combinatorial conditions on M into topological
ones. Specifically, there is a basis of open sets for the topology of |M |, each of
which is homeomorphic to an open subset of | lkM (s) ? ∆dim(s)| for some face
s ∈M . The relation between the link construction and open categories is that
there exists a non-canonical isomorphism A(Ms) ∼= Spec Γ(lkM (s)) ×Gdim s

m .
The face rings Γ(lkM (s)) thus reflects the local properties of P(M), concretely
in the sense that there exists morphisms Spec Γ(lkM (v))→ P(M) forming an
étale cover U for v ranging over the vertices of M . This étale cover will be
used to compute the local cohomology groups Hi

m(Γ(M)) of Γ(M) when M is
unimodular, thus giving a criterion for when the face ring is Cohen-Macaulay.
The proof draws its main idea from [Sta96, II, Theorem 4.1]. We substitute
the ordinary Čech complex of P(M) with the alternating étale Čech complex
Čalt(U ,OM ), from which we obtain a complex C̃•∆(M,Γ(M)) that computes the
local cohomology groups of Γ(M). This complex decomposes into a direct sum
of tractable parts that are governed by the links of M .

Smoothability

In [AC10], the study of the deformation functor Def(X,OX(1)) was initiated for
X = P(K), where K is a simplicial manifold. In the case where |K| is a
quotient of a {3, 6}-tesselation of R2, a 3-dimensional smoothing component
in the universal base space was identified in [Chr10]. This builds upon earlier
computations of the T 1 and T 2-modules of Stanley-Reisner rings in [AC04].
The face scheme P(K) has a Zariski-cover of affine schemes {Spec Γ(lkK(v))→
P(K)}v∈K0 . Thus T 1

Γ(lkK(v)) and T 2
Γ(lkK(v)) determines the local first-order

deformations and local obstruction of P(K) respectively.
In Chapter 7, the same general idea will be used for polyhedral sets. We will

assume that |M | is a 2-dimensional polyhedral manifold, and that each polytope
of M is smooth (i.e. we assume that the normalization of P(M) is smooth).
In this situation there exists an étale-cover on the form {Spec Γ(lkM (v)) →
P(M)}v∈M0 . We may proceed in a similar fashion as in [AC10], now glueing
local deformations in the étale-topology. As mentioned earler, our goal is to
compute the universal deformation space of Def(P(M),OP(M)(1). However, a
major obstacle for constructing deformation spaces is the obstruction to glueing
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local deformations to a global one. Section 7.1 is devoted to showing that that
this obstruction vanishes in dimension 2, in addition to the vanishing of the
obstruction to the lifting of a line bundle (Theorem 7.1.7). As a consequence,
in Section 7.6 we are able to produce examples of 1-parameter smoothings
of face schemes of various polyhedral spheres to K3 surfaces by constructing
compatible infinitesimal local deformations. By standard results of [Art69],
effective deformations with an ample line bundle are algebraizable, so this gives
rise to proper, algebraic smoothings.

Theorem 7.3.2 is our main result. Here we find conditions under which it is
possible to compute the universal deformation base space of Def(P(M),OP(M)(1)).
Specifically, this works when each vertex link lkM (v) contains between 3 and
6 components, and under a certain regularity condition on the facet polygons
of M . We obtain a presentation of the universal base space as the spectrum
of a quotient RM,O = PM/aO of a complete local regular ring PM , by an
ideal of binomial equations aO given as the minors of certain 2 × 3-matrices.
This is a generalization of the analogous statement [AC10, Theorem 6.4] for
simplicial complexes. Given some additional assumptions on M , Theorem 7.4.7
now answers our original question regarding smoothability of (X,L), where
we have identified the smoothing components as the closure of a torus inside
Spec(RM ). Examples of this situation are finite index quotients of certain
"admissible" periodic tesselations of the plane (i.e. torus tesselations), some
of which we examine in Section 7.5. Smoothings of (P(M),OP(M)(1)) are in
this case polarized abelian surfaces. We compute some explicit examples of
smoothing components using Macaulay2. One can also prove that the dimension
h0(P(M),OP(M)(1)) is equal to the number of interior lattice points of the
unique polytopes appearing in M , so a particularly interesting case is when
the polytopes of M have empty interior, and are glued in such a way that M
consists of only a single vertex. In this situation h0(P(M),OP(M)(1)) = 1, so in
the torus case (P(M),OP(M)(1)) is smoothable to principally polarized Abelian
surfaces. This example is discussed in [AN99], and it appears on the boundary
of Alexeev’s compactification AP2 of the moduli space of principally polarized
Abelian surfaces[Ale02] (see also [Ols08] for an outline of the construction).

Structure of thesis

The text is divided into seven chapters, including this introduction, and three
appendices. What follows is a general description of the content and goals of
each chapter.

Chapter 2: We give the preliminary definitions of the category of full-dimensional
lattice polytopes P and the category of polyhedral sets C. Most of our
constructions will be given as Yoneda extensions. For example, this means
that the definition of the geometric realization |M | of a polyhedral set M
is dictated by the forgetful functor P → Top. We define the face ring Γ(M)
in Section 2.3, and in Section 2.7 and Section 2.8 we determine some of
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1. Introduction

its properties. In Section 2.4, we define the canonical pushout square of a
polyhedral set. This will be useful for inductive arguments in this and later
chapters. The CW complex structure of |M | is discussed in Section 2.5.
In Section 2.9, we develop the formalism of subdividing polyhedral sets,
and relate it to deformations of the face ring. An important result here is
the existence of triangulations of polyhedral sets to simplicial complexes
(Theorem 2.9.9).

Chapter 3: The face scheme is defined, and the categorical properties of the
face scheme functor P as described above are proved, such as being
finite colimit preserving (Proposition 3.0.3). Next, in Section 3.3, we
show the 1-to-1-correspondence between pairs (X,L) and polyhedral
sets. In Section 3.4 and Section 3.5, we show the existence of the nat-
ural isomorphisms Hi(|M |; k) ∼= Hi(P(M),OP(M)) and Pic(P(M)) ∼=
H1(|M |,Gm)× lim←−s∈M Pic(Xp(s)) respectively. In Section 3.6 we give an
expression of the Hilbert polynomial of the face ring Γ(M).

Chapter 4: In Section 4.1 we give the formal preliminaries for Conduché fibra-
tions, and in Section 4.2 we apply it to P in particular. Section 4.3 and
Section 4.4 are devoted to proving the result regarding étale morphisms as
previously mentioned (Theorem 4.4.1).

Chapter 5: We define the notion of the link of a unimodular set, and in Sec-
tion 5.3 we extend this definition to polyhedral sets consisting of smooth
polytopes. We have separated these two situations, since more can be said
in the former situation which will be crucial to the proofs of the theorems
of Chapter 6. The content of Section 5.4 regarding the local topological
properties of |M | is particularly relevant.

Chapter 6: Our main goal is proving the classification theorem for Cohen
Macaulay and Gorenstein unimodular sets, as described in the introduc-
tion above. In Section 6.1, we outline the construction of the alternating
étale Čech complex, which will allow us to compute the local cohomol-
ogy modules Hi

m(Γ(M)). In Section 6.2, we apply this to the étale cover
{A(Xv)→ P(M)}, giving a more combinatorial representation of the Čech
complex. In Section 6.3 and Section 6.4 we prove our result regarding Co-
hen Macaulay and Gorenstein unimodular sets respectively. In Section 6.5
we prove the result stated earlier regarding the the dualizing sheaf of P(M)
in the situation where |M | is a homology manifold.

Chapter 7: Here we answer our original question. In Section 7.1 we show in
dimension 2 the vanishing of the cohomology group H2(P(M), EOP(M)(1)),
containing the obstructions to glueing local infinitesimal deformations.
Next, in Section 7.2 we give a description of a basis for H0(P(M), T 1

P(M)/k).
In Section 7.3 we prove our main theorem (Theorem 7.3.2) regarding the
structure of the universal base space Spec(RM,O) of (P(M),OP(M)(1)).
In Section 7.4 we prove Theorem 7.4.7, identifying the smoothing com-
ponents in Spec(RM,O). Section 7.5 contains our example computations
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of the smoothing components for quotients of admissible periodic plane
tesselations. In Section 7.6 we give the idea behind smoothing polyhedral
spheres to K3 surfaces. 10 explicit examples are found using Macaulay2.

Appendix A: Here the required background material is provided on the cate-
gorical notions we shall require. In particular, Lemma A.0.9 is required in
order to give an explicit description of the Day convolution product M ?N
of polyhedral sets.

Appendix B: We outline the concept of Milnor patching for projective (and
flat) modules and vector bundles. In particular, this will be used in the
proof of Theorem 4.4.1 to prove flatness of A(U)→ A(V ) by induction on
dimension. Proposition B.3.5 is instrumental for the classification of the
Picard group of P(M) (Theorem 3.5.2).

Appendix C contains the Macaulay2 functions we have used to compute the
examples of Section 7.5 and Section 7.6.
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Chapter 2

Polyhedral sets

2.1 The category of lattice polytopes

A lattice polytope is a subset P ⊆ Rn for some n ≥ 0, realized as the convex hull
of integral lattice points. We will denote it as a pair by (P, n), but usually just by
P . If P is full-dimensional, there exists a unique set of integers aF and vectors
uF ∈ Zdim(P ) of minimal length for each facet F such that P can be written as
{m ∈ Rn | 〈m,uF 〉 ≥ −aF }. A character is a homomorphism λ : Zn+1 → Gm,
where denotes the multiplicative group k∗. An affine transformation is a function
f : Zm → Zn on the form x 7→ u + Ax, where u ∈ Zn and A : Zm → Zn is a
matrix whose columns can be extended to a basis for Zn. We denote the induced
affine transformation on real vector spaces by fR : Rm → Rn, which will also be
called an affine transformation. The image fR(P ) ⊆ Rn of a lattice polytope
is again a lattice polytope. We define the category P as follows: The objects
are full-dimensional lattice polytopes (P, n). An arrow (Q,m) → (P, n) is an
affine transformation f : Zm → Zn such that fR(P ) is a face of Q, equipped
with a character λf : Zm+1 → Gm. We will sometimes denote an arrow by
(f, λf ). The character of a composition (P, n) f−→ (Q,m) g−→ (R, r) is defined by
λgf (m, d) = λf (m, d)λg(f(m) − f(0) + df(0), d) for all (m, d) ∈ Zn × Z. If we
include the empty-polytope ∅, we obtain the category P+. This object is initial
in P+, and we will occasionally denote it by (∅,−1) for consistent notation. The
motivation behind this definition is the following fact:

Proposition (Proposition 3.3.6). There is a natural bijective correspondence be-
tween isomorphisms (f, λf ) : P → Q in P and pairs (ψ, ι), where ψ : XP

∼=−→ XQ

is a torus-equivariant isomorphism, and ι : ψ∗OXQ(DQ)
∼=−→ OXP (DP ) is an

isomorphism of line bundles. Here XP denotes the projective toric variety associ-
ated to the polytope P , and DP is the ample torus-invariant divisor corresponding
to P .

Let Top denote the category of compactly generated Hausdorff topological
spaces. It is convenient to work in this subcategory of topological spaces by
default as it is cartesian closed, in particular monoidally cocomplete. Let
< : P → Top and <+ : P+ → Top be the functors given by (P, n) 7→ P , i.e.
forgetting the embedding into Rn. We will briefly review the join operation ?
on Top. The join of a pair of topological spaces X,Y is defined as the quotient
X ? Y = (X × I × Y )/ ∼, where (x, 0, y1) ∼ (x, 0, y2) and (x1, 1, y) ∼ (x2, 1, y).

9



2. Polyhedral sets

The join X ? Y can alternatively be described as the pushout of the diagram

X × Y
pr1

{{

i0

&&

X × Y
i1

xx

pr2

##
X X × I × Y Y,

where i0 is the inclusion (x, y) 7→ (x, 0, y) and i1 is the inclusion (x, y) 7→ (x, 1, y).
In this generality the join operation (X,Y ) 7→ X ? Y defines a monoidal product
on Top, and the resulting monoidal category (Top, ?,∅) is monoidally cocomplete.

The category P+ inherits from Top the join operation via <+. If (P, n), (Q,m) ∈
P+, their join is (P ?Q, n+m+ 1), where P ?Q = {((1− t)m, t, tn) | m ∈ P, n ∈
Q, t ∈ [0, 1]} ⊆ Rn+m+1 (when P and Q are non-empty). If f1 : P1 → Q1
and f2 : P2 → Q2 are arrows, then λf1?f2 is given by ((m1, s,m2), d) 7→
λf1(m1, d − s)λf2(m2, s). We can also write P ? Q as the convex hull of the
subset P × {0} × {0} ∪ {0} × {1} ×Q ⊆ Rn × R× Rm. The vertices of P ? Q
are on the form (v, 0, 0) or (0, 1, w), where v and w are vertices of P and Q
respectively. If P (resp. Q) is the empty-polytope ∅, we have P ? Q = Q (resp.
P ? Q = P ). The empty polytope ∅ is a unit for the join operation.

Lemma 2.1.1. For any pair of objects P1, P2 ∈ P+ and arrow f : Q→ P1 × P2,
there exists a unique pair of arrows f1 : Q1 → P1, f2 : Q2 → P2 such that
f = f1 ? f2. In the context of Definition A.0.2, this means that the functor
? : P × P → P is a discrete fibration.

Proof. By the elementary fact that the faces of P1 ? P2 are uniquely on the form
Q1 ? Q2 for faces Q1 and Q2 of P1 and P2 respectively, one immediately obtains
a unique corresponding decomposition of Q on the required form. Uniqueness of
λf1 and λf2 is easily verified.

2.1.1 Unimodular simplices

Let Fin+ denote the category of finite ordinals [n] = {0, . . . , n} (where [−1] = ∅),
where an arrow f : [n]→ [m] is an injective function, equipped with a character
λf : Z[n] → Gm. Here Z[n] denotes the free abelian group on basis vectors ei
for i ∈ [n]. The character of a composition is given by λgf (ei) = λg(ef(i))λf (ei).
This category will serve as our model for unimodular simplices. The arrows are
generated by three types of functions:

1) simplicial face maps di : {0, . . . , n} → {0, . . . , n + 1} defined by j 7→ j
if j < i, and j 7→ j + 1 if j ≥ i (for i = 0, . . . , n + 1), and with trivial
character;

2) permuations σ : {0, . . . , n} → {0, . . . , n}, with trivial character.

3) arrows (id[n], λ) : {0, . . . , n} → {0, . . . , n} which are the identity as func-
tions (but with arbitrary character λ).
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Polyhedral sets

We let Fin denote the full subcategory of Fin+ of non-empty ordinals. We define
IFin : Fin→ P by

[n] 7→ |∆n| := {(x1, . . . , xn) | xi ≥ 0,
n∑
i=1

xi ≤ 1} ⊆ Rn

Functoriality is given as follows. First, identify the affine span of Conv(e0, . . . , en) ⊆
R[n] with Rn by choosing basis vectors e1 − e0, . . . , en − e0 centered at e0. This
identifies Conv(e0, . . . , en) with |∆n|. The corresponding affine transformation
Rn → R[n] is given by 0 7→ e0, and ei 7→ ei for i > 0. If f : n → m is a
function, the affine transformation Z[n] → Z[m] defined by ei 7→ ef(i) identifies
Conv(e0, . . . , en) with a face of Conv(e0, . . . , em), hence the affine transformation
IFin(f) : Zn → Zm induced by the same base change identifies |∆n| with a face
of |∆m|. It is given by ei 7→ ef(i), where we put e0 = 0. On characters, we define
λIFin(f)(ei, 1) = λf (ei), and λIFin(f)(0, 1) = λf (e0). This is clearly functorial,
and IFin extends to a functor IFin+ by mapping [−1] to ∅.

Fin+ can be equipped with an operation + : Fin+×Fin+ → Fin+, defined
by [n] + [m] = [n+m+ 1] on objects, and for any pair of arrows f : n→ n′ and
g : m→ m′, h = f + g : [n] + [m]→ [n′] + [m′] is given by

h(i) = f(i) for i = 0, . . . , n,
h(i) = n′ + 1 + g(i− n− 1) for i = n+ 1, . . . , n+m+ 1,

λh(m1, s,m2) = λf (m1)λg(m2) for (m1, s,m2) ∈ Zn+m+1.

This gives Fin+ the structure of a symmetric monoidal category with unit [−1].

Lemma 2.1.2. The functor IFin+ : Fin+ → P+ is a fully faithful strong monoidal
functor.

Proof. Let [n], [m] ∈ Fin, and note that any morphism f : |∆n| → |∆m| in P+ is
uniquely determined by the character λf and the induced inclusion of vertices. In
fact, the arrow [n]→ [m] in Fin corresponding to this inclusion of vertices induces
fR. This shows fully faithfulness. To see that it is strong monoidal, consider the
isomorphism Conv(e0, . . . , en) ?Conv(e0, . . . , em)→ Conv(e0, . . . , en+m+1) with
trivial character given by

((1−t)x0, . . . , (1−t)xn, t, ty0, . . . , tym) 7→ ((1−t)x0, . . . , (1−t)xn, ty0, . . . , tym).

This clearly satisfies the coherence conditions of a monoidal functor, and via the
canonical identifications, this induces a coherent isomorphism |∆n| ? |∆m| →
|∆n+m+1|.

2.2 Polyhedral sets

Definition 2.2.1. Let C be a category, and let M : Cop → Set be some presheaf.
Let (∗) denote the following condition on M : For each c ∈ C, the group AutC(c)
acts freely on Mc. We let Pre(∗)(C) denote the category of presheaves on C
satisfying (∗).

11



2. Polyhedral sets

By Proposition A.0.3, there is an equivalence of categories between the
category of presheaves Pre(C) and the category of discrete fibration Fib(C).
The condition (∗) translates to the following condition on a discrete fibrations
p : U → C: for all s ∈ U , AutU (s) = {ids}.

Lemma 2.2.2. The pushout of a diagram M
φ←− Z ψ−→ N in Pre(C) satisfies (∗)

whenever M,N,Z ∈ Pre(∗)(C) and φ is a monomorphism.

Proof. One easily verifies that AutC(c) acts freely on Mc ×Zc Nc for each c ∈
C.

Definition 2.2.3. We define the category polyhedral sets as C = Pre(∗)(P). A
morphism M → N of polyhedral sets M,N ∈ C is a natural transformation
φ : M → N . A presheaf M ∈ Pre(∗)(P+) such that M∅ is a one-point set is
called an augmented polyhedral set. The category C+ = Pre(∗)(P+) of augmented
polyhedral sets will mainly serve as a notational convenience.

A polyhedral subset of M is an equivalence class of pairs (N,φ), where N is a
polyhedral set and φ : N →M is an injective morphism. Two such pairs (N1, φ1),
(N2, φ2) are equivalent if there exists an isomorphism ψ : N1

∼=−→ N2 satisfying
φ2 = φ1ψ. For a polyhedral set M , the P -faces of M are the elements of the
set MP . For each arrow f : P → Q, M(f) : MQ → MP is the corresponding
face map, also denoted fM . For each P , we define the P -polytope ∆P to be
the presheaf P(−, P ) : Pop → Set represented by P . Since all arrows of P are
monomorphisms, each ∆P is a polyhedral set. By the Yoneda lemma, there is a
natural bijection Hom(∆P ,M)→MP between the P -faces of M and morphisms
∆P →M from the P -polytope to M . If s ∈MP is a face, then we define |s| = P .
We will denote the corresponding morphism ∆|s| → M by ζsM . We will also
denote ∆|s| by ∆s. A facet is a face s ∈MP which is not in the image of any face
map fM : MQ →MP for any non-isomorphism f : P → Q. Two faces s ∈MP

and t ∈MQ are called equivalent if there exists an isomorphism f : P
∼=−→ Q such

that fM (t) = s. A finite polyhedral set is a polyhedral set with finitely many
faces of each equivalence class.

Definition 2.2.4. Presheaves M ∈ Pre(∗)(Fin) are called unimodular sets. Anal-
ogously, one has the augmented version of presheaves M ∈ Pre(∗)(Fin+) such
that M[−1] is a one-point set.

Consider the fully faithful functor ÎFin : Pre(Fin)→ Pre(P) defined as the
Yoneda extension (see Appendix A) of the embedding IFin : Fin→ P. If M is
a unimodular set, then it is clear that ÎFin(M) is given by by ÎFin(M)P = Mn

for each n ∈ Fin and P ∈ P with P ∼= IFin(n), and ∅ otherwise. We define the
dimension of an element P ∈ P to be its dimension dim(P ) as a lattice polytope.
The dimension of a polyhedral set M , denoted dim(M), is the largest integer
N for which there exists a P with dim(P ) = N and MP non-empty. If no such
N exist and M is not the empty-presheaf, we call M infinite-dimensional. We
say that the empty-presheaf, denoted ∅, is (−1)-dimensional. The dimension
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of a face s ∈ MP is dim(P ), and is denoted dim(s). M0 is the set of vertices
of M . It is clear that the P -polytope ∆P has dimension dim(P ). Let M be a
finite-dimensional polyhedral set. Then M is called irreducible if it cannot be
written as a proper union of non-empty polyhedral subsets. Let s be a face of M ,
and consider the corresponding morphism ζsM : ∆s →M . Then the polyhedral
subset corresponding to s is the image Ms = ζsM (∆s) ⊆ M . It is the minimal
polyhedral subset of M containing s. M is irreducible if and only if it has (at
most) a single equivalence class of facets, and can in general always be written
uniquely as a union of its irreducible components.

The monoidal structure on Pre(P) is given by the Day convolution product
(see Definition A.0.7 and [IK86, Section 4]). Per Lemma A.0.9, given M,N ∈
Pre(P+), the convolution product M ?N : Pop

+ → Set is defined as the left Kan
extension of the functor M × N : Pop

+ × P
op
+ → Set×Set →× Set along the

induced comultiplication functor ?op : Pop
+ × P

op
+ → P

op
+ . The characterization

of ? as a convolution product - coupled with the fact that it is induced by a
discrete fibration - allows us to describe M ?N explicitly. In particular, ? defines
a monoidal operation on C.

Proposition 2.2.5. If M and N are augmented polyhedral sets, then their join
is an augmented polyhedral set, and is given by

(M ?N)R =
∐

{(P,Q)|P?Q=R}

MP ×NQ. (2.1)

for each R ∈ P+. The functorial structure is given as follows. For any arrow
h : R→ R′, and for each pair (P1, Q1) with P1 ? Q1 = R′, let h1 : P0 → P1 and
h2 : Q0 → Q1 be the unique pair of arrows such that h = h1 ? h2. Then the map
hM?N : (M ?N)R′ → (M ?N)R is given by hM1 ?hN2 : MP1 ×NQ1 →MP0 ×NQ0

on components.

Proof. The formulas follow from Lemma A.0.6 a) and b), which we may apply
here since ? is a discrete fibration by Lemma 2.1.1. It follows immediately from
this that M ?N also satisfies (∗).

Remark 2.2.6. The inclusion i : C → Pre(∗)(P+) is given by adjoining a singleton
set at ∅. By applying i, the join operation formula (2.1) makes sense for
polyhedral sets M,N ∈ C as well, with the empty-presheaf ∅ as a unit. Hence
the category C of polyhedral sets is a monoidal category with respect to ?. The
inclusion functor i preserves ? and all connected colimits.
Remark 2.2.7. One analogously defines the join of two unimodular set via the
monoidal operation + : Fin+×Fin+ → Fin+. Since IFin+ : Fin+ → P+ is a
strong monoidal functor by Lemma 2.1.2, the inclusion Pre(∗)(∆)→ C is a strong
monoidal functor. As in Proposition 2.2.5, one has

(M ?N)n =
∐

[m]+[r]=[n]

Mm ×Nr

for any pair of unimodular sets M , N .
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2. Polyhedral sets

The following proposition is a consequence of Proposition A.0.8.

Proposition 2.2.8 (Geometric realization). The strong monoidal functor <+ :
P+ → Top induces a cocontinuous strong monoidal geometric realization functor
| − | : Pre(P+)→ Top such that |∆P | ∼= P for each P ∈ P+. In particular, there
is a natural isomorphism

|M ?N |
∼=−→ |M | ? |N |

for each M,N ∈ Pre(P+). Note that since the inclusion i : Pre(P)→ Pre(P+)
preserves ?, the geometric realization functor | − | : C → Top also preserves ?.

2.3 The face ring of a polyhedral set

Let D denote the category of positively graded k-algebras. D is a monoidal
category, with the ordinary tensor product operation ⊗k and unit k. We recall
some definitions from [CLS11]. The affine semigroup associated to a polytope
P is defined as AP = N[(P ∩ Zn)× {1}], and consists of all linear combinations
of lattice points in P × {1} ⊆ Zn+1 with non-negative integral coefficients.
This notation is consistent if P is the empty-polytope, in which case we have
A∅ = 0. If f : P → Q is an arrow in P+ represented by an affine transformation
x 7→ u+Ax with character λf , then one obtains an inclusion of affine semi-groups
Af : AP → AQ given by (m, d) 7→ (dfR(md ), d) = (ud+ A(m), d). This is easily
seen to define a functor A : P+ → SemiGrp. We will now define the face ring
of a polyhedral set. Consider the contravariant functor Γ′ : P+ → D given on
objects by Γ′(P ) = k[AP ], where

k[AP ] =
∞⊕
d=0

⊕
m∈dP

k · χm

is the homogeneous coordinate ring (generated in degree 1) associated to the
affine semigroup AP . For any arrow f : P → Q, we let Γ′(f) : Γ′(Q) → Γ′(P )
be given by χAf (m) 7→ λf (m)χm (and χm 7→ 0 otherwise).

Lemma 2.3.1. The functor Γ′ : P+ → D is strong monoidal, where D is equipped
with the tensor product operation.

Proof. Note that Γ′(∅) = k is the unit of D . Let P,Q ∈ P+, and consider the
inclusions i1 : P → P ?Q, i2 : Q→ P ?Q given by x 7→ (x, 0, 0) and y 7→ (0, 1, y)
respectively. A lattice point m ∈ d(P ? Q) can always be written uniquely as
(m1, s,m2) for some integer 0 ≤ s ≤ d, where m1 and m2 are lattice points such
that m1 ∈ (d− s)P and m2 ∈ sQ. The decomposition (m, d) = Ai1(m1, d− s) +
Ai2(m2, s) is unique, so the (natural) homomorphism Γ′(P ?Q)→ Γ′(P )⊗kΓ′(Q)
given by χ(m,d) 7→ χ(m1,s) ⊗ χ(m2,d−s) is an isomorphism.

By Proposition A.0.8, Γ′ induces a strong monoidal monoidally cocontinuous
functor Γ̂ : Pre(P+)→ D . Recall that the inclusion i : Pre(P)→ Pre(P+) given

14



The canonical pushout square

by adjoining a singleton at ∅ preserves ? and all connected colimits. Hence the
restricted functor Γ := Γ̂ ◦ i : Pre(P)→ D preserves all connected colimits, and
is strong monoidal with respect to ?.

Definition 2.3.2. For a polyhedral set M , Γ(M) is called the face ring of M .

From the preceding we have the following proposition.

Proposition 2.3.3. The face ring functor Γ : C → D is a strong monoidal,
contravariant functor preserving all connected colimits, such that Γ(∆P ) = k[AP ]
for all P ∈ P. Thus there are natural isomorphisms

Γ(M ?N) ∼= Γ(M)⊗k Γ(N)

for any pair of polyhedral sets M,N . We remark that while Γ(∆P ) = k[AP ] is
a standard graded ring for each P , this is not necessarily the case for Γ(M) in
general.

Remark 2.3.4. Let M be a polyhedral set. It can be written as the colimit of a
diagram θM : FM → C, where FM is the category of elements of M . Endow FM
with an initial object ∗, and let FM denote the endowed category. Consider the
extended diagram ΘM : FM → C given by ΘM (∗) = ∅, where ∅ : Pop → Set
is the empty-presheaf, also the initial presheaf. Then M is the colimit of the
diagram ΘM : FM → C. Since FM is connected, we have

Γ(M) = lim←−Γ ◦ΘM .

Note that this procedure may be carried out for any (possibly disconnected)
diagram H : I → C with lim−→H = M . We highlight this fact in the following
remark.
Remark 2.3.5. Let H : I → Pre(P) be a diagram of polyhedral sets, and
assume that M = lim−→H ∈ C. Endow I with an initial object ∗, and extend
H to a functor H : I → Pre(P), where I denotes the endowed category, and
H(∗) = ∅. Then lim−→H = M , and Γ(M) = lim←−Γ ◦ H. In particular, for a
coproduct M =

∐
iMi, the face ring Γ(M) is the wide pullback of {Γ(Mi)}i

over k. Explicitly, Γ(M)0 = k, and Γ(M)d =
∏
i Γ(Mi)d for each integer d > 0.

2.4 The canonical pushout square

Let M be a polyhedral set. For each face s of M , consider the corresponding
morphism ζsM : ∆s →M . These morphisms are natural in the following sense.
Let φ : M → N be a morphism, s ∈MP and t = φ(s). Then the diagram

∆s
ζsM // M

φ

��
∆t

ζtN // N

(2.2)
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commutes. For each integer n ≥ −1, we define the n-truncation Mn as the
polyhedral subset of M given by Mn

P = MP for all P with dim(P ) ≤ n, and ∅
otherwise. Let ιM : Mn−1 →Mn denote the natural inclusion.

Definition 2.4.1. Consider the equivalence relation on P given by P ∼ Q when-
ever P ∼= Q. For each equivalence class [P ], choose (once and for all) some
canonical representative P can ∈ [P ]. Recall that two faces s, t of M are called
equivalent if there exists an isomorphism f : |s| → |t| such that fM (t) = s. For
each isomorphism class [s], choose some canonical representative scan ∈MP can .
We define Jn

M ⊆
∐

dim(P )=n MP as the subset of n-dimensional faces s such that
s = scan. Let M can =

⊔
n≥0 J

n
M denote the set of canonical representatives.

Consider the indexed set of polytopes {∆s}s∈Jn
M
. For each n-dimensional

polytope ∆P , let ∂∆P denote the (n − 1)-truncation (∆P )n−1. This induces
natural morphisms ζs′M : ∂∆s → Mn−1 for each s ∈ Jn

M . By the condition (∗),
there is exactly one arrow f : |scan| → |s| such that fM (s) = scan for each s ∈M .
Hence it is easy to see that Mn is the colimit in the following natural diagram

{∆s}s∈Jn
M

{ζsM}s∈Jn
M // Mn

{∂∆s}s∈Jn
M

{ι∆s}s∈Jn
M

OO

{ζs′M}s∈Jn
M // Mn−1,

ιM

OO

(2.3)

or for easier notation,

{∆s}
ζsM // Mn

{∂∆s}

ι∆s

OO

ζs′M // Mn−1.

ιM

OO

(2.4)

Definition 2.4.2 (The canonical pushout square). For each integer n ≥ −1,
define ∆n

M =
∐
s∈Jn

M
∆s, and let ∂∆n

M denote the (n−1)-truncation (∆n
M )n−1 =∐

s∈Jn
M
∂∆s. The natural morphisms αM : ∆n

M →Mn and α′M : ∂∆n
M →Mn−1

are induced via the morphism ζsM : ∆s →M . Mn fits into the natural pushout
square

∆n
M

αM // Mn

∂∆n
M

ι∆M

OO

α′M // Mn−1,

ιM

OO

(2.5)

called the canonical pushout square for M of level n. If φ : N → M is a
morphism polyhedral sets, we denote each individual morphism in the morphism
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of diagrams by φ : Mn → Nn, φ∆ : ∆n
N → ∆n

M , φ′ : Nn−1 → Mn−1 and
φ∂∆ : ∂∆n

N → ∂∆n
M .

Definition 2.4.3. For each P ∈ P , let L(P ) (resp. L∗(P )) denote the set of lattice
points (resp. interior lattice points) of P . For any arrow f : Q→ P , we define
L(f) : L(Q)→ L(P ) as the restriction of fR. This defines a functor L : P → Set.
Consider the Yoneda extension L : C → Set. For each polyhedral set M ,
we have L(M) = lim−→∆P→M L(P ). There is clearly a bijective correspondence
L(M) ∼=

⊔
s∈Mcan L∗(|s|).

2.5 CW structure

We will now see that the geometric realization of a polyhedral set M is a CW
complex. Specifically, the realization of the diagram (2.4) determines the cell
structure on |M | and its characteristic maps. See [GJ09, Proposition 2.3] for the
parallell situation in the case of simplicial sets.

Proposition 2.5.1. LetM be a polyhedral set. Then the geometric realization |M |
is a CW complex with an n-cell for each face s ∈ Jn

M . Moreover, if φ : M → N
is a morphism, then |φ| : |M | → |N | maps n-cells of |M | homeomorphically to
n-cells of |N |.

Proof. Let n ≥ 1 be an integer. Then for each face s ∈MP ⊆ Jn
M , the geometric

realization of ∆s is |P | ∼= Dn, the n-disc. Consider the polyhedral facets F ⊆ P ,
and note that

∂∆s =
⋃

F facet of P
∆F . (2.6)

Thus we may write
|∂∆s| =

⋃
F facet of P

F.

But this is the topological boundary of |P |, hence homeomorphic to the (n− 1)-
sphere Sn−1. It follows that the induced map |ι∆s | : Sn−1 → Dn is the standard
inclusion. The colimit diagram (2.4) defines a CW complex structure on |M |
in the following way. The space |M0| is a discrete set of points, and defines
the 0-skeleton of |M |. For n ≥ 1, |Mn| is the n-skeleton of |M |, and |Mn|
is determined by |Mn−1| and the characteristic maps |ζsM | : Dn → |Mn| and
|ζs′M | : Sn → |Mn−1| in the colimit diagram

{Dn}
|ζsM | // |Mn|

{Sn}

|ι∆s |

OO

|ζs′M | // |Mn−1|.

|ιM |

OO
(2.7)

Since M is the colimit of the sequence of inclusions M0 →M1 → · · · →Mn →
· · · as well, |M | is the colimit of |M0| → |M1| → · · · → |Mn| → · · · , which
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shows that the topology on |M | agrees with the standard CW complex (weak)
topology. If φ : M → N is a morphism, naturality of (2.2) shows that that each
n-cell of |M | is mapped homeomorphically to an n-cell of |N |.

For a polyhedral set M of dimension n, we may form the CW chain complex
CM• arising from the CW structure of the geometric realization |M |. It consists
of the abelian groups CMi =

⊕
s∈Ji

M
Zs for each i ≥ 0, freely generated by

i-dimensional faces s which are canonical representatives. The canonical pushout
square (2.5) for M of level n gives rise to an exact sequence of chain complexes

0→ C∂∆M
•

(ι∆M∗,−α
′
M∗)−−−−−−−−−→ C

∆n
M
• ⊕ CM

n−1

•
αM∗⊕ιM∗−−−−−−→ CM

n

• → 0. (2.8)

To see this, note that
(∆n

M )P
αM // Mn

P

(∂∆n
M )P

ι∆M

OO

α′M // Mn−1
P ,

ιM

OO

(2.9)

are pushout squares for each P ∈ P, with (ιM )P and (ι∆M
)P both bijections

for dim(P ) < n, and inclusions of the empty set for dim(P ) = n. Furthermore,
(αM )P is a bijection when dim(P ) = n. It easily follows that (2.8) is exact.

2.6 Polyhedral complexes

We will now review two types of combinatorial structures: simplicial com-
plexes[Sta96] and polyhedral complexes[BG02; BG09; Sta87]. See [BR05], [OY09]
and [BKR08] for the related concept of monoidal complexes and its associated
toric face ring. First, we need a simpler version of polyhedral sets, called rigid
polyhedral sets.

Definition 2.6.1. Let P ′ denote the monoidal subcategory of P consisting of
the same objects, but where HomP′(P,Q) ⊆ HomP(P,Q) consists of the arrows
with trivial character 1 : Zn → Gm. A presheaf M ∈ Pre(∗)(P ′) is called a rigid
polyhedral set. One can make the analogous definitions for Fin′ ⊆ Fin.

There is an obvious pair of strict monoidal functors U : P → P ′ and
V : P ′ → P, defined as follows. Both U and V are the identity on objects.
On arrows, U(f, λf ) = f , and V (f) = (f, 1). Taking Yoneda extensions, we
obtain cocontinuous strong monoidal functors U : Pre(P) → Pre(P ′) and V :
Pre(P ′)→ Pre(P). By considering canonical pushout squares (2.5), it follows
from Lemma 2.2.2 that U and V restricts to functors U : Pre(∗)(P)→ Pre(∗)(P ′)
and V : Pre(∗)(P ′) → Pre(∗)(P). By abuse of notation, we let U : Fin → Fin′
and V : Fin′ → Fin denote the respective restrictions of U and V , and similarly
for U : Pre(∗)(Fin) → Pre(∗)(Fin′) and V : Pre(∗)(Fin′) → Pre(∗)(Fin). Note
that since UV = idFin′ , there is a natural equivalence UV ∼= idPre(∗)(P′).
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Definition 2.6.2. A simplicial complex K consists of a set of of vertices V (K),
and a set of faces S(K). S(K) consists of finite subsets of V (K), such that
{v} ∈ S(K) for all v ∈ V (K), and if t ⊆ s ∈ S(K), then t ∈ S(K). The
dimension of a face s = {v0, . . . , vn} is n.

More generally, there is the notion of polyhedral complexes. The following
definition is a version of [BG02, Definition 2.1], which is also equivalent with
[BG09, Definition 1.74].

Definition 2.6.3. A (lattice) polyhedral complex Π consists of a set of vertices
V (Π), and a set S(Π) of subsets of V (Π) such that {v} ∈ S(Π) for all v ∈ V (Π),
and if s, t ∈ S(Π), then s ∩ t ∈ S(Π). It furthermore comes equipped with the
following data:

1) an embedding s → Rns for each s ∈ S(Π), such that the image of s
constitutes the vertex set of an ns-dimensional lattice polytope s∗ ⊆ Rns ;

2) an embedding ιst : s∗ → t∗ for each inclusion s ⊂ t in S(Π), such that ιst
is an isomorphism of s∗ with a face of t∗ as lattice polytopes.

These embeddings are subject to the following compatibility conditions:

3) ιtuιst = ιsu for each s ⊂ t ⊂ u in S(Π);

4) For each t ∈ S(Π), and each face F of t∗, there exists an element s ∈ S(Π)
such that s ⊂ t and ι(s∗) = F .

We may consider a polyhedral complex Π as a rigid polyhedral set as fol-
lows. For each inclusion s ⊆ t, the embedding ιst from 3) corresponds to a
unique affine transformation Zns → Znt . Via condition 4), this gives the op-
eration Π → pre(P ′) defined by s 7→ ∆s∗ the structure of a functor. We let
M(Π) = lim−→s∈Π ∆s∗ . One can similarly defines the rigid unimodular set M(K)
corresponding to a simplicial complex K. If M is a polyhedral set and s is a face
of M , recall that Ms is the image of ζsM : ∆s →M . If a rigid polyhedral set M
comes from a polyhedral complex, then it satisfies the following two conditions:

1) ζsM : ∆s →M is injective for all faces s;

2) For every pair of faces s and t, Ms ∩M t = Mu for some face u;

In fact, these three conditions characterizes the finite rigid polyhedral sets which
are polyhedral complexes, and analogously the finite rigid unimodular polyhedral
sets which are simplicial complexes. Indeed, one recovers the polyhedral complex
Π up to isomorphism fromM(Π) by defining V (Π) = M0, and defining S(Π) to be
the set of subsets Ms

0 ⊆M0 for faces s of M which are canonical representatives.
The embeddings Ms

0 → Rdim(s) are given by the inclusions |s| ⊆ Rdim(s). If M
is unimodular, then condition 1) characterizes what is called simplicial posets
(see [Sta91] or [LP11]).

Lemma 2.6.4. If ψ : ∂∆n → ∂∆n is an automorphism such that U(ψ) = id∂∆n ,
then there exists a unique automorphism ψ̃ : ∆n → ∆n satisfying ψ̃|∂∆n = ψ.
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2. Polyhedral sets

Proof. We may write ∂∆n as a coequalizer∐
0≤i<j<=n−1

∆n−2 ⇒
∐

0≤i≤n−1
∆n−1 → ∂∆n,

where the arrows ∆n−2 ⇒ ∆n−1 for the index (i, j) are di and dj−1. An
automorphism ψ satisfying U(ψ) = id∂∆n corresponds to automorphisms ψi of
∆n−1 satisfying U(ψi) = id∆n−1 for each i, and ψidj−1 = ψjdi for i < j. Each
ψi corresponds to a character λi : Zn−1 → Gm, and the above requirement
translates to λi(edj−1(k)) = λj(edi(k)). Clearly, there is a unique character
λ : Zn → Gm restricting to λi via di : [n − 1] → [n] for each i, and the result
follows.

Proposition 2.6.5. For every finite-dimensional unimodular set N : Finop → Set,
there exists a rigid unimodular set M : Fin′ op → Set such that V(M) ∼= N .

Proof. We will show the following by induction on n ≥ −1:

1) For any n-dimensional N,Z ∈ Pre(∗)(Fin′) and any morphism φ : V(N)→
V(Z), there exists a unique automorphism ψ of V(N) satisfying U(ψ) = idN
and φ = VU(φ)ψ.

2) For any n-dimensional N ∈ Pre(∗)(Fin), there exists M ∈ Pre(∗)(Fin′)
such that V(M) ∼= N .

Each case is trivial for n = −1, so assume that n ≥ 0. Let N ∈ Pre(∗)(Fin) be
n-dimensional. By 2), there exists an (n− 1)-dimensional M ′ ∈ Pre(∗)(Fin′) and
an isomorphism φ′ : Nn−1 → V(M ′). Consider the morphism α′Nφ

′ : ∂∆n−1
N →

V(M ′). By 1), there exists a unique automorphism ψ of ∂∆n−1
N such that

U(ψ) = id∂∆n−1
N

and φ′α′N = VU(φ′)α′Nψ. By Lemma 2.6.4, there is a unique
morphism ψ̃ : ∆n

N → ∆n
N satisfying ψ̃|∂∆n

N
= ψ. Now, consider the pushout

diagram
U(∆n

N ) // M

U(∂∆n
N )

OO

U(φ′α′N ) // M ′.

OO

Since V preserves colimits, this induces a pushout diagram

∆n
N

// V(M ′)

∂∆n
N

OO

VU(φ′)α′N // V(M).

OO
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But the isomorphism of diagrams

∆n
N

ψ̃

��

∂∆n
N

oo

ψ

��

α′N // Nn−1

φ′

��
∆n
N ∂∆n

N
oo VU(φ′)α′N // V(M ′)

induces a unique isomorphism φ : N → V(M). This shows 2). Next, let
φ : V(N)→ V(Z) be any morphism as in 1). Consider the induced morphism
φ′ : V(Nn−1)→ V(Zn−1). By the inductive hypothesis, there is a unique auto-
morphism ψ′ of V(Nn−1) satisfying U(ψ′) = idNn−1 and φ′ = VU(φ′)ψ′. For the
induced morphism φ∆ : ∆n

V(N) → ∆n
V(Z), there clearly exists a unique automor-

phism ψ∆ of ∆n
V(N) satisfying U(ψ∆) = id∆n

V(N)
and φ∆ = VU(φ∆)ψ∆, which nec-

essarily restricts to an automorphism ψ∆′ of ∂∆n
V(N) satisfying U(ψ∆′) = id∂∆n

V(N)

and φ∆′ = VU(φ∆)ψ∆′ . Next we will show that α′V(N)ψ
∆′ = ψ′α′V(N). If so, we

have an isomorphism of diagrams

∆n
V(N)

ψ∆

��

∂∆n
V(N)

oo

ψ∆′

��

// V(Nn−1)

ψ′

��
∆n

V(N) ∂∆n
V(N)

oo // V(Nn−1)

inducing an isomorphism ψ : V(N) → V(N). So, by the inductive hypothesis
1), there is a unique automorphism π of ∂∆n

N satisfying U(π) = id∂∆n
N

and
ψ′α′V(N) = α′V(N)π. Thus we have

α′V(Z)φ
∆′ = φ′α′V(N) = VU(φ′)ψ′α′V(N) = VU(φ′)α′V(N)π = α′V(Z)VU(φ∆′)π.

However, ψ∆′ is the unique morphism satisfying α′V(Z)φ
∆′ = α′V(Z)VU(φ∆′)ψ∆′ ,

which means that π = ψ∆′ . It follows that α′V(N)ψ
∆′ = ψ′α′V(N). Next, we

consider the morphism VU(φ)ψ. By the universal property of pushouts, we have
U(ψ) = idV(N) and φ = VU(φ)ψ. To show uniqueness of ψ, suppose that ψ0 is
any other automorphism of V(N) satisfying U(ψ0) = idV(N) and VU(φ)ψ0 = φ.
By the inductive hypothesis, we have ψ′0 = ψ′ and ψ∆′

0 = ψ∆′ . It follows
immediately from Lemma 2.6.4 that ψ∆

0 = ψ∆.

2.7 The face ring of a polyhedral complex

See [Sta96] and [MS05] for a reference on Stanley-Reisner rings of simplicial
complexes. Note that the Stanley-Reisner of the n-simplex SR(∆n) is equal to
the free polynomial algebra k[x0, . . . , xn] on the vertices of ∆n. In [PRV04] it
is noted that SR(K) ∼= lim←−s∈K k[x0, . . . , x|s|], which in our notation means that
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2. Polyhedral sets

SR(K) ∼= Γ(M(K)). In [LP11] it is showed that the face ring of a simplicial
poset (originally defined in [Sta91]) satisfies the corresponding limit formula.
The polyhedral algebra k[Π] of a polyhedral complex Π was defined in [BG02],
which satisfies the limit formula lim←−s∈S(Π) k[A|s|]. So more generally, we have
k[Π] ∼= Γ(M(Π)) for polyhedral complexes Π.

Definition 2.7.1 ([BG02, p.4]). Let Π be a polyhedral complex. The polyhedral
algebra associated to Π is defined as the k-algebra k[Π] specified by the following
conditions:

1) k[Π] is generated by indeterminates xm for m ∈ L(Π) (here L(Π) denotes
the set of lattice points of Π, as defined in Definition 2.4.3);

2) for any element s ∈ S(Π), the subalgebra of k[Π] generated by L(s∗)
is naturally isomorphic to the k-algebra k[As∗ ] associated to the affine
semigroup As∗ ;

3) if xm1 , . . . , xmn ∈ L(Π), and there is no t ∈ S(Π) such that each xmi
belong to L(t∗), then xm1 . . . xmn = 0.

One can alternatively describe the polyhedral algebra as follows:

k[Π] = k[xm|m ∈ L(Π)]/(Ibin + Imon), (2.10)

where Ibin =
∑
s∈S(Π) ker(φs), where φs : k[χm|m ∈ L(Π)] → k[As∗ ] is the

homomorphism given by xm 7→ χ(m,1), and Imon is the ideal of monomials
xm1 · · ·xmn for which there exists no t ∈ S(Π) such that m1, . . . ,mn ∈ L(t). We
summarize the preceding in the following proposition.

Proposition 2.7.2. Let M ∈ C be a polyhedral complex. Then its face ring Γ(M)
is isomorphic to the polyhedral algebra given by the formula (2.10). Hence if M
is a simplicial complex, then Γ(M) is the Stanley-Reisner ring of M .

Corollary 2.7.3. Let P ∈ P. Then the homomorphism Γ(∆P ) → Γ(∂∆P ) is
surjective.

Proof. Both ∆P and ∂∆P are polyhedral complexes. Note that the induced
map of lattice points L(∂∆P ) → L(∆P ) is injective. Via the formula (2.10),
the homomorphism Γ(∆P ) → Γ(∂∆P ) is surjective onto the generators of
Γ(∂∆P ).

2.8 Properties of the face ring

In contrast with polyhedral and simplicial complexes, the face ring Γ(M) for
general polyhedral sets M does not have a neat representation. This section will
be devoted to examining the algebraic properties of Γ(M) from a more abstract
perspective.
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Properties of the face ring

Definition 2.8.1 (The Milnor square for Γ(M)). Let M be a polyhedral set,
and n ≥ −1 an integer. Consider the canonical pushout square of M of level n
from Definition 2.4.2. By Proposition 2.3.3, Γ is preserves connected colimits, so
applying Γ to (2.5) yields a natural pullback square

Γ(Mn)

Γ(αM )
��

Γ(ιM ) // Γ(Mn−1)

Γ(α
′
M )

��
Γ(∆n

M )
Γ(ι∆M )

// Γ(∂∆n
M ),

(2.11)

called the Milnor square for Γ(M) of level n. To justify this definition, we
must verify that it indeed is a Milnor square (see Theorem B.1.1). Write
∆n
M =

∐
s∈Jn

M
∆s and ∂∆n

M =
∐
s∈Jn

M
∂∆s, and note that each homomorphism

Γ(ι∆s) : Γ(∆s) → Γ(∂∆s) is surjective by Corollary 2.7.3. By the description
in Remark 2.3.5, Γ(∆n

M ) and Γ(∂∆n
M ) are wide pullbacks over k, so the homo-

morphism Γ(ι∆M
) : Γ(∆n

M )→ Γ(∂∆n
M ) is surjective. It follows that (2.11) is a

Milnor square.

That (2.11) is a Milnor square is a central observation, as it permits use of
the machinery of Appendix B. It will be useful for inductive arguments in this
and future chapters, in particular via Definition 3.0.2. The following proposition
will have extensive applications.

Proposition 2.8.2. Let φ : M → N be a morphism of finite-dimensional poly-
hedral sets. If φ is injective (resp. surjective), then Γ(φ) : Γ(N) → Γ(M) is
surjective (resp. injective).

Proof. Let n ≥ −1 be an integer, and let N be of dimension n. We proceed by
induction on n, noting that when n = −1, the result follows trivially. Note that
φ∆
M : ∆n

M → ∆n
N is injective (resp. surjective). Consider the Milnor squares

for Γ(M) and Γ(N) from Definition 2.8.1. Γ(∆n
M ) and Γ(∆n

N ) are the wide
pullbacks of {Γ(∆s)}s∈Jn

M
and {Γ(∆t)}t∈Jn

N
over k respectively, and similarly

for Γ(∂∆n
M ) and Γ(∂∆n

N ). It follows that each individual vertical arrow of the
homomorphism of exact sequences

0 // ker Γ(ι∆N
)

��

// Γ(∆n
N )

��

// Γ(∂∆n
N ) //

��

0

0 // ker Γ(ι∆M
) // Γ(∆n

M ) // Γ(∂∆n
M ) // 0

is surjective (resp. injective). Consider the homomorphism of exact sequences

0 // ker Γ(ι∆N
)

��

// Γ(Nn)

��

// Γ(Nn−1) //

��

0

0 // ker Γ(ι∆M
) // Γ(Mn) // Γ(Mn−1) // 0
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2. Polyhedral sets

coming from (B.3). By the inductive hypothesis we may assume that Γ(Nn−1)→
Γ(Mn−1) is surjective (resp. injective). Since ker Γ(ι∆N

) → ker Γ(ι∆M
) is

surjective (resp. injective) as well, it follows immediately that Γ(Nn)→ Γ(Mn)
is surjective (resp. injective).

Lemma 2.8.3. For any polyhedral set M , Γ(M) is reduced.

Proof. By Remark 2.3.4, Γ(M) is a limit of reduced rings, hence reduced.

Proposition 2.8.4. Let M be a polyhedral set, and M1,M2 polyhedral subsets
of M with corresponding injections i1 : M1 → M , i2 : M2 → M . Consider the
polyhedral subsets M1 ∪M2 and M1 ∩M2 of M , with corresponding injections
φ : M1 ∪M2 → M , ψ : M1 ∩M2 → M . Then ker Γ(i1) ∩ ker Γ(i2) = ker Γ(φ),
and ker Γ(i1) + ker Γ(i2) = ker Γ(ψ).

Proof. By Proposition 2.8.2, the homomorphisms Γ(i1), Γ(i2), Γ(φ) and Γ(ψ)
are surjective, so we may assume that M = M1 ∪M2. Consider the pushout
square

M1
i1 // M

M1 ∩M2

j1

OO

j2 // M2,

i2

OO

(2.12)

where j1 : M1 ∩M2 →M1 and j2 : M1 ∩M2 →M1 are the induced injections.
We must show that ker Γ(i1)∩ ker Γ(i2) = 0, and ker Γ(i1) + ker Γ(i2) = ker Γ(ψ).
Now, since Γ preserves connected colimits, (2.12) gives a pullback square

Γ(M)

Γ(i2)
��

Γ(i1) // Γ(M1)

Γ(j1)
��

Γ(M2)
Γ(j2) // Γ(M1 ∩M2),

(2.13)

hence an exact sequence

0→ Γ(M)→ Γ(M1)× Γ(M2)→ Γ(M1 ∩M2)→ 0, (2.14)

which we may write as

0→ Γ(M)→ (Γ(M)/ ker Γ(i1))× (Γ(M)/ ker Γ(i2))→ Γ(M)/ ker Γ(ψ)→ 0.

The result follows immediately.
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Deforming to a subdivison

2.9 Deforming to a subdivison

We recall the definition of a polyhedral subdivision of a polytope[GKZ08, Chapter
7, Section 2] (we restrict to the case of lattice polytopes):

Definition 2.9.1. A marked (lattice) polytope is a pair (P,A), where P ⊆ Rn is a
full-dimensional polytope, and A is a subset of L(P ) = P ∩Zn containing all the
vertices of P . A polyhedral subdivision of P is a family {(Pi, Ai)}i∈I of marked
n-dimensional lattice polytopes Pi ⊆ P such that Ai ⊆ A, Ai ∩ Qj = Aj ∩ Pi
and such that

⋃
i∈I Pi = P . Such a subdivision is called regular (or coherent)

if it is induced by a function ψ : A → R in the following manner: Define
Gψ = Conv((w, y) | w ∈ A, y ∈ R, y ≥ ψ(w)) ⊆ Rn × R. The lower boundary
of Gψ is the graph of the piecewise linear function gψ : P → R defined by
gψ(x) = min{y | (x, y) ∈ Gψ}. Now let the polytopes Pi ⊆ P be given as the set
of domains of linearity of gψ (i.e. the convex subsets of P where gψ is an affine
linear function), and let Ai = {w ∈ Pi ∩A | gψ(w) = ψ(w)}.

Remark 2.9.2. For any given regular subdivision of P , we may assume that
ψ takes integral values. Indeed, if ψ : A → R is any function, then a suffi-
ciently approximate function A→ Q produces the same subdivision. Clearing
denominators, the induced function A→ Z still produces the same subdivision.

Let S(ψ) = {(Pi, Ai)}i∈I denote the subdivision associated to ψ : A→ Z. We
can think of a subdivision S(ψ) as the polyhedral complex PS(P,ψ) =

⋃
i∈I ∆Pi

it gives rise to. This construction is functorial in the following sense. Let
f : Q → P be a some arrow in P. Consider the marked polytope (Q, f−1

R (A))
and the function ψf : f−1

R (A) → Z. Then the subdivision S(ψf) is given as
{(Q∩f−1

R (Pi), Ai)}i∈J for the subset J ⊆ I of indices such that Q∩f−1
R (Pi) 6= ∅.

Moreover, the arrow f : Q → P restricts to an arrow fi : Q ∩ Pi → Pi (with
λfi = λf ) for each i ∈ J . These arrows induces a morphism PS(ψf)→ PS(ψ).
To formalize this, let P denote the category of pairs (P,ψ : A→ Z), where (P,A)
is a marked polyotope, and where the function AP → Q given by (m, d) 7→
dgψ(md ) takes integral values. An arrow (Q,φ : B → Z) → (P,ψ : A → Z)
is an arrow f : Q → P in P such that B = f−1

R (A) and φ = ψf . Then PS
defines a functor PS : P → C. By taking the Yoneda extension one obtains
the subdivision functor PS : Pre(P)→ Pre(P) which preserves all colimits. By
imposing the condition (∗) on presheaves Pop → Set, one obtains the subdivision
functor PS : Pre(∗)(P) → C. We also have the forgetful functor U : P → P
given by (P,ψ) 7→ P . Let U : Pre(∗)(P)→ C denote the Yoneda extension of U .

One can think of an element of Pre(∗)(P) in the following way. Let M be
a polyhedral set. Then a marked pair structure on M consists of a marked
lattice polytope on the form (As, |s|) and a function ψs : As → Z for each
face s of M , satisfying the condition of Remark 2.9.2, and also the follow-
ing condition: for each arrow f : P → Q in P and each s ∈ MQ, we have
AfM (s) = f−1

R (As) and ψsf = ψfM (s). In other words, a marked pair structure
on M is a presheaf M̂ ∈ Pre(∗)(P) such that U(M̂) ∼= M . Note that the data
consisting of the marked pairs {|s|, ψs : AS → Z} is equivalent to a function

25
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Ψ : A→ Z, where A = lim←−s∈M As. Hence the category Pre(∗)(P) is equivalent
with the category of marked pairs (M,Ψ : A→ Z), where M ∈ C, A ⊆ L(M) =
lim−→∆P→M L(P ) =

∐
s∈Mcan L∗(|s|), and each restriction Ψ|As satisfies the condi-

tions of Remark 2.9.2. A morphism (N,Φ : B → Z)→ (M,Ψ : A→ Z) is simply
a morphism φ : N →M such that L(φ)−1(A) = B and Ψ ◦ L(φ)|B = Φ.

Definition 2.9.3. Let M be a polyhedral set, and let (M,Ψ) be a marked pair
structure on M . Then the polyhedral set PS(M,Ψ) is called a polyhedral
subdivision of M .

The functor U is given by (M,Ψ) 7→M . There is an isomorphism |U(P,ψ)| ∼=
|PS(P,ψ)| of topological spaces given by the inclusions Qi ⊆ P . This is natural
in (P,ψ) ∈ P, so by the universal property of the Yoneda extension, there is an
induced isomorphism |U(M,Ψ)| ∼= |PS(M,Ψ)|, natural in (M,Ψ) ∈ Pre(∗)(P).

2.9.1 Unimodular triangulations

Definition 2.9.4. Let P be a polytope. For each integer n ≥ 1, consider the
scaling functor n : P → P defined by P 7→ nP , where nP denotes the Minkowski
multiple of P . On arrows f : Q → P , we let (nf)R = fR and λnf = λf . Let
n : C → C denote the Yoneda extension. Then for any polyhedral set M , we
have nM = lim−→∆P→M ∆nP . This is called the scaling of M by n.

The scaling functor n : P → P extends to a scaling functor n : P → P as
follows. For a marked pair (P,ψ : A → Z) ∈ P, we define n(P,ψ) = (nP, ψ),
where ψ now denotes the function nA = {nm | m ∈ A} → Z given by m 7→
nψ(mn ) for eachm ∈ A. The Yoneda extension n : Pre(∗)(P)→ Pre(∗)(P) is given
by (M,Ψ) 7→ (nM,Ψ) (where Ψ here is given by the functions ψs : nAs → Z for
each face s of M).

Lemma 2.9.5. For each integer n ≥ 1, there is an isomorphism Γk(nP )
∼=−→

Γ(P )[n] :=
⊕

d=0 Γ(P )dn natural in P ∈ P. Consequently, there is an iso-
morphism Γk(nM)

∼=−→ Γk(M)[n] natural in M ∈ C. Analogously, the natural
homeomorphism P → nP induces a natural homeomorphism |M |

∼=−→ |nM |.

Proof. The first statement follows from the fact that AnP = {(m, d) ∈ AP |
n divides d}. Since the functor (−)[n] preserves limits, the rest is a consequence
of the universal property of Yoneda extensions.

Definition 2.9.6. Let M be a polyhedral set, and assume that L∗(|s|) is non-
empty for every s ∈M can. Choose a lattice point ms ∈ L∗(|s|) for each s, and
let A = {ms ∈ L(M) | s ∈ M can}. Let Ψ : A → Z be a function such that
Ψ(ms) > Ψ(mt) whenever dim(s) > dim(t) (and suitably scaled so that the
condition of Remark 2.9.2 is satisfied). Then (M,Ψ) is called a barycentric
marked pair, and the resulting subdivision PS(M,Ψ) is called a barycentric
subdivision of M .
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If φ : N → M is a morphism, then a marked pair (M,Ψ : A → Z) of
M pulls back to a marked pair (N,Ψ|N : (φcan)−1)(A) → Z of N , where
ΨN (m) := Ψ(φcan(m)).

Proposition 2.9.7. Let M be a finite polyhedral set such that L∗(|s|) is non-
empty for every s ∈M can, and let (M,Ψ) be a barycentric marked pair. Then
the barycentric subdivision PS(M,Ψ) satisfies condition 1) of Section 2.6. If M
already satisfies 1), then PS(M,Ψ) satisfies 2) as well (i.e. UPS(M,Ψ) is a
polyhedral complex).

Proof. We proceed by induction on the dimension n of M . Both statements
are trivial for n = −1, so we may assume that n ≥ 0. Let t be any face
of PS(M,Ψ). We will show that ζtPS(M,Ψ) : ∆t → PS(M,Ψ) is injective.
Since PS preserves colimits, PS(M,Ψ) can be written as the pushout of
PS(Mn−1,Ψ|Mn−1) ← PS(∂∆n

M ,Ψ|∂∆n
M

) → PS(∆n
M ,Ψ∆n

M
). Thus either

ζtPS(M,Ψ) factors through PS(Mn−1,Ψ|Mn−1) or ∆s for an n-dimensional face
of PS(M,Ψ). By the inductive hypothesis, we reduce to the latter case, and we
may furthermore assume that t is a facet. Since (M,Ψ) is a barycentric marked
pair, ∆t∩PS(∂∆n

M ,Ψ|∂∆n
M

) = ∆u for some face u of ∆t (we allow |u| = ∅ here).
But ∆t\∆u → PS(M,Ψ) factors through PS(∆n

M ,Ψ|∆n
M

)\PS(∂∆n
M ,Ψ|∂∆n

M
) ⊆

PS(M,Ψ), and ∆u (or ∅) factors (injectively) through PS(Mn−1,Ψ|Mn−1),
hence we are done.

Next, assume that M satisfies 1). It is clear that PS preserves injections,
so PS(ζuM ) : PS(∆u,Ψ|∆u) → PS(M,Ψ) is injective for each face u. Let s, t
be a pair of faces of PS(M,Ψ). Now, PS(∆u,Ψ|∆u) is a polyhedral complex,
so if both Ms and M t are contained in the image of PS(ζuM ), we have that
Ms ∩M t = Mu′ for some face u′. So assume otherwise. Again, we have that
∆s ∩PS(∂∆n

M ,Ψ|∂∆n
M

) = ∆u1 and ∆s ∩PS(∂∆n
M ,Ψ|∂∆n

M
) = ∆u2 for some pair

of faces u1 and u2 of ∆s and ∆t respectively. SinceMs andM t are not contained
in the image of any PS(ζuM ), the intersection Ms ∩M t must be contained in the
image of PS(∂∆n

M ,Ψ|∂∆n
M

), and is therefore contained in PS(Mn−1,ΨMn−1).
By the inductive hypothesis, Ms ∩M t = Mu for some face u, verifying 2).

Theorem 2.9.8 ([BG09, Theorem 3.17]). Let M be a polyhedral complex. Then
there exists an integer n ≥ 1 and a marked pair (nM,Ψ) such that the subdivision
PS(nM,Ψ) of nM is unimodular (i.e. consists of unimodular simplices).

Theorem 2.9.9. Let M be a finite polyhedral set. Via repeated application of
scaling (M 7→ nM) and subdivisions (M 7→ PS(M,Ψ)), one obtains a simplicial
complex (i.e. a unimodular set which is isomorphic to V(Z) for some simplicial
complex Z).

Proof. Apply Proposition 2.9.7 twice, scaling each time if necessary to ensure
that L∗(|s|) is non-empty for all faces s, to produce a polyhedral set N such
that U(N) is a polyhedral complex. By Theorem 2.9.8, there is a subdivision
(U(N),Ψ) such that PS(U(N),Ψ) = UPS(N,Ψ) is a simplicial complex. In
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2. Polyhedral sets

particular, PS(N,Ψ) is unimodular. So by Proposition 2.6.5, there exists a
simplicial complex Z such that V(Z) ∼= PS(N,Ψ).

2.9.2 A generalized face ring construction

We will now generalize the face ring construction to elements of C. Let R be
a k-algebra DVR where t ∈ R is a uniformizing parameter. Let K denote its
field of fractions. Then we may define a contravariant functor Γ′R : P+ → D
as follows. For each (P,ψ : A → Z) ∈ P+, let Γ′R(P,ψ) be the R-subalgebra
of K[Zn+1] = K[χ(m,d) | (m, d) ∈ Zn+1] generated by tdgψ(md )χ(m,d), where
(m, d) ∈ APi for some i. This is a modified version of [Ale02, Definition 2.8.3].
If f : (Q,φ : B → Z)→ (P,ψ : A→ Z) is an arrow in P, then we define the R-
algebra homomorphism Γ′R(f) : Γ′R(P,ψ)→ Γ′R(Q,φ) by thχAf (m,d) 7→ thχ(m,d),
where Af : AQ → AP denotes the usual homomorphism of affine semigroups (this
homomorphism is induced by tdgψ(md )χAf (m,d) 7→ tdgψf (md )χ(m,d) on generators).
Γ′R extends as a Yoneda extension to a functor Γ̂R : Pre(P+) → D , and as in
Section 2.3 restricts to a functor ΓR : C → D , preserving all connected colimits.
Note that each Γ′R(P,ψ) is torsion-free as an R-module, so the same is true for
the limit ΓR(M,Ψ) = lim←−YP(P,ψ)→(M,Ψ) ΓR(P,ψ). It follows that ΓR(M,Ψ) is a
flat R-module. To avoid confusion, we will write Γk(M) for the face ring of M
over a field k, and similarly Pk(M) for the face scheme of M .

Proposition 2.9.10. There is a natural isomorphism ΓR(P,ψ)⊗RK
∼=−→ ΓK(P ),

where ΓK(P ) denotes the usual face-ring associated to P over the field K. Let
k = R/(t) be the residue field of R. Then there is a natural isomorphism
ΓR(P,ψ)⊗R k

∼=−→ Γk(PS(P,ψ)).

Proof. The first part is clear, as ΓR(P,ψ) ⊗R K is given as the K-subalgebra
of K[Zn+1] generated by χ(m,d) for (m, d) ∈

⋃
iAPi , in particular χ(m,1), for

every m ∈ L(P ). The isomorphism is given by χ(m,d) ⊗ r 7→ rχ(m,d). For the
other part, we follow along the lines of [Ale02, Lemma 2.8.4.]. Note first that
ΓR(P,ψ)⊗R k ∼= ΓR(P,ψ)/tΓR(P,ψ) by flatness of ΓR(P,ψ). Consider now a
product of generators in ΓR(P,ψ)/tΓR(P,ψ):

∏
j

t
djgψ

(
mj
dj

)
χ(mj ,dj) = t

∑
j
djgψ

(
mj
dj

)
χ

(∑
j
mj ,
∑

j
dj
)
.

Here ∑
j

djgψ

(
mj

dj

)
≥
∑
j

djgψ

(∑
jmj∑
j dj

)
,

with equality if and only if every (mj , dj) is contained in the same APi (i.e.
mj
dj
∈ Pi). This follows from the fact that gψ is convex and that the Pi’s are its

domains of linearity. Thus any element of ΓR(P,ψ)⊗R k can be written as a sum
of elements on the form tdgψ(md )χ(m,d) ⊗ r for r ∈ k and (m, d) ∈ APi for some
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Deforming to a subdivison

i. Thus we may define a homomorphism ΓR(P,ψ)/tΓR(P,ψ)→ Γk(PS(P,ψ))
by tdgψ(md )χ(m,d) ⊗ r 7→ rχ(m,d) (see Definition 2.7.1 for the presentation of the
face ring of a polyhedral complex). This is evidently a natural isomorphism.

Theorem 2.9.11. There are natural isomorphisms ΓR(M,Ψ)⊗R K
∼=−→ ΓK(M)

and ΓR(M,Ψ)⊗R k
∼=−→ Γk(PS(M,Ψ)) for finite polyhedral sets M .

Proof. The natural homomorphisms in question are well-defined by Proposi-
tion 2.9.10. It remains to show that they are isomorphisms. We proceed by
induction on the dimension n of M . The initial case of n = −1 is trivial. It is
easy to verify that the colimit diagram (2.4) for M induces a colimit diagram

{(∆s,Ψ|∆s)}
ζsM // (M,Ψ)

{(∂∆s,Ψ|∂∆s)}

ι∆s

OO

ζs′M // (Mn−1,Ψ|Mn−1).

ιM

OO
(2.15)

Applying ΓR : C → D to (2.15) yields an exact sequence

0→ ΓR(M,Ψ)→
∏
s∈Jn

M

ΓR(∆s,Ψ|∆s)×ΓR(Mn−1,Ψ|Mn−1)→
∏
s∈Jn

M

ΓR(∂∆s,Ψ|∂∆s).

(2.16)
Now, consider the homomorphism ΓR(ι∆s) : ΓR(∆s,Ψ|∆s)→ ΓR(∂∆s,Ψ|∂∆s).
By Nakayama’s lemma, ΓR(ι∆s) is surjective if and only if ΓR(ι∆s) ⊗R k is.
By Proposition 2.9.10 and the inductive hypothesis, this is equivalent with
the statement that Γk(PS(ι∆s)) : Γk(PS(∆s,Ψ|∆s))→ Γk(PS(∂∆s,Ψ|∂∆s)) is
surjective. But this follows from Proposition 2.8.2. We conclude that (2.16) is
right exact. Now, tensor (2.16) with K and compare with the exact sequence

0→ ΓK(M)→
∏
s∈Jn

M

ΓK(∆s)× ΓK(Mn−1)→
∏
s∈Jn

M

ΓK(∂∆s)→ 0. (2.17)

By the inductive hypothesis and Proposition 2.9.10, it follows that ΓR(M,Ψ)⊗R
K → ΓK(M) is an isomorphism. Next, applying the functor PS to (2.15) yields
a new colimit diagram. It follows that the sequence

0→ Γk(PS(M,Ψ))→
∏
s∈Jn

M

Γk(PS(∆s,Ψ|∆s))× Γk(PS(Mn−1,Ψ|Mn−1))

→
∏
s∈Jn

M

Γk(PS(∂∆s,Ψ|∂∆s))

(2.18)
is exact. Since the functor TorR1 (ΓR(∂∆s,Ψ|∂∆s),−) is trivial, tensoring (2.16)
with k yields another exact sequence. Comparing this with (2.18) shows that
ΓR(M,Ψ)⊗R k → Γk(PS(M,Ψ)) is an isomorphism.

Lemma 2.9.12. Let M be a finite polyhedral set of dimension n. Then,
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2. Polyhedral sets

1) if M is irreducible, then Γ(M) is an integral domain;

2) there exists an integer n > 0 such that Γ(M)[n] is a finitely generated
k-algebra of dimension n + 1;

3) if φ : M → N is a surjective morphism of polyhedral sets, then the
homomorphism Γ(φ)[n] : Γ(N)[n] → Γ(M)[n] is finite for some n > 0.

Proof. 1) Let s ∈ M can be a facet of M , and let P = |s|. Since ∆s → M is
surjective, Γ(ζsM ) : Γ(M)→ Γ(∆P ) is an injective by Proposition 2.8.2, where
Γ(∆P ) = k[AP ] is an integral domain. 2) Assume first that M is a simplicial
complex. Then Γ(M) is the Stanley-Reisner ring of M , and the result is well-
known. By Lemma 2.9.5, the property in question is invariant under scaling
M 7→ nM . By Theorem 2.9.11, Nakayama’s lemma implies that it is invariant
under subdivisions M 7→ PS(M,Ψ) as well. Finally, by Theorem 2.9.9, one may
iteratively scale and subdivide to end up with a simplicial complex of the same
dimension. Hence we are done.

3) As in the proof of 2), this property is invariant under scaling and subdivision
ofN . Indeed, if (N,Ψ) is a marked pair structure onN , one obtains a marked pair
structure (M,Ψ|M ) onM , and a morphism φ : (M,Ψ|M )→ (N,Ψ). If PS(N,Ψ)
is a simplicial complex, then PS(M,Ψ|M ) is one as well, hence we have reduced
to the case where both M and N are simplicial complexes. In this case, Γ(φ) is
given by xw 7→

∑
φ(v)=w xv. We will show that Γ(M) is generated over Γ(N) by

its square-free monomials, of which there are finitely many. Choose some total
order on the vertices of M , and assume for contradiction that m = xa0

v0
· · ·xanvn is

some monomial of Γ(M) which cannot be generated by square-free monomials
over Γ(N). Here v0 < · · · < vn, n is assumed to be maximal, and (a0, . . . , an) is
assumed to be minimal in lexicographical order. Let i be an integer such that
ai > 1, and define w = φ(vi). Note that if v ∈M0 satisfies φ(v) = w, then either
v = vi or v 6∈ {v0, . . . , vn}. This is because φ|∆s : ∆s → N is injective for every
face s of M . It follows that

Γ(φ)(xw) · xa0
v0
· · ·xai−1

vi · · ·xanvn = m + monomials with > n+ 1 variables.

The left hand side is generated by monomials since (a0, . . . , ai − 1 . . . , an) <
(a0, . . . , an). Since n was chosen maximal, we may rearrange the equation
and write m as a linear combination of square-free monomials, which is a
contradiction.
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Chapter 3

The face scheme

Let Cf denote the full subcategory of C consisting of finite polyhedral sets.
By Proposition 2.2.5, joins of finite polyhedral sets are finite, so Cf inherits a
monoidal structure from C. If φ : M → N is a morphism of finite polyhedral
sets, then Γ(φ)[n] : Γ(M)[n] → Γ(N)[n] is finite for some n > 0 by Lemma 2.9.12
3), inducing a well-defined morphism of schemes Proj Γ(M)→ Proj Γ(N). This
permits the following definition.

Definition 3.0.1. For a finite polyhedral set M , define P(M) = Proj Γ(M). We
will call this the face scheme of M . This defines a functor P : Cf → Schk from
the category of finite polyhedral sets to the category of schemes over Spec k.
Note that P(∆P ) is the ordinary toric variety associated with the polytope P
(denoted XP in [CLS11]). If φ : M → N is a morphism in Cf , we will let φ denote
the morphism P(φ) : P(M)→ P(N) whenever it is unambiguous. We will also
denote the structure sheaf OP(M) by OM , and cohomology groups Hi(P(M),F)
by Hi(M,F) for sheaves F on P(M).

The main goals of this chapter is first to establish some basic properties of
the face scheme of polyhedral sets, and then prove the classification theorem
of Section 3.3. Next, in Section 3.4 we will prove that there is a natural
isomorphism of k-vector spaces Hi(M ; k)

∼=−→ Hi(M,OM ) for each integer i ≥ 0
(Theorem 3.4.1). Here Hi(M ; k) denotes the cellular cohomology groups of M
with coefficients in k, which are naturally isomorphic to the singular cohomology
groups Hi(|M |; k). In Section 3.5 we will prove that the Picard group Pic(P(M))
is naturally isomorphic to DegM ×H1(M ; k×) (Theorem 3.5.2). Here DegM is
a finitely generated free abelian group specifying the degree of the line bundle
(Definition 3.5.1). Finally, we will consider the cohomology of the twisting
sheaves OM (d) in order to compute the Hilbert polynomial of Γ(M).

Now, let A be a finitely generated and positively graded ring, and let X =
Proj(A). Then for each integer n, the sheaf OX(n) is defined as Ã(n). The
graded k-algebras we will consider will be finitely generated, but not in general
standard graded. This complicates things; for example, OX(1) may potentially
fail to be ample, or even locally free. See [Dol82, Section 1.5] for examples of
these pathologies and more. However, X is always projective over k, and there
exists an integer n > 0 such that OX(n) is very ample. In Section 3.2 we will
see that none of the pathologies from [Dol82] are present for P(M). For now,
we will focus on the categorical properties of P. From here on, all polyhedral
sets will be assumed to be finite.

Definition 3.0.2 (The Milnor square for P(M)). Let M be a polyhedral set,
and n ≥ −1 an integer. Consider the Milnor square for Γ(M) of level n from
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3. The face scheme

Definition 2.8.1. Applying P to this pullback square yields the diagram

P(∆n
M ) αM // P(Mn)

P(∂∆n
M )

ι∆M

OO

α′M // P(Mn−1),

ιM

OO

(3.1)

which by Proposition B.2.1 b) is a pushout square of schemes. We call this the
Milnor square for P(M) of level n.

Proposition 3.0.3. The functor P : Cf → Schk preserves all finite colimits. In
other words, P : Cf → Schk is the pointwise Yoneda extension of the functor
P → Schk given by P 7→ P(∆P ). As a consequence, if G is a finite group
acting on a polyhedral set M , then P(M)→ P(M/G) is a group quotient for the
induced action on P(M) in the category of schemes.

Proof. We first observe that any finite colimit in Cf (resp. colimit in C) can be
computed pointwise. Indeed, this follows immediately from the fact that there
does not exist any morphism φ : M → N in Pre(P), where N is in Cf (resp. C)
and M is not. Thus we may always assume that a colimit in Cf (resp. C) is a
colimit in Pre(P) of the same diagram. Let n ≥ −1, and consider the canonical
pushout square for M ∈ Cf of level n from Definition 2.4.2. Since the diagram
is natural, it forms a pointwise pushout square of functors Cf → Cf :

∆n
−

// (−)n

∂∆n
−

OO

// (−)n−1.

OO

(3.2)

The functors (−)n,∆n
−, (−)n, ∂∆n

− : C → C are respectively given by M 7→Mn,
M 7→ ∆n

M , M 7→ Mn−1 and M 7→ ∂∆n
M . We will show that each of these

four functors are cocontinuous. The functors (−)n and (−)n−1 are clearly
cocontinuous, and ∂∆n

− is the composition of (−)n−1 with ∆n
−, so we only need

to verify that ∆n
− is cocontinuous. Restricting these functors to Cf and composing

with P yields the four functors P ◦ (−)n,P ◦∆n
−,P ◦ (−),P ◦ ∂∆− : Cf → Schk.

By induction on n we will show that P ◦ (−)n preserves all finite colimits. By
the inductive hypothesis and the fact that ∂∆− is cocontinuous, we may assume
that P ◦ (−)n−1 and P ◦ ∂∆n

− preserves all finite colimits. We will show by an
explicit computation that P◦∆n

− preserves all finite colimits. The Milnor square
for P(M) of level n from Definition 3.0.2 is (pointwise in M ∈ Cf ) the pushout
square (3.2) composed with P:

P ◦∆n
−

// P ◦ (−)n

P ◦ ∂∆n
−

OO

// P ◦ (−)n−1.

OO

(3.3)
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The category of vector bundles

We are now in a purely categorical situation. If G,G1, G2, G3 : C → A are
functors in a pointwise pushout square of functors

G1 // G

G3

OO

// G2

OO

(3.4)

where each Gj preserves all finite colimits, then I claim that G preserves all
finite colimits (even if we don’t know that lim−→G ◦ F exists for finite diagrams
F : I → A). Note that since it is a pointwise pushout, it is a pushout in the
functor category [C,A]. The dual statement in a more general setting is noted
in [FK72, p.1]. It is a routine verification. In conclusion, P ◦ (−1)n preserves
all finite colimits. Now, let F : I → Cf be a finite diagram with lim−→F = M .
Let n be the maximal dimension of F (i) for each i ∈ I. Then dimM = n, and
P ◦ (−)n ◦F = P ◦F . Since P ◦ (−)n preserves all colimits, it follows that P(M)
is the colimit of the diagram P ◦ F : I → Schk. Hence P preserves all finite
colimits. It remains to show the following: 1) ∆n

− : Cf → Cf is cocontinuous; 2)
P ◦∆n

− : Cf → Schk preserves all finite colimits.
For 1) we may equivalently show that that ∆n

− preserves finite coproducts
and coequalizers. First, let {Mi}i∈I be a finite family of polyhedral sets, and
let M =

∐
i∈IMi. Then it is clear that the induced function JM →

∐
i∈I J

n
Mi

is a bijection. It follows that ∆M →
∐
i∈I ∆n

Mi
is an isomorphism. Second, let

φ1, φ2 : M → N be a pair of morphisms of polyhedral sets, and letM ⇒ N
ψ−→ Z

be corresponding coequalizer diagram. Then Jn
M ⇒ Jn

N → Jn
Z is a coequalizer

diagram of sets, and it follows easily that ∆n
M ⇒ ∆n

N → ∆n
Z is a coequalizer

diagram.
We follows the same strategy for 2). In the same notation as above,

Γ(
∐
i∈IMi) is given as the wide pullback of {Γ(Mi)}i∈I over k via the de-

scription in Remark 2.3.5. Since the unique graded k-algebra homomorphism
Γ(
∐
i∈IMi)→

∏
i∈I Γ(Mi) is an isomorphism in all degrees d > 0, it follows that∐

i∈I Proj Γ(Mi)
∼=−→ Proj(Γ(

∐
i∈IMi)). Since ∆n

− preserves finite coproducts
from 1), it follows now that P ◦ ∆n

− does as well. Next, let φ1, φ2 : M → N
be a pair of morphisms of polyhedral sets, which from 1) induces a coequalizer
diagram ∆n

M ⇒ ∆n
N → ∆n

Z . We may write the induced diagram P(∆n
M ) ⇒

P(∆n
N )→ P(∆n

Z) as
∐
u∈Jn

M
P(∆u)⇒

∐
t∈Jn

N
P(∆t)→

∐
s∈Jn

Z
P(∆s). This is

easily seen to be a coequalizer diagram of schemes.

3.1 The category of vector bundles

We will use Appendix B.3 as a general reference for this section. Let M be a
polyhedral set, and fix an integer n ≥ −1. Consider the Milnor square (3.1) for
P(M) of level n, arising from the Milnor square (2.11) of Γ(M) of level n. By
Proposition B.3.3, there is a an equivalence of categories

βM : VB(Mn)→ VB(∆n
M )×VB(∂∆n

M
) VB(Mn−1) (3.5)
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3. The face scheme

given by E 7→ (α∗ME , ι∗ME), where this pair is equipped with the canonical
isomorphism h : (α′M )∗ι∗ME → ι∗∂∆M

α∗ME . We also have the inverse

θM : VB(∆n
M )×VB(∂∆n

M
) VB(Mn−1)→ VB(Mn), (3.6)

where θM maps a pair (E1, E2) equipped with an isomorphism h : (α′M )∗E2 →
ι∗∂∆M

E1 to the vector bundle E determined by the pullback square

E

��

// (ιM )∗E2

��
(αM )∗E1 // (αM ι∂∆M

)∗ι∗∂∆M
E1.

Let φ : N → M be a morphism of polyhedral sets. Then the morphism
φ : P(M)→ P(N) induces a pullback functor φ∗ : VB(M)→ VB(N), defining
the functor VB(−) : Cf → Cat. Since Cat is a 2-category, this is really a 2-functor.
Recall the morphisms φ : Mn → Nn, φ∆ : ∆n

N → ∆n
M , φ′ : Nn−1 → Mn−1

and φ∂∆ : ∂∆n
N → ∂∆n

M from Definition 2.4.2. These induces pullback functors
φ∗ : VB(Mn) → VB(Nn), φ′∗ : VB(Mn−1) → VB(Nn−1), φ∆∗ : VB(∆n

M ) →
VB(∆n

N ) and φ∆′∗ : VB(∂∆n
M )→ VB(∂∆n

N ), and defines a functor

(φ∆∗, φ
′∗) : VB(∆n

M )×VB(∂∆n
M

) VB(Mn−1)→ VB(∆n
N )×VB(∂∆N ) VB(Nn−1)

(3.7)
given by the following. On objects, a pair (E1, E2) equipped with an isomorphism
hM : α′∗ME2 → ι∗∆M

E1 is mapped to the pair (φ∆∗E1, φ′∗E2) equipped with the
isomorphism

hN : α′∗Nφ′∗E2 → ι∗∆N
φ∆∗E1. (3.8)

induced by φ∆′∗hM : φ∆′∗α′∗ME2 → φ∆′∗ι∗∆M
E1. A morphism of pairs (g1, g2) :

(E1, E2)→ (F1,F2) is mapped to the morphism (φ∆∗g1, φ
′∗g2) : (φ∆∗E1, φ′∗E2)→

(φ∆∗F1, φ
′∗F2). It is easily seen that the pair of morphisms (φ∆∗g1, φ

′∗g2)
satisfies the condition (B.13), and is therefore well-defined. This defines the
functor

VB(∆n
−)×VB(∂∆n

−) VB((−)n−1) : Cf → Cat .

Proposition 3.1.1. The equivalences of categories βM and θM define natural
equivalences of functors

β : VB((−)n)
∼=←→ VB(∆n

−)×VB(∂∆n
−) VB((−)n−1) : θ,

Proof. To show that βM defines a natural equivalence β, we need to verify that
for any morphism of polyhedral sets φ : M → N , there are natural equivalences
of functors

βN ◦ φ∗ ∼= (φ∆∗, φ
′∗) ◦ βM and φ∗ ◦ θM ∼= θN ◦ (φ∆∗, φ′∗). (3.9)
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Properties of the face scheme

Let E be a vector bundle on P(Mn), and consider the canonical isomorphisms
α∗Nφ

∗E ∼= φ∆∗α∗ME and ι∗Nφ∗E ∼= φ′∗ι∗ME . Then it is easily seen that the induced
natural isomorphism

βM (φ∗E) = (α∗Nφ∗E , ι∗Nφ∗E)
∼=−→ (φ∆∗α∗ME , φ′∗ι∗ME) = (φ∆∗, φ′∗)(βM (E))

(3.10)
satisfies the condition (B.13), and is therefore a morphism of pairs. This shows
that βM defines a natural equivalence β, and it follows formally that θM defines
a natural equivalence θ as well.

3.2 Properties of the face scheme

The results of Section 2.8 and Section 2.9 regarding face rings immediately
translates to facts about face schemes, which we summarize now.

Proposition 3.2.1. Let M and N be polyhedral sets. Then,

a) P(M) is a reduced projective scheme over k of dimension dim(M);

b) if φ : M → N is an injective morphism, then φ : P(M) → P(N) is a
closed immersion;

c) if M1,M2 are polyhedral subsets of M , then P(M1)∪P(M2) = P(M1∪M2)
and P(M1) ∩P(M2) = P(M1 ∩M2) as closed subschemes of P(M);

d) if M is irreducible, then P(M) is an irreducible scheme;

e) if {Mi}ni=1 are the irreducible components of M , then {P(Mi)}ni=1 are the
irreducible components of P(M);

f) if φ : M → N is any morphism, then φ : P(M) → P(N) is a finite
morphism;

g) if φ : M → N is a surjective morphism, then φ : P(M) → P(N) is
surjective, and φ] : ON → φ∗OM is injective;

Proof. a) Being reduced is stable under localization, so P(M) is reduced by
Lemma 2.8.3. There is an integer n > 0 such that Γ[n](M) is a finitely generated
(n + 1)-dimensional k-algebra by Lemma 2.9.12 2). Since P(M) ∼= Proj Γ[n](M),
it is projective over k of dimension n. b) follows from Proposition 2.8.2. c)
follows from Proposition 2.8.4. d) follows from Lemma 2.9.12 1). e) follows
from c) and d). f) Γ[n](φ) is finite for some n > 0 by Lemma 2.9.12 3), so φ]
is finite as well. Since P(φ) is induced by a morphism of graded rings, it is
affine — and therefore finite. g) Γ(φ) is injective by Proposition 2.8.2, and
localization preserves injections, hence φ] is injective. Since φ is finite, it must
be surjective.

Proposition 3.2.2. Let M be a polyhedral set, and n,m integers.
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a) The canonical morphism

OM (n)⊗OM (m)→ OM (n+m) (3.11)

is an isomorphism. Hence OM (d) is an invertible sheaf for every integer d.

b) The line bundle OM (1) is ample.

c) Let φ : N →M be a morphism of polyhedral sets, and let d be an integer.
Then the canonical morphism

φ∗(OM (d))→ ON (d) (3.12)

is an isomorphism.

Proof. We will prove a), b) and c) simultaneously by induction. Let n ≥
−1 be an integer, and suppose that the assertions holds for all maximally
(n − 1)-dimensional polyhedral sets. Assume that M is n-dimensional, and
consider the Milnor square (2.11) for Γ(M) of level n. Choosing P = Γ(M)(d),
Proposition B.2.1 a) yields a pullback square

OM (d)

��

// (ιM )∗(OMn−1(d))

��
(αM )∗(O∆n

M
(d)) // (αM ι∂∆n

M
)∗(O∂∆n

M
(d)).

(3.13)

Since Γ(∆n
M ) and Γ(∂∆n

M ) are standard graded, the canonical morphism ι∗∆M
:

O∆n
M

(d)→ O∂∆n
M

(d) is an isomorphism. By the inductive hypothesis, the canoni-
cal morphism (α′M )∗OMn−1(d)→ O∂∆n

M
(d) is an isomorphism. Hence by Proposi-

tion B.3.1, OM (d) is a vector bundle. Now, consider the pair (O∆n
M

(d),OMn−1(d))
equipped with the canonical isomorphism (α′M )∗OMn−1(d)→ ι∗∆M

O∆n
M

(d). Since
(3.13) is a pullback square and OM (d) is a vector bundle, it follows by defini-
tion that θM (O∆n

M
(d),OMn−1(d)) ∼= OM (d). Again, since Γ(∆M ) is standard

graded, the canonical morphism O∆n
M

(n) ⊗ O∆n
M

(m) → O∆n
M

(n + m) is an
isomorphism. By the inductive hypothesis, we may assume that the canonical
morphism OMn−1(n) ⊗ OMn−1(m) → OMn−1(n + m) is an isomorphism. By
Proposition B.3.4 b), it follows that the canonical morphism OM (n)⊗OM (m)→
OM (n + m) is an isomorphism, showing a). Now, there exists an integer n
such that OM (n) is very ample. Since OM (1)⊗n ∼= OM (n), it follows that
OM (1) is ample, showing b). Let now φ : N → M be a morphism. Since
Γ(∆n

M )→ Γ(∆n
N ) is a homomorphism of standard graded rings, the canonical

morphism φ∆∗(O∆n
M

(d))→ O∆n
N

(d) is an isomorphism. By the inductive hypoth-
esis, the canonical morphism φ′∗(OMn−1(d))→ ONn−1(d) is an isomorphism. The
isomorphism φ∗θM (O∆n

M
(d),OMn−1(d)) ∼= θN (φ∆∗(O∆n

M
(d)), φ′∗(OMn−1(d))) is

provided by naturality of θM from Proposition 3.1.1. This shows that the canon-
ical morphism φ∗(OM (d)) → ON (d) is an isomorphism. This shows c). By
induction, we are done.
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An equivalence between groupoids of pairs

Definition 3.2.3. Let M be a polyhedral set, and n ≥ −1 an integer. Then we
define Tn

M = P(Mn)\P(Mn−1). With Definition 2.8.1 in mind, Proposition B.2.1
implies that αM : ∆n

M →Mn induces an isomorphism α−1
M (Tn

M )
∼=−→ Tn

M . But the
ideal sheaf of P(∆n

M )\α−1
M (Tn

M ) in P(∆n
M ) is equal to the ideal sheaf of P(∂∆n

M )
by Lemma B.3.2 a). Thus αM restricts to an isomorphism αM : Tn

∆n
M
→ Tn

M ,
which furthermore is natural in M .

Lemma 3.2.4. Let φ : M → N be a morphism of polyhedral sets. Then,

a) the scheme-theoretic image φ(P(M)) in P(N) is equal to P(φ(M));

b) if Z ⊆ N is a polyhedral subset, then the preimage φ−1(P(Z)) is equal to
P(φ−1(Z)) as closed subsets of P(M).

Proof. a) The morphism φ : P(M) → P(N) factors as a surjective morphism
P(M)→ P(φ(M)) followed by a closed immersion P(φ(M))→ P(N). Since the
scheme-theoretic image of a reduced scheme is reduced, it follows that φ(P(M))
and P(φ(M)) are equal as closed subschemes of P(N). b) We will show that
P(φ−1(Z)) = φ−1(P(Z)) set-theoretically. We proceed by induction on the
dimension of N , noting that equality is immediate for the base case of N = ∅.
Let N be n-dimensional, and consider the restricted morphism φ : Tn

M → Tn
N .

But note that P(Z) ∩ Tn
N = Tn

Z , and that P(Nn−1) ∩ P(Z) = P(Zn−1) by
Proposition 3.2.1 c). Hence φ−1(P(Z)) = φ−1(Tn

Z ) ∪ φ−1(P(Zn−1)). By the
inductive hypothesis, φ−1(P(Zn−1)) = P(φ−1(Zn−1)) as a subset of P(Mn−1),
hence of P(M) as well. Via the isomorphisms αM : Tn

∆n
M
→ Tn

M and αZ :
Tn

∆n
Z
→ Tn

Z , φ−1(Tn
Z ) is easily seen to be equal to Tn

φ−1(Z). We conclude that
P(φ−1(Z)) = φ−1(P(Z)) as closed subsets of P(M).

3.3 An equivalence between groupoids of pairs

Lemma 3.3.1. Let M be a polyhedral set, and let S be the set of canonical
representatives of facets of M . Define M =

∐
s∈S ∆s. Then the induced mor-

phism ν : P(M) → P(M) is the normalization of P(M). In particular, if M
is pure of dimension n, meaning that the facets are all n-dimensional, then
αM : P(∆n

M )→ P(M) is the normalization of P(M).

Proof. We will first show that ifM is an irreducible polyhedral set with canonical
facet s, then ζsM : P(∆s) → P(M) is the normalization of M . Since P(∆s) is
normal, ζsM is finite and both P(∆s) and P(M) contain a copy of T dim(s)

M (see
Definition 3.2.3) as an open subset, the claim immediately follows. For a general
polyhedral set M , the irreducible components of P(M) are on the form P(Ms)
for canonical facets s of M , and the result follows.

If A is a reduced Noetherian ring such that its normalization A→ A is finite
(i.e. A is a Noetherian Mori ring), then the seminormalization of A in A is the
largest subring A′ ⊆ A containing A such that the following conditions hold.
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3. The face scheme

1) for all p ∈ SpecA, there exists at most one q ∈ SpecA′ over p (i.e. such
that q ∩A = p),

2) the canonical homomorphism k(p)→ k(q) is an isomorphism.

A is a seminormal ring it it is equal to its seminormalization. A Noetherian
normal ring is automatically seminormal. See [Tra70], [Swa80] and [GT80] for
further details. For our purposes, the following fact will be useful:

Lemma 3.3.2 ([Tra70, Lemma 1.3]). Let A be a seminormal ring, and let A be
its normalization. Then the conductor ideal AnnA(A/A) of A in A is radical.

A locally Noetherian scheme is called called seminormal if any affine open
subscheme is the spectrum of a seminormal ring.

Lemma 3.3.3. Let M be a polyhedral set. Then P(M) a seminormal scheme.

Proof. By [Swa80, Corollary 3.3], an arbitrary limit of seminormal rings is
seminormal. Now, Γ(M) can be written as a limit of rings on the form Γ(∆P )
as in the proof of Lemma 2.8.3. Since each P(∆P ) is a normal scheme, its
local affine pieces Γ(∆P )(f) are normal as well. Thus the local affine pieces of
P(M) can be written as a limit of normal rings, and is therefore a seminormal
scheme.

Definition 3.3.4. Fix an n-dimensional torus T ∼= Gn
m over a field k. Let Pairs(T )

be the category of pairs (X,L), where

1) X is a projective, seminormal scheme over a field k of dimension n;

2) L is an ample invertible sheaf on X;

3) T acts on the normalization X with finitely many orbits (then X is
necessarily a disjoint union

∐
j Zj of toric varieties, where the torus acting

on Zj is the quotient of T with the stabilizer of its generic point);

4) If O ⊆ X is an orbit, then ν|O : O → X is injective, where ν : X → X
denotes the normalization morphism;

5) If C ⊆ X is an orbit closure, then C → ν(C) is the normalization of ν(C).
We moreover assume that the automorphisms between components over
ν(C) are torus-equivariant.

A morphism (X,L)→ (X ′, L′) of pairs is a pair (f, g) where f : X → X ′ is
a finite surjection such that f : X → X ′ is T -equivariant and an isomorphism
restricted componentwise, and g is an isomorphism f∗L′ → L.

Let C(X) = X ×X Xnn denote the conductor locus. Then X fits into a
pushout diagram

X
ν // X

C(X)

OO

// Xnn

OO

(3.14)
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An equivalence between groupoids of pairs

This can be seen locally: Let A be a seminormal ring. Then ideal of the conductor
locus is the largest common ideal I of A and A. Hence

0→ A→ A×A/I → A/I

is exact, meaning that 3.14 is a pushout diagram forX = Spec(A). The projective
case easily follows from Proposition B.2.1.

Lemma 3.3.5. If X is a scheme satisfying the above conditions, then C(X) is
torus-invariant.

Proof. It follows from Item 5) that ν−1ν(C) is torus-invariant whenever C is
an orbit closure. Indeed, any component C ′ of it must satisfy ν(C ′) = ν(C).
The uniquely induced isomorphism C

∼=−→ C ′ is per assumption torus-equivariant,
which implies torus-invariance of C ′.

Let S be the set of orbit closures in X, and let Z be the union of those C ∈ S
for which there exists a different C ′ ∈ S such that ν(C ′) = ν(C). We will show
that C(X) = Z. To see that Z ⊆ C(X), suppose that x ∈ X\C(X). Then there
is an open subset U ⊆ X containing ν(x) such that ν|ν−1(U) : ν−1(U) → U is
an isomorphism. Assume that x ∈ Z. Then there exists a pair of distinct orbit
closures C,C ′ ∈ S such that x ∈ C and ν(C) = ν(C ′). But then U ∩ ν(C) =
U ∩ ν(C ′) is a dense open subset of ν(C) = ν(C ′). Thus we may choose points
y ∈ O ⊆ C and y′ ∈ O′ ⊆ C ′ in their respective open dense orbits such that
ν(y) = ν(y′) ∈ U . But since C and C ′ are different, O and O′ must be disjoint.
This violates Item 4).

Conversely, suppose that x ∈ C(X). We will use the following fact, which
will be proved later: if A is a seminormal k-algebra of finite type such that
Spec(A) → Spec(A) is bijective and induces an isomorphism of residue fields
of closed points, then A is normal. Note that the residue fields of the closed
points of X are isomorphic to k. Hence X → Xinduces an isomorphism of
residue fields of closed points. Let x be such that ν(x) ∈ C(X). By the fact
above, there exists y 6= x such that ν(y) = ν(x). Let Cx denote the closure
of the orbit of x, and similarly for y. Now, y ∈ ν−1ν(Cx), which implies that
Cy ⊆ ν−1ν(Cx) by torus-invariance. Hence ν(Cx) = ν(Cy). If Cx = Cy, then
x = y by Item 4), which is a contradiction. Hence Cx 6= Cy, which implies that
x ∈ Z. To prove the fact we mentioned, let m be a maximal ideal of A, and
consider the homomorphism Am → Am. In [Tra70], seminormality of A means
that A = A+m′Am, where m′ is the unique maximal ideal of A lying over m.
Hence m = m′, which by Nakayama’s lemma implies that Am ∼= Am. This works
for all maximal ideals, so A = A.

Proposition 3.3.6. There is a natural bijective correspondence between isomor-
phisms (f, λf ) : P → Q in P and pairs (ψ, ι), where ψ : XP

∼=−→ XQ is a torus-
equivariant isomorphism of projective toric varieties, and ι : ψ∗OXQ(DQ)

∼=−→
OXP (DP ) is an isomorphism of line bundles.
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3. The face scheme

Proof. First, let ψ : XP → XQ be a toric isomorphism such that ψ∗OXQ(DQ) ∼=
OXP (DP ). In the notation of [CLS11, Theorem 3.3.4], ψ corresponds to an
isomorphism of lattices ψ : N1 → N2, where for each cone σR ⊆ ΣP , ψR(σR) =
σR′ for some cone σR′ ⊆ ΣQ. Consider the dual isomorphism ψ

∨ : M2 → M1.
In the notation of [CLS11, Theorem 6.2.7], there exists a unique torus-invariant
cartier divisor D′ on XP such that ψD′ = ψDQψ and OXP (D′) ∼= ψ∗OXQ(DQ).
The cartier data for DP is {v}v∈P (ranging over the vertices v ∈ P ), which will
allow us to compute the cartier data for D′. Let v ∈ P be a vertex, and let σv′ be
the image of σv under ψR. Then we know that for all u ∈ σv, ψD′(u) = ψDQ(ψ),
i.e. 〈mσv , u〉 = 〈v′, ψ(u)〉 = 〈ψ∨(v′), u〉. It follows that mσv = ψ

∨(v′). Next,
sinceD′ ∼ DP , we know thatD′−DP = div(χm). Hence 〈ψ∨(v′)−v, u〉 = 〈m,u〉
for all u ∈ σ(v) (here we’re using that {m}v∈P is cartier data for χm). It follows
that ψ∨(v′) = v + m. Hence ψ∨ : M2 → M1 maps Q isomorphically to the
translated polytope P +m. Thus f = ψ

∨ −m defines a affine transformation
P → Q.

Next, note that a torus-equivariant isomorphism ψ : XP → XQ is exactly the
same as a toric isomorphism ψ′ : XP → XQ composed with multiplication from
the torus λ : XP → XP by some element λ ∈ T , which corresponds to some
homomorphism λ0 : Zn → Gm. Moreover, the isomorphism ι : ψ∗OXQ(DQ)→
OXP (DP ) induces an isomorphism OXQ(DQ) → ψ∗OXP (DP ), which is just
ψ] composed with multiplication t : OXQ(DQ) → OXQ(DQ) by some from
t ∈ Gm. Let f : P → Q be the affine transformation induced by ψ′, and define
λf : Zdim(P )+1 → Gm by λf (m, d) = tdλ0(m). The isomorphism (f, λf ) : P → Q
in P induces an isomorphism Γ(∆Q) → Γ(∆P ), which in turn induces the
isomorphism ψ : XP → XQ and the isomorphism ι : ψ∗OXQ(DQ)→ OXP (DP ).
This provides the bijective correspondence.

Let Cn
fs denote the subcategory of Cf consisting of n-dimensional finite

polyhedral sets, where morphisms φ : M → N are required to be surjective.
If φ : M → N is a surjection, then φ : P(M) → P(N) is finite, surjective,
and induces isomorphisms over components on normalizations. Furthermore,
the homomorphism Γ(N) → Γ(M) induces an isomorphism ιφ : φ∗ON (1)

∼=−→
OM (1). Hence there is a well-defined functor Pp : Cn

fs → Pairs(T ), given by
M 7→ (P(M),OM (1)), and φ 7→ (P(φ), ιφ).

Theorem 3.3.7. The functor Pp : Cn
fs → Pairs(T ) is an equivalence of categories.

Proof. We will show essential surjectivity, then fullness and faithfulness by
induction on the dimension n of T (the base case of n = −1 is trivial). So
let (X,L) ∈ Pairs(T ). Then X is a disjoint union of toric varieties

∐
j Zj , and

via the ample line bundles L|Zj , we may assume that Zj = P(∆Pj ) and that
L|P(∆Pj )

∼= O∆Pj (1). So choose isomorphisms ψj : L|Zj → O∆Pj (1). Since
C(X) is torus-invariant, it is necessarily on the form

∐
j P(Nj) for polyhedral

subsets Nj ⊆ ∆Pj . Moreover, the isomorphisms ψj induces isomorphisms
ψ′j : LP(Nj) → ONj (1). Now, any orbit closure of X is on the form P(∆Q) for
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some face Q ⊆ Pj and some j. Consider the set S of maximal orbit closures
in
∐

P(Nj). These cover Xnn, and the disjoint union of the orbit closures of a
subset of S forms the normalization Xnn of Xnn by Item 5). There is a naturally
induced action of T on Xnn. This induces a commutative square

X // X

Xnn

π

OO

// Xnn,

OO

where π : Xnn → X is torus-equivariant. We may write Xnn =
∐
i P(∆Qi),

and the torus acting on P(∆Qi) is on the form T/ Stab(ηj), where ηj is the
generic point of P(∆Qi). Let T ′ be an (n − 1)-dimensional torus, and choose
some homomorphism µ : T ′ → T inducing a surjection T ′ → T/ Stab(ηj) for
each j. Via the action of T ′ on Xnn, the pair (Xnn, L|Xnn) now satisfies all
conditions above, except possibly seminormality. That is seen as follows: By
[Kol96, Theorem 7.2.5], the morphism C(X) → Xnn is seminormal. Since
C(X) is seminormal, the morphism C(X) → Xnn is seminormal as well. But
the normalization Xnn → Xnn clearly factors through C(X) → Xnn via a
seminormal morphism Xnn → C(X), so we conclude that Xnn → Xnn is
seminormal. Hence Xnn is seminormal as well. By the inductive hypothesis,
there exists a finite (n − 1)-dimensional polyhedral set M ′ such that the pair
(Xnn, L|Xnn) is isomorphic to (P(M ′),OM ′(1)). Recall from Lemma 3.3.1 that
the normalization of P(M ′) is on the form P(M ′).

Consider the morphism C(X) → P(M ′). Note that the action of T ′ on
Xnn can be extended to an action on C(X) by Item 5) (which is compatible
with the action of T ). Thus the induced morphism φ : C(X) → P(M ′) is
T ′-equivariant, and also an isomorphism over components. There is also a
canonical isomorphism ψ′ : φ∗OM ′(1)→ L|C(X). By the inductive hypothesis,
the morphism (φ, ψ′) : (C(X), L|C(X)) → (P(M ′),OM ′(1)) corresponds to a
surjection φ :

∐
j Nj →M ′. We define M as the following pushout:∐

j ∆Pj // M

∐
j Nj

OO

φ // M ′

OO

This forms a pushout square∐
j P(∆Pj ) // P(M)

∐
j P(Nj)

OO

φ // P(M ′)

OO

and by comparing with 3.14, there is a unique induced isomorphism f : X →
P(M). By the choices involved, the diagram L|X → L|C(X) ← L|Xnn of line
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bundles on X is isomorphic to the diagram O∐∆Pj (1)→ O∐Nj
(1)← OM ′(1),

hence by taking pullbacks there is a unique induced isomorphism L→ OM (1).
We conclude that the pairs (X,L) and (P(M),OM (1)) are isomorphic.

For fullness, let (f, ι) : (P(M1),OM1(1))→ (P(M2),OM2(1)) be a morphism
of pairs. Then f : P(M1) → P(M1) is surjective, T -equivariant, and induces
an isomorphism on components. Let νi : Mi → Mi for i = 1, 2 denote the
morphisms from Lemma 3.3.1. Via the induced isomorphism ι = P(ν2)∗ι :
f
∗OM2

(1)→ OM1
(1), the pair (f, ι) is induced by some morphism φ : M1 →M2

by Proposition 3.3.6. Let s be any face of M1, and let t be a face of M1 mapping
to s. Then we may write ζsM = ν1ζ

t
M1

. Hence

(f, ι)Pp(ζsM1
) = (f, ι)Pp(ν1)Pp(ζt

M1
) = Pp(ν2)(f, ι)Pp(ζt

M1
)

= Pp(ν2)Pp(φ)Pp(ζt
M1

) = Pp(ζν2φ(t)
M2

).

So define φ : M1 → M2 by φ(s) = ν2φ(t), where t is some face of M1 such
that ν1(t) = s. This is well-defined, since Pp(ζt1M2

) = Pp(ζt2M2
) if and only if

t1 = t2 (by Proposition 3.3.6). It is easily seen that φ defines a morphism of
polyhedral sets. Now, we have that (f, ι)Pp(ζsM1

) = Pp(φ)Pp(ζsM1
) for all faces

s. Since P(M1) = lim−→P(∆s), it follows that P(φ) = f and ι = ιφ, hence that
(f, ι) = Pp(φ).

For faithfulness, suppose that φ, φ′ : M1 → M2 is a pair of morphisms
such that Pp(φ) = Pp(φ′). Let s be a face of M1. Then Pp(φ)Pp(ζsM1

) =
Pp(φ′)Pp(ζsM1

), so that Pp(ζφ(s)
M2

) = Pp(ζφ
′(s)

M2
). By Proposition 3.3.6 again, we

must have φ(s) = φ′(s). We conclude that φ = φ′.

Corollary 3.3.8. There is an equivalence of groupoids

Pp : Isom(Cf )→ Isom(Pairs(T )). (3.15)

I.e., the groupoid of pairs isomorphic to (X,L) is equivalent to the groupoid of
finite polyhedral sets isomorphic to M , where (P(M),OM (1)) corresponds to the
pair (X,L).

3.4 Structure sheaf cohomology

We will use Section 2.5 as a general reference for the notation which follows.
Consider the function deg : CM0 (k) → k, mapping each generator of CM0 (k)
to 1. This induces a natural homomorphism degM : k → H0(M ; k), which
is an isomorphism whenever M is connected and non-trivial. In particular,
deg∆P is an isomorphism for each P ∈ P. Note further that H0(∆P ; k) is
the only non-zero cohomology module of ∆P , which follows from the fact that
|∆P | ∼= Ddim(P ) is contractible. Let jM : k → H0(M,OM ) denote the natural
homomorphism induced by the morphism from the constant presheaf to the
structure sheaf: k → OM . Similarly, jM is an isomorphism whenever M is
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connected and non-trivial, so in particular j∆P is an isomorphism for each
P ∈ P. Moreover, H0(∆P ,O∆P ) is the only non-zero cohomology module of
O∆P by [CLS11, Theorem 9.13 b)].

Theorem 3.4.1. There are natural isomorphisms ηiM : Hi(M ; k)→ Hi(M,OM )
of contravariant functors Cf → Veck for each integer i ≥ 0.

Proof. We will define ηiM inductively on the dimension of M . If M = ∅, then
ηiM is given as the trivial isomorphism for all integers i ≥ 0. Let n ≥ 0, and
assume that each ηiM is defined for and natural in (n− 1)-dimensional M , and
such that the diagram

k
degM

{{

jM

$$
H0(M ; k)

η0
M // H0(M,OM )

(3.16)

commutes. Note that (3.16) uniquely determines isomorphisms ηi∆P for all
P ∈ P and i ≥ 0. Let M be n-dimensional, and consider the canonical pushout
square (2.5) for M of level n:

∆n
M

αM // M

∂∆n
M

ι∆M

OO

α′M // Mn−1.

ιM

OO

Since ∆n
M =

∐
s∈Jn

M
∆s, the morphisms ζs∆n

M
: ∆s → ∆n

M splits the cohomol-
ogy groups H0(∆n

M ; k) and H0(∆n
M ,O∆n

M
) into direct sums

⊕
s∈Jn

M
H0(∆s; k)

and
⊕

s∈Jn
M
H0(∆s,O∆s) respectively. We define η0

∆n
M

: H0(∆n
M ; k)→ H0(∆n

M ,O∆n
M

)
as the unique k-linear homomorphism making the diagram

H0(∆n
M ; k)

∼= //

η0
∆n
M

��

⊕
s∈Jn

M

H0(∆s; k)⊕
s∈Jn

M

η0
∆s

��
H0(∆n

M ,O∆n
M

)
∼= // ⊕

s∈Jn
M

H0(∆s,O∆s)

(3.17)

commute. It is clear that η0
∆n
M

satisfies commutativity of (3.16). Since ∂∆n
M

similarly splits as
∐
s∈Jn

M
∂∆s, and (3.16) commutes for η0

∂∆n
M

by the inductive
hypothesis, it follows immediately that the diagram

H0(∆n
M ; k)

ι∗∆M
��

η0
∆n
M // H0(∆n

M ,O∆n
M

)

ι
]
∆M
��

H0(∂∆n
M ; k)

η0
∂∆n

M // H0(∂∆n
M ,O∂∆n

M
)

(3.18)
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commutes. Via the Milnor square (2.11) of Γ(M) of level n, (B.12) yields the
exact sequence

0→ OM → αM∗O∆n
M
⊕ ιM∗OMn−1 → γM∗O∂∆n

M
→ 0, (3.19)

where γM = ιMα
′
M . Consider the partial isomorphism between the long exact

sequence induced by (2.8) and the long exact sequences in cohomology for (3.19):

Hi−1(∆n
M ; k)⊕Hi−1(Mn−1; k)

ι∗∆M
⊕−α′∗M

��

(ηi−1
∆n
M

,ηi−1
Mn−1 )

// Hi−1(∆n
M ,O∆n

M
)⊕Hi−1(Mn−1,OMn−1)

ι
]
∆M
⊕−α′]

M

��
Hi−1(∂∆n

M ; k)

��

ηi−1
∂∆n

M // Hi−1(∂∆n
M ,O∂∆n

M
)

��
Hi(M ; k)

��

Hi(M,OM )

��
Hi(∆n

M ; k)⊕Hi(Mn−1; k)

ι∗∆M
⊕−α′∗M

��

(ηi∆n
M

,ηi
Mn−1 )

// Hi(∆n
M ,O∆n

M
)⊕Hi(Mn−1,OMn−1)

ι
]
∆M
⊕−α′]

M

��
Hi(∂∆n

M ; k)
ηi
∂∆n

M // Hi(∂∆n
M ,O∂∆n

M
)

(3.20)
Commutativity of (3.20) is ensured by the inductive hypothesis and commuta-
tivity of (3.18). By exactness of both columns, there is a uniquely determined
isomorphism ηiM : Hi(M ; k) → Hi(M,OM ) for each i ≥ 0, making the entire
diagram commute. This defines ηiM for all polyhedral sets M of dimension
n, and does not conflict with the original definition of ηi∆n

M
. Indeed, since

α∆n
M

: ∆n
∆n
M
→ ∆n

M is an isomorphism, both definitions coincide. To verify that
η0
M fits into (3.16), it is sufficient to note that

k
deg∆n

M

zz

j∆n
M

%%
H0(∆n

M ; k)

α∗M
��

η0
∆n
M // H0(∆n

M ,O∆n
M

)

α]
M

��
H0(M ; k)

η0
M // H0(M,OM )

(3.21)
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commutes. Now, let φ : N →M be any morphism. We must show that

Hi(M ; k)

φ∗

��

ηiM // Hi(M,OM )

φ]

��
Hi(N ; k)

ηmN // Hi(N,ON )

(3.22)

commutes for each i ≥ 0. It is clear that

H0(∆n
M ; k)

φ∆∗

��

η0
∆n
M // H0(∆M ,O∆n

M
)

φ∆]

��
H0(∆n

N ; k)
η0

∆n
N // H0(∆N ,O∆n

N
)

(3.23)

commutes via the defining diagrams (3.17) for η0
∆n
M

and η0
∆n
N
. By the inductive

hypothesis, this yields a pair of homomorphisms of long exact sequences (in
simplified notation)

Hi−1(∂∆n
M )

��

// Hi−1(O∂∆n
M

)

��

// Hi−1(O∂∆n
N

)

��
Hi(M)

��

ηiM // Hi(OM )

��

φ] // Hi(ON )

��
Hi(∆n

M )⊕Hi(Mn−1) // Hi(O∆n
M

)⊕Hi(OMn−1) // Hi(O∆n
N

)⊕Hi(ONn−1)
(3.24)

and

Hi−1(∂∆n
M )

��

// Hi−1(∂∆n
N )

��

// Hi−1(O∂∆n
N

)

��
Hi(M)

��

φ∗ // Hi(N)

��

ηiN // Hi(ON )

��
Hi(∆n

M )⊕Hi(Mn−1) // Hi(∆n
N )⊕Hi(Nn−1) // Hi(O∆n

N
)⊕Hi(ONn−1)

(3.25)
Both (3.24) and (3.25) commutes by construction (even if dimN < n). By

the inductive hypothesis and commutativity of (3.23), (3.22) commutes as well.
By induction, we are done.

3.5 Classification of the Picard group

If M is a polyhedral set, we let Pic(M) denote the Picard group of P(M).
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Definition 3.5.1. Consider the functor Pic : Pop → Ab given by P 7→ Pic(∆P ).
Let Deg : Cf → Ab be the left Kan-extension of Pic. For each polyhe-
dral set M , we have DegM = lim←−s∈FM Pic(∆s), called the group of degree
functions. Each morphism ζsM : P(∆s) → P(M) induces a homomorphism
ζs∗M : Pic(M) → Pic(∆s). This makes Pic(M) a cone to the diagram, which
induces a homomorphism ω : Pic(M)→ DegM which is natural in M . For each
line bundle E on P(M), the associated degree function ωE ∈ DegM is given by
ωE(s) = ζs∗ME ∈ Pic(P(∆s)).

Since Deg is defined as left Kan-extension, it preserves finite colimits. In
particular, the sequence

1→ DegMn → Deg∆n
M
×DegMn−1 → Deg∂∆n

M
(3.26)

induced by (2.5) is exact for each integer n ≥ 0.

Theorem 3.5.2. Let M be a polyhedral set. Then there exists a natural isomor-
phism of groups

SM : Pic(M)→ DegM ×H1(M ; Gm) (3.27)
such that

SM (OM (m)) = (ωm, 1) (3.28)
for each m ∈ Z, where ωm ∈ DegM is given by ωm(s) = m[D|s|].

Proof. We will define SM inductively on the dimension n of M . If M is 0-
dimensional, then SM is given as the trivial isomorphism. So we may assume
that n ≥ 1. Consider the natural exact sequence

H0(∆n
M ,O∗∆n

M
)×H0(Mn−1,O∗Mn−1)→ H0(∂∆n

M ,O∗∂∆n
M

)→ Pic(M)→

Pic(∆n
M )× Pic(Mn−1)→ Pic(∂∆n

M ).
(3.29)

from Proposition B.3.5. Via (2.8), H1(M ; Gm) similarly and naturally fits inside
the exact sequence

H0(∆n
M ,Gm)×H0(Mn−1,Gm)→ H0(∂∆n

M ,Gm)→ H1(M ; Gm)→
H1(∆n

M ; Gm)×H1(Mn−1; Gm)→ H1(∂∆n
M ; Gm).

(3.30)

Since H1(∆n
M ; Gm) = 0, adjoining (3.30) and (3.26) yields a natural exact

sequence

H0(∆n
M ,Gm)×H0(Mn−1,Gm)→ H0(∂∆n

M ,Gm)→ DegM ×H1(M ; Gm)→
Deg∆n

M
×DegMn−1 ×H1(Mn−1; Gm)→ Deg∂∆n

M
×H1(∂∆n

M ; Gm).
(3.31)

Analogously with the proof of Theorem 3.4.1, one obtains a natural iso-
morphism H0(M,O∗M )→ H0(M,Gm). By the inductive hypothesis, S is well-
defined and natural in (n− 1)-dimensional polyhedral sets. Via the canonical
isomorphism Pic(∆P )

∼=−→ Deg∆P for P ∈ P (which satisfies (3.28)), one may
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extend S to an isomorphism S∆n
M

: Pic(∆n
M ) → Deg∆n

M
(cf. (3.17)). Con-

sider the partially defined isomorphism between (3.29) and (3.31). If n = 1,
then Pic(Mn−1) and DegMn−1 ×H1(Mn−1; Gm) are trivial, so that the im-
age of Pic(M) (resp. DegM ×H1(M ; Gm)) is a subgroup of the free abelian
group Pic(∆n

M ) (resp. Deg∆n
M
). By split-exactness, there is a uniquely in-

duced isomorphism SM : Pic(M) → DegM ×H1(M ; Gm) making the entire
diagram commute. On the other hand, if n ≥ 2, then H0(∆n

M ,Gm) →
H0(∂∆n

M ,Gm) (resp. H0(∆n
M ,Gm) → H0(∂∆n

M ,Gm)) is surjective, so that
Pic(M) (resp. DegM ×H1(M ; Gm)) injects into Pic(∆n

M ) × Pic(Mn−1) (resp.
Deg∆n

M
×DegMn−1 ×H1(Mn−1; Gm)). Thus there is a uniquely induced iso-

morphism SM in this case as well. One checks naturality of S by the same
method as in the proof of Theorem 3.4.1. Naturality applied to the morphisms
ζsM : ∆s →M moreover verifies (3.28). By induction, we are done.

We finish this section with the following observation particular to unimodular
sets.

Proposition 3.5.3. If M is a unimodular set, then DegM is naturally isomor-
phic to H0(|M |\|M0|;Z). Hence Theorem 3.5.2 takes the form of a natural
isomorphism

SM : Pic(M)→ H0(|M |\|M0|;Z)×H1(M ; Gm).

Proof. We will show that there is a natural isomorphism of abelian groups
DegM → H0(|M |\|M0|). Consider the category FM of faces of M , and let F≥1

M

denote the full subcategory consisting of faces of dimension ≥ 1. Note that
since Pic(∆n) = Z for each n ∈ ∆, n 6= 0, the group of degrees DegM is a
direct sum of copies of Z for each connected component of F≥1

M . Thus we may
write F≥1

M =
∐
i∈I F

i
M , and DegM =

⊕
i∈I Z. Similarly, |M |\|M0| splits into a

disjoint union
∐
i∈I Zi, so that H0(|M |\|M0|) ∼=

⊕
i∈I Z. One easily observes

that the obvious isomorphism DegM → H0(|M |\|M0|) is natural in M .

3.6 Hilbert polynomial

In this section we will give an expression for the Hilbert polynomial PM (d) for
the face ring Γ(M).

Lemma 3.6.1. Let V (σQ) denote the orbit-closure O(σQ) corresponding to a
face Q of a polytope P (see [CLS11, p. 121]). Then V (σQ) = P(∆Q) as closed
subschemes of P(∆P ).

Proof. We have V (σQ) = V (IQ) where IQ = (χ(m,d)|(m, d) 6∈ AQ) by [GKZ08,
Chapter 5, Prop 1.9]. Here AQ is identified with the subgroup of AP under
Af : AQ → AP . Thus, IQ is equal to the kernel of Γ(∆P )→ Γ(∆Q), so V (σQ)
is therefore identified with the reduced subscheme P(∆Q).
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3. The face scheme

The orbit closure V (σF ) for each facet F of a polytope P defines a torus-
invariant Weil-divisor DF on P(∆P ), and KP = −

∑
F DF is the canonical

divisor of P(∆P ) [CLS11, Theorem 8.2.3]. If P is given by inequalities 〈uF ,m〉 ≥
−aF , then the divisor DP =

∑
F aFDF is a very ample divisor corresponding to

O∆P (1).

Lemma 3.6.2. Let M be a finite polyhedral set. Then for each integer n ≥ 1,
there is an exact sequence

0→
⊕
s∈Jn

M

ζsM∗O∆s(K|s|)→ OMn → ιM∗OMn−1 → 0. (3.32)

Proof. Via the Milnor square (2.11) of Γ(M) of level n, (B.11) yields the exact
sequence

0→ αM∗I → OMn → ιM∗OMn−1 → 0, (3.33)

where I is the ideal sheaf of P(∂∆n
M ) in P(∆n

M ). Since P(∆n
M ) =

∐
s∈Jn

M
P(∆s),

and since P(∂∆s) is a reduced closed subscheme of P(∆s) corresponding to
the union of V (σF ), we have by [CLS11, Proposition 4.0.28] that the ideal I
is isomorphic to the sheaf O∆s(K|s|). Thus (3.33) translates into the exact
sequence (3.32).

If F is a sheaf of OM -modules, we define Γ∗(F) =
⊕

d∈Z Γ(M,F(d)), which
is a graded Γ∗(OM )-module.

Proposition 3.6.3. Let M be an n-dimensional polyhedral set. Then for each
integer d ≥ 1, the natural homomorphism

Γ(M)d → Γ∗(OM )d (3.34)

is an isomorphism. For d = 0, it is injective and an isomorphism if and only if
M is connected. Moreover,

dimk(Γ(M)d) =
n∑
n=0

∑
s∈Jn

M

L∗(d|s|) (3.35)

for each each integer d ≥ 1 (recall that L∗(P ) denotes the number of interior
lattice points of P ). For d = 0, the dimension is 1.

Proof. Note that Γ(M) is positively graded in general, so we have always have
dimk(Γ(M)0) = 1 as required. The dimension of the vector space Γ∗(OM )0 =
H0(M,OM ) is equal to the number of components of P(M), hence by Propo-
sition 3.2.1 c) equal to the number of components of M . This verifies the
statements for d = 0.

If n = 0, thenM is a simplicial complex. By Proposition 2.7.2, Γ(M) = k[xv :
v ∈ J0

M ]/(xvxw : v 6= w), and the formula (3.35) clearly holds. On the other
hand, P(M) =

∐
s∈J0

M
Spec k, so (3.34) is clearly an isomorphism in positive

degrees. We proceed by induction on n, and we may assume that n ≥ 1. Fix
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an integer d ≥ 1. Since Γ(M) → Γ(Mn−1) is surjective, it follows from the
inductive hypothesis that Γ∗(OM )d → Γ∗(OMn−1)d is surjective. This means
that (3.32) induces an exact sequence

0→ Γ∗(I)d → Γ∗(OM )d → Γ∗(OMn−1)d → 0.

Here I = Ĩ, where I = ker Γ(ι∆M
). Consider the induced homomorphism of

exact sequences

0 // Id //

��

Γ(M)d

��

// Γ(Mn−1)d

��

// 0

0 // Γ∗(I)d // Γ∗(OM )d // Γ∗(OMn−1)d // 0.

(3.36)

By the inductive hypothesis, the vertical arrow to the right is an isomorphism.
It remains to show that the vertical arrow to the left is an isomorphism. By
(B.3) and (B.11), this arrow also appears in the following homomorphism of
exact sequences:

0 // Id //

��

Γ(∆n
M )d

��

// Γ(∂∆n
M )d

��

// 0

0 // Γ∗(I)d // Γ∗(O∆n
M

)d // Γ∗(O∂∆n
M

)d // 0.

(3.37)

By the inductive hypothesis, Γ(∂∆s)d → H0(∂∆s,O∂∆s(d)) is an isomorphism
for all s ∈ Jn

M . Hence it will suffice to show that Γ(∆s)d → H0(∆s,O∆s(d)) is
an isomorphism for all s ∈ Jn

M . It is injective since Γ(∆s) is reduced, and by
[CLS11, Theorem 5.4.8] the dimensions agree. Hence it is an isomorphism, and
we conclude that Γ(M)d → Γ∗(OM )d is an isomorphism.

Now, by the inductive hypothesis,

dimk Γ(Mn−1)d =
n−1∑
n=0

∑
s∈Jn

M

L∗(d|s|).

Since dimk Γ(M)d = dimk Γ(Mn−1)d + dimk Id, the formula (3.35) follows if we
can show that dimk Id =

∑
s∈Jn

M
L∗(d|s|). For this, it will suffice to show the

formula dimk I
s
d = L∗(d|s|) for each face s ∈ Jn

M , where Is = ker(Γ(ι∆s)). Since∐
F facet of P ∆F → ∂∆P is surjective, the homomorphism Γ(∂∆P ) ⊆

∏
Γ(∆F )

is injective. The kernel of Γ(∆P )d →
∏
F Γ(∆F )d is clearly

⊕
m∈L∗(dP ) k ·χ(m,d),

which proves the formula. By induction, we are done.

Proposition 3.6.3 yields the formula h0(OM (1)) =
∑n
n=0

∑
s∈Jn

M
L∗(|s|) for

the ample line bundle OM (1). In particular, if the ≥ 1-dimensional faces of M
correspond to polytopes without interior points (e.g. if M is a unimodular set),
then h0(OM (1)) = |J0

M |.
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Lemma 3.6.4. Let M be a polyhedral set of dimension n ≥ 1 with no isolated
vertices. Then H0(M,OM (−d)) = 0 for all d > 0.

Proof. First, let n = 1. Since M has no isolated vertices, the morphism∐
n≥1

∐
s∈Jn

M
∆s → M is surjective. By Proposition 3.2.1 f), the induced

morphism OM →
⊕
ζsM∗O∆s is injective. Twisting with −d for an inte-

ger d > 0 and taking global sections yields an injection H0(M,OM (−d)) ⊆⊕
H0(M,O∆s(−d)) = 0, and the result follows from this.

Lemma 3.6.5. Let M be a polyhedral set. Then Hi(M,OM (d)) = 0 for all
integers i > 0 and d > 0.

Proof. Let M be n-dimensional. If n = 0, then the dimension of P(M) is 0
and the result follows immediately. We proceed by induction on n, and we may
assume that n ≥ 1. Consider the exact sequence (3.32). Twisting with an integer
d > 0 yields an exact sequence

0→
⊕
s∈Jn

M

ζsM∗O∆s(dD|s| +K|s|)→ OM (d)→ ιM∗OMn−1(d)→ 0. (3.38)

If n ≥ 1, then by Serre duality Hi(O∆s(dD|s| + K|s|) = Hn−i(O∆s(−dD|s|)
for all s ∈ Jn

M . By application of [CLS11, Theorem 9.2.7], these cohomology
groups are trivial for i > 0. By the inductive hypothesis, the induced long exact
sequence in cohomology of (3.38) now immediately yields the result.

Fix an n-dimensional polyhedral set M . Then Proposition 3.6.3 gives a
formula for the Hilbert polynomial of Γ(M):

Theorem 3.6.6. The Hilbert polynomial of the face ring Γ(M) is

HM (d) =
∑

s∈Mcan

(−1)dim(s) Ehr|s|(−d),

where EhrP (d) denotes the Ehrhart polynomial of P ∈ P (see [CLS11, Theorem
9.4.2]).
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Chapter 4

Open categories
An open category over P is a category U equipped with a discrete Conduché
fibration p : U → P. Such functors generalizes the notion of discrete fibrations
(Appendix A.0.2) by relaxing the requirements on p. Conduché fibrations also
go by the name of unique factorization lifting functors, see [Joh99] or [BN00] for
a reference. An open category U can be universally completed into a polyhedral
set L(U), and we will define the associated a face scheme A(U) as an open
subscheme of P(L(U)). If U is an open category and s ∈ U , then then comma
category Us = (s ↓ U) is also an open category. If a morphism φ : U → V induces
an isomorphism Us → Vφ(s) for each s ∈ U , then φ is called a local isomorphism.
The goal of this chapter is proving Theorem 4.4.1, where we will see that a local
isomorphism induces an étale morphism A(U)→ A(V ) of schemes.

4.1 Discrete Conduché fibrations

We will use Appendix A.0.2 as a general reference for the notation in this section.
Fix a small category C. Then one may extend the category of discrete fibrations
Fib(C) to the larger category CFib(C) of discrete Conduché fibrations as follows:

Definition 4.1.1 ([Joh99]). A discrete Conduché fibration over C (abbreviated
Conduché fibration) is a small category (U, p) over C satisfying the following
axiom.

(∗) Unique factorization lift: For every arrow h : t→ s in U and factorization
p(t) f1−→ c

f2−→ p(s) of p(h), there exists a unique factorization t h1−→ u
h2−→ s

of h such that p(h1) = f1 and p(h2) = f2.

In particular, for every object s ∈ U and arrow f : c→ p(s), there exists at most
one lifting h : t → s of f along s. We define the category CFib(C) as the full
subcategory of (Cat ↓ C) consisting of Conduché fibrations over C.

It follows from uniqueness of lifts that Fib(C) is a full subcategory of CFib(C)
via the forgetful functor T : Fib(C)→ CFib(C). This defines a functor T = T ◦I :
Pre(C)→ CFib(C). For each Conduché fibration (U, p), consider the diagram
HU = YC◦p : U → Pre(C). For ease of notation, Cs will denote the representable
functor C(−, p(s)) for each s ∈ U . We define the functor L : CFib(C)→ Pre(C)
by L(U) = lim−→HU , which as a colimit comes equipped with associated morphisms
ζsU : Cs → L(U) for each s ∈ U . A morphism φ : U → V of Conduché fibrations
induces a natural transformation of diagrams Hφ : HU → HV φ, hence a unique
natural transformation L(φ) : L(U)→ L(V ) satisfying L(φ) ◦ ζsU = ζ

φ(s)
V for all

s ∈ U . This fully defines the functor L : CFib(C)→ Pre(C).
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Proposition 4.1.2. The pair (L,T) forms an adjunction L : CFib(C)� Pre(C) :
T. Thus L preserves all colimits, and T preserves all limits.

Proof. Let (U, p) be a Conduché fibration, and M a presheaf. We define the unit
ηU : U → TL(U) of the adjunction by ηU (s) = (p(s), ζsU (idp(s))). The morphisms
ζsM : Cs → M for each element s ∈ M(c) induces a unique isomorphism
εM : LT(M)→M such that εM ◦ ζ(c,s)

LT(M) = ζsM , which defines the counit. It is
straight-forward to check that these natural transformations creates an adjoint
pair (L,T).

Let (U, p) be a Conduché fibration, and let s ∈ U . Consider the comma
category Us = (s ↓ U), and the forgetful functor γ(s) : Us → U defined on
objects by (t, f : s → t) 7→ t. The composition ps : Us

γ(s)−−→ U
p−→ C makes

(Us, ps) a category over C. Any morphism φ : U → V of Conduché fibrations
induces a functor φs : Us → Vφ(s) defined by (t, f) 7→ (φ(t), φ(f)). We say
that φ is a local isomorphism if φs is an isomorphism for all s ∈ U . If M is a
presheaf, we will denote T(M)(c,s) by Ms for any c ∈ C and s ∈M(c). We will
occasionally denote objects (t, f) of Us by s f−→ t.

Proposition 4.1.3. For every s ∈ U , (Us, ps) is a Conduché fibration. Moreover,
for each s ∈ U , γ(s) : Us → U is a local isomorphism.

Proof. Let h : (t1, f1)→ (t2, f2) be an arrow in Us, and suppose that p(t1) g1−→
c
g2−→ p(t2) is a factorization of p(h). Since h : t1 → t2 is an arrow in U , there is a

factorization t1
h1−→ t

h2−→ t2 of h in U such that p(h1) = g1 and p(h2) = g2. But
then (t1, f1) h1−→ (t, h1f2) h2−→ (t2, f2) is a factorization of h : (t1, f1) → (t2, f2)
with ps(h1) = g1 and ps(h2) = g2. Thus Us satisfies the unique factorization lift
axiom.

Next we will now show that γ(s) : Us → U is a local isomorphism. So pick
an object (t, f : s → t) in Us, and consider the induced morphism (γ(s))(t,f) :
(Us)(t,f) → Ut. This morphism sends an object ((u, g : s→ u), h : (t, f)→ (u, g))
to (u, h : t → s). We will define an inverse morphism γ′ : Ut → (Us)(t,f) as
follows. On objects, let (u, h) 7→ ((u, hf), h : (t, f) → (u, hf)). An arrow g :
(u, h)→ (u′, h′) in Ut may also be considered as an arrow g : (u, hf)→ (u′, h′f)
in Us, and hence defines an arrow g : γ′((u, h)) → γ′((u′, h′)). This clearly
defines a functor, and is an inverse of (γ(s))(t,f).

If U is a Conduché fibration, then any arrow f : s → t in U induces a
natural morphism Uf : Ut → Us, given on objects by (t, g) 7→ (s, gf). By
Proposition 4.1.3, such morphisms are always local isomorphisms. Note that
a morphism φ : U → V is a local isomorphism if and only if φs : Us → Vφ(s)
is bijective on objects for every s ∈ U ; if φs is bijective, an inverse functor is
uniquely determined by the unique factorization lift axiom.

Definition 4.1.4. Let φ : U → V and ψ : W → V be a pair of morphisms of
Conduché fibrations. We define the fibered product U×V W as a category over C
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as the strict pullback of categories U×V W equipped with the induced projection
map p = pU × pV : U ×V W → C. The objects of U ×V W are pairs (s, t) where
s ∈ U , t ∈ W and φ(s) = ψ(t). An arrow (s′, t′) → (s, t) is a pair of arrows
f : s′ → s, g : t′ → t such that φ(f) = ψ(g), or equivalently pU (f) = pW (g) by
uniqueness of lifts.

The following lemma is easily verified.

Lemma 4.1.5. U ×V W is a Conduché fibration over C, and equipped with the
projection morphisms π1 : U ×V W → U and π2 : U ×V W →W it is a fibered
product in CFib(C).

Lemma 4.1.6. Let φ : U → V be a morphism of Conduché fibrations. Then,

a) The functor φ is faithful;

b) If W ⊆ V is a full Conduché subfibration, the inverse image φ−1(W ) con-
sisting of objects φ−1(obW ) and arrows φ−1(Hom(W )) is a full Conduché
subfibration of U ;

c) If W ⊆ V is a full Conduché subfibration, there is an isomorphism
φ−1(W )→W ×V U , such that the diagram

φ−1(W ) //

&&

U ×V W

π1

��
U

(4.1)

commutes;

d) If φ is a local isomorphism, and ψ : W → V is any morphism, then
π2 : U ×V W →W is a local isomorphism;

e) If φ : U → V is a local isomorphism, then φ is a full and faithful functor.

Proof. a) Suppose that h1, h2 : t → s are two arrows of U such that φ(h1) =
φ(h2). Then in particular pU (h1) = pU (h2), which implies that h1 = h2 by
uniqueness of lifts.

b) Clearly, φ−1(W ) forms a subcategory of U . So we only need to verify
the existence of factorization lifts. Let h : t → s be an arrow in φ−1(W ), and
suppose that p(s) f−→ c

g−→ p(t) is a factorization of p(h). This factorization
lifts to a factorization t → u → s in U , which maps to a factorization lift
φ(s)→ φ(u)→ φ(t) in V . Since W is a full Conduché subfibration, this unique
lifting exists in W , hence the factorization t→ u→ s exists in φ−1(W ).

c) We define the morphism φ−1(W )→W ×V U by s 7→ (φ(s), s) on objects,
and f 7→ (φ(f), f) on arrows. This is clearly a morphism of Conduché fibrations
making (4.1) commute, and π2 : W ×V U → U produces an inverse morphism
by restricting the codomain to φ−1(W ).
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d) Let ψ : W → V be any morphism, and consider the projection π2 : U ×V
W →W . Let (s, t) be an object of U ×V W , and consider the induced morphism
(π2)(s,t) : (U ×V W )(s,t) → Wt. Since φs : Us → Vφ(s) is an isomorphism, we
may define an inverse τ : Wt → (U ×V W )(s,t) as follows. For any object (t′, f)
of Wt, the object (ψ(t′), ψ(f)) in Vψ(t) lifts to a unique object (s′, g) in Us via
ψs. Thus we define τ((t′, f)) to be ((s′, t′), (g, f)). Let h : (t′, f) → (t′′, f ′)
be an arrow in Wt, i.e. an arrow h : t′ → t′′ such that hf = f ′. Then
(ψ(t′′), ψ(h)) in Vψ(t′) lifts to a unique object (s′′, h′) in Us′ via ψs′ . Let (s′′, g′)
be the unique lifting of (ψ(t′′), f ′) in Us, and define τ(h) to be the arrow
(h′, h) : ((s′, t′), (g, f)) → ((s′′, t′′), (g′, f ′)). Uniqueness of lifts in U makes τ
functorial, and it is clearly an inverse to (π2)(s,t).

e) φ is full by the definition of a local isomorphism, and faithful by a).

4.1.1 Perimeter

Lemma 4.1.7. Let (U, p) be a Conduché fibration. Then the unit transformation
ηU : U → TL(U) is injective and a local isomorphism. In particular, ηU makes
U a full subcategory of TL(U) by Lemma 4.1.6 e).

Proof. Note first that for any object s ∈ TL(U), there exists by construction of
the colimit an arrow s

f−→ t in TL(U) for some t in the image of ηU . Suppose
that s0, s1 ∈ U are two objects with ηU (s0) = ηU (s1). We will show that
s0 = s1. Define c = p(s0) = p(s1). Then by construction of the colimit,
there exists a zig-zag diagram s0 = t0

f0−→ t1
f1←− . . .

fr−1←−−− tr = s1 for some
collection of objects ti ∈ U , arrows fi in U , and elements hi ∈ Cti(c) such
that h0 = hr = idc and the induced zig-zag diagram of representable functors
Cs0 → Ct1 ← Ct2 → . . . → Ctr−1 ← Cs1 maps the elements hi compatibly to
each other. If r = 1, then there exists an arrow f0 : s0 → s1, which must be the
identity arrow since it is the unique lifting of idc. Proceeding inductively, assume
that r ≥ 2. Consider the diagram Cs0 → Ct1 ← Ct2 . Here idc ∈ Cs0(c) maps
to p(f0) = h1, and h2 ∈ Ct2(c) maps to p(f1)h2 = h1. Hence p(f1)h2 = p(f0),
which is a factorization of p(f0). Thus there exists a unique factorization
s0

g1−→ t2
g2−→ t1 of f0 such that p(g1) = h2 and p(g2) = p(f1). In particular, the

arrow g1 : s0 → t2 induces a morphism Cs0 → Ct2 mapping idc to h2. We may
now shorten the zig-zag diagram of length r to one of length r− 1. By induction,
we conclude that s0 = s1 and that ηU is injective on objects. By Lemma 4.1.6
a), ηU is faithful, so we may consider U as a subcategory of TL(U).

Next, suppose that h : s0 → s1 is any arrow in TL(U) for some pair of
objects s0, s1 ∈ U . Write f = p(h) : c′ → c, t0 = ζs0U (idc′) and t1 = ζs1U (idc).
Then L(U)(f)(t1) = t0, which means that ζs1U (f) = t0, where f is considered an
object of Cs1(c′). Like before, this means that there exists a zig-zag diagram
s0 = t0

f0−→ t1
f1←− . . . fr−1←−−− tr = s1 and elements hi ∈ Cti(c′) such that h0 = idc′ ,

hr = f and the elements hi are compatibly sent to each other in the induced
zig-zag diagram Cs0 → Ct1 ← Ct2 → . . . → Ctr−1 ← Cs1 . By the previous
argument, we may iteratively reduce the length of such a zig-zag diagram to one
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on the form s0
g−→ s1 such that the morphism Cs0 → Cs1 maps idc′ to f . This

means in particular that p(g) = f , which implies that g = h by uniquenss of lifts.
Thus ηU is a full functor, and U is a full subcategory of TL(U).

Let now s ∈ U , and consider the induced morphism (ηU )s : Us → TL(U)s.
Suppose that (t, f) and (t′, g) is a pair of objects of Us mapping to the same
object in TL(U)s. Then in particular, t = t′ since ηU is injective on objects.
But p(f) = p(g), so by uniqueness of lifts we must have f = g. Hence (ηU )s is
injective. Conversely, let (t, f) be any object of TL(U)s. Then there exists an
object s′ in U and an arrow t

g−→ s′ in TL(U). The composition s gf−→ s′ exists
in U since it is a full subcategory. In TL(U), the factorization s f−→ t

g−→ s′ is
the unique lifting of the factorization p(s) p(f)−−−→ p(t) p(g)−−→ p(s′). But there is
also such a factorization lifting in U , which must be identical to s f−→ t

g−→ s′

by uniqueness. So the arrow s
f−→ t exists in U , and therefore as an object in

Us. Hence (ηU )s is surjective, and therefore bijective. It follows that (ηU )s is an
isomorphism.

Definition 4.1.8. Let U be a full Conduché subfibration of a discrete fibration
M such that the inclusion U →M is a local isomorphism. Then we define the
complement of U in M , denotedM\U , to be the full subcategoryM consisting of
objects obM\ obU , equipped with the projection morphism M\U → C induced
by that of M .

Lemma 4.1.9. The the complement M\U is a discrete fibration.

Proof. We must show that for every arrow f : c′ → c in C and object s ∈M\U ,
there exists a lifting h : t → s of f along s with t ∈ M\U . Given such an
arrow f and object s over c, there certainly exists such a lifting h : t→ s in M .
Assume for contradiction that t ∈ U . Since the induced morphism Ut → Mt

is an isomorphism, there exist an object t g−→ s′ in Ut mapping to the object
t
h−→ s in Mt. This implies that s′ = s, a contradiction, so we conclude that

t ∈M\U .

Lemma 4.1.7 and Lemma 4.1.9 allows us to make the following definition.

Definition 4.1.10. We define the perimeter of U , denoted U∂ , as the discrete
subfibration TL(U)\U of TL(U).

Complementary to Lemma 4.1.9, the lemma below shows that the set of
injective local isomorphism U →M from a Conduché fibration U to a discrete
fibration M is in one-to-one correspondence with complements M\N of discrete
subfibrations N .

Lemma 4.1.11. LetM be a discrete fibration, and N ⊆M a discrete subfibration.
Then the full subcategory of M with objects M\N is a Conduché subfibration of
M such that the inclusion M\N →M is a local isomorphism.
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4. Open categories

Proof. First we show that M\N is a Conduché fibration. Let f : s → t be an
arrow of M\N , and suppose that p(s) → c → p(t) is a factorization of p(f).
Since M is a discrete fibration, there exists a unique lifting s g−→ s′

h−→ t of this
factorization in M . Assume that s′ ∈ N . Then s g−→ s′ is the unique lifting of
p(g) in N . This means that s ∈ N , which is impossible. Hence s′ ∈M\N , which
shows that M\N is a Conduché fibration. Next we show that the inclusion
φ : M\N → M is a local isomorphism. Let s ∈ M\N , and consider the local
morphism φs : (M\N)s →Ms. This is an isomorphism if and only if t ∈M\N
for every object (s, f : s → t) in Ms. But if t ∈ N for any such object, then
f : s → t is the unique lifting of p(f) in N . This means that s ∈ N , which is
impossible. We conclude that φ is a local isomorphism.

4.2 Open categories over P

Definition 4.2.1. We will now consider Conduché fibrations p : U → P satisfying
(∗): for all s ∈ U , AutU (s) = {ids}. We will call open categories over P
(abbreviated open categories). Recall that the category of discrete fibrations
satisfying (∗) is equivalent to Pre(∗)(P) (Definition 2.2.1). We note that if
U → V is a morphism of Conduché fibrations where V satisfies (∗), then U also
satisfies (∗).

Definition 4.2.2. Let U be an open category. For any face s ∈ U , we let |s|
denote the object p(s) ∈ P. We define the dimension dim(s) of a face s ∈ U to
be dim(|s|), and the dimension of U to be the supremum of the dimensions of its
faces, and −1 if U is empty. For any non-negative integer n, let the n-truncation
Un denote the full subcategory of U consisting of all maximally n-dimensional
faces of U . It is clear that this is an open category, and that TL(U)n ∩ U = Un

as full open subcategories of TL(U). If s,t is a pair of faces in U , and f : |s| → |t|
is an arrow in P which lifts to an arrow s→ t in U , we will denote this arrow
by f as well.

Definition 4.2.3. Let U be an open category, and consider the morphisms T(ζsU ) :
T(∆s)→ TL(U) for faces s ∈ U . We define the open polytope ∆s

U as the preimage
T(ζsU )−1(U) ⊆ T(∆s). Then T(ζsU ) restricts to a morphism ξsU : ∆s

U → U which
is natural in U . If s ∈ U is of dimension n, we will denote the (n− 1)-truncation
(∆s

U )n−1 by ∂∆s
U .

We note the following. The induced morphism L(∆s
U ) → L(∆s) is an

isomorphism, which follows from the fact that ξsU preserves terminal objects.
The morphisms ζsL(U) : ∆s → L(U) for faces s ∈ U∂ factors through L(U∂), so
T(ζsL(U))−1(U) is the empty-category.

Lemma 4.2.4. Let U be an open category, and s a face of U corresponding
to the morphism ζsU : ∆s → L(U). Then (∆s

U )∂ = T(ζsU )−1(U∂) as full open
subcategories of T(∆s).

Proof. By our observation above, L(∆s
U ) is isomorphic to ∆s, so we may consider
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(∆s
U )∂ as the full open subcategory T(ζsU )−1(U)∂ of T(∆s). For faces t ∈ T(∆s),

we have

t ∈ T(ζsU )−1(U)∂ ⇔ T(ζsU )(t) 6∈ U ⇔ T(ζsU )(t) ∈ U∂ ⇔ t ∈ T(ζsU )−1(U∂).

Hence (∆s
U )∂ and T(ζsU )−1(U∂) consists of the same objects. It remains to show

that T(ζsU )−1(U∂) is a full subcategory of T(∆s). However, this immediately
follows from the fact that U∂ is a full subcategory of TL(U).

Definition 4.2.5. Let U an open category. For each n, we have a natural
inclusion ιU : Un−1 → U . If φ : U → V is a morphism of open categories, let
φ′ : Un−1 → V n−1 denote the induced morphism of (n− 1)-truncations. Define
∆n
U as the coproduct

∐
s∈Jn

U
∆s
U , where Jn

U := U ∩ Jn
L(U). This is clearly an open

category, and let αU : ∆U → U denote the induced morphism. For each s ∈ U ,
the morphisms ∆s

U → ∆φ(s)
V induces a morphism φ∆ : ∆U → ∆V , and we have

that αV ◦ φ∆ = φ ◦ αU . This makes αU natural in U . We also define ∂∆n
U as

the (n− 1)-truncation (∆n
U )n−1 =

∐
s∈Jn

U
∂∆s

U .

Remark 4.2.6. While Un−1 = U ∩ TL(U)n−1 as full open subcategories of U ,
it is generally not the case that the induced morphism L(Un−1)→ L(U)n−1 is
an isomorphism. Informally speaking, Un−1 loses track of the perimeter of the
facets of U . In general, this morphism is neither injective nor surjective.

Lemma 4.2.7. If φ : U → V is a local isomorphism, then the morphism τn =
αU ×V n φ∆ : ∆n

U → Un ×V n ∆n
V is an isomorphism for each integer n ≥ −1.

Proof. We will define an inverse map µ : Un ×V n ∆n
V → ∆n

U . Let (s, f) be a
face of Un ×V n ∆n

V . Then f is contained in a unique open polytope ∆v
V for

some v ∈ Jn
V . Let u = ξvV (f), and consider the arrow f : u→ v. Since φ(s) = u,

the isomorphism φs : Us → Vu produces a unique arrow f : s → t in U such
that φ(t) = v. Thus t is n-dimensional. Consider the corresponding morphism
ξtU : ∆t

U → U . We may consider f as a face of ∆t
U , which satisfies ξtU (f) = s. On

objects, we define µ(s, f) = f . Uniqueness of t ensures that this is well-defined.
Now, let g : (s0, f0)→ (s1, f1) be an arrow in Un ×V n ∆n

V . Since g : f0 → f1 is
an arrow connecting f0 and f1, they are contained in the same open polytope
∆v
V . Define ui = ξvV (fi) for i = 0, 1. Again, since φ is a local isomorphism, there

exists unique liftings f0 : s0 → t0 and f1 : s1 → t1 in U of f0 : u0 → v and
f1 : u1 → v respectively. Since g : s0 → s1 is an arrow, and f0 = f1g, there is an
arrow f0 : s0 → t1. By uniqueness, we must have t0 = t1. Note finally that the
arrow g : f0 → f1 in ∆t0 exists in ∆t0

U , since as an arrow in T(∆t0) it maps to
the arrow g : s0 → s1 via ζt0U . Thus on arrows, we define µ(g) = g as an arrow
f1 → f0 in ∆t0

U . This is clearly functorial, and defines an inverse of τn.

4.3 Associated scheme

We say that an open category U is finite if L(U) is. From here on, all open
categories and polyhedral sets will be assumed to be finite.
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4. Open categories

Definition 4.3.1. Let (U, p) be an open category, and consider the inclusion
of the perimeter U∂ ⊆ TL(U). This induces an inclusion of polyhedral sets
jU : L(U∂)→ L(U), hence a closed immersion jU : P(L(U∂))→ P(L(U)). We
define the face scheme A(U) of U as the complement P(L(U))\P(L(U∂)).

Let φ : U → V be a morphism. Then φ induces a morphism of schemes
PL(φ) : PL(U)→ PL(V ). Since TL(φ)(U) ⊆ V , we have TL(φ)−1(V ∂) ⊆ U∂ .
This means that L(φ)−1(L(V ∂)) ⊆ L(U∂). Thus by Lemma 3.2.4,

PL(φ)−1(P(L(V ∂))) = P(L(φ)−1L(V ∂)) ⊆ P(L(U∂)),

so PL(φ) restricts to a morphism φ : A(U) → A(V ). This defines a func-
tor A : CFib(P)f → Schk, associating a scheme to each finite open category.
Furthermore, the open immersions A(U) ⊆ P(L(U)) defines a natural transfor-
mation κ : A→ P ◦L. The morphism κU is an isomorphism if and only if U is a
discrete fibration, or equivalently, on the form T(M) for some polyhedral set M .

Lemma 4.3.2. Let U be an open category, and let s be a face of U . Consider
the induced morphism ζsU : P(∆s)→ P(L(U)). Then A(∆s

U ) = (ζsU )−1(A(U))
as open subschemes of P(∆s).

Proof. As an open subscheme of P(∆s), we have that A(∆s
U ) = P(∆s)\P(L((∆s

U )∂)).
By Lemma 4.2.4, P(L((∆s

U )∂)) = P(L(T(ζsU )−1(U∂))), which is equal to the
preimage P((ζsU )−1(L(U∂))). By Lemma 3.2.4, this is equal to (ζsU )−1(P(L(U∂)))
as closed subsets of P(∆s). Hence A(∆s

U ) is equal to

P(∆s)\(ζsU )−1(P(L(U∂))) = (ζsU )−1(P(L(U))\P(L(U∂))) = (ζsU )−1(A(U)).

Proposition 4.3.3. Let U be an open category, and let M ⊆ L(U) be an inclu-
sion of polyhedral sets. Then the embedding U ∩ T(M) → T(M) induces an
isomorphism A(T(M) ∩ U)→ A(U) ∩P(M).

Proof. Note first that the induced morphism L(U ∩ T(M)) → L(U) factors
uniquely through M via some morphism φ : L(U ∩ T(M))→M , so the induced
morphism A(U ∩ T(M)) → A(U) restricts to a morphism A(T(M) ∩ U) →
A(U) ∩P(M), where A(U) and P(M) are considered subschemes of P(L(U)).
We proceed by induction on the dimension n of M , noting that for M = ∅, the
statement is trivial. Consider the Milnor squares of schemes∐

s∈Jn
T(M)

P(∆s) // P(M)

∐
s∈Jn

T(M)
P(∂∆s)

OO

// P(Mn−1),

OO
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∐
s∈Jn

U∩T(M)
P(∆s) // P(L(U ∩ T(M)))

∐
s∈Jn

U∩T(M)
P(∂∆s)

OO

// P(L(U ∩ T(M))n−1).

OO

(4.2)

A(U)∩P(M) and A(U ∩T(M)) are open subsets of P(M) and P(L(U ∩T(M)))
respectively. Note that for any s ∈ U∂ ∩T(M), the preimages (ζsT(M))−1(U ∩M)
are empty. It is also clear that ∆s

U∩T(M) = ∆s
U as full open subcategories of

T(∆s) for any s ∈ U ∩ T(M). Moreover, since ∂∆s
U = ∂∆s ∩∆s

U , the inductive
hypothesis ensures that the induced morphism A(∂∆s

U ) → A(∆s
U ) ∩ P(∂∆s)

is an isomorphism compatible with the induced morphisms to P(∂∆s). By
Lemma 4.3.2, we have A(∆s

U ) = (ζsU )−1(A(U)). Hence by Proposition B.2.1,
there are induced pushout squares∐

s∈Jn
U∩T(M)

A(∆s
U ) // A(U) ∩P(M)

∐
s∈Jn

U∩T(M)
A(∂∆s

U )

OO

// A(U) ∩P(Mn−1),

OO

∐
s∈Jn

U∩T(M)
A(∆s

U ) // A(U ∩ T(M))

∐
s∈Jn

U∩T(M)
A(∂∆s

U )

OO

// A(U ∩ T(M)) ∩P(L(U ∩ T(M))n−1).

OO

The inductive hypothesis yields isomorphisms

A(U) ∩P(Mn−1)
∼=−→ A(U ∩ T(Mn−1)), (4.3)

and

A(U ∩ T(M)) ∩P(L(U ∩ T(M))n−1)
∼=−→ A(U ∩ T(M) ∩ T(L(U ∩ T(M))n−1)).

(4.4)
These isomorphisms are compatible with the morphisms into P(Mn−1), hence
into P(M). Recall from Remark 4.2.6 that U ∩ T(M) ∩ L(U ∩ T(M))n−1 =
(U ∩ T(M))n−1, which is isomorphic to U ∩ T(Mn−1) compatibly into T(M).
This means that the isomorphisms (4.3) and (4.4) composes to an isomorphism

A(U ∩ T(M)) ∩P(L(U ∩ T(M))n−1)
∼=−→ A(U) ∩P(Mn−1)

compatibly into P(M). Hence A(U)∩P(M) and A(U ∩T(M)) are pushouts of
isomorphic diagrams, inducing a unique isomorphism between them compatible
with the morphisms into P(M).
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Proposition 4.3.3 and Proposition B.2.1 permits the following definition.

Definition 4.3.4 (The Milnor square for A(U)). Let U be an open cat-
egory, and n ≥ −1 an integer. Then A(Un−1) = A(Un) ∩ P(L(U)n−1)
and A(∂∆n

U ) = A(∆n
U ) ∩A(∂∆n

L(U)) as open subschemes of P(L(U)n−1) and
P(∂∆n

L(U)) respectively. Restricting to A(Un) ⊆ P(Mn) in the Milnor square
(3.1) for P(M) of level n yields a natural pushout square

A(∆n
U ) // A(Un)

A(∂∆n
U )

OO

// A(Un−1),

OO

(4.5)

called the Milnor square for A(U) of level n.

Lemma 4.3.5. A morphism of open categories φ : U → V is surjective (resp.
injective) if and only if φ : A(U)→ A(V ) is surjective (resp. injective).

Proof. We proceed by induction on the dimension n of V . Note that the base case
of V = ∅ is trivial. Consider the Milnor square (4.5) for A(V ) of level n. We may
assume that n ≥ 0. Assume first that φ : U → V is surjective (resp. injective).
Since φ′ : Un−1 → V n−1 is surjective (resp. injective), the inductive hypothesis
implies that φ′ : A(Un−1) → A(V n−1) is surjective (resp. injective). In the
notation of Definition 3.2.3, it remains to show that the restricted morphism
Tn
L(U) ∩ A(U) → Tn

L(V ) ∩ A(V ) is surjective (resp. injective). But note that
L(φ) : L(U)→ L(V ) is surjective (resp. injective on n-dimensional faces). This
means that the induced morphism Tn

L(U) → Tn
L(V ) is surjective (resp. injective)

by Lemma 3.2.4. But Tn
L(U) = P(L(U))\P(L(U)n−1), and since U∂ ⊆ L(U)n−1,

we have that Tn
L(U) ⊆ A(U). This shows that φ : A(U) → A(V ) is surjective

(resp. injective). Conversely, assume that φ : A(U) → A(V ) is surjective
(resp. injective). As a function of sets, φ decomposes as a disjoint union of the
pair of surjective (resp. injective) morphisms φ′ : A(Un−1) → A(V n−1) and
Tn
L(U) → Tn

L(V ). By the inductive hypothesis, φ′ : Un−1 → V n−1 is surjective
(resp. injective). Since Tn

L(U) and Tn
L(V ) are disjoint unions of schemes on the

form P(∆P )\P(∂∆P ), one for each face in Un and V n respectively, it follows
that the entire morphism φ : U → V is surjective (resp. injective). By induction,
we are done.

4.4 Étale morphisms

The aim now is to prove the following theorem, which will be done through a
series of lemmas.

Theorem 4.4.1. Let φ : U → V be a local isomorphism of open categories. Then
φ : A(U)→ A(V ) is étale.

Lemma 4.4.2. Let φ : U → V be a local isomorphism of open categories. Then,
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a) φ : A(U)→ A(V ) is flat;

b) for any other morphism ψ : W → V , the induced morphism

π1 × π2 : A(U ×V W )→ A(U)×A(V ) A(W ) (4.6)

is an isomorphism.

Proof. Let V be n-dimensional. We will prove a) and b) simultaneously, proceed-
ing by induction on n. Note that the base case of V = ∅ is trivial, so we may
assume that n ≥ 0. The Milnor square (4.5) for A(V ) of level n is induced by the
Milnor square (3.1) for P(L(V )) by restriction to A(V ), and similarly for A(U).
By Proposition B.2.1, (4.5) is locally a Milnor square of rings, hence we may
apply Theorem B.1.1 a) to verify flatness of φ : A(U)→ A(V ). Interpreting the
conditions of the proposition for schemes, we are required to show the following:

1) the morphisms φ∆ : A(∆n
U )→ A(∆n

V ) and φ′ : A(Un−1)→ A(V n−1) are
flat;

2) the canonical morphisms

A(∂∆n
U )→ A(Un−1)×A(V n−1) A(∂∆n

V ) (4.7)

and
A(∂∆n

U )→ A(∂∆n
V )×A(∆n

V
) A(∆n

U ) (4.8)
are isomorphisms.

1) φ∆ : A(∆n
U ) → A(∆n

V ) is locally on the form A(∆s
U ) → A(∆φ(s)

V ) for faces
s ∈ U . By Lemma 4.3.2, each of these morphisms are open immersions — hence
flat. The truncated morphism φ′ : Un−1 → V n−1 is a local isomorphism since
φ : U → V is, so φ′ : A(Un−1)→ A(V n−1) flat by the inductive hypothesis. 2)
By the inductive hypothesis, the canonical morphism A(Un−1 ×V n−1 ∂∆n

V )→
A(Un−1) ×A(V n−1) A(∂∆n

V ) is an isomorphism. But since φ : Un → V n is a
local isomorphism, Lemma 4.2.7 implies that the induced morphism τn : ∆n

U →
U ×V ∆n

V is an isomorphism. Truncating yields an isomorphism τ ′n : ∂∆n
U →

Un−1 ×V n−1 ∂∆n
V , thus composing to an isomorphism

A(∂∆n
U ) A(τ ′n)−−−−→ A(Un−1 ×V n−1 ∂∆n

V )
∼=−→ A(Un−1)×A(V n−1) A(∂∆n

V )

which is just (4.7). Locally, (4.8) is on the form A(∂∆s
U )→ A(∂∆φ(s)

V )×A(∆φ(s)
V

)

A(∆s
U ). Since A(∆s

U )→ A(∆φ(s)
V ) is an open immersion, the fibered product is

just the intersection A(∂∆φ(s)
V ) ∩A(∆s

U ) in A(∆φ(s)
V ). By Proposition 4.3.3,

A(∂∆φ(s)
V ) = A(∆φ(s)

V ∩ ∂∆φ(s)) = A(∆φ(s)
V ) ∩P(∂∆φ(s)).

Hence

A(∂∆φ(s)
V )∩A(∆s

U ) = P(∂∆φ(s))∩A(∆φ(s)
V )∩A(∆s

U ) = P(∂∆s)∩A(∆s
U ) = A(∂∆s

U ).
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This means that (4.8) is an isomorphism. We conclude that φ is flat.
Applying Theorem B.1.1 b) here shows that the canonical morphisms

A(Un−1)→ A(U)×A(V ) A(V n−1), (4.9)

A(∆n
U )→ A(U)×A(V ) A(∆n

V ), (4.10)

A(∂∆n
U )→ A(U)×A(V ) A(∂∆n

V ) (4.11)

are isomorphisms. Next, let ψ : W → V be any morphism. We will show
that (4.6) is an isomorphism by induction on the dimension of W . However, if
dimW < n, then A(W )→ A(V ) factors as A(W )→ A(V n−1)→ A(V ), so by
(4.9) and the inductive hypothesis,

A(U)×A(V ) A(W ) ∼= A(U)×A(V ) A(V n−1)×A(V n−1) A(W )
∼= A(Un−1)×A(V n−1) A(W ) ∼= A(U ×V W ).

The case where W is n-dimensional remains. Applying A(U)×A(V ) (−) to the
the Milnor square (4.5) for A(W ) yields a diagram

A(U)×A(V ) A(∆n
W ) // A(U)×A(V ) A(W )

A(U)×A(V ) A(∂∆n
W )

OO

// A(U)×A(V ) A(Wn−1).

OO

(4.12)

Since φ : A(U)→ A(V ) is flat, this is locally a Milnor square. To show that (4.6)
is an isomorphism, we will compare (4.12) with the Milnor square for A(W×V U)
of level n:

A(∆n
U×VW ) // A(U ×V W )

A(∂∆n
U×VW )

OO

// A(Un−1 ×V n−1 Wn−1).

OO

(4.13)

We require that the following induced morphisms are isomorphisms:

(*) A(∆n
U×VW )→ A(U)×A(V ) A(∆n

W ),
(**) A(Un−1 ×V n−1 Wn−1)→ A(U)×A(V ) A(Wn−1),

(***) A(∂∆n
U×VW )→ A(U)×A(V ) A(∂∆n

W ).

First, observe that for each face (s, t) ∈ U ×V W , ∆(s,t)
U×VW = ∆s

U ∩ ∆t
W as

subpolytopes of ∆(s,t). This implies that the canonical morphism ∆(s,t)
U×VW →

∆s
U×∆ψt

V
∆t
W is an isomorphism. Since ∆s×∆n

V
∆t
U = ∅ whenever φ(s) 6= ψ(t), it

follows that the canonical morphism ∆n
U×VW → ∆n

U ×∆n
V

∆n
W is an isomorphism.

By truncation, this yields an isomorphism ∂∆n
U ×∂∆n

V
∂∆n

W

∼=−→ ∂∆n
W×V U . The
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inductive hypothesis and the isomorphisms (4.9) and (4.11) shows that (∗∗) and
(∗ ∗ ∗) are isomorphisms:

(**) A(U)×A(V ) A(Wn−1)
∼=−→ A(U)×A(V ) A(V n−1)×A(V n−1) A(Wn−1)
∼=−→ A(Un−1)×A(V n−1) A(Wn−1)
∼=−→ A(Un−1 ×V n−1 Wn−1),

(***) A(U)×A(V ) A(∂∆n
W )

∼=−→ A(U)×A(V ) A(∂∆n
V )×A(∂∆n

V
) A(∂∆n

W )
∼=−→ A(∂∆n

U )×A(∂∆n
V

) A(∂∆n
W )

∼=−→ A(∂∆n
U )×∂∆n

V
A(∂∆n

W )
∼=−→ A(∂∆n

U×VW ).

Finally, we will show that (∗) is an isomorphism. By (4.10), we have

A(U)×A(V ) A(∆n
W )

∼=−→ A(U)×A(V ) A(∆n
V )×A(∆n

V
) A(∆n

W )
∼=−→ A(∆n

U )×A(∆n
V

) A(∆n
W ).

Thus we are require that the canonical morphism A(∆n
U×VW )→ A(∆n

U )×A(∆n
V

)
A(∆n

W ) is an isomorphism. Since A(∆s
U ) ×A(∆n

V
) A(∆t

W ) = ∅ whenever
φ(s) 6= ψ(t), this locally amounts to showing that the morphisms A(∆(s,t)

U×VW )→
A(∆s

U ) ×A(∆ψt
V

) A(∆t
W ) = A(∆s

U ) ∩ A(∆t
W ) are isomorphisms for each face

(s, t) ∈ U ×V W , or in other words, that A(∆(s,t)
U×VW ) = A(∆s

U ) ∩A(∆t
W ) as

open subsets of P(∆(s,t)). This is equivalent to showing that P((∆(s,t)
U×VW )∂) =

P((∆s
U )∂)∪P((∆t

W )∂). First write P((∆s
U )∂)∪P((∆t

W )∂) = P((∆s
U )∂∪(∆t

W )∂).
Then observe that (∆s

U )∂ ∪ (∆t
W )∂ = ∆(s,t)\(∆s

U ∩ ∆t
W ). But ∆s

U ∩ ∆t
W =

∆(s,t)
U×VW , so (∆s

U )∂ ∪ (∆t
W )∂ = (∆(s,t)

U×VW )∂ . We conclude that P((∆(s,t)
U×VW )∂) =

P((∆s
U )∂) ∪P((∆t

W )∂), and that (∗) is an isomorphism. This shows that the
diagrams (4.12) and (4.13) are isomorphic. We conclude that the canonical
morphism A(U ×V W )→ A(U ×V W ) is an isomorphism. By induction, we are
done.

Lemma 4.4.3. Let φ : U → V be a local isomorphism of open categories. Then
the diagonal morphism D : U → U ×V U is an injective local isomorphism.

Proof. The identity map U → U factors as U D−→ U ×V U
pr2−−→ U , and by

Lemma 4.1.6 d), the projection map pr2 is a local isomorphism. It follows that
D is a local isomorphism, and it is clearly injective.

Lemma 4.4.4. Let M be a polyhedral set, and let N ⊆ M be a polyhedral
subset. Then the complement T(M)\T(N) ⊆ T(M) induces an open immersion
A(T(M)\T(N))→ P(M), identifying A(T(M)\T(N)) with P(M)\P(N).
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Proof. Let M be n-dimensional. We proceed by induction on n, noting that
the base case of M = ∅ is trivial. Define W = P(M)\P(N). Let U =
T(M)\T(N), and let φ : U → T(M) denote the inclusion. Consider the induced
morphism TL(φ) : TL(U) → T(M). Clearly, TL(φ)−1(T(N)) ⊆ U∂ , so the
morphism P(L(U)) → P(M) restricts to a morphism A(U) → W . Consider
the Milnor square (3.1) of P(M) of level n, and note that P(Mn−1) ∩W =
P(Mn−1)\P(Nn−1). By Proposition B.2.1 c), the following diagram

α−1
M (W ) // W

α−1
M (W ) ∩P(∂∆n

M ) //

OO

P(Mn−1)\P(Nn−1)

OO

is a pushout square. We will compare this with the Milnor square (4.5) of A(U)
of level n. We require that the canonical morphisms

(*) A(∆U )→ α−1
M (W )

(**) A(Un−1)→ P(Mn−1)\P(Nn−1)
(***) A(∂∆n

U )→ α−1
M (W ) ∩P(∂∆n

M )

are isomorphisms. First we note that (∗∗) is an isomorphism by the induc-
tive hypothesis. Next, observe that α−1

M (W ) = P(∆n
M )\P(α−1

M (N)). This
means that α−1

M (W ) ∩ P(∂∆n
M ) = P(∂∆n

M )\P(α−1
M (N)n−1). Since M is n-

dimensional, U is maximally n-dimensional, so the induced morphism ∆n
L(U) →

∆n
M is an injection. Clearly, ∆n

M\∆n
L(U) ⊆ α−1

M (N), and it follows immedi-
ately that ∆n

U = α−1
L(U)(U) → ∆n

M\α
−1
M (N) is an isomorphism. Truncating

yields an isomorphism ∂∆n
U → ∂∆n

M\α
−1
M (N)n−1, so (∗ ∗ ∗) is an isomor-

phism by the inductive hypothesis. It remains to verify that (∗) is an isomor-
phism. This amounts to showing that for every n-dimensional face s ∈ U ,
the morphism A(∆s

U ) → P(∆s)\P((ζsM )−1(N)) is an isomorphism. Since
A(∆s

U ) = P(∆s)\P((∆s
U )∂), we reduce to showing that (∆s

U )∂
∼=−→ (ζsM )−1(N).

But note that (∆s
U )∂ = ∆s\(ζsL(U))−1(U) and (ζsM )−1(N) = ∆s\(ζsM )−1(U), and

finally observe that (ζsL(U))−1(U) = (ζsM )−1(U). We conclude that (∗) is an
isomorphism. These isomorphisms induces an isomorphism of pushout squares,
showing that A(U)→W is an isomorphism. By induction, we are done.

Lemma 4.4.5. Let φ : U → V be an injective local isomorphism. Then φ :
A(U)→ A(V ) is an open immersion.

Proof. First note that the composition U φ−→ V
ηV−−→ TL(V ) is an injective local

isomorphism by Lemma 4.1.7. By definition, ηV : A(V )→ P(L(V )) is an open
immersion, so we may assume that V is on the form T(M) for some polyhedral
set M . By Lemma 4.1.9, the open subcategory T(M)\U of T(M) may be
identified with T(N) for some polyhedral subset N of M . But U ∼= T(M)\T(N),
so Lemma 4.4.4 implies that A(U)→ P(M) is an open immersion.

64



Étale morphisms

Remark 4.4.6. LetM be a polyhedral complex as in Section 2.6 (or more generally
a polyhedral poset), and let s be a face of M . Then the morphism Ms → M
is injective. Indeed, suppose that (t, f1),(t, f2) is a pair of faces of Ms. Since
ζtM : ∆t → M is injective, f1 must be equal to f2. By Proposition 4.1.3 and
Lemma 4.4.5, the morphism A(Ms)→ P(M) is an open immersion.

We are now in a position to prove Theorem 4.4.1:

Proof. By Lemma 4.4.2 a), φ is flat. By Lemma 4.4.3 and Lemma 4.4.5, the
morphism A(D) : A(U)→ A(U ×V U) is an open immersion. By Lemma 4.4.2
b), this is the same as the diagonal morphism A(U)→ A(U)×A(V ) A(U). This
shows that φ is unramified as well, hence étale.

Proposition 4.4.7. Let G be a group acting freely on a polyhedral set M via a
homomorphism ρ : G→ Aut(M), and let π : M →M/G be the categorical group
quotient. Then π is a local isomorphism.

Proof. Let s be a face ofM , and consider the local morphism πs : Ms → (M/G)s,
where s is the image of s. Suppose that s f−→ t and s f−→ t′ are two objects of Ms

mapping to the same object s f−→ t of (M/G)s. Then t′ = t, so there exists an
element g ∈ G such that ρ(g)(t) = t′. But then f : s → t and f : ρ(g)(s) → t
are two liftings of the same arrow f in P. By uniqueness of lifts, s = ρ(g)(s).
Since G acts freely, g is equal to the identity element e. This means that πs is
injective. Next, let s f−→ t be an object of (M/G)s, where t is the image of some
face t of M . Let f : s′ → t be the unique lifting of f in P. Then by uniqueness
of lifts in (M/G), s′ = s, so there exists an element g ∈ G such that ρ(g)(s′) = s.
Thus the object s f−→ ρ(g−1)(t) of Ms is mapped to s f−→ t in (M/G)s, and πs is
therefore surjective. Thus πs is bijective, and therefore an isomorphism.

Propositions 4.1.3 and 4.4.7 and Theorem 4.4.1 immediately yields the
following corollaries.

Corollary 4.4.8. Let U be an open category, and s ∈ U as face of U . Then the
induced morphism A(Us)→ A(U) is étale.

Corollary 4.4.9. Let G be a group acting freely on a polyhedral set M , and let
π : M → M/G be the categorical group quotient. Then the categorical group
quotient π : P(M)→ P(M/G) of schemes is étale.
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Chapter 5

The link of a polyhedral set
In this chapter we will define the link of a unimodular open category, and later
more generally of an open category over the category Psm of smooth polytopes.
The link of an open category U at a face s is denoted lkU (s), and is generally a
unimodular set. This generalizes the ordinary link construction[MS05, Definition
1.38] for simplicial complexes. We will further show that there are isomorphisms

A(Ms) ∼= Spec Γ(lkM (s))×Gdim s
m ,

which will become useful in Chapter 6 and Chapter 7. In particular, the relation
between links lkM (s) and the local topology of |M | becomes crucial when it
comes to the topological characterization of Cohen-Macaulay and Gorenstein
properties we shall see in Theorem 6.3.3 and Theorem 6.4.6.

5.1 The link construction

Let s be a face of an open category U over Fin. Let n = |s|, and consider
the open category Us. Then Us defines a functor Us : (n ↓ Fin)op → Set as
follows: On objects, (m, f) 7→ {(t, f) ∈ Us : |t| = n}. Let h : (m, f) → (r, g)
be an arrow in (n ↓ Fin). Then g = h ◦ f in Fin. For any object (t, g) in
Us(r, g), the factorization n f−→ m

h−→ r lifts to a unique factorization s f−→ t′
h−→ t

of g, and we define Us(h) by (t, g) 7→ (t′, f). The assignment U 7→ Us is
natural in pairs (U, s). We define a functor Mn : (n ↓ Fin) → Fin+ as follows:
On objects, we let Mn(m, f) = [m]\ im f , which is (uniquely) identified with
the ordinal [m − n − 1] ∈ Fin+. If h : (m, f) → (r, g) is an arrow, then
Mn(h) : [m]\ im f → [r]\ im g is given by the restriction of h : [m] → [r],
and λMn(h) : Z[m−n−1] → Gm is given by ei 7→ λh(ej), where j 7→ i via
[m]\ im f → [m− n− 1].

Definition 5.1.1. Let n be an object of Fin. We define the link functor lk :
Pre((n ↓ Fin)) → Pre(Fin+) as the Yoneda extension of YFin+ ◦ Mn : (n ↓
Fin)→ Pre(Fin+) along the Yoneda embedding Y(n↓Fin).

(n ↓ Fin)

Y(n↓Fin)

��

YFin+◦Mn // Pre(Fin+)

Pre((n ↓ Fin))
lk

55

Let j : Fin → Fin+ denote the embedding of categories. For any pair (U, s),
we define the link of s in U as the unimodular set lk(Us) ◦ jop : Finop → Set,
denoted lkU (s). This is functorial in pairs (U, s).
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For any pair (U, s), we have lkU (s) = lim−→s
f−→t

∆M|s|((|t|,f)). Note the similarity
with the description of L(Us) as lim−→s

f−→t
∆t. In fact — as we will see — there is

a close connection between the face rings of lkU (s) and L(Us).

Definition 5.1.2. A functor F : A→ B is fibered in groupoids if

• for every arrow f : b′ → b in B and object a ∈ A with F (a) = b, there
exists a lifting g : a′ → a of f in A, and

• for every pair of arrows g : a′ → a, g′ : a′′ → a and any arrow f : F (a′′)→
F (a′) such that F (g)f = F (g′), there exist a unique lifting h : a′′ → a′ of
f such that gh = g′.

If F is fibered in groupoids, then the fiber category F−1(b) (consisting of objects
a ∈ A such that F (a) = b, and arrows g : a → a′ such that F (g) = idb) is a
groupoid for each b ∈ B.

Lemma 5.1.3. For each n ∈ Fin, the functor Mn : (n ↓ Fin)→ Fin+ is fibered
in groupoids.

Proof. Let (m, f) ∈ (n ↓ Fin), and let h : [r]→ Mn(m, f) = [m− n− 1] be an
arrow. Let g : [n]→ [r+n+1] be any arrow, and h′ : [r+n+1]→ [m] the unique
arrow such that h′g = f and such that when restricted to [r + n + 1]\ im(g),
it agrees with the arrow [r + n + 1]\ im(g) → [m]\ im(f) induced by h. Then
h defines an arrow (r + n + 1, g) → (m, f) such that Mn(h′) = h. Next, let
g : (m′, f ′) → (m, f) and g′ : (m′′, f ′′) → (m, f) be a pair arrows, and let
h : Mn(m′′, f ′′)→Mn(m′, f ′) be an arrow such that Mn(g)h = Mn(g′). Via the
construction above, there exists a lifting h′ : (m′′, f ′′)→ (m′, f ′) of h. Moreover,
the fact that (gh′)f ′′ = gf ′ = g′f ′′ and Mn(gh′) = Mn(g′) implies that gh′ = g.
This further implies uniqueness, since every arrow in Fin is a monomorphism.

Lemma 5.1.4. Let U be a unimodular open category, and let s be a face of U .
Then,

a) lkU (s)n = {(t, f) ∈ Us : dim t = dim s + n + 1 and t ∈ U can} for all
n ∈ Fin, and

b) every arrow in T(lkU (s)) is on the form (t, f) Mn(g)−−−−→ (u, gf). Hence lkU (s)
satisfies (∗).

Proof. Let [r] = |s|. By Lemma 5.1.3, Mr is fibered in groupoids. Hence by
a similar argument as in Lemma A.0.6 a), lkU (s)n = lim−→Mr(m,f)=[n] Us(m, f),
where the colimit is taken over the fiber of [n], i.e. the groupoid of objects
(m, f) ∈ (r ↓ Fin) such that Mr(m, f) = [n]. It follows from the condition (∗)
that objects on the form (t, f) where t ∈ U can is a choice of representatives for
each isomorphism class in this groupoid. Hence a) gives the desired representation
of the colimit.
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b) Suppose that (u, g) ∈ Us(m′, g), and let h : [n] → Mr(m′, g) be any
arrow. Then there exists a lifting of h to an arrow h′ : (m, f) → (m′, g)
such that Mr(h′) = h, unique if f is fixated. Here g = h′f . By definition,
hlkU (s)(u, g) = (t, f), where t h′−→ u is the unique lifting of m h′−→ m′ in U . The
requirement that t is a canonical representative fixes f , and therefore h′. This
yields the arrow (t, f) Mn(h′)−−−−−→ (u, h′f) in T(lkU (s)), and clearly every arrow
arises in this way.

5.2 Properties and relations with the face scheme

Lemma 5.2.1. Let m ∈ Fin, and let f ∈ ∆m
n be any face. Then lk∆m(f) ∼=

∆Mn(m,f).

Proof. This follows immediately from the observation that the open category ∆m
f

defines the representable functor (n ↓ Fin)(−, (m, f)) : (n ↓ Fin)op → Set.

Remark 5.2.2. Let K be a simplicial complex. The ordinary link construction
for K at a face s is defined as {t ∈ K : t ∪ s ∈ M and t ∩ s = ∅}. Let M be
the polyhedral complex corresponding to K. By Remark 4.4.6, the morphism
Ms → M is injective. Moreover, by Lemma 5.1.4, we have lkM (s)n = {t ∈
T(M)can : s ⊆ t and |t| = |s|+ n+ 1}. Thus the assignment t 7→ t\s defines an
isomorphism between the two versions of links.

Lemma 5.2.3. Let U be an open category over Fin, s a face of U , and (t, f) a
face of lkU (s). Then lklkU (s)(t, f) ∼= lkU (t).

Proof. Let |s| = n and |t| = m. Consider the functor F : (m ↓ Fin) →
(Mn(m, f) ↓ Fin) defined as follows. Any object (r, g) of (m ↓ Fin) can be
considered as an arrow g : (m, f) → (r, gf) in (n ↓ Fin), thus inducing an
arrow Mn(g) : Mn(m, f)→Mn(r, gf). We define F (r, g) = (Mn(r, gf),Mn(g)).
Any arrow h : (r1, g1) → (r2, g2) in (m ↓ Fin) can be considered as an ar-
row h : (r1, g1f) → (r2, g2f) in (n ↓ Fin), thus inducing and arrow Mn(h) :
Mn(r1, g1f) → Mn(r2, g2f). Since Mn(h) ◦Mn(g2) = Mn(g1), this defines an
arrow F (h) : F (r1, g1)→ F (r2, g2). Functoriality of F is clear.

We will now define a natural transformation of functors µ : Ut → lkU (s)(t,f) ◦
F . But first we must unwind some of the definitions. Let (r, g) be an object
of (m ↓ Fin), and let (u, g) ∈ Ut(r, g). Then (u, gf) ∈ Us(r, gf), and we have
an arrow g : (t, f) → (u, gf) in Us as an open category. Consider the arrow
g : (m, f)→ (r, gf) in (m ↓ Fin). By definition, Us(g)(u, gf) = (t, f). Consider
the universal transformation Us → lk(Us) ◦Mn. By naturality, the diagram

Us(r, gf) //

Us(g)
��

lk(Us)(Mn(r, gf))

lk(Us)(Mn(g))
��

Us(m, f) // lk(Us)(Mn(m, f))
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commutes. It follows that lkU (s)Mn(g)(u, gf) = (t, f) as faces of lkU (s). Hence
(t, f) Mn(g)−−−−→ (u, gf) is a valid face of lkU (s)(t,f). In other words, ((u, gf),Mn(g)) ∈
lkU (s)(t,f)(F (r, g)). We define µ(r,g) : Ut(r, g)→ lkU (s)(t,f)(F (r, g)) by (u, g) 7→
((u, gf),Mn(g)). To show that µ is natural, consider an arrow h : (r1, g) →
(r2, hg) in (m ↓ Fin), and let (u, hg) ∈ Ut(r2, hg). By definition, Ut(h)(u, hg)
is equal to a face on the form (v, g) ∈ Ut(r1, g) such that t g−→ v

h−→ u is the
unique lifting m g−→ r1

h−→ r2. It is clear that F (h) = Mn(h) : ((v, gf),Mn(g))→
((u, hgf),Mn(hg)) is a valid arrow in lkU (s)(t,f), and naturality of µ follows.

Next we show that there is an equality of functors Mm = Mq ◦ F , where q =
Mn(m, f). It is clear that for each object (r, g),Mm(r, g) andMq(Mn(r, gf),Mn(g))
are equal as ordinals. If h : (r, g)→ (r′, hg) be an arrow, then F (h) = Mn(h),
and it is easily seen that Mm(h) = Mq(Mn(h)).

Consider the universal transformations η1 : Ut → lk(Ut) ◦ Mm and η2 :
lkU (s)(t,f) → lk(lkU (s)(t,f)) ◦Mq. By the universal property of η1, there exists a
unique natural transformation δ : lk(Ut)→ lk(lkU (s)(t,f)) such that the induced
diagram

Ut
µ //

η1
%%

lkU (s)(t,f) ◦ F
η2F // lk(lkU (s)(t,f)) ◦Mm

lk(Ut) ◦Mm

δMm
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commutes. This induces a morphism φ : lkU (t) → lklkU (s)(t, f) such that
φ(u, g) = ((u, gf),Mn(g)) for all faces (u, g) of lkU (t). Now, every face of
lklkU (s)(t, f) is on the form ((u, gf),Mn(g)). Indeed, suppose that ((u, g), h) is a
face, for some arrow g : n→ r. Then h : (t, f)→ (u, g) is an arrow in T(lkU (s)),
which by Lemma 5.1.4 b) is on the form Mn(g′) : (t, f) → (u, g′f). Hence
((u, g), h) = ((u, g′f),Mn(g′)). It follows that φ is surjective. Next, suppose that
φ(u, g) = φ(v, h). Then ((u, gf),Mn(g)) = ((v, hf),Mn(h)), so u = v, gf = hf
and Mn(g) = Mn(h). Define f ′ := gf = hf : n→ r. Then g, h : (m, f)→ (r, f ′)
are both liftings of Mn(g) = Mn(h), hence equal by the proof of Lemma 5.1.3.
It follows that φ is injective, and therefore an isomorphism.

Lemma 5.2.4. Let M,N be a pair of unimodular sets, s ∈M and t ∈ N . Then
lkM?N ((s, t)) ∼= lkM (s) ? lkN (t).

Proof. Consider the representation of the links from Lemma 5.1.4 a), and the
representation of join from Remark 2.2.7. This allows us to define a morphism
φ : lkM (s) ? lkN (t)→ lkM?N ((s, t)) by ((u, f), (v, g)) 7→ ((u, v), f + g), which is
well-defined and clearly an isomorphism by Lemma 5.1.3.

Lemma 5.2.5. Let P be a polytope, v ∈ P a vertex, and f : 0→ P the associated
arrow. Then the closed subsets V (χ(v,1)) and P((∆P

f )∂) of P(∆P ) are equal.

Proof. By Lemma 3.6.1, we have P(∆Q) = V (σQ) = V (χ(m,d)|(m, d) 6∈ σQ) ⊆
V (χ(v,1)) for all v 6∈ Q, whenever Q → P is a face. Hence P((∆P

f )∂) =

70



Properties and relations with the face scheme

⋃
v 6∈F P(∆F ) ⊆ V (χ(v,1)). Now suppose that χ(v,1)(p) = 0 for some point

p ∈ P(∆P ). To show the reverse inclusion, we require that χ(m,d)(p) = 0 for all
(m, d) 6∈ σF whenever v 6∈ F . Suppose that (m, d) ∈ C(P ) is such a lattice point.
Then for each integer k, we have χ(m,d)(p)k = χ(km,kd)(p). If it is possible to
write χ(km,kd) = χ(v,1)χ(m′,d′) for some k > 0 and (m′, d′) ∈ C(P ), we are done.
In other words, we require that km−v ∈ (kd−1)P ⇔ 〈km−v, uF 〉 ≥ −(kd−1)aF
for all facets F . Rewriting the inequality as dk(〈md , uF 〉+ aF ) ≥ 〈v, uF 〉+ aF ,
one observes that it is obtained for all F such that m

d 6∈ F for k sufficiently
large. On the other hand, if m

d ∈ F , then v ∈ F as well, so the inequality is
automatically satisfied.

For each arrow g : Q → P , define θg =
∏
f :0→Q χ

(gf(0),1) ∈ Γ(∆P ). If U is
an open category, and s is a face of U , then we define θs ∈ Γ(L(Us)) via its
restriction to θf ∈ Γ(∆(t,f)) for each (t, f) ∈ Us.

Corollary 5.2.6. Let f : Q → P be any arrow in P. Then the closed subsets
V (θf ) and P((∆P

f )∂) of P(∆P ) are equal.

Proof. By Lemma 5.2.5, we have to show that (∆P
f )∂ =

⋃
g:0→Q(∆(P,f)

fg )∂ , i.e.
∆P
f =

⋂
g:0→Q ∆P

fg. The open subcategory ∆P
f ⊆ ∆P consists of the arrows

h : R → P which factors f : Q → P . For any arrow g : 0 → Q, an arrow
h : R → P factoring f also factors fg, so ∆P

f ⊆ ∆P
fg. For the other direction,

suppose that h : R → P factors every arrow on the form fg : 0→ P . Then R
must contain every vertex of Q, and thus contains Q. One can easily produce a
factorization Q→ R

h−→ P of f .

Proposition 5.2.7. Let U be an open category, and s a face of U . Then the open
subschemes A(Us) and D+(θs) of P(L(Us)) are equal.

Proof. By Corollary 5.2.6, there is an exact sequence

0→
√

(θf )→ Γ(∆(t,f))→ Γ((∆(t,f)
Us

)∂)→ 0 (5.1)

for each face (t, f) of Us. This sequence is moreover natural in (t, f). Now,
observe that ∆(t,f)

Us
= ∆t

f as open subcategories of ∆t. Indeed, both ∆t
f and

∆(t,f)
Us

can be viewed as the subset of ∆t consisting of arrows g : R → |t|
which factors f : |s| → |t|. It follows that (ζ(t,f)

Us
)−1(U∂s ) = (∆t

f )∂ . Since
colimits in the category of sets commutes with fibered products, there are
isomorphisms lim−→s

f−→t
(∆t×L(Us) U

∂
s )
∼=−→ (lim−→s

f−→t
∆t)×L(Us) U

∂
s . In other words,

lim−→s
f−→t

(∆t
f )∂

∼=−→ U∂s . This is a connected colimit, so by Proposition 2.3.3 we

have that Γ(U∂s )
∼=−→ lim←−s f−→t

Γ((∆t
f )∂). Taking the limit of (5.1), one obtains an

exact sequence

0→ lim←−
s
f−→t

√
(θf )→ Γ(L(Us))→ Γ(U∂s )→ 0.

71



5. The link of a polyhedral set

It is easy to show that lim←−s f−→t

√
(θf ) =

√
(θs) as ideals of Γ(L(Us)), and the

result follows from this.

Lemma 5.2.8. Let U be an open category over Fin, and let s be a face of U .
Then there exists an isomorphism lkU (s) ?∆s

∼=−→ L(Us), which restricts to an
isomorphism lkU (s) ? ∂∆s

∼=−→ U∂s .

Proof. Define n = |s|. For each face (t, f) of Us, let af : [Mn(|t|, f)]→ [t] denote
the arrow in Fin+ corresponding to the inclusion of ordinals [t]\ im f → [t].
Consider the homeomorphism φ(t,f) : IFin+(Mn(|t|, f)) ? |s| → |t| given by

(x0, . . . , xMn(|t|,f), t, y0, . . . , yn) 7→ (z0, . . . , z|t|),

where zf(i) = tyi for each i, and zaf (j) = (1− t)xj for each j (we put λφ(t,f) =
1). Here we have identified IFin+(Mn(|t|, f)) with Conv(e0, . . . , en) ⊆ R[n]

for simplicity of notation. These maps are evidently natural in faces (t, f),
and the corresponding isomorphisms ψ(t,f) : ∆Mn(|t|,f) ? ∆s → ∆t induces
an isomorphism lkU (s) ? ∆s → L(Us) upon taking colimits. By the proof
of Proposition 5.2.7, there is an isomorphism lim−→s

f−→t
(∆t

f )∂
∼=−→ U∂s , and —

as observed — (∆t
f )∂ can be written as the union

⋃n
j=0 ∆df(j) . Note that

the inclusions |∆df(j) | → |∆t| are identified with the restriction of φ(t,f) to
|∆Mn(|t|,f) ? ∆dj |. Since |∂∆s| =

⋃n
j=0 |∆dj |, this identifies the restriction of

ψ(t,f) to ∆Mn(|t|,f) ? ∂∆s with the inclusion (∆t
f )∂ → ∆t. Taking colimits we

obtain an isomorphism lkU (s) ? ∂∆s → U∂s , which is the restriction of φ.

Corollary 5.2.9. Let U be a unimodular open category, and let s a face of U .
Then there is a natural isomorphism

Γ(lkU (s))⊗ Γ(∆s)(θid|s| )
∼=−→ Γ(L(Us))(θs) (5.2)

inducing an isomorphism

A(Us)→ Spec(Γ(lkU (s)))×k (Gm)dim s. (5.3)

5.3 Extension to smooth polytopes

Let P be a polytope, and let v be a vertex of P . For each edge E containing v,
let wE,v denote the first lattice point along E other than v. Consider the set of
vectors {wE,v − v}v∈E ∈ Zdim(P ). If this set forms a Z-basis for Zdim(P ) for all
vertices v, then P is called smooth. Let Psm denote the full subcategory of P
consisting of smooth polytopes respectively.

Definition 5.3.1. A smooth open category is an open category U over Psm.
Similarly, a polyhedral set M is called smooth if MP is non-empty only for
smooth polytopes. Note that ∆P is smooth if and only if P is smooth. Also
note that unimodular sets are smooth.
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Extension to smooth polytopes

Remark 5.3.2. We continue with the notation above. Following [CLS11], Cv =
Cone(P ∩ Zdim(P ) − v) is the dual of the maximal cone σv ∈ ΣP , and the
corresponding affine toric variety Uσv is isomorphic to Spec k[Cv ∩ Zdim(P )].
Since {wE,v − v}v⊂E is a Z-basis, the cone Cv is generated by the vectors
wE,v − v, so the assignment (P, v) 7→ Cv is functorial. Moreover, there is a
natural isomorphism k[Cv ∩ Zdim(P )] → Γ(∆P )(χ(v,1)) given on generators by
χm 7→ χ(m,1)

χ(v,1) . Again, since {wE,v − v}v⊂E is a Z-basis, the ring Γ(∆P )(χ(v,1)) is

a polynomial ring on generators χ(wE,v,1)

χ(v,1) .
We define a functor M(P,v) : (P ↓ Psm)→ Fin+ as follows: On objects, we

let

M(P,v)(Q, f) = {E ⊆ Q|E is an edge such that fR(v) ⊆ Q and E 6⊆ fR(P )}.

Since Q is smooth, M(P,v)(Q, f) has cardinality dim(Q). We order this set
compatibly with the order on {wE,f(v)− f(v)}E∈M(P,v)(Q,f) ⊆ Zdim(P ) under the
the lexicographical order on Zdim(Q). Hence M(P,v)(Q, f) can be identified with
the ordinal [dim(Q)−dim(P )−1] ∈ Fin+. Any arrow h : (Q, f)→ (R, g) induces
an inclusion of sets M(P,v)(Q, f) ⊆ M(P,v)(R, g), and we define M(P,v)(h) :
[dim(Q) − dim(P ) − 1] → [dim(R) − dim(P ) − 1] to be the corresponding
arrow in Fin+, and the character λM(P,v)(h) : ZM(P,v)(Q,f) → Gm is given by
eE 7→ λh(wE,f(v), 1). If P is a vertex itself, we will write M0 for M(0,0).

Let s be a face of a smooth open category U , and let P = |s|. Analogous
to before, Us defines a functor Us : (P ↓ Psm)op → Set: On objects (Q, f) 7→
{(t, f) ∈ Us : |t| = Q}. Let h : (Q, f) → (R, g) be an arrow in (P ↓ Psm).
Then g = h ◦ f in Psm. For any object (t, g) in Us(R, g), the factorization
P

f−→ Q
h−→ R lifts to a unique factorization s f−→ t′

h−→ t of g, and we define Us(h)
by (t, g) 7→ (t′, f).

Definition 5.3.3. We define the link functor lkv : Pre((P ↓ Psm))→ Pre(Fin+)
as the Yoneda extension of YFin+ ◦M(P,v) : (P ↓ Psm) → Pre(Fin+) along the
Yoneda embedding Y(P↓Psm). Let j : Fin → Fin+ denote the embedding of
categories. For any pair (U, s) and vertex v ∈ |s|, we define the link of s in
U as the unimodular set lkv(Us) ◦ jop : Finop → Set, denoted lkvU (s). This is
functorial in triples (U, s, v).

Continuing with the notation above, consider the homomorphism

Γ(∆M(P,v)(Q,f)) = k[xE |E ∈M(P,v)(Q, f)]→ Γ(∆Q)

given by xE 7→ χ(wE,f(v),1), and the homomorphism Γ(∆P )→ Γ(∆Q) given by
χ(m,d) 7→ λf (m, d)−1χAf (m,d). They are both evidently natural in (Q, f) ∈ (0 ↓
Psm), and induce a natural homomorphism(

Γ(∆M(P,v)(Q,f))⊗k Γ(∆P )
)

(1⊗θidP )
→ Γ(∆Q)(θf ). (5.4)

This is in fact an isomorphism, which follows from the observation in Remark 5.3.2
(both sides can be viewed as polynomial rings localized at a monomial).
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Proposition 5.3.4. Let U be a smooth open category, let s be a face of U , and
let v ∈ |s| be a vertex. Then there is a natural isomorphism

Γ(lkvU (s))⊗k Γ(∆s)(θid|s| )
∼=−→ Γ(L(Us))(θs) (5.5)

inducing an isomorphism

A(Us)→ Spec(Γ(lkvU (s)))×k Gdim(s)
m . (5.6)

Proof. Let (t, g) be a face of Us. Via (5.4), we have

Γ(∆M(|s|,v)(|t|,g))⊗k Γ(∆s)(θid|s| )
→ Γ(∆t)(θg), (5.7)

naturally in (t, g) ∈ Us. Taking the limit on both sides yields the desired injection
(5.5).

5.4 Links and local topology

Let M be a polyhedral set, and let p ∈ |M | be any point. Then there is a
unique face s(p) of M (such that |s(p)| is a canonical representative) of minimal
dimension such that p ∈ |Ms(p)|. We will also write p for the unique point in
|∆s(p)|\|∂∆s(p)| which maps to p ∈ |M | via |ζs(p)M |. For each arrow f : s(p)→ t
in T(M), we define

Bf = int(ε(|∆t| − fR(p)) + fR(p)) ⊆ |∆t| (for some fixed ε < 1).

We also define Bt =
⋃
f :s(p)→tBf . If ε is sufficiently small, the open subsets Bf

are pairwise disjoint. Note that for each factorization s h−→ u
g−→ t of f : s→ t,

we have
|ζg∆t |(Bh) = im |ζg∆t | ∩Bf . (5.8)

Proposition 5.4.1. There exists a contractible open neighbourhood BMε (p) of p
such that

(∗) |ζtM |−1(BMε (p)) = Bt for each face t of M .

Proof. Suppose first that s(p) is a facet. Then |∆s(p)|\|∂∆s(p)| → |M | is the
inclusion of a cell, and Bs(p) defines the required contractible open neighbourhood
satisfying (∗). We proceed by induction on the dimension n of M . If n = 0, then
s(p) is necessarily a facet, and we are done. So assume that n ≥ 1, and that
s(p) is not a facet. By the inductive hypothesis, there exists a neighbourhood
BM

n−1

ε (p) ⊆ |Mn−1| of p satisfying (∗). Then |ζtM |−1(BMn−1

ε (p)) = Bt for each
face t of Mn−1. However, if t is an n-dimensional face of M , then

|ζtM |−1(BM
n−1

ε (p)) =
⋃
u
g−→t

dimu≤n−1

|ζg∆t |(Bu) =
⋃
u
g−→t

dimu≤n−1

⋃
s
h−→u

im |ζg∆t |∩Bε(|ζgh∆t |(p))

(5.9)
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by (5.8). Any arrow g : u→ t factors through some (n− 1)-dimensional face, so
the union (5.9) remains unaffected if we restrict ourselves to those faces u with
dim u = n − 1. Since Bε(|ζgh∆t |(p)) does not intersect any (n − 1)-dimensional
subpolytope of |∆t| other than im |ζg∆t |, we have for each (n− 1)-dimensional
face u that im |ζg∆t | ∩Bε(|ζgh∆t |(p)) = |∂∆t| ∩Bε(|ζgh∆t |(p)). The arrows gh : s→ t
ranges over all arrows f : s→ t as g and h varies. In conclusion,

|ζtM |−1(BM
n−1

ε (p)) =
⋃
u
g−→t

dimu=n−1

⋃
s
h−→u

|∂∆t| ∩Bε(|ζgh∆t |(p))

=
⋃
s
f−→t

|∂∆t| ∩Bε(|ζgh∆t |(p)) = |∂∆t| ∩Bt.

Thus we may define BMn

ε (p) = BM
n−1

ε (p) ∪
⋃

dim t=n Bt\|∂∆t|, which satisfies
(∗). It is an open subset of |M | since each |ζtM |−1(BMn

ε (p)) is open. A homotopy
from BM

n−1

ε (p) to p is obtained by letting ε→ 0, so it is also contractible. By
induction, we are done.

Lemma 5.4.2. Let φ : M → N be a morphism of polyhedral sets, and let p ∈ |M |.
If φs(p) : Ms(p) → Nφ(s(p)) is an isomorphism, then |φ| : |M | → |N | restricts to
a homeomorphism BMε (p)→ BNε (|φ|(p)).

Proof. Assume first that s(p) is a facet. Since φs(p) is an isomorphism, φ(s(p))
is a facet as well. Then it is clear that Bs(p) → Bφ(s(p)) is an isomorphism. It
will suffice to show that for each integer n, |φ| : |Mn| → |Nn| restricts to such a
homeomorphism. We proceed by induction on n, and we may assume that s(p)
is not a facet. The case n = 0 is therefore already proved, so we may assume
that n ≥ 1. Since s(p) is a face of Mn−1, p is contained in |Mn−1|. By the
inductive hypothesis, |φ′| : |Mn−1| → |Nn−1| restricts to a homeomorphism
BM

n−1

ε (p)→ BN
n−1

ε (|φ|(p)). By construction, we need to show that |φ| restricts
to a bijection ⋃

u∈Jn
M

Bu\|∂∆u| →
⋃
t∈Jn

N

Bt\|∂∆t|.

We reduce to showing that |φ∆| : ∆n
M → ∆n

N restricts to a bijection
⋃
φ(u)=tBu →

Bt for each fixed t ∈ Jn
N . For each arrow f : s(p) → u in T(M), the open

neighbourhood Bε(|ζf∆u |(p)) ⊆ Bu maps bijectively to Bε(|ζf∆t |(|φ|(p))) ⊆ Bt,
where f : φ(s(p))→ t is the induced arrow in T(M). So we simply require that
for each arrow f : φ(s(p))→ t in T(N), there exists a unique arrow g : s(p)→ u
in T(M) mapping to g. But this is exactly the content of φs(p) being a bijection.
We conclude that |φ| restricts to a bijection BMε (p) → BNε (|φ|(p)). Next, the
open sets BMε (p) for varying p and ε clearly forms a basis for the topology of |M |.
This implies that |φ| is an open map, so the restriction of |φ| is a homeomorphism.
By induction, we are done.

Proposition 5.4.3. Let M be a polyhedral set, and let p : S → |M | be a covering
space. Then there exists a local isomorphism π : N →M such that |π| = p.
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5. The link of a polyhedral set

Proof. By [Bre93, Theorem 8.10], S inherits a unique CW complex structure
from |M |: For each integer n ≥ 0, the characteristic maps fα : Dn → S are
exactly those for which p◦fα : Dn → |M | is a characteristic map of |M |. In other
words, the characteristic maps fα : Dn → S are the liftings of the characteristic
maps Dn → |M |, unique upon specification of the image of any point by fα.
We only have to show that the CW complex structure on S is realized by a
polyhedral set N , and that p is induced by a morphism π : N →M . For each
P ∈ Psimp, define

NP = {h : |∆P | → S : p ◦ h = |ζsM | : |∆s| → |M | for some s ∈MP }.

For each arrow f : P → Q, fN : NQ → NP is given by h 7→ h ◦ |ζf∆Q |. This
clearly defines a polyhedral set N , and the morphism π : N → M is given
by h 7→ s, where s is the face of M such that p ◦ h = |ζsM |. Consider the
CW complex structure on |N | given by the diagram (2.7). By definition, the
characteristic maps fα : Dn → |N | are such that p ◦ fα is a characteristic map of
|M |. By construction of N , these are all the liftings of the characteristic maps
of |M |. Thus |N | and S are canonically identified in such a way that for each
face h of N , we have |ζhN | = h. Now, π ◦ ζhN = ζ

π(h)
M for every face h of N , so

|π| ◦ h = |ζπ(h)
M | = p ◦ h. Since the characteristic maps are jointly surjective,

it follows that |π| = p. Next, let h ∈ NP , and consider the local morphism
πh : Nh → Mπ(h). We will show that πh is bijective. Let f : P → Q be any
arrow in Psimp and suppose that (h1, f) and (h2, f) is a pair of faces of Nh
mapping to the same face (t, f) of Mπ(h). We need to show that h1 = h2. Since
t = π(h1) = π(h2), we have |π| ◦ h1 = |ζtM | = |π| ◦ h2. This means that h1 and
h2 are both liftings of |ζtM |, hence uniquely specified by a point in their image.
But h1 ◦ |ζf∆Q | = h = h2 ◦ |ζf∆Q |, and thus share a point of specification. We
conclude that h1 = h2, and that πh is injective. Suppose now that (t, f) is any
face of Mπ(h) for some arrow f : P → Q, and consider the lifting h′ : |∆Q| → S

of |ζtM | specified by the image of a point in the image of |ζf∆Q | : |∆P | → |∆Q|.
Then h and h′ ◦ |ζf∆Q | are both liftings of |ζπ(h)

M | sharing a point of specification,
hence equal. This means that the induced face (h′, f) of Nh maps to (h, f),
which implies that that πh is surjective.

Lemma 5.4.2 and Proposition 5.4.3 yields the following result.

Corollary 5.4.4. A morphism φ : M → N of polyhedral sets is a local isomor-
phism if and only if |φ| : |M | → |N | is a covering space, and all covering spaces
of |N | are obtained in this way.

Lemma 5.4.5. Let M be a unimodular set, let p ∈ |M | be a point, and define
n = dim(s(p)). Then Hi(|M |, |M |\p) ∼= H̃i−n−1(lkM (s(p))) for each integer i.

Proof. Since Hi(|M |, |M |\p) ∼= Hi(BMε (p), BMε (p)\p), we may replace M with
L(Ms(p)) by Lemma 5.4.2, and hence with lkM (s) ? ∆s(p) by Lemma 5.2.8.
Thus we have reduced to showing the following claim: If M is on the form
N ? ∆s(p), and s(p) = (∅, idn), then Hi(|M |, |M |\p) ∼= H̃i−n−1(|N |) for all
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i. Since |M | ∼= |N | ? |∆s(p)| is contractible, we may equivalently prove that
H̃i(|M |\p) ∼= H̃i−n(|N |) for all i. Here p ∈ |N | ? |∆s(p)| corresponds to an
interior point q of |∆s(p)| ∼= Dn, where Dn is the n-disc. It is easy to see that
there is a homotopy equivalence between |N | ? |∆n|\p and |N | ? Sn−1. But
|N | ? Sn−1 is isomorphic to the n-fold suspension Σn|N |, so

H̃i(|M |\p) ∼= H̃i(Σn(|N |)) = H̃i−n(|N |).
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Chapter 6

Cohen-Macaulay and Gorenstein
properties
This chapter will be concerned with the following objectives: First, for unimodular
setsM , we will give a complete classification of thoseM for which Γ(M) is Cohen-
Macaulay(Theorem 6.3.3) and Gorenstein(Theorem 6.4.6) respectively. Second,
we will use the degenerations via subdivisions from Section 2.9 to show that
the dualizing sheaf of P(M) (for a polyhedral set M) satisfies ω⊗2

M
∼= OM (resp.

ωM ∼= OM ) if and only if |M | is a homology manifold (resp. orientable homology
manifold). The general argument is that these properties are stable in proper
families, hence it suffices to show it for the degenerate case of simplicial manifolds.
That uses the general idea of [BE91, Theorem 6.1], where the corresponding
result regarding simplicial complexes is shown.

A Noetherian graded ring A of dimension n is Cohen-Macaulay if and only
if Hi

m(A) = 0 for all integers i < n, where m = A+. See [GW78] or [Eis05]
for a reference on graded local cohomology. Naturally, the first step will be to
compute the graded local cohomology groups of the face ring Γ(M). Second, we
will generalize a theorem of Eisenbud[BE91, Theorem 6.1], and show that the
dualizing sheaf of P(M) (for a smooth polyhedral set M) satisfies ω⊗2

M
∼= OM

(resp. ωM ∼= OM ) whenever |M | is a homology manifold (resp. orientable
homology manifold).

Let M be a polyhedral set, and let m = Γ(M)+. Recall that if F is a
sheaf of OM -modules, then Γ∗(F) =

⊕
n∈Z Γ(M,F(n)). Let R be a graded

Γ(M)-module. Then there is an exact sequence

0→ H0
m(R)→M → Γ∗(R̃)→ H1

m(R)→ 0 (6.1)

and graded isomorphisms⊕
d∈Z

Hi(M, R̃(d)) ∼= Hi+1
m (R) (6.2)

relating the local cohomology groups of the moduleM with the cohomology of the
twisting sheaves R̃(d). The requirement given in [GW78, Chapter 5] (called ]) is
that Γ(M)0 = k and that there exists an integer n0 > 0 such that the Veronesian
subring Γ(M)[n] is generated in degree 1 for all n ≥ n0. This is the case here
since the homomorphism Γ(M)→ Γ∗(OM ) is an isomorphism in positive degrees
(Proposition 3.6.3), and OM (1) is an ample invertible sheaf (Proposition 3.2.2).
The computation of Hi

m(Γ(M)) when M is unimodular therefore consists of
computing the cohomology groups Hi(M,OM (d)) for integers d and i ≥ 0.
We have already computed some cases: Hi(M,OM ) ∼= Hi(M ; k) for d = 0
(Theorem 3.4.1), and Hi(M,OM (d)) = 0 for i > 0 and d > 0 (Lemma 3.6.5).
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6. Cohen-Macaulay and Gorenstein properties

The remaining case is d < 0. This is harder, and will involve a more technical
approach using étale cohomology. The computation involves a variant of the
étale Čech complex called the alternating étale Čech complex.

6.1 The alternating Étale Cech complex

We will use [Tam94] as a general reference for étale cohomology and Čech
cohomology. We will briefly outline the notation and definitions involved (with
minor notational deviations). For each étale morphism f : V → X, the global
sections functor ΓV : Pre(Xét) → Ab is defined by F 7→ F (V ). ΓV has a
left adjoint f! : Ab → Pre(Xét), defined by f!A(W ) =

⊕
φ∈Hom(W,V )A. Since

(f!,ΓU ) is an adjoint pair, there are natural isomorphisms Hom(f!Z, F )
∼=−→

Hom(Z,ΓV (F )) = F (V ) for presheaves F on Xét. Let Z denote the constant
presheaf of Z. Then the trace map Trf : f!Z→ Z is defined as the map adjoint
to Z id−→ Z. For each W → X in Xét, Trf (W ) :

⊕
φ∈Hom(W,V ) Z→ Z is given by

summing each element of the direct sum. Let Shv(Xét) denote the category of
sheaves on the étale site Xét. By sheafification, the induced functor f! : Ab→
Shv(Xét) is left adjoint to the global sections functor ΓV : Shv(Xét) → Ab.
The right derived functors RpΓX : Shv(Xét)→ Ab defines the étale cohomology
groups RpΓX(F ) = Hp

ét(X,F ) of F for each integer p ≥ 0. The Leray spectral
sequence associated with the inclusion of sites ε : XZar → Xét relates the étale
cohomology of F with the Zariski-cohomology of F ([Tam94, p.86]):

Epq2 = Hp
Zar(X,R

qεs(F ))⇒ Hp+q
ét (X,F ). (6.3)

Here εs : Shv(Xét)→ Shv(XZar) is given by (εsF )(U) = F (U). If F is a quasi-
coherent sheaf on X, then there is an induced étale sheaf Fét on Xét given by
V 7→ Γ(V, f∗F). Note that εs(Fét) = F . The spectral sequence (6.3) collapses
for F = Fét, inducing isomorphisms

Hp
Zar(X,F)

∼=−→ Hp
ét(X,Fét) (6.4)

for every integer p ≥ 0 ([Tam94, p.103]).
et U = {Ui}i∈I be an étale cover of X, and let F be a presheaf of abelian

groups on Xét. Define U =
∐
i∈I Ui, and let U×p = U ×X . . .×X U denote the p-

fold fibered product overX. Let prj : U×(p+1) → U×p denote the projection from
the j’th factor. We denote the fibered product Ui0×X . . .×XUip by Ui0...ip . Then
U×(p+1) can be written as

∐
(i0,...,ip)∈Ip+1 Ui0...ip , and the projection morphisms

prj : U×(p+1) → U×p restricts to projection morphisms prj : Ui0...ip → U
i0...îj ...ip

.
Consider the presheaf ZU :=

⊕
i∈I f

i
! Z, where f i : Ui → X are the morphisms

associated to the cover U . We define the trace map Tr : ZU → Z as the sum of
the trace maps Trfi : f i! Z→ Z. Then Tr induces a chain complex

C• : ZU ← Z⊗2
U ← · · · ← Z⊗(p+1)

U ← · · · (6.5)
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which is acyclic in positive degrees (C• can be viewed as the Hochschild complex
of ZU , see [Wei94]). Here Cp = Z⊗(p+1)

U , and the differentials d : Cp+1 → Cp are
given on each V → X by

ei0 ⊗ . . .⊗ eip 7→
p∑
j=0

(−1)j Tr(V )(ej)ei0 ⊗ . . .⊗ êij ⊗ . . .⊗ eip

locally on basis elements ei of ZU (V ). The natural bijections Hom(V,Ui0...ip) ∼=∏p
j=0 Hom(V,Uij ) induces isomorphisms Z⊗(p+1)

U
∼=

⊕
(i0,...,ip)∈Ip+1

f
i0...ip
! Z for

each p, where each f i0...ip denotes the induced morphism Ui0...ip → X. Hence
(6.5) takes the form

C• :
⊕
i∈I

f i! Z← · · · ←
⊕

(i0,...,ip)∈Ip+1

f
i0...ip
! Z← · · ·

By adjointness, there are natural isomorphisms Hom(f i0...ip! Z, F )
∼=−→ F (Ui0...ip)

for every presheaf F . Thus Hom(C•, F ) is the étale Čech complex associated to
F .

We refer to [Stacks, Tag 0721] for the more refined version of the Čech complex,
called the alternating Čech complex. We will outline the construction here.
Consider now the Koszul complex associated with the trace map Tr : ZU → Z:

K• : Λ1ZU ← Λ2ZU ← · · · ← Λp+1ZU ← · · · (6.6)

Here the exterior product Kp = Λp+1ZU is the quotient of Cp = Z⊗(p+1)
U by the

subgroup of elements on the form

ei0 ⊗ . . .⊗ eip − sgn(σ)eiσ(0) ⊗ . . .⊗ eiσ(p)

for permutations σ ∈ Sp+1. The differential dp : Kp → Kp−1 is induced by that
of C•, and is given on each V → X by

ei0 ∧ . . . ∧ eip 7→
p∑
j=0

(−1)j Tr(V )(ej)ei0 ∧ . . . ∧ êij ∧ . . . ∧ eip .

For each presheaf F , we define Č•alt(U , F ) = Hom(K•, F ). Define Ȟ0
alt(U ,−) =

H0(Č•alt(U ,−)), and note that this is a left-exact functor. Let Ȟp
alt(U ,−) denote

the right-derived functors RpȞ0
alt(U ,−). These are called the alternating Čech

cohomology groups associated with U . Let I be an injective object of Pre(Xét).
Since Hom(−, I) is an exact functor and K• is acyclic in positive degrees, the
alternating Čech complex Č•alt(U , I) is as well. This means that the functors
Hp(Č•alt(U ,−)) are effaceable for each p > 0, so that (Hp(Č•(U ,−)))p≥0 defines
a universal ∂-functor. This means that there are canonical isomorphisms

Ȟp
alt(U , F )

∼=−→ Hp(Č•alt(U , F )). (6.7)

81

http://stacks.math.columbia.edu/tag/0721


6. Cohen-Macaulay and Gorenstein properties

Assume that U is a separated cover of X. Then the induced morphism f :
U → X is separated, and the diagonal morphism ∆ : U → U ×X U is a
closed immersion. Since f is étale, it is also an open immersion. We define
W1 = U ×X U\∆(U), which is a closed and open subset of U ×X U . More
generally, consider the diagonals ∆j,r

p ⊆ U×(p+1) for j 6= r (on closed points,
∆j,r
p is given by {(u0, . . . , up) ∈ U×(p+1) : uj = ur}). Let ∆p =

⋃
j 6=r ∆j,r

p , and
define Wp = U×(p+1)\∆p. Then Wp is a closed and open subset of U×(p+1).
We also define W0 = U . Consider the action of the symmetric group Sp+1 on
U×(p+1) given by permuting the factors. The fixed points of any non-trivial
group elements are contained in the subset ∆p ⊆ U×(p+1), which means that the
action of Sp+1 restricts to a free action on Wp. Assume now that F is a sheaf.
Then the induced action of Sp+1 on F (U×(p+1)) restricts to a right action on
F (Wp) ⊆ F (U×(p+1)). Let K+

p denote the sheafification of Kp. Note that the
sheafification of ZU is f!Z. Thus K+

• is the Koszul complex of the surjective
trace map Trf : f!Z → Z of sheaves, where Z here denotes the constant sheaf
of Z. Since f!Z is a locally free abelian group, this means that K+

• → Z is a
resolution of Z. The surjection of complexes C• → K• induces a surjection of
sheafifications C+

• → K+
• .

Lemma 6.1.1 ([Stacks, Tag 0726]). The inclusion

Hom(K+
p , F ) ⊆ Hom(C+

p , F ) ∼= F (U×(p+1))

identifies Hom(K+
p , F ) with the Sp+1-anti-invariant sections of F (Wp). In other

words,

Hom(Kp, F ) = Hom(K+
p , F ) = {x ∈ F (Wp) : x = sgn(σ)x · σ}.

Proof. Heuristically, the sections of Hom(Kp, F ) ⊆ Hom(C+
p , F ) vanishes on each

subgroup F (∆j,r
p ) ⊆ F (U×(p+1)) because basis elements on the form ei0⊗. . .⊗eip

where ij = ir vanishes inKp. These sections are moreover the Sp+1-anti-invariant
sections of F (Wp) since Kp is a group quotient of Cp under the signed action of
Sp+1.

Since K+
• → Z is a resolution, left-exactness of the functor Hom(−, F )

induces an isomorphism H0(Hom(K0
• , F ))

∼=−→ Hom(Z, F ). In other words,
Ȟ0

alt(U , F )
∼=−→ F (X). The global sections functor ΓX : Shv(Xét) → Ab is

therefore identified with the composition

Shv(Xét)
i−→ Pre(Xét)

Ȟ0
alt(U,−)−−−−−−→ Ab,

and the Leray spectral sequence associated with i relates the étale cohomology
of F with the alternating Čech cohomology of F :

Epq2 = Ȟp
alt(U ,H

q(F ))⇒ Hp+q
ét (X,F ),

whereHq(−) : Shv(Xét)→ Pre(Xét) denotes the derived functors Rqi of i. There
are canonical isomorphisms Hq(F )(V ) ∼= Hq

ét(V, F ) for every V ∈ Xét ([Tam94,
p.57]). We conclude with the following lemma:

82

http://stacks.math.columbia.edu/tag/0726
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Lemma 6.1.2. Let U be an affine étale cover of a separated scheme X, and let F
be a quasi-coherent sheaf on X. Then for each integer p ≥ 0, there is a natural
isomorphism

Hp(Č•alt(U ,Fét))
∼=−→ Hp

Zar(X,F).

Proof. Since U is affine and X is separated, the p-fold fibered product U×p is
affine. This means that each Ui0...ip is affine. Hence by (6.4), Hq(Fét)(Ui0...ip) ∼=
Hq

ét(Fét)(Ui0...ip) ∼= Hq
Zar(Fét)(Ui0...ip) = 0 for q > 0. This means that we have

Č•alt(U ,Hq(Fét)) = 0 for all q > 0, and (6.1) collapses. This induces natural
isomorphisms Ȟp(U ,Fét)

∼=−→ Hp
ét(X,Fét) for each integer p ≥ 0, and composing

with (6.7) yields the desired isomorphism.

6.2 The alternating Čech complex associated to a
unimodular set

As a standing assumption for this chapter, all polyhedral sets considered are
assumed to be finite. Let X be a polyhedral set. By Corollary 4.4.8, the
morphisms ψv : A(Mv)→ P(M) are étale for vertices v ∈M0. For every face s
of M , there exists a vertex v ∈M0 and an arrow v → s in T(M). This means
that the morphism U :=

∐
v∈J0

M
Mv → M is surjective, so by Lemma 4.3.5,

U = {A(Mv)→ P(M)}v∈J0
M

is an étale cover of P(M). By Proposition 5.2.7, U
is an affine cover. We note that by Remark 4.4.6, in the particular situation where
M is a polyhedral poset, the cover U is a Zariski open cover of M . Consider the
induced surjective étale morphism A(U)→ P(M). Let U×p = U ×M · · · ×M U
denote the p-fold fibered product over M . Then by Lemma 4.4.2, the canonical
morphism A(U×(p+1))→ A(U)×(p+1) is an isomorphism, and we may write

A(U)×(p+1) =
∐

(v0,...,vp)∈(J0
M

)p+1

A(Mv0 ×M · · · ×M Mvp).

The Sp+1-action on A(U)×(p+1) is induced by the corresponding Sp+1-action on
U×(p+1) given by permuting the factors. The union of diagonals ∆p ⊆ A(U)p+1

corresponds to the union of diagonals in U×(p+1), which we will denote by Dp.
We defineWp = U×(p+1)\Dp, so that A(Wp) = A(U×(p+1))\∆p by Lemma 4.4.4.

Let s0, . . . , sp be a sequence of faces inM which are canonical representatives.
Let Cat(s0, . . . , sp) denote the category of objects (s, {fi : si → s}pi=0), where
s ∈ M can, and where fi : si → s are arrows in T(M) for each i. An arrow
h : (s, {fi}) → (t, {gi}) is an arrow h : s → t in T(M) satisfying gi = hfi for
each i. The partial order ≤ on Cat(s0, . . . , sp) is defined by (s, {fi}) ≤ (t, {gi})
whenever there exists an arrow (s, {fi})→ (t, {gi}). Let Min(s0, . . . , sp) denote
the set of minimal objects.

Lemma 6.2.1. Let s0, . . . , sn be a sequence of faces in M . Then,
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a) there is an isomorphism

Ms0...sp := Ms0 ×M · · · ×M Msp

∼=−→
∐

(s,{fi})∈Min(s0,...,sp)

Ms;

b) the projection morphisms prj : Ms0...sp → M
s0...ŝj ...sp

are given on each
component by Mhj : Ms →Ms(j).

Proof. a) For each (s, {fi}) ∈ Min(s0, . . . , sp), the morphisms Mfi : Ms →Msi

induces a morphism Ms → Ms0...sp . Here a face (t, f : s → t) of Ms is
mapped to the tuple of faces ((t, f ◦ f0), . . . , (t, f ◦ fp)). Consider the induced
morphism γp :

∐
(s,{fi})∈Min(s0,...,sp)Ms → Ms0...sp . We will define an inverse

ψp of γp. Any tuple in Ms0...sp is on the form ((t, g0), . . . , (t, gp)), and defines
an element (t, {gi}) in Cat(s0, . . . , sp). Let (s, {fi}) ∈ Min(s0, . . . , sp) be a
minimal object such that (s, {fi}) ≤ (t, {gi}). Then there exists an arrow
f : (s, {fi}) → (t, {gi}), and the face (t, f) of Ms maps to ((t, g0), . . . , (t, gp)).
Suppose that f ′ : (s′, {f ′i})→ (t, {gi}) is any other arrow in Cat(s0, . . . , sp) such
that (s′, {f ′i}) is minimal. Then f ◦ fi = gi = f ′ ◦ f ′i for each i. Consider the
arrows fR : |s| → |t| and f ′R : |s′| → |t| in Fin, and note that fR(|s|) ∩ f ′R(|s′|)
both contains

⋃
i(gi)R(|si|) ⊆ |t|. But the sub-polytope fR(|s|) ∩ f ′R(|s′|) ⊆ |t|

corresponds to some arrow f ′′ : s′′ → t in T(M)can. One easily observes that
this induces an element (s′′, {f ′′i }) in Cat(s0 . . . , sp) which is less than or equal
to both (s, {fi}) and (s′, {f ′i}). This is a contradiction unless (s, {fi}) is the
unique such minimal object, and f is the unique arrow to (t, {gi}). Hence we
may define ψp by ((t, g0), . . . , (t, gp)) 7→ (t, f), where (t, f) is located in the term
Ms corresponding to the index (s, {fi}). This clearly determines a morphism,
which is an inverse of γp.

b) We have to show that the diagram

Ms

γp //

Mhj

��

Ms0...sp

prj
��

Ms(j)
γp−1 // M

s0...ŝj ...sp

commutes for each j and (s, {fi}) ∈ Min(s0, . . . , sp). Let (t, f) be a face of
Ms. Then prj(γp(t, f)) = ((t, f ◦ f0), . . . , ̂(t, f ◦ fj), . . . (t, f ◦ fp)). On the
other hand, the arrows of the object (s(j), {gi}) satisfies hjgi = fi for each
i 6= j. Since Mhj (t, f) = (t, fhj), it immediately follows that γp−1(Mhj (t, f)) =
prj(γp(t, f)).

Lemma 6.2.2. The union of diagonals Dp ⊆ U×(p+1) is∐
(s,{fi})∈Min(v0,...,vp)

∃i 6=j:fi=fj

Ms, ⇒ Wp =
∐

(s,{fi})∈Min(v0,...,vp)
fi 6=fj∀i 6=j

Ms.
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Proof. The action of Sp+1 on U×(p+1) permutes the factors, so the union of
diagonals Dp can be identified with the fixed points of non-trivial group elements.
For every non-trivial σ ∈ Sp+1, the induced morphism σ : U×(p+1) → U×(p+1)

restricts on components to isomorphisms Mv0...vp →Mvσ(0)...vσ(p) . By the repre-
sentation of Mv0...vp from Lemma 6.2.1, σ further restricts to an isomorphism
from Ms corresponding to the index (s, {fi}) ∈ Min(v0, . . . , vp) to Ms corre-
sponding to the index (s, {fσ(i)}) ∈ Min(vσ(0), . . . , vσ(p)). Hence σ has no fixed
points unless the arrows fi : vi → s and fσ(i) : vσ(i) → s are equal for all i. So
the non-trivial fixed points of Mv0...vp are exactly the terms Ms corresponding
to an index (s, {fi}) such that there exists a non-trivial permutation σ such that
fσ(i) = fi for all i. This does not happen exactly when the fi’s are all different,
and the result follows.

Let F be a quasi-coherent sheaf on P(M). By Lemma 6.2.1, the Čech
complex Č•(U ,Fét) is given by

Č•(U ,Fét) =
⊕

(s,{fi})∈Min(v0,...,vp)

Γ(A(Ms), ψ∗sF),

and the differentials dp : Čp−1(U ,Fét) → Čp(U ,Fét) are given by the alter-
nating sums of the canonical homomorphisms M∗hj : Γ(A(Ms(j)), ψ∗s(j)F) →
Γ(A(Ms), ψ∗sF) for j = 0, . . . , p. Thus by Lemma 6.2.2, the alternating Čech
complex groups Čpalt(U ,Fét) are the Sp+1-anti-invariant sections of

Fét(A(Wp)) =
⊕

(s,{fi})∈Min(v0,...,vp)
fi 6=fj∀i 6=j

Γ(A(Ms), ψ∗sF). (6.8)

The action of a permutation σ ∈ Sp+1 on Fét(A(Wp)) is given by mapping each
term Γ(A(Ms), ψ∗sF) corresponding to the index (s, {fi}) ∈ Min(v0, . . . , vp)
identically into Γ(A(Ms), ψ∗sF) corresponding to the index (s, {fσ−1(i)}) ∈
Min(vσ−1(0), . . . , vσ−1(p)). In other words, it is given by (x·σ)(s,{fi}) = x(s,{fσ(i)}).

Hence x(s,{fi}) = sgn(σ)x(s,{fσ(i)}) in Čpalt(U ,Fét) for all σ ∈ Sp+1.
For the rest of this section we shall assume that M is a unimodular set.

In this situation, an object (s, {fi}) is minimal if and only if the functions
fi : |si| → |s| in Fin are jointly surjective. If (s, {fi}) is minimal, let Tj denote
the subset ∪i 6=j im fi ⊆ {0, . . . , p} for each j ∈ {0, . . . , p}. Then the inclusion
Tj ⊆ {0, . . . , p} corresponds to an arrow hj : s(j)→ s in Fin where s(j) ∈M can,
and the inclusion im fi ⊆ Tj determines an arrow gi : si → s(j) in Fin satisfying
hjgi = fi for each i 6= j. Observe that (s(j), {gi}i6=j) is in Min(s0, . . . , ŝj , . . . , sn).
If (s, {fi}) is an object of Min(v0, . . . , vp) and f0, . . . , fp are all different, then the
arrows fi : |vi| → |s| in Fin form a permutation of the inclusions {i} ⊆ {0, . . . , p}
for i = 0, . . . , p. So the integral order on {0, . . . , p} induces a unique associated
permutation σ ∈ Sp+1 such that fσ(i)(0) = i for each i.
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Definition 6.2.3. We define the subcomplex Č•∆(U ,F) of Č•(U ,Fét) as

Čp∆(U ,F) =
⊕
s∈Jp

M

Γ(A(Ms), ψ∗sF),

where each index s ∈ JpM corresponds to the unique minimal element (s, {fi}) ∈
Min(v0, . . . , vp) such that each fi : |vi| → |s| satisfies fi(0) = i. The induced
differentials dp : Čp−1

∆ (U ,F)→ Čp∆(U ,F) are given by

(dp(x))s∈Jp
M

=
p∑
j=0

(−1)jM∗hj (xs(j)).

For each integer p ≥ 0, consider the homomorphism φp : Čp∆(U ,F) →
Čpalt(U ,Fét) given by (φp(x))(s,{fi)}) = sgn(σ)xs, where σ is the permutation
such that fσ(i)(0) = i for each i. To see that this is well-defined, we must
show that φp(x) is Sp+1-anti-invariant. So let τ ∈ Sp+1. Then we require
that (φp(x))(s,{fi}) = sgn(τ)(φp(x))(s,{fτ(i)}). But (φp(x))(s,{fτ(i)}) = sgn(π)xs,
where π is the permutation such that fτπ(i)(0) = i for each i. Thus τπ = σ, and
sgn(σ)xs = sgn(τ) sgn(π)xs as required.

Lemma 6.2.4. The homomorphisms φp induces an isomorphism of complexes

φ : Č•∆(U ,F)
∼=−→ Č•alt(U ,Fét).

Proof. First we must show that φ respects the differentials. Let x = (xs) ∈
Čp−1

∆ (U ,F) be a section. Then

φp(dp(x))(s,{fi}) = sgn(σ)(dp(x))s =
p∑
j=0

sgn(σ)(−1)jM∗hj (xs(j)),

where σ ∈ Sp+1 is the unique permutation such that fσ(i)(0) = i for each i. On
the other hand,

(dp(φp−1(x)))(s,{fi}) =
p∑
j=0

(−1)jM∗hj ((φ
p−1(x))(s(j),{gi}i6=j))

=
p∑
j=0

(−1)jM∗hj (sgn(τj)xs(j))

=
p∑
j=0

sgn(τj)(−1)jM∗hj (xs(j))

=
p∑
j=0

sgn(τσ(j))(−1)σ(j)M∗hj (xs(j)),

where each arrow gi : vi → s(j) corresponds to the inclusion im fi ⊆ Tj =
{0, . . . , f̂j(0), . . . , p}, and τj is the permutation associated with the set of arrows
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{gi}i 6=j for each j. To verify that (φp(dp(x)))(s,{fi}) = (dp(φp−1(x)))(s,{fi}), we
must show that sgn(σ)(−1)j = sgn(τσ(j))(−1)σ(j) for each j. Substituting j with
σ−1(j), this can be rewritten as

sgn(σ)(−1)σ
−1(j) = sgn(τj)(−1)j . (6.9)

Since fi(0) = σ−1(i) for each i, σ−1 is represented by the permutation(
0 1 · · · p

f0(0) f1(0) · · · fp(0)

)
.

Similarly, τ−1
j is represented by the permutation(

0 · · · ĵ · · · p

f0(0) · · · f̂j(0) · · · fp(0)

)
.

Let P (σ−1) = (eσ−1(0), . . . , eσ−1(p)) be the p× p permutation matrix associated
with σ−1. Then P (τ−1

j ) is obtained from P (σ−1) by eliminating the j’th column
and the σ−1(j)’th row. Hence detP (τ−1

j ) is equal to the (p − 1) × (p − 1)
minor P (σ−1)(σ−1(j),j). The cofactor expansion of P (σ−1) along the j’th column
computes the determinant of P (σ−1) as follows:

detP (σ−1) = (−1)j
p∑
i=0

(−1)i detP (σ−1)i,j = (−1)j(−1)σ
−1(j) detP (τ−1

j ).

The determinant of a permutation matrix is equal to the sign of the permutation,
and it follows that sgn(σ−1) = (−1)j(−1)σ−1(j) sgn(τ−1

j ). Thus we obtain the
equation (6.9).

Next we must show that φ is a bijection. It is clearly injective, and by Sp+1-
anti-invariance any section x ∈ Čpalt(U ,Fét) satisfies x(s,{fi}) = sgn(σ)x(s,{fσ(i)})
for all σ ∈ Sp+1. So each section is determined by its restriction to Γ(A(Ms), ψ∗sF)
for any choice of index (s, {fi}). Thus φ is surjective, and therefore an isomor-
phism of complexes.

Lemma 6.2.5. For each integer p ≥ 0, there is an isomorphism

Hp
Zar(M,F) ∼= Hp(Č•∆(U ,F)).

Proof. By Proposition 5.2.7, the étale cover U = {A(Mv) → P(M)}v∈J0
M

is
affine. Now the statement follows from Lemma 6.2.4 and Lemma 6.1.2

6.3 The Cohen-Macaulay property for unimodular sets

Definition 6.3.1. Let M be a unimodular set, and let R be a graded Γ(M)-
module. Then we define the reduced complex of R as

C̃•∆(M,R) : 0→ R→ Č•∆(M,
⊕
d∈Z

R̃(d)),
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6. Cohen-Macaulay and Gorenstein properties

where R→ Č0
∆(M,

⊕
d∈Z R̃(d)) is given by the canonical homomorphisms

Rd → H0(M, R̃(d))→
⊕
v∈J0

M

Γ(A(Mv), ψ∗vR̃(d)).

The grading of the complex is given by C̃−1
∆ (M,R) = R, and C̃p∆(M,R) =

Čp∆(M, R̃) for each p ≥ 0.

By the exact sequence (6.1) and the isomorphisms (6.2), we haveHp(C̃•∆(M,R)) =
Hp+1
m (R) for all p ≥ 0. Of particular interest is the case where R = Γ(M). From

Proposition 5.2.7, A(Ms) is equal to the distinguished open subset D+(θs) of
P(L(Ms)). So for each face s of M , we have

Γ(A(Ms), ψ∗s (
⊕
d∈Z
OM (d))) ∼=

⊕
d∈Z
OL(Ms)(d)(D+(θs))

∼=
⊕
d∈Z

Γ(L(Ms))(d)(θs) = Γ(L(Ms))θs .

This means that we may describe the reduced complex C̃•∆(M,Γ(M)) as

0→ Γ(M)→
⊕
v∈J0

M

Γ(L(Mv))θv → · · · →
⊕
s∈Jp

M

Γ(L(Ms))θs → · · · (6.10)

The induced differentials are given by the alternating sum of the homomorphisms
Γ(Mhj ) : Γ(L(Ms(j)))θs(j) → Γ(L(Ms))θs .

Definition 6.3.2. Let M be a unimodular set. Then we define the complex
K•(M) as the subcomplex of C̃•∆(M,Γ(M)) given by K−1(M) = Γ(M), and
Kp(M) =

⊕
s∈Jp

M
Γ(L(Ms)).

In the following theorem we will utilize our constructions thus far. The proof
draws its main idea from the proof of [Sta96, II, Theorem 4.1], by essentially
decomposing the chain complex C̃•∆(M,Γ(M)) into a direct sum of complexes
on the form K•(M) and K•(lkM (s)).

Theorem 6.3.3. Let M be a non-trivial unimodular set. Then H0
m(Γ(M)) = 0,

and for each i ≥ 0, the Hilbert series of the graded Γ(M)-module Hi+1
m (Γ(M)) is

HHi+1
m (Γ(M))(t) = H̃i(M ; k) +

∑
p∈Mcan

dimk H̃
i−|p|−1(lkM (p); k) t−|p|−1

(1− t−1)|p|+1 .

In particular, Γ(M) is Cohen-Macaulay if and only if

1) H̃i(M ; k) = 0 for all i < dimM , and

2) H̃i(lkM (p); k) = 0 for all p ∈ T(M) and i < dimM − |p| − 1.

By Lemma 5.4.5 and Theorem 3.4.1, this can be equivalently rephrased as
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1’) H̃i(|M |; k) = 0 for all i < dimM , and

2’) Hi(|M | | p) = 0 for all points p ∈ |M | and i < dimM .

Proof. We consider the reduced complex C̃•∆(M,Γ(M)). Define xαf = xα0
f(0) · · ·x

αn
f(n) ∈

Γ(∆m)xf for arrows f : n→ m in Fin and α ∈ Zn+1. Let s ∈M can, and let (t, f)
be a face of Ms. Consider the basis for the k-vector space Γ(∆t)xf consisting of
1) monomials m ∈ Γ(∆t) and 2) elements on the form m

xα
fg
, where g : p→ s is

some arrow in M can, α ∈ Z|p|+1
>0 , and m is a monomial in Γ(∆t) which is not

divisible by any generator on the form xfg(j). For each arrow g : p→ s in M can,
we may write Γ(∆t) = Γ(∆M|p|(|t|,fg))⊗k Γ(∆p), where the generators of Γ(∆p)
correspond to xg(0), . . . , xg(|p|). In this notation, a basis element of the first type
corresponds to m ⊗ 1, and a basis element of the second type corresponds to
m⊗ 1

xαg
. By this we get the following vector space decomposition:

Γ(∆t)xf = Γ(∆t)⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

⊕
p
g−→s

Γ(∆M|p|(|t|,fg))⊗k k{
1
xαg
}.

Alternatively, we may write

Γ(∆t)xf = Γ(∆t)⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

⊕
p
g−→s

Γ(∆M|p|(|t|,fg))(|α|),

where |α| = α0 + · · ·+ α|p|, and where Γ(∆M|p|(|t|,fg))(|α|) denotes the graded
vector space with degrees shifted by |α|. Observe that for any arrow h : (t, f)→
(t′, f ′) in Ms, Γ(ζh∆t′ ) : Γ(∆t′)xf′ → Γ(∆t)xf maps any element on the form
1⊗ 1

xαg
to some non-zero scalar multiple of 1⊗ 1

xαg
. Indeed, since these elements

can be written as 1
xα
f′g

and 1
xα
fg

respectively, the equality hf = f ′ means that

xf ′g(j) = xhfg(j) 7→ λh(fg(j))xfg(j). It is clear that any monomial m ∈ Γ(∆t′)
not divisible by any generator on the form xf ′g(j) is mapped to a non-zero scalar
multiple of a monomial m′ ∈ Γ(∆t) which is not divisible by any generator on the
form xfg(j). This means that Γ(ζh∆t′ ) splits into homomorphisms Γ(∆t′)→ Γ(∆t)
and Γ(∆M|p|(|t′|,f ′g))(|α|)→ Γ(∆M|p|(|t|,fg))(|α|) via their respective decomposi-
tions. This justifies the following computation:

Γ(L(Ms))θs = lim←−
s
f−→t

Γ(∆t)xf = lim←−
s
f−→t

Γ(∆t)⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

⊕
p
g−→s

Γ(∆M|p|(|t|,fg))(|α|)


=

 lim←−
s
f−→t

Γ(∆t)

⊕ ⊕
p∈Mcan

α∈Z|p|+1
>0

⊕
p
g−→s

 lim←−
s
f−→t

Γ(∆M|p|(|t|,fg))(|α|)

 .
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Notice that lim←−s f−→t
Γ(∆t) = Γ(L(Ms)). Moreover, for each non-identity arrow

g : p → s, we have lim←−s f−→t
Γ(∆M|p|(|t|,fg)) = Γ(L(lkM (p))(s,g)). If g : p → s is

the identity arrow, then lkM (p) = lim−→s
f−→t

∆M|p|(|t|,f). By abuse of notation, we
shall write Γ(L(lkM (p))(p,id)) for Γ(L(lkM (p))). Taken together, we may write

Γ(L(Ms))θs = Γ(L(Ms))⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

⊕
p
g−→s

Γ(L(lkM (p))(s,g))(|α|)

 .

Next we observe that the differentials of C̃•∆(M,Γ(M)) respect this decom-
position: The homomorphism Γ(Mhj ) : Γ(L(Ms(j)))θs(j) → Γ(L(Ms))θs is
given by the localization homomorphisms Γ(∆t)xfhj → Γ(∆t)xf for each face
(t, f) of Ms. Thus any basis element on the form y

xα
fhj◦g

maps to a non-
zero scalar multiple of y

xα
f◦hjg

. Hence Γ(∆t)xfhj restricts to a homomorphism
Γ(L(lkM (p)(s(j),g)))(|α|) → Γ(L(lkM (p)(s,hjg)))(|α|). This means that the re-
duced complex splits as a direct sum

C̃•∆(M,Γ(M)) = K•(M)⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

T •p [−|p| − 1](|α|),

where T−1
p = Γ(lkM (p)), and

T ip =
⊕

p
g−→s in Mcan

|s|=i+|p|+1

Γ(L(lkM (p))(s,g)) =
⊕

(s,g)∈JilkM (p)

Γ(L(lkM (p))(s,g))

for each i ≥ 0. Here T •p [−|p| − 1] denotes the chain complex shifted by −|p| − 1.
The induced differentials of T •p are given by the sum of the homomorphisms
(−1)jΓ(lkM (p)M|p|(hj)) : Γ(L(lkM (p))(s(j),g)) → Γ(L(lkM (p))(s,hjg)). We will
now define an isomorphism of complexes K•(lkM (p))→ T •p . The terms of these
two complexes are the same, but the differentials of K•(lkM (p)) are given as the
alternate sum of the homomorphisms

(−1)kΓ(lkM (p)hk) : Γ(L(lkM (p))hk(s,g))→ Γ(L(lkM (p))(s,g)).

By slight abuse of notation, we define h0(s, g) = (p, id) for vertices (s, g) ∈
lkM (p)0.

For each arrow g : n → m in Fin and k = 0, . . . ,m− n− 1, let j = E(g, k)
denote the integer satisfying Mn(dj) = dk. Observe that for each s ∈ M can,
hj = djσj for some automorphism σj of |s(j)|. Since M|p|(hj) is equal to some
hk′ , it therefore follows thatM|p|(hj) = hk. Thus hk(s, hE(g,k)g) = (hE(g,k)(s), g)
for each arrow g : p→ hME(g,k)(s), and the differentials of T •p can written as the
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sum of the homomorphisms (−1)E(g,k)Γ(lkM (p)hk) : Γ(L(lkM (p))(hM
E(g,k)(s),g)

)→
Γ(L(lkM (p))(s,hE(g,k)g)). To find our isomorphism K•(lkM (p)) → T •p , we are
therefore required to find signs sgn(s, g) ∈ {1,−1} such that the diagram

Γ(L(lkM (p))(hM
E(g,k)(s),g)

)

sgn(hME(g,k)(s),g)Γ(id)
��

(−1)kΓ(lkM (p)hk )
// Γ(L(lkM (p))(s,hE(g,k)g))

sgn(s,hE(g,k)g)Γ(id)
��

Γ(L(lkM (p))(hM
E(g,k)(s),g)

)
(−1)E(g,k)Γ(lkM (p)hk )

// Γ(L(lkM (p))(s,hE(g,k)g))

commutes for all faces (s, g) in lkM (p)can and k = 0, . . . , |s| − |p| − 1. Thus we
must find a function sgn : lkM (p)can → {1,−1} satisfying

sgn(s, hE(g,k)g)(−1)k = sgn(hME(g,k)(s), g)(−1)E(g,k). (6.11)

It follows immediately by induction that g : p→ s can be written as a composition
of arrows on the form hj : t(j) → t. Moreover, by construction we have
hjhi = hihj−1 whenever j > 1, so by ([Mac98, Proposition 2, p.174]) g can
be written uniquely as hj0 · · ·hjr , with j0 > · · · > jr, and thus we may define
sgn(s, g) = (−1)r+Σri=0ji . Note that E(g, k) is the integer in the k’th position of
[m]\ im g, where [m] = |s|. If we write [m]\ im g = {j0, . . . , jr}, then E(g, k) = jk.
Now, hjkg = hj0+1 · · ·hjk+1hjkhjk+1 · · ·hjr via the relations hjhi = hihj−1
for j > i. This means that sgn(s, hjkg) = (−1)E(g,k)+(k+1)+(r+1)+Σri=0ji =
(−1)E(g,k)+k sgn(hME(g,k)(s), g), immediately verifying (6.11). This yields our
desired isomorphism K•(lkM (p))→ T •p . Thus we can write the reduced complex
as

C̃•∆(M,Γ(M)) = K•(M)⊕
⊕

p∈Mcan

α∈Z|p|+1
>0

K•(lkM (p))[−|p| − 1](|α|).

By Proposition 3.6.3 and Lemma 3.6.5, the degree d part C̃•∆(M,Γ(M))d is acyclic
for d > 0. Since K•(M) is a direct summand of C̃•∆(M,Γ(M)), this means that
K•(M)d is acyclic for d > 0 as well. But K•(M)0 is simply the augmented
cellular cochain complex 0 → k → C•M (k), and it follows that Hi(K•(M))
is equal to the reduced cohomology group H̃i(M ; k). The same argument
applies to the complexes K•(lkM (p)) as well, so that Hi(K•(lkM (p))(|α|)) =
H̃i(lkM (p); k)(|α|). Hence

Hi(C̃•∆(M,Γ(M))) = H̃i(M ; k)⊕
⊕

p∈Mcan

⊕
α∈Z|p|+1

>0

H̃i−|p|−1(lkM (p))(|α|).

In other words, we have Hi(C̃•∆(M,Γ(M)))0 = H̃i(M ; k), and for d < 0 fixed,

Hi(C̃•∆(M,Γ(M)))d =
⊕

p∈Mcan

⊕
α∈Z|p|+1

>0
|α|=−d

H̃i−|p|−1(lkM (p); k).
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Now, there are
(−d−1
|p|
)
elements of the set {α ∈ Z|p|+1

>0 : |α| = −d}, so

dimkH
i(C̃•∆(M,Γ(M)))d =

∑
p∈Mcan

(
−d− 1
|p|

)
dimk H̃

i−|p|−1(lkM (p); k).

Let i ≥ 0. Using that Hi(C̃•∆(M,Γ(M))) ∼= Hi+1
m (Γ(M)), the Hilbert series of

Hi+1
m (Γ(M)) becomes

HHi+1
m (Γ(M))(t) = H̃i(M ; k) +

−1∑
d=−∞

td
∑

p∈Mcan

(
−d− 1
|p|

)
dimk H̃

i−|p|−1(lkM (p); k)

= H̃i(M ; k) +
∑

p∈Mcan

dimk H̃
i−|p|−1(lkM (p); k)t−1

∞∑
d=0

(t−1)d
(
d

|p|

)

= H̃i(M ; k) +
∑

p∈Mcan

dimk H̃
i−|p|−1(lkM (p); k) t−|p|−1

(1− t−1)|p|+1 .

(here we have used the formula
∑∞
d=0 t

−d(d+n
n

)
= 1

(1−t−1)n+1 ). Finally, the
homomorphism Γ(M)→ Γ∗(OM ) is injective by Proposition 3.6.3, so H0

m(Γ(M))
is trivial, and we are done.

6.4 The Gorenstein property for unimodular sets

Before proving Theorem 6.4.6, we need some preliminary facts regarding the
non-normal locus of P(M), and its dualizing sheaf.

Lemma 6.4.1. Let M be a unimodular set. Then the non-normal locus P(M)n
of P(M) is equal to P(N(M)), where N(M) is the polyhedral subset of M
consisting of faces t such that lkM (t) 6∼= ∆dim lkM (t).

Proof. By Lemma 5.2.3, N(M) defines a polyhedral subset of M . Indeed, if s ∈
Mn, and f : m→ n is any arrow, then lkM (s) = lklkM (fM (s))(s, f). If lkM (s) is
not isomorphic to a simplex, then by Lemma 5.2.1, lkM (fM (s)) cannot be either.
Hence fM (s) ∈ N(M). First we will show that P(N(M)) ⊆ P(M)n. Consider
the normalization ν : P(M)→ P(M) from Lemma 3.3.1, where M =

∐
s∈S ∆s.

Then the restriction P(M)\ν−1(P(M)n)→ P(M)\P(M)n is an isomorphism.
Let p be a point of P(N(M)), and let s be the minimal face of N(M) for which
p ∈ P(Ms). Since lkM (s) is not a simplex, it is either not irreducible, or the
morphism ∆n → lkM (s) associated to its unique facet is not injective. In the
first case, suppose that (t1, f1) and (t2, f2) is a pair of facets of lkM (s)can. If
t1 6= t2, then P(Ms) ⊆ P(M t1)∩P(M t2), so that p lies in the intersection of two
irreducible components of P(M). Since P(M) is locally integral, ν cannot be an
isomorphism around p. On the other hand, if t := t1 = t2, consider the morphism
ζtM : ∆t → M and the subsimplices ∆f1 and ∆f2 of ∆t. Then the restricted
morphisms ζtM |∆f1 : ∆f1 → M and ζtM |∆f2 : ∆f2 → M are both identical to
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ζsM : ∆s → M . Suppose that there exists an open neighbourhood U of p such
that the restricted morphism ν−1(U)→ U is an isomorphism. Then the induced
morphism V := P(∆t) ∩ ν−1(U)→ P(M) is an open immersion; in particular it
is injective. Since P(∆f1) ∪P(∆f2) ⊆ (ζtM )−1(P(Ms)), the restricted morphism(

V ∩P(∆f1)
)
∪
(
V ∩P(∆f2)

)
→ P(Ms) (6.12)

is injective. However, the intersections V ∩P(∆fi) are non-empty, and therefore
dense in P(∆fi). Define V1 = V \P(∆f2) and V2 = V \P(∆f1). Since both
morphisms P(∆fi)→ P(Ms) are surjective morphisms of integral schemes, the
induced morphisms Vi ∩ P(∆fi) → P(Ms) are dominant, and therefore their
images have non-empty intersection. But then (6.12) cannot possibly be injective.
This is a contradiction, showing that ν is not an isomorphism around p. In
the second case, where lkM (s) is irreducible, let (t, f) be its unique (canonical)
facet, and suppose that f1 : m1 → n and f2 : m2 → n is a pair of faces of ∆n

mapping to the same face (u, g) of lkM (s). Then f1g = f = f2g. This means
that lkM (u) is not irreducible, as it contains the pair of facets (t, f1),(t, f2). But
since p ∈ P(Mu), the same argument as above shows that p ∈ P(M)n. This
shows that P(N(M)) ⊆ P(M)n.

Conversely, consider the restriction P(M)\ν−1(P(N(M)))→ P(M)\P(N(M)).
By Lemma 3.2.4 and Lemma 4.4.4, this morphism is induced by the morphism
φ : M\ν−1(N(M))→M\N(M) of open categories. Since ν : M →M is surjec-
tive, φ is as well. This means that the induced local morphisms φt : M t →Mφ(t)
are surjective for each t ∈ M\ν−1(N(M)). The induced morphisms of links
lkM (t) → lkM (t) are surjective morphisms of simplices, hence isomorphisms.
This means that φ is a local isomorphism. However, suppose that φ maps a
pair of faces s1,s2 to the same face s. Let (t, f) be a facet of Ms. Since φs1
and φs2 are isomorphisms, there exists facets (t1, f) and (t2, f) of Ms1 and
Ms2 respectively mapping to (t, f). However, there is a bijective correspon-
dence between the facets of M and the facets of M , which means that t1 = t2.
Hence s1 = s2, which shows that φ is injective. In conclusion, the morphism
P(M)\ν−1(P(N(M)))→ P(M)\P(N(M)) is an isomorphism, and by definition
of P(M)n, this shows that P(M)n ⊆ P(N(M)).

Lemma 6.4.2. Let M,N be a pair of unimodular sets. Then there is an isomor-
phism N(M ?N) ∼= N(M) ? N ∪M ?N(N).

Proof. By definition, N(M ?N) consists of the faces (s, t) for which lkM?N ((s, t))
is not a simplex. By Lemma 5.2.4, lkM?N ((s, t)) ∼= lkM (s) ? lkN (t). This
unimodular set is a simplex if and only if both lkM (s) and lkN (t) are, and the
result follows from Lemma 6.4.1

Definition 6.4.3. Let M be an n-dimensional polyhedral set. Then M is called
a homology manifold (with respect to the field k) if |M | is, i.e. if the reduced
homology groups H̃i(|M | | p; k) = 0 and H̃n−|s|−1(|M | | p; k) ∼= k for all
i < n − |s| − 1 and points p ∈ |M |. If Hn(M ; k) ∼= k, then M is called an
orientable homology manifold. If moreover H̃i(|M |; k) = 0 for all i < n then M

93



6. Cohen-Macaulay and Gorenstein properties

is called a homology sphere (with respect to k). Note that by Lemma 5.4.5, a
unimodular set M is a homology manifold if and only if H̃n−|s|−1(lkM (s); k) ∼= k

and H̃i(lkM (s); k) = 0 for all faces s and i < n− |s| − 1.

Lemma 6.4.4. Let M be an n-dimensional polyhedral homology manifold with
respect to k. Then N(M) = Mn−1.

Proof. The only polyhedral set which is simultaneously a simplex and a homology
sphere is ∅. Hence N(M) contains all non-facets. SinceM is pure, the statement
follows.

For an affine morphism f : X → Y of schemes, the quasi-coherent OX -
module f !

shG is defined by the formula f∗f
!
shG = Hom Y (f∗OX ,G), for any

quasi-coherent sheaf G on Y ([Vak17, Section 30.3]). The functor f !
sh is a right

adjoint to the functor f∗. If f is finite and flat, the functor f !
sh is denoted f !, and

is part of the six functor formalism. If f is finite and X and Y are projective
schemes of the same dimension, then f !

shωY
∼= ωX . If Y is also locally Gorenstein,

then the dualizing sheaf ωY is invertible. By the projection formula and via the
adjunction (f∗, f !

sh), we have

f∗f
!
shωY = Hom Y (f∗OX , ωY ) ∼= Hom Y (f∗OX ⊗ ω∨Y ,OY )

∼= Hom Y (f∗f∗ω∨Y ,OY ) ∼= f∗Hom X(f∗ω∨Y , f !
shOY )

∼= f∗Hom X(OX , f !
shOY ⊗ f∗ωY ) ∼= f∗(f !

shOY ⊗ f∗ωY ).

Thus we obtain the formula

ωX ∼= f !
shOY ⊗ f∗ωY . (6.13)

Lemma 6.4.5. Let f : X → Y be an affine étale morphism of schemes. Then
f !

shG ∼= f∗G for each quasi-coherent sheaf G on Y . In particluar, if f is also finite
and X and Y are projective schemes of the same dimension, then f∗ωY ∼= ωX .

Proof. Consider the fiber square

X ×Y X
pr2

��

pr1 // X

f

��
X

f // Y.

The projections are affine and f is flat, so by the observation in [Vak06, Section
8], there is a natural isomorphism pr∗1 f !

shG ∼= (pr2)!
shf
∗G. Next, the diagonal

morphism ∆ : X → X ×Y X is an open immersion since f is unramified, and
a section to each projection. Applying ∆∗ = ∆!

sh on both sides yields the
result.

Let X be a reduced projective scheme, and let ν : X → X be the normal-
ization of X. Consider the injection ν] : OX → ν∗OX . Then the conductor
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ideal sheaf is defined as I = AnnX(ν∗OX/OX). Locally on affine U ⊆ X, note
that I(U) = OX(U) if and only if ν|ν−1(U) : ν−1(U) → U is an isomorphism.
Thus the support of OX/I is the locus of where ν is not an isomorphism, i.e.
the non-normal locus of X. Assume that X is seminormal. Then the ideal I
is radical by Lemma 3.3.2, and therefore cuts out the reduced subscheme Xn
of X. It follows that the ideal sheaves I and IXn are equal. If A ⊆ A is the
integral closure of a reduced ring A, then AnnA(A/A) ∼= HomA(A,A) ([HS06,
Lemma 2.4.2]). The conductor ideal AnnA(A/A) is moreover characterized
by being the largest common ideal of A and A. Globally, this translates to
Hom X(ν∗OX ,OX) ∼= IXn = ν∗Iν−1(Xn). Hence

Iν−1(Xn) ∼= ν!
shOX . (6.14)

6.4.1 Classifying Gorenstein unimodular sets

Theorem 6.4.6. Let M be a unimodular set. Then the following are equivalent:

a) Γ(M) is Gorenstein.

b) There exists a unimodular homology sphere S (with respect to k) such that
M ∼= S ?∆n for some integer n ≥ −1.

c) There exists a unimodular homology sphere S such that Γ(M) ∼= Γ(S)⊗k
Γ(∆n) for some integer n ≥ −1.

Moreover, ωM ∼= OM (−n− 1). In particular, |M | is a homology sphere if and
only if Γ(M) is Gorenstein and ωM ∼= OM .

Proof. We proceed by induction on the dimension n of M . For any n, c)
immediately follows from b), so we can limit ourself to proving a) ⇒ b) and c)
⇒ a). First we will deal with the cases n = −1, 0 separately. If n = −1, then
M = ∅ and Γ(M) = k. A field is a Gorenstein ring and ∅ is a homology sphere,
so the implications hold. If n = 0, then M is a disjoint union of points. By
Proposition 2.7.2, Γ(M) is on the form k[xv : v ∈ J0

M ]/(xvxw : v 6= w). Γ(M) is
clearly Gorenstein if |J0

M | = 1, and in this case L(Mv)→M is an isomorphism,
where v is the vertex of M (satisfying lkM (v) ∼= ∅). To determine whether Γ(M)
is Gorenstein when |J0

M | > 1, we divide out by the non-zero divisor
∑
v∈J0

M
xv.

Pick a vertex v0 ∈ J0
M . Then k ⊕ k{xv : v 6= v0} is a graded decomposition

of the quotient ring. Observe that the socle is (|J0
M | − 1)-dimensional. To

be a Gorenstein ring, we therefore require |J0
M | = 2. In this case, M is a

homology sphere. We conclude that a) ⇒ b). Conversely, if Γ(M) is on the form
Γ(N)⊗k Γ(∆n) for a homology sphere N , then M is either the disjoint union of
two points or on the form Γ(∆0). As we have seen, Γ(M) is Gorenstein in both
cases. In conclusion, c) ⇒ a).

We may now assume that n ≥ 1. We begin with the direction c) ⇒ a).
Suppose that M is a homology sphere. Then by Theorem 6.3.3, Γ(M) is Cohen-
Macaulay. By Lemma 5.4.5, each link is a homology sphere. Thus by the
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6. Cohen-Macaulay and Gorenstein properties

inductive hypothesis, Γ(lkM (v)) is a Gorenstein ring for each vertex v ∈ M0.
By Corollary 5.2.9, there is an isomorphism A(Mv) ∼= Spec Γ(lkM (v)). This
means that the étale cover {A(Mv)→ P(M)}v∈J0

M
consists of locally Gorenstein

schemes. However, an étale morphism of schemes (where every closed point
is a k-point) induces an isomorphism on stalks after completion [Stacks, Tag
039M], and by [Mat89, Theorem 18.3] a local finite-dimensional Noetherian
ring is Gorenstein if and only its completion is. It follows that P(M) is locally
Gorenstein. This means that the dualizing sheaf ωM is invertible. We will
show that ωM is trivial. Assume first that n ≥ 2. By Proposition 3.5.3, ωM is
represented by an element of H0(|M |\|M0|;Z)×Pic0(M). But H0(|M |\|M0|;Z)
is a free Z-module of rank equal to the number of connected components of
|M |\|M0|. Since M is a homology sphere of dimension ≥ 2, the long exact
sequence of relative homology reduces to an exact sequence

0→ H1(|M | | |M0|; k)→ H0(|M |\|M0|; k)→ H0(|M |; k)→ H0(|M | | |M0|; k)→ 0.

For each i, Hi(|M | | |M0|; k) ∼=
⊕

v∈J0
M
H̃i−1(lkM (v); k) by Lemma 5.4.5. But

each lkM (v) is a ≥ 1-dimensional homology sphere, so H0(|M | | |M0|; k) =
0 and H1(|M | | |M0|; k) = 0. Thus H0(|M |\|M0|; k) ∼= k, and therefore
H0(|M |\|M0|; k) ∼= k. Hence ωM is represented by a pair (d, E), where d is
an integer, and E has trivial degree function. In other words, ζs∗MωM ∼= O∆s(d)
for all faces s ofM . In particular, α∗MωM ∼= O∆n

M
(d). By Serre duality and Theo-

rem 3.4.1, we have dimkH
0(M,ωM ) = dimkH

n(M,OM ) = dimkH
n(M ; k) = 1,

and dimkH
n(M,ωM ) = dimkH

0(M,OM ) = 1. Consider the exact sequence

0→ ωM → O∆n
M

(d)⊕OMn−1(ι∗MωM )→ O∂∆n
M

(d)→ 0,

and the induced long exact sequence in cohomology. Since H0(M,ωM ) ⊆
H0(∆n

M ,O∆n
M

(d)), we must have d ≥ 0. Assume that d > 0. The end of the
long exact sequence is on the form Hn−1(∂∆n

M ,O∂∆n
M

(d)) → Hn(M,ωM ) →
Hn(∆n

M ,O∆n
M

(d)) → 0. Since d > 0, Hn(∆n
M ,O∆n

M
(d)) vanishes. But the

cohomology group Hn−1(∂∆n
M ,O∂∆n

M
(d)) vanishes as well, which is seen by the

long exact sequence in cohomology associated to the exact sequence

0→ O∆n
M

(−n− 1 + d)→ O∆n
M

(d)→ O∂∆n
M
→ 0.

Hence Hn(M,ωM ) = 0, which is a contradiction. We conclude that d = 0. Next
we may follow in parallel with the proof of [BE91, Theorem 6.1]. Let x be a non-
trivial global section of ωM , and suppose that x vanishes at a point P ∈ P(M).
Then P is in the image of a morphism ζsM : P(∆s) → P(M) for some facet s.
Since ζs∗MωM ∼= O∆s , we must have ζs∗M (x) = 0. Since |M |\|M0| is connected,
the same argument used in Proposition 3.5.3 shows that any facet t can be
connected with s by a chain s← u1 → · · · ← um → t of ≥ 1-dimensional faces
u1, . . . , um of M . If u connects s with a facet t via a simple chain t f←− u

g−→ s,
then ζf∗∆tζt∗M (x) = ζg∗∆sζs∗M (x) = 0. This implies that ζt∗M (x) = 0. Thus ζt∗M (x) = 0
for all facets t by induction on the length of a chain connecting s with t. Since
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H0(M,ωM ) ⊆ H0(∆n
M ,O∆n

M
), this is a contradiction. So x vanishes nowhere,

and therefore trivializes ωM . We conclude that ωM ∼= OM . Next we consider the
case where n = 1. Since H0(M ; k) ∼= k, M is a connected graph. It is moreover a
2-regular graph, since lkM (v) is the disjoint union of two points for each vertex v.
It follows that M is a cycle. Consider the unique morphism φ : M → L, where L
is the loop (a cycle with one edge). Since |L|\|L0| is connected, applying the same
argument as above shows that ωL ∼= OL. Observe that φ is a local isomorphism,
so that φ : P(M)→ P(L) is étale by Theorem 4.4.1. By Lemma 6.4.5, we have
ωM ∼= φ∗ωL, so ωM ∼= OM . Thus for general n, Γ(M) is Cohen-Macaulay and
ωM ∼= OM . It follows from [GW78, (5.1.9)] that Γ(M) is a graded Gorenstein
ring (with canonical module Γ(M)).

Assume now that Γ(M) ∼= Γ(∆n)⊗ Γ(N) for some homology sphere N and
some integer n ≥ 0. The graded polynomial ring Γ(∆n) is Gorenstein with
canonical module Γ(∆n)[−n − 1], and by the inductive hypothesis, Γ(N) is a
graded Gorenstein ring with canonical module Γ(N). It follows immediately that
Γ(M) is Gorenstein with canonical module Γ(M)[−n− 1] (see [Eis95, Section
21.11]). By [GW78, (5.1.8)], we have that ωM ∼= OM (−n− 1).

For the other direction a)⇒ b), assume that Γ(M) is a Gorenstein ring. In
particular, Γ(M) is Cohen-Macaulay. Hence by Theorem 6.3.3, we have that
H̃i(M ; k) = 0 for all i < n. Let s be a face ofM , and consider the étale morphism
A(Ms) → P(M). By [GW78, Lemma 5.1.10], P(M) is locally Gorenstein, so
each A(Ms) is Gorenstein as well. But A(Ms) ∼= Spec Γ(lkM (s)) × (Gm)dim s

by Corollary 5.2.9, and it follows that Γ(lkM (s)) is a Gorenstein ring. By the
inductive hypothesis, lkM (s) is on the form N ?∆n for some homology sphere
N and some integer n ≥ −1. Thus | lkM (s)| which is of one of the following
two types: Either it is a homology sphere (n = −1), or it is the cone over some
other topological space (n ≥ 0). In the latter case it is contractible. So in
either case, we have by Lemma 5.4.5 that H̃i−|s|−1(lkM (s); k) = 0 for all i < n,
and H̃n−|s|−1(lkM (s); k) ∼= k or H̃n−|s|−1(lkM (s); k) ∼= 0. By [GW78, (5.1.9)]
we have ωM ∼= OM (−n) for some integer n. Assume that n < 0. Then by
Serre duality, H0(M,OM ) = Hn(M,OM (−n)). But Lemma 3.6.5 implies that
Hn(OM (−n)) = 0. Since dimkH

0(M,OM ) > 0, this is a contradiction, so n ≥ 0.
By Serre duality again, dimkH

0(M,OM (d+1−n)) = dimkH
n(M,OM (−d−1))

for all integers d. Thus from Theorem 6.3.3 and Proposition 3.6.3, we obtain
the formula

n∑
m=0

∑
s∈Jm

M

dimk H̃
n−m−1(lkM (s); k)

(
d

m

)
=

n∑
m=0
|Mm|

(
d− n
m

)
(6.15)

for integers d ≥ 0. Assume first that n = 0. Then (6.15) forces the equal-
ities dimk H̃

n−|s|−1(lkM (s); k) = 1 for each face s of M . By Serre duality,
dimkH

n(M,OM ) = dimkH
0(M,OM ) = 1. Hence by Theorem 3.4.1, we have

dimk H̃
n(M ; k) = 1. Thus M is a homology sphere, as the homological condi-

tions are now obtained from the universal coefficient theorem. Next, assume
that n > 0. Since H̃n(M,OM (−n)) = H0(M,OM ) = 1, by Theorem 6.3.3 we
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6. Cohen-Macaulay and Gorenstein properties

obtain the formula
n∑

m=0

∑
s∈Jm

M

dimk H̃
n−m−1(lkM (s); k)

(
n− 1
m

)
= 1. (6.16)

This implies that there exists a unique face s ∈M can of dimension dim s ≤ n− 1
such that dimk H̃

n−|s|−1(lkM (s); k) = 1. Thus lkM (s) is a homology sphere.
Since dim s = n− 1, we have n ≤ n + 1.

By Lemma 5.2.8, we have L(Ms) ∼= lkM (s) ? ∆s, so that Γ(L(Ms)) ∼=
Γ(lkM (s))⊗k Γ(∆s). The inductive hypothesis implies that Γ(L(Ms)) is Goren-
stein with canonical module Γ(L(Ms))[−n]. Thus ωL(Ms)

∼= OL(Ms)(−n). Con-
sider now the morphism φ : P(L(Ms)) → P(M) induced by φ : L(Ms) → M ,
and observe that φ∗ωM ∼= ωL(Ms). By (6.13), we have that φ!

shOM ∼= OL(Ms).
This means that

φ∆!
sh (αM )!

shOM ∼= (αL(Ms))!
shφ

!
shOM ∼= (αL(Ms))!

shOL(Ms).

By Lemma 6.4.1, P(M)n = P(N(M)) and P(L(Ms))n = P(N(L(Ms))). By
(6.14), we have φ∆!Iα−1

M
(N(M)) = Iα−1

L(Ms)(N(L(Ms))). However, φ
∆ : P(∆n

L(Ms))→
P(∆n

M ) is locally on P(∆n
L(Ms)) an isomorphism, so the functors φ∆! and φ∗ are

easily seen to be naturally equivalent. Hence φ∆∗Iα−1
M

(N(M)) = Iα−1
L(Ms)(N(L(Ms))),

which implies that φ−1(P(α−1
M (N(M)))) = P(α−1

L(Ms)(N(L(Ms)))). Thus by
Lemma 3.2.4, P(φ−1(N(M))) = P(N(L(Ms))). This implies that φ−1(N(M)) =
N(L(Ms)).

By Lemma 5.2.8, the isomorphism P(L(Ms)) → P(lkM (s) ? ∆s) restricts
to an isomorphism P(MP

s ) → P(lkM (s) ? ∂∆s). By Lemma 6.4.2, we have
N(lkM (s) ?∆s) = N(lkM (s)) ?∆s ∪ lkM (s) ?N(∆s). However, P(∆s) is normal,
so N(∆s) = ∅. Also, by Lemma 6.4.4, we have N(lkM (s)) = lkM (s)n−|s|−2.
Hence N(lkM (s) ?∆s) = lkM (s)n−|s|−2 ?∆s. It follows that

P(MP
s ∩N(L(Ms))) = P(MP

s ) ∩P(N(L(Ms)))
∼= P(lkM (s) ? ∂∆s) ∩P(lkM (s)n−|s|−2 ?∆s)
= P(lkM (s)n−|s|−2 ? ∂∆s).

Since lkM (s)n−|s|−2 ? ∂∆s ⊆ (lkM (s) ?∆s)n−2, the closed subscheme P(MP
s ∩

N(L(Ms)) does not have any components of dimension ≥ (n− 1). This implies
that MP

s ∩ N(L(Ms)) ⊆ Mn−2. Since ∆n
L(Ms) → ∆n

M is a local isomorphism,
it follows that L(Ms)\N(L(Ms)) → M\N(M) is as well. Since Ms → M is
also a local isomorphism, so is the morphism (L(Ms)\N(L(Ms))) ∪Ms →M of
open categories. In conclusion, the morphism L(Ms)\L(Ms)n−2 →M\Mn−2 is
a local isomorphism.

We will show that both of these open categories are connected. If n = 1 this
is clear. Assume that n > 1, and suppose that M = N ∪Z with N ∩Z ⊆Mn−2,
where N and Z are both nontrivial pure n-dimensional. Let t ∈Mn−2 be a facet
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of this intersection. Then lkM (t) is 1-dimensional. However, its 1-dimensional
faces are on the form t→ y for y ∈ N , or t→ z for z ∈ Z. But such facets cannot
share a vertex t→ u, since u ∈Mn−1. It follows that lkM (t) is not connected,
so that H̃0(lkM (t); k) 6= 0. This is a contradiction. The same argument applies
to L(Ms).

We will now show that φ is surjective. Pick s ∈ Mn not in the image of φ.
Then s can be connected via elements in M\Mn−2 to a face s′ ∈Mn which is in
the image of φ. Replacing s and s′ with appropriately chosen other faces of the
chain if necessary, we may assume that there exists a pair of arrows f : t→ s
and g : t→ s′ in T(M) for some t ∈M\Mn−2. Let u ∈ L(Ms)n be a face with
φ(u) = s′, and let r = gM (u). Then the local morphism φr : L(Ms)r → Mt

cannot be an isomorphism since t→ s is not in the image. This is a contradiction,
and we conclude that φ is surjective.

Next we will show that for each facet t of M , there is maximally one face on
the form s→ t in Ms. Suppose on the contrary that there exists two different
arrows f1, f2 : s→ t, and let t1, t2 denote the corresponding facets in L(Ms). Let
i ∈ im f1\ im f2, and consider the arrow di : [|t| − 1]→ [|t|]. Then there exists a
factorization s h−→ dMi (t) di−→ t of f2 : s→ t, but no factorization s→ dMi (t) di−→ t

of f1 : s→ t. Hence di ∈ ∆t
f2
∩ (∆t

f1
)P . This implies that u2 = d

L(Ms)
i (t2) ∈Ms,

and u1 = d
L(Ms)
i (t1) ∈ MP

s . However, both faces maps to u = dMi (t) via the
morphism L(Ms) → M . Since MP

s ∩ N(L(Ms)) ⊆ Mn−2, and u1 ∈ Mn−1,
we have u1 ∈ L(Ms)\N(L(Ms)). By Lemma 6.4.1, lkL(Ms)(u1) is a simplex.
But L(Ms)\L(Ms)n−2 →M\Mn−2 is a local isomorphism, which implies that
lkL(Ms)(u1) ∼= lkL(Ms)(u2) ∼= lkM (u). By Lemma 5.2.3, lkM (u) ∼= lklkM (s)(u, h),
which is a homology sphere. This is a contradiction, since u is not a facet.

In conclusion, the map L(Ms)n → Mn is bijective. Hence P(M) and
P(L(Ms)) have the same normalization, so φ∆ : ∆n

L(Ms) → ∆n
M is an iso-

morphism. Since L(Ms) → M is surjective, φ] : OM → φ∗OL(Ms) is injective.
By [HS06, Lemma 2.4.2], there is an isomorphism

AnnM (φ∗OL(Ms)/OM ) ∼= HomM (φ∗OL(Ms),OM ) = φ∗φ
!
shOM .

Since φ!
shOM ∼= OL(Ms), we obtain an isomorphism φ∗OL(Ms)

∼= AnnM (φ∗OL(Ms)/

OM ), which is an ideal sheaf of OM . It follows that φ] : OM → φ∗OL(Ms) is
an isomorphism. Since φ is affine, P(L(Ms)) → P(M) is an isomorphism.
By Lemma 4.3.5, this implies that L(Ms) → M is an isomorphism, and thus
M ∼= lkM (s) ?∆s, showing b).

6.5 Regular subdivisions of face schemes

We continue with the notation from Section 2.9. We define PR(M,Ψ) =
Proj(ΓR(M,Ψ)). This yields a functor PR : C → SchR, since any homomorphism
on the form ΓR(φ) : ΓR(N,Φ) → ΓR(M,Ψ) is finite. The natural grading on
ΓR(M,Ψ) defines a sheaf OPR(M,Ψ)(1).
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Lemma 6.5.1. LetM be a finite polyhedral set, and let R be a k-algebra DVR with
residue field k and field of fractions K. Then the morphism PR(M,Ψ)→ Spec(R)
is flat with central fiber Pk(PS(M,Ψ)), and generic fiber PK(M). More-
over, the sheaf OPR(M,Ψ)(1) is a relatively ample line bundle with central fiber
OPk(PS(M,Ψ))(1), and generic fiber OPK(M)(1). Hence the pairs (PK(M),OM (1))
and (Pk(PS(M,Ψ)),OPk(PS(M,Ψ))(1)) are deformation equivalent.

Proof. The both statements follows from Theorem 2.9.11 (and the fact that
relative ampleness is a local property on the base).

Lemma 6.5.2. Let M be a polyhedral set. Then there is a natural isomorphism
of pairs (P(nM),OnM (1)) ∼= (P(M),OM (n)).

Proof. This follows immediately from Lemma 2.9.5.

Theorem 6.5.3. If M is a finite polyhedral set, there exists an integer n ≥ 1
such that pair (Pk(M),OM (n)) is deformation equivalent to (Pk(Z),OZ(1)) for
some simplicial complex Z such that |Z| ∼= |M | (and any field k).

Proof. This follows from a straight-forward application of Theorem 2.9.9, Lemma 6.5.2
and Lemma 6.5.1.

Theorem 6.5.4. Let M be a polyhedral homology manifold. Then P(M) is locally
Gorenstein, and ω⊗2

M
∼= OM . Moreover, M is orientable if and only if ωM ∼= OM .

Proof. Assume first that M is unimodular. Since M is a homology manifold,
each link lkM (s) is a homology sphere for each face s of M . Consider the étale
cover {A(Ms)→ P(M)}s∈T(M). By Corollary 5.2.9, the morphisms A(Ms)→
Spec Γ(lkM (s))×k (Gm)dim s are isomorphisms. Since the Gorenstein property
is preserved under étale morphisms, each A(Ms) is Gorenstein by Theorem 6.4.6.
It follows that P(M) is locally Gorenstein. Assume that M is an orientable
homology manifold, and let n = dimM . By Lemma 3.3.1, αM : P(∆n

M )→ P(M)
is the normalization of P(M). By Lemma 6.4.4 and Lemma 6.4.1, we have
P(M)n = P(Mn−1). Hence (αM )!

shOM ∼= I∂∆n
M

by (6.14). By (3.33), we have
α∗I∂∆n

M

∼= IMn−1 , so αM∗(αM )!
shOM ∼= IMn−1 . However, we also have I∂∆n

M

∼=
ω∆n

M
by Lemma 3.6.2. Thus we may rewrite (6.13) as ω∆n

M

∼= ω∆n
M
⊗ α∗MωM ,

which implies that α∗MωM ∼= O∆n
M
. The same argument as in the proof of

Theorem 6.4.6 now shows that ωM has a non-trivial global section, which
trivializes ωM . This shows that ωM ∼= OM whenever M is orientable.

Next we assume thatM is non-orientable. By Proposition 5.4.3, the orientable
double cover π : M̃ →M is a local isomorphism. By Theorem 4.4.1, π : P(M̃)→
P(M) is étale. We know that π1(|M̃ |) ⊆ π1(|M |) is a subgroup of index two,
hence by abelianizing we get an exact sequence

0→ H1(M̃)→ H1(M)→ Z/2→ 0.

100



Regular subdivisions of face schemes

By the universal coefficient theorem, dualizing with respect to Gm yields an
exact sequence

0→ Hom(Z/2,Gm)→ H1(M ; Gm)→ H1(M̃ ; Gm).

Now, since π is étale, we have π∗ωM ∼= ω
M̃

by Lemma 6.4.5. But M̃ is orientable,
so π∗ωM ∼= OM̃ . It follows that the degree function of ωM is trivial, hence by
Theorem 3.5.2, ωM is represented by an element ofH1(|M |,Gm). Via the natural
isomorphism Pic0(ωM )

∼=−→ H1(M ; Gm), ωM is identified with an element in the
kernel of H1(M ; Gm)→ H1(M̃ ; Gm). But Hom(Z/2,Gm) is isomorphic to Z/2
(or trivial if char k = 2), so ω⊗2

M is trivial in H1(M ; Gm). We conclude that
ω⊗2
M
∼= OM . Since M is not orientable, we have Hn(M ; k) = 0. By Serre duality,

H0(M,ωM ) ∼= Hn(M,OM ) ∼= Hn(M ; k) = 0. Hence ωM does not have a global
section, and is therefore not trivial.

Finally, letM be a general polyhedral homology manifold. By Theorem 6.5.3,
there exists a marked pair (M,Ψ) such that Z = PS(M,Ψ) is unimodular
and |Z| ∼= |M |. By the above, Pk(Z) is locally Gorenstein. This property
is preserved under deformation equivalence, so Pk(M) is locally Gorenstein
as well by Theorem 6.5.3. For the rest of the statements, it will suffice to
show that for projective schemes X, the properties ωX ∼= OX , ω⊗2

X
∼= OX

and H0(X,ωX) = 0 are open stable under generization in proper families of
locally Gorenstein schemes. Indeed, suppose that X → Spec(R) is such a
family, where R is a DVR. Then its relative dualizing complex is invertible
([Stacks, Tag 0DW9]), hence it has an invertible relative dualizing sheaf ωX/R.
Assume that either of the properties above apply for its central fiber X0. We
will show that the same applies to its general fiber Xη. Since ωX/R|Xt ∼= ωXt
in general ([Stacks, Tag 0BZW]), we can lift a trivializing section of ωX0)
(resp. ω⊗2

X0
) to a trivializing section of ωX/R (resp. ω⊗2

X/R). This induces
a trivializing section of ωXη (resp. ω⊗2

Xη ). Finally, since ωX/R is invertible,
H0(X,ωX/R) = 0⇒ H0(X , ωX/R) = 0⇒ H0(Xη, ωXη/R) = 0.

Corollary 6.5.5. If M is a polyhedral homology sphere (with respect to k), then
Γ(M) is Gorenstein. In particular, Γ(∂∆P ) is Gorenstein for all P ∈ P.

Proof. By Theorem 6.5.4, we have ωM ∼= OM . Thus by Serre duality and
Lemma 3.6.5, Hi(M,OM (−d)) = Hn−i(M,OM (d)) = 0 for all d > 0 and
i < n. Since M is a homology sphere, Hi(M,OM ) = 0 for all 0 < i < n as
well. This means that Γ(M) is Cohen-Macaulay, and by [GW78, (5.1.9)], also
Gorenstein.
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Chapter 7

Deformations of face schemes of
polyhedral manifolds

This chapter will be concerned with the following objectives: First, we will prove
the vanishing of the obstructions to glueing local infinitesimal deformations of
(P(M),OM (1)) in dimension 2. This is essentially done via reduction to the
simplicial case. Second, we compute the universal base space for the deformation
functor of pairs under some restrictions on M . Then we find further conditions
under which the smoothing component is identifiable, and apply it to two classes
of examples in the final two sections.

We refer to [Har10] for the basic terminology on deformation theory. For
additional results, [Ser06] and [Art69] will be referenced. We consider the functor
F : k-alg→ Set given by F (B) = {(f : X → Spec(B), L)}/ ∼=, where f is proper
and flat, and L is an ample line bundle. Functoriality is given by base change.
This functor is locally of finite presentation (i.e. it preserves inductive limits),
which follows from standard techniques. Let X be a reduced and projective
scheme over k, and let L be an ample line bundle on X. Consider the over-
category k-alg/k, consisting of k-algebras B equipped with a homomorphism
φ : B → k. The local functor F(X,L) : k-alg/k → Set is given by F(X,L)(B

φ−→
k) = {(X ′, L′) ∈ F (B) : F (φ)(X ′, L′) = (X,L)}. We will focus on the local
deformation functor Def(X,L), which is equal to F(X,L) restricted to the category
of local Artinian k-algebras. It maps A to the set of equivalence classes of
pairs (X ′ → Spec(A), L′), where X ′ is a deformation of X over Spec(A′), and
L′ ⊗A′ k ∼= L (note that deformations X ′ → Spec(A′) are automatically proper
since A′ is finite over k). When X is smooth, its basic properties are well known
([Ser06, Section 3.3.3]). In particular, Def(X,L) has a miniversal family. However,
the smoothness assumption is redundant, as is shown in [AC10]. In fact, since L
is ample, Def(X,L) is pro-representable and has unique effectivizations of formal
families. This essentially follows from representability of the Hilbert functor and
the Picard functor. As a consequence of that, all effective formal families are
algebraizable:

Proposition 7.0.1. Any formal family {(Xn, Ln)} for Def(X,L) is algebraizable
(including the universal formal family). I.e. there exists an algebraic deformation
(X → Spec(B),L) and compatible isomorphisms (X ×B B/mn,L⊗B B/mn)

∼=−→
(Xn, Ln). Moreover, the base space Spec(B) for the universal deformation is
unique in the étale-topology locally around 0 ∈ Spec(B).

Proof. Since Def(X,L) has unique effectivizations, the above statement holds for
the universal formal family by [Art69, Theorem 1.6] and [Art69, Theorem 1.7].
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7. Deformations of face schemes of polyhedral manifolds

Since any formal family {(Xn, Ln)} is effective, it is automatically algebraizable
as a base change of an algebraic universal deformation.

We will now summarize from [AC10] what we shall require here. Consider
the natural morphism dlog : O∗X → ΩX given locally by u 7→ du

u , and let
c : H1(X,O∗X)→ H1(X,ΩX) denote the induced homomorphism in cohomology.
Since H1(X,ΩX) ∼= Ext1

X(OX ,ΩX), the element c(L) induces an extension

0→ ΩX → QL → OX → 0. (7.1)

This sequence is locally split-exact, hence by dualizing we obtain an exact
sequence

0→ OX → EL → TX → 0,

where EL = Q∨L.

Theorem 7.0.2 ([AC10, Theorem 3.1]).

1) The functor Def(X,L) has a miniversal family (i.e. Def(X,L) satisfies (H0)−
(H3) of Schlessinger’s criterion [Har10, Theorem 16.2]).

2) There is an isomorphism Def(X,L)(k[ε])
∼=−→ Ext1

X(QL,OX).

3) There is an exact sequence

0→ H1(X, EL)→ Ext1
X(QL,OX)→ H0(X, T 1

X)→ H2(X, EL),

where H1(X, EL) parametrizes the locally trivial first-order deformations
of X.

4) The obstructions for Def(X,L) lie in H0(X, T 2
X), H1(X, T 1

X) and H2(X, EL).

7.1 Vanishing of obstructions

For the rest of this chapter, we shall assume that M is 2-dimensional polyhedral
manifold. We will prove that the obstruction module H2(M, EL) vanishes, where
L = OM (1). If M is a simplicial manifold, then the vanishing of H2(M, EL)
is known [AC10, Theorem 6.1]. We will prove the general result in two steps.
First, we show that the property that H2(M, EL) = 0 is preserved under scaling
of M , and then under certain types of subdivisions called simple subdivisions.
Second, we show that it is possible to iteratively scale and subdivide M via
simple subdivisions until one ends up with a simplicial manifold.

Definition 7.1.1. Let (M,Ψ) be a marked pair structure on a 2-dimensional
polyhedral manifold M . Then the inner skeleton S ⊆ PS(M,Ψ) of the subdivi-
sion is the closure of PS(M,Ψ)1\PS(M1,Ψ|M1). Hence S is 1-dimensional, and
its edges are those which are not contained in PS(M1,Ψ|M1). A subdivision of
M is called simple if H1(|S|) = 0.
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Vanishing of obstructions

First, we shall require a more general version of (7.1). Let π : X → Spec(R)
be a projective, flat morphism, where R is some finitely generated k-algebra.
Let L be a line bundle on X. Consider the morphism dlogR : O∗X → ΩX/R

given by u 7→ d(u)
u . It is easy to check that this is a morphism of abelian groups.

This induces a homomorphism cR : Pic(X)
∼=−→ H1(X,O∗X)→ H1(ΩX/R). Since

H1(X,ΩX/R) ∼= Ext1
X(OX ,ΩX/R), the element cR(L) induces an extension
cR(L) : 0→ ΩX/R → QL → OX → 0.

As before, this sequence is locally split-exact, hence by dualizing we obtain an
exact sequence

0→ OX → EL → TX → 0,
where EL = Q∨L.

Proposition 7.1.2. Let n be a positive integer. Then QnL ∼= QL, so that EnL ∼=
EL.

Proof. We shall require the following fact, which follows immediately from the
construction in [Wei94, Theorem 3.4.3]: Let R be a ring, and A,B R-modules.
Let r ∈ R be an invertible element, and e ∈ Ext1

R(A,B) an extension class. Then
e and re are isomorphic as R-modules. This easily globalizes to the corresponding
statement for quasi-coherent sheaves on X, so we can apply it to the extension
c(L) ∈ Ext1

X(OX ,ΩX). First, since the homomorphism c is additive, we have
c(L⊗n) = nc(L). Now, n is invertible in H0(X,OX), and thus the middle terms
of the extensions corresponding to nc(L) and c(L) are isomorphic. In other
words, QnL ∼= QL.

Proposition 7.1.3. Let x ∈ Spec(R) be a point, and consider the fiber Xx →
Spec(k(x)). Let Lx := L|Xx = L⊗R k(x). Then (QL)|Xx ∼= QLx .

Proof. Let f : Xx → X denote the closed immersion of the fiber over x. Observe
that ΩX/R ⊗R k(x) ∼= f∗ΩXx/k(x). Consider the commutative diagram

O∗X

��

dlogR // ΩX/R

��
f∗O∗Xx

f∗ dlogk(x) // f∗ΩXx/k(x).

This induces a commutative diagram

H1(X,O∗X)

��

cR // H1(X,ΩX/R)

��
H1(X, f∗O∗Xx)

��

// H1(X, f∗ΩXx/k(x))

��
H1(Xx,O∗Xx)

ck(x) // H1(Xx,ΩXx/k(x)).
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7. Deformations of face schemes of polyhedral manifolds

The vertical arrow on the right is just the composition H1(X,ΩX/R) →
H1(X,ΩX/R)⊗R k(x)

∼=−→ H1(Xx,ΩXx/k(x)). Thus ck(x)(L|Xx) = cR(L)⊗ 1. If
we view cR(L)⊗ 1 as an element of Ext1

Xx(OXx ,ΩXx/k(x)) ∼= H1(Xx,ΩXx/k(x)),
it corresponds to

cR(L)⊗ 1 : 0→ ΩXx/k(x) → (QL)|Xx → OXx → 0.

Since this also corresponds to the extension ck(x)(L|Xx), we conclude that
(QL)|Xx ∼= QLx .

We will now apply the above in the situation where X := PR(M,Ψ) →
Spec(R) is a deformation arising from a marked pair structure (M,Ψ), where
R = k[t]p and p = (t). In this situation, the central fiber (X0,OX (1)|X0) is
isomorphic to a pair (P(Z),OZ(1)) for Z = PS(M,Ψ). Define L = OX (1) and
L = OZ(1), and consider the exact sequence

0→ OX
t−→ OX → OZ → 0. (7.2)

This yields an exact sequence (see [Har10, Theorem 3.4])

0→ TX/R
t−→ TX/R → TZ/k → T 1

X/R
t−→ T 1
X/R.

If we let C denote the sheaf of t-torsion sections of T 1
X/R, then we get the exact

sequence
0→ TX/R ⊗R k → TZ/k → C → 0. (7.3)

Now, by Proposition 7.1.3, there is an isomorphism (QL)|X0
∼= QL (compatible

with the isomorphism ΩX/R|X0 → ΩZ/k). So if we apply Hom (QL,−) to (7.2),
one obtains an injective morphism EL ⊗R k → EL. Consider the commutative
diagram

0 // OX ⊗R k

��

// EL ⊗R k

��

// TX/R ⊗R k

��

// 0

0 // OZ // EL // TZ/k // 0,

By the snake lemma and (7.3) there is an induced exact sequence on the form

0→ EL ⊗R k → EL → C → 0. (7.4)

Our next goal is to find conditions under which H1(X , C) = 0. To do this, we
must consider a new type of face ring construction:
Remark 7.1.4. There is an alternative way of interpreting the face ring con-
struction (M,Ψ) 7→ ΓR(M,Ψ) from Section 2.9, and it involves considering
each ring ΓR(P,ψ) as the coordinate ring of a polyhedron Q, which essen-
tially forms a homotopy between P and the subdivision PS(P,ψ). The general
setup is as follows. Let Q+ denote the category of full-dimensional lattice
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Vanishing of obstructions

polyhedrons Q ⊆ Rn [CLS11, Definition 7.1.3](including the empty-polyhedron
∅). If Q = {m ∈ Zdim(Q) | 〈m,uF 〉 ≥ −aF } is a lattice polyhedron, let
CQ = {m ∈ Zdim(Q) | 〈m,uF 〉 ≥ 0} denote its recession cone. The category Q+
may be defined analogously to P+, where arrows (f, λf ) : Q1 → Q2 are affine
transformations f : Zdim(Q1) → Zdim(Q2), fR : Rdim(Q1) → Rdim(Q2) identifies Q1
with a face of Q2, and where λf : Zdim(Q1) → G×m is a character. The affine semi-
group associated to Q is defined as AQ = N[(Q× {1} ∪ CQ × {0}) ∩ Zdim(Q)+1].
For each arrow f : Q1 → Q2 represented by an affine transformation x 7→ u+Ax,
there is an induced homomorphism AQ1 → AQ2 given by (m, d) 7→ (dfR(md ), d) =
(ud+A(m), d). This is analogous to and a generalization of the definition of the
functor A : P+ → Q for P ∈ P.

We define the face ring of Q as Γ′(Q) = k[AQ]. Functoriality is given as
before: χAf (m) 7→ λf (m)χm (and χm 7→ 0 otherwise). The grading is given
by k[AP ] =

⊕∞
d=0

⊕
(m,d)∈AQ k · χ

(m,d). This defines a functor Γ′ : Q+ →
D≥0, where D≥0 denotes the category of non-negatively graded k-algebras.
Now, k[CQ ∩ Zdim(Q)] is the degree 0 part of Γ′(Q), and the graded inclusion
k[CQ ∩ Zdim(Q)] → Γ′(Q) given by χm 7→ χ(m,0) is natural. As in Section 2.3,
this defines a functor Γ : Pre(∗)(Q)→ D≥0, where Q ⊆ Q+ is the subcategory
of non-empty polyhedra. A presheaf M ∈ Pre(∗)(Q) will be called a generalized
polyhedral set, and the definitions analogous to those prior apply. As before,
there is an induced functor P : Pre(∗)(Q)f → Schk, which associates to a
finite generalized polyhedral set M the scheme P(M) = Proj(Γ(M)). There is
nothing essentially different about this construction other than for the fact that
Γ(M) is not necessarily positively graded. Thus, all results of Chapter 4, and
also Lemma 5.2.5, Corollary 5.2.6 and Proposition 5.2.7 have analogies in this
situation. Hence there is an étale cover {A(Ms) → P(M)}s for faces s of M ,
and also A(Ms) ∼= Spec Γ(L(Ms))(θs). These facts will be used later.

To tie this up with subdivisions, let (P,ψ) be a marked pair, let n = dim(P ),
and consider the polyhedron Q defined as the union of vertical lines intersecting
the lower boundary Gψ. I.e. Q = {(m, s) ∈ Rdim(P )+1 | m ∈ P, s ≥ gψ(m)}. The
recession cone CQ ⊆ Rn is 1-dimensional and generated by the unit vector en.
Thus t := χ(en,0) ∈ Γ′(Q) is a well-defined element of degree zero, and Γ′(Q) is a
positively graded k[t]-algebra. One immediately observes that Γ′(Q) is generated
as a k[t]-algebra by the elements tdgψ(md )χ(m,d), where (m, d) ∈ APi for some i.
If k[t]→ R is the homomorphism given by t 7→ t, then this observation yields a
natural isomorphism of R-algebras

Γ(Q)⊗k[t] R ∼= ΓR(P,ψ). (7.5)

The assignment (P,ψ) 7→ Q defines a functor P → Q, and the Yoneda extension
induces a functor Pre(∗)(P)→ Pre(∗)(Q). Hence to a given marked pair (M,Ψ),
there is an associated generalized polyhedral set M̃ such that Γ(M̃) is a positively
graded k[t]-algebra, Γ(M̃) ⊗k[t] R ∼= ΓR(M,Ψ) (since (7.5) is natural), and
P(M̃)×k[t]R ∼= PR(M,Ψ). Note that we also have natural inclusions PS(P,ψ) ⊆
∆Q, and that Γ′(Q) ⊗k[t] k ∼= Γ(PS(P,ψ)) by (7.5). Thus for the induced
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7. Deformations of face schemes of polyhedral manifolds

inclusion PS(M,Ψ) ⊆ M̃ of generalized polyhedral sets, we have Γ(PS(M,Ψ)) ∼=
Γ(M̃)⊗k[t] k (the last part follows from a similar argument as in the proof of
Theorem 2.9.11). We also have A(M̃s)×k[t] k ∼= A(PS(M,Ψ)s) for every face s
of PS(M,Ψ).

Proposition 7.1.5. If the subdivision associated to a marked pair (M,Ψ) is
simple, i.e. if H1(|S|) = 0 where S ⊆ PS(M,Ψ) is the inner skeleton of the
subdivision, then H1(X , C) = 0.

Proof. Consider the homomorphism ΩΓR(P,ψ)) → ΓR(P,ψ) given by d(tsχm) 7→
s⊗ tsχm. This is well-defined due to (7.5), since all relations between generators
in ΓR(P,ψ) are binomials scaling the powers of t equally on each side. It is
also natural in (P,ψ), hence by taking limits one obtains a homomorphism
ΩΓR(M,Ψ) → ΓR(M,Ψ) satisfying d(t) 7→ t. Its degree is 0, hence it corresponds
to a global section D ∈ H0(X , TX/k). Consider now the exact sequence TX/k →
TR/k(OX ) → T 1

X/R ([Har10, Theorem 3.5]). Let D be the image of D in
H0(X , TR/k(OX )). It corresponds to the R-module homomorphism ΩR/k → OX
given by d(t) 7→ t. Now, let D0 denote the homomorphism ΩR/k → OX given
by d(t) 7→ 1, and note that D = tD0. Let D0 denote the image of D0 in
H0(X , T 1

X/R). Then tD0 is equal to the image of D, so by exactness we have
tD0 = 0. It follows that D0 ∈ H0(X , C), and this global section corresponds to
a homomorphism λ : OX → C.

As in Remark 7.1.4, let M̃ denote the generalized polyhedral set associated
with the subdivision. Then X ∼= P(M̃)×k[t]R. In order to determine the support
of C, which is contained in P(Z) = Sing(X0), where Z := PS(M,Ψ) ⊆ M̃ , we
must study the structure of the polyhedron Q associated to (P,ψ) further. For
every lattice point m ∈ P , vertical line through (m, 0) intersects the lower hull
Gψ in a lattice point. Hence if E is an edge of Q contained in some vertical facet
(of infinite area), it follows by a routine computation on facet normal vectors
that the cone σE ⊆ ΣQ is smooth (given that P is smooth). If {(v1, s1), (v2, s2)}
are the vertices of E, this implies that UσE ∼= Spec(Γ(∆Q)(χ(v1,s1,1)χ(v2,s2,1)) is
smooth, and therefore

Γ(∆Q)(ts1χ(v1,1)ts2χ(v2,1)
∼= k[t]⊗k Γ(∆P )(χ(v1,1)χ(v2,1).

If E′ ⊆ P (with vertices {w1, w2}) is the edge which contains {v1, v2}, then
clearly Γ(∆P )(χ(v1,1)χ(v2,1)

∼= Γ(∆P )(χ(w1,1)χ(w2,1). Hence if f : E → Q and
f ′ : E′ → P denote the corresponding arrows of the inclusions, we have

Γ(∆Q)(θf ) ∼= k[t]⊗k Γ(∆P )(θf′ ). (7.6)

Now, let e be an edge of Z which does not belong to S. Let e→ t1, e→ t2 be the
two canonical faces of Ze. Since e is not contained in S, the edge (fi)R(|e|) ⊆ |ti|
is contained in a vertical facet. Via the natural isomorphism (7.6), we obtain that
A(M̃e) ∼= A1 ×k A(Me′) for some edge e′ of M . Since A(Ze) ∼= A(M̃e)×k[t] R,
this means that X → Spec(R) induces a trivial deformation over the étale
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neighbourhood A(Ze). It follows immediately that C|A(Ze) = 0, hence C
is supported on P(S) ⊆ P(Z), and λ induces an injective homomorphism
λ′ : OY → C, where Y ⊆ P(Z) is a subscheme satisfying Y0 ⊆ P(S).

Conversely, let e be an edge of S. Let s be the facet of M such that e is
in the image of PS(∆s, ψs) → M̃ . Let P = |s|, and let Q be the polyhedron
associated to the pair (P,ψs). Let f : E → Q denote the associated arrow.
Then A(M̃e) ∼= A(∆Q

f ) ∼= Spec(Γ(∆Q)(θf )). This is an affine toric variety,
hence its coordinate ring is generated by some set of characters, including t.
Now, the general fiber of A(M̃e) → Spec(k[t]) is smooth, with central fiber
A(Ze) ∼= Spec k[x, z, y]y/(xz). Hence we must have Γ(∆Q)(θf ) ∼= k[t, x, z, y]y/
(xz − tNyn) for some integers N ≥ 0, n ∈ Z. It follows immediately that
C|A(Ze) is generated by D0|A(Ze) (which corresponds to the homomorphism
given by xz − tNyn 7→ NtN−1yn). Thus OY → C induces an isomorphism over
A(Ze). Since Y is closed, we have that Y0 = P(S). Consider the exact sequence
0 → I → OY → OS → 0. Now, I is supported at a closed subscheme of X
lying over the zero-dimensional scheme P(S0) ⊆ P(S), which must be affine.
Since H1(S,OS) = H1(S; k) = 0, the long exact sequence in cohomology yields
that H1(Y,OY ) = 0. However, coker(λ′) is also supported at an affine closed
subscheme of X lying over the zero-dimensional scheme P(S0) ⊆ P(S). From
the long exact sequence in cohomology of 0→ OY → C → coker(λ′)→ 0 we get
that H1(X , C) = 0. In conclusion, H1(|S|) = 0 implies that H1(X , C) = 0.

Proposition 7.1.6. Let M be a 2-dimensional polyhedral manifold. Then it is
possible to iteratively scale and subdivide M (i.e. M 7→ nM or M 7→ PS(M,Ψ))
into a simplicial manifold, such that at each step the inner skeleton S of the
subdivision satisfies H1(|S|) = 0.

Proof. First scale M so that every facet has an interior point. Then choose
an interior lattice point m of a facet s, and consider the subdivision of |s|
corresponding to some ψs : As = Vert(|s|) ∪ {m} → Z satisfying ψs(v) = 0 for
v ∈ Vert(|s|) and ψs(m) < 0. The subdivision consists of a line drawn from m
to each vertex of |s|. It also defines a subdivision of M , where every other facet
is subdivided trivially. Moreover, the inner skeleton S is clearly contractible,
so H1(|S|) = 0 in this case. Do the same process for every other facet of M .
After these subdivisions, M now contains no edges which are contained in the
same facet in two distinct ways. Next, without scaling, we perform the same
iterative subdivisions of each facet whenever possible, in order to remove every
interior lattice point of every facet of M . After that, choose any lattice point
m interior to some edge e of M , and subdivide the two (distinct) facets t1, t2
containing e via the functions ψti : Vert(|ti|)∪{m} → Z satisfying ψti(v) = 0 for
v ∈ Vert(|ti|) and ψti(m) < 0. This subdivision consists of a line drawn from m
to each vertex opposite of |e| ⊆ |ti|. Again, S is clearly contractible. Via these
subdivisions we end up with a polyhedral set without any facet or edges with
interior lattice points. By Pick’s theorem, the areas of all facet lattice polytopes
must 1

2 , and it is easy to see that a polygon with area 1
2 must be a triangle
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7. Deformations of face schemes of polyhedral manifolds

affinely isomorphic to the simplicial triangle ∆2. Hence M has been subdivided
into a simplicial manifold in the desired fashion.

Theorem 7.1.7. Let M be a 2-dimensional polyhedral set. Then H2(M, EL) = 0.

Proof. By Proposition 7.1.6 and Proposition 7.1.5, we can iteratively scale and
subdivide M (via some sequence M = M0 7→ M1 7→ · · · 7→ MN ), such that at
each subdivision step Mr 7→Mr+1 we have H1(X , C) = 0 (where X → Spec(R)
is the deformation associated to the subdivision). At each subdivision step,
in the situation of (7.4), H1(X , C) = 0 and H2(Mr+1, EOMr+1 (1)) = 0 implies
that H2(X , EL) = 0. Since X → Spec(R) is flat, the sheaf EL = Q∨L is flat
as well as a sheaf of R-modules. Hence H2(Xη, (EL)η) = 0, where (Xη,Lη) ∼=
(PK(Mr),OMr

(1)) is the generic fiber. But the homomorphism R→ K is flat,
so it easily follows that (EL)η ∼= (QL)η)∨ ∼= EOMr (1), where the last isomorphism
comes from Proposition 7.1.3. In conclusion, H2(Mr+1, EOMr+1(1)) = 0 implies
that H2(Mr, EOMr(1)) = 0. At each scaling step (Mr 7→Mr+1 = nMr), we have
OMr+1(1) ∼= OMr

(n). Hence by Proposition 7.1.2, H2(Mr+1, EOMr+1 (1)) = 0
implies H2(Mr, EOMr (1)) = 0 in this situation as well. Finally, by [AC10,
Theorem 6.1], we have H2(MN , EOMN (1)) = 0, since MN is a simplicial complex.
By the above, we conclude that H2(M, EOM (1)) = 0.

7.2 First-order deformations

Definition 7.2.1. The valency val(v) of a vertex v ∈M0 is defined as the number
of edges of the n-cycle lkM (v).

In this section we will restrict our attention to the situation where val(v) ≥ 3
for all v ∈ M0. In this case, lkM (v) is a simplicial complex on the form Cn,
where n = val(v) and Cn denotes the n-cycle (i.e. the simplicial complex with
n vertices and n edges forming a circle). Since A(Mv) = Spec(Γ(Cn)), the
methods of [AC04] can be used to compute the first-order deformations of
P(M). Our present goal is to find a suitable characterization of a basis for
the cohomology group H0(M, T 1

M/k) via the étale Čech cohomology complex.
Recall the étale cover {A(Mv) → P(M)}v∈Mcan

0
. By Lemma 6.2.1, we have

A(Mv) ×P(M) A(Mw) =
∐
v→s←w A(Ms), where s ranges over all minimal

elements with arrows from v and w. But note that T 1
M/k|A(Ms) = 0 whenever

dim(s) = 2, since A(Ms) is smooth. Since the restriction T 1
M/k|A(Ms) is only

non-trivial when s is an edge or a vertex, Definition 6.2.3 and the proof of
Lemma 6.2.4 can easily be adapted to the present situation, and as a consequence,
H0(M, T 1

M/k) is equal to the kernel of the homomorphism

δ :
⊕

v∈Mcan
0

T 1
A(Mv)/k →

⊕
e∈Mcan,dim(e)=1

T 1
A(Me)/k, (7.7)
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which is given by δ((λv)v)e = λd1(e)|A(Me)−λd0(e)|A(Me) for each edge e ∈M can.
Hence it becomes crucial to understand T 1

Γ(Cn)/k for n ≥ 3, and also the restriction
homomorphisms T 1

A(Mdi(e))/k
→ T 1

A(Me)/k for i = 0, 1.

7.2.1 n-cycles and normal forms

As before, let Cn denote the n-cycle for n ≥ 3. Its Stanley-Reisner ring can be
described as

Γ(Cn) =
{
n = 3 : k[x0, x1, x2]/(x0x1x2),
n ≥ 4 : k[x0, . . . , xn−1]/(xixj | |i− j| ≥ 2).

For simplicity, the index of the variables xi can be any integer, but is interpreted
as reduced modulo n. By [AC04, Example 17], a k-basis for T 1

Γ(Cn)/k is given
as follows: For n = 3, we have generators φ(k)

i for k ≥ −1 and i = 0, 1, 2.
Here φ(k)

i corresponds to the homomorphism given by x0x1x2 7→ xk+1
i , so we

have φ(−1)
0 = φ

(−1)
1 = φ

(−1)
2 . For n = 4, we have generators φ(k)

i for k ≥ 0,
and i = 0, 1, 2, 3. Here φ(k)

i corresponds to xi−1xi+1 7→ xki , mapping the other
relation to 0. Hence φ(0)

0 = φ
(0)
2 , and φ(0)

1 = φ
(0)
3 . For n ≥ 5, we have generators

φ
(k)
i for k ≥ 1 and i = 0, 1, . . . , n− 1. Here φ(k)

i corresponds to xi−1xi+1 7→ xki ,
mapping the other relations to zero.

In order to lift to higher-order deformations, we shall require the notion of
normal forms (see [AC10]), which corresponds to certain deformations of Γ(Cn)
(for 3 ≤ n ≤ 6) over Artinian local rings. The definition will involve the following
data:

• A ring Rn for 3 ≤ n ≤ 6, given as the quotient of the power-series
ring Pn = k[[t(k)

i ]] by a finitely generated ideal an. In Pn we have one
variable t(k)

i for each generator φ(k)
i ∈ T 1

Γ(Cn)/k, where by convention we
put t(k)

i = t
(k)
j whenever φ(k)

i = φ
(k)
j .

• A finite set of elements In ⊆ k[x1, . . . , xn][[t(k)
j ]].

The ideal an is defined as the zero-ideal for n ≤ 5, but a6 is defined as the
2× 2-minors of the matrix [

t
(1)
0 t

(1)
2 t

(1)
4

t
(1)
3 t

(1)
5 t

(1)
1

]
(7.8)

The elements forming In for n ≥ 3 are given in [AC10, p.19].

Proposition 7.2.2 ([AC10, Proposition 6.6]). Let f : Rn → A (for 3 ≤ n ≤ 6) be
a k-algebra homomorphism, where A is a local Artinian k-algebra, such that all
but finitely many t(k)

i are mapped to 0. Then the quotient of A[x0, . . . , xn−1] by the
ideal generated by the image of In under f defines an infinitesimal deformation
Zf → Spec(A) of Spec(Γ(Cn)).

111



7. Deformations of face schemes of polyhedral manifolds

An infinitesimal deformation of Spec(Γ(Cn)) over Spec(A) is said to be in
normal form if it is on the form Zf for some homomorphism f : Rn → A.

7.2.2 A basis for H0(M, T 1
M/k)

We shall assume here that M is a 2-dimensional smooth polyhedral manifold
(i.e. its faces are smooth polytopes). Let e ∈M be an edge, and let vi = di(e)
for i = 0, 1 be the vertices of e (which may be equal). Define E = |e|, and let

yi := χ(wE,vi ,1)

χ(vi,1) = χ(wE,vi−vi,0) ∈ Γ(∆e)(θidE ).

Then y0 = y−1
1 , and Γ(∆e)(θidE ) ∼= k[y1]y1

∼= k[y0]y0 . Since M is a manifold,
lkviM (e) is the disjoint union of two points, corresponding to a pair of arrows
e
f1−→ t1, e

f2−→ t2 where t1, t2 are facets.

E

E1 E′1

E2 E′2

|t1|

|t2|

v1 v0

wv1,E1
wv0,E′1

wv0,E′2
wv1,E2

wv0,E

Figure 7.1: The local picture around e ∈M .

Hence Γ(lkvi(e)) = k[xi, zi]/(xizi). Consider the isomorphisms

πi : A(Me)→ Spec(Γ(lkviU (s)))×k Spec(Γ(∆e)(θidE )))

from Proposition 5.3.4. These induces an isomorphism

πe = π0π
−1
1 : k[y1]y1 ⊗k k[x1, z1]/(x1z1)→ k[y0]y0 ⊗k k[x0, z0]/(x0z0).

Clearly πe(y1) = y−1
0 . Moreover, πe(x1) = x0y

n(e,t1)
0 and πe(z1) = z0y

n(e,t2)
0

for some integers n(e, t1), n(e, t2), which we will determine next. Note first that
Γ(lkviU (s))⊗k Γ(∆e)(θidE ) is isomorphic to the pullback of the diagram

Γ(∆t1)(θf1 ) → Γ(∆e)(θidE ) ← Γ(∆t2)(θf2 ).

In Γ(∆t1)(χ(v1,1)χ(v0,1)), x1 and x0 corresponds to χ(wE1,v1−v1,0) and χ(wE′1,v0
−v0,0)

respectively (see Figure 7.1), where E1, E
′
1 6= E are the edges in |t1| containing
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v1, v0 respectively. Similarly, in Γ(∆t2)(χ(v1,1)χ(v0,1)), z1 and z0 corresponds to
χ(wE2,v1−v1,0) and χ(wE′2,v0

−v0,0) respectively, where E2, E
′
2 6= E are the edges in

|t2| containing v1, v0 respectively. It follows that n(e, t1) is the integer satisfying
χ(wE1,v1−v1,0) = χ

(wE′1,v0
−v0,0)(χ(wE,v0−v0,0))n(e,t1). In other words,

wE1,v1 − v1 = wE′1,v0 − v0 + n(e, t1)(wE,v0 − v0).

Analogously, n(e, t2) is the integer satisfying

wE2,v1 − v1 = wE′2,v0 − v0 + n(e, t2)(wE,v0 − v0).

Such integers exist due to the fact that |t1| and |t2| are smooth polytopes.
Hence n(e, t1) (resp. n(e, t2)) is the number of lattice points of E minus the
number of lattice points of the line segment between wE1,v1 and wE′1,v0 (resp.
wE2,v0 and wE′2,v0). See Figure 7.2 for a graphical depiction. Note that the sum
n(e) := n(e, t1) + n(e, t2) depends only on e.

n(e, t1)

n(e, t2)

wv1,E1−v1 wv0,E′1
−v0

wv0,E′2
−v0wv1,E2−v1

Figure 7.2:

Consider now the module T 1
k[x0,z0,y0]y0/(x0z0)/k

∼= k[y0]y0 . It is generated by

the elements φ
(k)
e := yk0 for each k ∈ Z. The homomorphism corresponding to

yk0 is the one given by x0z0 7→ yk0 . Thus the isomorphism

k[y0]y0
∼= T 1

k[x0,z0,y0]y0/(x0z0)/k → T 1
k[x1,z1,y1]y1/(x1z1)/k

∼= k[y1]y1 (7.9)

induced by πe is given by yk0 7→ y
−n(e)−k
1 .

Let v ∈M0 be any vertex. Then we relabel the generators φ(k)
i of T 1

Γ(lkM (v))/k

as φ(k)
(ei,fi), where (ei, fi) ranges over the vertices of lkM (v) in some cyclic order (for

i = 0, . . . , val(v)−1). We are now in a position to describe (7.7). For each edge e ∈
M can

1 , let us identify A(Me) with Spec(Γ(lkd1(e)
U (e)))×kSpec(Γ(∆e)(θidE ))). Then

A(Me)→ A(Md1(e)) corresponds to the localization homomorphism Γ(Cn)→
k[x1, z1, y1]y1/(x1z1). On the other hand, the morphism A(Me) → A(Md0(e))
corresponds to the localization homomorphism composed with the isomorphism
πe. This means that the restriction homomorphism T 1

A(Md1(e))/k → T
1

A(Me)/k
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is given by φ(k)
(e,d1) 7→ φ

(k)
e , while the restriction homomorphism T 1

A(Md0(e))/k →

T 1
A(Me)/k is given by φ

(k)
(e,d0) 7→ φ

(−n(e)−k)
e .

It follows that via (7.7), the element φ(k)
(e,f) ∈ T

1
A(Mv)/k is mapped to φ(k)

e

whenever v = d1(e), and φ(−n(e)−k)
e whenever v = d0(e). We will not give an

explicit description of a basis forH0(M, T 1
M/k), because it will not be necessary for

our purposes, but we will give a sufficiently descriptive implicit characterization:

Definition 7.2.3. Each basis element of H0(M, T 1
M/k) is on the form ψ

(k)
(e,f), for

k ≥ −1 and (e, f : v → e) ∈ lkM (v)can, which (if it exists) is uniquely determined
by the condition that ψ(k)

(e,f)|A(Mv) = φ
(k)
(e,f), and that its restriction to A(Mw) is

zero for the maximal number of w ∈M can
0 .

Determining whether the global section ψ(k)
(e,f) exist is a purely combinatorial

problem. For example, if f ′ : v′ → e is the arrow in M can distinct from
f : v → e, then ψ

(k)
(e,f) and ψ

(−n(e)−k)
(e,f ′) are equal as global sections, and exist

contemporaneously. Of course, val(v) = 3 is a necessary condition for that ψ(−1)
(e,f)

can exist, and val(v) ≤ 4 is necessary for that ψ(0)
(e,f) can exist. In this latter

situation, we also have ψ(0)
(e,f) = ψ

(0)
(e′,f ′) when (e′, f ′) as a vertex of lkM (v) lies

opposite of (e, f). Otherwise, if val(v) ≥ 5, then ψ(k)
(e,f) can only exist if k ≥ 1.

7.3 The universal base space

Definition 7.3.1. Let PM denote the k-algebra on the generators {w∗j }j dual to
some chosen basis {wj}j of H1(M, EL), and generators {T (k)

(e,f)}(v f−→e,k)∈I
(one

for each basis element ψ(k)
(e,f) of H0(M, T 1

M/k)). As a notational convention, we
put T (k)

(e,f) = 0 if ψ(k)
(e,f) does not exist.

For each vertex v with val(v) = 6, and for each arrow f : v → e where e is
an edge, let g(e,f) be some element of the completion P̂M . Let O = {g(e,f)}(e,f)

denote the set of these elements, and consider the ideal aO ⊆ P̂M given as the
2× 2-minors of the matrices[

g(e0,f0) g(e2,f2) g(e4,f4)
g(e3,f3) g(e5,f5) g(e1,f1)

]
(7.10)

for vertices v with val(v) = 6. In this situation we define RM,O := P̂M/aO .

Theorem 7.3.2. Let M be a 2-dimensional smooth polyhedral manifold such that
3 ≤ val(v) ≤ 6 for every vertex v ∈M0. Assume in addition that for every edge

114



The universal base space

e, the inequality n(e) < δd1(e) + δd0(e) holds, where

δv :=


0 val(v) ≥ 5
1 val(v) ≥ 4
2 val(v) ≥ 3

(this is always the case when, for example, M is unimodular). Then we may
find O as above with g(e,f) = T

(1)
(e,f) + higher order terms, such that Spec(RM,O)

is the universal base space for the deformation functor Def(P(M),OM (1)). In
particular, if 3 ≤ val(v) ≤ 5 for all vertices v, then the universal base space is
regular.

Proof. The proof will be similar to that of [AC10, Theorem 6.7], except for the
fact that we have to glue our local deformations in the étale topology, and that
we have to take in consideration that there may be locally trivial deformations
as well. We will recursively construct a sequence of deformations of pairs

(Xn, Ln)

��

// (Xn+1, Ln+1)

��
Spec(Rn) // Spec(Rn+1)

(7.11)

of (P(M),OM (1)) and liftings of line bundles Ln on Xn, where each Rn is a local
Artinian quotient of P̂M such that Rn = Rn+1/m

n+1, and where m ⊆ P̂M

is the maximal ideal. The inequalities are assumed in order to construct a
compatible system of local deformations. The Rn’s will be chosen in such a way
that lim←−nRn

∼= RM,O for some set O = {g(e,f)} ⊆ P̂M . Note that a deformation
Xn corresponds to a coherent sheaf of flat Rn-algebras OXn on X0 = P(M). We
will show that there exists homomorphisms of k-algebras h(n)

v : Rval(v) → Rn for
each n, lifting h(n−1)

v , such that the deformation Xn|A(Mv) := Spec(OXn|A(Mv))
of A(Mv) over Spec(Rn) corresponds to h

(n)
v (per Proposition 7.2.2). The

elements g(e,f) will be defined recursively via the sequence of compatible elements
g

(n)
(e,f) := h

(n)
v (t(1)

(e,f)) ∈ Rn.
To begin with, define R0 = P̂M/m, and let h(0)

v map every generator
to 0. For n = 1, define R1 = P̂M/m

2, and let h(1)
v : Rval(v) → R1 be

given by t
(k)
i 7→ T

(k)
(ei,fi). Then the associated local deformations U

(1)
v of

A(Mv) corresponds to
∑
k∈Z,(e,f)∈lkM (v) φ

(k)
(e,f). Indeed, this can be seen by

plugging in the corresponding variables in the particular equations which de-
fine In in Proposition 7.2.2. Moreover, these deformations agree on inter-
sections. I.e. U

(1)
d1(e)|A(Me)

∼= U
(1)
d0(e)|A(Me) for each edge e. They can be

found in [AC10, p.19]. Next, since H2(X0, EL0) = 0 by Theorem 7.1.7, there
is no obstruction to the existence of a compatible system of isomorphisms
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(φvw, πvw) : (U (1)
v ,O

U
(1)
v

)|A(Mv)×MA(Mw) → (U (1)
w ,O

U
(1)
w

)|A(Mv)×MA(Mw) (re-
ducing to the identity on (OA(Mvw)|A(Mvw), L0|A(Mvw))) for each pair of vertices
v, w. Perturb the system (φvw, πvw)vw by an element on the form

∑
j ajw

∗
j⊗wj ∈

H1(X0, EL0)⊗km/m2 for general coefficients aj . We may glue now glue the pairs
(U (1)

v ,OU(1)) together via the perturbed system (φ′vw)vw to a deformation (X1, L1)
of (X0, L0) over Spec(R1). Since the coefficients of

∑
j ajw

∗
j ⊗ wj were chosen

generally, the resulting Kodaira Spencer map Hom(R1, k[ε])→ Def(X0,L0)(k[ε])
is bijective.

For the inductive step, assume that Rm and suitable deformations Xm →
Spec(Rm) exists for m < n, where n > 1. Then we will construct Rn and
a suitable deformation Xn → Spec(Rn). First, let g′(e,f) be an arbitrary lift-
ing of g(n−1)

(e,f) to P̂M . Let O ′ = {g′(e,f)}(e,f) ⊆ P̂M , and define Rn = P̂M/

(aO′ + mn+1), where aO′ is the ideal defined as the minors of (7.10). Next,
let h′v be an arbitrary lifting of h(n−1)

v . If val(v) = 6, we impose the require-
ment that h′v(t

(1)
i ) = g′(ei,fi) (in which case the local obstruction equations a6

are mapped to 0 as required). Each h′v define deformations U ′v over Spec(Rn)
which are liftings of U (n−1)

v . However, the deformations U (n−1)
v |A(Mvw) and

U
(n−1)
w |A(Mvw) may fail to be isomorphic. Their differences define an element

De =
∑
k∈Z bkφ

(k)
e ∈ H0(A(Me), T 1

P(M)/k)⊗mn/mn+1 for each edge e ∈M can
1 ,

where each bk ∈ mn. To remedy this, we need to adjust the hv’s. Note that
an adjustment of h(n)

d1(e)(t
(k)
i ) 7→ h

(n)
d1(e)(t

(k)
(ei,fi)) + b for some b ∈ mn has the

effect of perturbing the difference De by +bφ(k)
ei (De′ for e′ 6= ei is not affected).

On the other hand, an adjustment of h(n)
d0(e)(t

(k)
i ) 7→ h

(n)
d0(e)(t

(k)
(ei,fi)) + b has the

effect of perturbing the difference by −bφ(−n(ei)−k)
ei . This can be seen by in-

specting the equations defining In (see [AC10, p.19]). Now, the inequality
n(e) < δd1(e) + δd0(e) ensures that each term bkφ

(k)
e lies in the image of either

H0(A(Md1(e)), T 1
P(M)/k) or H0(A(Md0(e)), T 1

P(M)/k), and this allows us to elim-
inate every term bkφ

(k)
e by iterative adjustments. Indeed, the inequality implies

that that any integer k ∈ Z can be written as k0 or −n(e)− k1, where ki is an
integer such that φ(ki)

(e,di) is a generator of T 1
A(Mdi(e))/k

for i = 0, 1. So let g(n)
(e,f)

be the new elements given by h(n)
v , and let O(n) = {g(n)

(e,f)}(e,f). Then Rn is still
isomorphic to P̂M/(aO(n) +mn+1). Indeed, aO(n) = aO′(mod mn+1) since the
adjustment g′(e,f) 7→ g

(n)
(e,f) in Rn is by an element of mn. Let U (n)

v be the new
local deformations after these adjustments. Then they will agree on intersections,
and since H2(X0, L0) = 0 there exists a compatible system of isomorphisms
(φ(n)
vw , π

(n)
vw ) : (U (n)

v ,O
U

(n)
v

)|A(Mvw) → (U (n)
w ,O

U
(n)
w

)|A(Mvw), reducing to the iden-
tity like above. We may glue the pairs to a global deformation (Xn, Ln) lifting
(Xn−1, Ln−1).

In conclusion, the deformations of (7.11) have now been constructed, and
satisfies the required conditions. The Kodaira Spencer map is bijective by
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construction, and thus Spec(RM,O) will be the the universal base space.

Proposition 7.3.3. Under the conditions of Theorem 7.3.2, assume in addition
that val(v) 6= 5 for all vertices v. Furthermore, assume that T (k)

(e,f) = 0 whenever
k ≥ 2 for val(v) = 6, k ≥ 1 for val(v) = 4, and k ≥ 0 for val(v) = 3. Under these
assumptions, each g(e,f) = T

(1)
(e,f). Hence the universal formal family {(Xn, Ln)}

is definable over the finitely generated k-algebra

RM,O := PM/aO ,

where aO is the 2× 2-minors of the matrices[
Te0 Te2 Te4
Te3 Te5 Te1

]
.

associated to each vertex of valency 6.

Proof. The proof follows in the exact same manner as for Theorem 7.3.2, with the
additional observation that in this situation no adjustment of the homomorphisms
h′v : Rval(v) → Rn is necessary in order for U ′d1(e)|A(Me) and U ′d0(e)|A(Me) to
be isomorphic. Specifically, we define h(n)

v : Rval(v) → Rn (for each n) by
t
(k)
i 7→ T

(k)
(ei,fi). We will show that the equations defining the local deformations

U
(n)
v , as defined by hv, are linear in the variables of Rn. In such a situation, we

will have U (n)
d1(e)|A(Me)

∼= U
(n)
d0(e)|A(Me) in general. Indeed, the linear terms will in

each case yield equality on the nose (for the same reason we have that for n = 1).
Again, we refer to [AC10, p.19] for the particular equations, which via the normal
forms hv define the associated deformation. Note that for valency 3, linearity is
automatic. Valency 4: The ideal defining U (n)

v ⊆ Spec(Rn[x0, x1, x2, x3]) is on
the form

(x0x2 + T
(0)
(e1,f1), x1x3 + T

(0)
(e0,f0)).

By inverting x0 (which amounts to restricting to A(Me0)), we obtain a description
of the resulting subscheme U (n)

v |A(Me1 ) ⊆ Spec(Rn[x0, x1, x2]x1) as given by the
ideal

(x0x2 + T
(0)
(e0,f0)).

The choice of x1 was without loss of generality, and the same conclusion holds
for xi for i = 0, . . . , 3. Valency 6: The ideal defining U (n)

v ⊆ Spec(Rn[xi | i =
0, . . . 5]) is on the form

(xi+1xi−1 + xiT
(1)
(ei,fi), xjxj+3 − T (1)

(ej+1,fj+1)T
(1)
(ej+2,fj+2) | i = 0, . . . , 5, j = 0, 1, 2).

Again, by a straight-forward computation after inverting x0, say, one obtains the
ideal (x1x5 + x0T(e0,f0)), which has with linear terms. This computation relies
on the vanishing of the minors of (7.8).
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7.4 Smoothability

Next we come to the question of smoothability.

Lemma 7.4.1. Let f : X → Y be a flat morphism of schemes of finite type.
Then the set Uf = {y ∈ Y | Xy → Spec(k(y)) is smooth} is open in Y .

Proof. Let y ∈ Uf , and let y′ ∈ Y be a generization of y. Let R be some DVR,
and let Spec(R)→ Y be some morphism covering the generization y′  y. Let
g : X ′ → Spec(R) denote the base change of f . Now, Ug contains the closed
point of Spec(R). Since g is of finite type, every closed point of X ′ is also a
closed point of the central fiber X ′0. Thus g is smooth at all closed points in the
sense of [Stacks, Tag 01V9] (i.e. g is smooth at x ∈ X ′ if X ′g(x) → Spec(k(g(x)))
is smooth around x ∈ X ′f(x)). But this is an open condition, so g is smooth at
every point. Hence Ug contains the generic point of Spec(R) as well, and thus
y′ ∈ Uf .

Definition 7.4.2. A morphism f : X → Y of schemes is called generically smooth
if it is flat, proper, and Xη → Spec(k(η)) is smooth for the generic point η of
each component of Y . By Lemma 7.4.1, the set Uf is then open and dense in Y .

Definition 7.4.3. Let (X0, L0) be a pair of a projective scheme over a field
k, and an ample line bundle L0. Then a smoothing of (X0, L0) is a proper,
generically smooth deformation (X → Spec(k[[t]]),L) of the pair (X0, L0). If
such a smoothing exists, then by Proposition 7.0.1 there exists an algebraization
to a generic smoothing over a non-singular curve C of finite type over k. A formal
smoothing of X0 is a formal family (Xn → Spec(An), Ln), where An := k[t]/
(tn+1), such that there exists an integer n0 such that tn0T 1

Xn/An
(F) = 0 for all

n and for every coherent sheaf F on Xn.

Proposition 7.4.4. Let X0 be a projective scheme equipped with an ample line
bundle L0 which is formally smoothable. Then (X0, L0) is smoothable.

Proof. Suppose that (Xn, Ln) is a formal smoothing of (X0, L0), and let (X̂, L̂)
be the induced effectivization over Â := k[[t]]. Letm be an integer such that L̂⊗m
is very ample. Then (Xn, L

⊗m
n ) is a formal smoothing of (X0, L

⊗m
0 ). Considering

the associated embeddings, Xn is a formal smoothing of X0 in the sense of [Har10,
Chapter 29]. Thus by [Har10, Proposition 29.5], X̂ → Spec(Â) is generically
smooth.

Remark 7.4.5. There is also the well-defined notion of a universal generic smooth-
ing of a pair (X0, L0), which can be realized as the restriction of the universal ef-
fective deformation to its generically smooth base locus: Let (X → Spec(R̂),L )
be the (unique) universal effective deformation of (X0, L0). Then by Lemma 7.4.1,
there is a maximal open set U ⊆ Spec(R̂) over which X |U → U is smooth. Let S
be the closure of U , and let (X ′,L ′) = (X |S ,L |S). Suppose that (Y → T,H )
is any generically smooth effective deformation of (X0, L0). Since Def(X0,L0) has
unique effectivizations, there is a unique morphism f : T → Spec(R̂) such that
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(Y ,H ) ∼= (X ×
R̂
T,L ⊗

R̂
T ). But since Y is generically smooth, f factors

as T → S → Spec(R̂). Indeed, if V is the maximal open subset of Y such that
Y |V → V is smooth, then f(V ) ⊆ U . Hence f(T ) ⊆ S. Thus Y ∼= X ′ ×S T .
The morphism T → S is obviously unique, hence (X ′ → S,L ′) can be called
a universal generic smoothing. By Proposition 7.0.1, the universal smoothing
(X ′ → S,L ′) is algebraizable.

Lemma 7.4.6. Suppose that (X,L) is a smoothing of (P(M),OM (1)), for some
polyhedral manifold M . Let KX be the canonical divisor of X. Then 2KX = 0,
and KX = 0 if and only if M is orientable. Hence by the Kodaira classification
of surfaces, |M | ∼= S2 implies that X is a K3 surface, |M | ∼= S1× S1 implies that
X is an abelian surface, |M | ∼= RP 2 implies that X is an Enriques surface.

Proof. The statements about the canonical divisor on X follows from Theo-
rem 6.5.4, and the last part of the proof.

Theorem 7.4.7. Under the conditions of Proposition 7.3.3, (P(M),OM (1)) is
smoothable if T (1)

(e,f) is non-zero for val(v) = 6, T (0)
(e,f) is non-zero for val(v) = 4,

and T (1)
(e,f) is non-zero for val(v) = 3. Hence, one may consistently define

Te :=


T

(1)
(e,f) if val(fM (e)) = 6
T

(0)
(e,f) if val(fM (e)) = 4
T

(−1)
(e,f) if val(fM (e)) = 3

for each edge e of M . Equivalently, n(e) = δd1(e) + δd0(e) − 2 for all edges e.
In this case, the base space for the universal smoothing of P(M) are the main
components of Spec(RM,O), i.e. the closure BM := D(

∏
e Te) of the main torus

D(
∏
Te).

Proof. We will utilize the following criteria for determining whether a deformation
is generically smooth or not, which we highlight in a remark because it will
become useful later on as well.
Remark 7.4.8. Let (X,L) be a pair where X is a reduced projective scheme,
and where L is an ample line bundle satisfying H2(X, EL) = 0. Let {Ui} be a
finite affine étale cover of X, and let Ui → Spec(k[t]) be morphisms with central
fiber Ui over t = 0. Define Â = k[[t]], and An = k[t]/tn. Assume further that
structure sheaves O(Ui)n of (Ui)n = Ui ×k[t] An are flat over An (as coherent
sheaves of An-algebras on Ui), and satisfy

O(Ui)n |Uij ∼= O(Uj)n |Uij (7.12)

for each n ≥ 0. Note that by the infinitesimal criterion for flatness, each Ui
is flat over Spec(k[t]) at t = 0. Since H2(X, EL) = 0, these isomorphisms may
be modified to satisfy the cocycle condition, glueing in the étale topology to a
deformation Xn → Spec(An) of X equipped with liftings Ln of L. Assume now
that Ui → Spec(k[t]) are generic smoothings for each i. Then there exists integers
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7. Deformations of face schemes of polyhedral manifolds

ni such that tniT 1
Ui/k[t](F) = 0 for every coherent sheaf F on Ui. In particular,

tniT 1((Ui)n/An,F|(Ui)n) = 0 for every coherent sheaf F on Xn for all n. Hence
for n0 = max(ni), we have tn0T 1(Xn/An,F) = 0. Thus (Xn, Ln) is a formal
smoothing, and therefore the induced effectivization X̂ → Spec(Â) is generically
smooth by Proposition 7.4.4. Conversely, if some Ui is not a generic smoothing,
then there exists no integer ni as above. Hence X̂ cannot be generically smooth
in this case.

By Proposition 7.3.3, the universal formal family {(Xn, Ln)} is definable over
Spec(RM,O) = V (aO) ⊆ Spec(PM,O). Here aO is a homogeneous ideal, so there
is a linear complete curve C ⊆ Spec(P̂M,O) through every dimension 1 point of
Spec(RM,O). Such a curve is a complete DVR, so the closure BM ⊆ Spec(P̂M,O)
of the smooth base locus is precisely the closure of the union of the curves C
which induce generic smoothings X |C → C. By Remark 7.4.5, BM is the base
locus of the universal generic smoothing. Any curve C is determined by a
linear homomorphism fC : P̂X,O → Â, given on generators by Te 7→ aet and
w∗j 7→ bjt for some constants ae, bj ∈ k satisfying ae = ae′ whenever Te = Te′ .
The ae’s must the satisfy equations given by the vanishing of the minors of
(7.8). Thus fC induces a homomorphism Rn → An. Now, the restriction X |C
is the completion of the formal family {Xn ×Rn An → Spec(An)}. Consider the
affine étale cover {U (n)

v ×Rn An}v of Xn ×Rn An. We observe that each U (n)
v

is on the form Uv ×k[t] An, where Uv ⊆ Spec(k[t][x0, . . . , xval v−1]) are defined
in Table 7.1. By Remark 7.4.8, X |C is generically smooth if and only if each

Table 7.1: The local deformations Uv.

Valency Ideal of Uv

3 (x0x1x2 − ae0t)
4 (x0x2 + ae1t, x1x3 + a0t)
6 (xi+1xi−1 + aeixit, xjxj+3 − aej+1aej−1t

2 | i = 0, . . . , 5, j = 0, 1, 2)

Uv → Spec(k[t]) is generically smooth. Via Macaulay2 one can check that every
fiber of Uv → Spec(k[t]) will be singular if any aei = 0. On the other hand, the
fiber over t = 1 is smooth if aei 6= 0 for all i. By Lemma 7.4.1, it is generically
smooth in this case. In conclusion, BM is the closure of the union of curves C
which are determined by homomorphisms fC satisfying ae 6= 0 for every edge e,
and this is precisely the closure of D(

∏
e Te).

7.5 Degenerations of abelian surfaces

Our object of consideration here will be a class of torus tilings represented by
polyhedral sets M arising as quotients of certain admissible (Definition 7.5.2)
periodic tesselations of the plane R2 by smooth lattice polygons (with vertices
in Z2). Thus M will be a quotient Λ/G, where Λ is a polyhedral set defining
a periodic lattice tesselation of the plane, and G is a subgroup of the linear
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Degenerations of abelian surfaces

translation group of Λ, which we shall assume is of finite index in Z2. By
Lemma 7.4.6, if (P(M),OM (1)) is smoothable, then it is to abelian surfaces.

Any subgroup G ⊆ Z2 of finite index has unique generators on the form (n, 0)
and (r,m), for some integers n,m ≥ 1 and 0 ≤ r < n. A fundamental domain
of Λ relative to G is a minimal compact subtiling of Λ which is surjective onto
Λ/G. There is a canonical fundamental domain KG ⊆ Λ defined as the tiling of
the closed rectangle with corners (0, 0), (n, 0), (0,m), (n,m). The basic object of
our consideration is the equivelar tesselation {3, 6}, which partitions the plane
into triangles. Let us call this Λ0.

Definition 7.5.1. Let G ⊆ Z2 be some subgroup of finite index. Then we define
NG = Λ0/G.

(0, 0)

(0,m) (r,m) (n,m)

(n, 0)

Figure 7.3: The fundamental domain KG relative to G. In NG = Λ0/G, the
vertices (0, 0), (n, 0) and (r,m) are identified. If r = 0 then all four corners are
identified.

Definition 7.5.2. A tesselation Λ of the plane is a 2-dimensional polyhedral set
consisting of lattice polytopes which can be embedded into R2 (with vertices in
Z2) without overlap. Λ is called admissible if it can be subdivided into the basic
tesselation Λ0, and moreover satisfies the following condition: for every vertex
v ∈ Λ, either val(v) 6= 5, or if val(v) = 4, then the edges containing v split into
two pairs of parallel lines.

Theorem 7.5.3. Let M be a quotient Λ/G of an admissible tesselation Λ. Then
M satisfies the conditions of Theorem 7.4.7. Hence in particular, (P(M),OP(M)(1))
is smoothable, and BM = D(

∏
Te) is the base space for the universal generic

smoothing.

Proof. We need to show that n(e) = δd1(e) + δd0(e) − 2 for each edge e. In
Table 7.2 we list the various possibilities of triples (val(d1(e)), val(d0(e)), n(e))
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7. Deformations of face schemes of polyhedral manifolds

(0, 0)

(0, 3) (3, 3)

(3, 0) (0, 0)

(0, 4) (2, 4) (4, 4)

(4, 0)

Figure 7.4: Examples of fundamental domains of admissible tesselations.

that may occur, and from one deduces which generators T (k)
(e,f) that can be

possibly non-zero. We assume that val(d1(e)) ≥ val(d0(e)). The remaining cases
are obtained by inverting the table below.

(
val(d1(e)), val(d0(e)), n(e)

)
Possible T

(k)
(e,f)

(6, 6,−2) T
(1)
(d1(e),e) = T

(1)
(d0(e),e)

(6, 4,−1) T
(1)
(d1(e),e) = T

(0)
(d0(e),e)

(6, 3, 0) T
(1)
(d1(e),e) = T

(−1)
(d0(e),e)

(4, 4, 0) T
(0)
(d1(e),e) = T

(0)
(d0(e),e)

(3, 3, 2) T
(−1)
(d1(e),e) = T

(−1)
(d0(e),e)

Table 7.2: We see that there are no situations that could potentially violate the
conditions of Proposition 7.3.3.

See [Chr10] for an investigation of the universal base space Spec(RM,O) and
the universal generic smoothing base space BM in the case whereM is a simplicial
complex quotient of the basic tesselation Λ0 by triangles. The minimal such
situation is (n,m, r) = (7, 1, 3).
Remark 7.5.4. Let M be a quotient Λ/G of an admissible tesselation Λ. We
will provide a method for computing BM , given BNG . By Theorem 7.5.3, the
generators of PM are either on the form Te for some edge e of M , or on the form
w∗j corresponding to a dual basis of the space H1(P(M), EOP(M)(1)) of locally
trivial first-order deformations. Note that if we let R′M denote the subalgebra
of RM generated by the Te’s only, then RM = R′M ⊗k k[{w∗j }j ]. Thus, if
we let dM := dimH1(M, EL), then BM = D(Te) ×k AdM , where D(Te) ⊆
Spec(R′M ). Now, via the description in Proposition 7.3.3, one observes that the
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Degenerations of abelian surfaces

homomorphism γ : R′NG → R
′
M given by

Te 7→

{
Te′ if e′ is an edge containing e,
1 otherwise

is well-defined and surjective (it does not however induce a well-defined map on
completions).

Let v be a vertex of M . If val(v) = 4, then we have Tei = Tei+2 for i = 0, 1.
If val(v) = 3, then Te0 = Te1 = Te2 . One observes that these relations are
equivalent with that the minors of the matrix[

γ(Te0) γ(Te2) γ(Te4)
γ(Te3) γ(Te5) γ(Te1)

]
(7.13)

vanishes for every vertex w of NG, where ei are the edges appearing in lkX(w).
Hence we see that the universal generic smoothing base space factor B′M is
obtained by base changing B′NG along Spec(R′M )→ Spec(R′NG). It other words,
B′M ⊆ B′NG is the subscheme cut out by the relations Te − 1 for edges e is not
contained in any edge of M , and Te − Te′ whenever e and e′ are contained in
the same edge of M .

7.5.1 Example computations

In what follows we will compute the universal generic smoothing in some special
cases, using Macaulay2. The functions used are found in Appendix C.0.1. It
computes the closure of the torus D(

∏
Te) inside the quotient ring RM,O = PM/

aO , where aO is generated by the minors of the matrices[
Te0 Te2 Te4
Te3 Te5 Te1

]
for each vertex v. The output is in each case easily recognized to correspond
to what we have listed. We have restricted the list to the cases where the
resulting components can feasibly be written down. The degree is computed
using the Riemann-Roch formula L2 = 2H0(X,OX(1)) for abelian surfaces
(where L = OX(1)). Since H0(X,OX(1)) is constant in families, then by
Proposition 3.6.3 the degree L2 is equal to 2L(M), where L(M) is the number
of lattice points of M .

Example 7.5.5. We consider quotients M = Λ0/G of the basic tesselation
Figure 7.3. The Macaulay2 function used is called basicTesselation. The
central fiber (P(M),OM (1)) is a stable quasiabelian pair in the sense of [AN99],
and this tesselation is one of the two Delaunay decompositions of the plane.
The most degenerate example Λ0/Z2 is also discussed there. It consists of
two triangles, three edges and one vertex. It has a 3-parameter smoothing to
principally polarized abelian surfaces.
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7. Deformations of face schemes of polyhedral manifolds

(n, m, r) Components of B′
M for Example 7.5.5

dimB′M Degree of polarization = 2nm
(1, 1, 0) A3

3 2 (a principal polarization)
(2, 1, 0) A4

4 4
(2, 1, 1) A4

4 4
(2, 2, 0) A6 ∪A6 which intersect at the origin
6 8
(3, 1, 0) A5

5 6
(3, 1, 1) A5

5 6

(3, 1, 2)
V (x5x7 − x4x8, x9x7 − x2x8, x5x6 − x3x8, x4x6 − x3x7, x2x6 − x1x7,

x9x6 − x1x8, x9x4 − x2x5, x2x3 − x1x4, x9x3 − x1x5) ⊆ A9

5 6

(0, 0)

(0,m) (r,m) (n,m)

(n, 0)

Figure 7.5: All deformations parameters Te are equated since h0(T 1
P(M)/k) = 1.
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Example 7.5.6. We consider quotients of the tesselation by hexagons Figure 7.5.
In this case, no matter what G is, all generators Te will be equal. Hence
BM = AdM+1.

Example 7.5.7. We consider quotients of the tesselation {4, 4} by squares Fig-
ure 7.6. In this case, the number of generators {Te}e depends on the tuple
(n,m, r). Indeed, since each valency is 4, the generators of PM corrsponds to the
orbits of the actions by Z×0 on the set of vertical edges of Λ/G, and 0×Z on the
horizontal edges. Thus there are m horizontal equivalence classes, and gcd(n, r)
vertical equvalence classes (where gcd(n, 0) := n). Thus BM ∼= AdM+m+gcd(n,r).

(0, 0)

(0,m) (r,m) (n,m)

(n, 0)

Figure 7.6: Deformation parameters Te,Te′ are equated if e and e′ are adjacent
and parallel. Thus h0(P(M), T 1

P(M)/k) is equal to the number of vertical and
horizontal paths on the torus.

Example 7.5.8. We consider quotients of the following tesselation by squares
Figure 7.7. Here the valencies are 3 and 6. The translation group is generated by
the vectors (2, 1) and (1, 2). This gives the following requirements on (n,m, r):
3 | n and 3 | 2r−m. By Remark 7.5.4, we obtain a description of BM by dividing
out by the ideal generated by Te − 1 for every edge e of NG which does not
appear in M . Hence there is a single generator Tv for every vertex v ∈ M0 of
valency 3. The Macaulay2 function used is called crossTesselation.

7.6 Degenerations of K3 surfaces

Let M be a smooth polyhedral sphere. If (P(M),OM (1)) has a smoothing, it is
to K3 surfaces by Lemma 7.4.6. However, the conditions of Theorem 7.4.7 rarely
holds in this case. But there is another way of produce examples of smoothable
P(M), and hence proper families of K3 surfaces. Assume that all vertices of
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(0, 0)

(0,m) (r,m) (n,m)

(n, 0)

Figure 7.7: The universal base space is non-trivial, and as for Λ0/G it is generally
a union of varieties defined by binomial ideals.

(n, m, r) Components of B′
M for Example 7.5.8

dimB′M Degree of polarization
(3, 1, 2) A2

2 6
(3, 2, 1) Cone(P1 ×P1)
3 12
(6, 2, 1) V (x0y0 − zw, x1y1 − zw, x2y2 − zw) ⊆ A8

5 12

(6, 2, 4)
V (x4x6 − x5x7, x3x6 − x2x7, x8x6 − x1x7, x2x4 − x3x5,

x1x4 − x8x5, x8x2 − x1x3) ⊆ A8

5 12

M has valency 3. We will attempt to define a smoothing of P(M) by choosing
local generic smoothings of A(Mv) on the form Uv = Spec(k[t, x0, x1, x1]/
(x0x1x1 + tFv(x0, x1, x1))), where Fv(x0, x1, x1) is a sum of monomials on the
form xa0x

b
1x
c
1. Note that such schemes are automatically flat over t = 0. Then we

will apply Remark 7.4.8 to glue these infinitesimally, which will induce a unique
effective deformation, which may be a smoothing. Thus we will require that
Fd1(e) maps to Fd0(e) under the transition functions πe. This is computationally
feasible for a given polyhedral sphere, but to reduce the complexity of the
situation we will assume that Fv are equal for all v. Thus our problem becomes
finding F which are invariant under πe.

Definition 7.6.1. Let M be a smooth polyhedral sphere, such that every vertex
has valency 3. Let t be any facet of M , and e any edge contained in t. Let e′ and
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e′′ denote the edges of t adjacent to e. Then we assume that n(e′, t) = n(e′′, t).
We call such polygons |t| regular. Moreover, if t′ and t′′ are the facets of M
containing e′ and e′′ other than t, we furthermore assume that n(e′, t′) = n(e′′, t′′).
If M satisfies these conditions, we call it 3-regular. See Figure 7.8 for a picture
describing the situation.

e′

e

e′′

t′

t′′

t

n(e′, t)

n(e′, t′)

n(e′′, t)
n(e′′, t′′)

Figure 7.8: Note: the figure is slightly imprecise as the braced lines over each
edge ẽ has length L(|ẽ|) + n(ẽ, t).

Examples of 3-regular polyhedral spheres are 3-regular Archimedean solids,
where its regular polygons replaced by a suitable set of lattice polygons {P1, P2, P3},
which are regular in the above sense. See Figure 7.9 for some basic examples
of regular polygons. Let v be a vertex of M . Let e0, e1, e2 be the edges

Figure 7.9: Regular polygons

and t0, t1, t2 the facets of M which appear as the vertices and edges of lkM (v),
ordered cyclically in the sense of Figure 7.10. Consider the tuple

(n(e0, t0), n(e1, t0), n(e1, t1), n(e2, t1), n(e2, t2), n(e0, t2)). (7.14)

By Definition 7.6.1, this is an invariant of M up to a permutation of the
edges (and corresponding permutation of the facets). We will now describe a
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e1

e0

e2
t1

t2

t0

Figure 7.10: The local picture around a vertex of a 3-regular polyhedral sphere

procedure for finding invariant polynomials F . We will use the notation from
Section 7.2.2. Let e be an edge of M . Using the isomorphism (7.9), we get that
the ideal of U (n)

d1(e)|A(Me) is on the form (x0x1x2 + tF (x0, x1, x2)), while the ideal
of U (n)

d0(e)|A(Me) is on the form (x0x1x2x
n(e)−2
0 + tF (x−1

0 , x1x
n(e,s1)
0 , x2x

n(e,s2)
0 ),

where x0 ∈ Γ(lkM (d1(e))) is the variable corresponding to (e, d1(e)) ∈ lkM (d1(e)),
and e → s1 and e → s2 are the facets of Me corresponding to x1 and x2
respectively. A sufficient criterion for (7.12) is that these two ideals are equal
for all edges e. Hence we get three requirements on F for each vertex v:

F (x0, x1, x2) = x
2−n(e0)
0 F (x−1

0 , x1x
n(e0,t0)
0 , x2x

n(e0,t2)
0 )

F (x0, x1, x2) = x
2−n(e1)
1 F (x0x

n(e1,t0)
1 , x−1

1 , x2x
n(e1,t1)
1 )

F (x0, x1, x2) = x
2−n(e2)
2 F (x0x

n(e2,t2)
2 , x1x

n(e2,t1)
2 , x−1

2 ).

(7.15)

Here ei is the edge corresponding to xi. We posit that F can be written as a sum
of monomials xa0xb1xc2 for tuples (a, b, c) in some finite subset S ⊆ N3 containing
(0, 0, 0). The above transformations maps such a monomial to the following:

xa0x
b
1x
c
2 7→


x
−a+n(e0,t0)b+n(e0,t2)c+2−n(e0)
0 xb1x

c
2

xa0x
−b+n(e1,t0)a+n(e1,t1)c+2−n(e1)
1 xc2

xa0x
b
1x
−c+n(e2,t2)a+n(e2,t1)b+2−n(e2)
2 .

This can be translated to affine transformations fi : Z3 → Z3 given as follows:

f1(a, b, c) = (−a+ n(e0, t0)b+ n(e0, t2)c+ 2− n(e0), b, c)
f2(a, b, c) = (a,−b+ n(e1, t0)a+ n(e1, t1)c+ 2− n(e1), c)
f3(a, b, c) = (a, b,−c+ n(e2, t2)a+ n(e2, t1)b+ 2− n(e2))

Of course, each affine transformation fi : R3 → R3 is a reflection through a
hyperplane. We have to assume that n(e) ≤ 2 for all edges e, so that fi will
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map (0, 0, 0) to a vector with non-negative entries. We will now generate a finite
set S ⊆ Z3 of vectors with non-negative entries containing (0, 0, 0), which is
invariant under application of f1, f2, f3. So let G be the subgroup of the group
of isometries Isom(Z3) generated by {f1, f2, f3}, and define S = {g(0, 0, 0)}g∈G.
If S consists of vectors with non-negative entries, then we may define F =∑

(a,b,c)∈T x
a
0x
b
1x
c
2, and this F will satisfy the equations (7.15). Finally, suppose

that V (x0x1x2 + tF (x0, x1, x2)) is generically smooth over Spec(k[t]). Then
we may apply Remark 7.4.8. This completes the procedure, and we may now
investigate what configurations of 6-tuples on the form (7.14) can give rise to a
suitable set S ⊆ N3 and polynomial F .

7.6.1 Resulting smoothings

The above procedure yields an invariant F for every possible 6-tuple on the form
(7.14). We have listed in Table 7.3 each situation where the polyhedral complex
M is realizable as an Archimedean solid using regular polygons. Note that M is
not necessarily the boundary of a 3-dimensional lattice polytope; at least not a
priori. The list is a selection of the output of the function regularDeformation
from Appendix C.0.2. To see that each tuple is realizable, one simply compares
the listed tuple with the tuple corresponding to the polyhedral complex obtained
from that Archimedean solid with its facets replaced by regular polygons. Note
that there are two non-equivalent listings of the truncated cuboctahedron. The
degree is computed using the Riemann-Roch polarization degree formula L2 =
2(H0(X,OX(1))− 2) for K3 surfaces. Similarly to before, by Proposition 3.6.3
we have that the degree L2 is equal to 2(L(M)−2). The number of lattice points
L(M) is easily calculated. The faces present in these examples are triangles,
squares, hexagons and octagons. It is probable that the Archimedean solids
containing decagons are smoothable as well, although one would have to use
different polynomials Fv for each vertex to construct such families.
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Table 7.3: (P(M),OM (1)) has a proper 1-parameter smoothing to polarized K3
surfaces

6-tuple Polynomial F
M is boundary of Degree of polarization
(−1,−1,−1,−1,−1,−1) x4

0 + x4
1 + x4

2 + 1
Tetrahedron L2 = 4
(0, 0, 0, 0,−1,−1) x3

0x
2
1 + x2

1x
3
2 + x3

0 + x3
2 + x2

1 + 1
Triangular prism L2 = 8
(0, 0, 0, 0, 0, 0) x2

0x
2
1x

2
2 + x2

0x
2
1 + x2

0x
2
2 + x2

1x
2
2 + x2

0 + x2
1 + x2

2 + 1
Cube L2 = 12

(1, 1, 0, 0, 0, 0)
x2

0x
2
1x

2
2 + x2

0x1x
2
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2 + x2
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(1, 1, 1, 1,−1,−1) x2

0x
2
1x

2
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0x
2
1 + x2

1x
2
2 + x2

0 + x2
2 + 1

Truncated tetrahedron L2 = 28
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x2

0x
2
1x

2
2 + x0x

2
1x

2
2 + x2

0x
2
1 + x0x

2
1 + x0x

2
2 + x2

2

+x0 + 1
Octahedral prism L2 = 44

(1, 1, 1, 1, 0, 0)
x2

0x
2
1x

2
2 + x2

0x
2
1x2 + x0x

2
1x

2
2 + x2

0x1x2 + x0x
2
1x2

+x0x1x
2
2 + x0x1 + x0x2 + x1x2 + x0 + x2 + 1

Truncated octahedron L2 = 60

(2, 1, 1, 2, 0, 0)
x2

0x
2
1x

2
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0x
2
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2
1x

2
2 + x2
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2
2

+x2
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2
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Truncated cube L2 = 92
(1, 2, 0, 0, 1, 1) x2

0x
2
1x

2
2 + x2

0x
2
1x2 + x0x

2
1x2 + x0x2 + x2 + 1

Truncated cuboctahedron L2 = 152
(2, 1, 1, 1, 0, 0) x2

0x
2
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2
2 + x2

0x
2
1x2 + x2

0x1x2 + x1x2 + x2 + 1
Truncated cuboctahedron L2 = 152
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Appendix A

Kan extensions
We refer to [Mac98, Chapter X, Section 3] for a treatment on Kan extensions.
We will briefly summarize the construction, in particular the case of left Kan
extensions along Yoneda embeddings, and include some results from [IK86] on
monoidal Kan extensions.

Definition A.0.1. Given categories A,B and C, and functors F : A → C,
I : A → B, a left Kan extension of F along I is a functor LanI(F ) : B → C
together with a natural transformation ηF : F → LanI(F )I called the universal
transformation, written

A
F //

I

��

C

B

⇒ηF

LanI(F )

??

(A.1)

satisfying the following universal property: Given any functor M : B → C
together with a natural transformation µ : F → MI, there exists a unique
natural transformation δ : LanI(F )→M such that the diagram

LanI(F )I
δI

%%
F

µ //

ηF

::

MI

(A.2)

commutes.

The left Kan extension LanI(F ) equipped with its universal transformation
is unique up to natural equivalence. Whenever C is cocomplete, i.e. has all
colimits, then every functor F : A→ C has a left Kan extension. The universal
transformation ηF : F → LanI(F )I is natural in natural transformations φ :
F → G, inducing a functor on functor categories LanI : [A,C]→ [B,C] which is
left adjoint to the precomposition functor I∗ : [B,C]→ [A,C]. It is a general fact
that left adjoint functors are cocontinuous, i.e. preserves all colimits (see [Mac98,
Chapter V, Theorem 2]). Thus left Kan extensions are always cocontinuous
when C is cocomplete. If I is fully faithful, then ηF is a natural equivalence and
LanI is fully faithful as well.

A.0.1 Construction of the left Kan extension

Assume that A and B are small categories. Given a functor F : A→ C, the left
Kan extension functor LanI(F ) : B → C along with the universal transformation
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A. Kan extensions

ηF : F → LanI(F )I can be constructed as follows. For each object b ∈ B,
consider the comma category (I ↓ b) consisting of pairs (a, f : I(a) → b) for
objects a ∈ A, and arrows f : I(a) → b. An arrow (a, f : I(a) → b) → (a′, f ′ :
I(a′)→ b) consists of an arrow g : a→ a′ in A such that f ′ ◦ I(g) = f .

For each b ∈ B, the functor F : A → C induces a diagram Fb : (I ↓
b) → C, defined by Fb(a, f) = F (a), and Fb (g : (a, f)→ (a′, f ′)) = F (g). We
define LanI(F )(b) as the colimit lim−→Fb of this diagram. The colimit comes
equipped with the universal natural transformation τb : Fb → LanI(F )(b),
where LanI(F )(b) is regarded as the constant functor on (I ↓ b) with value
LanI(F )(b). For each a ∈ A, consider the natural transformation τI(a) : FI(a) →
LanI(F )(I(a)). We define ηF : F → LanI(F ) by ηF (a) = τI(a)(a, idI(a)) :
F (a)→ LanI(F )(I(a)).

Consider the functor (I ↓ −) : B → Cat, sending any b ∈ B to the category
(I ↓ b), and any arrow h : b→ b′ to the functor (I ↓ h) : (I ↓ b)→ (I ↓ b′). The
functor (I ↓ h) is defined by mapping any object (a, f) to (a, h ◦ f), and any
arrow g : (a, f) → (a′, f ′) to g : (a, h ◦ f) → (a′, h ◦ f ′). Let h : b → b′ be an
arrow in B. Then the natural transformation τb′ : Fb′ → LanI(F )(b′) yields a
natural transformation τb′(I ↓ h) : Fb → LanI(F )(b′). The universal property of
τb induces the arrow LanI(F )(h) : LanI(F )(b)→ LanI(F )(b′).

A.0.2 Discrete fibrations

Definition A.0.2. Fix a small category C. Then a category over C is a small
category U equipped with a functor p : U → C, and is denoted (U, p). A discrete
fibration over C is a category (U, p) over C such that for every object s ∈ U and
arrow f : c→ p(s) in C, there exists a unique lifting h : t→ s of f along s. This
defines the category Fib(C) of discrete fibrations over C as a full subcategory of
(Cat ↓ C).

Let X : Cop → Set be a presheaf on C. Consider the category of objects
I(X) = (YC ↓ X) of X as a category over C via the projection functor pX :
I(X)→ C defined by (c, s ∈ X(c)) 7→ c on objects, and (f : (c′, t)→ (c, s)) 7→
(f : c′ → c) on arrows. The following fact is well-known.

Proposition A.0.3. The assignment X 7→ (I(X), pX) defines an equivalence of
categories I : Pre(C)

∼=−→ Fib(C).

A.0.3 Yoneda extensions

Definition A.0.4. Given a functor F : A→ B, a Yoneda extension of F is a left
Kan extension of F : A→ B along YA : A→ Pre(A).

Of particular importance is the Yoneda extension of a composition A
F−→

B
YB−−→ Pre(B) along the Yoneda embedding YA : A → Pre(A). In fact given

a presheaf X : Aop → Set, then using the general construction of the left
Kan extension, we have the following simple formula for the Yoneda extension
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X̂ = LanYA(YB ◦ F )(X):

X̂ = lim−→
A(−,a)→X

B(−, F (a)). (A.3)

Notably, for representable functors we have Â(−, a) = B(−, F (a)). There is an
alternative way of describing X̂ : Bop → Set; it is in fact a left Kan extension
itself:

Lemma A.0.5. In the situation above, the functor X̂ = LanYA(YB ◦ F )(X) is a
left Kan extension of X : Aop → Set along F op : Aop → Bop. In other words,
there is a natural equivalence of functors LanYA(YB ◦ F ) ∼= LanF op .

Proof. Note first that since YA is fully faithful, the universal transformation
YB ◦ F → LanYA(YB ◦ F ) ◦ YA is a natural equivalence. The adjunction be-
tween LanF op and (F op)∗ yields a natural bijection Hom(LanF op(A(−, a)), Z) ∼=
Hom(A(−, a), Z ◦ F op)) for every object a ∈ A and preshaf Z : Bop → Set.
By the Yoneda lemma, there are natural bijections Hom(A(−, a), Z ◦ F op)) ∼=
ZF (a) ∼= Hom(B(−, F (a)), Z). It follows that there is a natural bijection
LanF op(A(−, a)) ∼= B(−, F (a)). I.e, there are natural equivalences LanF op ◦YA ∼=
YB ◦F ∼= LanYA(YB ◦F ) ◦ YA. Since LanF op is cocontinuous, using the fact that
every presheaf is a colimit of representable presheaves results in an equivalence
LanF op ∼= LanYA(YB ◦ F ).

When F : A → B is a discrete fibration, the functor X̂ has a particularly
nice description.

Lemma A.0.6. In the situation of Lemma A.0.5, assume additionally that F is
a discrete fibration. Then,

a) for every b ∈ B, X̂(b) =
∐
b=F (a)X(a);

b) the universal transformation ηX : X → X̂ ◦ F op is given on each a ∈ A by
the inclusion of the term X(a) into X̂(F (a));

c) for each arrow f : b′ → b in B, the map X̂(f) : X̂(b)→ X̂(b′) is given on
components as X(g) : X(a) → X(a′) for each a ∈ A with F (a) = b and
lifting g : a′ → a of f ;

d) if φ : X → Y is a natural transformation, the induced transformation
φ̂ : X̂ → Ŷ is for each b ∈ B given on components by φa : Xa → Ya for
each a ∈ A with F (a) = b.

Proof. a) By the general construction we have that X̂(b) = lim−→b
f−→F (c)

X(c),
where the colimit is taken over the comma category (F op ↓ b) ∼= (b ↓ F ). Every
arrow f : b→ F (c) lifts uniquely to an arrow h : a→ c, where F (a) = b. This
induces maps X(h) : X(c) → X(a). Let g : (c′, f ′) → (c, f) be any arrow in
(b ↓ F ), and consider the respective liftings h : a→ c and h′ : a′ → c′ of f and
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A. Kan extensions

f ′. Since F (g) ◦ f ′ = f , then g ◦ h′ = h by uniqueness of lifts. Hence a = a′, and
the composition X(c) X(g)−−−→ X(c′) X(h′)−−−−→ X(a) is equal to X(h). It follows that∐
b=F (a)X(a) is a cone to the diagram (b ↓ F ) → Set. It is clearly the initial

one, since each X(a) already appears in the colimit corresponding to the identity
arrow b→ F (a). b) follows immediately by the construction of τF (a). c) follows
from b) and naturality of the universal transformation ηX : X → X̂ ◦ F op. d)
follows immediately from b) and naturality of ηX in X.

A.0.4 Monoidal Kan extensions

We refer to [Mac98, Chapter XI] for the full definition of a monoidal category,
monoidal functors and monoidal natural transformations. We will refer to [IK86]
for further results. A cocomplete monoidal category D is called monoidally
cocomplete if for each d ∈ D, the functors − ⊗ d, d ⊗ − : D → D are both
cocontinuous. A cartesian closed category is monoidally cocomplete with respect
to the product operation, since these functors are left-adjoints.

Definition A.0.7 ([IK86, Section 4]). Let (C,⊗, 1C) be a monoidal category.
Then the Day convolution product ∗ : Pre(C)× Pre(C)→ Pre(C) is defined as
the left Kan extension of the composite functor C × C ⊗−→ C

YC−−→ Pre(C) along
YC × YC : C × C → Pre(C)× Pre(C).

The convolution product X ∗ Y : Cop → Set can be written as

lim−→
C(−,c1)→X,C(−,c2)→Y

C(−, c1 ⊗ c2). (A.4)

The Day convolution product gives the presheaf category Pre(C) the structure
of a monoidal category with unit YC(1C) = C(−, 1C).

Proposition A.0.8. Let C be a monoidal category. Then,

a) the presheaf category Pre(C) is monoidally cocomplete under the Day
convolution operation, and the Yoneda embedding YC : C → Pre(C) is a
strong monoidal functor of monoidal categories;

b) If a monoidal category D is monoidally cocomplete, and F : C → D is
a strong monoidal functor, then the Yoneda extension F̂ : Pre(C) → D
is the unique (up to monoidal equivalence) cocontinuous strong monoidal
functor such that F̂ ◦ YC and F are monoidally equivalent. The monoidal
equivalence is given by the universal equivalence η : F → F̂ ◦ YC associated
to F̂ as the left Kan extension of F .

Proof. a) follows from [IK86, Proposition 4.1], and b) follows from [IK86, Theo-
rem 5.1].

Note that Set is a symmetric monoidal category via the cartesian product
operation Set×Set → Set, with the unit being the one-point set. It is also
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cartesian closed, hence monoidally cocomplete. Using this, there is an alterna-
tive way of describing the convolution product more explicitly, analogously to
Lemma A.0.5:

Lemma A.0.9. Let (C,⊗, 1C) be a monoidal category. Then for each pair of
presheaves X,Y ∈ Pre(C), the Day convolution product X ∗Y : Cop → Set is the
left Kan extension of the composition X×Y : Cop×Cop (X,Y )−−−−→ Set×Set ×−→ Set
along ⊗op : Cop × Cop → Cop. In other words, there is a natural equivalence of
functors Lan⊗op ∼= LanYC×YC (YC ◦ ⊗).

Proof. Note first that since YC×YC is fully faithful, the universal transformation
YC ◦⊗ → LanYC×YC (YC ◦⊗)◦(YC×YC) is a natural equivalence. The adjunction
between Lan⊗op and (⊗op)∗ induces a natural bijection

Hom(Lan⊗op(C(−, c1)× C(−, c2)), Z) ∼= Hom(C(−, c1)× C(−, c2), Z ◦ ⊗op))
(A.5)

for every pair of objects c1, c2 ∈ C and presheaf Z : Cop × Cop → Set. Via a
monoidal version of the Yoneda lemma, there are natural bijections

Hom(C(−, c1)× C(−, c2), Z ◦ ⊗op)) ∼= Zc1⊗c2
∼= Hom(C(−, c1 ⊗ c2), Z) (A.6)

(the first bijection is given by φ 7→ φ(c1,c2)((idc1 , idc2))). It follows that Lan⊗op(C(−, c1)×
C(−, c2)) ∼= C(−, c1 ⊗ c2). I.e., there are natural equivalences

Lan⊗op ◦(YC × YC) ∼= YC ◦ ⊗ ∼= LanYC×YC (YC ◦ ⊗) ◦ (YC × YC). (A.7)

Now, Lan⊗op is cocontinuous and both Set and Pre(C) are monoidally cocomplete
(by Proposition A.0.8 a)), so writing the presheaves in both arguments as colimits
of representables shows the equivalence Lan⊗op ∼= LanYC×YC (YC ◦ ⊗).
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Appendix B

Milnor patching

B.1 Milnor patching for flat and projective modules

In this section we will primarily summarize the procedure of patching projective
and flat modules per [Fer03]. The statement below is a generalization of Milnor
patching per [Mil71], extending the case of projective modules to that of flat
modules as well.

Theorem B.1.1 ([Fer03, Theorem 2.2]). Let

R

��

// R2

j2

��
R1

j1 // R3

(B.1)

be a pullback square of rings, with j1 surjective. This is called a Milnor square.
Let P1, P2 be projective (resp. flat) modules over R1 and R2 respectively, and let
h : R3 ⊗R2 P2 → R3 ⊗R1 P1 be an isomorphism. Consider the pullback square

P

��

// P2

h◦(1⊗id)
��

P1
1⊗id // R3 ⊗R1 P1

(B.2)

of R-modules yielding an R-module P . Then,

a) P is a projective (resp. flat) R-module. Moreover, if P1 and P2 are finitely
generated over R1 and R2 respectively, then P is finitely generated over R;

b) the modules P1 and P2 are isomorphic to R1⊗RP and R2⊗RP respectively
via the canonical maps;

c) every projective (resp. flat) R-module arise in this way for appropriately
chosen P1, P2 and h.

The following lemma is easily verified.

Lemma B.1.2. Given a Milnor square like (B.1), then the following sequences
of R-modules are exact:

0→ ker j1 → R→ R2 → 0, (B.3)

0→ R→ R1 ×R2 → R3 → 0. (B.4)
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B.2 Milnor squares of schemes

In this section we will show that certain Milnor squares of graded rings induces
pushouts of projective schemes. See [Sch05] and [Fer03] for similar results of
this type, and also [Fer03, p. 6.2] for an example of how a pushout of projective
schemes is not projective in general.

Proposition B.2.1. Let
R

��

// R2

��
R1 // R3

be a Milnor square of finitely generated positively graded k-algebras with R1 → R3
surjective and R2 → R3 finite.

a) for any graded projective R-module P and homogeneous element x ∈ R,
the induced diagram

P(x)

��

// (P ⊗R R2)(x2)

��
(P ⊗R R1)(x1) // (P ⊗R R3)(x3)

(B.5)

is a pullback square, where x1, x2, x3 are the respective images of x;

b) The induced diagram of schemes

Proj(R) Proj(R2)oo

Proj(R1)

OO

Proj(R3)oo

OO

(B.6)

is a pushout square of schemes.

c) More generally, if U ⊆ Proj(R) is an open subscheme, then the induced
diagram

U U2oo

U1

OO

U3oo

OO

is a pushout square of schemes, where U1, U2, U3 are the respective preim-
ages of U .

Proof. a) Tensoring the exact sequence (B.4) with P and then localizing yields
an exact sequence

0→ P(x) → (P ⊗R R1)(x1) × (P ⊗R R2)(x2) → (P ⊗R R3)(x3) → 0.
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It follows that (B.5) is a pullback square.
b) Let X1, X2, X3 be projective schemes, X3 → X1 a closed immersion and

X3 → X2 a finite morphism. Then the conditions of [Fer03, Theorem 7.1] are
satisfied, so that the amalgated sum X ′ = X1 ∪X3 X2 of ringed spaces is a
scheme, and the induced morphisms Xi → X ′ are morphisms of schemes. See
[Fer03, Scolie 4.3] for a precise definition. As a topological space, X ′ is just
the pushout X1 ∪X3 X2. The structure sheaf on X ′ is defined as the pullback
OX1 ×OX3

OX2 . If U ⊆ X ′ is an open subset, then one easily observes that U is
the amalgated sum U1∪U3 U2 of ringed spaces, where each Ui is the restriction of
U to Xi. If each Xi = Spec(Ai) is affine, then X ′ = Spec(A1×A3 A2). Crucially,
the amalgated sum is a pushout in the category of ringed spaces. In the current
situation, one can without much difficulty show that X ′ is a pushout in the
category of locally ringed spaces, and therefore in the category of schemes as
well.

Now, let X = Proj(R), and define Xi = Proj(Ri). Then via (B.6), X is a
cone to the diagram. Thus there is a uniquely induced morphism f : X ′ =
X1 ∪X3 X2 → X of schemes. Let x ∈ R be any homogeneous element, and
consider the distinguished open affine D+(x) ⊆ X. Let V = f−1(D+(x)). By
a), we have D+(x) = D+(x1) ∪D+(x3) D+(x2) (choose P = R). By the above
discussion, this amalgated sum characterizes V as well. Hence f |V : V → D+(x)
is an isomorphism, so it follows that f : X ′ → X is an isomorphism.

c) follows immediately from the proof of b).

B.3 Milnor patching for vector bundles

Patching of projective modules via Milnor diagrams of rings can be generalized
to patching vector bundles via pushout squares of schemes. By a vector bundle
we mean a locally free sheaf of finite rank. Let

R

��

// R2

��
R1 // R3

(B.7)

be a Milnor square of graded rings as in Proposition B.2.1, and let

X X2
i2
oo

X1

i1

OO

X3
j1
oo

j2

OO

(B.8)

be the corresponding pushout square of schemes, where j1 is a closed immersion.
We call such a pushout square a Milnor square of schemes. Let i3 denote the
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morphism i1 ◦ j1 = i2 ◦ j2. Since the diagrams (B.5) are pullback squares,

OX

i]1
��

i]2 // i2∗OX2

��
i1∗OX1

// i3∗OX3

(B.9)

is a pullback square of OX -modules. The following analogues of Theorem B.1.1
and Lemma B.1.2 can be verified locally.

Proposition B.3.1 (Milnor patching for vector bundles). Let E1 and E2
be vector bundles on X1 and X2 respectively, and let h : j∗2E2 → j∗1E1 be an
isomorphism. Let E1 → j1∗j

∗
1E1 and E2 → j2∗j

∗
2E2 be the canonical morphisms,

and consider the pullback square of OX-modules

E
p1

��

p2 // i2∗E2
i2∗(j2∗h◦η2)
��

i1∗E1
i1∗η1 // i3∗j∗1E1.

(B.10)

Then,

a) E is a vector bundle on X;

b) the canonical morphisms i∗1E → E1 and i∗2E → E2 are isomorphisms;

c) every vector bundle on X arise in this way for appropriately chosen E1, E2
and h.

Lemma B.3.2. Given a pullback square of OX-modules like (B.9), then the
following sequences of OX-modules are exact:

0→ i1∗ ker j]1 → OX → i2∗OX2 → 0, (B.11)

0→ OX → i1∗OX1 ⊕ i2∗OX2 → i3∗OX3 → 0. (B.12)

In the situation of (B.8), let VB(X) denote the category of vector bundles
on X. The fibered product of categories VB(X1) ×VB(X3) VB(X2) consists of
pairs of finite vector bundles (E1, E2) on X1 and X2 respectively, equipped with
an isomorphism h : j∗2E2 → j∗1E1 of vector bundles on X3. A morphism of pairs
(E1, E2)→ (E ′1, E ′2) equipped with respective isomorphisms h and h′, is a pair of
morphisms g1 : E1 → E ′1, g2 : E2 → E ′2 such that the diagram

j∗1E1

j∗1 g1

��

j∗2E2
hoo

j∗2 g2

��
j∗1E ′1 j∗2E ′2

h′oo

(B.13)
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commutes. We define the functor

β : VB(X)→ VB(X1)×VB(X3) VB(X2) (B.14)

by E 7→ (i∗1E , i∗2E) equipped with the canonical isomorphism hE : j∗2 i∗2E → j∗1 i
∗
1E ,

which is natural in E . A morphism of vector bundles f : E → F on X maps
to the morphism of pairs (i∗1f, i∗2f) : (i∗1E , i∗2E)→ (i∗1F , i∗2F), which satisfies the
commutative diagram (B.13) by naturality of hE . We also define the functor

θ : VB(X1)×VB(X3) VB(X2)→ VB(X) (B.15)

by mapping a pair (E1, E2) equipped with an isomorphism h to the vector bundle
E defined as the pullback of (B.10). E is characterized up to isomorphism, so θ
is defined by making a choice of E for each pair (E1, E2). A morphism of pairs
(f1, f2) : (E1, E2)→ (F1,F2) induces a morphism of their corresponding pullback
squares on the form of (B.10). If θ maps each pair to E and F respectively, then
the morphism of pullback squares induces a unique morphism θ(f1, f2) : E → F .
Functoriality of β and θ is easily verified.

Proposition B.3.3. There is an equivalence of categories

β : VB(X) ∼= VB(X1)×VB(X3) VB(X2) : θ.

Proof. We will establish natural equivalences η : id→ θ ◦ β and µ : id→ β ◦ θ of
the composites of β and θ with identity functors. Let E be a vector bundle on
X. Then θ ◦ β maps E to a vector bundle E ′ such that

E ′

p′1

��

p′2

// i2∗E2

��
i1∗E1 // i3∗j∗1E1

is a pullback square. However, E is the pullback of the same diagram (B.10),
which means there is a unique isomorphism ηE : E → E ′ such that p′1 ◦ ηE = p1
and p′2 ◦ ηE = p2. Naturality of ηE is easily verified. Conversely, consider a pair
(E1, E2) equipped with an isomorphism h : j∗2E2 → j∗1E1. Let E = θ(E1, E2), and
consider the pullback square (B.10). β maps E to the pair (i∗1E , i∗2E) equipped
with the isomorphism hE : j∗2 i∗2E → j∗1 i

∗
1E . Recall the induced isomorphisms

ψ1 : i∗1E → E1 and ψ2 : i∗2E → E2 from Proposition B.3.1 b). To see that this
defines an isomorphism µ(E1,E2) = (ψ1, ψ2) : (i∗1E , i∗2E) → (E1, E2), we have to
verify that

j∗1 i
∗
1E

j∗1ψ1

��

j∗2 i
∗
2E

hEoo

j∗2ψ2

��
j∗1E1 j∗2E2

hoo
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commutes. Locally, in the notation of Proposition B.2.1, this is the diagram

P ⊗R(x) (R3)(x3)

��

P ⊗R(x) (R3)(x3)oo

��
P1 ⊗(R1)(x1) (R3)(x3) P2 ⊗(R2)(x2) (R3)(x3).

hoo

(B.16)

However, this is just the diagram (B.2) tensored with (R3)(x3). We conclude
that (B.16) commutes. Next, let (f1, f2) : (E1, E2)→ (F1,F2) be a morphism of
pairs, and let F = θ(F1,F2). By definition of θ(f1, f2), the diagram

E

��

θ(f1,f2)

##

// i2∗E2

��
F //

��

i2∗F2

i1∗E1 // i1∗F1

(B.17)

commutes. Naturality of µ(E1,E2) follows easily.

We define the tensor product (E1, E2)⊗ (F1,F2) of pairs of vector bundles
(equipped with respective isomorphisms h1,h2) as (E1 ⊗F1, E2 ⊗F2) equipped
with the isomorphism h given by

j∗2 (E2 ⊗F2) ∼= j∗2E2 ⊗ j∗2F2
h1⊗h2−−−−→ j∗1E1 ⊗ j∗1E1 ⊗ j∗2F1 ∼= j∗1 (E1 ⊗F1). (B.18)

Proposition B.3.4. There are natural isomorphisms

a) β(E ⊗ F) ∼= β(E)⊗ β(F),

b) θ((E1, E2)⊗ (F1,F2)) ∼= θ(E1, E2)⊗ θ(F1,F2).

Proof. a) Let E and F be vector bundles on X. Then there are isomorphisms
i∗1(E ⊗F)→ i∗1E ⊗ i∗1F , and i∗2(E ⊗F)→ i∗2E ⊗ i∗2F , natural in E and F . Clearly,
the induced diagram

j∗2 i
∗
2(E ⊗ F)

hE⊗F //

��

j∗1 i
∗
1(E ⊗ F)

��
j∗2 i
∗
2E ⊗ j∗2 i∗2F

hE⊗hF// j∗1 i
∗
1E ⊗ j∗1 i∗1F

(B.19)

commutes.
b) Let (E1, E2) and (F1,F2) be pairs of vector bundles with respective iso-

morphisms h1, h2, and let H = θ(E1 ⊗F1, E2 ⊗F2). Then there exists a unique
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morphism u : E ⊗ F → H such that the diagram

E ⊗ F
u

&& ,,

��

H

��

// i2∗(E2 ⊗F2)

��

// i2∗E2 ⊗ i2∗F2

��

i1∗(E1 ⊗F1)

��

// i3∗j∗1 (E1 ⊗F1)

))
i1∗E1 ⊗ i1∗F1 // i3∗j∗1E1 ⊗ i3∗j∗1F1

(B.20)
commutes. It remains to verify that E ⊗ F is the pullback of the large square
of (B.20). This may be seen locally, and follows from Proposition B.2.1 a).
Naturality is easily seen.

The Picard group Pic(X) is the group of equivalence classes of the subcategory
VB1(X) of VB(X) consisting of vector bundles of rank 1. By Proposition B.3.3
and Proposition B.3.4, we may also consider Pic(X) as the group of equivalence
classes of triples (E1, E2, h) ∈ VB1(X1)×VB1(X3) VB1(X2).

Proposition B.3.5. There is an exact sequence of abelian groups

1→ H0(X,O∗X)→ H0(X1,O∗X1
)×H0(X2,O∗X2

)→ H0(X3,O∗X3
) φ−→

Pic(X) ψ−→ Pic(X1)× Pic(X2)→ Pic(X3),

where φ is given by h 7→ isomorphism class of (OX1 ,OX2 , h), where h ∈ H0(X3,O∗X3
)

is considered as an isomorphism between j∗2OX2 and j∗1OX1 .

Proof. The map φ is multiplicative by Proposition B.3.4. Exactness atH0(X,O∗X)
and H0(X1,O∗X1

)×H0(X2,O∗X2
) follows from exactness of (B.12), and exact-

ness at Pic(X1)× Pic(X2) follows from Proposition B.3.3. It remains to show
that kerψ ⊆ imφ, since the other inclusion is immediate. So let E ∈ ker(β).
Then i∗1E ⊗ (i∗2E)∨ is trivial, so there exists isomorphisms g1 : i∗1E → OX1 and
g2 : i∗2E → OX2 . Consider the isomorphism h = j∗2g2◦◦h−1

E ◦(j∗1g1)−1 : j∗2OX2 →
j∗1OX1 , and note that (g1, g2) forms an isomorphism between (i∗1E , i∗2E , hE) and
(OX1 ,OX2 , h). If we consider h as an element of H0(X3,O∗X3

), then it is clear
that φ(h) is equal to the isomorphism class E .
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Code

C.0.1 Components of the base space

-- Adjusts a coordinate to fit into the fundamental
-- domain relative to the translation group G.
torus = (n,m,r) -> (

f := (a,b) -> (
if b > m-1 then return f(a-r,b-m)
else if b < 0 then return f(a+r,b+m)
else if a > n-1 then return f(a-n,b)
else if a < 0 then return f(a+n,b)
else return {a,b}
);

return f;
);

-- takes input the three integers (n,m,r) defining the fundamental domain
-- relative to G, and outputs the ideal defining the closure of D(\prod T_e)
triangles = (n,m,r) -> (

f := torus(n,m,r);
A := QQ[t_{0,0}..t_{n-1,m-1},u_{0,0}..u_{n-1,m-1},v_{0,0}..v_{n-1,m-1}];
B := A[s_{0,0}..s_{n-1,m-1},q_{0,0}..q_{n-1,m-1},w_{0,0}..w_{n-1,m-1}];
I := ideal(0);
for i from 0 to n-1 do (

for j from 0 to m-1 do (
I = I + ideal(t_{i,j}*v_(f(i,j-1))-v_{i,j}*t_(f(i-1,j)));
I = I + ideal(t_{i,j}*u_{i,j}-u_(f(i-1,j-1))*t_(f(i-1,j)));
I = I + ideal(v_{i,j}*u_{i,j}-u_(f(i-1,j-1))*v_(f(i,j-1)));
I = I + ideal(s_{i,j}*t_{i,j}-1,q_{i,j}*u_{i,j}-1,w_{i,j}*v_{i,j}-1);
);

);
g := map(B/I,A);
return ker(g);
);

-- Base changes the result from before by putting the appropriate generators
-- equal to 1.
squares = (n,m,r) -> (

f := torus(n,m,r);
A := QQ[t_{0,0}..t_{n-1,m-1},u_{0,0}..u_{n-1,m-1},v_{0,0}..v_{n-1,m-1}];
B := A[s_{0,0}..s_{n-1,m-1},q_{0,0}..q_{n-1,m-1},w_{0,0}..w_{n-1,m-1}];
I := ideal(0);
for i from 0 to n-1 do (

for j from 0 to m-1 do (
I = I + ideal(t_(f(1+2*i+j,1+i+2*j))-1,

v_(f(1+2*i+j,1+i+2*j))-1,u_(f(2*i+j,i+2*j))-1);
I = I + ideal(t_{i,j}*v_(f(i,j-1))-v_{i,j}*t_(f(i-1,j)));
I = I + ideal(t_{i,j}*u_{i,j}-u_(f(i-1,j-1))*t_(f(i-1,j)));
I = I + ideal(v_{i,j}*u_{i,j}-u_(f(i-1,j-1))*v_(f(i,j-1)));
I = I + ideal(s_{i,j}*t_{i,j}-1,q_{i,j}*u_{i,j}-1,w_{i,j}*v_{i,j}-1);
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);
);

g := map(B/I,A);
return ker(g);
);

-- Outputs the components of the closure of D(\prod T_e) in the
-- basic tesselation
basicTesselation = (n,m,r) -> (

J := triangles(n,m,r);
D := decompose(J);
return D;
);

-- Outputs the components of the closure of D(\prod T_e) in the
-- tesselation by squares
crossTesselation = (n,m,r) -> (

J := squares(n,m,r);
D := decompose(J);
return D;
);

C.0.2 Invariant polynomials

-- Returns the respective affine transformations f_i.
transform = (n2,n1,m0,m2,r1,r0) -> (

affine = (i,l) -> (
if (i == 1) then (

a := 2-n2-n1-l_0+n1*l_1+n2*l_2;
return {a,l_1,l_2};
)

else if (i == 2) then (
b := 2-m0-m2-l_1+m0*l_0+m2*l_2;
return {l_0,b,l_2};
)

else if (i == 3) then (
c := 2-r1-r0-l_2+r1*l_1+r0*l_0;
return {l_0,l_1,c};
);

);
return affine;
);

-- Checks whether a vector contains negative elements
neg = l -> (

if (l_0 < 0) or (l_1 < 0) or (l_2 < 0) then return true else return false;
);

-- Returns 0 or an invariant polynomial F such that V(x_0x_1x_2+tF)
-- is generically smooth
invariant = r -> (

f := transform(r_5,r_0,r_1,r_2,r_3,r_4);
L := {{0,0,0}};
val := true;
-- Loops through the list L containing {0,0,0} until it is invariant
-- under the f_i’s.
while val do (
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L1 := L;
val = false;
for l in L do (

l1 := f(1,l);
l2 := f(2,l);
l3 := f(3,l);
if not member(l1,L1) then (L1 = L1 | {l1}; val = true);
if not member(l2,L1) then (L1 = L1 | {l2}; val = true);
if not member(l3,L1) then (L1 = L1 | {l3}; val = true);
);

if any(L1,neg) then val = false;
L = L1;
);

-- Ensures that no negative coordinates appear.
if not any(L,neg) then (

R := QQ[x_0,x_1,x_2];
F := 0;
-- Defines the invariant F and checks that V(x_0x_1x_2+F) is smooth
for l in L do F = F + x_0^(l_0)*x_1^(l_1)*x_2^(l_2);
B := singularLocus(ideal(x_0*x_1*x_2+F));
J := ker(map(B,R));
if J == 1 then return F else return 0;
) else return 0;

);

-- Outputs a list of 6-tuples and suitable invariant polynomials F.
regularDeformation = T -> (

M := {};
for s in T do (

F := invariant(s);
if F != 0 then M = M | {{s,F}};
);

return M;
);

cycle = t -> {t_2,t_3,t_4,t_5,t_0,t_1};
pert = t -> {t_2,t_3,t_0,t_1,t_4,t_5};

-- Removes any elements from a list of 6-tuples which are duplicates in
-- the sense that they describe the same combinatorial situation.
ord = T -> (

T1 := T;
for t in T do (

T1 = delete(t,T1);
T1 = delete(pert(t),T1);
T1 = delete(cycle(t),T1);
T1 = T1 | {t};
);

return T1;
);

-- Makes a list of all possible 6-tuples, and removes combinatorial duplicates
T = ord(toList({-1,-1,-1,-1,-1,-1}.. {2,2,2,2,2,2}));
-- Gives a list of all pairs of 6-tuples and corresponding suitable polynomials
M = regularDeformation(T);
for m in M do print m;
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