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Chapter 1
Introduction

My thesis is devoted to the study of the algebraic deformation theory and the
combinatorial structure of pairs (X, L), where X is a projective scheme formed
as a disjoint union of toric varieties glued together equivariantly along toric
prime divisors, and L is an ample line bundle. Specifically we ask if the pair is
smoothable. Examples of such schemes are the stable toric varieties of Alexeev
, and the central fibers of toric degenerations of Calabi Yau varieties
from the Gross-Siebert program for mirror symmetry . With our
objective in mind, it will be useful to study the deformation functor of pairs
Def (x,r). The structure of the universal base space of Def x 1) can potentially
shed light upon moduli considerations in this context. Thus the existence and
structure of its smoothing components is particularly relevant.

The type of schemes we shall consider has an abstract classification, and a
combinatorial counterpart. Abstractly, X is a projective, seminormal scheme
equipped with an ample line bundle L over an algebraically closed field k of
characteristic 0, such that the normalization X comes equipped with the action
of an algebraic torus 1" with finitely many orbits and connected stabilizers. We
also assume that the conductor locus is T-invariant. Let v : X — X denote
the normalization map. If C' C X is the closure of a T-orbit O, we furthermore
assume that ¢ — v(C) is the normalization of v(C), and that O — v(C) is
injective. In addition we require that the induced automorphisms of orbit closures
over v(C') are T-equivariant.

Our definition above is a slight generalization of the notion of stable toric
varieties; the difference is that we do not require that the action of 7 on X
descends to an action on X. There is a hierarchy of similar but increasingly
general notions, the most basic of which are Stanley-Reisner schemes associated to
simplicial complexes. The irreducible components of such schemes are projective
spaces, and the question of smoothability in this case was addressed in |[Chr10].
As already mentioned, these generalized stable toric varieties we are considering
also appears as the central fiber of the toric degenerations X — T of Calabi Yau
varieties, initially defined by Gross and Siebert in . We will be preoccupied
exclusively with the combinatorics and the deformation theory of the central
fiber Xy, and apart from this relation we will not pursue their program.

We will associate to the pair (X, L) a combinatorial object called a polyhedral
set, and the study of these will be our primary consideration. The natural
situation is when the polyhedral set realizes to an orientable manifold, in which
case the dualizing sheaf wx is trivial. The combinatorial classification of pairs
(X, L) is the following. First, let P denote the category of lattice polytopes
defined as follows: an object of P is a full-dimensional lattice polytope P C R,
denoted (P,n), and a morphism (P,n) — (Q,m) in P is an injective affine
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1. Introduction

transformation f : Z"™ — Z™ identifying P with a face of Q and an associated
character Ay : Z"*t! — G,,. One can associate to a pair (X, L) a category M
with finite skeleton, and a functor p : M — P such that X is isomorphic to
the colimit lignse " X (s) of toric varieties, where Xp denotes the toric variety
associated to the polytope P. This gives an explicit description of X as a union of
toric varieties with torus orbits glued together along torus equivariant morphisms
Xp — Xg (induced by morphisms in P). The polytopes p(s) are determined
up to affine equivalence by the ample invertible sheaf L. If we furthermore
require that the functor p is a discrete fibration in the categorical sense, then
M is uniquely determined up to isomorphism. In fact, there is a bijective
correspondence between equivalence classes of pairs (X, L) and equivalence
classes of discrete fibrations p : M — P satisfying the following property: (x)
for any object s € M, Autys(s) = {ids}. This equivalence is expressed as an
equivalence of groupoids in Although not pursued, that may
have implications for the moduli problem of parametrizing equivalence classes
of pairs (X,0©), where © is an ample Cartier divisor subject to certain mild
assumptions (analogous to the moduli situation of stable toric pairs [Alel5]).

There is a categorical equivalence between discrete fibrations p : M — P and
presheaves M : P°P — Set. This will be exploited since presheaves are easier to
work with. We call a presheaf M satisfying the property (x) a polyhedral set, and
we let X = P(M) denote its face scheme. For each P € P, let I'(P) denote the
homogeneous coordinate ring of the toric variety X p. Then we may alternatively
write P(M) as ProjT'(M), where T'(M) = fm I'(p(s)). This is called the
face ring of M. The category P comes equipped with the monoidal operation %
of join of polytopes (technically we need to add the empty-polytope for x to be a
monoidal product). The induced Day convolution product extends this operation
to the subcategory C C Pre(P) of polyhedral sets. The face ring and face scheme
constructions can be defined categorically as the monoidal Yoneda extensions
of the functors P — I'(P) and P — Xp, inducing functors I' : C — Ring
and P : C — Schy, such that T'(M * N) = I'(M) ®; I'(N). The functor P is
particularly well-behaved, in the sense that it preserves intersections, unions
and finite colimits (in particular group quotients). Moreover, it takes injections
to closed immersions, and surjections to surjections. A polyhedral set M also
has an associated topological realization |M| = lim p(s), and a number of
properties of P(M) and I'(M) are determined by the topological properties of
|M]. The most important basic properties we show are the following:

1) There are natural isomorphisms H*(|M|, k) = H'(P(M), Op () for each
integer ¢ (Theorem 3.4.1)).

2) There is a natural isomorphism
Pic(P(M)) 2 H'(|M], Gon) x lim Pic(X,),
seM
where limSe " Pic(X),(,)) is a finitely generated free abelian group 1
rom 3.5.9).



3) If |M| is a homology manifold, then P(M) is locally Gorenstein, and the
dualizing sheaf satisfies wg(QM) = Op(m)- Moreover, wpary = Op(ar if

and only if |M| is an orientable homology manifold (Theorem 6.5.4)).
4) If |M| is a homology sphere, then I'(M) is Gorenstein.

Polyhedral sets generalizes the notion of polyhedral complexes, and the face
ring I'(M) coincides with the ordinary face ring of a polyhedral complex .
In particular, if K is a simplicial complex, then T'(K') coincides with the Stanley-
Reisner ring of K. Thus 3) is a generalization of the corresponding statement
for simplicial complexes Theorem 6.1]. It is a classical result
by Reisner that the Cohen-Macaulayness of the Stanley-Reisner ring I'(K) is
characterized by certain combinatorial conditions on K, which can be translated
into topological conditions on its geometric realization |K|. Namely that for all
i <dim K, H'(|K|;k) = 0 and H(|K|,|K|\p; k) = 0 for all points p € |K|. In
we show that the same criteria also characterizes the unimodular
polyhedral sets M for which its face ring I'(M) is Cohen-Macaulay (M is called
unimodular if p(s) is a unimodular simplex for each s € M). We also give
necessary and sufficient conditions for the unimodular M for which I'(M) is
Gorenstein in which coincides with the conditions provided for
simplicial complexes by Hochster, namely that M = S x A™, where S
is a unimodular homology sphere and A™ a unimodular simplex. These two
theorems are logically separate from our main objective, and should be viewed
as independent results generalizing classical ones.

Local properties of the face scheme P (M) for a general polyhedral set M
can be deduced by deformation to face schemes associated to unimodular sets.
Using the existence of unimodular subdivisions of multiples of polytopes(|BG09
Theorem 3.17]), we show that there exists an integer d > 0 such that the pair
(P(M),Op(ary(d)) is deformation equivalent to a pair (P(NV), Op(n)(1)) as the
central fiber, where N is a simplicial complex . Here N is a
subdivision of a scaling of M, implying that |M| = |N|. Thus properties stable
under deformation, such as being locally Cohen Macaulay or locally Gorenstein,
can be verified via the topology of | M|, since we have deduced suitable topological
criteria in the case of unimodular sets.

In we extend the definition of a face scheme from polyhedral sets
to more general combinatorial structures, called open categories over P. An open
category over P is a category U equipped with a discrete Conduché fibration
p:U—P . Discrete Conduché fibrations generalizes the notion of
discrete fibrations, by relaxing the requirement on p. The rationale for the term
open category is the following: any open category U can be universally completed
into a polyhedral set M, inducing an open immersion A(U) — P(M). A local
tsomorphism ¢ : U — V between open categories is a morphism which induces an
isomorphism on comma categories (s | U) — (¢(s) J V). The relevance of these
definitions is that in this situation, we can prove that A(¢) : A(U) — A(V) is
an étale morphism of schemes. This result will allow us to refine the face scheme
P(M) of a polyhedral set M with an étale cover {A(Ms) — P(M)}, where
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1. Introduction

M, = (s | M) is an open category, called the local category at s € M. Another
interesting fact is that if M is a polyhedral set, then the covering spaces of |M]|
are in 1-to-1-correspondence with local isomorphisms S — M of polyhedral sets
(Proposition 5.4.3)).

In [Chapter 5| we define the link Ik (s) of a polyhedral set M at a face s (we
require that the polytopes of M are smooth). It generalizes the ordinary link
construction for simplicial complexes K at a face s, which is defined as

lkg(s)={te K:tUse K and tNs=a}.

The link lky/(s) is generally unimodular, and is defined as a certain left Kan
extension. The topology of |1k (s)| determines the topology of | M| locally, which
allows us to translate certain combinatorial conditions on M into topological
ones. Specifically, there is a basis of open sets for the topology of | M|, each of
which is homeomorphic to an open subset of |1k (s) * AY™()| for some face
s € M. The relation between the link construction and open categories is that
there exists a non-canonical isomorphism A (M) = SpecI'(Iky;(s)) x Gdims
The face rings T'(lks(s)) thus reflects the local properties of P(M), concretely
in the sense that there exists morphisms Spec'(lkps(v)) — P(M) forming an
étale cover U for v ranging over the vertices of M. This étale cover will be
used to compute the local cohomology groups H' (T'(M)) of T'(M) when M is
unimodular, thus giving a criterion for when the face ring is Cohen-Macaulay.
The proof draws its main idea from II, Theorem 4.1]. We substitute
the ordinary Cech complex of P(M) with the alternating étale Cech complex
Ca1t(U, Oypr), from which we obtain a complex 6’5 (M,T(M)) that computes the
local cohomology groups of I'(M). This complex decomposes into a direct sum
of tractable parts that are governed by the links of M.

Smoothability

In , the study of the deformation functor Def(x o (1)) was initiated for
X = P(K), where K is a simplicial manifold. In the case where |K| is a
quotient of a {3,6}-tesselation of R?, a 3-dimensional smoothing component
in the universal base space was identified in . This builds upon earlier
computations of the T and T2-modules of Stanley-Reisner rings in |[ACO04].
The face scheme P(K) has a Zariski-cover of affine schemes {SpecT (lkx (v)) —
P(K)}ver,- Thus Tl"l(lk;((v)) and Tlg(lkk(v)) determines the local first-order
deformations and local obstruction of P(K) respectively.

In the same general idea will be used for polyhedral sets. We will
assume that |M| is a 2-dimensional polyhedral manifold, and that each polytope
of M is smooth (i.e. we assume that the normalization of P(M) is smooth).
In this situation there exists an étale-cover on the form {SpecT'(Iky(v)) —
P(M)}ven,- We may proceed in a similar fashion as in , now glueing
local deformations in the étale-topology. As mentioned earler, our goal is to
compute the universal deformation space of Def(p(M),Op(M)(l). However, a
major obstacle for constructing deformation spaces is the obstruction to glueing

4



local deformations to a global one. is devoted to showing that that
this obstruction vanishes in dimension 2, in addition to the vanishing of the

obstruction to the lifting of a line bundle (Theorem 7.1.7]). As a consequence,
in we are able to produce examples of 1-parameter smoothings
of face schemes of various polyhedral spheres to K3 surfaces by constructing

compatible infinitesimal local deformations. By standard results of ,
effective deformations with an ample line bundle are algebraizable, so this gives
rise to proper, algebraic smoothings.

is our main result. Here we find conditions under which it is
possible to compute the universal deformation base space of Def(p(M)pP(M)(l)).
Specifically, this works when each vertex link lk,/(v) contains between 3 and
6 components, and under a certain regularity condition on the facet polygons
of M. We obtain a presentation of the universal base space as the spectrum
of a quotient Zy.6 = Pu/ae of a complete local regular ring 2, by an
ideal of binomial equations as given as the minors of certain 2 x 3-matrices.
This is a generalization of the analogous statement Theorem 6.4] for
simplicial complexes. Given some additional assumptions on M,
now answers our original question regarding smoothability of (X, L), where
we have identified the smoothing components as the closure of a torus inside
Spec(Zyr). Examples of this situation are finite index quotients of certain
"admissible" periodic tesselations of the plane (i.e. torus tesselations), some
of which we examine in Smoothings of (P(M),Op(1)) are in
this case polarized abelian surfaces. We compute some explicit examples of
smoothing components using Macaulay2. One can also prove that the dimension
hO(P(M), Opary(1)) is equal to the number of interior lattice points of the
unique polytopes appearing in M, so a particularly interesting case is when
the polytopes of M have empty interior, and are glued in such a way that M
consists of only a single vertex. In this situation h°(P (M), Op(ar)(1)) =1, so in
the torus case (P(M), Op(ar)(1)) is smoothable to principally polarized Abelian
surfaces. This example is discussed in , and it appears on the boundary
of Alexeev’s compactification AP, of the moduli space of principally polarized
Abelian surfaces (see also for an outline of the construction).

Structure of thesis

The text is divided into seven chapters, including this introduction, and three
appendices. What follows is a general description of the content and goals of
each chapter.

[Chapter 2t We give the preliminary definitions of the category of full-dimensional
lattice polytopes P and the category of polyhedral sets C. Most of our
constructions will be given as Yoneda extensions. For example, this means
that the definition of the geometric realization |M| of a polyhedral set M
is dictated by the forgetful functor P — Top. We define the face ring I'(M)
in and in [Section 2.7] and [Section 2.8| we determine some of
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1. Introduction

its properties. In [Section 2.4] we define the canonical pushout square of a
polyhedral set. This will be useful for inductive arguments in this and later

chapters. The CW complex structure of |M| is discussed in
In [Section 2.9, we develop the formalism of subdividing polyhedral sets,
and relate it to deformations of the face ring. An important result here is
the existence of triangulations of polyhedral sets to simplicial complexes

(Theorem 2.9.9).

The face scheme is defined, and the categorical properties of the
face scheme functor P as described above are proved, such as being

finite colimit preserving ([Proposition 3.0.3|). Next, in [Section 3.3 we

show the 1-to-1-correspondence between pairs (X, L) and polyhedral
sets. In [Section 3.4] and [Section 3.5 we show the existence of the nat-

ural isomorphisms H'(|M|;k) = H'(P(M), Op(ay)) and Pic(P(M)) =
HY(|M|,G,,) x fm Pic(X)(s)) respectively. In [Section 3.6 we give an

expression of the Hilbert polynomial of the face ring I

[Chapter 4; In [Section 4.1] we give the formal preliminaries for Conduché fibra-
tions, and in we apply it to P in particular. and
are devoted to proving the result regarding étale morphisms as
previously mentioned .

[Chapter 5 We define the notion of the link of a unimodular set, and in
[fion 5.3] we extend this definition to polyhedral sets consisting of smooth
polytopes. We have separated these two situations, since more can be said
in the former situation which will be crucial to the proofs of the theorems

of The content of regarding the local topological

properties of | M| is particularly relevant.

Our main goal is proving the classification theorem for Cohen
Macaulay and Gorenstein unimodular sets, as described in the introduc-

tion above. In we outline the construction of the alternating
étale Cech complex, which will allow us to compute the local cohomol-
ogy modules H! (T'(M)). In we apply this to the étale cover
{A(X,) — P(M)}, giving a more combinatorial representation of the Cech
complex. In [Section 6.3 and [Section 6.4] we prove our result regarding Co-
hen Macaulay and Gorenstein unimodular sets respectively. In
we prove the result stated earlier regarding the the dualizing sheaf of P (M)
in the situation where |M]| is a homology manifold.

Here we answer our original question. In we show in
dimension 2 the vanishing of the cohomology group H?(P(M), E0pan (1))

containing the obstructions to glueing local infinitesimal deformations.
Next, in |Section 7.2| we give a description of a basis for H*(P(M), TPl(M)/k).

In [Section 7.3 we prove our main theorem (Theorem 7.3.2) regarding the

structure of the universal base space Spec(Z,¢) of (P(M), Opar)(1)).

In we prove identifying the smoothing com-
ponents in Spec(Za,¢)- [Section 7.5 contains our example computations




of the smoothing components for quotients of admissible periodic plane
tesselations. In we give the idea behind smoothing polyhedral
spheres to K3 surfaces. 10 explicit examples are found using Macaulay2.

: Here the required background material is provided on the cate-
gorical notions we shall require. In particular, is required in
order to give an explicit description of the Day convolution product M x N
of polyhedral sets.

[Appendix Bl: We outline the concept of Milnor patching for projective (and

flat) modules and vector bundles. In particular, this will be used in the
proof of [Theorem 4.4.1] to prove flatness of A(U) — A(V) by induction on
dimension. [Proposition B.3.5|is instrumental for the classification of the

Picard group of P(M) (Theorem 3.5.2]).
contains the Macaulay2 functions we have used to compute the

examples of [Section 7.5| and [Section 7.6}







Chapter 2
Polyhedral sets

2.1 The category of lattice polytopes

A lattice polytope is a subset P C R™ for some n > 0, realized as the convex hull
of integral lattice points. We will denote it as a pair by (P, n), but usually just by
P. If P is full-dimensional, there exists a unique set of integers ap and vectors
up € Z9™(P) of minimal length for each facet F such that P can be written as
{m € R" | (m,ur) > —ar}. A character is a homomorphism \ : Z"*! — G,,,,
where denotes the multiplicative group k*. An affine transformation is a function
f:Z™ — Z™ on the form = — u + Ax, where u € Z™ and A : Z™ — Z"™ is a
matrix whose columns can be extended to a basis for Z™. We denote the induced
affine transformation on real vector spaces by fr : R™ — R™, which will also be
called an affine transformation. The image fr(P) C R" of a lattice polytope
is again a lattice polytope. We define the category P as follows: The objects
are full-dimensional lattice polytopes (P,n). An arrow (Q,m) — (P,n) is an
affine transformation f : Z™ — Z" such that fr(P) is a face of @, equipped
with a character Ay : Zmtl & G,,. We will sometimes denote an arrow by

(f, Af). The character of a composition (P,n) ER (Q,m) % (R,r) is defined by
Agf(m,d) = Ag(m,d)Ag(f(m) — f(0) + df(0),d) for all (m,d) € Z" x Z. If we
include the empty-polytope @, we obtain the category P,. This object is initial
in Py, and we will occasionally denote it by (&, —1) for consistent notation. The
motivation behind this definition is the following fact:

Proposition (Proposition 3.3.6|). There is a natural bijective correspondence be-
tween isomorphisms (f,A\;) : P — @Q in P and pairs (1, ¢), where ¢ : Xp =, Xo

is a torus-equivariant isomorphism, and v : *Ox,(Dq) N Ox,(Dp) is an
isomorphism of line bundles. Here Xp denotes the projective toric variety associ-
ated to the polytope P, and Dp is the ample torus-invariant divisor corresponding

to P.

Let Top denote the category of compactly generated Hausdorff topological
spaces. It is convenient to work in this subcategory of topological spaces by
default as it is cartesian closed, in particular monoidally cocomplete. Let
R :P — Top and Ry : P — Top be the functors given by (P,n) — P, i.e.
forgetting the embedding into R™. We will briefly review the join operation *
on Top. The join of a pair of topological spaces X, Y is defined as the quotient
X+xY =(X xIxY)/~, where (z,0,11) ~ (2,0,92) and (x1,1,y) ~ (22,1, y).

9



2. Polyhedral sets

The join X =Y can alternatively be described as the pushout of the diagram

X xY X xY

T T

X xIxY

where i is the inclusion (x,y) — (z,0,y) and ¢; is the inclusion (z,y) — (z,1,y).
In this generality the join operation (X,Y) — X xY defines a monoidal product
on Top, and the resulting monoidal category (Top, *, @) is monoidally cocomplete.

The category P, inherits from Top the join operation via R,. If (P, n), (Q,m) €
P, their join is (PxQ,n+m+1), where PxQ = {((1—t)m,t,tn) |m € P,n €
Q,t € [0,1]} € R*™™*! (when P and @Q are non-empty). If f; : P, — Q1
and fo @ P, — ()2 are arrows, then Ay .z, is given by ((mi,s,ms),d) —
A (mi,d — s)Ag,(ma,s). We can also write P @) as the convex hull of the
subset P x {0} x {0} U {0} x {1} x @ CR™ x R x R™. The vertices of P x Q
are on the form (v,0,0) or (0,1,w), where v and w are vertices of P and Q
respectively. If P (resp. @) is the empty-polytope &, we have P x Q = @ (resp.
P %@ = P). The empty polytope & is a unit for the join operation.

Lemma 2.1.1. For any pair of objects P1, P, € Py and arrow f : Q — P1 X Ps,
there exists a unique pair of arrows fi1 : Q1 — Pi, fo : Q2 — Py such that
f = fix fa. In the context of [Definition A.0.9, this means that the functor
*: P x P — P is a discrete fibration.

Proof. By the elementary fact that the faces of P, x P, are uniquely on the form
Q1 * Q4 for faces @1 and Q2 of P; and P; respectively, one immediately obtains
a unique corresponding decomposition of ) on the required form. Uniqueness of
A, and Ay, is easily verified. O

2.1.1 Unimodular simplices

Let Fin, denote the category of finite ordinals [n] = {0,...,n} (where [-1] = @),
where an arrow f : [n] — [m] is an injective function, equipped with a character
Af: 7"l — G,,. Here Z™ denotes the free abelian group on basis vectors e;
for i € [n]. The Character of a composition is given by Agr(e;) = Ag(ef))Ar(es)-
This category will serve as our model for unimodular simplices. The arrows are
generated by three types of functions:

1) simplicial face maps d; : {0,...,n} — {0,...,n + 1} defined by j > j
ifj<i,and j— j+1if 57 >i (fori=0,...,n+ 1), and with trivial
character;

2) permuations o : {0,...,n} — {0,...,n}, with trivial character.

3) arrows (idp,), A) : {0,...,n} — {0,...,n} which are the identity as func-
tions (but with arbitrary character \).

10



Polyhedral sets

We let Fin denote the full subcategory of Finy of non-empty ordinals. We define
Ipin : Fin — P by

n] = |A" = {(z1,...,2n) | 2; > O,Zmi <1} CR"
i=1

Functoriality is given as follows. First, identify the affine span of Conv(eg, ..., e,) C
R with R™ by choosing basis vectors e; — eq, ..., e, — ey centered at ey. This
identifies Conv(eg, ..., e,) with |[A™|. The corresponding affine transformation
R™ — R is given by 0 — eg, and e; + e; for i > 0. If f : n — m is a
function, the affine transformation Z[" — Z[™! defined by e; — e (i) identifies
Conv(eg, ..., ey) with a face of Conv(eg, ..., e,,), hence the affine transformation
Ipin(f) : Z™ — Z™ induced by the same base change identifies |A™| with a face
of |A™]. It is given by e; — ej(;), where we put ey = 0. On characters, we define
Alin(f) (€5 1) = Ap(eq), and A, (5)(0,1) = Xp(eg). This is clearly functorial,
and Irj, extends to a functor Iy, by mapping [—1] to @.

Fin; can be equipped with an operation + : Finy x Fin, — Finy, defined
by [n] + [m] = [n 4+ m + 1] on objects, and for any pair of arrows f : n — n’ and
g:m—=m/,h=f+g:[n]+[m] = [n]+ [m] is given by

h(i) = f(i) fori=0,...,n,
h(i)=n"4+1+g(i—n—-1) fori=n+1,....,n+m+1,

An(ma,s,ma) = Ap(ma)Ag(m2) for (m1, s, ms) € Z"TMHL,

This gives Finy the structure of a symmetric monoidal category with unit [—1].

Lemma 2.1.2. The functor Iriy, : Fing — Py is a fully faithful strong monoidal
functor.

Proof. Let [n],[m] € Fin, and note that any morphism f : |A"| — |A™] in Py is
uniquely determined by the character Ay and the induced inclusion of vertices. In
fact, the arrow [n] — [m] in Fin corresponding to this inclusion of vertices induces
fr. This shows fully faithfulness. To see that it is strong monoidal, consider the
isomorphism Conv (e, ..., e,)* Conv(eq,...,en) — Conv(eq,. .., entmy1) with
trivial character given by

((1*t)$0, SRR) (lit)'rfhtaty()? s atym) = ((lit)an R (lit)xnvty()v s ,tym)

This clearly satisfies the coherence conditions of a monoidal functor, and via the
canonical identifications, this induces a coherent isomorphism |A"|x |[A™] —
‘An-l-m-i-l | O

2.2 Polyhedral sets

Definition 2.2.1. Let C be a category, and let M : C°P — Set be some presheaf.
Let (*) denote the following condition on M: For each ¢ € C, the group Autc(c)
acts freely on M.. We let Pre(*)(C) denote the category of presheaves on C
satisfying (x).

11



2. Polyhedral sets

By [Proposition A.0.3] there is an equivalence of categories between the
category of presheaves Pre(C) and the category of discrete fibration Fib(C').
The condition (*) translates to the following condition on a discrete fibrations
p:U — C: for all s € U, Auty(s) = {ids}.

Lemma 2.2.2. The pushout of a diagram M L 7% Nin Pre(C) satisfies (x)
whenever M, N, Z € Pre™)(C) and ¢ is a monomorphism.

Proof. One easily verifies that Autc(c) acts freely on M, xz N, for each ¢ €
C. O

Definition 2.2.3. We define the category polyhedral sets as C = Pre(*)(P). A
morphism M — N of polyhedral sets M, N € C is a natural transformation
¢: M — N. A presheaf M € Pre(*)(P+) such that Mgy is a one-point set is
called an augmented polyhedral set. The category Cy = Pre*) (P+) of augmented
polyhedral sets will mainly serve as a notational convenience.

A polyhedral subset of M is an equivalence class of pairs (IV, ¢), where N is a
polyhedral set and ¢ : N — M is an injective morphism. Two such pairs (N, ¢1),
(Na, ¢2) are equivalent if there exists an isomorphism ¢ : Ny =N, satisfying
¢ = ¢11. For a polyhedral set M, the P-faces of M are the elements of the
set Mp. For each arrow f: P — Q, M(f): Mg — Mp is the corresponding
face map, also denoted fM. For each P, we define the P-polytope AF to be
the presheaf P(—, P) : P°P — Set represented by P. Since all arrows of P are
monomorphisms, each A is a polyhedral set. By the Yoneda lemma, there is a
natural bijection Hom(A M) — Mp between the P-faces of M and morphisms
AP — M from the P-polytope to M. If s € Mp is a face, then we define |s| = P.
We will denote the corresponding morphism Al$l — M by (- We will also
denote Al*l by A®. A facet is a face s € Mp which is not in the image of any face
map fM : Mg — Mp for any non-isomorphism f : P — Q. Two faces s € Mp
and t € Mg are called equivalent if there exists an isomorphism f : P =N Q@ such
that fM(t) = s. A finite polyhedral set is a polyhedral set with finitely many
faces of each equivalence class.

Definition 2.2.4. Presheaves M € Pre™™)(Fin) are called unimodular sets. Anal-
ogously, one has the augmented version of presheaves M € Pre(*)(Fin+) such
that M|_yj is a one-point set.

Consider the fully faithful functor Ty, : Pre(Fin) — Pre(P) defined as the
Yoneda extension (see of the embedding Ig;, : Fin — P. If M is
a unimodular set, then it is clear that I/F;(M) is given by by I/F;(M)p =M,
for each n € Fin and P € P with P = I, (n), and @ otherwise. We define the
dimension of an element P € P to be its dimension dim(P) as a lattice polytope.
The dimension of a polyhedral set M, denoted dim(M), is the largest integer
N for which there exists a P with dim(P) = N and Mp non-empty. If no such
N exist and M is not the empty-presheaf, we call M infinite-dimensional. We
say that the empty-presheaf, denoted &, is (—1)-dimensional. The dimension

12
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of a face s € Mp is dim(P), and is denoted dim(s). My is the set of vertices
of M. It is clear that the P-polytope A” has dimension dim(P). Let M be a
finite-dimensional polyhedral set. Then M is called irreducible if it cannot be
written as a proper union of non-empty polyhedral subsets. Let s be a face of M,
and consider the corresponding morphism (5, : A® — M. Then the polyhedral
subset corresponding to s is the image M?® = (5,(A®) C M. It is the minimal
polyhedral subset of M containing s. M is irreducible if and only if it has (at
most) a single equivalence class of facets, and can in general always be written
uniquely as a union of its irreducible components.

The monoidal structure on Pre(P) is given by the Day convolution product
(see [Definition A.0.7 and [[K86] Section 4]). Per [Lemma A.0.9] given M, N €
Pre(P4), the convolution product M * N : PP — Set is defined as the left Kan
extension of the functor M x N : P¥ x P® — Set x Set —* Set along the
induced comultiplication functor x°P : PP x PP — PP, The characterization
of x as a convolution product - coupled with the fact that it is induced by a
discrete fibration - allows us to describe M * N explicitly. In particular, x defines
a monoidal operation on C.

Proposition 2.2.5. If M and N are augmented polyhedral sets, then their join
is an augmented polyhedral set, and is given by

(M xN)p = 11 Mp x Ng. (2.1)
{(P,Q)| P+xQ=R}

for each R € Py. The functorial structure is given as follows. For any arrow
h: R — R, and for each pair (Py, Q1) with Py x Q1 = R', let hy : Py — Py and
ho : Qo — Q1 be the unique pair of arrows such that h = hy % ho. Then the map
BM*N (M*N)R/ — (M*N)R s given by h{\/f*hé\[ : ]\4}31 X NQ1 — ]\4}30 X NQO
on components.

Proof. The formulas follow from [Lemma A.0.6/a) and b), which we may apply
here since * is a discrete fibration by [Lemma 2.1.1] It follows immediately from
this that M %= N also satisfies (x). O

Remark 2.2.6. The inclusion i : C — Pre®™)(P,) is given by adjoining a singleton
set at &. By applying 7, the join operation formula makes sense for
polyhedral sets M, N € C as well, with the empty-presheaf @ as a unit. Hence
the category C of polyhedral sets is a monoidal category with respect to x. The
inclusion functor ¢ preserves x and all connected colimits.

Remark 2.2.7. One analogously defines the join of two unimodular set via the
monoidal operation + : Finy x Fin, — Finy. Since Ipjn, : Fing — Py is a
strong monoidal functor by |Lemma 2.1.2} the inclusion Pre(*)(A) — C is a strong
monoidal functor. As in[Proposition 2.2.5] one has

(M*N)p= ] MnxN,
[m]+[r]=[n]

for any pair of unimodular sets M, N.

13



2. Polyhedral sets

The following proposition is a consequence of [Proposition A.0.8

Proposition 2.2.8 (Geometric realization). The strong monoidal functor 4 :
P, — Top induces a cocontinuous strong monoidal geometric realization functor
| — | : Pre(Py) — Top such that |AY| = P for each P € P.. In particular, there
is a natural isomorphism

|M x N| S5 |M| % |N|

for each M, N € Pre(Py). Note that since the inclusion i : Pre(P) — Pre(Py)
preserves x, the geometric realization functor | — | : C — Top also preserves .

2.3 The face ring of a polyhedral set

Let 2 denote the category of positively graded k-algebras. Z is a monoidal
category, with the ordinary tensor product operation ®j; and unit k. We recall
some definitions from . The affine semigroup associated to a polytope
P is defined as Ap = N[(P NZ") x {1}], and consists of all linear combinations
of lattice points in P x {1} C Z"*! with non-negative integral coefficients.
This notation is consistent if P is the empty-polytope, in which case we have
Az =0. If f: P— @ is an arrow in P, represented by an affine transformation
x + u+ Az with character Az, then one obtains an inclusion of affine semi-groups
At Ap — Ag given by (m,d) — (dfe(%),d) = (ud 4+ A(m),d). This is easily
seen to define a functor A : P, — SemiGrp. We will now define the face ring
of a polyhedral set. Consider the contravariant functor I'V : P, — & given on
objects by IV(P) = k[Ap], where

KAl =) € k-x™"

d=0 medP

is the homogeneous coordinate ring (generated in degree 1) associated to the
affine semigroup Ap. For any arrow f: P — @, we let I'(f) : I'(Q) — I'(P)
be given by 4™ — Af(m)x™ (and x™ — 0 otherwise).

Lemma 2.3.1. The functor IV : Py — 2 is strong monoidal, where 9 is equipped
with the tensor product operation.

Proof. Note that IV(&) = k is the unit of 2. Let P,Q € P, and consider the
inclusions i1 : P — PxQ, iy : Q — P*Q given by x — (2,0,0) and y — (0,1, )
respectively. A lattice point m € d(P x Q) can always be written uniquely as
(m1, s, mz) for some integer 0 < s < d, where m; and mqy are lattice points such
that my € (d — s)P and mg € sQ. The decomposition (m,d) = A;, (my1,d —s) +
A;, (ma, s) is unique, so the (natural) homomorphism IV (PxQ) — I'(P) @, I (Q)
given by x4 — x(m1:8) @ y(m2.4=5) i5 an isomorphism. O

By [Proposition A.0.8] T induces a strong monoidal monoidally cocontinuous
functor T : Pre(P1) — 2. Recall that the inclusion i : Pre(P) — Pre(P+) given

14
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by adjoining a singleton at & preserves x and all connected colimits. Hence the
restricted functor I' :=T" o ¢ : Pre(P) — Z preserves all connected colimits, and
is strong monoidal with respect to x.

Definition 2.3.2. For a polyhedral set M, T'(M) is called the face ring of M.
From the preceding we have the following proposition.

Proposition 2.3.3. The face ring functor I' : C — 2 is a strong monoidal,
contravariant functor preserving all connected colimits, such that T(AF) = k[Ap]
for all P € P. Thus there are natural isomorphisms

(M % N) = T(M) @, T(N)

for any pair of polyhedral sets M, N. We remark that while T(AF) = k[Ap] is
a standard graded ring for each P, this is not necessarily the case for T'(M) in
general.

Remark 2.3.4. Let M be a polyhedral set. It can be written as the colimit of a
diagram 0, : Fpy — C, where F); is the category of elements of M. Endow Fjy
with an initial object *, and let Fj; denote the endowed category. Consider the
extended diagram O, : Fpy — C given by Op/(%) = &, where @ : PP — Set
is the empty-presheaf, also the initial presheaf. Then M is the colimit of the
diagram ©,; : Fj; — C. Since F); is connected, we have

F(M) ZI'&HFO@N[.

Note that this procedure may be carried out for any (possibly disconnected)
diagram H : I — C with li lgnH M. We highlight this fact in the following

remark.

Remark 2.3.5. Let H : I — Pre(P) be a diagram of polyhedral sets, and
assume that M = lim H € C. Endow [ with an initial object *, and extend
H to a functor H : Z — Pre(P), where Z denotes the endowed category, and
H(x) = @. Then limH = M, and T'(M) = imT o H. In particular, for a
coproduct M = [], M;, the face ring I'(M) is the wide pullback of {I'(M;)};
over k. Explicitly, I'(M)o = k, and I'(M )4 = [ [, T'(M;)q for each integer d > 0.

2.4 The canonical pushout square
Let M be a polyhedral set. For each face s of M, consider the corresponding
morphism (3, : A®* — M. These morphisms are natural in the following sense.

Let ¢ : M — N be a morphism, s € Mp and t = ¢(s). Then the diagram

Chr

L Vi
(2.2)
N

15



2. Polyhedral sets

commutes. For each integer n > —1, we define the n-truncation M™ as the
polyhedral subset of M given by MpB = Mp for all P with dim(P) < n, and @
otherwise. Let ¢p; : M™~1 — M™ denote the natural inclusion.

Definition 2.4.1. Consider the equivalence relation on P given by P ~ ) when-
ever P = Q. For each equivalence class [P], choose (once and for all) some
canonical representative P € [P]. Recall that two faces s,t of M are called
equivalent if there exists an isomorphism f : |s| — |t| such that f(t) = s. For
each isomorphism class [s], choose some canonical representative s € Mpean.
We define Jp, C I] dim(P)=n Mp as the subset of n-dimensional faces s such that
s =" Let M =| | -, denote the set of canonical representatives.

Consider the indexed set of polytopes {A®} ¢ o . For each n-dimensional
polytope A let AP denote the (n — 1)-truncation (AF)»~1. This induces
natural morphisms (3} : A% — M™~! for each s € J¥,. By the condition (),
there is exactly one arrow f : [s°*"| — |s| such that f™(s) = s for each s € M.
Hence it is easy to see that M™ is the colimit in the following natural diagram

{Grboesn,
{Aheesy, —————= M

{LAS}SEJXI tM

{Cit}eeum
. M 1
{0A%}sem, ———— M1,

or for easier notation,

Cur

{As} 22 o pyn

AT TLM (2.4)
(9As) Mo gyt

Definition 2.4.2 (The canonical pushout square). For each integer n > —1,
define ARy = [[¢n A®, and let OAT, denote the (n—1)-truncation ( non-l =
HseJ};, OA®. The natural morphisms ay : A}, — M™ and o), : 0A%, — Mot
are induced via the morphism (3, : A® — M. M™ fits into the natural pushout
square

n s VP

LAMT | TLM (2.5)

B3 —
OAR, — ML,

called the canonical pushout square for M of level n. If ¢ : N — M is a
morphism polyhedral sets, we denote each individual morphism in the morphism
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of diagrams by ¢ : M™ — N® ¢® : A% — AR ¢ : N*~! — M»~1 and
92 1 DAY, — OAY,.

Definition 2.4.3. For each P € P, let L(P) (resp. L*(P)) denote the set of lattice
points (resp. interior lattice points) of P. For any arrow f : Q — P, we define
L(f) : L(Q) — L(P) as the restriction of fg. This defines a functor L : P — Set.

Consider the Yoneda extension L : C — Set. For each polyhedral set M,
we have L(M) = MAP—)M L(P). There is clearly a bijective correspondence

L(M) = e prean L*([5])-

2.5 CW structure

We will now see that the geometric realization of a polyhedral set M is a CW
complex. Specifically, the realization of the diagram determines the cell
structure on |M] and its characteristic maps. See |GJ09, Proposition 2.3] for the
parallell situation in the case of simplicial sets.

Proposition 2.5.1. Let M be a polyhedral set. Then the geometric realization | M |
is a CW complex with an n-cell for each face s € Jy;. Moreover, if ¢ : M — N
is a morphism, then |¢| : |[M| — |N| maps n-cells of |M| homeomorphically to
n-cells of |N|.

Proof. Let n > 1 be an integer. Then for each face s € Mp C J3;, the geometric
realization of A® is |P| = D", the n-disc. Consider the polyhedral facets F' C P,
and note that
on = | A (2.6)
F facet of P

Thus we may write
oa*l= | F
F facet of P

But this is the topological boundary of |P|, hence homeomorphic to the (n — 1)-
sphere S*~1. Tt follows that the induced map [ias| : S*~1 — D™ is the standard
inclusion. The colimit diagram defines a CW complex structure on |M|
in the following way. The space |[M?| is a discrete set of points, and defines
the O-skeleton of |M|. For n > 1, |M™| is the n-skeleton of |M|, and |M™|
is determined by |M™!| and the characteristic maps |(5;| : D® — |M™| and
1¢37] + S® — [M™~ ! in the colimit diagram

(or} S )

wT Tbm (2.7)
TS AR
{sn} —— |M™1.

Since M is the colimit of the sequence of inclusions M°? — M — ... — M® —
- as well, |M]| is the colimit of |M°| — |M'| — --- — |M™| — ---, which
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shows that the topology on |M| agrees with the standard CW complex (weak)
topology. If ¢ : M — N is a morphism, naturality of (2.2)) shows that that each
n-cell of | M| is mapped homeomorphically to an n-cell of | N]|. O

For a polyhedral set M of dimension n, we may form the CW chain complex
CM arising from the CW structure of the geometric realization |M|. It consists
of the abelian groups CM = DP.c i Zs for each i > 0, freely generated by
i-dimensional faces s which are canonical representatives. The canonical pushout
square for M of level n gives rise to an exact sequence of chain complexes

(LAM*’fa;V[*)

0 — COAM CoM g oMPT caOine, oM® (2.8)

To see this, note that
(A%)p —— Mp
LA T TLM (2.9)

(0AR)p = ME,

are pushout squares for each P € P, with (¢pr)p and (ta,,)p both bijections
for dim(P) < n, and inclusions of the empty set for dim(P) = n. Furthermore,
(aar) p is a bijection when dim(P) = n. It easily follows that (2.8)) is exact.

2.6 Polyhedral complexes

We will now review two types of combinatorial structures: simplicial com-
plezes[Stad6] and polyhedral complezes[BG02; [BG0Y; [Sta87]. See [BRO5,
and |[BKROS§| for the related concept of monoidal compleres and its associated
toric face ring. First, we need a simpler version of polyhedral sets, called rigid
polyhedral sets.

Definition 2.6.1. Let P’ denote the monoidal subcategory of P consisting of
the same objects, but where Homp/ (P, Q) C Homp (P, Q)) consists of the arrows
with trivial character 1: Z™ — Gy,. A presheaf M € Pre™) (P’) is called a rigid
polyhedral set. One can make the analogous definitions for Fin’ C Fin.

There is an obvious pair of strict monoidal functors U : P — P’ and
V : P' = P, defined as follows. Both U and V are the identity on objects.
On arrows, U(f,A\f) = f, and V(f) = (f,1). Taking Yoneda extensions, we
obtain cocontinuous strong monoidal functors U : Pre(P) — Pre(P’) and V :
Pre(P’) — Pre(P). By considering canonical pushout squares , it follows
fromthat U and V restricts to functors U : Pre™ (P) — Pre (P)
and V : Pre™ (P') — Pre™ (P). By abuse of notation, we let U : Fin — Fin’
and V : Fin’ — Fin denote the respective restrictions of U and V, and similarly
for U : Pre™ (Fin) — Pre®™) (Fin') and V : Pre®™ (Fin’) — Pre®*)(Fin). Note
that since UV = idg;,, there is a natural equivalence UV = idpre(*>(p,).

18



Polyhedral complexes

Definition 2.6.2. A simplicial complez K consists of a set of of vertices V (K),
and a set of faces S(K). S(K) consists of finite subsets of V(K), such that
{v} € S(K) for all v € V(K), and if t C s € S(K), then t € S(K). The
dimension of a face s = {vg,...,v,} is n.

More generally, there is the notion of polyhedral complexes. The following
definition is a version of [BG02, Definition 2.1], which is also equivalent with

[BG09, Definition 1.74].

Definition 2.6.3. A (lattice) polyhedral complex 11 consists of a set of vertices
V(II), and a set S(II) of subsets of V(II) such that {v} € S(II) for all v € V(II),
and if s,¢t € S(IT), then s Nt € S(II). It furthermore comes equipped with the
following data:

1) an embedding s — R™ for each s € S(II), such that the image of s
constitutes the vertex set of an ns-dimensional lattice polytope s* C R™=;

2) an embedding ¢y : s* — t* for each inclusion s C ¢ in S(II), such that g
is an isomorphism of s* with a face of t* as lattice polytopes.

These embeddings are subject to the following compatibility conditions:
3) tiutst = Lsy for each s C ¢t C w in S(II);

4) For each t € S(II), and each face F of ¢*, there exists an element s € S(II)
such that s C ¢t and «(s*) = F.

We may consider a polyhedral complex II as a rigid polyhedral set as fol-
lows. For each inclusion s C ¢, the embedding ¢ty from 3) corresponds to a
unique affine transformation Z"s — Z"t. Via condition 4), this gives the op-
eration TT — pre(P’) defined by s — A®" the structure of a functor. We let
M) = lim A®". One can similarly defines the rigid unimodular set M (K)
corresponding to a simplicial complex K. If M is a polyhedral set and s is a face
of M, recall that M* is the image of (3, : A® — M. If a rigid polyhedral set M
comes from a polyhedral complex, then it satisfies the following two conditions:

1) ¢3; : A® — M is injective for all faces s;
2) For every pair of faces s and t, M* N M = M* for some face u;

In fact, these three conditions characterizes the finite rigid polyhedral sets which
are polyhedral complexes, and analogously the finite rigid unimodular polyhedral
sets which are simplicial complexes. Indeed, one recovers the polyhedral complex
IT up to isomorphism from M (IT) by defining V (IT) = My, and defining S(IT) to be
the set of subsets Mj C M, for faces s of M which are canonical representatives.
The embeddings M; — RI™(*) are given by the inclusions |s| C RY™() If M
is unimodular, then condition 1) characterizes what is called simplicial posets

(see or [LP11)).

Lemma 2.6.4. If ¢ : OA™ — OA™ is an automorphism such that U(¢) = idgan,
then there exists a unique automorphism 1 : A™ — A™ satisfying ©¥|oan = 1.
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Proof. We may write 0A™ as a coequalizer

I a—= [ a'-oan

0<i<j<=n—1 0<i<n—1

where the arrows A"™? = A"~! for the index (i,j) are d; and d;_1. An
automorphism v satisfying U(y)) = idpan corresponds to automorphisms 1); of
A" satisfying U(v);) = idan—1 for each 4, and 1;d;—1 = v;d; for i < j. Each
1; corresponds to a character \; : Z"~! — G,,, and the above requirement

translates to A;(eq,_,(x)) = Aj(eq,x))- Clearly, there is a unique character
A Z"™ — Gy, restricting to \; via d; : [n — 1] — [n] for each ¢, and the result
follows. O

Proposition 2.6.5. For cvery finite-dimensional unimodular set N : Fin°® — Set,
there exists a rigid unimodular set M : Fin'°? — Set such that V(M) = N.

Proof. We will show the following by induction on n > —1:

1) For any n-dimensional N, Z € Pre® (Fin') and any morphism ¢ : V(N) —
V(Z), there exists a unique automorphism 1 of V(N) satisfying U(¢) = idny
and ¢ = VU(¢)9.

2) For any n-dimensional N € Pre™(Fin), there exists M € Pre (Fin’)
such that V(M) = N.

Each case is trivial for n = —1, so assume that n > 0. Let N € Pre(*)(Fin) be
n-dimensional. By 2), there exists an (n — 1)-dimensional M’ € Pre® (Fin’) and
an isomorphism ¢’ : N®*~1 — V(M’). Consider the morphism o'y ¢’ : 5‘AE_1 —
V(M'). By 1), there exists a unique automorphism v of 8AR,71 such that
U(y) = idaA?\,—l and ¢'a’y = VU(¢' ). By there is a unique
morphism ’LZ ¢ AR — A} satisfying zp/;|aA% = 9. Now, consider the pushout
diagram

UAYy) ———M

| |

U@Az) — 20 ap

Since V preserves colimits, this induces a pushout diagram

AR V(M)

T VU(¢" )y T

aAR, —— "Ny (h).
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But the isomorphism of diagrams

AR < QAR N nn-l

Pk |
VU(¢")aly

AR < 9An TN ()

induces a unique isomorphism ¢ : N — V(M). This shows 2). Next, let
¢ : V(N) = V(Z) be any morphism as in 1). Consider the induced morphism
¢ : V(N?~1) = V(Z"~1). By the inductive hypothesis, there is a unique auto-
morphism v’ of V(N®~1) satisfying U(¢)') = idyn-1 and ¢’ = VU(¢')y’. For the
induced morphism ¢* : A§( Ny Ag( 7) there clearly exists a unique automor-
phism 9 of A‘{‘,(N) satisfying U(y2) = idA;;(N) and ¢2 = VU(¢? )y, which nec-
essarily restricts to an automorphism 2 of GA{‘,(N) satisfying U(wA/) = idBA;;W)
and ¢2" = VU(¢2)y2". Next we will show that ag,(N)wﬁ’ = 9ol . If s0, we
have an isomorphism of diagrams

AY )y = 0AY ) —= V(N

L

APy = DAYy —= V(N

inducing an isomorphism ¢ : V(N) — V(N). So, by the inductive hypothesis
1), there is a unique automorphism 7 of JAY satisfying U(7) = idpan and
WO‘%/(N) = ozg,(N)w. Thus we have

O8> = &' gy = VU)W oy ) = VU(S)oly )T = 7, VU(¢ ).

However, ¢2" is the unique morphism satisfying ozg,(z)¢A/ = ag,(Z)VU(qSA/)wA/,
which means that 7 = 2", It follows that Oz%/(N)’L/)AI = w’ag,(N). Next, we
consider the morphism VU(¢)1. By the universal property of pushouts, we have
U(y) = idy(n) and ¢ = VU(¢)1p. To show uniqueness of 1, suppose that vy is
any other automorphism of V(N) satisfying U(vpo) = idy(n) and VU(¢)1o = ¢.
By the inductive hypothesis, we have ¢ = ¢’ and 1/)0A/ = A" Tt follows

immediately from that 98 = 2. O

2.7 The face ring of a polyhedral complex

See [Sta96] and [MSO05] for a reference on Stanley-Reisner rings of simplicial
complexes. Note that the Stanley-Reisner of the n-simplex SR(A") is equal to
the free polynomial algebra k[zg,...,x,] on the vertices of A™. In it
is noted that SR(K) =lim__ Elzo, ..., 2|5, which in our notation means that
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2. Polyhedral sets

SR(K) 2 T(M(K)). In |[LP11] it is showed that the face ring of a simplicial
poset (originally defined in [Sta91]) satisfies the corresponding limit formula.
The polyhedral algebra k[II] of a polyhedral complex IT was defined in [BG02],

which satisfies the limit formula lim _ @ k[As]. So more generally, we have

E[IT] 2 T (M (IT)) for polyhedral complexes II.

Definition 2.7.1 (|[BG02, p.4]). Let II be a polyhedral complex. The polyhedral
algebra associated to IT is defined as the k-algebra k[II] specified by the following
conditions:

1) k[I] is generated by indeterminates ., for m € L(II) (here L(IT) denotes

the set of lattice points of II, as defined in |[Definition 2.4.3));

2) for any element s € S(II), the subalgebra of k[II] generated by L(s*)
is naturally isomorphic to the k-algebra k[As«] associated to the affine
semigroup Ag«;

3) if Ty, Tm, € L(II), and there is no ¢t € S(II) such that each x,,
belong to L(t*), then @y, ... %y, =0.

One can alternatively describe the polyhedral algebra as follows:
k(] = k[, |m € L(IT)]/(I°™ 4 1™°m), (2.10)

where I = > sesqm ker(¢s), where ¢, @ k[x™[m € L(II)] — k[A,-] is the
homomorphism given by z,, — ™Y, and ™" is the ideal of monomials
Ty - T, for which there exists no ¢ € S(II) such that mq,...,m, € L(t). We

summarize the preceding in the following proposition.

Proposition 2.7.2. Let M € C be a polyhedral complex. Then its face ring T'(M)
is isomorphic to the polyhedral algebra given by the formula (2.10). Hence if M
is a simplicial complex, then T'(M) is the Stanley-Reisner ring of M.

Corollary 2.7.3. Let P € P. Then the homomorphism T'(AT) — T'(0AT) is
surjective.

Proof. Both AT and OAF are polyhedral complexes. Note that the induced
map of lattice points L(OAT) — L(AT) is injective. Via the formula (2.10)),

the homomorphism T'(AT) — T(0AF) is surjective onto the generators of
L(0AF). O

2.8 Properties of the face ring

In contrast with polyhedral and simplicial complexes, the face ring I'(M) for
general polyhedral sets M does not have a neat representation. This section will
be devoted to examining the algebraic properties of I'(AM) from a more abstract
perspective.
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Properties of the face ring

Definition 2.8.1 (The Milnor square for I'(M)). Let M be a polyhedral set,
and n > —1 an integer. Consider the canonical pushout square of M of level n
from [Definition 2.4.2] By [Proposition 2.3.3] I' is preserves connected colimits, so
applying I" to yields a natural pullback square

r(arm) S pym-t

F(O‘M)l ir(a;w) (2.11)
INOONYY!

I'(A%) —=T(9A%),

called the Milnor square for I'(M) of level n. To justify this definition, we
must verify that it indeed is a Milnor square (see [Theorem B.1.1)). Write
AR = HSEJ?\} A% and 0AY, = HSEJ?\} OA?®, and note that each homomorphism
I(tas) : T(A®) — T'(0A®) is surjective by [Corollary 2.7.3] By the description

in [Remark 2.3.5) T'(A%,) and I'(OAY,) are wide pullbacks over k, so the homo-
morphism I'(¢a,,) : T(A%;) — T(0AY,) is surjective. It follows that (2.11) is a

Milnor square.

That is a Milnor square is a central observation, as it permits use of
the machinery of It will be useful for inductive arguments in this
and future chapters, in particular via The following proposition
will have extensive applications.

Proposition 2.8.2. Let ¢ : M — N be a morphism of finite-dimensional poly-
hedral sets. If ¢ is injective (resp. surjective), then I'(¢) : D(N) — T'(M) is
surjective (resp. injective).

Proof. Let n > —1 be an integer, and let N be of dimension n. We proceed by
induction on n, noting that when n = —1, the result follows trivially. Note that
@5 : AR, — AR is injective (resp. surjective). Consider the Milnor squares

for I'(M) and I'(N) from [Definition 2.8.1} T'(A%,) and I'(A%) are the wide

pullbacks of {T'(A®)}sem and {T'(A")}sem over k respectively, and similarly
for T'(OAY,;) and T'(OAY,). It follows that each individual vertical arrow of the
homomorphism of exact sequences

0——=kerI'(tay) —=T(AY) ——=T(0AR) ——=0

| L

0 ——=kerI'(ta,, ) —=T(AY,) —=T(0A%,) —=0
is surjective (resp. injective). Consider the homomorphism of exact sequences

0——=kerI'(tan,) —=T(N?) ——=T(N* 1) ——=0

.

0 ——=kerI'(ta,,) —=T(M") —=T (M) ——=0
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coming from . By the inductive hypothesis we may assume that T'(N?~1) —
[(M™~1) is surjective (resp. injective). Since kerI'(ta,) — kerI'(ta,,) is
surjective (resp. injective) as well, it follows immediately that I'(N™) — I'(M™)
is surjective (resp. injective). O

Lemma 2.8.3. For any polyhedral set M, T'(M) is reduced.

Proof. By [Remark 2.3.4] T'(M) is a limit of reduced rings, hence reduced. O

Proposition 2.8.4. Let M be a polyhedral set, and My, My polyhedral subsets
of M with corresponding injections i1 : My — M, iy : My — M. Consider the
polyhedral subsets My U My and My N My of M, with corresponding injections
¢: My UMy — M, MyN My — M. Then kerI'(i1) NkerI'(iz) = kerI'(¢),
and kerT'(i1) + ker T'(ig) = ker I'(¢)).

Proof. By |[Proposition 2.8.2] the homomorphisms I'(i1), T'(i2), I'(¢) and I'(¢))
are surjective, so we may assume that M = M; U M,. Consider the pushout
square

M1$>M

le T (2.12)

M1 n M2 i> MQ,
where j1 : M1 N My — My and jo : M1 N Ms — M are the induced injections.

We must show that ker I'(é1) Nker I'(iz) = 0, and ker I'(i1) + ker I'(i2) = ker I'(¢)).
Now, since I" preserves connected colimits, ([2.12]) gives a pullback square

I'(i1) (M)
J{F(m (2.13)
T'(j2)

T(Mz) —2> (M, N M),
hence an exact sequence
0—T(M)—T(M)xT'(My) = T'(M; N M) — 0, (2.14)
which we may write as
0—>T(M)— (I(M)/kerT'(41)) x (I'(M)/ kerT'(iz)) — I'(M)/ ker T'(¢)) — 0.
The result follows immediately. O
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Deforming to a subdivison

2.9 Deforming to a subdivison

We recall the definition of a polyhedral subdivision of a polytope|GKZ08, Chapter
7, Section 2] (we restrict to the case of lattice polytopes):

Definition 2.9.1. A marked (lattice) polytope is a pair (P, A), where P C R" is a
full-dimensional polytope, and A is a subset of L(P) = PNZ"™ containing all the
vertices of P. A polyhedral subdivision of P is a family {(P;, A;)}ies of marked
n-dimensional lattice polytopes P; C P such that 4; C A, A;NQ; = A; NP
and such that (J,.; P; = P. Such a subdivision is called regular (or coherent)
if it is induced by a function ¥ : A — R in the following manner: Define
Gy = Conv((w,y) | w e A,y € R,y > 1p(w)) € R™ x R. The lower boundary
of Gy is the graph of the piecewise linear function gy : P — R defined by
gy(z) =min{y | (z,y) € Gy}. Now let the polytopes P; C P be given as the set
of domains of linearity of gy (i.e. the convex subsets of P where g, is an affine
linear function), and let A; = {w € P,N A | gy(w) = ¢(w)}.

Remark 2.9.2. For any given regular subdivision of P, we may assume that
1) takes integral values. Indeed, if v : A — R is any function, then a suffi-
ciently approximate function A — Q produces the same subdivision. Clearing
denominators, the induced function A — Z still produces the same subdivision.

Let S(¢) = {(P;, A;) }icr denote the subdivision associated to ¢ : A — Z. We
can think of a subdivision S(¢) as the polyhedral complex PS(P, ) = [J,c; A"
it gives rise to. This construction is functorial in the following sense. Let
f:Q — P be a some arrow in P. Consider the marked polytope (@, fﬂgl(A))
and the function ¢ f : fz '(A) — Z. Then the subdivision S(¢f) is given as
{(@QN fz 1(P1), Ai)Yiey for the subset J C T of indices such that QN fz ' (P;) # @.
Moreover, the arrow f : @ — P restricts to an arrow f; : Q N P; — P; (with
A, = Ay) for each i € J. These arrows induces a morphism PS(¢ f) — PS(¥).
To formalize this, let P denote the category of pairs (P, : A — Z), where (P, A)
is a marked polyotope, and where the function Ap — Q given by (m,d) —
dgy("}) takes integral values. An arrow (Q,¢ : B — Z) — (P,¢ : A — 7Z)
is an arrow f : Q — P in P such that B = f; '(A) and ¢ = f. Then PS
defines a functor PS : P — C. By taking the Yoneda extension one obtains
the subdivision functor P.S : Pre(P) — Pre(P) which preserves all colimits. By
imposing the condition (x) on presheaves PP Set, one obtains the subdivision
functor PS : Pre™ (P) — C. We also have the forgetful functor U : P — P
given by (P, 1) — P. Let U : Pre™(P) — C denote the Yoneda extension of U.

One can think of an element of Pre(*)(f) in the following way. Let M be
a polyhedral set. Then a marked pair structure on M consists of a marked
lattice polytope on the form (A, |s|) and a function ¢ : Ay — Z for each
face s of M, satisfying the condition of and also the follow-
ing condition: for each arrow f : P — @ in P and each s € Mg, we have
Apm(g) = fRfl(AS) and s f = 1 pm (5. In other words, a marked pair structure

on M is a presheaf M € Pre™ (P) such that U(M) = M. Note that the data
consisting of the marked pairs {|s|,¢s : As — Z} is equivalent to a function
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2. Polyhedral sets

U : A— Z, where A = T&ngeM A,. Hence the category Pre®™)(P) is equivalent
with the category of marked pairs (M, V¥ : A — Z), where M € C, A C L(M) =
lm oy L(P) = [1,cpzean L*(|5]), and each restriction W|,4, satisfies the condi-
tions of [Remark 2.9.2l A morphism (N, ®: B — Z) — (M, ¥ : A — Z) is simply
a morphism ¢ : N — M such that L(¢)"!(A) = B and Vo L(¢)|p = ®.

Definition 2.9.3. Let M be a polyhedral set, and let (M, ¥) be a marked pair

structure on M. Then the polyhedral set PS(M, V) is called a polyhedral
subdivision of M.

The functor U is given by (M, ¥) — M. There is an isomorphism |U (P, )| =
|PS(P,)| of topological spaces given by the inclusions ; € P. This is natural
in (P,v) € P, so by the universal property of the Yoneda extension, there is an
induced isomorphism [U(M, ¥)| = |PS(M, ¥)|, natural in (M, ¥) € Pre™)(P).

2.9.1 Unimodular triangulations

Definition 2.9.4. Let P be a polytope. For each integer n > 1, consider the
scaling functor n : P — P defined by P +— nP, where nP denotes the Minkowski
multiple of P. On arrows f : Q — P, we let (nf)r = fr and A,y = A;. Let
n : C — C denote the Yoneda extension. Then for any polyhedral set M, we
have nM = @AP_}M A™P . This is called the scaling of M by n.

The scaling functor n : P — P extends to a scaling functor n : P — P as
follows. For a marked pair (P, : A — Z) € P, we define n(P,¢) = (nP,1),
where ¢ now denotes the function nA = {nm | m € A} — Z given by m —
ni () for each m € A. The Yoneda extension n : Pre™)(P) — Pre™)(P) is given
by (M, V) — (nM,¥) (where ¥ here is given by the functions v, : nAs — Z for
each face s of M).

Lemma 2.9.5. For each integer n > 1, there is an isomorphism I'y(nP) N
T(P)" .= @,_,T(P)an natural in P € P. Consequently, there is an iso-
morphism Ty (nM) =N T (M)™ natural in M € C. Analogously, the natural

homeomorphism P — nP induces a natural homeomorphism |M]| = [nM|.

Proof. The first statement follows from the fact that A,p = {(m,d) € Ap |
n divides d}. Since the functor (—)™ preserves limits, the rest is a consequence
of the universal property of Yoneda extensions. O

Definition 2.9.6. Let M be a polyhedral set, and assume that L*(|s|) is non-
empty for every s € M°". Choose a lattice point ms € L*(|s|) for each s, and
let A ={ms € L(M) | s &€ M®}. Let ¥: A — Z be a function such that
W(ms) > ¥(m;) whenever dim(s) > dim(¢) (and suitably scaled so that the
condition of is satisfied). Then (M, V) is called a barycentric
marked pair, and the resulting subdivision PS(M, V) is called a barycentric
subdivision of M.
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Deforming to a subdivison

If ¢ : N — M is a morphism, then a marked pair (M,V : A — Z) of
M pulls back to a marked pair (N,¥|y : (¢**)"1)(A) — Z of N, where

U (m) := W (¢™"(m)).

Proposition 2.9.7. Let M be a finite polyhedral set such that L*(|s|) is non-
empty for every s € M, and let (M, V) be a barycentric marked pair. Then
the barycentric subdivision PS(M, W) satisfies condition of. If M
already satisfies [I)} then PS(M,V) satisfies[2) as well (i.e. UPS(M, W) is a
polyhedral complezr).

Proof. We proceed by induction on the dimension n of M. Both statements
are trivial for n = —1, so we may assume that n > 0. Let ¢ be any face
of PS(M,¥). We will show that C}S(M7\I,) : At — PS(M,¥) is injective.
Since PS preserves colimits, PS(M,¥) can be written as the pushout of
PS(M™ 1, W|pym1) = PS(0A%,, ¥lgan ) — PS(AR;, Wan ). Thus either
CFDS(M&) factors through PS(M™ 1, ¥|ym-1) or A® for an n-dimensional face
of PS(M,¥). By the inductive hypothesis, we reduce to the latter case, and we
may furthermore assume that ¢ is a facet. Since (M, V) is a barycentric marked
pair, A*N PS(OAY, Ulpan ) = A" for some face u of A" (we allow |u| = & here).
But A"\A" — PS(M, V) factors through PS(A%, ¥[an )\PS(OAR, ¥[gan ) C
PS(M,¥), and A" (or @) factors (injectively) through PS(M®~1 W|ym-1),
hence we are done.

Next, assume that M satisfies It is clear that PS preserves injections,
so PS(CY;) : PS(AY, ¥|au) — PS(M, V) is injective for each face u. Let s,t
be a pair of faces of PS(M, V). Now, PS(A", ¥|a«) is a polyhedral complex,
so if both M* and M" are contained in the image of PS((Y,), we have that
MM = M* for some face v'. So assume otherwise. Again, we have that
A* N PS(OAY,, ‘ll|3A7w) = A" and A* N PS(0AY,, \IJ‘(’)A?/I) = A"2 for some pair
of faces u; and us of A® and A respectively. Since M* and M? are not contained
in the image of any PS(CY,), the intersection M* N M* must be contained in the
image of PS(9A%,, ¥|pan ), and is therefore contained in PS(M™™!, Wym-1).
By the inductive hypothesis, M* N M? = M" for some face u, verifying O

Theorem 2.9.8 (|[BG09, Theorem 3.17]). Let M be a polyhedral complex. Then
there exists an integer n > 1 and a marked pair (nM, W) such that the subdivision
PS(nM, V) of nM is unimodular (i.e. consists of unimodular simplices).

Theorem 2.9.9. Let M be a finite polyhedral set. Via repeated application of
scaling (M — nM ) and subdivisions (M — PS(M,¥)), one obtains a simplicial
complex (i.e. a unimodular set which is isomorphic to V(Z) for some simplicial
complex 7 ).

Proof. Apply [Proposition 2.9.7] twice, scaling each time if necessary to ensure
that L*(]s|) is non-empty for all faces s, to produce a polyhedral set N such

that U(N) is a polyhedral complex. By |Theorem 2.9.8] there is a subdivision
(U(N), ¥) such that PS(U(N),¥) = UPS(N,¥) is a simplicial complex. In
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particular, PS(N,¥) is unimodular. So by [Proposition 2.6.5] there exists a
simplicial complex Z such that V(Z) = PS(N, V). O

2.9.2 A generalized face ring construction

We will now generalize the face ring construction to elements of C. Let R be
a k-algebra DVR where t € R is a uniformizing parameter. Let K denote its
field of fractions. Then we may define a contravariant functor I'y : Py — 2
as follows. For each (P,¢) : A — Z) € Py, let I'5(P,1) be the R-subalgebra
of K[Z"] = K[x™® | (m,d) € Z"'] generated by 49+ (d)y(md)  where
(m,d) € Ap, for some i. This is a modified version of Definition 2.8.3].
If f:(Q,0: B—1Z)— (P,¢: A— Z) is an arrow in P, then we define the R-
algebra homomorphism T (f) : T'4(P, 1) — T'5(Q, ¢) by thxAs(md) sy thy (mad),
where Ay : Ag — Ap denotes the usual homomorphism of affine semigroups (this
homomorphism is induced by 49+ i)y Ar(md) oy ¢dgws (F) \ (md) on generators).
I'; extends as a Yoneda extension to a functor Tg: Pre(Py) — 2, and as in
restricts to a functor I'p : C — 2, preserving all connected colimits.
Note that each I'; (P, 9) is torsion-free as an R-module, so the same is true for
the limit T'r(M, V) = @Y;(P,w)e(M,\ll) Cr(P,v). It follows that I'r (M, ¥) is a

flat R-module. To avoid confusion, we will write I'y (M) for the face ring of M
over a field k, and similarly P (M) for the face scheme of M.

Proposition 2.9.10. There is a natural isomorphism T'r(P,¢) @r K =, Tk (P),
where T i (P) denotes the usual face-ring associated to P over the field K. Let
kE = R/(t) be the residue field of R. Then there is a natural isomorphism

Tr(P, ) ©r k = Ti(PS(P,v)).

Proof. The first part is clear, as I'r(P, %) ®g K is given as the K-subalgebra
of K[Z"'] generated by x(™® for (m,d) € |J, Ap,, in particular x(™1| for
every m € L(P). The isomorphism is given by x(™% @ r s rx(™4). For the
other part, we follow along the lines of Lemma 2.8.4.]. Note first that
I'r(P,¢) ®pr k 2 Tr(P,v¢)/tT'r(P,v) by flatness of I'r(P, ). Consider now a
product of generators in I'g(P, ) /tI (P, 1):

11 (L9 (TJJ) (midi) — tzf d4de (T;> X(Ej Y, b)),
J
Here

Ej:djgw (ZZ]) > Ej:djgw (%22) :

with equality if and only if every (m;,d;) is contained in the same Ap, (i.e.
% € P;). This follows from the fact that g, is convex and that the P;’s are its
J

domains of linearity. Thus any element of T r(P,v)®pk can be written as a sum
of elements on the form t%9+(3)y (™4 & 1 for r € k and (m, d) € Ap, for some
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Deforming to a subdivison

i. Thus we may define a homomorphism I'r (P, ) /tT'r(P, %) — T (PS(P, 1))
by t29(d) y (m:d) @ 1y py (70d) (see [Definition 2.7.1{ for the presentation of the

face ring of a polyhedral complex). This is evidently a natural isomorphism. [

Theorem 2.9.11. There are natural isomorphisms I'r(M,¥) @r K = Tr (M)
and Tr(M,¥) @p k =, Tr(PS(M,¥)) for finite polyhedral sets M.

Proof. The natural homomorphisms in question are well-defined by
tion 2.9.10} It remains to show that they are isomorphisms. We proceed by

induction on the dimension n of M. The initial case of n = —1 is trivial. It is
easy to verify that the colimit diagram (2.4) for M induces a colimit diagram

G

{(Aa% ¥ (M, ¥)

LAST TL]\/[ (2.15)
Car _
{(0A%, Wpas)} —— (M1, W[ pyn-1).

A=)}

Applying T'r : C — 2 to ([2.15) yields an exact sequence

0—>FR(M,\I/) — H FR(AS,\I/ As)XFR(Mnil,\I”Mn—l) — H FR(aAS,\I}laAs).

seJn seJy,

(2.16)
Now, consider the homomorphism T'r(tas) : Tr(A®, ¥|as) = Tr(OA%, Ulgas).
By Nakayama’s lemma, T'g(tas) is surjective if and only if T'r(tas) ®g k is.
By [Proposition 2.9.10| and the inductive hypothesis, this is equivalent with
the statement that I'y(PS(tas)) : T (PS(AS, ¥|as)) = T (PS(OA®, ¥lpas)) is
surjective. But this follows from [Proposition 2.8.2l We conclude that is
right exact. Now, tensor with K and compare with the exact sequence

0= Tg(M) = [ Tr(A%) xTr(M™ 1) = J] Tk(0A%) 0.  (2.17)
seJm, seJy;

By the inductive hypothesis and [Proposition 2.9.10} it follows that T'r(M, V) ®g
K — Tk (M) is an isomorphism. Next, applying the functor PS to (2.15)) yields
a new colimit diagram. It follows that the sequence

0= Tp(PS(M,0)) — ] Tu(PS(A*, ¥

seJy;

As)) X TR(PS(M™ ™ W ym-1))

= [ Tw(PS(0A%, ¥[ga-))
seJy,

(2.18)
is exact. Since the functor Tort (I'z(dA®, W|ga:), —) is trivial, tensoring
with k yields another exact sequence. Comparing this with shows that
T'r(M,0)®prk — T (PS(M,¥)) is an isomorphism. O

Lemma 2.9.12. Let M be a finite polyhedral set of dimension n. Then,

29



2. Polyhedral sets

1) if M is irreducible, then T'(M) is an integral domain;

2) there exists an integer n > 0 such that T(M)™ is a finitely generated
k-algebra of dimension n + 1;

3)if ¢ : M — N is a surjective morphism of polyhedral sets, then the
homomorphism T'(¢)" : T(N)IM — (M) is finite for some n > 0.

Proof. 1) Let s € M" be a facet of M, and let P = |s|. Since A®* — M is
surjective, T'(¢§;) : T(M) — T'(AF) is an injective by [Proposition 2.8.2) where
I'(AP) = k[Ap] is an integral domain. 2) Assume first that M is a simplicial
complex. Then I'(M) is the Stanley-Reisner ring of M, and the result is well-
known. By the property in question is invariant under scaling
M~ nM. By Nakayama’s lemma implies that it is invariant
under subdivisions M — PS(M, ¥) as well. Finally, by one may

iteratively scale and subdivide to end up with a simplicial complex of the same
dimension. Hence we are done.

3) As in the proof of 2), this property is invariant under scaling and subdivision
of N. Indeed, if (N, ¥) is a marked pair structure on N, one obtains a marked pair
structure (M, ¥|ps) on M, and a morphism ¢ : (M, ¥|y) — (N, 0). If PS(N, ¥)
is a simplicial complex, then PS(M, ¥|ys) is one as well, hence we have reduced
to the case where both M and N are simplicial complexes. In this case, I'(¢) is
given by zy, = 37, )y, Tv- We will show that I'(M) is generated over I'(V) by
its square-free monomials, of which there are finitely many. Choose some total
order on the vertices of M, and assume for contradiction that m = z§? - - - zg" is
some monomial of I'(M) which cannot be generated by square-free monomials
over I'(N). Here vy < --- < vy, n is assumed to be maximal, and (ao, ..., a,) is
assumed to be minimal in lexicographical order. Let ¢ be an integer such that
a; > 1, and define w = ¢(v;). Note that if v € M satisfies ¢(v) = w, then either
v=wv; or v & {vg,...,v,}. This is because ¢|as : A®* — N is injective for every
face s of M. It follows that

L(¢)(2) - 280 -+ 2%~ 2i" =m + monomials with > n + 1 variables.

The left hand side is generated by monomials since (ag,...,a; — 1...,a,) <
(ag,...,an). Since n was chosen maximal, we may rearrange the equation
and write m as a linear combination of square-free monomials, which is a
contradiction. O
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Chapter 3
The face scheme

Let Cy denote the full subcategory of C consisting of finite polyhedral sets.
By [Proposition 2.2.5] joins of finite polyhedral sets are finite, so C; inherits a
monoidal structure from C. If ¢ : M — N is a morphism of finite polyhedral
sets, then T'(¢)" : T(M)" — T(N)" is finite for some n > 0 by
3), inducing a well-defined morphism of schemes ProjT'(M) — ProjT'(IV). This
permits the following definition.

Definition 3.0.1. For a finite polyhedral set M, define P(M) = ProjI'(M). We
will call this the face scheme of M. This defines a functor P : C; — Schy, from
the category of finite polyhedral sets to the category of schemes over Speck.
Note that P(A”) is the ordinary toric variety associated with the polytope P
(denoted X p in ) If ¢ : M — N is a morphism in Cy, we will let ¢ denote
the morphism P(¢) : P(M) — P(N) whenever it is unambiguous. We will also
denote the structure sheaf Opas) by O, and cohomology groups HY{(P(M),F)
by H*(M,F) for sheaves F on P(M).

The main goals of this chapter is first to establish some basic properties of
the face scheme of polyhedral sets, and then prove the classification theorem
of Next, in we will prove that there is a natural
isomorphism of k-vector spaces H'(M;k) =N H(M,Oyy) for each integer i > 0
(Theorem 3.4.1). Here H'(M:;k) denotes the cellular cohomology groups of M
with coefficients in k, which are naturally isomorphic to the singular cohomology
groups H'(|M|; k). Inwe will prove that the Picard group Pic(P(M))
is naturally isomorphic to Deg,, x H'(M;k>*) (Theorem 3.5.2). Here Deg,, is
a finitely generated free abelian group specifying the degree of the line bundle
(Definition 3.5.1)). Finally, we will consider the cohomology of the twisting
sheaves O)(d) in order to compute the Hilbert polynomial of I'(M).

Now, let A be a finitely generated and positively graded ring, an/cll/et X =
Proj(A). Then for each integer n, the sheaf Ox(n) is defined as A(n). The
graded k-algebras we will consider will be finitely generated, but not in general
standard graded. This complicates things; for example, Ox (1) may potentially
fail to be ample, or even locally free. See Section 1.5] for examples of
these pathologies and more. However, X is always projective over k, and there

exists an integer n > 0 such that Ox(n) is very ample. In [Section 3.2| we will
see that none of the pathologies from |[Dol82] are present for P(M). For now,

we will focus on the categorical properties of P. From here on, all polyhedral
sets will be assumed to be finite.

Definition 3.0.2 (The Milnor square for P(M)). Let M be a polyhedral set,
and n > —1 an integer. Consider the Milnor square for T'(M) of level n from
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3. The face scheme

Applying P to this pullback square yields the diagram

P(A};) ——P(M")

. T | T o (3.1)

P(OAR,) Mo p(Mn-1),

which by [Proposition B.2.1|b) is a pushout square of schemes. We call this the
Milnor square for P(M) of level n.

Proposition 3.0.3. The functor P : Cy — Schy, preserves all finite colimits. In
other words, P : Cy — Schy, is the pointwise Yoneda extension of the functor
P — Schy given by P +— P(AF). As a consequence, if G is a finite group
acting on a polyhedral set M, then P(M) — P(M/G) is a group quotient for the
induced action on P(M) in the category of schemes.

Proof. We first observe that any finite colimit in Cy (resp. colimit in C) can be
computed pointwise. Indeed, this follows immediately from the fact that there
does not exist any morphism ¢ : M — N in Pre(P), where N is in C; (resp. C)
and M is not. Thus we may always assume that a colimit in Cy (resp. C) is a
colimit in Pre(P) of the same diagram. Let n > —1, and consider the canonical

pushout square for M € Cy of level n from [Definition 2.4.2| Since the diagram

is natural, it forms a pointwise pushout square of functors Cy — Cy:

]

OAR — > (—)n—1,

The functors (=)™, A? (=)™ 0A™ : C — C are respectively given by M — M™,
M A% M~ M® ! and M — 0AY,. We will show that each of these
four functors are cocontinuous. The functors (=)™ and (—)""! are clearly
cocontinuous, and A is the composition of (—)*~! with A™, so we only need
to verify that A is cocontinuous. Restricting these functors to C; and composing
with P yields the four functors P o (=)*,Po A ,Po(—),PodA_ :C; — Schy.
By induction on n we will show that P o (—)™ preserves all finite colimits. By
the inductive hypothesis and the fact that A _ is cocontinuous, we may assume
that P o (—)"~1 and P o JA™ preserves all finite colimits. We will show by an
explicit computation that P o A™ preserves all finite colimits. The Milnor square

for P(M) of level n from [Definition 3.0.2|is (pointwise in M € C;) the pushout
square (3.2)) composed with P:

PoA™ Po(—)™

]

Po9dA® ——=Po (—)» L
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The category of vector bundles

We are now in a purely categorical situation. If G,G1,G2,Gs : C — A are
functors in a pointwise pushout square of functors

GlﬁG

]

Gz —— G2

where each G preserves all finite colimits, then I claim that G preserves all
finite colimits (even if we don’t know that lim G o I exists for finite diagrams
F: I — A). Note that since it is a pointwise pushout, it is a pushout in the
functor category [C, A]. The dual statement in a more general setting is noted
in p.1]. Tt is a routine verification. In conclusion, P o (—1)™ preserves
all finite colimits. Now, let F' : I — C; be a finite diagram with lim F' = M.
Let n be the maximal dimension of F(i) for each i € I. Then dim M = n, and
Po(—)"oF =PoF. Since P o (—)™ preserves all colimits, it follows that P (M)
is the colimit of the diagram P o F' : I — Schy. Hence P preserves all finite
colimits. It remains to show the following: 1) A™ : C; — Cy is cocontinuous; 2)
P o A" : Cy — Schy, preserves all finite colimits.

For 1) we may equivalently show that that A™ preserves finite coproducts
and coequalizers. First, let {M;};cr be a finite family of polyhedral sets, and
let M = [];c; M;. Then it is clear that the induced function Jyr — [1,c; J3y,
is a bijection. It follows that Ay — [[,c; A%}, is an isomorphism. Second, let
@1, ¢2 : M — N be a pair of morphisms of polyhedral sets, and let M = N Ny
be corresponding coequalizer diagram. Then J3; = J§ — J7 is a coequalizer
diagram of sets, and it follows easily that A}, = AR — A% is a coequalizer
diagram.

We follows the same strategy for 2). In the same notation as above,
I'(II,c; Mi) is given as the wide pullback of {I'(M;)}icr over k via the de-
scription in Since the unique graded k-algebra homomorphism
P(T1;e; Mi) — Tl;e; T'(M;) is an isomorphism in all degrees d > 0, it follows that
[1;c; ProjI'(M;) =N Proj(I'([;c; M;)). Since A™ preserves finite coproducts
from 1), it follows now that P o A® does as well. Next, let ¢1,¢9 : M — N
be a pair of morphisms of polyhedral sets, which from 1) induces a coequalizer
diagram AR, = AR — A%. We may write the induced diagram P(AY};) =
P(AY) = P(A}) as [[,esn P(AY) = [ien P(A?) — [scsn P(A®). This is
easily seen to be a coequalizer diagram of schemes. O]

3.1 The category of vector bundles

We will use as a general reference for this section. Let M be a
polyhedral set, and fix an integer n > —1. Consider the Milnor square for
P(M) of level n, arising from the Milnor square of I'(M) of level n. By
|[Proposition B.3.3] there is a an equivalence of categories

B s VB(M™) = VB(A%)) xvparn ) VB(M™ ) (3.5)

n
M
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3. The face scheme

given by £ — (a},E,15,E), where this pair is equipped with the canonical
isomorphism % : (o) 13,E — tha,, @3 E. We also have the inverse

Or = VB(AL,) Xvpoan) VB(M™ ) — VB(M™), (3.6)

where 0y, maps a pair (€1, &2) equipped with an isomorphism A : (a,)*E —
Lthn,, €1 to the vector bundle & determined by the pullback square

E———— (tm)+&o

| |

(aM)*gl I (O”WLHAM)*LBAM &1

Let ¢ : N — M be a morphism of polyhedral sets. Then the morphism
¢ : P(M) — P(N) induces a pullback functor ¢* : VB(M) — VB(N), defining
the functor VB(—) : C; — Cat. Since Cat is a 2-category, this is really a 2-functor.
Recall the morphisms ¢ : M® — N?, ¢» : A% — AR ¢ : No=1 — -l
and ¢?2 : AT, — OAY, from These induces pullback functors
¢* : VB(M®) — VB(N®), ¢* : VB(M™~1) — VB(N®71), ¢&* : VB(AY,) —
VB(AY) and ¢ : VB(JAR,) — VB(AAY), and defines a functor

(™%, ¢™) : VB(AR)) XyB(aan) VB(M™ 1) = VB(AR) xvp(aay) VBN ™)

(3.7)

given by the following. On objects, a pair (£1, &) equipped with an isomorphism

har = @€ — 15, &1 is mapped to the pair (A&, #'*Es) equipped with the
isomorphism

hy o d & — a0 Er. (3.8)

induced by ¢2 *hyy : qﬁAl*aﬁ\}Sg — gbA/*L*AMEl. A morphism of pairs (g1, g2) :
(€1,E) — (F1, F2) is mapped to the morphism (¢2* gy, ¢'* g2) : (¢2*E1, ¢'*E) —
(¢2*F1,¢"* F3). Tt is easily seen that the pair of morphisms (¢2*gy, ¢"*g2)
satisfies the condition , and is therefore well-defined. This defines the
functor

VB(A™) xyp@ar) VB((=)*") : C; — Cat.

Proposition 3.1.1. The equivalences of categories By and 0p define natural
equivalences of functors

~

8: VB((—)") <= VB(A®) xypaan) VB((—)") : 0,
Proof. To show that ), defines a natural equivalence 3, we need to verify that

for any morphism of polyhedral sets ¢ : M — N, there are natural equivalences
of functors

B 0" 22 (™%, ¢) o far and ¢* 0 O = Oy o (9D, ¢). (3.9)
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Properties of the face scheme

Let € be a vector bundle on P(M™), and consider the canonical isomorphisms

ay o E = ¢ ar, € and 1 ¢*E = ¢™*1%,E. Then it is easily seen that the induced

natural isomorphism

Bur(9°E) = (and"E,ind"E) = (9™l E, ¢ 13,E) = (677, ¢") (Bu (€))

(3.10)

satisfies the condition (B.13]), and is therefore a morphism of pairs. This shows

that Gy defines a natural equivalence 3, and it follows formally that 65, defines

a natural equivalence 6 as well. O]

3.2 Properties of the face scheme

The results of [Section 2.8 and [Section 2.9| regarding face rings immediately
translates to facts about face schemes, which we summarize now.

Proposition 3.2.1. Let M and N be polyhedral sets. Then,

a) P(M) is a reduced projective scheme over k of dimension dim(M);

b) if ¢ : M — N is an injective morphism, then ¢ : P(M) — P(N) is a
closed immersion;

c) if My, My are polyhedral subsets of M, then P(M;)UP(Ms) = P(MyUM,)
and P(My) NP(Ms) = P(M; N Ms) as closed subschemes of P(M);

d) if M is irreducible, then P (M) is an irreducible scheme;

e) if {M;}?_, are the irreducible components of M, then {P(M;)}"_, are the
irreducible components of P(M);

f) if  : M — N is any morphism, then ¢ : P(M) — P(N) is a finite
morphism;

g) if ¢ : M — N is a surjective morphism, then ¢ : P(M) — P(N) is
surjective, and ¢* : On — ¢.On is injective;

Proof. a) Being reduced is stable under localization, so P(M) is reduced by
m There is an integer n > 0 such that T'"] (M) is a finitely generated
(n + 1)-dimensional k-algebra by 2). Since P(M) = Proj T1" (M),
it is projective over k of dimension n. b) follows from [Proposition 2.8.2] c¢)
follows from [Proposition 2.8.4] d) follows from [Lemma 2.9.12| 1). e) follows
from c) and d). f) ['"(¢) is finite for some n > 0 by [Lemma 2.9.12| 3), so ¢*
is finite as well. Since P(¢) is induced by a morphism of graded rings, it is
affine — and therefore finite. g) I'(¢) is injective by [Proposition 2.8.2] and
localization preserves injections, hence ¢! is injective. Since ¢ is finite, it must
be surjective. O]

Proposition 3.2.2. Let M be a polyhedral set, and n,m integers.
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3. The face scheme

a) The canonical morphism
Onp(n) @ Opr(m) = Opr(n+m) (3.11)
is an isomorphism. Hence Opr(d) is an invertible sheaf for every integer d.
b) The line bundle O (1) is ample.

c) Let ¢ : N — M be a morphism of polyhedral sets, and let d be an integer.
Then the canonical morphism

¢*(Om(d)) = On(d) (3.12)
is an isomorphism.

Proof. We will prove a), b) and ¢) simultaneously by induction. Let n >
—1 be an integer, and suppose that the assertions holds for all maximally
(n — 1)-dimensional polyhedral sets. Assume that M is n-dimensional, and
consider the Milnor square for T'(M) of level n. Choosing P = I'(M)(d),
[Proposition B.2.1|a) yields a pullback square

Om(d) ———— (tm)«(Opn1(d))

| |

(arr)(Oan (d)) — (amtaaz, )« (Oaax (d)).

Since I'(A};) and I'(OA};) are standard graded, the canonical morphism ¢}
Oan (d) — Oaax (d) is an isomorphism. By the inductive hypothesis, the canoni-
cal morphism (y;)*Opn-1(d) — Opan (d) is an isomorphism. Hence by
Owm(d) is a vector bundle. Now, consider the pair (Oax (d), Opn-1(d

equipped with the canonical isomorphism (a/y;)*Opn-1(d) — NN (d). Since
(3.13) is a pullback square and O,;(d) is a vector bundle, it follows by defini-
tion that 01/ (Oaxn (d), Opm-1(d)) = On(d). Again, since I'(Ajpy) is standard
graded, the canonical morphism Oan (n) @ Oan (m) — Oa= (n +m) is an
isomorphism. By the inductive hypothesis, we may assume that the canonical
morphism Opym-1(n) ® Opm-1(m) = Opym-1(n + m) is an isomorphism. By
[Proposition B.3.4|b), it follows that the canonical morphism Oy (n) @ Opr(m) —
On(n + m) is an isomorphism, showing a). Now, there exists an integer n
such that Op(n) is very ample. Since O (1)®" = Oypr(n), it follows that
O (1) is ample, showing b). Let now ¢ : N — M be a morphism. Since
I'(A%,) — I'(A%) is a homomorphism of standard graded rings, the canonical
morphism ¢**(Oan (d)) = Oax (d) is an isomorphism. By the inductive hypoth-
esis, the canonical morphism ¢"*(Opn-1(d)) — Opn-1(d) is an isomorphism. The
isomorphism ¢*0ar(Oaz, (), Opm-1(d) = On (67 (Oax, (d)), ¢ (Opm-1(d))) is
provided by naturality of 6, from [Proposition 3.1.1] This shows that the canon-
ical morphism ¢*(Oxr(d)) — On(d) is an isomorphism. This shows c¢). By
induction, we are done. O
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An equivalence between groupoids of pairs

Definition 3.2.3. Let M be a polyhedral set, and n > —1 an integer. Then we
define T% = P(M™)\P(M™~1). With [Definition 2.8.1|in mind, [Proposition B.2.1|

implies that aps : A%, — M™ induces an isomorphism oz]T/Il (Tx) =, Ty, But the
ideal sheaf of P(A}, )\, (T%) in P(A%,) is equal to the ideal sheaf of P(QAY,)

by [Cemma B.3.2| a). Thus ays restricts to an isomorphism ay : Tha — Thy,
1 M
which furthermore is natural in M.

Lemma 3.2.4. Let ¢ : M — N be a morphism of polyhedral sets. Then,

a) the scheme-theoretic image ¢(P(M)) in P(N) is equal to P(¢p(M));

b) if Z C N is a polyhedral subset, then the preimage ¢~ (P(Z)) is equal to
P(¢p=1(2)) as closed subsets of P(M).

Proof. a) The morphism ¢ : P(M) — P(N) factors as a surjective morphism
P(M) — P(¢p(M)) followed by a closed immersion P(¢(M)) — P(N). Since the
scheme-theoretic image of a reduced scheme is reduced, it follows that ¢(P(M))
and P(¢(M)) are equal as closed subschemes of P(N). b) We will show that
P(¢p=Y(2)) = ¢~ (P(Z)) set-theoretically. We proceed by induction on the
dimension of N, noting that equality is immediate for the base case of N = @.
Let N be n-dimensional, and consider the restricted morphism ¢ : T3 — T'x.
But note that P(Z) N TR = T2, and that P(N*" 1) N P(Z) = P(Z!) by
[Proposition 3.2.1| ¢). Hence ¢~ 1(P(Z)) = ¢~ (T%) U ¢~ 1(P(Z™71)). By the
inductive hypothesis, ¢~ (P(Z*71)) = P(¢~1(Z271)) as a subset of P(M™~1),
hence of P(M) as well. Via the isomorphisms oy : Tan — Tiy and ay :

TE’z’ — T2, ¢~1(T) is easily seen to be equal to T3 1 (z)- We conclude that
P(¢p~1(2)) = ¢~ 1(P(Z)) as closed subsets of P(M). O

3.3 An equivalence between groupoids of pairs

Lemma 3.3.1. Let M be a polyhedral set, and let S be the set of canonical
representatives of facets of M. Define M = [lscs A°. Then the induced mor-
phism v : P(M) — P(M) is the normalization of P(M). In particular, if M
is pure of dimension n, meaning that the facets are all n-dimensional, then
ay : P(AR,) — P(M) is the normalization of P(M).

Proof. We will first show that if M is an irreducible polyhedral set with canonical
facet s, then (3, : P(A®) — P(M) is the normalization of M. Since P(A®) is
normal, (3, is finite and both P(A?®) and P(M) contain a copy of T](\i/[lm(s) (see

Definition 3.2.3)) as an open subset, the claim immediately follows. For a general

polyhedral set M, the irreducible components of P(M) are on the form P(M?#)
for canonical facets s of M, and the result follows. O

If A is a reduced Noetherian ring such that its normalization A — A is finite
(i.e. Ais a Noetherian Mori ring), then the seminormalization of A in A is the
largest subring A’ C A containing A such that the following conditions hold.
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3. The face scheme

1) for all p € Spec A, there exists at most one ¢ € Spec A’ over p (i.e. such
that ¢ N A = p),

2) the canonical homomorphism k(p) — k(q) is an isomorphism.

A is a seminormal ring it it is equal to its seminormalization. A Noetherian
normal ring is automatically seminormal. See [Tra70], [Swa80] and [GT80| for
further details. For our purposes, the following fact will be useful:

Lemma 3.3.2 (|Tra70, Lemma 1.3]). Let A be a seminormal ring, and let A be
its normalization. Then the conductor ideal Anny(A/A) of A in A is radical.

A locally Noetherian scheme is called called seminormal if any affine open
subscheme is the spectrum of a seminormal ring.

Lemma 3.3.3. Let M be a polyhedral set. Then P(M) a seminormal scheme.

Proof. By Corollary 3.3], an arbitrary limit of seminormal rings is
seminormal. Now, I'(M) can be written as a limit of rings on the form T'(AF)
as in the proof of Since each P(AT) is a normal scheme, its
local affine pieces I'(A”) ;) are normal as well. Thus the local affine pieces of
P(M) can be written as a limit of normal rings, and is therefore a seminormal
scheme. O

Definition 3.3.4. Fix an n-dimensional torus 7' = G}, over a field k. Let Pairs(7T")
be the category of pairs (X, L), where

1) X is a projective, seminormal scheme over a field k of dimension n;
2) L is an ample invertible sheaf on X;

3) T acts on the normalization X with finitely many orbits (then X is
necessarily a disjoint union [] j Z; of toric varieties, where the torus acting
on Z;j is the quotient of T with the stabilizer of its generic point);

4) If O C X is an orbit, then v|p : O — X is injective, where v : X — X
denotes the normalization morphism;

5) If C C X is an orbit closure, then C' — v/(C) is the normalization of v(C).
We moreover assume that the automorphisms between components over
v(C') are torus-equivariant.

A morphism (X, L) — (X', L') of pairs is a pair (f,g) where f: X — X' is
a finite surjection such that f : X — X’ is T-equivariant and an isomorphism
restricted componentwise, and ¢ is an isomorphism f*L’ — L.

Let C(X) = X xx X, denote the conductor locus. Then X fits into a
pushout diagram

X——=X
1 7 -

4>X
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An equivalence between groupoids of pairs

This can be seen locally: Let A be a seminormal ring. Then ideal of the conductor
locus is the largest common ideal I of A and A. Hence

0—+A—Ax A/l — A/l

is exact, meaning that is a pushout diagram for X = Spec(A). The projective
case easily follows from [Proposition B.2.1]

Lemma 3.3.5. If X is a scheme salisfying the above conditions, then C(X) is
torus-invariant.

Proof. Tt follows from that v~ 1v(C) is torus-invariant whenever C' is
an orbit closure. Indeed, any component C’ of it must satisfy v(C’) = v(C).

The uniquely induced isomorphism C = is per assumption torus-equivariant,
which implies torus-invariance of C”.

Let S be the set of orbit closures in X, and let Z be the union of those C € S
for which there exists a different C” € S such that v(C’) = v(C). We will show
that C(X) = Z. To see that Z C C(X), suppose that x € X\C(X). Then there
is an open subset U C X containing v(x) such that v|,-1) : v~ (U) = U is
an isomorphism. Assume that z € Z. Then there exists a pair of distinct orbit
closures C,C" € S such that z € C and v(C) = v(C"). But then U Nv(C) =
Unv(C’) is a dense open subset of v(C') = v(C”). Thus we may choose points
y € O CCandy € O CC in their respective open dense orbits such that
v(y) =v(y') € U. But since C' and C’ are different, O and O’ must be disjoint.
This violates

Conversely, suppose that x € C(X). We will use the following fact, which
will be proved later: if A is a seminormal k-algebra of finite type such that
Spec(A) — Spec(A) is bijective and induces an isomorphism of residue fields
of closed points, then A is normal. Note that the residue fields of the closed
points of X are isomorphic to k. Hence X — Xinduces an isomorphism of
residue fields of closed points. Let x be such that v(z) € C(X). By the fact
above, there exists y # z such that v(y) = v(x). Let C, denote the closure
of the orbit of z, and similarly for y. Now, y € v~ 1v(C,), which implies that
C, C v~ 'v(C;) by torus-invariance. Hence v(C,) = v(Cy). If C, = C,, then
r=y by which is a contradiction. Hence C, # C,,, which implies that
x € Z. To prove the fact we mentioned, let m be a maximal ideal of A, and
consider the homomorphism A,, — A,,. In , seminormality of A means
that A = A+ m’A,,, where m’ is the unique maximal ideal of A lying over m.
Hence m = m/, which by Nakayama’s lemma implies that A,, & A,,. This works

for all maximal ideals, so A = A. O

Proposition 3.3.6. There is a natural bijective correspondence between isomor-
phisms (f,\f) : P — Q in P and pairs (¢, 1), where ¢ : Xp — Xq is a torus-
equivariant isomorphism of projective toric varieties, and v : ¥v*Ox,(Dgq) =
Ox,(Dp) is an isomorphism of line bundles.
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3. The face scheme

Proof. First, let ¢ : Xp — X¢ be a toric isomorphism such that 1*Ox, (Dg) =
Ox,.(Dp). In the notation of Theorem 3.3.4], ¢ corresponds to an
isomorphism of lattices 1) : Ny — No, where for each cone or C Xp, 1p(or) =
or for some cone opr C Xq. Consider the dual isomorphism Ev : My — M.
In the notation of Theorem 6.2.7], there exists a unique torus-invariant
cartier divisor D’ on Xp such that ¢¥p = ¥p,9 and Ox,.(D’) = ¢*Ox,(Dg).
The cartier data for Dp is {v},cp (ranging over the vertices v € P), which will
allow us to compute the cartier data for D’. Let v € P be a vertex, and let o,/ be
the image of o, under 1p. Then we know that for all u € o, ¥/ (u) = Yp,, (¥),

ie. (my,,u) = W ¥(u)) = (@V(U’),u>. It follows that m,,6 = Ev(v’). Next,
since D' ~ Dp, we know that D'—Dp = div(x™). Hence (Ev(v’)—v, u) = (m,u)
for all u € o(v) (here we’re using that {m},cp is cartier data for x™). It follows
that EV (v') = v+ m. Hence Ev : My — M; maps @ isomorphically to the
translated polytope P +m. Thus f = EV — m defines a affine transformation
P — Q.

Next, note that a torus-equivariant isomorphism 1 : Xp — X is exactly the
same as a toric isomorphism ¢’ : Xp — X¢g composed with multiplication from
the torus A : Xp — Xp by some element \ € T, which corresponds to some
homomorphism Xg : Z" — G,,. Moreover, the isomorphism ¢ : ¥*Ox,(Dq) —
Ox,(Dp) induces an isomorphism Ox,(Dq) — ¥.«Ox,(Dp), which is just
¥ composed with multiplication ¢ : Ox,(Dg) = Ox,(Dg) by some from
t € G,,. Let f: P — Q be the affine transformation induced by v’, and define
Ap o Z3MP)IHL 5 G, by Ap(m, d) = t%Ag(m). The isomorphism (f,A\f) : P — Q
in P induces an isomorphism I'(A?) — T'(AF), which in turn induces the
isomorphism v : Xp — X and the isomorphism ¢ : ¥*Ox,(Dq) — Ox,(Dp).
This provides the bijective correspondence. O

Let C}, denote the subcategory of Cy consisting of n-dimensional finite
polyhedral sets, where morphisms ¢ : M — N are required to be surjective.
If ¢ : M — N is a surjection, then ¢ : P(M) — P(N) is finite, surjective,
and induces isomorphisms over components on normalizations. Furthermore,
the homomorphism I'(N) — I'(M) induces an isomorphism t¢ : ¢*On (1) =
Owm(1). Hence there is a well-defined functor Py, : C}, — Pairs(T'), given by
M — (P(M),0n(1)), and ¢ — (P(), tg)-

Theorem 3.3.7. The functor Py, : C}; — Pairs(T) is an equivalence of categories.

Proof. We will show essential surjectivity, then fullness and faithfulness by
induction on the dimension n of T (the base case of n = —1 is trivial). So
let (X, L) € Pairs(T). Then X is a disjoint union of toric varieties ]| ; Zj, and
via the ample line bundles L|z,, we may assume that Z; = P(A%7) and that
L|P(APJ) = O, r;(1). So choose isomorphisms ; : L|z, — O,r;(1). Since
C(X) is torus-invariant, it is necessarily on the form [[; P(V;) for polyhedral

subsets INV; C AT, Moreover, the isomorphisms ¢; induces isomorphisms
Y5 Lp(n;) — On;,(1). Now, any orbit closure of X is on the form P(AQ) for
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some face ) C P; and some j. Consider the set S of maximal orbit closures
in [TP(N;). These cover X,,, and the disjoint union of the orbit closures of a
subset of S forms the normalization X, of X, by There is a naturally
induced action of T on X,,,,. This induces a commutative square

I

Xnn Xnn7

where 7 : X,,, — X is torus-equivariant. We may write X,,, = [[, P(A%),
and the torus acting on P(A%) is on the form T/ Stab(n;), where 7; is the
generic point of P(A®¢). Let 7" be an (n — 1)-dimensional torus, and choose
some homomorphism x : 7" — T inducing a surjection 7" — T/ Stab(n;) for
each j. Via the action of 7" on X,,,, the pair (X,n, L|x,,) now satisfies all
conditions above, except possibly seminormality. That is seen as follows: By
[Ko0196, Theorem 7.2.5], the morphism C(X) — X,, is seminormal. Since
C(X) is seminormal, the morphism C'(X) — X,,,, is seminormal as well. But
the normalization X,, — X,, clearly factors through C(X) — X, via a
seminormal morphism X, — C(X), so we conclude that X,, — X, is
seminormal. Hence X,,, is seminormal as well. By the inductive hypothesis,
there exists a finite (n — 1)-dimensional polyhedral set M’ such that the pair
(Xon, L|x,,,,) is isomorphic to (P(M’'), Op(1)). Recall from [Lemma 3.3.1] that
the normalization of P(M’) is on the form P(M’).

Consider the morphism C(X) — P(M’). Note that the action of 7" on
Xnn can be extended to an action on C(X) by |!tem 5)| (which is compatible
with the action of 7). Thus the induced morphism ¢ : C(X) — P(M’) is
T’-equivariant, and also an isomorphism over components. There is also a
canonical isomorphism 1’ : ¢*On (1) = L|¢(x). By the inductive hypothesis,
the morphism (¢,v’) : (C(X), Ll¢(x)) — (P(M'),Opp (1)) corresponds to a
surjection ¢ : [[; Nj — M’. We define M as the following pushout:

HjAPj — M

L]

This forms a pushout square

[I, P(AP)) — P(M)

.

[1, P(N;) —~P(M")

and by comparing with there is a unique induced isomorphism f : X —
P(M). By the choices involved, the diagram L|y — L|c(x) < L|x,, of line
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3. The face scheme

bundles on X is isomorphic to the diagram OH AP (1) = OH N, (1) < Oumr (1),
hence by taking pullbacks there is a unique induced isomorphism L — Oy (1).
We conclude that the pairs (X, L) and (P(M), Oy (1)) are isomorphic.

For fullness, let (f,¢) : (P(M1), O, (1)) = (P(Mz), Oar, (1)) be a morphism
of pairs. Then f : P(M;) — P(M;) is surjective, T-equivariant, and induces
an isomorphism on components. Let v; : M; — M; for i = 1,2 denote the
morphisms from Via the induced isomorphism 7 = P(vg)*s :
7 Oyr-(1) = Og=(1), the pair (f,7) is induced by some morphism ¢ : My — My
by [Proposition 3.3.6] Let s be any face of My, and let ¢ be a face of M, mapping
to s. Then we may write (5, = VlCJt\Tl' Hence

(f,0Pp(Gin) = (1 0)Pp (1) PR (Chr) = Py () (F, P (G4 )
= P () Po(@)P,(Ch) = Py ™),

So define ¢ : M; — M by ¢(s) = va¢(t), where t is some face of M, such
that v4(t) = s. This is well-defined, since P ( Jt\}[z) =P,((2 ,) if and only if
t1 = to (by |Proposition 3.3.6)). It is easily seen that ¢ deﬁneb a morphism of
polyhedral sets. Now, we have that (f,¢)P((3s,) = Pp(¢)P(Chy,) for all faces
s. Since P(M;) = @P(AS), it follows that P(¢) = f and ¢ = ¢4, hence that
(f,0) = Py(0).

For faithfulness, suppose that ¢,¢’ : M; — M is a pair of morphisms
such that Pp(¢) = P,(¢'). Let s be a face of M;. Then P(¢)PL((3y,) =

P, (¢ )Py(C3y, ), so that Py (Cy, ¢(s ) = (C¢ (S)). By |Proposition 3.3.6| again, we
must have ¢(s) = ¢'(s). We conclude that qb =¢. O

Corollary 3.3.8. There is an equivalence of groupoids
P, : Isom(C;) — Isom(Pairs(T)). (3.15)

Le., the groupoid of pairs isomorphic to (X, L) is equivalent to the groupoid of
finite polyhedral sets isomorphic to M, where (P(M), O (1)) corresponds to the
pair (X, L).

3.4 Structure sheaf cohomology

We will use as a general reference for the notation which follows.
Consider the function deg : C} (k) — k, mapping each generator of C{ (k)
to 1. This induces a natural homomorphism deg,, : k — H%(M;k), which
is an isomorphism whenever M is connected and non-trivial. In particular,
degar is an isomorphism for each P € P. Note further that HY(AP;k) is
the only non-zero cohomology module of AP, which follows from the fact that
|AP| = DIm(P) is contractible. Let jy : k — HO(M, Oy) denote the natural
homomorphism induced by the morphism from the constant presheaf to the
structure sheaf: k& — Oj;. Similarly, jp; is an isomorphism whenever M is
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connected and non-trivial, so in particular jar is an isomorphism for each
P € P. Moreover, H'(A¥ Oxr) is the only non-zero cohomology module of
Oar by |CLS11, Theorem 9.13 b)].

Theorem 3.4.1. There are natural isomorphisms 0%, : H (M; k) — H*(M,Oyr)
of contravariant functors Cy — Vecy, for each integer i > 0.

Proof. We will define 1%, inductively on the dimension of M. If M = &, then
4 is given as the trivial isomorphism for all integers i > 0. Let n > 0, and
assume that each 1%, is defined for and natural in (n — 1)-dimensional M, and

such that the diagram
degpy
(3.16)
1M

H(M; k) (M, Oxn)

commutes. Note that (3.16) uniquely determines isomorphisms 772 p for all
P ePandi>0. Let M be n-dimensional, and consider the canonical pushout
square (2.5)) for M of level n:

QN
AR — M

" TLM
a/

OAR, — s T

Since A}, = HsEJn , the morphisms CZ& : A® — AY, splits the cohomol-
ogy groups HY(A%; k) and HO(A’J\‘4, Oar,) into direct sums B, yn HO(AS k)
and ¢ m HO(A%, Oxs) respectively. We define ng?u t HO(ARps k) — HO (A%, Oan )
as the unique k-linear homomorphism making the diagram

HO (A% k) ———= @ HO(A%k)

seJy,
0
Tan, J{ D i (3.17)
seJy,
H(ARy, Oan ) —— @ H°(A*,04¢)
seJy;
commute. It is clear that nQ. satisfies commutativity of (8.16). Since A%,
M

. . . 0 . .
similarly splits as ][, o 0A®, and (3.16) commutes for n An, by the inductive
hypothesis, it follows immediately that the diagram

0
Nan
HO(A%; k) ———— H°(A%}, Oan )
\LLZM \LLnAM (3.18)
0
Noan

HO(9AY: k) HO(0AY, Opar )
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3. The face scheme

commutes. Via the Milnor square (2.11]) of I'(M) of level n, (B.12) yields the
exact sequence

0— On — OéM*OA;& D tar«Opn—1 — ’yM*OaA?u — 0, (3.19)

where vy = tpray,. Consider the partial isomorphism between the long exact
sequence induced by ([2.8]) and the long exact sequences in cohomology for (3.19)):

. | O |
H7H (AR k) @ H 7MY k) ———— H' Y (A%, Oan ) @ HTH (M, Oppn)
“an © i LnAM@_a/I&
i—1 n UBARI i—1 n
H"(0A%; k) H (6AM706A34)
H'(M; k) H'(M, Ox)
. ‘ (n"’AnijVIn,l) ‘ ‘
HY(AYy5 k) & HI(M™ 3 k) H'(A%, Oag,) & H (M, Opn 1)
DNVE Y ) LuAM@f‘)‘IJ&
: noan, v
H* (OAR; k) H'(0AY, Ogan,)

(3.20)

Commutativity of is ensured by the inductive hypothesis and commuta-
tivity of . By exactness of both columns, there is a uniquely determined
isomorphism 7, : H'(M;k) — H*(M,O)) for each i > 0, making the entire
diagram commute. This defines 0%, for all polyhedral sets M of dimension
n, and does not conflict with the original definition of 7723.4 . Indeed, since

aan + ARn — A} is an isomorphism, both definitions coincide. To verify that
M
19, fits into (3.16)), it is sufficient to note that

k
dy w
NAn

HO(A%; k) X HO(A%;,Oan) (3.21)
- g
M
HO(M; k) e HO(M, Oxr)
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commutes. Now, let ¢ : N — M be any morphism. We must show that

Hi(M; k) — _mhe Hi(M,On)
lw lw (3.22)

HI(N: k) — o Hi(N,Oy)

commutes for each 7 > 0. It is clear that

nAn
HO (AR k) —> H(Apy, Oan )
\L¢A* lqﬁﬁu (3.23)
77An

HO(A%; k) —> H(Ay, Onn)

commutes via the defining diagrams (3.17)) for 770A;;] and nOA,I,V . By the inductive

hypothesis, this yields a pair of homomorphisms of long exact sequences (in
simplified notation)

H'=Y0AY) ————————= H" ' (Opan,) —————= H""1(Opan,)

L | i

Hi(M) e Hi(O) - HI(O)

| | l

H’L(AXI) ) Hi(]\/[“_l) _— HZ(OARI) D Hi(OMn—l) —_— HI(OAII:/) (&) Hi(Oanl)

(3.24)
and
H'=1(9A%)) ~1(0AY H'"H(Opan)
Hi(M) v H(N) iy Hi(Oy)

H' (AR ® H'(M™ ) —— H'(AY) ® H(N" ') ——= H'(Oan) @ H'(Oyn-1)
(3.25)
Both (3.24) and (3.25) commutes by construction (even if dim N < n). By

the inductive hypothesis and commutativity of (3.23)), (3.22)) commutes as well.
By induction, we are done. O

3.5 Classification of the Picard group
If M is a polyhedral set, we let Pic(M) denote the Picard group of P(M).
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3. The face scheme

Definition 3.5.1. Consider the functor Pic : P°P — Ab given by P ~ Pic(AF).
Let Deg : C; — Ab be the left Kan-extension of Pic. For each polyhe-
dral set M, we have Deg,, = %iglseFM Pic(A?®), called the group of degree
functions. Each morphism (5, : P(A®) — P(M) induces a homomorphism
a1 ¢ Pic(M) — Pic(A®). This makes Pic(M) a cone to the diagram, which
induces a homomorphism w : Pic(M) — Deg,, which is natural in M. For each
line bundle £ on P(M), the associated degree function we € Deg,, is given by

we(s) = C5E€ € Pic(P(A?)).
Since Deg is defined as left Kan-extension, it preserves finite colimits. In

particular, the sequence

1 — Degpm — Degan x Degpm-1 — Degyan (3.26)

induced by (2.5) is exact for each integer n > 0.

Theorem 3.5.2. Let M be a polyhedral set. Then there exists a natural isomor-
phism of groups
Sy : Pic(M) — Degy, x H(M; G,,) (3.27)
such that
Sm(Onm(m)) = (wm, 1) (3.28)

for each m € Z, where wy, € Degy; is given by wm(s) = m[D)y].

Proof. We will define Sy, inductively on the dimension n of M. If M is 0-
dimensional, then S, is given as the trivial isomorphism. So we may assume
that n > 1. Consider the natural exact sequence

HO(A%y, Opn ) x HY(M™ ™, Ofpus) = HY (AR, Ojan ) — Pic(M) —

Pic(A%) x Pic(M™ ') — Pic(0AY;).
(3.29)
from [Proposition B.3.5| Via , HY(M;G,,) similarly and naturally fits inside
the exact sequence

HY(A%,,G,,) x H'(M™ ' G,,) — H*(0AY,,G,,) — H(M;G,,) —

HY (A% Go) x HY(M™ ' Gy ) = H' (0A%;Gy) (3:50)
M> ™Fm s Mm M>¥m).

Since H'(A%,;G,,) = 0, adjoining (3.30) and (3.26) yields a natural exact
sequence

HO(A?WVGm) X HO(Mn_lv Gm) - HO(aAﬂ/laGm) - DegM XHl(M; Gm) -
DegARI X Deg]w“*l XHl(Mnil; Gm) - DegBAX/I XHl (8Ar]\1/17 Gm)'
(3.31)

Analogously with the proof of one obtains a natural iso-
morphism HY(M, O%,) — H°(M, G,,). By the inductive hypothesis, S is well-
defined and natural in (n — 1)-dimensional polyhedral sets. Via the canonical

isomorphism Pic(A”) =5 Degar for P € P (which satisfies (3.28)), one may
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extend S to an isomorphism Sa= : Pic(Af,) — DegAn cf - Con-
sider the partially defined 1somorph15m between and Ifn =1,
then Pic(M™~!) and Degym-1 xH'(M™"1;G,,) are tr1V1al SO that the im-
age of Pic(M) (resp. Deg,, x H*(M; Gm)) is a subgroup of the free abelian
group Pic(A%,) (resp. DegAR{). By split-exactness, there is a uniquely in-
duced isomorphism Sy : Pic(M) — Deg,, x H'(M; G,,) making the entire
diagram commute. On the other hand, if n > 2, then H°(A%,, G,,) —
H°(0AY,, G,,) (resp. HO(A‘]‘M,GM) — H(0A%,, G,,)) is surjective, so that
Pic(M) (resp. Deg,, x H' (M G,,)) injects into Pic(A%,) x Pic(M™~1) (resp.
Degan x Degpns x HY(M™~1;G,,)). Thus there is a uniquely induced iso-
morp ism S M in this case as well. One checks naturality of S by the same
method as in the proof of [Theorem 3.4.1] Naturality applied to the morphisms
Cir : A® — M moreover verifies . By induction, we are done. O

We finish this section with the following observation particular to unimodular
sets.

Proposition 3.5.3. If M is a unimodular set, then Deg,, is naturally isomor-
phic to HO(|[M|\|M°|;Z). Hence |Theorem 3.5.4 takes the form of a natural
isomorphism

Syr i Pic(M) — HO(|M|\|M°|;Z) x H'(M; G,,).

Proof. We will show that there is a natural isomorphism of abelian groups
Deg,,; — HO(|M|\|M°]). Consider the category Fy of faces of M, and let Fi;'
denote the full subcategory consisting of faces of dimension > 1. Note that
since Pic(A"™) = Z for each n € A, n # 0, the group of degrees Deg,, is a
direct sum of copies of Z for each connected component of Fj; = Thus we may
write F2! = [,/ Fis, and Degy, = @, ., Z. Similarly, \M|\|M0| splits into a
disjoint union [,.; Z;, so that H0(|M|\\MO|) @D,c; Z. One easily observes
that the obvious isomorphism Deg,, — HO(|M|\|MO|) is natural in M. O

3.6 Hilbert polynomial

In this section we will give an expression for the Hilbert polynomial Py (d) for
the face ring I'(M).

Lemma 3.6.1. Let V(og) denote the orbit-closure O(aq) corresponding to a

face Q of a polytope P (see [CLS11, p. 121]). Then V(og) = P(A?) as closed
subschemes of P(AT).

Proof. We have V(0q) = V(I?) where I9 = (x(™®|(m,d) ¢ Ag) by
Chapter 5, Prop 1.9]. Here Ag is identified with the subgroup of Ap under
Ay Ag — Ap. Thus, I? is equal to the kernel of I'(AP) — T'(A?), so V(oq)
is therefore identified with the reduced subscheme P(A®). O
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3. The face scheme

The orbit closure V(op) for each facet F' of a polytope P defines a torus-
invariant Weil-divisor D on P(A"), and Kp = — Y, D is the canonical
divisor of P(AF) [CLS11, Theorem 8.2.3]. If P is given by inequalities (ug, m) >
—ap, then the divisor Dp = )" napDp is a very ample divisor corresponding to

Oar(1).

Lemma 3.6.2. Let M be a finite polyhedral set. Then for each integer n > 1,
there is an exact sequence

0= P GrOas(Kjs) = Orrn = ta1.Oppm1 — 0. (3.32)

seJy,

Proof. Via the Milnor square (2.11)) of I'(M) of level n, (B.11) yields the exact
sequence
0— apy+l — O]un — LM*OMn—l — 0, (333)

where 7 is the ideal sheaf of P(0AY%,) in P(A%,). Since P(A},) = HseJ;‘J P(A%),
and since P(0A?) is a reduced closed subscheme of P(A®) corresponding to
the union of V (o), we have by Proposition 4.0.28] that the ideal Z
is isomorphic to the sheaf Oas(K\y). Thus translates into the exact

sequence ((3.32)). O

If F is a sheaf of Op/-modules, we define T'.(F) = @, I'(M, F(d)), which
is a graded I, (Oj)-module.

Proposition 3.6.3. Let M be an n-dimensional polyhedral set. Then for each
integer d > 1, the natural homomorphism

is an isomorphism. For d = 0, it is injective and an isomorphism if and only if
M is connected. Moreover,

dimy(P(M)) = 37 37 L (dls) (3:35)

n=0seJy,

for each each integer d > 1 (recall that L*(P) denotes the number of interior
lattice points of P). For d =0, the dimension is 1.

Proof. Note that I'(M) is positively graded in general, so we have always have
dimy (I'(M)p) = 1 as required. The dimension of the vector space I'.(Opr)o =
HO(M,Oyy) is equal to the number of components of P(M), hence by
¢) equal to the number of components of M. This verifies the
statements for d = 0.

If n = 0, then M is a simplicial complex. By |Proposition 2.7.2) T'(M) = k[z, :
v € JY]/(xpxy : v # w), and the formula (3.35)) clearly holds. On the other
hand, P(M) = HseJR/, Speck, so is clearly an isomorphism in positive
degrees. We proceed by induction on n, and we may assume that n > 1. Fix
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an integer d > 1. Since I'(M) — T'(M™~1!) is surjective, it follows from the
inductive hypothesis that I',(Oar)g — T'u(Opm-1)q is surjective. This means
that (3.32) induces an exact sequence

0— F*(I)d — F*(ij[)d — F*(OMn—l)d — 0.

Here Z = I, where I = ker (1 +)- Consider the induced homomorphism of
exact sequences

0 1 F(M)d%F(Mnil)dHO

T

0—— F*(I)d e F*(OM)d I F*(OMn71>d —0.

By the inductive hypothesis, the vertical arrow to the right is an isomorphism.
It remains to show that the vertical arrow to the left is an isomorphism. By
(B.3) and (B.11]), this arrow also appears in the following homomorphism of

exact sequences:

0 Iq (A% INCIA P

T e

00— F*(I)d — F*(OA?/I)d — F*(OaA}h)d ——=0.

By the inductive hypothesis, T'(0A%)y — H°(OA*, Ogas(d)) is an isomorphism
for all s € J2. Hence it will suffice to show that ['(A®)y — HY(A®, Oa:(d)) is
an isomorphism for all s € Jy,. It is injective since I'(A®) is reduced, and by
Theorem 5.4.8] the dimensions agree. Hence it is an isomorphism, and
we conclude that I'(M )4 — T'.(Opr)q is an isomorphism.

Now, by the inductive hypothesis,

dim; D(M™ 1), = i > Lr(dls]).

n=0seJy,

Since dimy I'(M)4 = dimy T(M™~ 1), + dimy, 14, the formula follows if we
can show that dimy I; = ZSEJ]‘\“/I L*(d|s]). For this, it will suffice to show the
formula dimy, I = L*(d|s|) for each face s € Jy;, where I® = ker(I'(¢a=)). Since
I facet of p A — OAP is surjective, the homomorphism T'(OAF) C T[T(AF)
is injective. The kernel of T'(AF); — [[T(AF), is clearly D, cr-ap) E-x(md),
which proves the formula. By induction, we are done. O]

|Pr0p0sition 3.6.3| yields the formula h%(Op (1)) = >0, ESQJ,},& L*(|s]) for
the ample line bundle Oy, (1). In particular, if the > 1-dimensional faces of M

correspond to polytopes without interior points (e.g. if M is a unimodular set),
then A%(Onr(1)) = 1%
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3. The face scheme

Lemma 3.6.4. Let M be a polyhedral set of dimension n > 1 with no isolated
vertices. Then H°(M,Op(—d)) =0 for all d > 0.

Proof. First, let n = 1. Since M has no isolated vertices, the morphism
[l>1 Heesm A" — M is surjective. By [Proposition 3.2.1) f), the induced
morphism Oy — P (5,,0n- is injective. Twisting with —d for an inte-
ger d > 0 and taking global sections yields an injection H(M,Op(—d)) C
@ H°(M,Oa:(—d)) = 0, and the result follows from this. O

Lemma 3.6.5. Let M be a polyhedral set. Then H'(M,Op(d)) = 0 for all
integers © > 0 and d > 0.

Proof. Let M be n-dimensional. If n = 0, then the dimension of P(M) is 0
and the result follows immediately. We proceed by induction on n, and we may
assume that n > 1. Consider the exact sequence (3.32). Twisting with an integer
d > 0 yields an exact sequence

0= @ ¢ir.On:(dDyy + K|y) = Onr(d) = tar«Oppn—1(d) — 0. (3.38)

seJyy

If n > 1, then by Serre duality H(Oa:(dD|s| + K|s|) = H* *(Oa:(—dD)y))
for all s € J3;. By application of Theorem 9.2.7], these cohomology
groups are trivial for ¢ > 0. By the inductive hypothesis, the induced long exact
sequence in cohomology of now immediately yields the result. O

Fix an n-dimensional polyhedral set M. Then [Proposition 3.6.3| gives a
formula for the Hilbert polynomial of I'(M):

Theorem 3.6.6. The Hilbert polynomial of the face ring T'(M) is

Hy(d)= Y (1)) Ehry, (—d),

s€Mean

where Ehrp(d) denotes the Ehrhart polynomial of P € P (see [CLS11, Theorem
9.4.2]).

50



Chapter 4
Open categories

An open category over P is a category U equipped with a discrete Conduché
fibration p : U — P. Such functors generalizes the notion of discrete fibrations

(Appendix A.0.2) by relaxing the requirements on p. Conduché fibrations also
go by the name of unique factorization lifting functors, see [Joh99| or [BNOO| for

a reference. An open category U can be universally completed into a polyhedral
set L(U), and we will define the associated a face scheme A(U) as an open
subscheme of P(L(U)). If U is an open category and s € U, then then comma
category Us = (s ] U) is also an open category. If a morphism ¢ : U — V induces
an isomorphism Us — Vi, for each s € U, then ¢ is called a local isomorphism.

The goal of this chapter is proving where we will see that a local

isomorphism induces an étale morphism A(U) — A(V) of schemes.

4.1 Discrete Conduché fibrations

We will use as a general reference for the notation in this section.

Fix a small category C. Then one may extend the category of discrete fibrations
Fib(C) to the larger category CFib(C) of discrete Conduché fibrations as follows:

Definition 4.1.1 ([Joh99)]). A discrete Conduché fibration over C (abbreviated
Conduché fibration) is a small category (U,p) over C satisfying the following
axiom.

(¥) Unique factorization lift: For every arrow h :t — s in U and factorization

p(t) ELNFIEEN p(s) of p(h), there exists a unique factorization ¢ LN

of h such that p(h1) = f1 and p(ha) = fa.

In particular, for every object s € U and arrow f : ¢ — p(s), there exists at most
one lifting h : t — s of f along s. We define the category CFib(C') as the full
subcategory of (Cat | C) consisting of Conduché fibrations over C.

It follows from uniqueness of lifts that Fib(C') is a full subcategory of CFib(C)
via the forgetful functor T': Fib(C') — CFib(C'). This defines a functor T = ToT :
Pre(C) — CFib(C). For each Conduché fibration (U, p), consider the diagram
Hy =Yeop: U — Pre(C). For ease of notation, C'* will denote the representable
functor C'(—, p(s)) for each s € U. We define the functor L : CFib(C) — Pre(C)
by L(U) = lim Hy, which as a colimit comes equipped with associated morphisms
¢ :C®* = L(U) for each s € U. A morphism ¢ : U — V of Conduché fibrations
induces a natural transformation of diagrams Hy : Hy — Hy ¢, hence a unique
natural transformation L(¢) : L(U) — L(V) satistying L(¢) o ({; = Cf}(s) for all
s € U. This fully defines the functor L : CFib(C) — Pre(C).
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Proposition 4.1.2. The pair (L, T) forms an adjunction L : CFib(C') = Pre(C) :
T. Thus IL preserves all colimits, and T preserves all limits.

Proof. Let (U, p) be a Conduché fibration, and M a presheaf. We define the unit
nu : U — TIL(U) of the adjunction by 1y (s) = (p(s), (77 (idp(s))). The morphisms
¢3; » C° — M for each element s € M(c) induces a unique isomorphism
en : LT(M) — M such that ey o (H(jr’(s])\/[) = (3, which defines the counit. It is
straight-forward to check that these natural transformations creates an adjoint
pair (L, T). O

Let (U,p) be a Conduché fibration, and let s € U. Consider the comma
category Us = (s } U), and the forgetful functor v(s) : Us — U defined on

objects by (t,f : s — t) — t. The composition p, : Us ﬂ) U % C makes
(Us,ps) a category over C. Any morphism ¢ : U — V of Conduché fibrations
induces a functor ¢, : Us — V(s defined by (t, f) — (o(t), #(f)). We say
that ¢ is a local isomorphism if ¢ is an isomorphism for all s € U. If M is a
presheaf, we will denote T(M ). ) by M, for any ¢ € C and s € M(c). We will

occasionally denote objects (¢, f) of Us by s ENT

Proposition 4.1.3. For ecvery s € U, (Us, ps) is a Conduché fibration. Moreover,
for each s € U, v(s) : Us — U is a local isomorphism.

Proof. Let h: (t1, f1) — (t2, f2) be an arrow in Uy, and suppose that p(t;) KA
¢ L5 p(ty) is a factorization of p(h). Since h : t; — to is an arrow in U, there is a

factorization t; -2 t ™25 ¢, of h in U such that p(h1) = g1 and p(ha) = g2. But

then (¢, f1) Ja, (t, hif2) LEN (ta, f2) is a factorization of h : (t1, f1) — (t2, f2)
with ps(h1) = g1 and ps(ha) = go. Thus Uy satisfies the unique factorization lift
axiom.

Next we will now show that v(s) : Us — U is a local isomorphism. So pick
an object (¢, f : s — t) in Us, and consider the induced morphism (y(s)),y) :
(Us) @,y — Us. This morphism sends an object ((u,g:s — u),h: (t, f) = (u,g))
to (u,h : t — s). We will define an inverse morphism +' : Uy — (Us)q,5) as
follows. On objects, let (u,h) — ((u,hf),h: (t, f) — (u,hf)). An arrow g :
(u,h) — (v, ') in U; may also be considered as an arrow g : (u, hf) — (v, 1/ f)
in Us, and hence defines an arrow g : v'((u,h)) — v/'((v/,h)). This clearly
defines a functor, and is an inverse of (y(s)),)- O

If U is a Conduché fibration, then any arrow f : s — ¢t in U induces a
natural morphism Uy : U, — Us, given on objects by (¢,g) — (s,gf). By
|Proposition 4.1.3] such morphisms are always local isomorphisms. Note that
a morphism ¢ : U — V is a local isomorphism if and only if ¢ : Us — Vi)
is bijective on objects for every s € U; if ¢ is bijective, an inverse functor is
uniquely determined by the unique factorization lift axiom.

Definition 4.1.4. Let ¢ : U — V and ¢ : W — V be a pair of morphisms of
Conduché fibrations. We define the fibered product U x W as a category over C
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as the strict pullback of categories U xy W equipped with the induced projection
map p =py X py : U xy W — C. The objects of U x W are pairs (s,t) where
seU,t e W and ¢(s) = ¥(t). An arrow (s',t') — (s,t) is a pair of arrows
f:8 — s, g:t — tsuch that ¢(f) = ¥(g), or equivalently py(f) = pw(g) by
uniqueness of lifts.

The following lemma is easily verified.

Lemma 4.1.5. U xy W is a Conduché fibration over C, and equipped with the
projection morphisms w1 : U Xy W = U and o : U xy W — W it is a fibered
product in CFib(C).

Lemma 4.1.6. Let ¢ : U — V be a morphism of Conduché fibrations. Then,
a) The functor ¢ is faithful;

b) If W CV is a full Conduché subfibration, the inverse image ¢~ (W) con-
sisting of objects ¢~ (ob W) and arrows ¢~ (Hom(W)) is a full Conduché
subfibration of U;

c) If W C V is a full Conduché subfibration, there is an isomorphism
¢~ 1 (W) — W xy U, such that the diagram

¢ (W) ——=Uxy W

\ lm (4.1)

U
commutes;

d) If ¢ is a local isomorphism, and b : W — V is any morphism, then
mo : U xy W — W is a local isomorphism;

e) If ¢ : U =V is a local isomorphism, then ¢ is a full and faithful functor.

Proof. a) Suppose that hy,hy : t — s are two arrows of U such that ¢(hy) =
¢(h2). Then in particular py(hi) = py(he), which implies that hy = hy by
uniqueness of lifts.

b) Clearly, ¢—1(W) forms a subcategory of U. So we only need to verify

the existence of factorization lifts. Let h : t — s be an arrow in ¢~ (W), and

suppose that p(s) ENFIEN p(t) is a factorization of p(h). This factorization

lifts to a factorization ¢ — u — s in U, which maps to a factorization lift
¢(s) = ¢(u) — ¢(t) in V. Since W is a full Conduché subfibration, this unique
lifting exists in W, hence the factorization t — u — s exists in ¢~ (W).

c¢) We define the morphism ¢~ (W) — W xy U by s+ (¢(s), s) on objects,
and [+ (¢(f), f) on arrows. This is clearly a morphism of Conduché fibrations
making commute, and mo : W Xy U — U produces an inverse morphism
by restricting the codomain to ¢=1(W).
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d) Let ¢ : W — V be any morphism, and consider the projection mo : U Xy
W — W. Let (s,t) be an object of U xy W, and consider the induced morphism
(m2) (s, + (U xv W)(spy = Wi, Since ¢ : Us — V(s is an isomorphism, we
may define an inverse 7 : W; — (U xy W), ) as follows. For any object (', f)
of W, the object (¥(t'),4(f)) in Vi) lifts to a unique object (s',g) in Uy via
¥s. Thus we define 7((t', f)) to be ((s',t'),(g,f)). Let h: (t', f) — (", f")
be an arrow in Wy, i.e. an arrow h : t' — t” such that hf = f’. Then
(W(t"),(h)) in Vi lifts to a unique object (s”,h’) in Uy via ¢y Let (s”,g")
be the unique lifting of (¢(t”), f') in Us, and define 7(h) to be the arrow
(', h) : ((s",t), (g, 1)) — ((s",¢"),(¢', f). Uniqueness of lifts in U makes 7
functorial, and it is clearly an inverse to (m2)(s.¢)-

e) ¢ is full by the definition of a local isomorphism, and faithful by a). O

4.1.1 Perimeter

Lemma 4.1.7. Let (U, p) be a Conduché fibration. Then the unit transformation
nu : U — TL(U) is injective and a local isomorphism. In particular, ny makes

U a full subcategory of TL(U) by [Lemma 4.1.6¢).

Proof. Note first that for any object s € TIL(U), there exists by construction of

the colimit an arrow s % ¢ in TL(U) for some ¢ in the image of ny. Suppose
that sg,s1 € U are two objects with ny(sg) = nu(s1). We will show that

so = s1. Define ¢ = p(sp) = p(s1). Then by construction of the colimit,

there exists a zig-zag diagram sg = tg ECN 21 LN ef: t, = s1 for some

collection of objects t; € U, arrows f; in U, and elements h; € C'(c) such
that hg = h, = id; and the induced zig-zag diagram of representable functors
C%0 — Ch « Ot — ... — C'-1 < C** maps the elements h; compatibly to
each other. If » = 1, then there exists an arrow fj : s — s1, which must be the
identity arrow since it is the unique lifting of id.. Proceeding inductively, assume
that r > 2. Consider the diagram C — C"t + C"2. Here id. € C*°(c) maps
to p(fo) = h1, and hy € C*2(c) maps to p(f1)he = hi. Hence p(f1)ha = p(fo),
which is a factorization of p(fy). Thus there exists a unique factorization
so sty 25 1y of fy such that p(g1) = he and p(g2) = p(f1). In particular, the
arrow g : sp — t» induces a morphism C*° — C*2 mapping id. to hs. We may
now shorten the zig-zag diagram of length r to one of length » — 1. By induction,
we conclude that sg = s and that ny is injective on objects. By
a), nu is faithful, so we may consider U as a subcategory of TLL(U).

Next, suppose that h : sg — s is any arrow in TL(U) for some pair of
objects sg,51 € U. Write f =p(h) : ¢ = ¢, to = (P (ider) and ¢, = (7 (ide).
Then L(U)(f)(t1) = to, which means that (! (f) = to, where f is considered an

object of C*(¢’). Like before, this means that there exists a zig-zag diagram

so = to Jo, ty LI ef:—l t. = s1 and elements h; € C'(c') such that hg = id.,

h, = f and the elements h; are compatibly sent to each other in the induced
zig-zag diagram C® — C" <« (O% — ... — C%-1 + C*. By the previous
argument, we may iteratively reduce the length of such a zig-zag diagram to one
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Discrete Conduché fibrations

on the form sy % s; such that the morphism C* — C*1 maps idw to f. This
means in particular that p(g) = f, which implies that ¢ = h by uniquenss of lifts.
Thus ny is a full functor, and U is a full subcategory of TL(U).

Let now s € U, and consider the induced morphism (ny)s : Us — TL(U)s.
Suppose that (¢, f) and (¢, ¢g) is a pair of objects of Us; mapping to the same
object in TL(U)s. Then in particular, ¢ = ¢’ since 7y is injective on objects.
But p(f) = p(g), so by uniqueness of lifts we must have f = g. Hence (ny)s is
injective. Conversely, let (¢, f) be any object of TIL(U),. Then there exists an

object s’ in U and an arrow ¢t % s' in TL(U). The composition s 9, o exists

in U since it is a full subcategory. In TL(U), the factorization s ENFIENFEN
the unique lifting of the factorization p(s) 2, p(t) LON p(s’). But there is
f g /

also such a factorization lifting in U, which must be identical to s = t = s

by uniqueness. So the arrow s i) t exists in U, and therefore as an object in
Us. Hence (ny)s is surjective, and therefore bijective. It follows that (ny)s is an
isomorphism. ]

Definition 4.1.8. Let U be a full Conduché subfibration of a discrete fibration
M such that the inclusion U — M is a local isomorphism. Then we define the
complement of U in M, denoted M\U, to be the full subcategory M consisting of
objects ob M\ ob U, equipped with the projection morphism M\U — C' induced
by that of M.

Lemma 4.1.9. The the complement M\U is a discrete fibration.

Proof. We must show that for every arrow f : ¢ — ¢ in C' and object s € M\U,
there exists a lifting h : t — s of f along s with ¢ € M\U. Given such an
arrow f and object s over ¢, there certainly exists such a lifting h: ¢ — s in M.
Assume for contradiction that ¢ € U. Since the induced morphism U; — M;
is an isomorphism, there exist an object ¢ % ¢ in U, mapping to the object

t I sin M;. This implies that s’ = s, a contradiction, so we conclude that
te M\U. L]

[Lemma 4.1.7] and |[Lemma 4.1.9] allows us to make the following definition.

Definition 4.1.10. We define the perimeter of U, denoted U?, as the discrete
subfibration TL(U)\U of TL(U).

Complementary to the lemma below shows that the set of

injective local isomorphism U — M from a Conduché fibration U to a discrete
fibration M is in one-to-one correspondence with complements M\N of discrete
subfibrations V.

Lemma 4.1.11. Let M be a discrete fibration, and N C M a discrete subfibration.
Then the full subcategory of M with objects M\N is a Conduché subfibration of
M such that the inclusion M\N — M is a local isomorphism.
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Proof. First we show that M\N is a Conduché fibration. Let f : s — ¢t be an
arrow of M\N, and suppose that p(s) — ¢ — p(t) is a factorization of p(f).

Since M is a discrete fibration, there exists a unique lifting s 9y s Iyt of this
factorization in M. Assume that s’ € N. Then s % ¢’ is the unique lifting of
p(g) in N. This means that s € N, which is impossible. Hence s’ € M\ N, which
shows that M\N is a Conduché fibration. Next we show that the inclusion
¢ : M\N — M is a local isomorphism. Let s € M\N, and consider the local
morphism ¢; : (M\N)s — M. This is an isomorphism if and only if ¢ € M\N
for every object (s, f : s — t) in My. But if ¢ € N for any such object, then
f s — t is the unique lifting of p(f) in N. This means that s € N, which is
impossible. We conclude that ¢ is a local isomorphism. O

4.2 Open categories over P

Definition 4.2.1. We will now consider Conduché fibrations p : U — P satisfying
(x): for all s € U, Auty(s) = {ids}. We will call open categories over P
(abbreviated open categories). Recall that the category of discrete fibrations
satisfying () is equivalent to Pre®™)(P) . We note that if
U — V is a morphism of Conduché fibrations where V satisfies (), then U also
satisfies ().

Definition 4.2.2. Let U be an open category. For any face s € U, we let [s]|
denote the object p(s) € P. We define the dimension dim(s) of a face s € U to
be dim(]s|), and the dimension of U to be the supremum of the dimensions of its
faces, and —1 if U is empty. For any non-negative integer n, let the n-truncation
U™ denote the full subcategory of U consisting of all maximally n-dimensional
faces of U. It is clear that this is an open category, and that TL(U)* NU = U™
as full open subcategories of TIL(U). If s,t is a pair of faces in U, and f : |s| — |¢|
is an arrow in P which lifts to an arrow s — ¢ in U, we will denote this arrow
by f as well.

Definition 4.2.3. Let U be an open category, and consider the morphisms T(¢f;) :
T(A®) — TL(U) for faces s € U. We define the open polytope Aj; as the preimage
T(¢5) 1 (U) € T(A®). Then T((}) restricts to a morphism &§; : Aj; — U which
is natural in U. If s € U is of dimension n, we will denote the (n — 1)-truncation
(A3 by OAG,

We note the following. The induced morphism L(A7;) — L(A®) is an
isomorphism, which follows from the fact that £, preserves terminal objects.
The morphisms (7 ;) : A* = L(U) for faces s € U? factors through L(U?), so
T(¢ 1))~ (U) is the empty-category.

Lemma 4.2.4. Let U be an open category, and s a face of U corresponding
to the morphism 3+ A* — L(U). Then (Af)? = T(¢5) 1 (U?) as full open
subcategories of T(A®).

Proof. By our observation above, L(Af;) is isomorphic to A®, so we may consider
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(A$)? as the full open subcategory T(¢i)~H(U)? of T(A®). For faces t € T(A®),

we have
t e T(CH) (U)? & T((H) () ¢ U < T((H)(t) € U2 & t € T(¢) ™ H(U?).

Hence (Af;)? and T(() ™1 (U?) consists of the same objects. It remains to show
that T(¢5) 1 (U?) is a full subcategory of T(A®). However, this immediately
follows from the fact that U? is a full subcategory of TIL(U). O

Definition 4.2.5. Let U an open category. For each n, we have a natural
inclusion ¢y : U™! = U. If ¢ : U — V is a morphism of open categories, let
¢ : U=t — V=1 denote the induced morphism of (n — 1)-truncations. Define
A as the coproduct HseJ;; Ay, where Jpj := U N Jq;y. This is clearly an open
category, and let ay : Ay — U denote the induced morphism. For each s € U,
the morphisms Ag;, — A?}(s) induces a morphism ¢* : Ay — Ay, and we have
that ay o ¢ = ¢ o ay. This makes ay natural in U. We also define OAY as
the (n — 1)-truncation (AP)*~! = Hse][r} 0N},

Remark 4.2.6. While U?~! = U N TL(U)®~! as full open subcategories of U,
it is generally not the case that the induced morphism L(U®~!) — L(U)*~! is
an isomorphism. Informally speaking, U™ ! loses track of the perimeter of the
facets of U. In general, this morphism is neither injective nor surjective.

Lemma 4.2.7. If ¢ : U — V is a local isomorphism, then the morphism 1, =
ay Xyn o2 : AL — U™ xya A is an isomorphism for each integer n > —1.

Proof. We will define an inverse map g : U™ xyn Al — AR, Let (s, f) be a
face of U™ xyn AY,. Then f is contained in a unique open polytope Ay, for
some v € J{. Let u = & (f), and consider the arrow f : u — v. Since ¢(s) = u,
the isomorphism ¢ : Uy — V,, produces a unique arrow f : s — ¢ in U such
that ¢(t) = v. Thus t is n-dimensional. Consider the corresponding morphism
&+ Al — U. We may consider f as a face of A};, which satisfies /,(f) = s. On
objects, we define (s, f) = f. Uniqueness of ¢ ensures that this is well-defined.
Now, let g : (so, fo) = (s1, f1) be an arrow in U™ xyn A}, Since g : fo — fi is
an arrow connecting fy and f1, they are contained in the same open polytope
AY,. Define u; = &) (f;) for i = 0,1. Again, since ¢ is a local isomorphism, there
exists unique liftings fo : sg — to and f; : s1 — t1 in U of fy : ug — v and
f1 1 up — v respectively. Since g : s — s1 is an arrow, and fy = f1g, there is an
arrow fo : sop — t1. By uniqueness, we must have ty = t;. Note finally that the
arrow g : fo — fi1 in Al exists in A%}’, since as an arrow in T(A®) it maps to
the arrow g : s — s1 via C[t}). Thus on arrows, we define p(g) = g as an arrow
fi— foin A;}’. This is clearly functorial, and defines an inverse of 7. O

4.3 Associated scheme

We say that an open category U is finite if L(U) is. From here on, all open
categories and polyhedral sets will be assumed to be finite.
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4. Open categories

Definition 4.3.1. Let (U,p) be an open category, and consider the inclusion
of the perimeter U9 C TIL(U). This induces an inclusion of polyhedral sets
ju : L(U?) — L(U), hence a closed immersion ji; : P(L(U?)) — P(L(U)). We
define the face scheme A(U) of U as the complement P(IL(U))\P(L(U?)).

Let ¢ : U — V be a morphism. Then ¢ induces a morphism of schemes
PL(¢) : PL(U) — PL(V). Since TL(¢)(U) C V, we have TL(¢)~*(V?) C U?.
This means that L(¢) "' (L(V?)) C L(U?). Thus by

PL(¢) " (P(L(V?))) = P(L(¢)"'L(V?)) S P(L(U?)),

so PL(¢) restricts to a morphism ¢ : A(U) — A(V). This defines a func-
tor A : CFib(P)s — Schy, associating a scheme to each finite open category.
Furthermore, the open immersions A(U) C P(IL(U)) defines a natural transfor-
mation k : A — P olL. The morphism £ is an isomorphism if and only if U is a
discrete fibration, or equivalently, on the form T(M) for some polyhedral set M.

Lemma 4.3.2. Let U be an open category, and let s be a face of U. Consider
the induced morphism j; : P(A®) — P(L(U)). Then A(A}) = (¢5) 1 (A(D))
as open subschemes of P(A®).

Proof. As an open subscheme of P(A®), we have that A (Af;) = P(A*)\P(L((A$)?)).
By [Lemma 4.2.4] P(L((A$)?)) = P(L(T(¢) 1 (U?))), which is equal to the
preimage P((¢5) "1 (L(U?))). By|Lemma 3.2.4} this is equal to (¢5;) "1 (P(L(U?)))

as closed subsets of P(A®). Hence A(A})) is equal to

P(A*)\(G)HPLU?)) = ()~ PLW)\PILU?)) = (¢5) " (AD)).
O

Proposition 4.3.3. Let U be an open category, and let M CIL(U) be an inclu-
sion of polyhedral sets. Then the embedding U N T(M) — T(M) induces an
isomorphism A(T(M)NU) — AU)NP(M).

Proof. Note first that the induced morphism L(U N T(M)) — L(U) factors
uniquely through M via some morphism ¢ : L(U N T(M)) — M, so the induced
morphism A(U NT(M)) — A(U) restricts to a morphism A(T(M)NU) —
A(U)NP(M), where A(U) and P(M) are considered subschemes of P(IL(U)).
We proceed by induction on the dimension n of M, noting that for M = &, the
statement is trivial. Consider the Milnor squares of schemes

[liesm P(AY) ——P(M)

T(M)

|

Hiesm  POAY) —P(M"71),

T(M)
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HSGJ“ P(AS)

UNT(M)

T (4.2)
[licsn  P(OA*) —=P(LUNTM))").

UNT(M)

PL(UNT(M)))

A{U)NP(M) and A(UNT(M)) are open subsets of P(M) and P(L(UNT(M)))
respectively. Note that for any s € U2 N'T(M), the preimages (Q;(M))“(U NM)
are empty. It is also clear that A?er( M) = Ay, as full open subcategories of
T(A?®) for any s € U N'T(M). Moreover, since IA;, = 0A® N Ay, the inductive
hypothesis ensures that the induced morphism A(0Af) — A(Af) N P(OA?)
is an isomorphism compatible with the induced morphisms to P(0A®). By

Lemma 4.3.2] we have A(Af;) = (¢§)"'(A(U)). Hence by [Proposition B.2.1]

there are induced pushout squares

HSGJ%T(M) A(A7) A(U)NP(M)

| |

HsEJ“ A(aAIs]) H“A(Uv) mP(Mn_l)v

UNT(M)

Weesn ., AAY) A(UNT(M))

UNT(M)

| |

Moesn  A(OAY) —> AUNT(M)) N P(LU N T(M))).

UNT(M)

The inductive hypothesis yields isomorphisms
AU)NP(M* Y S AU NTMM YY), (4.3)
and

AUNT(M)) NPLEUNTMM) ) = AU NT(M) N TLU NTM) ).
(4.4)
These isomorphisms are compatible with the morphisms into P(M™~1), hence

into P(M). Recall from [Remark 4.2.6| that U N'T(M) NL(U N T(M))*~! =

(UNT(M))*!, which is isomorphic to U N T(M™~!) compatibly into T(M).

This means that the isomorphisms (4.3)) and (4.4]) composes to an isomorphism
A(UNTM) NPLUNTM)* N S AU) NP

compatibly into P(M). Hence A(U) NP(M) and A(U NT(M)) are pushouts of
isomorphic diagrams, inducing a unique isomorphism between them compatible
with the morphisms into P(M). O
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[Proposition 4.3.3] and [Proposition B.2.T| permits the following definition.

Definition 4.3.4 (The Milnor square for A(U)).Let U be an open cat-
egory, and m > —1 an integer. Then A(U™" 1) = A(U™) N P(L(U)™1)
and A(OA}) = A(AF) N A(OA} ;) as open subschemes of P(L(U)""") and
P(JA} 1)) respectively. Restricting to A(U™) € P(M™) in the Milnor square
for P(M) of level n yields a natural pushout square

A(AD) —= AU

N

A(DAR) ——= AU,

called the Milnor square for A(U) of level n.

Lemma 4.3.5. A morphism of open categories ¢ : U — V is surjective (resp.
injective) if and only if ¢ : A(U) — A(V) is surjective (resp. injective).

Proof. We proceed by induction on the dimension n of V. Note that the base case
of V = & is trivial. Consider the Milnor square for A(V) of level n. We may
assume that n > 0. Assume first that ¢ : U — V is surjective (resp. injective).
Since ¢’ : UP~1 — VP~ 1 is surjective (resp. injective), the inductive hypothesis
implies that ¢ : A(U™1) — A(V™~1) is surjective (resp. injective). In the
notation of it remains to show that the restricted morphism
TPy NAU) — Ty N A(V) is surjective (resp. injective). But note that
L(¢) : L(U) — L(V) is surjective (resp. injective on n-dimensional faces). This
means that the induced morphism T ;) — T}y, is surjective (resp. injective)
by [Cemma 3.2:4] But 77, = P(L(U))\P(L(U)"), and since U? € L(U)*~1,
we have that 77,y € A(U). This shows that ¢ : A(U) — A(V) is surjective
(resp. injective). Conversely, assume that ¢ : A(U) — A(V) is surjective
(resp. injective). As a function of sets, ¢ decomposes as a disjoint union of the
pair of surjective (resp. injective) morphisms ¢’ : A(U*~1) — A(V™~1) and
Tf(U) — Tﬁl(v)' By the inductive hypothesis, ¢/ : U1 — V®~1 is surjective
(resp. injective). Since T{y) and T}, are disjoint unions of schemes on the
form P(AT)\P(OAF), one for each face in U™ and V™ respectively, it follows
that the entire morphism ¢ : U — V' is surjective (resp. injective). By induction,
we are done. O

4.4 Etale morphisms

The aim now is to prove the following theorem, which will be done through a
series of lemmas.

Theorem 4.4.1. Let ¢ : U — V be a local isomorphism of open categories. Then
¢ AU) = A(V) is étale.

Lemma 4.4.2. Let ¢ : U — V be a local isomorphism of open categories. Then,
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a) ¢: AU) — A(V) is flat;
b) for any other morphism v : W — V| the induced morphism
Xyt A(U xy W) — A(U) xav) A(W) (4.6)
is an isomorphism.

Proof. Let V be n-dimensional. We will prove a) and b) simultaneously, proceed-
ing by induction on n. Note that the base case of V = @& is trivial, so we may
assume that n > 0. The Milnor square for A(V) of level n is induced by the
Milnor square for P(IL(V)) by restriction to A(V'), and similarly for A(U).
By [Proposition B.2.1] is locally a Milnor square of rings, hence we may
apply [Theorem B.1.1|a) to verify flatness of ¢ : A(U) — A(V). Interpreting the
conditions of the proposition for schemes, we are required to show the following:

1) the morphisms ¢= : A(A%) — A(AB) and ¢/ : A(U1) — A(V™71) are
flat;

2) the canonical morphisms
A(DAY) — A(U™Y) X A(va-1) A(OAY) (4.7)

and
A(DA]) — A(IA) xaap) A(AD) (4.8)

are isomorphisms.

1) ¢® : A(AB) — A(AD) is locally on the form A(Af) — A(A@(S)) for faces
seU. By each of these morphisms are open immersions — hence
flat. The truncated morphism ¢’ : U?~! — VP~ is a local isomorphism since
¢:U —Vis, so ¢ : AU 1) — A(V™1) flat by the inductive hypothesis. 2)
By the inductive hypothesis, the canonical morphism A(U™™! X -1 OAL) —
A(UY) xa(yn-1) A(DA}) is an isomorphism. But since ¢ : U™ — V™ is a
local isomorphism, implies that the induced morphism 7, : A}, —
U xy Al is an isomorphism. Truncating yields an isomorphism 7;, : OAD —
U1 Xyn-1 QAL thus composing to an isomorphism

A(my) o

AOAR) 2l AU Xyt OAR) S5 A(UY) xa(yn 1) A(OAD)

which is just (4.7)). Locally, (4.8]) is on the form A(0A};) — A(@A?}(S)) X A%

A(A}). Since A(A}) — A(Aﬁ(s)) is an open immersion, the fibered product is
just the intersection A(@A?;(s)) NA(AY) in A(Aﬁ(s)). By |Proposition 4.3.3',

A(8A‘€(S)) _ A(A?}(S) NOA?E)) = A(Aﬁ(s)) NP(OA?®).
Hence

A DAY NNA(AS) = P(OA?O)NA(AL)NA(A}) = P(OA*)NA(AY) = A(DA).
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This means that (4.8]) is an isomorphism. We conclude that ¢ is flat.
Applying [Theorem B.1.1|b) here shows that the canonical morphisms

AU = AU) xapy AV, (4.9)
A(AD) = A(U) xaq) A(A}), (4.10)
A(OAY) = A(U) xav) A(OAY) (4.11)

are isomorphisms. Next, let ¢ : W — V be any morphism. We will show
that is an isomorphism by induction on the dimension of W. However, if
dim W < n, then A(W) — A(V) factors as A(W) — A(V™~1) — A(V), so by
and the inductive hypothesis,

I

A(U) xawv) AW) = AU) xaw) AV xpn-1) AW)

AU xaqyn-1y) A(W) = AU xy W).

12

The case where W is n-dimensional remains. Applying A(U) x v (—) to the
the Milnor square (4.5 for A(W) yields a diagram

AU) xavy A(AY) AU) xarvy A(W)

| G

A(U) X av) A(DAR) —= A(U) x a(v) A(WP1).

Since ¢ : A(U) — A(V) is flat, this is locally a Milnor square. To show that
is an isomorphism, we will compare (4.12)) with the Milnor square for A(W xy U)
of level n:

A(AT ey w) AU xv W)

| i

AOA W) — AU Xyna WP,
We require that the following induced morphisms are isomorphisms:

(*) A(ATx,w) = A(U) xav) A(AR),
(%) AU xynos W) = A(U) xavy) AW,
(%) A(OAT «,w) = A(U) xa(v) A(OAR).

First, observe that for each face (s,t) € U xy W, ASQ/W = Aj N AL as
subpolytopes of At This implies that the canonical morphism ASQ/W —
A % yvt Ay is an isomorphism. Since A® x an Af; = @ whenever ¢(s) # (1), it
follows that the canonical morphism A,y — A X an Ay is an isomorphism.

By truncation, this yields an isomorphism dAp Xgan OAY, =N OAY v+ The
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inductive hypothesis and the isomorphisms (4.9)) and (4.11) shows that (x*) and
(s * %) are isomorphisms:

(**) A(U) xaq) AW = AU) xaw) AV xaqm-1y AW
AU Xaqye-1) AW

AU xyn W),

(***) A(U) xa(v) A(OAYy) = A(U) xa(v) A(OAY) xaaay) A(0AY)
A(DA )><A oan) A(OAY,)

A(

— A(

OAT ) XBA“ (8AIVIV)

Lo e Jw luz LI AN

a UXVW)

Finally, we will show that (x) is an isomorphism. By (4.10)), we have

~

A(U) xaw) A(AW) = AU) xaw) A(AY) xaan) A(Ay)
—> A(A ) XA(A“) A(AW)

Thus we are require that the canonical morphism A (A, ) — A(A7) X A(AD)
A(AY},) is an isomorphism. Since A(A7)) XA(AD) A(AY,) = @ whenever
@(s) # 1(t), this locally amounts to showing that the morphisms A(AE}SQ/W) —
A(AF) X AL A(AY) = A(AF) N A(A},) are isomorphisms for each face
(s,t) € U xy W, or in other words, that A(ASQ/W) = A(Aj) N A(A},) as
open subsets of P(A(Y)). This is equivalent to showing that P((Agx) w)?)
P((A5)7) UP((Aly)?). First write P((A7)7) UP((Al)?) = P((A})7 U(Al)?
Then observe that (A§)? U (A%,)? = ABD\(AZ, N AL). But Ay NA!
A(ngt) w50 (A2 U (AL)? = (ASQ/W)‘?. We conclude that P((Ag;vw)a) =
P((Af)?) UP((AY)?), and that (x) is an isomorphism. This shows that the
diagrams (4.12) and (4.13]) are isomorphic. We conclude that the canonical
morphism A(U xy W) — A(U xy W) is an isomorphism. By induction, we are
done. O

|,v||

Lemma 4.4.3. Let ¢ : U — V be a local isomorphism of open categories. Then
the diagonal morphism D : U — U xy U is an injective local isomorphism.

Proof. The identity map U — U factors as U EEN it xyv U 22 U, and by
Lemma 4.1.6{d), the projection map pr, is a local isomorphism. It follows that
D is a local isomorphism, and it is clearly injective. O]

Lemma 4.4.4. Let M be a polyhedral set, and let N C M be a polyhedral
subset. Then the complement T(M)\T(N) C T(M) induces an open immersion

A(T(M)\T(N)) — P(M), identifying A(T(M)\T(N)) with P(M)\P(N).
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Proof. Let M be n-dimensional. We proceed by induction on n, noting that
the base case of M = @ is trivial. Define W = P(M)\P(N). Let U =
T(M)\T(N), and let ¢ : U — T (M) denote the inclusion. Consider the induced
morphism TL(¢) : TL(U) — T(M). Clearly, TL(¢)"*(T(N)) C U?, so the
morphism P(L(U)) — P(M) restricts to a morphism A(U) — W. Consider
the Milnor square of P(M) of level n, and note that P(M®*~ )N W =
P(M»~H)\P(N™~1). By |Proposition B.2.1|c), the following diagram

ajivfl (W) w

|

apr (W) NP9AY) —=P(M*)\P(N*)

is a pushout square. We will compare this with the Milnor square (4.5)) of A(U)
of level n. We require that the canonical morphisms

(*) A(Ay) = oy (W)
() AU = P(M™)\P(N"TY)
(%) A(0AT) — oy (W) NP(9AY)

are isomorphisms. First we note that (#x) is an isomorphism by the induc-
tive hypothesis. Next, observe that o,/ (W) = P(A},)\P(a,;(N)). This
means that oy (W) N P(OAR,) = P(OAR)\P(a,; (N)™1). Since M is n-
dimensional, U is maximally n-dimensional, so the induced morphism AE(U) —
A}y is an injection. Clearly, AJN\AP ;) € a3 (N), and it follows immedi-
ately that Af = ai(lU)(U) — A%\, (N) is an isomorphism. Truncating
yields an isomorphism JAR — 9AR\a;/ (N)*7! so (x % ) is an isomor-
phism by the inductive hypothesis. It remains to verify that (x) is an isomor-
phism. This amounts to showing that for every n-dimensional face s € U,
the morphism A(Af) — P(A*\P((¢5;)"H(N)) is an isomorphism. Since
A(Af) = P(A*)\P((A3))?), we reduce to showing that (Af;)? =N (C5)"H(N).
But note that (A3)7 = A*\(G2,,)~1(U) and (C5,)~(N) = A%\ (¢3,) " (U), and
finally observe that (CE(U))_l(U) = (¢3;)"'(U). We conclude that () is an
isomorphism. These isomorphisms induces an isomorphism of pushout squares,
showing that A(U) — W is an isomorphism. By induction, we are done. O

Lemma 4.4.5. Let ¢ : U — V be an injective local isomorphism. Then ¢ :
A(U) — A(V) is an open immersion.

Proof. First note that the composition U LN TR TL(V) is an injective local

isomorphism by By definition, ny : A(V) — P(L(V)) is an open

immersion, so we may assume that V' is on the form T(M) for some polyhedral

set M. By [Lemma 4.1.9] the open subcategory T(M)\U of T(M) may be
identified with T(NN) for some polyhedral subset N of M. But U = T(M)\T(N),

S0 implies that A(U) — P(M) is an open immersion. O
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Remark 4.4.6. Let M be a polyhedral complex as in (or more generally
a polyhedral poset), and let s be a face of M. Then the morphism My — M
is injective. Indeed, suppose that (¢, f1),(t, f2) is a pair of faces of M. Since
¢4y o A — M is injective, fi must be equal to fo. By [Proposition 4.1.3 and

Lemma 4.4.5) the morphism A (M) — P(M) is an open immersion.
We are now in a position to prove

Proof. By a), ¢ is flat. By [Lemma 4.4.3| and [Lemma 4.4.5| the
morphism A (D) : A(U) — A(U xy U) is an open immersion. By [Lemma 4.4.2|
b), this is the same as the diagonal morphism A(U) — A(U) X a(v) A(U). This
shows that ¢ is unramified as well, hence étale. O]

Proposition 4.4.7. Let G be a group acting freely on a polyhedral set M wvia a
homomorphism p : G — Aut(M), and let 7 : M — M /G be the categorical group
quotient. Then 7 is a local isomorphism.

Proof. Let s be a face of M, and consider the local morphism 7, : My — (M/G)s,
where § is the image of s. Suppose that s st and s L5 # are two objects of M
mapping to the same object 3 L7 of (M/G)s. Then t' = {, so there exists an
element g € G such that p(g)(t) =t'. But then f:s — ¢t and f: p(g)(s) =t
are two liftings of the same arrow f in P. By uniqueness of lifts, s = p(g)(s).
Since G acts freely, g is equal to the identity element e. This means that 7, is
injective. Next, let § I % be an object of (M/G)z, where t is the image of some
face t of M. Let f:s" — t be the unique lifting of f in P. Then by uniqueness

of lifts in (M/G), s’ =3, so there exists an element g € G such that p(g)(s’) = s.
Thus the object s ER p(g71)(t) of My is mapped to 5 Lt (M/@G)s, and 74 is

therefore surjective. Thus 7 is bijective, and therefore an isomorphism. O
[Propositions 4.1.9] and [.4.7] and [Theorem 4.4.1] immediately yields the

following corollaries.

Corollary 4.4.8. Let U be an open category, and s € U as face of U. Then the
induced morphism A(Us) — A(U) is étale.

Corollary 4.4.9. Let G be a group acting freely on a polyhedral set M, and let

m: M — M/G be the categorical group quotient. Then the categorical group
quotient m: P(M) — P(M/G) of schemes is étale.
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Chapter 5
The link of a polyhedral set

In this chapter we will define the link of a unimodular open category, and later
more generally of an open category over the category P5™ of smooth polytopes.
The link of an open category U at a face s is denoted ki (s), and is generally a
unimodular set. This generalizes the ordinary link construction Definition
1.38] for simplicial complexes. We will further show that there are isomorphisms

A(M,) = SpecT'(lkps(s)) x Gdims,

which will become useful in [Chapter 6| and |[Chapter 7} In particular, the relation
between links lkj/(s) and the local topology of |M| becomes crucial when it
comes to the topological characterization of Cohen-Macaulay and Gorenstein
properties we shall see in [I'heorem 6.3.3|and [['heorem 6.4.6}

5.1 The link construction

Let s be a face of an open category U over Fin. Let n = |s|, and consider
the open category Us. Then Uy defines a functor Uy : (n | Fin)°? — Set as
follows: On objects, (m, f) — {(t,f) € Us : |[t| = n}. Let h: (m,f) — (r,9)
be an arrow in (n | Fin). Then g = ho f in Fin. For any object (¢,¢g) in
Us(r, g), the factorization n Lom 2 lifts to a unique factorization s Lo by
of g, and we define Us(h) by (t,g9) — (¢, f). The assignment U — U is
natural in pairs (U, s). We define a functor M, : (n | Fin) — Finy as follows:
On objects, we let M, (m, f) = [m]\im f, which is (uniquely) identified with
the ordinal [m —n — 1] € Finy. If h : (m,f) — (r,g) is an arrow, then
M, (h) : [m]\im f — [r]\img is given by the restriction of h : [m] — [r],
and A, (n) : zim=—r=1 — G,, is given by e; + Ay(e;), where j + i via
[m\im f — [m —n —1].

Definition 5.1.1. Let n be an object of Fin. We define the link functor lk :

Pre((n | Fin)) — Pre(Fin,) as the Yoneda extension of Ygin, o M, : (n |
Fin) — Pre(Finy ) along the Yoneda embedding Y(,, | rin)-

Yrin, oMn
(n ] Fin) ————— Pre(Finy)

Y(n{Fin) \L /

Pre((n | Fin))

Let j : Fin — Finy denote the embedding of categories. For any pair (U, s),
we define the link of s in U as the unimodular set lk(Uy) o j°P : Fin®® — Set,
denoted 1k (s). This is functorial in pairs (U, s).
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For any pair (U, s), we have lky(s) = lim N AMs1((8:5) | Note the similarity
s t
with the description of L(Uy) as lim 5, A'. In fact — as we will see — there is

a close connection between the face rings of lky(s) and L(Us).

Definition 5.1.2. A functor F': A — B is fibered in groupoids if

o for every arrow f : b’ — b in B and object a € A with F(a) = b, there
exists a lifting g : @’ — a of f in A, and

o for every pair of arrows g : ¢’ — a, ¢’ : «”” — a and any arrow f: F(a"”) —
F(a’) such that F(g)f = F(g’), there exist a unique lifting h : «” — o’ of
f such that gh = ¢'.

If F is fibered in groupoids, then the fiber category F~1(b) (consisting of objects
a € A such that F(a) = b, and arrows g : @ — &’ such that F(g) = idp) is a
groupoid for each b € B.

Lemma 5.1.3. For each n € Fin, the functor M, : (n | Fin) — Finy is fibered
in groupoids.

Proof. Let (m, f) € (n ] Fin), and let h : [r] = M, (m, f) = [m —n — 1] be an
arrow. Let g : [n] — [r+n+1] be any arrow, and A’ : [r+n+1] — [m] the unique
arrow such that h'g = f and such that when restricted to [r + n + 1]\ im(g),
it agrees with the arrow [r +n + 1]\ im(g) — [m]\im(f) induced by h. Then
h defines an arrow (r +n + 1,9) — (m, f) such that M, (h’) = h. Next, let
g:(m )= (m,f)and ¢ : (m”,f") = (m,f) be a pair arrows, and let
h: My(m", f") — M, (m/, f’) be an arrow such that M, (¢g)h = M, (g’). Via the
construction above, there exists a lifting b’ : (m”, f"') — (m/, f') of h. Moreover,
the fact that (gh')f" = gf' = ¢'f” and M,,(gh’) = M, (¢') implies that gh’ = g.
This further implies uniqueness, since every arrow in Fin is a monomorphism. [

Lemma 5.1.4. Let U be a unimodular open category, and let s be a face of U.
Then,

a) lky(s), = {(t,f) € Us : dimt = dims +n+ 1 andt € U} for all
n € Fin, and

b) every arrow in T(lky (s)) is on the form (t, f) Mn(9), (u, gf). Hence lky(s)
satisfies (x).

Proof. Let [r] = |s|. By M, is fibered in groupoids. Hence by
a similar argument as in a), lkky(s), = @M,,(m,f):[n] Us(m, f),
where the colimit is taken over the fiber of [n], i.e. the groupoid of objects
(m, f) € (r | Fin) such that M,(m, f) = [n]. It follows from the condition ()
that objects on the form (¢, f) where ¢t € U®" is a choice of representatives for
each isomorphism class in this groupoid. Hence a) gives the desired representation
of the colimit.
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b) Suppose that (u,g) € Us(m/,g), and let h : [n] — M,(m/,g) be any
arrow. Then there exists a lifting of h to an arrow h' : (m,f) — (m/,g)
such that M,.(h’) = h, unique if f is fixated. Here ¢ = h'f. By definition,

R ($) (u, g) = (t, f), where t My w is the unique lifting of m My m/ in U. The

requirement that ¢ is a canonical representative fixes f, and therefore h’. This

yields the arrow (¢, f) M), (u, ' f) in T(lky(s)), and clearly every arrow

arises in this way. ]

5.2 Properties and relations with the face scheme

Lemma 5.2.1. Let m € Fin, and let f € A" be any face. Then lkam(f) =

Proof. This follows immediately from the observation that the open category A}”
defines the representable functor (n | Fin)(—, (m, f)) : (n L Fin)°® — Set. O

Remark 5.2.2. Let K be a simplicial complex. The ordinary link construction
for K at a face s is defined as {t € K : tUs € M andtNs = @}. Let M be
the polyhedral complex corresponding to K. By the morphism

My — M is injective. Moreover, by [Lemma 5.1.4] we have lkp/(s), = {t €
T(M)®": s Ctand [t| =|s| +n+ 1}. Thus the assignment ¢ — t\s defines an

isomorphism between the two versions of links.

Lemma 5.2.3. Let U be an open category over Fin, s a face of U, and (t, f) a
face of Iky(s). Then lky, () (t, f) = lky(t).

Proof. Let |s| = n and [t| = m. Consider the functor F' : (m | Fin) —
(M,,(m, f) | Fin) defined as follows. Any object (r,g) of (m | Fin) can be
considered as an arrow g : (m, f) — (r,gf) in (n | Fin), thus inducing an
arrow M, (g) : Myp(m, f) = M,(r,gf). We define F(r,g) = (M,(r,gf), M,(g)).
Any arrow h : (r1,91) — (r2,g2) in (m | Fin) can be considered as an ar-
row h : (r1,91f) — (re,g2f) in (n | Fin), thus inducing and arrow M, (h) :
M, (r1,91f) = My (ra,g92f). Since M, (h) o M, (g2) = M, (g1), this defines an
arrow F'(h) : F(71,g1) — F (73, g2). Functoriality of F is clear.

We will now define a natural transformation of functors p : Uy — lky (), f) ©
F. But first we must unwind some of the definitions. Let (r,g) be an object
of (m | Fin), and let (u,g) € Us(r,g). Then (u,gf) € Us(r,gf), and we have
an arrow g : (¢, f) — (u,gf) in Us as an open category. Consider the arrow
g:(m,f)— (r,gf) in (m | Fin). By definition, Us(g)(u, gf) = (¢, f). Consider
the universal transformation Uy — 1k(Us) o M,,. By naturality, the diagram

Us(r’ gf) - lk(Us)(Mn(T’ gf))
lUs(g) llk(Us)(Mn(g))
Us(ma f) - 1k(Us)(Mn(m7 f))
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commutes. Tt follows that lkg (s)»(9) (u, gf) = (t, f) as faces of lky(s). Hence

t, f) —= M), (u, gf) is avalid face of Iky(s) ¢, ). In other words, ((u, gf), Mn(g)) €
lkU( )(t,f)( ( ’g))' We define H(r,g) * Ut(rv g) — lkU(S)(t,f)(F(Ta g)) by (u’ g) —
((u,9f), Mn(g)). To show that p is natural, consider an arrow h : (r1,9) —
(re,hg) in (m | Fin), and let (u, hg) € Ui(ra, hg). By definition, U(h)(u, hg)
is equal to a face on the form (v,g) € U;(r1,g) such that t £ v Dy w is the
unique lifting m 2 r; L ry. Tt is clear that F(h) = M,(h): ((v,gf), M,(g)) —
((u,hgf), M, (hg)) is a valid arrow in kg (s) 4, ), and naturality of p follows.

Next we show that there is an equality of functors M,, = M, o I, where q =
M, (m, f). It is clear that for each object (7, ), M, (7, g) and My (M, (7, gf), Mn(g))
are equal as ordinals. If h: (r,g) — (r/, hg) be an arrow, then F(h) = M, (h),
and it is easily seen that M,,(h) = M,(M,(h)).

Consider the universal transformations 7y : Uy — lk(U;) o M,, and 1y :
lky(8)t,r) — Ik(lky(s)@,f)) © My. By the universal property of 71, there exists a
unique natural transformation 0 : 1k(U;) — lk(lky(s) ., f)) such that the induced
diagram

Uy — Tk (). py © F —25 Tk(lkty (5) 0. © Mim

m SM,,
1k(Ut> o Mm

commutes. This induces a morphism ¢ : lky(t) — ki, (s (¢, f) such that
o(u,g) = ((u,gf), M,(g)) for all faces (u,g) of ky(t). Now, every face of
ki, (5 (£, f) is on the form ((u, gf), My(g)). Indeed, suppose that ((u, g),h) is a
face, for some arrow g : m — r. Then h: (¢, f) — (u,g) is an arrow in T(lky (s)),
which by b) is on the form M,(¢") : (t,f) — (u,g’f). Hence
((uy9),h) = ((u,g'f), M, (g")). It follows that ¢ is surjective. Next, suppose that
¢(u, ) = ¢(v,h). Then ((u, gf), Mn(9)) = (v, hf), Mn(h)), s0 u = v, gf = hf
and M, (g) = M, (h). Define f':=gf =hf :n —r. Then g,h: (m, f) — (r, )
are both liftings of M,,(g) = M, (h), hence equal by the proof ofm
It follows that ¢ is injective, and therefore an isomorphism.

Lemma 5.2.4. Let M, N be a pair of unimodular sets, s € M and t € N. Then

Proof. Consider the representation of the links from [Lemma 5.1.4]a), and the
representation of join from This allows us to define a morphism
6 : Tka (5) * Ik (£) = Karan ((5,8)) by (s £), (v,9)) = ((u,0), f +g), which is
well-defined and clearly an isomorphism by O

Lemma 5.2.5. Let P be a polytope, v € P a vertex, and f : 0 — P the associated
arrow. Then the closed subsets V(x'1)) and P((A?)a) of P(AF) are equal.

Proof. By [Lemma 3.6.1} we have P(AQ) = V(og) = V(x™?|(m,d) & 0q)
V(x®WD) for all v ¢ Q, whenever Q — P is a face. Hence P((Af)a)

1N
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UngP(AF) C V(x™Y). Now suppose that x("')(p) = 0 for some point
p € P(AT). To show the reverse inclusion, we require that ("% (p) = 0 for all
(m,d) ¢ op whenever v ¢ F'. Suppose that (m,d) € C(P) is such a lattice point.
Then for each integer k, we have y (™% (p)k = x (kmokd) (p). If it is possible to
write y(Fmokd) = (015 (m"d) for some k > 0 and (m/,d') € C(P), we are done.
In other words, we require that km—v € (kd—1)P < (km—v,up) > —(kd—1)ap
for all facets F'. Rewriting the inequality as dk((%,ur) + ap) > (v,up) + ap,
one observes that it is obtained for all F' such that 7 ¢ F' for k sufficiently
large. On the other hand, if 7 € F, then v € F' as well, so the inequality is
automatically satisfied. O

For each arrow g : @ — P, define 6, = [[1,0_,o x“/ @1 e T(AF). If U is
an open category, and s 1s a face of U, then we define 6, € I'(L(Uy)) via its
restriction to 6; € T(A®)) for each (¢, f) € Us.

Corollary 5.2.6. Let f : Q — P be any arrow in P. Then the closed subsets
V(0;) and P((A}D)a) of P(AP) are equal.

Proof. By [Lemma 5.2.5] we have to show that (AP) =U, O_>Q(A(P f)) , Le.

AP ﬂg:0~> Afg The open subcategory AP C AP consists of the arrows
h : R — P which factors f : Q@ — P. For any arrow g : 0 — @), an arrow
h : R — P factoring f also factors fg, so AJ‘? C Afg. For the other direction,
suppose that h : R — P factors every arrow on the form fg:0 — P. Then R
must contain every vertex of ), and thus contains . One can easily produce a

factorization Q — R Ly pof I O

Proposition 5.2.7. Let U be an open category, and s a face of U. Then the open
subschemes A(Us) and D4 (0s) of P(IL(Uy)) are equal.

Proof. By [Corollary 5.2.6] there is an exact sequence
0—/(87) = DAY - T(AR)?) =0 (5.1)

for each face (¢, f) of Us. This sequence is moreover natural in (¢, f). Now,
observe that Ag;f) = A as open subcategories of A’. Indeed, both A% and
Ag;f) can be viewed as the subset of A’ consisting of arrows g : R — |t
which factors f : |s| — |t|. Tt follows that (Cg;f))_l(Uf) = (A})a. Since
colimits in the category of sets commutes with fibered products, there are
isomorphisms hm N (A XL(U,) Ua) =N (li_rr}si>75 A?) XL(U,) Usa. In other words,

lﬂsiﬁ( f) =N Usa. This is a connected colimit, so by [Proposition 2.3.3| we

have that T'(U?) =N I'Lnsin F((A‘})a). Taking the limit of ([5.1]), one obtains an
exact sequence

0= lim /(6;) = T(L(U,)) = T(UT) =0

f
s—rt
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It is easy to show that lim N \V(0f) = /(8s) as ideals of I'(IL(Us)), and the
s t
result follows from this. O

Lemma 5.2.8. Let U be an open category over Fin, and let s be a face of U.
Then there exists an isomorphism lky (s) x A® =N L(Us), which restricts to an
isomorphism lky (s) x OA® =N Ud.

Proof. Define n = |s|. For each face (¢, f) of Uy, let ay : [My,(|t], f)] — [t] denote
the arrow in Fin, corresponding to the inclusion of ordinals [¢t]\im f — [t].
Consider the homeomorphism ¢ ¢y : Irin, (Mn(|t], f)) x [s| — [t] given by

((EO, s 7$Mﬂ,(\t|,f)vt7y07 .. 7yn) = (ZO7 o .,ZM),

where 2y (;) = ty; for each i, and z,,(;) = (1 — t)z; for each j (we put Ay, , =
1). Here we have identified Iwin, (M,(|t], f)) with Conv(eg,...,e,) C R
for simplicity of notation. These maps are evidently natural in faces (¢, f),
and the corresponding isomorphisms 9 ¢) : AMA(ELF) 5 A5 — At induces
an isomorphism lky(s) x A® — L(U,) upon taking colimits. By the proof

of |Proposition 5.2.7} there is an isomorphism ligsi)t(A’})a = U9, and —
as observed — (A’})6 can be written as the union U;L:O A6, Note that
the inclusions |A%@| — |A!| are identified with the restriction of ¢ s to
|AMA(ED) 5 Adi|. Since [0A®| = (J]_, |A%|, this identifies the restriction of
P, p) to AMn(thF) « OA® with the inclusion (A'})a — A!. Taking colimits we
obtain an isomorphism lky (s) x 9A® — U2, which is the restriction of ¢. O

Corollary 5.2.9. Let U be a unimodular open category, and let s a face of U.
Then there is a natural isomorphism

F(lkp (5)) © T(A%) gy, ) = DL o,y (5.2)
inducing an isomorphism

A(U,) — Spec(T'(Iky(s))) X (G )dim s, (5.3)

5.3 Extension to smooth polytopes

Let P be a polytope, and let v be a vertex of P. For each edge E containing v,
let wg, denote the first lattice point along E other than v. Consider the set of
vectors {wg , — V}ver € Z4im(P) " If this set forms a Z-basis for Z4™(P) for all
vertices v, then P is called smooth. Let P*™ denote the full subcategory of P
consisting of smooth polytopes respectively.

Definition 5.3.1. A smooth open category is an open category U over P5™.
Similarly, a polyhedral set M is called smooth if Mp is non-empty only for
smooth polytopes. Note that A’ is smooth if and only if P is smooth. Also
note that unimodular sets are smooth.
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Remark 5.3.2. We continue with the notation above. Following m C, =
Cone(P N Z4™(P) — y) is the dual of the maximal cone o, € Yp, and the
corresponding affine toric variety U, is isomorphic to Speck[C, N Z4m(F)],
Since {wg,y — vV}vcp is a Z-basis, the cone C, is generated by the vectors
wg,y — v, so the assignment (P,v) — C, is functorial. Moreover, there is a

natural isomorphisrn k[C, N Z3™(P)] F(AP)(X@,U) given on generators by
(m

XM X oo 1) Again, since {wg , — v}ycp is a Z-basis, the ring I‘(AP)(X<U,1)) is

(wg 1)
a polynomial ring on generators Xx(il)

We define a functor M(p,) : (P | P*") — Fin, as follows: On objects, we
let

Mp(Q, f) ={E C Q|E is an edge such that fr(v) C Q and E Z fr(P)}.

Since @ is smooth, Mp,(Q, f) has cardinality dim(Q). We order this set
compatibly with the order on {wg () — f(v)} Eem p. (@.1) C 73(P) under the
the lexicographical order on Z4™(@). Hence Mp,,)(Q, f) can be identified with
the ordinal [dim(Q)—dim(P)—1] € Fin,. Any arrow h : (Q, f) — (R, g) induces
an inclusion of sets M(p (@, f) € Mp.)(R,g), and we define Mp.,)(h) :
[dim(Q) — dim(P) — 1] — [dim(R) — dim(P) — 1] to be the corresponding
arrow in Finy, and the character Ay, (n) : ZM@>»(@F) 5 G,, is given by
ep = A(Wg pv), 1). If P is a vertex itself, we will write Mo for Mg ).

Let s be a face of a smooth open category U, and let P = |s|. Analogous
to before, U, defines a functor U : (P | P¥™)° — Set: On objects (Q, f) —
{(t,f) € Us : |t| = Q}. Let h: (Q,f) = (R,g) be an arrow in (P | P*™).
Then g = ho f in P*™. For any object (¢,9) in Us(R,g), the factorization

JJEN Q Ly R lifts to a unique factorization s ERTRLN g, and we define Ug(h)
by (t,g) = (¢, f).

Definition 5.3.3. We define the link functor 1k” : Pre((P | P*™)) — Pre(Fin)
as the Yoneda extension of Ygin, o M(py,) : (P | P™™) — Pre(Fin,) along the
Yoneda embedding Y(p psm). Let j : Fin — Fin; denote the embedding of
categories. For any pair (U, s) and vertex v € |s|, we define the link of s in
U as the unimodular set 1k”(Us) o j°P : Fin®® — Set, denoted 1k{;(s). This is
functorial in triples (U, s, v).

Continuing with the notation above, consider the homomorphism
F(AN[(RU)(Q’JC)) = k[xE‘E € M(P,v) (Qa f)] — F(AQ)

given by zp +— x(“Fs@)1)  and the homomorphism T'(A?) — T'(A?) given by
(M) Af(m, d)~txAr(md)  They are both evidently natural in (Q, f) € (0|
Psm) ) and induce a natural homomorphism

(F(AM<P-U>(Q’f)) R F(AP)) T(A9), ). (5.4)

(1®biap)

This is in fact an isomorphism, which follows from the observation in
(both sides can be viewed as polynomial rings localized at a monomial).
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Proposition 5.3.4. Let U be a smooth open category, let s be a face of U, and
let v € |s| be a vertex. Then there is a natural isomorphism

T(Ikfs(s)) @k T(A) g, ) = DLUL))o,) (5.5)
inducing an isomorphism
A(U,) — Spec(T(Iky (s))) xp Gm(), (5.6)
Proof. Let (t, g) be a face of U,. Via (5.4), we have

F(AM(\S\,,U)(\T‘/LQ)) Ok F(AS)(eidM) - F(At)(09)7 (57>

naturally in (¢, g) € Us. Taking the limit on both sides yields the desired injection

B3 O

5.4 Links and local topology

Let M be a polyhedral set, and let p € |[M| be any point. Then there is a
unique face s(p) of M (such that |s(p)| is a canonical representative) of minimal
dimension such that p € |M*®)|. We will also write p for the unique point in
|A*®P)|\|0A3P)| which maps to p € |M| via \C;}p”. For each arrow [ : s(p) — ¢t
in T(M), we define

By = int(e(|A*| — fr(p)) + fr(p)) C |AY| (for some fixed € < 1).

We also define By = {J;.5(,)_,¢ By- 1f € is sufficiently small, the open subsets By

are pairwise disjoint. Note that for each factorization s Lo toof f:s—t,
we have

Proposition 5.4.1. There exists a contractible open neighbourhood BM (p) of p
such that

(x) ¢4 17 H(BM(p)) = By for each face t of M.

Proof. Suppose first that s(p) is a facet. Then |A*®)|\|0A*®P)| — |M] is the
inclusion of a cell, and By, defines the required contractible open neighbourhood
satisfying (x). We proceed by induction on the dimension n of M. If n = 0, then
s(p) is necessarily a facet, and we are done. So assume that n > 1, and that
s(p) is not a facet. By the inductive hypothesis, there exists a neighbourhood
BM™ 7! (p) C |M™=Y| of p satisfying (x). Then |¢%, |~ (BM""(p)) = B, for cach
face t of M™~!. However, if ¢ is an n-dimensional face of M, then

A B ey = U 1By = U imlcnB (¢ @)

g g h
u—>rt u—rt —
dimu<n—1 dimu<n—1°" "%

(5.9)
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by . Any arrow g : u — ¢ factors through some (n — 1)-dimensional face, so
the union remains unaffected if we restrict ourselves to those faces v with
dimu = n — 1. Since BG(KZ}H(p)) does not intersect any (n — 1)-dimensional
subpolytope of |A’| other than im [(X,|, we have for each (n — 1)-dimensional
face u that im [¢4.| N Bc(|¢X¢](p)) = |0AY N B(|¢L:|(p)). The arrows gh: s — t
ranges over all arrows f : s — t as g and h varies. In conclusion,

AT B ey = U U oA n B¢t ()

Uiﬂ SLM/,

dimu=n-1
= (U 10810 B2 () = 0A] 1 By.
Si>t
Thus we may define BM" (p) = BeMn_l(p) U Udimt:l}.Bt\|8At|, which satisfies
(). Tt is an open subset of | M| since each |¢%,|~1(BM"(p)) is open. A homotopy
from B?IMI (p) to p is obtained by letting ¢ — 0, so it is also contractible. By
induction, we are done. ]

Lemma 5.4.2. Let ¢ : M — N be a morphism of polyhedral sets, and let p € |M]|.
If ¢sp) + My(py — Ng(s(p)) s an isomorphism, then |¢| : |M| — |N| restricts to
a homeomorphism BM (p) — BN (|¢|(p)).

Proof. Assume first that s(p) is a facet. Since ¢,(p) is an isomorphism, ¢(s(p))
is a facet as well. Then it is clear that B,,) — By(s(p)) 18 an isomorphism. It
will suffice to show that for each integer n, |¢| : [M™| — |N™| restricts to such a
homeomorphism. We proceed by induction on n, and we may assume that s(p)
is not a facet. The case n = 0 is therefore already proved, so we may assume
that n > 1. Since s(p) is a face of M™~! p is contained in |[M™~1|. By the
inductive hypothesis, |¢/| : [M®~1| — |[N®~!| restricts to a homeomorphism
BM"'(p) = BN" "' (|¢|(p)). By construction, we need to show that |¢| restricts
to a bijection
U B.\oA"| = | Bi\|oA!].

€Iy teJy

We reduce to showing that [¢| : A%, — AR restricts to a bijection UMU):75 B, —
B, for each fixed t € Jy. For each arrow f : s(p) — w in T(M), the open
neighbourhood B€(|C£u|(p)) C B, maps bijectively to Be(\C£t|(|¢|(p))) C By,
where f: ¢(s(p)) — ¢ is the induced arrow in T(M). So we simply require that
for each arrow f : ¢(s(p)) — t in T(INV), there exists a unique arrow g : s(p) = u
in T(M) mapping to g. But this is exactly the content of ¢ p) belng a bijection.
We conclude that |¢| restricts to a bijection BM (p (|9|(p)). Next, the
open sets BM (p) for varying p and e clearly forms a bas1s for the topology of |[M].
This implies that |¢| is an open map, so the restriction of |¢| is a homeomorphism.
By induction, we are done. O]

Proposition 5.4.3. Let M be a polyhedral set, and let p : S — |M| be a covering
space. Then there exists a local isomorphism w: N — M such that |7| = p
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5. The link of a polyhedral set

Proof. By Theorem 8.10], S inherits a unique CW complex structure
from |M|: For each integer n > 0, the characteristic maps f, : D® — S are
exactly those for which po f, : D™ — |M]| is a characteristic map of |M|. In other
words, the characteristic maps f, : D™ — S are the liftings of the characteristic
maps D™ — |M|, unique upon specification of the image of any point by f,.
We only have to show that the CW complex structure on S is realized by a
polyhedral set N, and that p is induced by a morphism 7 : N — M. For each
P € PSimP | define

Np ={h:|AP| = S:poh=|C|:|A%| — |M]| for some s € Mp}.

For each arrow f : P — Q, f¥ : Ng — Np is given by h — ho |C£Q|. This
clearly defines a polyhedral set N, and the morphism 7 : N — M is given
by h — s, where s is the face of M such that po h = |(§;|. Consider the
CW complex structure on |N| given by the diagram (2.7). By definition, the
characteristic maps f, : D™ — |N| are such that po f, is a characteristic map of
|M|. By construction of N, these are all the liftings of the characteristic maps
of |[M|. Thus |[N| and S are canonically identified in such a way that for each
face h of N, we have |[(%| = h. Now, mo (l = (;I(h) for every face h of N, so
|m|oh = |C17C1(h)| = po h. Since the characteristic maps are jointly surjective,
it follows that |7| = p. Next, let h € Np, and consider the local morphism
Th + Np — My). We will show that 7, is bijective. Let f : P — @ be any
arrow in PSP and suppose that (hy, f) and (ho, f) is a pair of faces of N},
mapping to the same face (¢, f) of M(;). We need to show that h; = hy. Since
t = m(h1) = m(ha), we have || o hy = |(%;| = |r| o ha. This means that hy and
hy are both liftings of |(%,|, hence uniquely specified by a point in their image.
But hy o |(£Q\ =h=hgo \C£Q|, and thus share a point of specification. We
conclude that hy = ho, and that 7, is injective. Suppose now that (¢, f) is any
face of My ;) for some arrow f: P — @, and consider the lifting A’ : |AQ] — S
of |¢},| specified by the image of a point in the image of |(£Q| C|AP| = A9
Then h and A/ o |(£Q\ are both liftings of |C]7\T/[(h)| sharing a point of specification,
hence equal. This means that the induced face (R, f) of Nj maps to (h, f),
which implies that that 7, is surjective. O

[Lemma 5.4.2] and [Proposition 5.4.3| yields the following result.

Corollary 5.4.4. A morphism ¢ : M — N of polyhedral sets is a local isomor-
phism if and only if |§| : [M| — |N| is a covering space, and all covering spaces
of |N| are obtained in this way.

Lemma 5.4.5. Let M be a unimodular set, let p € |M| be a point, and define

n = dim(s(p)). Then H;(|M|,|M|\p) = H;—n—1(Ikar(s(p))) for each integer i.

Proof. Since H;(|M|,|M|\p) = H;(BM (p), BM(p)\p), we may replace M with
L(My)) by [Lemma 5.4.2] and hence with lkp/(s) * A*®) by [Lemma 5.2.8

Thus we have reduced to showing the following claim: If M is on the form

N« A*®)and s(p) = (2,id,), then H;(|M|,|M|\p) = H;_,,_1(|N]) for all
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i. Since |M| 2 |N|x |A*®)] is contractible, we may equivalently prove that
Hy(|M|\p) = H;_,(IN|) for all i. Here p € |N|* |A*(®)| corresponds to an
interior point ¢ of |As(p)| = D™, where D™ is the n-disc. It is easy to see that
there is a homotopy equivalence between |N| % |[A"[\p and |[N|xS"~!. But

|N|+S"~! is isomorphic to the n-fold suspension ¥"|N|, so

Hy(|M|\p) = H;(E"(IN])) = Hi—n(IN]).
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Chapter 6

Cohen-Macaulay and Gorenstein
properties

This chapter will be concerned with the following objectives: First, for unimodular
sets M, we will give a complete classification of those M for which I'(M) is Cohen-

Macaulay and Gorenstein respectively. Second,
we will use the degenerations via subdivisions from to show that
the dualizing sheaf of P(M) (for a polyhedral set M) satisfies w$? = Opr (resp.
wy = Oyy) if and only if |M] is a homology manifold (resp. orientable homology
manifold). The general argument is that these properties are stable in proper
families, hence it suffices to show it for the degenerate case of simplicial manifolds.
That uses the general idea of Theorem 6.1], where the corresponding
result regarding simplicial complexes is shown.

A Noetherian graded ring A of dimension n is Cohen-Macaulay if and only
if H! (A) = 0 for all integers i < n, where m = A,. See |[GW78| or [Eis05|
for a reference on graded local cohomology. Naturally, the first step will be to
compute the graded local cohomology groups of the face ring I'(M). Second, we
will generalize a theorem of Eisenbud[BE91], Theorem 6.1], and show that the
dualizing sheaf of P(M) (for a smooth polyhedral set M) satisfies w$? = Oy
(resp. wpyr = Oypr) whenever |M| is a homology manifold (resp. orientable
homology manifold).

Let M be a polyhedral set, and let m = T'(M),. Recall that if F is a
sheaf of Op-modules, then T'w(F) = @,,., (M, F(n)). Let R be a graded

I'(M)-module. Then there is an exact sequence

0— H°(R)— M —T.(R) = H. (R) =0 (6.1)
and graded isomorphisms

@ a'(M, R(d)) = H7(R) (6.2)
deZ

relating the local cohomology groups of the module M Wlth the cohomology of the
twisting sheaves R(d). The requirement given in 8, Chapter 5] (called f) is
that I'(M)o = k and that there exists an integer ng > 0 such that the Veronesian
subring I'(M )[”] is generated in degree 1 for all n > ngy. This is the case here
since the homomorphism I'(M) — I'.(Oyy) is an isomorphism in positive degrees
(Proposition 3.6.3), and Oy(1) is an ample invertible sheaf (Proposition 3.2.2)).
The computation of H! (T'(M)) when M is unimodular therefore consists of
computing the cohomology groups H z(M OM( )) for integers d and i > 0.
We have already computed some cases: H'(M,On) = H Y(M;k) for d = 0

(Theorem 3.4.1), and H*(M,Ops(d)) =0 for i > 0 and d > 0 m.
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The remaining case is d < 0. This is harder, and will involve a more technical
approach using étale cohomology. The computation involves a variant of the
étale Cech complex called the alternating étale Cech complex.

6.1 The alternating Etale Cech complex

We will use as a general reference for étale cohomology and Cech
cohomology. We will briefly outline the notation and definitions involved (with
minor notational deviations). For each étale morphism f : V — X, the global
sections functor 'y : Pre(Xg) — Ab is defined by F — F(V). Ty has a
left adjoint fi : Ab — Pre(Xe), defined by fid(W) = € jcnom(w.v) A Since

(f1,Ty) is an adjoint pair, there are natural isomorphisms Hom(fiZ, F) —
Hom(Z,T'v(F)) = F(V) for presheaves ' on X4. Let Z denote the constant
presheaf of Z. Then the trace map Try : fiZ — Z is defined as the map adjoint
to Z % 7. For each W — X in X, Try (W) : @ gertomw,v) Z — Z is given by
summing each element of the direct sum. Let Shv(Xg;) denote the category of
sheaves on the étale site X¢. By sheafification, the induced functor fi : Ab —
Shv(Xet) is left adjoint to the global sections functor T'y : Shv(X¢) — Ab.
The right derived functors RPT'x : Shv(Xg4;) — Ab defines the étale cohomology
groups RPT x (F) = HY (X, F) of F for each integer p > 0. The Leray spectral
sequence associated with the inclusion of sites € : Xz., — X relates the étale
cohomology of F' with the Zariski-cohomology of F' ( p.86]):

qu — HI)

Zar

(X, R%(F)) = HEMI(X, F). (6.3)

Here ¢ : Shv(X¢,) — Shv(Xga,) is given by (¢°F)(U) = F(U). If F is a quasi-
coherent sheaf on X, then there is an induced étale sheaf Fz on Xy given by
V = T(V, f*F). Note that €*(Fe) = F. The spectral sequence (6.3) collapses
for F' = Fg, inducing isomorphisms

HP

Zar

for every integer p > 0 ([Tam94} p.103]).

et U = {U;}icr be an étale cover of X, and let F be a presheaf of abelian
groups on X¢i. Define U = [[,.; U;, and let U*P = U xx ... xx U denote the p-
fold fibered product over X. Let pr; : U+ 5 7*P denote the projection from
the j’th factor. We denote the fibered product U;, x x ... x x U;, by U; . Then

U*®+D) can be written as H(io coip)EIPH Uiy...i,, and the projection morphisms

(X, F) = HE(X, Fer) (6.4)

0---2p

—U. -~

pr; U@+l 5 UXP restricts to projection morphisms pr; : Uig..i, P
oy

Consider the presheaf Zy := @, f{Z, where f': U; — X are the morphisms
associated to the cover . We define the trace map Tr : Zy — Z as the sum of
the trace maps Try, : fiZ — Z. Then Tr induces a chain complex

Co:Zy L8 - e ZEPT) ... (6.5)
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which is acyclic in positive degrees (C, can be viewed as the Hochschild complex

of Zy, see ) Here C) = Z%“’H), and the differentials d : Cp1q1 — C), are
given on each V' — X by

€ip ® ®ezpb—>z 1)7 Tr(V V(ejlei, ®... 06, ®...® e,

locally on basis elements e; of Z¢ (V). The natural bijections Hom(V, U;,..;,) =
_oHom(V,U;;) induces isomorphisms Zg(pﬂ) = . EB) . f0" 7 for
10,..0yip)ETPHL
each p, where each f?oi denotes the induced morphism Uiy...i, — X. Hence
(6.5) takes the form

C,: @fﬁZ T EB /R

el (%0,..mstp)EIPHL

By adjointness, there are natural isomorphisms Hom(ft0 ey, ,F) = F(Us,...i,)
for every presheaf F. Thus Hom(C*®, F) is the étale Cech complex associated to
F.

We refer to Tag 0721] for the more refined version of the Cech complex,
called the alternating Cech complex. We will outline the construction here.
Consider now the Koszul complex associated with the trace map Tr: Zy — Z:

Ko : NZy  NZy - AP 7 - (6.6)

Here the exterior product K, = APT'Z;; is the quotient of C), = Z%(pﬂ) by the
subgroup of elements on the form

iy ®...0€;, — sgn(a)eid(m ®...0 e,

for permutations o € Sp4;. The differential d” : K, — K,_; is induced by that
of C,, and is given on each V' — X by

€ip N /\€zp'—>z 1)7 Tre(V V)(ej)ein Ao Nei, Ao Ny,

For each presheaf F, we define C%, (U, F) = Hom(K,, F). Define HY, (U, —) =
HO(C2, (U, —)), and note that this is a left-exact functor. Let HE, (U, —) denote
the right-derived functors Rpﬁglt (U, —). These are called the alternating Cech
cohomology groups associated with . Let I be an injective object of Pre(Xg).
Since Hom(—, I) is an exact functor and K, is acyclic in positive degrees, the
alternating Cech complex C® (U, I) is as well. This means that the functors
HP(C®, (U, —)) are effaceable for each p > 0, so that (H?(C*(U, —)))p>0 defines

a undversal O-functor. This means that there are canonical isomorphisms

~

H} (U, F) = HP(Ca (U, F)). (6.7)
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Assume that U is a separated cover of X. Then the induced morphism f :
U — X is separated, and the diagonal morphism A : U — U xx U is a
closed immersion. Since f is étale, it is also an open immersion. We define
Wy = U xx U\A(U), which is a closed and open subset of U xx U. More
generally, consider the diagonals AJ™ C U *(P+1) for j # r (on closed points,
AJT is given by {(ug, ..., up) € U*PTD suy = u,}). Let Ay =, AJ", and
define W, = U*®+D\A,. Then W, is a closed and open subset of U*P+1).
We also define W = U. Consider the action of the symmetric group Sp41 on
U*+1) given by permuting the factors. The fixed points of any non-trivial
group elements are contained in the subset A, C U *(r+1) | which means that the
action of 5,41 restricts to a free action on W,,. Assume now that F' is a sheaf.
Then the induced action of S, on F(U*®*1) restricts to a right action on
F(W,) € F(U*®*D). Let K} denote the sheafification of K,,. Note that the
sheafification of Zy; is fiZ. Thus K] is the Koszul complex of the surjective
trace map Try : fiZ — Z of sheaves, where Z here denotes the constant sheaf
of Z. Since fiZ is a locally free abelian group, this means that K — Z is a
resolution of Z. The surjection of complexes Cy — K, induces a surjection of
sheafifications CJ — K.

Lemma 6.1.1 ([Stacks, Tag 0726]). The inclusion
Hom(K,", F) C Hom(C,}, F) = F(U*PT)
identifies Hom(K,5, F') with the Sy y1-anti-invariant sections of F(W,). In other
words,
Hom(K,, F) = Hom(K,} , F) = {z € F(W,)) : « =sgu(0)z - 0}.

Proof. Heuristically, the sections of Hom(K),, ') € Hom(C;, F') vanishes on each
subgroup F(AJ") C F(U*®*1) because basis elements on the form e;, ®. . ®e;,
where 7; = 7, vanishes in K,,. These sections are moreover the S, -anti-invariant

sections of F(W),) since K, is a group quotient of C,, under the signed action of
Spt1- O

Since K} — Z is a resolution, left-exactness of the functor Hom(—, F)
induces an isomorphism H°(Hom(K?, F)) = Hom(Z, F). In other words,
HY, (U, F) = F(X). The global sections functor T'y : Shv(Xe) — Ab is
therefore identified with the composition

. 70 o
Shv(Xer) - Pre(Xg) 27 Ap,

and the Leray spectral sequence associated with ¢ relates the étale cohomology
of F' with the alternating Cech cohomology of F":

EY = HY, (U, HU(F)) = HETU(X, F),

where H7(—) : Shv(Xs) — Pre(Xe;) denotes the derived functors R of 4. There
are canonical isomorphisms H?(F)(V) = H{ (V, F') for every V € X ([Tam94
p.57]). We conclude with the following lemma:
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Lemma 6.1.2. Let U be an affine étale cover of a separated scheme X, and let F
be a quasi-coherent sheaf on X. Then for each integer p > 0, there is a natural
isomorphism

v

HP(C2 (U, Fer)) = HE

Zar

(X,F).

Proof. Since U is affine and X is separated, the p-fold fibered product U*P is
affine. This means that each Uj,..;, is affine. Hence by , HU(Fee)(Ui...i,) =
HE (Fe)Uig...i,) = Hy, (Fer)(Uiy...i,) = 0 for ¢ > 0. This means that we have
C®, (U, HI(Fst)) = 0 for all ¢ > 0, and collapses. This induces natural
isomorphisms H? (U, Fs) = H b (X, Fs) for each integer p > 0, and composing
with yields the desired isomorphism. O]

6.2 The alternating Cech complex associated to a
unimodular set

As a standing assumption for this chapter, all polyhedral sets considered are
assumed to be finite. Let X be a polyhedral set. By the
morphisms 1, : A(M,) — P(M) are étale for vertices v € My. For every face s
of M, there exists a vertex v € My and an arrow v — s in T(M). This means
that the morphism U := HUEJR/[ M, — M is surjective, so by Im
U={A(M,) = P(M)},c o is an étale cover of P(M). By [Proposition 5.2.7, U
is an affine cover. We note that by [Remark 4.4.6] in the particular situation where
M is a polyhedral poset, the cover U is a Zariski open cover of M. Consider the
induced surjective étale morphism A(U) — P(M). Let U*P =U xpp -+ xp U
denote the p-fold fibered product over M. Then by [Lemma 4.4.2] the canonical
morphism A(U*®*TD) - A(U)*®+1) is an isomorphism, and we may write

A(U)X(p-H) - H A(Myy X+ Xy Mvp).

(v, vp) E(JF)PH

The Sp,11-action on A(U)*®*Y is induced by the corresponding Sp+1-action on
U*(P+1) given by permuting the factors. The union of diagonals A, C A(U)P+?
corresponds to the union of diagonals in U*®+1) | which we will denote by D,
We define W, = U*#+D\D,,, so that A(W,) = A(UXP+D)\A, by

Let so, ..., sy, be a sequence of faces in M which are canonical representatives.
Let Cat(so, ..., s,) denote the category of objects (s,{fi : s; — s}_,), where
s € M®" and where f; : s; — s are arrows in T(M) for each i. An arrow
h:(s,{fi}) = (t,{g:}) is an arrow h : s — t in T(M) satisfying g; = hf; for
each i. The partial order < on Cat(so,...,s,) is defined by (s,{f;}) < (t,{9:})
whenever there exists an arrow (s, {f;}) = (t,{g:}). Let Min(so, ..., s,) denote
the set of minimal objects.

Lemma 6.2.1. Let sg, ..., s, be a sequence of faces in M. Then,
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a) there is an isomorphism

MSO“‘SP = MSU XM XM Msp E) H Ms;
(s,{fi})EMin(so,...,sp)

b) the projection morphisms pr; : My, s, — Mso...sAj...sp are given on each

component by My, : My — M.

Proof. a) For each (s,{fi}) € Min(so, ..., sp), the morphisms My, : My — M,
induces a morphism M, — M, ,,. Here a face (¢,f : s — t) of My is
mapped to the tuple of faces ((¢, f o fo),...,(t, f o fp)). Consider the induced
morphism v, ¢ [T (£, eMin(so,....s,) Ms = Msq...s,- We will define an inverse
¥y, of v,. Any tuple in My, , is on the form ((t,go), ..., (%, gp)), and defines
an element (¢,{g;}) in Cat(sg,...,sp). Let (s,{fi}) € Min(sg,...,sp) be a
minimal object such that (s,{f;}) < (¢,{¢;}). Then there exists an arrow

[ (s, {fi}) = (¢, {g:}), and the face (¢, f) of M, maps to ((¢,90), .-, (L, gp)).
Suppose that f": (s, {f/}) = (¢t,{g:}) is any other arrow in Cat(so,...,s,) such
that (s',{f/}) is minimal. Then fo f; = g; = f' o f! for each i. Consider the
arrows fg @ |s| — [t| and fg : |s'| — |t| in Fin, and note that fr(|s]) N fz(]s'])
both contains (J,(gi)r(|si|) C |t|. But the sub-polytope fr(|s]) N fi(|s]) € |¢]
corresponds to some arrow f” :s” — ¢ in T(M)®". One easily observes that
this induces an element (s”,{f/'}) in Cat(sg...,s,) which is less than or equal
to both (s,{f;}) and (s',{f/}). This is a contradiction unless (s, {f;}) is the
unique such minimal object, and f is the unique arrow to (¢,{g;}). Hence we
may define ¥, by ((t,g0), ..., (¢, gp)) — (¢, f), where (¢, f) is located in the term
M corresponding to the index (s, {f;}). This clearly determines a morphism,
which is an inverse of .
b) We have to show that the diagram

Tp
My —"— My,

Tp—1

MS(J) Mso...g;...sp

commutes for each j and (s,{f;}) € Min(sg,...,sp). Let (¢, f) be a face of

M,. Then prj(’}/p(tv f)) = ((t7 f © fO)a s (ta f © fj)7 s (ta f o fp)) On the
other hand, the arrows of the object (s(j),{g:}) satisfies h;g;, = f; for each
i # j. Since My, (t, f) = (t, fhy), it immediately follows that v, 1 (Mp,(t, f)) =
Prj(%o(t»f))' O

Lemma 6.2.2. The union of diagonals D, C Uxwth) g

1T M, = W, = 11 M,.
(s,{fi})eMin(vo,...,vp) (s,{fi})€eMin(vog,...,vp)
Ji#j:fi=f; fi#fiVi#]
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Proof. The action of Sp41 on U *(P+1) permutes the factors, so the union of
diagonals D,, can be identified with the fixed points of non-trivial group elements.
For every non-trivial o € S,1, the induced morphism o : U*®+1) — 7x(e+1)
restricts on components to isomorphisms Mvo___vp — Mvg<o)...v6(p)~ By the repre-
sentation of M., from o further restricts to an isomorphism
from M corresponding to the index (s, {f;}) € Min(vy,...,v,) to M, corre-
sponding to the index (s, {f,(;)}) € Min(v, (o), - -, Vs(p)). Hence o has no fixed
points unless the arrows f; : v; — s and f,(;) : Vo(;) — s are equal for all i. So
the non-trivial fixed points of M,,. ., are exactly the terms M corresponding
to an index (s, {f;}) such that there exists a non-trivial permutation ¢ such that
Jo(iy = fi for all i. This does not happen exactly when the f;’s are all different,
and the result follows. O

Let F be a quasi-coherent sheaf on P(M). By |[Lemma 6.2.1} the Cech
complex C®(U, Fe) is given by

é.(uafét) = @ F(A(MS),¢:f),
(s,{fi})eMin(vo,...,vp)

and the differentials dP : ép—l(u ,Fet) — cr (U, Fer) are given by the alter-
nating sums of the canonical homomorphisms M; : F(A(Ms(j)),w:(j)}') —
D(A(M;), 5 F) for j =0,...,p. Thus by |Lemma 6.2.2} the alternating Cech

complex groups C¥ (U, Fs;) are the Spyq-anti-invariant sections of

Fei(A(W,)) = b D(A(M,), ¢} F). (6.8)

(s,{fi})€Min(vo,...,vp)
fiFfiVi#]

The action of a permutation o € Sp41 on Fe (A(W),)) is given by mapping each
term I'(A (M), y:F) corresponding to the index (s,{f;}) € Min(vp,...,vp)
identically into I'(A(M;),®;F) corresponding to the index (s,{fs-1(;}) €
Min(voq(o), ey ’Uo-—l(p)). In other WOI‘dS, it is given by (ZL“O')(&{fi}) = ‘T(é%{fa(i)})'
Hence x5 (,3) = sgn(a)x(s’{fa(i)}) in é;’lt(u,fét) for all 0 € Spy;.

For the rest of this section we shall assume that M is a unimodular set.
In this situation, an object (s,{f;}) is minimal if and only if the functions
fi = |sil = |s| in Fin are jointly surjective. If (s, {f;}) is minimal, let T; denote
the subset U;»;im f; C {0,...,p} for each j € {0,...,p}. Then the inclusion
T; € A{0,...,p} corresponds to an arrow h; : s(j) — s in Fin where s(j) € M,
and the inclusion im f; C T); determines an arrow g; : s; — s(j) in Fin satisfying
hjg; = fi for each ¢ # j. Observe that (s(j),{g; }iz;) is in Min(so, ..., 5j,...,8n).
If (s,{fi}) is an object of Min(vo, ..., v,) and fo,..., fp arc all different, then the
arrows f; : |v;| — |s| in Fin form a permutation of the inclusions {i} C {0,...,p}
for i =0,...,p. So the integral order on {0,...,p} induces a unique associated
permutation o € Spy1 such that f,;)(0) = i for each i.

85



6. Cohen-Macaulay and Gorenstein properties

Definition 6.2.3. We define the subcomplex C% (U, F) of C*(U, Fs;) as

CRU.F) = P T(AM,), v F),

seJy,

where each index s € J}§, corresponds to the unique minimal element (s, {f;}) €
Min(vo, . ..,v,) such that each f; : |v;| — |s| satisfies f;(0) = i¢. The induced
differentials d? : C’Z_l(u, F)— CX(U,F) are given by

p

(P (2))scr, = (1) M, (2(5))-

Jj=0

For each integer p > 0, consider the homomorphism ¢P : C’Z(L[,]—' ) —
CP. (U, Fs) given by (0P (2))(s,{f,}) = sgn(o)zs, where o is the permutation
such that f,;)(0) = i for each i. To see that this is well-defined, we must
show that ¢P(z) is Sp4i-anti-invariant. So let 7 € S,y;. Then we require

that (¢F(2))(s,(1:1) = s8n(T) (B (2)) (5.1, 1)+ Bt (&P(2)) (s, 1,y = s80(T)Ts,
where 7 is the permutation such that f,.;y(0) =i for each i. Thus 77 = o, and
sgn(o)xs = sgn(7) sgn(m)z, as required.

Lemma 6.2.4. The homomorphisms ¢ induces an isomorphism of complexes
¢ CAWU.F) = O U, Fer).

Proof. First we must show that ¢ respects the differentials. Let z = (zs) €
C? (U, F) be a section. Then

¢ (A" (2)) (s 11,y = s2n(0)(d”(2))s = > sgn(0)(=1) Mj; (xy(;)),
j=0

where o € Sy, 41 is the unique permutation such that f,;)(0) = i for each i. On
the other hand,

P

(@ (8" @) s p = D (DM (6771 (2)) (s g1 i)

<.
o

[
M=

(=1)7 My, (sgn(7))zs(j))

.
Il
=)

[
M=

sgn(r) (=1)7 Mj; (24(;)

.
Il
=)

[
M=

sgn(To()) (1) 7D My (24(5),

.
Il
=)

where each arrow g; : v; — s(j) corresponds to the inclusion im f; C T; =

—

{0,...,£;(0),...,p}, and 7; is the permutation associated with the set of arrows
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{90y for cach . To iy that (/@) 1 = (@67 (D)1, e
must show that sgn(o)(—1)7 = sgn(7,;))(—1)7V) for each j. Substituting j with
o~ 1(j), this can be rewritten as

sgn(o)(—1)7 ) = sgn(r;)(~1)". (6.9)

Since f;(0) = 0~1(i) for each i, o1 is represented by the permutation

(o0 50 - 5o

Similarly, Tj_l is represented by the permutation

0 e /3\ e
fo(0) -+ f5(0) -+ £,(0)
Let P(o™!) = (Ec=1(0)s -1 €o-1(p)) be the p x p permutation matrix associated
with o=1. Then P(r 71) is obtained from P( ~1) by eliminating the j’th column
and the o~'(j)’th row. Hence det P(7; 1) is equal to the (p — 1) x (p — 1)

minor P(o~1),-1(;).;)- The cofactor expansion of P(c~!) along the j’th column
computes the determinant of P(oc~!) as follows:

P
det P(o~" 173 (=1) et P(o™1); 5 = (1) (=1)7 @) det P(r;1).
=0

The determinant of a permutation matrix is e(i{ual to the 51gn of the permutation,
and it follows that sgn(o~!) = (=1)7(=1)7 ) sgn(7; ). Thus we obtain the
equation .

Next we must show that ¢ is a bijection. It is clearly injective, and by Sj,41-
anti-invariance any section z € C¥, e (U Fer) satisfies xs (1,y) = sgn(0) (s (1,1
forallo € S,11. So each section is determined by its restriction to I'(A (Mj), i F)
for any choice of index (s, {f;}). Thus ¢ is surjective, and therefore an isomor-
phism of complexes. O

Lemma 6.2.5. For each integer p > 0, there is an isomorphism

Hp, (M, F) = H*(CA(U, F)).

Zar

Proof. By [Proposition 5.2.7] the étale cover U = {A(M,) = P(M)},c o is
affine. Now the statement Tollows from [Lemma 6.2.4] and [Lemma 6.1.2 O
6.3 The Cohen-Macaulay property for unimodular sets

Definition 6.3.1. Let M be a unimodular set, and let R be a graded I'(M)-
module. Then we define the reduced complex of R as

CA(M,R):0— R — CA(M,EP R(d))
deZ
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where R — CQ (M, & dez R(d)) is given by the canonical homomorphisms

Rq— H(M,R(d)) — @B T(A(M,),v;R(d)).

UGELTAl

The grading of the complex is given by 5;1(M, R) = R, and GZ(M, R) =
C% (M, R) for each p > 0.

By the exact sequence ([6.1)) and the isomorphisms (6 , we have HP (CNZ (M,R)) =
HPT(R) for all p > 0. Of partlcular interest is the case where R = T'(M). From
[Proposition 5.2.7, A(M;) is equal to the distinguished open subset D4 (65) of
P(L(My)). So for each face s of M, we have

V(P Om(d) = P Oiar) (d)(D4(65))

deZ dez

=~ (DT (L(M,))(d)s.) = TLM.)),.

deZ

This means that we may describe the reduced complex CN’A(M ,D(M)) as

0—=T(M)— €D TIL(M))e, == @ TL(M))o, -+ (6.10)

velJy, seJy,
The induced differentials are given by the alternating sum of the homomorphisms
L(My;) : T(IL(My(5)))e,;, — T(IL(Ms))s, -
Definition 6.3.2. Let M be a unimodular set. Then we define the complex

K*(M) as the subcomplex of C%(M,T(M)) given by K~*(M) = I'(M), and
K7 (M) = @,cr TLOML)).

0503

In the following theorem we will utilize our constructions thus far. The proof
draws its main idea from the proof of [Sta96, II, Theorem 4.1], by essentially

decomposing the chain complex C (M,I'(M)) into a direct sum of complexes
on the form K®(M) and K*(lkps(s)).

Theorem 6.3.3. Let M be a non-trivial unimodular set. Then ﬂ?n(F(M)) =0,
and for each i > 0, the Hilbert series of the graded T'(M)-module H' ™ (T'(M)) is

t—lpl—1

Hyiov oy () = H (M k) + Y dimy H' P 1k, (>’k)m'

pEMC’ID
In particular, T'(M) is Cohen-Macaulay if and only if
1) H{(M;k) =0 for all i < dim M, and

2) Hi(Ikp (p); k) = 0 for allp € T(M) and i < dim M — |p| — 1.

By|Lemma 5.4.5 and|Theorem 3.4.1), this can be equivalently rephrased as
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1) Hi(|M|;k) =0 for all i < dim M, and
2') HY(|M| | p) =0 for all points p € |M| and i < dim M.

Proof. We consider the reduced complex C3 (M, '(M)). Define 2¢ = x??o) =z x?(bn) €

L(A™),, for arrows f : n — m in Fin and o € Z"*'. Let s € M", and let (¢, f)
be a face of M. Consider the basis for the k-vector space I'(A"),, consisting of

1) monomials m € T'(A") and 2) elements on the form 22, where g : p — s is
fa

. . +1 . 1 Ca
some arrow in M", o € Z‘pg , and m is a monomial in I'(A") which is not

divisible by any generator on the form x ;. For each arrow g :p — s in M,
we may write T(Af) = T(AMpI(t/9)) @, T(AP), where the generators of T'(AP)
correspond t0 T g(q), - - -, Tg(|p)- In this notation, a basis element of the first type
corresponds to m ® 1, and a basis element of the second type corresponds to
m ® % By this we get the following vector space decomposition:

1
PAYs, =T(AYe H D ravisth)er{z).
Mcan g q

ez‘f"“ prs

Alternatively, we may write

r(AY., =T(aYe P @ (AMP LT (|al),

peMCan
EZ""“ p=

where |a] = ag + -+ + ayp, and where T(AMri(11:.79))(|a|) denotes the graded
vector space with degrees shifted by |«|. Observe that for any arrow h: (¢, f) —
(', f") in M, T(Ch,) : T(AY),,, — T(AY),, maps any element on the form
1® i to some non-zero scalar multlple of 1 ® = . Indeed, since these elements
‘7
can be written as mi and — respectively, the equahty hf = f means that
flg fy
Tprg) = Tpg(y) = A(f9(J))Tsg¢j)- It is clear that any monomial m € (At
not divisible by any generator on the form x4 ;) is mapped to a non-zero scalar
multiple of a monomial m’ € T'(A?) which is not divisible by any generator on the
form 2 f4¢;y. This means that I'( At’) splits into homomorphisms I'(A" ) — T'(A")

and T(AMie1 (119 (|a]) — T(AMi# (179 (|a|) via their respective decomposi-
tions. This justifies the following computation:

T(L(M,)), = lim T(AY),, = lim [T(Ahe @ @) r@aMmtio)(a))
si>t siﬂ peeglprl pi>

o P D ( lim T@AMnII0)(a])

can I
€M p—)s s—rt
EZIPHI

I
T’g
=
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Notice that lim N ['(AY) = T'(IL(My)). Moreover, for each non-identity arrow
s t
g:p— s, we have limsgtf(AM\m(W’fg)) = D(L(Tkn (p))(s.9)- g :p— s is

the identity arrow, then lky(p) = lim , AMizi(th1) By abuse of notation, we
S

shall write I'(IL(Ikas (p)) (p,ia)) for I'(IL(Ikas(p))). Taken together, we may write

T(L(M)s, =T(L(M) & P | P TLkn(p))s,0)(|x])

MCaH g
ezl P
Next we observe that the differentials of 5A(M ,I'(M)) respect this decom-
position: The homomorphism I'(My;) @ T'(L(My))e,;, — T(L(Ms))e, is

given by the localization homomorphisms T'(A?) — I'(A),, for each face

Lihg
(t,f) of M,. Thus any basis element on the form —*— maps to a non-
fhjog
zero scalar multiple of —%—. Hence F(At)mfhj restricts to a homomorphism
fohjg

F(]L(lk]u(p)(5(7)7q)))(|04‘) — F(L(lkM(p)(&th)))ﬂa\) This means that the re-
duced complex splits as a direct sum

CR(M,T(M)) =K*(M)& @ T3[Ip| - 1)(la)),

where T, = T'(lkp/(p)), and

T; = @ F(]L(lkM(p))(syg)) = @ F(L(lkM(p))(s7g))
p2bs in Mo® (S’g)eJlikM(P)
[s|=i+|p|+1

for each i > 0. Here T,7[—|p| — 1] denotes the chain complex shifted by —|p| — 1.
The induced differentials of T} are given by the sum of the homomorphisms
(=1)’T(kns (p)ar,, (ny)) + DLAkar(P))(s5).9)) = T(L(kar () (s,n,9)). We will
now define an isomorphism of complexes K*(lkps(p)) — 7. The terms of these
two complexes are the same, but the differentials of K*(lkas(p)) are given as the
alternate sum of the homomorphisms

(=T Wk (P)ny) = TL(Wknr (2)) i (5,9)) = T(L(kar (9)) (5,))-

By slight abuse of notation, we define ho(s,g) = (p,id) for vertices (s,g) €
lkar(p)o-

For each arrow g : m — m in Finand k =0,...,m —n — 1, let j = E(g,k)
denote the integer satisfying M,,(d;) = d*. Observe that for each s € Me"
h; = djo; for some automorphism o; of [s(j)|. Since M),(h;) is equal to some
hy, it therefore follows that M\, (h;) = hg. Thus he(s, hggr9) = (hegr) (5), 9)
for each arrow g : p — hf\é[(g’ k)(s), and the differentials of T} can written as the
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sum of the homomorphisms (—1)Z@*T 1k (p)n, ) - I‘(]L(lkM(p))(h ¥, 9)

I’(L(lkM(p))(S’hE(grk)g)). To find our isomorphism K*(lky(p)) — T, we are
therefore required to find signs sgn(s, g) € {1, —1} such that the dlagram

(=) T (Ikar (p)ny, )

DL (), (01) PN () ey 09)
lsgn(hI\El(g’m(s),g)F(id) lsgn(s,hmg,k)g)l“(id)
(=1)P@T(knr (p)ny,)

F(L(lkM(p))( IE(J o (); g)) F(L(lkM(p))(S,hE(g,k)g))
commutes for all faces (s, g) in lkps(p)®® and £k =0,...,|s| — [p| — 1. Thus we
must find a function sgn : Ik (p)®™ — {1, —1} satisfying

sgn(s, (g 9) (—1)* = sgn(hiy 4 (s), 9)(—1) PR (6.11)

It follows immediately by induction that g : p — s can be written as a composition
of arrows on the form h; : ¢(j) — t. Moreover, by construction we have
hjh; = hihj—1 whenever j > 1, so by ([Mac98, Proposition 2, p.174]) g can
be written uniquely as hj, - -- hj,, with jo > --- > j;, and thus we may define
sgn(s, g) = (—1)"t¥ =07, Note that F(g, k) is the integer in the k’th position of
[m]\ im g, where [m] = |s|. If we write [m]\im g = {jo, ..., jr}, then E(g, k) = ji.
I\IOW7 hjkg = hj0+1 . 'h’jk+1hjkhjk+1 s hj,,, via the relations hjhi = hihj,1
for j > i. This means that sgn(s, h; g) = (—1)P@R+EHDFE+DIT_05i =
(—1)Elgk)+k sgn(hAE/I(g’k) (s),9), immediately verifying (6.11). This yields our
desired isomorphism K*(lkys(p)) — T,y. Thus we can write the reduced complex
as
Ca(M,T(M) = K* (M) e @ K*(ku(p)l-Ipl — 1](Ja]).
peAcan
an‘>p$+1

BylProposition 3.6.3| and |Lemma 3.6.5[, the degree d part GA(M, I'(M))q is acyclic
for d > 0. Since K*(M) is a direct summand of CN'Z (M,T'(M)), this means that
K*(M)q is acyclic for d > 0 as well. But K°®(M), is simply the augmented
cellular cochain complex 0 — k — C3,(k), and it follows that H'(K*(M))
is equal to the reduced cohomology group H ‘(M;k). The same argument
applies to the complexes K*(lkp/(p)) as well, so that H*(K*(Ika (p))(la])) =
Hi(lkp(p): k) (Jor]). Hence

H(CAMI(M) =H Mo @ @ H " (kup)(al).

peEMean | yipl+1
>0

In other words, we have H’(@Z(M,F(M)))O = Hi(M;k), and for d < 0 fixed,

H(CAMIT(M))a= @B P H Pk (p); k).
PEME™ o eplrltt
|a]=—d
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Now, there are (_\pT ) elements of the set {a € Z‘pH'l |a] = —=d}, so

dimy H'(CX (M, T(M))a= > (‘d N 1) dimy, H =PI 1k 5/ (p); K).

pe Mcan ‘p|

Let ¢ > 0. Using that H{(C%(M,T(M))) = H*Y('(M)), the Hilbert series of
HT(I'(M)) becomes

Hugnwon® = FOLH+ Y ¢ (" )dlmkH’ Ptk (p): )

d=—oco peMean

Hi(M;k)+ > dimg H P 1k (p t—lz ) <p|)

pGMCaﬂ
t—\P\—l

HOE) + 3 dim B (s (0): )

peMcan

(here we have used the formula Y50 ¢~4(*F") = W) Finally, the

homomorphism I'(M) — T',(Oyy) is injective by [Proposition 3.6.3} so H, (T'(M))
is trivial, and we are done. O

6.4 The Gorenstein property for unimodular sets

Before proving we need some preliminary facts regarding the

non-normal locus of P(M), and its dualizing sheaf.

Lemma 6.4.1. Let M be a unimodular set. Then the non-normal locus P (M )y
of P(M) is equal to P(N(M)), where N(M) is the polyhedral subset of M
consisting of faces t such that Tkyy(t) 2 Adimla (@)

Proof. By N (M) defines a polyhedral subset of M. Indeed, if s €
M,,, and f:m — n is any arrow, then lkas(s) = k., (pm(5)) (s, f). If Tkpr(s) is
not isomorphic to a simplex, then by lkas(fM(s)) cannot be either.
Hence f(s) € N(M). First we will show that P(N(M)) € P(M)y. Consider
the normalization v : P(M) — P(M) from | where M =[] . g A%
Then the restriction P(M)\v=*(P(M),) — P(M )\P( )n is an isomorphism.
Let p be a point of P(N(M)), and let s be the minimal face of N (M) for which
p € P(M?®). Since lky/(s) is not a simplex, it is either not irreducible, or the
morphism A™ — lk,/(s) associated to its unique facet is not injective. In the
first case, suppose that (t1, f1) and (t2, f2) is a pair of facets of lk/(s)°". If
t1 # to, then P(M®) C P(M")NP(M?2), so that p lies in the intersection of two
irreducible components of P(M). Since P(M) is locally integral, v cannot be an
isomorphism around p. On the other hand, if ¢ := t; = 5, consider the morphism
¢ty + A* — M and the subsimplices A/t and A2 of A*. Then the restricted
morphisms (4, |an @ AN — M and ¢|ar @ A2 — M are both identical to
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¢y A® — M. Suppose that there exists an open neighbourhood U of p such
that the restricted morphism v~1(U) — U is an isomorphism. Then the induced
morphism V := P(AY) Nv~1(U) — P(M) is an open immersion; in particular it
is injective. Since P(A/1) UP(A2) C (¢},) 1 (P(M?)), the restricted morphism

(VnP(AM) U (VNP(AR)) - P(M?) (6.12)

is injective. However, the intersections V N P(A/?) are non-empty, and therefore
dense in P(Af). Define V; = V\P(A'2) and Vo = V\P(A/t). Since both
morphisms P(Afi) — P(M?*) are surjective morphisms of integral schemes, the
induced morphisms V; N P(Afi) — P(M?) are dominant, and therefore their
images have non-empty intersection. But then cannot possibly be injective.
This is a contradiction, showing that v is not an isomorphism around p. In
the second case, where lkj/(s) is irreducible, let (¢, f) be its unique (canonical)
facet, and suppose that f; : m; — n and fy : mo — n is a pair of faces of A™
mapping to the same face (u, g) of lkys(s). Then f1g = f = fog. This means
that lkas(w) is not irreducible, as it contains the pair of facets (¢, f1),(¢, f2). But
since p € P(M™"), the same argument as above shows that p € P(M),. This
shows that P(N(M)) C P(M)y.
Conversely, consider the restriction P(M)\v~1(P(N(M))) — P(M)\P(N(M)).

By |[Lemma 3.2.4] and [Lemma 4.4.4] this morphism is induced by the morphism
¢: M\v~=Y(N(M)) — M\N(M) of open categories. Since v : M — M is surjec-
tive, ¢ is as well. This means that the induced local morphisms ¢, : M, — My
are surjective for each t € M\v~='(N(M)). The induced morphisms of links
lk57(t) — lkas(t) are surjective morphisms of simplices, hence isomorphisms.
This means that ¢ is a local isomorphism. However, suppose that ¢ maps a
pair of faces s1,s2 to the same face s. Let (¢, f) be a facet of M. Since ¢,
and ¢, are isomorphisms, there exists facets (t1, f) and (to, f) of M, and
M, respectively mapping to (¢, f). However, there is a bijective correspon-
dence between the facets of M and the facets of M, which means that t; = t,.
Hence s; = so, which shows that ¢ is injective. In conclusion, the morphism
P(M)\v=Y{(P(N(M))) — P(M)\P(N(M)) is an isomorphism, and by definition
of P(M )y, this shows that P(M), C P(N(M)). O

Lemma 6.4.2. Let M, N be a pair of unimodular sets. Then there is an isomor-
phism N(M * N) = N(M)* N UM x N(N).

Proof. By definition, N(M x N) consists of the faces (s, t) for which lkrn((s, 1))
is not a simplex. By [Lemma 5.2.40 lkpin((s,t)) = lkp(s) x lky(¢). This

unimodular set is a simplex if and only if both lky,(s) and lky () are, and the

result follows from [Cemma 6.4.1] O

Definition 6.4.3. Let M be an n-dimensional polyhedral set. Then M is called
a homology manifold (with respect to the field k) if | M| is, i.e. if the reduced
homology groups H,(|M| | p;k) = 0 and PNIn_|S‘_1(|M\ | p;k) = k for all
i <n-—|s|—1 and points p € |M|. If H,(M;k) = k, then M is called an

orientable homology manifold. If moreover H;(|M]; k) = 0 for all ¢ < n then M
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is called a homology sphere (with respect to k). Note that by [Lemma 5.4.5| a
unimodular set M is a homology manifold if and only if Hy_ g1 (Ikar(s); k) =k

and H,(Ikp(s); k) = 0 for all faces s and i < n — |s| — 1.

Lemma 6.4.4. Let M be an n-dimensional polyhedral homology manifold with
respect to k. Then N(M) = M™~1,

Proof. The only polyhedral set which is simultaneously a simplex and a homology
sphere is @. Hence N (M) contains all non-facets. Since M is pure, the statement
follows. O

For an affine morphism f : X — Y of schemes, the quasi-coherent Ox-
module f!, G is defined by the formula f,f} G = Homy(f.Ox,G), for any
quasi-coherent sheaf G on Y ( Section 30.3]). The functor f!, is a right
adjoint to the functor f.. If f is finite and flat, the functor f!, is denoted f, and
is part of the six functor formalism. If f is finite and X and Y are projective
schemes of the same dimension, then f! wy = wx. If Y is also locally Gorenstein,
then the dualizing sheaf wy is invertible. By the projection formula and via the
adjunction (f., f.,), we have

fefihwy = Homy (f.Ox,wy) = Homy (f.Ox @ wy-, Oy)
= Homy (fuf wy,Oy) = fu Hom x(f*wy., f1,Oy)
= f, Hom x (Ox, fil,0y ® frwy) = fu(fLO0y ® frwy).

Thus we obtain the formula
wx = [0y @ frwy. (6.13)

Lemma 6.4.5. Let f : X — Y be an affine étale morphism of schemes. Then
fl.G = £*G for each quasi-coherent sheaf G on'Y . In particluar, if f is also finite

S
and X andY are projective schemes of the same dimension, then f*wy = wx.

Proof. Consider the fiber square

X xy X 220 X
"
f

The projections are affine and f is flat, so by the observation in Section
8], there is a natural isomorphism pr} f!, G = (pry)}, f*G. Next, the diagonal
morphism A : X — X Xy X is an open immersion since f is unramified, and
a section to each projection. Applying A* = A!sh on both sides yields the
result. O

Let X be a reduced projective scheme, and let v : X — X be the normal-
ization of X. Consider the injection v Ox — v4O%. Then the conductor
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ideal sheaf is defined as 7 = Anny (v.O«/Ox). Locally on affine U C X, note
that Z(U) = Ox (U) if and only if v|,-1(y) : v~ (U) = U is an isomorphism.
Thus the support of Ox /Z is the locus of where v is not an isomorphism, i.e.
the non-normal locus of X. Assume that X is seminormal. Then the ideal Z
is radical by and therefore cuts out the reduced subscheme X,
of X. It follows that the ideal sheaves Z and Zx,_ are equal. If A C A is the
integral closure of a reduced ring A, then Anna(A4/A) = Hom 4 (4, A) ([HS06
Lemma 2.4.2]). The conductor ideal Anna(A/A) is moreover characterized
by being the largest common ideal of A and A. Globally, this translates to
Hom x (1.0, 0x) = Ix, = viL,-1(x,). Hence

T,-1(x,) = Vi Ox. (6.14)

6.4.1 Classifying Gorenstein unimodular sets

Theorem 6.4.6. Let M be a unimodular set. Then the following are equivalent:
a) T'(M) is Gorenstein.

b) There exists a unimodular homology sphere S (with respect to k) such that
M = S xA™ for some integer n > —1.

c) There exists a unimodular homology sphere S such that T (M) =2 T'(S) ®
T(A™) for some integer n > —1.

Moreover, wyr = Opn(—n — 1). In particular, |M| is a homology sphere if and
only if T(M) is Gorenstein and wyr = Oyy.

Proof. We proceed by induction on the dimension n of M. For any n, c)
immediately follows from b), so we can limit ourself to proving a) = b) and ¢)
= a). First we will deal with the cases n = —1,0 separately. If n = —1, then
M =@ and T'(M) = k. A field is a Gorenstein ring and @ is a homology sphere,
so the implications hold. If n = 0, then M is a disjoint union of points. By
[Proposition 2.7.2) T'(M) is on the form k[z, : v € J{]/(2p2y : v # w). T(M) is
clearly Gorenstein if |J%;| = 1, and in this case L(M,) — M is an isomorphism,
where v is the vertex of M (satisfying lkys(v) = @). To determine whether I'(M)
is Gorenstein when [J},| > 1, we divide out by the non-zero divisor - . 79, To-

Pick a vertex vg € JY;. Then k & k{z, : v # vo} is a graded decomposition
of the quotient ring. Observe that the socle is (|.J§;| — 1)-dimensional. To
be a Gorenstein ring, we therefore require |J{;| = 2. In this case, M is a
homology sphere. We conclude that a) = b). Conversely, if I'(M) is on the form
I'(N) ® T'(A™) for a homology sphere N, then M is either the disjoint union of
two points or on the form I'(A%). As we have seen, I'(M) is Gorenstein in both
cases. In conclusion, ¢) = a).

We may now assume that n > 1. We begin with the direction c¢) = a).
Suppose that M is a homology sphere. Then by [Theorem 6.3.3) I'(M) is Cohen-
Macaulay. By each link is a homology sphere. Thus by the
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inductive hypothesis, I'(lkps(v)) is a Gorenstein ring for each vertex v € M.
By there is an isomorphism A(M,) = SpecI'(Ikas(v)). This
means that the étale cover {A(M,) — P(M)},¢ o consists of locally Gorenstein
schemes. However, an étale morphism of schemes (where every closed point
is a k-point) induces an isomorphism on stalks after completion Tag
039M], and by Theorem 18.3] a local finite-dimensional Noetherian
ring is Gorenstein if and only its completion is. It follows that P(M) is locally
Gorenstein. This means that the dualizing sheaf wj; is invertible. We will
show that wy; is trivial. Assume first that n > 2. By |Proposition 3.5.3] was is
represented by an element of HO(|M|\|M°|; Z) x Pico(M). But HO(|M|\|M°|; Z)
is a free Z-module of rank equal to the number of connected components of
|M|\|M°|. Since M is a homology sphere of dimension > 2, the long exact
sequence of relative homology reduces to an exact sequence

0 — Hy(|M] | [M°; k) — Ho(|M\[M°]; k) — Ho(IM|; k) — Ho(|M] | [M°]; k) —

For each i, H;(|M| | |[M°|; k) = EBUGJIOW H;_1(lkps(v); k) by [Lemma 5.4.50 But

each lkys(v) is a > 1-dimensional homology sphere, so Ho(|M| | |[M°|;k) =
0 and Hy(|M| | |[M°;k) = 0. Thus Ho(|M|\|M°|;k) = k, and therefore
HO(|M\|MP|;k) = k. Hence wy, is represented by a pair (d, &), where d is
an integer, and & has trivial degree function. In other words, (j;war = Oas(d)
for all faces s of M. In particular, aj,war = Oan (d). By Serre duality and
we have dimy HO(M,wyy) = dimy H*(M, Oyy) = dimy H*(M; k) = 1,
and dimy, H®(M,wyr) = dimy H°(M, Oy;) = 1. Consider the exact sequence

0— wpy — OARI (d) (&) OMn—l(L}kwwM) — OBA}\‘I (d) — 0,

and the induced long exact sequence in cohomology. Since H°(M,wys) C
H°(A%, Oan (d)), we must have d > 0. Assume that d > 0. The end of the
long exact sequence is on the form H* '(9AR;, Opan (d)) — H™(M,wrr) —
H"™(A%,Oan (d)) — 0. Since d > 0, H*(A};,Oan (d)) vanishes. But the
cohomology group H®~1(0A%,, Opar (d)) vanishes as well, which is seen by the
long exact sequence in cohomology associated to the exact sequence

0— OAxI\:/I(—Il -1+ d) — OA?M (d) — OaA?M — 0.

Hence H™(M,wys) = 0, which is a contradiction. We conclude that d = 0. Next
we may follow in parallel with the proof of Theorem 6.1]. Let x be a non-
trivial global section of wys, and suppose that = vanishes at a point P € P(M).
Then P is in the image of a morphism (3, : P(A®) — P (M) for some facet s.
Since (§fwar = Oas, we must have (37(z) = 0. Since |[M|\|M°| is connected,
the same argument used in [Proposition 3.5.3| shows that any facet ¢ can be
connected with s by a chain s + u; — -+ < u,, — t of > 1-dimensional faces

UL, ..., Uy of M. If u connects s with a facet ¢ via a simple chain ¢ Loy s s,
then ¢Li¢t (x) = ¢%2¢35 () = 0. This implies that ¢4:(x) = 0. Thus ¢4 (x) = 0
for all facets ¢ by induction on the length of a chain connecting s with . Since
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HO(M,wy) € HO(AY,, Oa= ), this is a contradiction. So z vanishes nowhere,
and therefore trivializes wps. We conclude that wy;s = Opy. Next we consider the
case where n = 1. Since Hy(M; k) = k, M is a connected graph. It is moreover a
2-regular graph, since lk,;(v) is the disjoint union of two points for each vertex v.
It follows that M is a cycle. Consider the unique morphism ¢ : M — L, where £
is the loop (a cycle with one edge). Since |£|\|£°] is connected, applying the same
argument as above shows that ws = O,. Observe that ¢ is a local isomorphism,
so that ¢ : P(M) — P(L) is étale by |[Theorem 4.4.1] By [Lemma 6.4.5] we have
wy 2w, so wyr = Opy. Thus for general n, T'(M) is Cohen-Macaulay and
wy = Oy Tt follows from [GWT8, (5.1.9)] that T'(M) is a graded Gorenstein
ring (with canonical module T'(M)).

Assume now that I'(M) 2 T'(A™) @ I'(N) for some homology sphere N and
some integer n > 0. The graded polynomial ring I'(A™) is Gorenstein with
canonical module T'(A™)[—n — 1], and by the inductive hypothesis, T'(V) is a
graded Gorenstein ring with canonical module I'(N). It follows immediately that
I'(M) is Gorenstein with canonical module I'(M)[—n — 1] (see Section
21.11]). By (5.1.8)], we have that wps = Opr(—n — 1).

For the other direction a) = b), assume that I'(M) is a Gorenstein ring. In
particular, I'(M) is Cohen-Macaulay. Hence by we have that
ﬁi(M; k) =0foralli < n. Let s be a face of M, and consider the étale morphism
A(M;) — P(M). By Lemma 5.1.10], P(M) is locally Gorenstein, so
each A(M,) is Gorenstein as well. But A(M,) = Spec'(Iky(s)) x (G, )40
by [Corollary 5.2.9] and it follows that I'(Ika(s)) is a Gorenstein ring. By the
inductive hypothesis, lkys(s) is on the form N x A™ for some homology sphere
N and some integer n > —1. Thus |lkps(s)| which is of one of the following
two types: Either it is a homology sphere (n = —1), or it is the cone over some
other topological space (n > 0). In the latter case it is contractible. So in
either case, we have by that ﬁi,m,l(lkM(s); k) =0 for all i < n,
and Hy_ o _1(kar(s); k) = k or Hy o1 (Iknr(s); k) = 0. By (5.1.9)]
we have wy; = Op(—n) for some integer n. Assume that n < 0. Then by
Serre duality, H*(M, Oy) = H*(M, Oy (—n)). But implies that
H™(Op(—n)) = 0. Since dimy H°(M, Oypr) > 0, this is a contradiction, so n > 0.
By Serre duality again, dimy, H°(M, Op(d+1—n)) = dimy H*(M, Op(—d—1))
for all integers d. Thus from [Theorem 6.3.3| and [Proposition 3.6.3] we obtain
the formula

Zn: > dimy H* " (T (s); k) <:fl> = ;:()Wm(d;n) (6.15)

m=0seJy;

for integers d > 0. Assume first that n = 0. Then (6.15]) forces the equal-
ities dimy H®~15I=1(1k/(s); k) = 1 for each face s of M. By Serre duality,

dimy, H*(M, Oyr) = dimy H(M, Oyr) = 1. Hence by [Theorem 3.4.1] we have
dimy H™(M; k) = 1. Thus M is a homology sphere, as the homological condi-
tions are now obtained from the universal coefficient theorem. Next, assume

that n > 0. Since H™(M, Op;(—n)) = H°(M,Oy;) = 1, by [Theorem 6.3.3 we
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obtain the formula

>N dimg B (kg (s): k) (”_ 1) =1. (6.16)

m=0seJ}}

This implies that there exists a unique face s € M of dimension dims <n —1
such that dimy H®~15I=1(1kp(s); k) = 1. Thus lkp(s) is a homology sphere.
Since dims =n — 1, we have n < n + 1.

By we have L(M;) = lkp(s) » A%, so that T'(L(M;)) =
I'(Ikas(s)) @k T(A®). The inductive hypothesis implies that I'(IL(Mj)) is Goren-
stein with canonical module I'(IL(Mj))[—n]. Thus wy,ar,) = Opr,)(—n). Con-
sider now the morphism ¢ : P(L(M,)) — P(M) induced by ¢ : L(My) — M,
and observe that ¢*wy = wi ). By , we have that d)!shOM = Orou,)-
This means that

qj)sAh!(O‘M)éhoM = (O‘L(Ms))lsh(béhoM = (aL(MS))éhOJL(MS)~

By [Lemma 6.4.1, P(M), = P(N(M)) and P(L(M,)), = P(N(L(M,))). By
1 n
[6.14), we have gbA'Ia;}(N(M)) =7 1 J(N(LOL)): However, ¢ : P(AL(MS)) —

Y (Mg

P(A%,) is locally on P(AI‘L‘( Ms)) an isomorphism, so the functors ¢! and ¢* are

easily seen to be naturally equivalent. Hence ngA*Ia;Jl(N(M)) =1, (N(L(M.)))?
L(Ms) s

which implies that ¢~ (P(ay, (N(M)))) = P(agy, (N(L(My)))). Thus by
Lemma 3.2.4) P(¢~1(N(M))) = P(N(LL(Mj))). This implies that ¢~ (N(M)) =

N(IL(My))

By |[Lemma 5.2.8] the isomorphism P(L(M;)) — P(lkas(s) x A®) restricts
H

to an isomorphism P(MF) — P(lky(s) x 0A%). By [Lemma 6.4.2] we have
N(lkar(s)x A%) = N(Ikas(s)) * A® Ulkps(s) * N(A?®). However, P(A?) is normal,
so N(A®) = @. Also, by [Lemma 6.4.4, we have N(lkps(s)) = lkps(s)*151=2.
Hence N (lkps(s) x A%) = lkps(s)™ 715172 % As. It follows that

P(MF 0 N(L(M,))) = P(MP) N P(N(L(M,)))
P(lkps(s) x OA%) NP Ik (s)* 715172 < A?)
P(lky ()27 15172 £ 5A%).

I

Since Ik (s)2 15172 % OA® C (lkps(s) x* A%)™~2, the closed subscheme P(MF N
N(IL(Mjy)) does not have any components of dimension > (n — 1). This implies
that MF N N(L(M;)) € M™~2. Since AP v,y — ARy is a local isomorphism,
it follows that L(M)\N(L(Ms)) — M\N(M) is as well. Since My — M is
also a local isomorphism, so is the morphism (L(M;)\N(L(Ms))) U Mg — M of
open categories. In conclusion, the morphism L(M;)\L(M;)*~2 — M\M"~2 is
a local isomorphism.

We will show that both of these open categories are connected. If n = 1 this
is clear. Assume that n > 1, and suppose that M = NU Z with NNZ C M®~2,
where NV and Z are both nontrivial pure n-dimensional. Let ¢t € M, _5 be a facet
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of this intersection. Then lky(t) is 1-dimensional. However, its 1-dimensional
faces are on the form t — y for y € N, or t — z for z € Z. But such facets cannot
share a vertex t — u, since u € My_1. It follows that lkps(¢) is not connected,
so that fIO(IkM(t); k) # 0. This is a contradiction. The same argument applies
to L(Ms).

We will now show that ¢ is surjective. Pick s € M, not in the image of ¢.
Then s can be connected via elements in M\ M®™~2 to a face s’ € M, which is in
the image of ¢. Replacing s and s’ with appropriately chosen other faces of the
chain if necessary, we may assume that there exists a pair of arrows f : ¢t — s
and g : t — s’ in T(M) for some t € M\M®™ 2. Let u € L(Mj)y, be a face with
#(u) = ', and let r = g™ (u). Then the local morphism ¢, : L(M,), — M,
cannot be an isomorphism since ¢ — s is not in the image. This is a contradiction,
and we conclude that ¢ is surjective.

Next we will show that for each facet ¢t of M, there is maximally one face on
the form s — ¢ in M. Suppose on the contrary that there exists two different
arrows f1, fo : 8 — t, and let ¢1,t5 denote the corresponding facets in L(My). Let
i € im f1\im fa, and consider the arrow d; : [|t| — 1] — [|¢|]. Then there exists a

factorization s = dM (t) L ¢ of f5: s — ¢, but no factorization s — dM (t) L ¢
of fi 1 s —t. Hence d; € A%, N (A’}l)P. This implies that us = dH-“(MS)(tg) € Ms,

and uy = d]if(Ms)(tl) € MF. However, both faces maps to u = dM(t) via the
morphism L(M,) — M. Since MP N N(L(M,)) € M™ 2, and u; € My 1,
we have u; € L(M,)\N(L(M,)). By lkp(az,y(u1) is a simplex.
But L(M)\L(M)*~2 — M\M®™2 is a local isomorphism, which implies that
Ikp (ar,)(u1) = Ik (ar,) (u2) = lkpr(u). By [Lemma 5.2.3L lear(u) = Tk, () (u, h),
which is a homology sphere. This is a contradiction, since u is not a facet.

In conclusion, the map L(M;), — M, is bijective. Hence P(M) and
P(L(M,)) have the same normalization, so ¢* : Afar,y — Al s an iso-

morphism. Since L(M,) — M is surjective, ¢f : Oy — ¢+OL (a1, s injective.
By [HS06, Lemma 2.4.2], there is an isomorphism

Ann g (6. Or ) /Onr) = Hom (62 Ovar,), Onr) = b2, Ot

Since ¢!, Opr = OL(n,), we obtain an isomorphism ¢, Op ) = Annag (¢4 Oriar,)/
Our), which is an ideal sheaf of Oy;. It follows that ¢f : Oy — O, 1s
an isomorphism. Since ¢ is affine, P(L(M;)) — P(M) is an isomorphism.

By [Lemma 4.3.5 this implies that (M) — M is an isomorphism, and thus
M = 1kp(s) x A%, showing b). O

6.5 Regular subdivisions of face schemes

We continue with the notation from We define Pr(M,¥) =
Proj(T'r(M, V). This yields a functor P : C — Schg, since any homomorphism
on the form I'r(¢) : Tr(N,®) — I'r(M, V) is finite. The natural grading on
FR(M, \I/> defines a sheaf OPR(M,\I/)<1)
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6. Cohen-Macaulay and Gorenstein properties

Lemma 6.5.1. Let M be a finite polyhedral set, and let R be a k-algebra DVR with
residue field k and field of fractions K. Then the morphism P r(M, V) — Spec(R)
is flat with central fiber Pr(PS(M,V)), and generic fiber Py (M). More-
over, the sheaf Op ,(ar,w)(1) is a relatively ample line bundle with central fiber
Op,.(ps(m,w))(1), and generic fiber Op . (ar)(1). Hence the pairs (P (M), Op(1))
and (Py(PS(M,V)), Op,(ps,w)) (1)) are deformation equivalent.

Proof. The both statements follows from [Theorem 2.9.11| (and the fact that

relative ampleness is a local property on the base). O

Lemma 6.5.2. Let M be a polyhedral set. Then there is a natural isomorphism
of pairs (P(nM), On(1)) = (P(M), Opr(n)).

Proof. This follows immediately from O
Theorem 6.5.3. If M is a finite polyhedral set, there exists an integer n > 1

such that pair (Prp(M),On(n)) is deformation equivalent to (Py(Z),0z(1)) for
some simplicial complex Z such that |Z| = |M| (and any field k).

Proof. This follows from a straight-forward application of[Theorem 2.9.9| |[Lemma 6.5.2|
and [Cemma 6.5.71 O

Theorem 6.5.4. Let M be a polyhedral homology manifold. Then P (M) is locally
Gorenstein, and wf\;f = O Moreover, M is orientable if and only if war = Oay.

Proof. Assume first that M is unimodular. Since M is a homology manifold,
each link lkps(s) is a homology sphere for each face s of M. Consider the étale
cover {A(M;) — P(M)}ser(ary- By [Corollary 5.2.9) the morphisms A (M) —
Spec T (Ikps(s)) xk (G, )4™® are isomorphisms. Since the Gorenstein property
is preserved under étale morphisms, each A (M) is Gorenstein by
It follows that P(M) is locally Gorenstein. Assume that M is an orientable
homology manifold, and let n = dim M. By[Lemma 3.3.1} aps : P(A%,) — P(M)
is the normalization of P(M). By |[Lemma 6.4.4f and [Lemma 6.4.1} we have
P(M), = P(M™~1). Hence (an)ly,On = Zoan by , we have
a*IaARI = Tyyn-1, 8O aM*(aM)!Sh(’)M = Tym-1. However, we also have IaARd =
waR, by Thus we may rewrite as wan = wan @ ajw,
which implies that aj;way = Oan . The same argument as in the proof of
now shows that wy; has a non-trivial global section, which
trivializes wps. This shows that wys = Oy whenever M is orientable.

Next we assume that M is non-orientable. By|[Proposition 5.4.3} the orientable
double cover 7 : M — M is a local isomorphism. Bleheorem 4.4.1l m:P(M)—
P(M) is étale. We know that 7r1(|]\~4\) C m(|M]) is a subgroup of index two,
hence by abelianizing we get an exact sequence

0— Hi(M)— H(M)—7Z/2—0.
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Regular subdivisions of face schemes

By the universal coefficient theorem, dualizing with respect to G, yields an
exact sequence

0 — Hom(Z/2, G,) — H(M; Gy,) — H'(M; G,).

Now, since  is étale, we have m*wy; = w by|Lemma 6.4.5, But M is orientable,

so m*wpr = O~. It follows that the degree function of wy, is trivial, hence by

Theorem 3.5.2] wyy is represented by an element of H!(|M|, G,,). Via the natural

isomorphism Pico(way) = HY(M;G,,), wy is identified with an element in the
kernel of H'(M; G,,) — HI(M; G,.). But Hom(Z/2, G,,,) is isomorphic to Z/2
(or trivial if chark = 2), so w? is trivial in H'(M;G,,). We conclude that
wf\?{z > ). Since M is not orientable, we have H™(M;k) = 0. By Serre duality,
HO(M,wy) =2 H*(M,Op) & H*(M; k) = 0. Hence wys does not have a global
section, and is therefore not trivial.

Finally, let M be a general polyhedral homology manifold. By [Theorem 6.5.3]
there exists a marked pair (M, ¥) such that Z = PS(M,¥) is unimodular
and |Z| = |M|. By the above, Py(Z) is locally Gorenstein. This property
is preserved under deformation equivalence, so P (M) is locally Gorenstein

as well by For the rest of the statements, it will suffice to

~

show that for projective schemes X, the properties wy = Oy, w?}Q = Ox
and H°(X,wx) = 0 are open stable under generization in proper families of
locally Gorenstein schemes. Indeed, suppose that X — Spec(R) is such a
family, where R is a DVR. Then its relative dualizing complex is invertible
( Tag 0DW9]), hence it has an invertible relative dualizing sheaf wy /g.
Assume that either of the properties above apply for its central fiber Xy. We
will show that the same applies to its general fiber &;. Since wx/plx, = wa,
in general ([Stacks, Tag 0BZW]), we can lift a trivializing section of wyx,)

(resp. w?éoz) to a trivializing section of wx,p (resp. w?;?R). This induces
a trivializing section of wx, (resp. wjeéf). Finally, since wyx /g is invertible,
HO(X,wx/R) =0= HO(X,wx/R) =0= HO(XW»WXN/R) =0. O]

Corollary 6.5.5. If M is a polyhedral homology sphere (with respect to k), then
(M) is Gorenstein. In particular, T(0AT) is Gorenstein for all P € P.

Proof. By [Theorem 6.5.4, we have wys = Opr. Thus by Serre duality and
[Lemma 3.6.5 H'(M,On(—d)) = H* *(M,0Op(d)) = 0 for all d > 0 and
i < n. Since M is a homology sphere, H'(M,O;) = 0 for all 0 < i < n as
well. This means that T'(M) is Cohen-Macaulay, and by (5.1.9)], also
Gorenstein. O

101


http://stacks.math.columbia.edu/tag/0DW9
http://stacks.math.columbia.edu/tag/0BZW




Chapter 7

Deformations of face schemes of
polyhedral manifolds

This chapter will be concerned with the following objectives: First, we will prove
the vanishing of the obstructions to glueing local infinitesimal deformations of
(P(M),0p(1)) in dimension 2. This is essentially done via reduction to the
simplicial case. Second, we compute the universal base space for the deformation
functor of pairs under some restrictions on M. Then we find further conditions
under which the smoothing component is identifiable, and apply it to two classes
of examples in the final two sections.

We refer to [Har10| for the basic terminology on deformation theory. For
additional results, [Ser06] and [Art69] will be referenced. We consider the functor
F : k-alg — Set given by F(B) = {(f : X — Spec(B), L)}/ =, where f is proper
and flat, and L is an ample line bundle. Functoriality is given by base change.
This functor is locally of finite presentation (i.e. it preserves inductive limits),
which follows from standard techniques. Let X be a reduced and projective
scheme over k, and let L be an ample line bundle on X. Consider the over-
category k-alg/k, consisting of k-algebras B equipped with a homomorphism

¢ : B — k. The local functor F(x ) : k-alg/k — Set is given by F(x 1)(B 2,
k) ={(X',L") € F(B) : F(¢)(X',L") = (X,L)}. We will focus on the local
deformation functor Def(x 1), which is equal to F{x 1) restricted to the category
of local Artinian k-algebras. It maps A to the set of equivalence classes of
pairs (X’ — Spec(A4), L"), where X’ is a deformation of X over Spec(A’), and
L' ®a k= L (note that deformations X’ — Spec(A’) are automatically proper
since A’ is finite over k). When X is smooth, its basic properties are well known
('Ser06|, Section 3.3.3]). In particular, Def x 1) has a miniversal family. However,
the smoothness assumption is redundant, as is shown in . In fact, since L
is ample, Def x 1 is pro-representable and has unique effectivizations of formal
families. This essentially follows from representability of the Hilbert functor and
the Picard functor. As a consequence of that, all effective formal families are
algebraizable:

Proposition 7.0.1. Any formal family {(X,, L)} for Def x 1) is algebraizable
(including the universal formal family). ILe. there exists an algebraic deformation
(X — Spec(B), L) and compatible isomorphisms (X xg B/m™, L ®p B/m™") N
(X, Ly). Moreover, the base space Spec(B) for the universal deformation is
unique in the étale-topology locally around 0 € Spec(B).

Proof. Since Def x 1) has unique effectivizations, the above statement holds for
the universal formal family by [Art69, Theorem 1.6] and [Art69, Theorem 1.7].
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7. Deformations of face schemes of polyhedral manifolds

Since any formal family {(X,,, L,)} is effective, it is automatically algebraizable
as a base change of an algebraic universal deformation. O

We will now summarize from [AC10| what we shall require here. Consider
the natural morphism dlog : O% — {x given locally by v %‘, and let
c: HY(X,0%) — H'(X,Qx) denote the induced homomorphism in cohomology.

Since H'(X, Qx) = Exty (Ox,Qx), the element ¢(L) induces an extension
0—=Qx - Qr — Ox — 0. (7.1)

This sequence is locally split-exact, hence by dualizing we obtain an exact
sequence

O—>Ox—>gL—>Tx—>07
where £, = QY.

Theorem 7.0.2 ([AC10, Theorem 3.1]).

1) The functor Def x 1y has a miniversal family (i.e. Def x r satisfies (H0)—
(H3) of Schlessinger’s criterion Theorem 16.2]).

2) There is an isomorphism Def x 1)(ke]) = Exth (Qr, Ox).
3) There is an exact sequence
0— H'(X,&L) = Bxtx (Qr,Ox) — H(X,Tx) — H*(X,EL),

where HY(X,EL) parametrizes the locally trivial first-order deformations
of X.

4) The obstructions for Def x 1 lie in H*(X,T3), H*(X, Ty) and H*(X,EL).

7.1 Vanishing of obstructions

For the rest of this chapter, we shall assume that M is 2-dimensional polyhedral
manifold. We will prove that the obstruction module H2(M, £1) vanishes, where
L = Op(1). If M is a simplicial manifold, then the vanishing of H?(M,&y)
is known Theorem 6.1]. We will prove the general result in two steps.
First, we show that the property that H?(M,&r) = 0 is preserved under scaling
of M, and then under certain types of subdivisions called simple subdivisions.
Second, we show that it is possible to iteratively scale and subdivide M via
simple subdivisions until one ends up with a simplicial manifold.

Definition 7.1.1. Let (M, ¥) be a marked pair structure on a 2-dimensional
polyhedral manifold M. Then the inner skeleton S C PS(M, V) of the subdivi-
sion is the closure of PS(M, W)"\ PS(M?!, ¥|y1). Hence S is 1-dimensional, and
its edges are those which are not contained in PS(M?', ¥|y1). A subdivision of
M is called simple if Hy(|S]) = 0.
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Vanishing of obstructions

First, we shall require a more general version of ([7.1). Let 7 : X — Spec(R)
be a projective, flat morphism, where R is some finitely generated k-algebra.

Let L be a line bundle on X. Consider the morphism dlogg : O% — Qx/r
dw)
This induces a homomorphism cp : Pic(X) =N HY(X,0%) — H*(Qx/p). Since
HY(X,Qx/p) = Ext% (Ox, Qx/r), the element cr(L) induces an extension

given by u — . It is easy to check that this is a morphism of abelian groups.

CR(L)IOHQ)(/R—)QL—)O)(HO.

As before, this sequence is locally split-exact, hence by dualizing we obtain an
exact sequence
0—-0x —& —Tx — 0,

where £, = QY.

Proposition 7.1.2. Let n be a positive integer. Then Q. = Qr, so that &, =
Er.

Proof. We shall require the following fact, which follows immediately from the
construction in Theorem 3.4.3]: Let R be a ring, and A, B R-modules.
Let 7 € R be an invertible element, and e € Ext},(A, B) an extension class. Then
e and re are isomorphic as R-modules. This easily globalizes to the corresponding
statement for quasi-coherent sheaves on X, so we can apply it to the extension
¢(L) € Exty(Ox,Qx). First, since the homomorphism ¢ is additive, we have
c(L®™) = nc(L). Now, n is invertible in HY(X,Ox), and thus the middle terms
of the extensions corresponding to nc(L) and ¢(L) are isomorphic. In other
words, Qnr = Qr. ]

Proposition 7.1.3. Let © € Spec(R) be a point, and consider the fiber X, —
Spec(k(x)). Let L, := L|x, = L ®g k(x). Then (Qr)|x, = Q1L,-

Proof. Let f: X, — X denote the closed immersion of the fiber over z. Observe
that Qx/r ®r k(z) = f.Qx, /k(z). Consider the commutative diagram

dlogp
O% Qx/r

\L Jx dlogy (o) l

% X, /k(a)-

This induces a commutative diagram

HY(X,0%) ———= H'(X,Qx/r)

| |

HY(X, f.O0X,) —= H'(X, £.Qx, /1)

| |

" Ch(x)
HY (X, 0%,) — = HY (X0, Qx, jia))-
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7. Deformations of face schemes of polyhedral manifolds

The vertical arrow on the right is just the composition H'(X, Qx/r) —
HY(X,Qx/5) @r k(z) = H' (Xa, Qx, /(). Thus cx(Llx,) = cr(L) @ 1. I
we view ¢g(L) ® 1 as an element of Extﬁ(m (Ox,,9x, /k(z)) = HY (X2, Qx, /k(x))
it corresponds to

CR(L) ®1:0— QXz/k(ac) — (QL)|XT — OXm — 0.

Since this also corresponds to the extension cy,)(L|x,), we conclude that

(Qr)lx. = Q.- O

We will now apply the above in the situation where X := Pg(M,¥) —
Spec(R) is a deformation arising from a marked pair structure (M, ¥), where
R = E[t], and p = (t). In this situation, the central fiber (Xy, Ox(1)|x,) is
isomorphic to a pair (P(Z),Oz(1)) for Z = PS(M, V). Define L = Ox(1) and
L = Oyz(1), and consider the exact sequence

0= Ox 5 Ox — Oy —0. (7.2)
This yields an exact sequence (see [Harl0, Theorem 3.4])
0— TX/R i) T/y/R — TZ/k — T/—%/R i) T)%/R

If we let C' denote the sheaf of ¢-torsion sections of 7} /R then we get the exact
sequence
0_>TX/R®R'Z€—>TZ/I~:_>O_>O- (73)

Now, by [Proposition 7.1.3] there is an isomorphism (Qr)|x, = Qr (compatible
with the isomorphism Qx/rlx, — Qz/i). So if we apply H#om (Qr, —) to ,
one obtains an injective morphism £, ®g k — &. Consider the commutative
diagram

04>(9x®Rk4>5L®Rk4>Tx/R®Rk4>O

]

0 OZ 8L TZ/k 07

By the snake lemma and (7.3]) there is an induced exact sequence on the form
0=>E8,Qrk—E&, —C—0. (7.4)

Our next goal is to find conditions under which H'(X,C') = 0. To do this, we
must consider a new type of face ring construction:

Remark 7.1.4. There is an alternative way of interpreting the face ring con-

struction (M, ¥) +— T'r(M, V) from and it involves considering
each ring T'r(P,%) as the coordinate ring of a polyhedron ), which essen-

tially forms a homotopy between P and the subdivision PS(P, ). The general
setup is as follows. Let Q. denote the category of full-dimensional lattice
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Vanishing of obstructions

polyhedrons Q C R™ |CLS11], Definition 7.1.3](including the empty-polyhedron
2). If Q = {m € 2™ | (m,ur) > —ar} is a lattice polyhedron, let
Cg = {m € Z3™(Q) | (m,up) > 0} denote its recession cone. The category Q.
may be defined analogously to P, where arrows (f,Ar) : Q1 — Q2 are affine
transformations f : Z4m(@1) — 7dim(Q2) = g . RAim(@Q1) _y RAIM(Q2) jdentifies Qy
with a face of (Q2, and where Ay : Z4m(Q1) G/, is a character. The affine semi-
group associated to @ is defined as Ag = N[(Q x {1} UCq x {0}) N Z4m(@+1],
For each arrow f : Q1 — Q5 represented by an affine transformation x — u+ Az,
there is an induced homomorphism Ag, — Aq, given by (m,d) — (dfr(%}),d) =
(ud + A(m),d). This is analogous to and a generalization of the definition of the
functor A : P — Q for P € P.

We define the face ring of @ as I'(Q) = k[Ag]. Functoriality is given as
before: A7) — Ap(m)x™ (and x™ +— 0 otherwise). The grading is given
by k[Ap] = B, D m.ayeag k- ™. This defines a functor IV : Q, —
D=0, where 9> denotes the category of non-negatively graded k-algebras.
Now, k[Cg N Z4™(@)] is the degree 0 part of I'(Q), and the graded inclusion
k[Cq NZ3™(@] - T7(Q) given by x™ + x(™9 is natural. As in
this defines a functor I' : Pret (Q) — D=0, where Q C Q. is the subcategory
of non-empty polyhedra. A presheaf M € Pre™) (Q) will be called a generalized
polyhedral set, and the definitions analogous to those prior apply. As before,
there is an induced functor P : Pre(*)(Q)f — Schy, which associates to a
finite generalized polyhedral set M the scheme P (M) = Proj(I'(M)). There is
nothing essentially different about this construction other than for the fact that
I'(M) is not necessarily positively graded. Thus, all results of and
also |Lemma 5.2.5] [Corollary 5.2.6| and [Proposition 5.2.7] have analogies in this
situation. Hence there is an étale cover {A (M) — P (M)}, for faces s of M,
and also A(M;) = SpecI'(IL(M,))(p,). These facts will be used later.

To tie this up with subdivisions, let (P, 1) be a marked pair, let n = dim(P),
and consider the polyhedron ) defined as the union of vertical lines intersecting
the lower boundary Gy, Le. Q = {(m,s) € RI™P)+L |1y € P s > g, (m)}. The
recession cone Cg C R™ is 1-dimensional and generated by the unit vector e,.
Thus ¢ := x(¢»0) € I'(Q) is a well-defined element of degree zero, and I'(Q) is a
positively graded k[t]-algebra. One immediately observes that I''(Q) is generated
as a k[t]-algebra by the elements %9+ (3)y(m:4) swhere (m,d) € Ap, for some i.
If k[t] — R is the homomorphism given by ¢ — ¢, then this observation yields a
natural isomorphism of R-algebras

I(Q) @4y R = Tr(P,4). (7.5)

The assignment (P, 1) — @ defines a functor P — Q, and the Yoneda extension
induces a functor Pre™)(P) — Pre*(Q). Hence to a given marked pair (M, ¥),
there is an associated generalized polyhedral set M such that F(M ) is a positively
graded k[t]-algebra, F(M) @pi B = Tr(M, V) (since (7.5) is natural), and
P(M) X R = Pr(M, ¥). Note that we also have natural inclusions PS(P,¢) C
A@, and that I'(Q) @k k = T(PS(P,v)) by (7.5). Thus for the induced
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7. Deformations of face schemes of polyhedral manifolds

inclusion PS(M, ¥) C M of generalized polyhedral sets, we have T(PS(M,¥)) =

F(M ) @z k (the last part follows from a similar argument as in the proof of
Theorem 2.9.11)). We also have A(M) X k= A(PS(M,¥),) for every face s
of PS(M, ).

Proposition 7.1.5. If the subdivision associated to a marked pair (M,V) is
simple, i.e. if Hi(|S|) = 0 where S C PS(M, W) is the inner skeleton of the
subdivision, then H*(X,C) = 0.

Proof. Consider the homomorphism Qr . (p.y)) — ['r(P;¢) given by d(t*x™)
s ®t%x™. This is well-defined due to , since all relations between generators
in I'r(P, ) are binomials scaling the powers of ¢ equally on each side. It is
also natural in (P,), hence by taking limits one obtains a homomorphism
Qr(m,w) — Dr(M, V) satisfying d(t) — t. Its degree is 0, hence it corresponds
to a global section D € HO(X, Tx k). Consider now the exact sequence Ty, —
Tr/k(Ox) — 7}/1{ ( Theorem 3.5]). Let D be the image of D in

H(Xx, Tr/k(Ox)). It corresponds to the R-module homomorphism Qg — Ox
given by d(t) — t. Now, let Dy denote the homomorphism Qg/;, — Ox given
by d(t) + 1, and note that D = tDy. Let Dy denote the image of Dy in
HO(Xx, 7}/R). Then tDjy is equal to the image of D, so by exactness we have

tDg = 0. Tt follows that Dy € H°(X, C), and this global section corresponds to

a homomorphism A : Oy — C.

As in let M denote the generalized polyhedral set associated
with the subdivision. Then X = P(M) x k() B. In order to determine the support
of C, which is contained in P(Z) = Sing(A}), where Z := PS(M,¥) C 7\7, we
must study the structure of the polyhedron @ associated to (P, 1) further. For
every lattice point m € P, vertical line through (m,0) intersects the lower hull
Gy in a lattice point. Hence if E is an edge of ) contained in some vertical facet
(of infinite area), it follows by a routine computation on facet normal vectors
that the cone o C X is smooth (given that P is smooth). If {(v1, s1), (v2,52)}
are the vertices of F, this implies that U,, = Spec(I‘(AQ)(X(ul,51,1>X<v2,52,1)) is
smooth, and therefore

F(AQ)(tslX(U1,1)t52x<v2,1) = k[t] @ F(AP)(X(Ul,l)X(UQ,1).

If B/ C P (with vertices {wy,ws}) is the edge which contains {vy,v2}, then
clearly F(AP)(X@LDX(“QJ) &~ F(AP)(X(U,I,l)X(u,Q,l). Hence if f : E — @ and
f": B — P denote the corresponding arrows of the inclusions, we have

F(AQ)(gf) &= k[t] R F(AP)(gf/). (76)

Now, let e be an edge of Z which does not belong to S. Let e — t1, e — t3 be the
two canonical faces of Z,.. Since e is not contained in S, the edge (f;)r(le]) C |¢;]
is contained in a vertical facet. Via the natural isomorphism ([7.6]), we obtain that

A(M,.) = A" x;, A(M.) for some edge ¢’ of M. Since A(Z.) = A(M.) X R,
this means that X — Spec(R) induces a trivial deformation over the étale
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neighbourhood A(Z.). It follows immediately that C|a(z,) = 0, hence C
is supported on P(S) C P(Z), and A induces an injective homomorphism
N : Oy — C, where Y C P(Z) is a subscheme satisfying Yy C P(9).
Conversely, let e be an edge of S. Let s be the facet of M such that e is
in the image of PS(A®,1s) — M. Let P = |s|, and let @ be the polyhedron
associated to the pair (P,¢s). Let f : E — @ denote the associated arrow.
Then A(Me) &= A(A?) = Spec(I‘(AQ)(gf)). This is an affine toric variety,
hence its coordinate ring is generated by some set of characters, including t.
Now, the general fiber of A(M,) — Spec(k[t]) is smooth, with central fiber
A(Z.) = Specklz, z,y],/(xz). Hence we must have D(A®) ) = k[t,z, 2, 3],/
(xz — tNy") for some integers N > 0, n € Z. It follows immediately that
Cla(z.) is generated by Do| A(z.) (which corresponds to the homomorphism
given by zz — tVy" s NtV ~1y"). Thus Oy — C induces an isomorphism over
A(Z,.). Since Y is closed, we have that Y, = P(S). Consider the exact sequence
0—=7Z— Oy - Os — 0. Now, T is supported at a closed subscheme of X
lying over the zero-dimensional scheme P(SY) C P(S), which must be affine.
Since H'(S,0g) = Hy(S; k) = 0, the long exact sequence in cohomology yields
that H'(Y,Oy) = 0. However, coker()\') is also supported at an affine closed
subscheme of X lying over the zero-dimensional scheme P(S%) C P(S). From
the long exact sequence in cohomology of 0 — Oy — C' — coker(\) — 0 we get
that H*(X,C) = 0. In conclusion, H;(|S]) = 0 implies that H(X,C) =0. O

Proposition 7.1.6. Let M be a 2-dimensional polyhedral manifold. Then it is
possible to iteratively scale and subdivide M (i.e. M v~ nM or M — PS(M,V))
into a simplicial manifold, such that at each step the inner skeleton S of the

subdivision satisfies Hy(|S]) = 0.

Proof. First scale M so that every facet has an interior point. Then choose
an interior lattice point m of a facet s, and consider the subdivision of |s|
corresponding to some 95 : A, = Vert(|s|) U {m} — Z satistying ¢(v) = 0 for
v € Vert(|s|) and 14(m) < 0. The subdivision consists of a line drawn from m
to each vertex of |s|. It also defines a subdivision of M, where every other facet
is subdivided trivially. Moreover, the inner skeleton S is clearly contractible,
so Hy(]|S|) = 0 in this case. Do the same process for every other facet of M.
After these subdivisions, M now contains no edges which are contained in the
same facet in two distinct ways. Next, without scaling, we perform the same
iterative subdivisions of each facet whenever possible, in order to remove every
interior lattice point of every facet of M. After that, choose any lattice point
m interior to some edge e of M, and subdivide the two (distinct) facets ¢1, to
containing e via the functions v, : Vert(|t;|) U{m} — Z satisfying ¢, (v) = 0 for
v € Vert(|t;]) and v, (m) < 0. This subdivision consists of a line drawn from m
to each vertex opposite of |e| C [¢;]. Again, S is clearly contractible. Via these
subdivisions we end up with a polyhedral set without any facet or edges with
interior lattice points. By Pick’s theorem, the areas of all facet lattice polytopes

must %, and it is easy to see that a polygon with area i must be a triangle

2
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7. Deformations of face schemes of polyhedral manifolds

affinely isomorphic to the simplicial triangle A2. Hence M has been subdivided
into a simplicial manifold in the desired fashion. O

Theorem 7.1.7. Let M be a 2-dimensional polyhedral set. Then H*(M,Er) = 0.

Proof. By [Proposition 7.1.6] and [Proposition 7.1.5] we can iteratively scale and
subdivide M (via some sequence M = My — M; — --- — Mpy), such that at
each subdivision step M, + M, 1 we have H*(X,C) = 0 (where X — Spec(R)
is the deformation associated to the subdivision). At each subdivision step,
in the situation of (7.4)), H'(X,C) = 0 and HQ(MTH,E@MTH(U) = 0 implies
that H?(X,&z) = 0. Since X — Spec(R) is flat, the sheaf £, = QY is flat
as well as a sheaf of R-modules. Hence H%(X,, (€z),) = 0, where (X, £,)) =
(Px(M,),On,. (1)) is the generic fiber. But the homomorphism R — K is flat,
so it easily follows that (£¢), = (Qr)y)” = €0, (1), Where the last isomorphism
comes from [Proposition 7.1.3 In conclusion, H*(M,11,€0,, ) = 0 implies
that HQ(MT.,EOMT(I)) = 0. At each scaling step (M, — M,11 = nM,.), we have
Oum,.,(1) = O, (n). Hence by |Proposition 7.1.2L HQ(M,.+1,5@MT+1(1)) =0
implies HQ(MT,EOMT(U) = 0 in this situation as well. Finally, by
Theorem 6.1], we have H?(My, EOMN(U) =0, since My is a simplicial complex.
By the above, we conclude that H?(M, Eony) = 0. O

7.2 First-order deformations

Definition 7.2.1. The valency val(v) of a vertex v € My is defined as the number
of edges of the n-cycle Ik (v).

In this section we will restrict our attention to the situation where val(v) > 3
for all v € My. In this case, lkps(v) is a simplicial complex on the form C,,,
where n = val(v) and C,, denotes the n-cycle (i.e. the simplicial complex with
n vertices and n edges forming a circle). Since A(M,) = Spec(I'(Cy)), the
methods of can be used to compute the first-order deformations of
P(M). Our present goal is to find a suitable characterization of a basis for
the cohomology group HY(M, T, /k) via the étale Cech cohomology complex.
Recall the étale cover {A(M,) — P(M)}yenmgen. By |Lemma 6.2.1, we have
A(M,) xpry A(My) =TI, 40 A(Ms), where s ranges over all minimal
elements with arrows from v and w. But note that 7']\14 /k| A(m,) = 0 whenever

dim(s) = 2, since A(M,) is smooth. Since the restriction T]\l/[/k:|A(MS) is only
non-trivial when s is an edge or a vertex, [Definition 6.2.3] and the proof of

can easily be adapted to the present situation, and as a consequence,
HO(M, T}, /k) is equal to the kernel of the homomorphism

6 B Thonym— b TAGM.) k> (7.7)

ve MG ecMean dim(e)=1
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First-order deformations

which is given by 0((Ay)v)e = A, ()| A(a.) = Ado(e)|A(ar,) for each edge e € M.
Hence it becomes crucial to understand Tll(cn) Jk for n > 3, and also the restriction

homomorphisms TA(Mdi((i))/k — Ti(Me)/k for i =0, 1.

7.2.1 n-cycles and normal forms

As before, let C), denote the n-cycle for n > 3. Its Stanley-Reisner ring can be
described as

r(C,) = 4 = 3 Klwo i vl (wom2),
YTz skl oy i 5] 2 2)

For simplicity, the index of the variables x; can be any integer, but is interpreted
as reduced modulo n. By [AC04} Example 17], a k-basis for Tll(c )k is given

as follows: For n = 3, we have generators ¢£k> for k > —1 and 7 = 0,1,2.
Here qbgk) corresponds to the homomorphism given by xozix2 — xf“, SO we
have ¢é_1) = 5—1) = (bé_l). For n = 4, we have generators (zﬁgk) for £ > 0,
and ¢ = 0,1,2,3. Here ¢Ek) corresponds to x;_1%;11 — xf, mapping the other
relation to 0. Hence d)éo) = (20), and qbgo) = ¢:(30). For n > 5, we have generators
¢§k) fork>1andi=0,1,...,n— 1. Here qﬁgk) corresponds to x;_1T;41 — xf,
mapping the other relations to zero.

In order to lift to higher-order deformations, we shall require the notion of
normal forms (see [AC10]), which corresponds to certain deformations of T'(Cy,)
(for 3 < mn < 6) over Artinian local rings. The definition will involve the following
data:

e A ring %, for 3 < n < 6, given as the quotient of the power-series
ring &, = k[[tl(k)]} by a finitely generated ideal a,,. In &2, we have one
variable tgk) for each generator (bgk) € Trl(cn) e where by convention we

put tgk) = t;k) whenever qﬁgk) = ¢§k).
o A finite set of elements Z,, C k[xzq, ... ,xn][[tgk)]]

The ideal a,, is defined as the zero-ideal for n < 5, but ag is defined as the
2 x 2-minors of the matrix

1 1 1
o "
tél) tél) tgl)

The elements forming Z,, for n > 3 are given in |[AC10| p.19].

Proposition 7.2.2 (|AC10, Proposition 6.6]). Let f : %, — A (for 3 <mn <6) be
a k-algebra homomorphism, where A is a local Artinian k-algebra, such that all
but finitely many tgk) are mapped to 0. Then the quotient of Alzg, ..., xn—1] by the

ideal generated by the image of I, under f defines an infinitesimal deformation
Zs — Spec(A) of Spec(I'(Cy)).
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7. Deformations of face schemes of polyhedral manifolds

An infinitesimal deformation of Spec(I'(C,,)) over Spec(A) is said to be in
normal form if it is on the form Z; for some homomorphism f : %, — A.

722 Abasis for HO(M, T}, ;)

We shall assume here that M is a 2-dimensional smooth polyhedral manifold
(i.e. its faces are smooth polytopes). Let e € M be an edge, and let v; = d;(e)
for i = 0,1 be the vertices of e (which may be equal). Define E = |e|, and let

(wg, v, ,1)
X o w . —V; €
Vo= ) X € T(A%)
X

i(lE)'

Then yo = y; !, and L(A®)(0u,) = Elyily, = K[yoly,- Since M is a manifold,
1k (e) is the disjoint union of two points, corresponding to a pair of arrows

e f—1> t1, e f—2> to where t1,to are facets.

[t1]
° ° °
° ° °
E
wv(-)l,E
)
Wyq,Eo ° . °
FE> ° ° °
[t2]

Figure 7.1: The local picture around e € M.

Hence I'(1k"(e)) = k[x4, zi]/(xi2:). Consider the isomorphisms

7+ A(M,) = Spec(T(IkY ())) x Spec(D(A) g, )

from [Proposition 5.3.4] These induces an isomorphism

Te = momy -t k[y1ly, @k klz1, 21)/(2121) = E[Yolye @k klTo, 20]/(020)-

Clearly 7. (y1) = yy ' Moreover, | (1) = xoyg(e’tl) and | m.(z1) = zoyg(e’t2)

for some integers n(e,t1),n(e,t2), which we will determine next. Note first that
I'(k (s)) @k I'(A%) gy, ) 18 isomorphic to the pullback of the diagram

F(Atl)(gh) — F(Ae)(eidE) — F(Atz)(gh).
In F(Atl)(x(vl,l)x(vo,l) , 21 and z( corresponds to x(¥#1.v17v1:0) and X(wEi‘““fvo’o)
respectively (see [Figure 7.1)), where Ey, E] # E are the edges in |t1| containing
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First-order deformations

v1, Vg respectively. Similarly, in I‘(AtZ)(X(vl,UX(UO,l)), z1 and zy corresponds to

x(WrB2,01=v1.0) apd X(wEé’”O_UO’O) respectively, where Fy, E) # E are the edges in
|t2| containing vy, vo respectively. It follows that n(e,t1) is the integer satisfying

(@B 0 —v1,0) = X(“’Ei=”0 —”070)(X(wE,v0 —vo.0))n(et1) " In other words,
WE, v, — V1 = WE, v, — Vo + n(e, t1)(we,v, — vo)-
Analogously, n(e, t2) is the integer satisfying
WEy,v; — V1 = WE, v, — Vo + n(e, t2)(wWe,v, — vo)-

Such integers exist due to the fact that |t;| and |t3] are smooth polytopes.
Hence n(e,t1) (resp. n(e,tz)) is the number of lattice points of F minus the
number of lattice points of the line segment between wg, ., and wgs 4, (resp.
WE, v, and wEé,UO). See |Figure 7 .2| for a graphical depiction. Note that the sum

‘n(e) :=n(e, t1) + nle, t) ‘ depends only on e.

n(e,t1)

Wy, B —V1 Wy, E; —Y0

Figure 7.2:

Consider now the module Tkl[gc0 vouolue /(20z0) /i = KlYolyo- It is generated by
»20,Y0lyq

the elements ¢£’“) := y¥ | for each k € Z. The homomorphism corresponding to

y¥ is the one given by z¢zo + y&. Thus the isomorphism

k[Yolyo = Thlzg,z0,501u0 /(w020 /k — Lhlzr,zr,nlyy fwrz) /b = ElY1]u (7.9)

induced by 7, is given by yg — y;n(e),k.

Let v € My be any vertex. Then we relabel the generators qﬁgk) of Tll(lkM(v))/k
as ¢E’;) f.)» Where (e4, fi) ranges over the vertices of Ik (v) in some cyclic order (for
i=0,...,val(v)—1). We are now in a position to describe ([7.7]). For each edge e €

can : : . dy (e e
M, let us identify A(M.) with Spec(I'(lk;; (e) (e)))xxSpec(I'(A%),,,,)))- Then
A(M.) — A(My, () corresponds to the localization homomorphism I'(C,,) —
E[z1, 21,91y, /(x121). On the other hand, the morphism A(M.) — A(Mgq(c))
corresponds to the localization homomorphism composed with the isomorphism
.. This means that the restriction homomorphism 'Tji( May )k TA( M)k
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7. Deformations of face schemes of polyhedral manifolds

is given by gb(e 0 ¢>gk), while the restriction homomorphism Ti(Md()(e))/k —

. . k n(e)—k
’T&M /i 18 given by (bge)do) s gl@=R),

It follows that via , the element ¢( n € TA(M )k is mapped to ( )

whenever v = d;(e), and ¢§ &)=k whenever v = dop(e). We will not give an
explicit description of a basis for H(M, TA}[ / .), because it will not be necessary for
our purposes, but we will give a sufficiently descriptive implicit characterization:

Definition 7.2.3. Each basis element of H(M, 7y, ;) is on the form ¢Ef)f)a or
k> —land (e, f:v—e) € lkp(v)®", which (if it exists) is uniquely determined
by the condition that wgf)f) la,) = ¢E§)f)’ and that its restriction to A (M,,) is

zero for the maximal number of w € Mg§*".

Determining whether the global section wéf)f) exist is a purely combinatorial

problem. For example if f/ : v — e is the arrow in M" distinct from
f v — e, then 1/)( h and wge; 9=k are equal as global sections, and exist
contemporaneously. Of course, val(v) = 3 is a necessary condition for that w( f)
can exist, and val(v) < 4 is necessary for that ¢(e7 s can exist. In this latter
situation, we also have ¢E0)f) = zbgg,)’f,) when (¢/, ') as a vertex of lkys(v) lies

opposite of (e, f). Otherwise, if val(v) > 5, then 1/}Ef)f) can only exist if k£ > 1.

7.3 The universal base space

Definition 7.3.1. Let &7, denote the k-algebra on the generators {w}}; dual to

some chosen basis {w;}; of H'(M, &), and generators { A f)}(v—>e e (one

for each basis element wgf,)f) of HY(M, T}, /&) As a notational convention, we
put T((f)f) =0 if w((’;)f) does not exist.
For each vertex v with val(v) = 6, and for each arrow f : v — e where e is

an edge, let g(. sy be some element of the completion ﬁM. Let @ = {g(e.f)}e.p)

denote the set of these elements, and consider the ideal ag C &), given as the
2 X 2-minors of the matrices

9(eo,fo)  Y(ea.f2) Y(ea,fs) (7.10)
Y(es,fs)  Y(es.fs) Ylex,fr)

for vertices v with val(v) = 6. In this situation we define Zps ¢ := ﬁM/aﬁ.

Theorem 7.3.2. Let M be a 2-dimensional smooth polyhedral manifold such that
3 <val(v) <6 for every vertex v € My. Assume in addition that for every edge
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The universal base space

e, the inequality n(e) < 64, () + 64y(e) holds, where

0 wval(v) >5
Oy =<1 wval(v) >4
2 wval(v) >3

(this is always the case when, for example, M is unimodular). Then we may
find & as above with g(c 5y = T((el’)f) + higher order terms, such that Spec(%n. o)

is the universal base space for the deformation functor Def p(ar),0,,(1))- In
particular, if 3 < val(v) <5 for all vertices v, then the universal base space is
reqular.

Proof. The proof will be similar to that of Theorem 6.7], except for the
fact that we have to glue our local deformations in the étale topology, and that
we have to take in consideration that there may be locally trivial deformations
as well. We will recursively construct a sequence of deformations of pairs

(X'MLTL) - (Xn+17Ln+1) (711)

| |

SpeC(Rn) - SpeC(Rn+1 )

of (P(M), O (1)) and liftings of line bundles L,, on X,,, where each R,, is a local
Artinian quotient of ﬁM such that R, = R,.1/m"*! and where m C ﬁM
is the maximal ideal. The inequalities are assumed in order to construct a
compatible system of local deformations. The R,’s will be chosen in such a way
that @n Ry, = X, for some set 0 = {gc, 5} C ﬁM. Note that a deformation
X, corresponds to a coherent sheaf of flat R,-algebras Ox, on Xy = P(M). We
will show that there exists homomorphisms of k-algebras hSJ‘) : Rvai(v) — Ry for
each n, lifting hS,’H), such that the deformation X, |a(s,) := Spec((’)Xn‘MMv))
of A(M,) over Spec(R,,) corresponds to e (per |Proposition 7.2.2'). The
elements g, r) will be defined recursively via the sequence of compatible elements

(n) . p(n) (1)
Yie.) = Iy (t(e,f)) € R,. -
To begin with, define Ry = Zp;/m, and let hSP) map every generator

to 0. For n = 1, define Ry = Pp;/m?, and let hS,l) ! Ryar(vy — R1 be
given by tgk) — T((:i) 1) Then the associated local deformations Uv(l) of

A(M,) corresponds t0 3757 (o f el (v) (i)E:)f). Indeed, this can be seen by
plugging in the corresponding variables in the particular equations which de-
fine Z,, in [Proposition 7.2.2 Moreover, these deformations agree on inter-

sections. L.e. ngeﬂA(Me) > Ué;zeﬂA(Me) for each edge e. They can be

found in [AC10, p.19]. Next, since H?(X¢,&L,) = 0 by [Theorem 7.1.7} there

is no obstruction to the existence of a compatible system of isomorphisms
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7. Deformations of face schemes of polyhedral manifolds

(Bows Tow) = (U, Opw)law)xuane,) = W, Opw)laws)xuanr,) (re-
ducing to the identity on (Oa(ar,,)lA0,.) Lola(ar,.,))) for each pair of vertices
v, w. Perturb the system (¢yuw, Tyw)vw Dy an element on the form Zj ajwiw; €
HY(Xo, €L, ) ®Km/m? for general coefficients a;. We may glue now glue the pairs
(Ué”, Opra)) together via the perturbed system (¢, )vw to a deformation (X5, Ly)
of (Xo, Lo) over Spec(R;). Since the coefficients of ; a;w} ® w; were chosen
generally, the resulting Kodaira Spencer map Hom(Ry, k[e]) — Def x, 1, (k[e])
is bijective.

For the inductive step, assume that R, and suitable deformations X,, —
Spec(R,,) exists for m < n, where n > 1. Then we will construct R, and
a suitable deformation X, — Spec(R,). First, let g(, ; be an arbitrary lift-

ing of gE:;)l) to ﬁM. Let 0 = {gée,f)}(evf) C ﬁM, and define R,, = c@’TM/
(agr + m"™ 1), where ag is the ideal defined as the minors of (7.10). Next,
let h! be an arbitrary lifting of hgn_l). If val(v) = 6, we impose the require-
ment that hl (tgl)) = ggehfi) (in which case the local obstruction equations ag
are mapped to 0 as required). Each A/ define deformations U] over Spec(Ry,)
which are liftings of U{"™Y. However, the deformations U5n71)| A(M,,) and
U&"‘1)| A(M,,,) may fail to be isomorphic. Their differences define an element
De=3c bt € HO(A(MC),TPl(M)/k) ®@m™/m"T for each edge e € M,
where each by € m”™. To remedy this, we need to adjust the h,’s. Note that

an adjustment of hgfze)(tz(k)) > hgf%e)(tgg fi)) + b for some b € m" has the

effect of perturbing the difference D, by +b¢gf) (D for e’ # e; is not affected).

On the other hand, an adjustment of hfizze) (tl(-k)) — h((izze) (tgl;) f'i)) + b has the
—n(e;)—k)

effect of perturbing the difference by —b¢éi . This can be seen by in-
specting the equations defining 7Z,, (see |AC10, p.19]). Now, the inequality

n(e) < dq,(e) + day(e) ensures that each term bkgbgk) lies in the image of either
HO(A(Mdl(e)),TP}(M)/k) or HO(A(Mgy(e)), E(M)/k), and this allows us to elim-

inate every term bkd)gk) by iterative adjustments. Indeed, the inequality implies
that that any integer k € Z can be written as kg or —n(e) — k1, where k; is an
(n)
€,

integer such that (bgfiu)li) is a generator of T&(Md,(@)/k for i =0,1. So let 9ie 1)
be the new elements given by A", and let &) = {gE:)f)}(e,f). Then R, is still

isomorphic to ﬁM/(aﬁ(n) +mn"*t1). Indeed, az(n) = ag (mod m™*t1) since the
adjustment gge’f) — gEZ))f) in R, is by an element of m™. Let Ué") be the new
local deformations after these adjustments. Then they will agree on intersections,
and since H%(Xo, Lo) = 0 there exists a compatible system of isomorphisms
( i’f,},wgﬁ?) : (U,Sn),(’)U<n))|A(Mw) — (van), Oy m)|a(m,.,), reducing to the iden-
tity like above. We m;y glue the pairs to a ng;t)al deformation (X, L,,) lifting
(anl, Lnfl).

In conclusion, the deformations of have now been constructed, and
satisfies the required conditions. The Kodaira Spencer map is bijective by
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construction, and thus Spec(Zy, ) will be the the universal base space. O]

Proposition 7.3.3. Under the conditions of [Theorem 7.53.9, assume in addition

that val(v) # 5 for all vertices v. Furthermore, assume that T((‘:)f) = 0 whenever
k > 2 forval(v) =6, k > 1 for val(v) =4, and k > 0 for val(v) = 3. Under these
assumptions, each g, ry = T((el’)f). Hence the universal formal family {(X,, L,)}
is definable over the finitely generated k-algebra

Rar,e = Pu/aes,
where ag is the 2 X 2-minors of the matrices

T., Te, Te,
T., T., T. |

associated to each vertex of valency 6.

Proof. The proof follows in the exact same manner as for [Theorem 7.3.2] with the

additional observation that in this situation no adjustment of the homomorphisms
hy © Rvai(vy — Ry, is necessary in order for Uéll(e)|A(Me) and Uélo(e)|A(Me) to

be isomorphic. Specifically, we define R Ryar(vy — Rn (for each n) by
tgk) = T((:i) f)- We will show that the equations defining the local deformations

Ul(,n), as defined by h,,, are linear in the variables of R,,. In such a situation, we
will have Ué?()e) lar,) = Uc(l:'()e)|A( u.) in general. Indeed, the linear terms will in
each case yield equality on the nose (for the same reason we have that for n = 1).
Again, we refer to p.19] for the particular equations, which via the normal
forms h, define the associated deformation. Note that for valency 3, linearity is
automatic. Valency 4: The ideal defining Uv(”) C Spec(Ry,[xg, 21, 2, x3]) is on
the form
(woz2 + T(£1)7f1)’ 173 + T((Pg))vfo))'

By inverting 2o (which amounts to restricting to A (M., )), we obtain a description
of the resulting subscheme Ué”)|A(M51) C Spec(Ry[zo, 21, 2]s, ) as given by the
ideal

0
(zowz + T() 1))-

The choice of x1 was without loss of generality, and the same conclusion holds
for x; for i =0,...,3. Valency 6: The ideal defining Ui C Spec(Ry[z; | i =
0,...5]) is on the form

(@iwio + 2Ty ajwia =T 0T g [§=0,.0,5,0 = 0,1,2).

ej+1:fi+1)" (ejr2,fj+2)

Again, by a straight-forward computation after inverting g, say, one obtains the
ideal (z1z5 + 20T ey, fo))’ which has with linear terms. This computation relies
on the vanishing of the minors of ([7.8)). O
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7.4 Smoothability

Next we come to the question of smoothability.

Lemma 7.4.1. Let f : X — Y be a flat morphism of schemes of finite type.
Then the set Uy = {y € Y | X, — Spec(k(y)) is smooth} is open in'Y .

Proof. Let y € Uy, and let ¢’ € Y be a generization of y. Let R be some DVR,
and let Spec(R) — Y be some morphism covering the generization 3’ ~ y. Let
g : X" — Spec(R) denote the base change of f. Now, U, contains the closed
point of Spec(R). Since g is of finite type, every closed point of X’ is also a
closed point of the central fiber X{|. Thus g is smooth at all closed points in the
sense of Stacksl, Tag 01V9] (i.e. g is smooth at x € X" if X| ) — Spec(k(g(z)))

is smooth around z € X}(x)). But this is an open condition, so ¢ is smooth at

every point. Hence U, contains the generic point of Spec(R) as well, and thus
/
y eU f- O

Definition 7.4.2. A morphism f: X — Y of schemes is called generically smooth
if it is flat, proper, and X,, — Spec(k(n)) is smooth for the generic point 1 of
each component of Y. By [Lemma 7.4.1] the set Uy is then open and dense in Y.

Definition 7.4.3. Let (Xy, Lo) be a pair of a projective scheme over a field
k, and an ample line bundle Ly. Then a smoothing of (Xg, Lg) is a proper,
generically smooth deformation (X — Spec(k[[t]), £) of the pair (X, Lo). If
such a smoothing exists, then by [Proposition 7.0.1| there exists an algebraization
to a generic smoothing over a non-singular curve C of finite type over k. A formal
smoothing of Xy is a formal family (X,, — Spec(A4,), Ly), where A,, = k[t]/
(t"*1), such that there exists an integer ng such that t"OT)}n/An (F) =0 for all
n and for every coherent sheaf F on X,,.

Proposition 7.4.4. Let X be a projective scheme equipped with an ample line
bundle Ly which is formally smoothable. Then (Xo, L) is smoothable.

Proof. Suppose that (X,,, Ly,) is a formal smoothing of (Xo, Lo), and let ()?, E)
be the induced effectivization over A := k[[t]]. Let m be an integer such that L®™

is very ample. Then (X,,, LZ™) is a formal smoothing of (Xg, L§™). Considering
the associated embeddings, X, is a formal smoothing of X in the sense of [Har10)]

-~

Chapter 29]. Thus by [Har10, Proposition 29.5], X — Spec(A) is generically
smooth. O

Remark 7.4.5. There is also the well-defined notion of a universal generic smooth-
ing of a pair (Xo, Lg), which can be realized as the restriction of the universal ef-

~

fective deformation to its generically smooth base locus: Let (2~ — Spec(R),.Z)
be the (unique) universal effective deformation of (X, Lg). Then by |[Lemma 7.4.1}

~

there is a maximal open set U C Spec(R) over which 2 |y — U is smooth. Let S
be the closure of U, and let (27,.%") = (2|s,L|s). Suppose that (¥ — T, )
is any generically smooth effective deformation of (X, Lo). Since Def x, 1) has

~

unique effectivizations, there is a unique morphism f : T'— Spec(R) such that
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Smoothability

(¥, ) =2 (X x5T, 2 @;T). But since % is generically smooth, f factors
as T — S — Spec(R). Indeed, if V is the maximal open subset of % such that
%y — V is smooth, then f(V) C U. Hence f(T) C S. Thus & =2 2" xgT.
The morphism 7' — S is obviously unique, hence (2”7 — S,.%’) can be called

a universal generic smoothing. By [Proposition 7.0.1} the universal smoothing
(27 — 5,2 is algebraizable.

Lemma 7.4.6. Suppose that (X, L) is a smoothing of (P(M), O (1)), for some
polyhedral manifold M. Let Kx be the canonical divisor of X. Then 2Kx =0,
and Kx = 0 if and only if M is orientable. Hence by the Kodaira classification
of surfaces, |M| = S? implies that X is a K3 surface, |M| = S* x S implies that
X is an abelian surface, |M| = RP? implies that X is an Enriques surface.

Proof. The statements about the canonical divisor on X follows from
and the last part of the proof. O

Theorem 7.4.7. Under the conditions of [Proposition 7.53.5, (P(M),Op (1)) is
smoothable if T((el)f) is non-zero for val(v) = 6, T((eo)f) is non-zero for val(v) = 4,

and T((el)f) is non-zero for val(v) = 3. Hence, one may consistently define

T((el))f) if val(fM(e))
T= T if val(fM(e))

Ty if val(fM(e))

6
4
3

for each edge e of M. Equivalently, n(e) = dq,(c) + 0ay(e) — 2 for all edges e.
In this case, the base space for the universal smoothing of P(M) are the main

components of Spec(Zar,¢), i.e. the closure Byr := D([], Te) of the main torus

D(IITe).

Proof. We will utilize the following criteria for determining whether a deformation
is generically smooth or not, which we highlight in a remark because it will
become useful later on as well.

Remark 7.4.8. Let (X, L) be a pair where X is a reduced projective scheme,
and where L is an ample line bundle satisfying H?(X,€r) = 0. Let {U;} be a
finite affine étale cover of X, and let U; — Spec(k[t]) be morphisms with central
fiber U; over t = 0. Define A = k[[t]], and A,, = k[t]/t". Assume further that
structure sheaves Oy, of (Ui)n = U; X An are flat over A, (as coherent
sheaves of A, -algebras on U;), and satisfy

O(ui)n|Uij = O(uj)n|Ui' (712)

for each n > 0. Note that by the infinitesimal criterion for flatness, each U;
is flat over Spec(k[t]) at t = 0. Since H?(X,&L) = 0, these isomorphisms may
be modified to satisfy the cocycle condition, glueing in the étale topology to a
deformation X,, — Spec(A4,,) of X equipped with liftings L,, of L. Assume now
that U; — Spec(k|[t]) are generic smoothings for each 7. Then there exists integers
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7. Deformations of face schemes of polyhedral manifolds

n; such that ™ 7-1411, JK[H] (F) = 0 for every coherent sheaf F on U;. In particular,

T (Ui n/ Ans Flay), ) = 0 for every coherent sheaf F on X, for all n. Hence
for ng = max(n;), we have t"T*(X, /A,, F) = 0. Thus (X,, L,) is a formal
smoothing, and therefore the induced effectivization X — Spec(g) is generically
smooth by [Proposition 7.4.4 Conversely, if some U/; is not a generic smoothing,
then there exists no integer n; as above. Hence X cannot be generically smooth
in this case.

By [Proposition 7.3.3] the universal formal family {(X,,, L,,)} is definable over
Spec(Rar,e) = V(ag) C Spec(Par,¢). Here ap is a homogeneous ideal, so there

is a linear complete curve C' C Spec(ﬁMﬁ) through every dimension 1 point of

Spec(Zw,e). Such a curve is a complete DVR, so the closure By; C Spec(ﬁMﬁ)
of the smooth base locus is precisely the closure of the union of the curves C'
which induce generic smoothings 2'|¢ — C. By By is the base
locus of the universal generic smoothing. Any curve C is determined by a
linear homomorphism f¢o : ﬁx,ﬁ — 2, given on generators by T, — a.t and
w; — b;t for some constants a.,b; € k satisfying a. = a.r whenever T, = T,/.
The a.’s must the satisfy equations given by the vanishing of the minors of
(7.8). Thus fe induces a homomorphism R,, — A,,. Now, the restriction 2"|¢
is the completion of the formal family {X,, xr, A, — Spec(4,)}. Consider the
affine étale cover {Uv(") Xr, An}y of X, X g, A,. We observe that each Ul
is on the form U, Xy An, where U, C Spec(k[t][zo, ..., Tvalv—1]) are defined
in [Table 7.1} By [Remark 7.4.8] 27|¢ is generically smooth if and only if each

Table 7.1: The local deformations U,,.

Valency Ideal of U,

3 (xoT1T2 — Aeyt)
4 (oo + ae, t, x123 + aot)
6 (Tip1@io1 + ae,xit, T 43 — aeHlaejfth |i=0,...,5,7=0,1,2)

U, — Spec(klt]) is generically smooth. Via Macaulay2 one can check that every
fiber of U,, — Spec(k[t]) will be singular if any a., = 0. On the other hand, the
fiber over ¢t = 1 is smooth if a., # 0 for all i. By [Lemma 7.4.1} it is generically
smooth in this case. In conclusion, Bj; is the closure of the union of curves C'
which are determined by homomorphisms fo satisfying a. # 0 for every edge e,
and this is precisely the closure of D(]], T¢). O

7.5 Degenerations of abelian surfaces

Our object of consideration here will be a class of torus tilings represented by
polyhedral sets M arising as quotients of certain admissible (Definition 7.5.2))
periodic tesselations of the plane R? by smooth lattice polygons (with vertices
in Z?). Thus M will be a quotient A/G, where A is a polyhedral set defining
a periodic lattice tesselation of the plane, and G is a subgroup of the linear
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Degenerations of abelian surfaces

translation group of A, which we shall assume is of finite index in Z?. By
Lemma 7.4.6} if (P(M), O (1)) is smoothable, then it is to abelian surfaces.

Any subgroup G C Z? of finite index has unique generators on the form (n,0)
and (r,m), for some integers n,m > 1 and 0 < r < n. A fundamental domain
of A relative to GG is a minimal compact subtiling of A which is surjective onto
A/G. There is a canonical fundamental domain K¢ C A defined as the tiling of
the closed rectangle with corners (0,0), (n,0), (0,m), (n,m). The basic object of
our consideration is the equivelar tesselation {3,6}, which partitions the plane
into triangles. Let us call this Ag.

Definition 7.5.1. Let G' C Z? be some subgroup of finite index. Then we define
Nae =A\o /G.

Figure 7.3: The fundamental domain Kg relative to G. In Ng = A¢/G, the
vertices (0,0), (n,0) and (r,m) are identified. If » = 0 then all four corners are
identified.

Definition 7.5.2. A tesselation A of the plane is a 2-dimensional polyhedral set
consisting of lattice polytopes which can be embedded into R? (with vertices in
7?) without overlap. A is called admissible if it can be subdivided into the basic
tesselation Ag, and moreover satisfies the following condition: for every vertex
v € A, either val(v) # 5, or if val(v) = 4, then the edges containing v split into
two pairs of parallel lines.

Theorem 7.5.3. Let M be a quotient A/G of an admissible tesselation A. Then

M satisfies the conditions of|Theorem 7.4.7 Hence in particular, (P(M), Op (1))

is smoothable, and Byr = D(][Te.) is the base space for the universal generic
smoothing.

Proof. We need to show that n(e) = dq,(e) + 645(e) — 2 for each edge e. In
Table 7.2] we list the various possibilities of triples (val(dy(e)), val(dy(e)), n(e))
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7. Deformations of face schemes of polyhedral manifolds

(0,4) (2,4) (4,4)

(3,3)

(0,3)
vain .
%

44

(0,0) (3,0) (0,0) (4,0)

Figure 7.4: Examples of fundamental domains of admissible tesselations.

that may occur, and from one deduces which generators T(( )f) that can be

possibly non-zero. We assume that val(dy (e)) > val(dp(e)). The remaining cases
are obtained by inverting the table below. O

(val(dy(e)), val(do(e)),n(e)) Possible T*

(e.h)
(6 ~2) Tiadierer = Tlaater)
(6,4,-1) Tiarere) = Tianter.
(6,3, 0) Tiarere) = Tiaotore
(4,4,0) Titerer = Tlonero)
(3,3,2) T =140

(di(e)e) — (do( 2)€)

Table 7.2: We see that there are no situations that could potentially violate the
conditions of [Proposition 7.3.3]

See for an investigation of the universal base space Spec(Ras,¢) and
the universal generic smoothing base space Bjsin the case where M is a simplicial
complex quotient of the basic tesselation Ay by triangles. The minimal such
situation is (n,m,r) = (7,1, 3).

Remark 7.5.4. Let M be a quotient A/G of an admissible tesselation A. We
will provide a method for computing By, given By,,. By the
generators of Py are either on the form T, for some edge e of M, or on the form
wj corresponding to a dual basis of the space HYP(M), 50p<M)(1)) of locally
trivial first-order deformations. Note that if we let Ry, denote the subalgebra
of Rar generated by the T.’s only, then Ry = R, @4 k[{w)};]. Thus, if
we let dyy = dim H'(M, &), then By = D(T.) x3 A% where D(T.) C
Spec(R’,). Now, via the description in [Proposition 7.3.3] one observes that the
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Degenerations of abelian surfaces

homomorphism v : R}y, — R, given by

T T., if ¢ is an edge containing e,
‘ 1 otherwise
is well-defined and surjective (it does not however induce a well-defined map on
completions).
Let v be a vertex of M. If val(v) = 4, then we have T,, = T¢,,, for i =0, 1.
If val(v) = 3, then T,, = T., = T.,. One observes that these relations are
equivalent with that the minors of the matrix

YTey) V(Tey) ~(Te,) (7.13)

vanishes for every vertex w of N, where e; are the edges appearing in lkx (w).
Hence we see that the universal generic smoothing base space factor B}, is
obtained by base changing B, along Spec(R;) — Spec(R/y,). It other words,
By, C ijc is the subscheme cut out by the relations T, — 1 for edges e is not
contained in any edge of M, and T, — T,, whenever e and e’ are contained in
the same edge of M.

7.5.1 Example computations

In what follows we will compute the universal generic smoothing in some special
cases, using Macaulay2. The functions used are found in [Appendix C.0.1] It

computes the closure of the torus D(]] T¢) inside the quotient ring Ry = Par/
as, where ag is generated by the minors of the matrices

[Teo T, Teﬂ
Te, Te, T,

for each vertex v. The output is in each case easily recognized to correspond
to what we have listed. We have restricted the list to the cases where the
resulting components can feasibly be written down. The degree is computed
using the Riemann-Roch formula L? = 2H°(X,Ox(1)) for abelian surfaces
(where L = Ox(1)). Since H°(X,Ox(1)) is constant in families, then by
[Proposition 3.6.3| the degree L? is equal to 2L(M), where L(M) is the number
of lattice points of M.

Example 7.5.5. We consider quotients M = Ay/G of the basic tesselation
The Macaulay2 function used is called basicTesselation. The
central fiber (P(M), Oy (1)) is a stable quasiabelian pair in the sense of [AN9Y],
and this tesselation is one of the two Delaunay decompositions of the plane.
The most degenerate example Ag/Z? is also discussed there. It consists of
two triangles, three edges and one vertex. It has a 3-parameter smoothing to
principally polarized abelian surfaces.
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7. Deformations of face schemes of polyhedral manifolds

(n,m,r) Components of B for [Example 7.5.5|

dim B, Degree of polarization = 2nm
(1,1,0) A3
3 2 (a principal polarization)
(2,1,0)  A*
4 4
(2,1,1) Al
4 4
(2,2,0) AS U AS which intersect at the origin
6 8
(3,1,0) AP
5 6
(3,1,1) A’
5 6
(3,1,2) V(577 — 1478, ToT7 — TaTs, TsTe — T3Ts, TaTe — T3T7, Tale — T1T7,
Y LoLe — X1Tg, Loy — Talls, Taliz — X104, Toly — L125) C A®
5 6
(0,m) (r,m) (n,m)
e e ‘
00 (n,0)

Figure 7.5: All deformations parameters T, are equated since h”(Tp () /1) = 1.
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Degenerations of K3 surfaces

Example 7.5.6. We consider quotients of the tesselation by hexagons
In this case, no matter what G is, all generators T, will be equal. Hence
By = Adm+1

Example 7.5.7. We consider quotients of the tesselation {4,4} by squares
In this case, the number of generators {T.}. depends on the tuple
(n,m,r). Indeed, since each valency is 4, the generators of Py; corrsponds to the
orbits of the actions by Z x 0 on the set of vertical edges of A/G, and 0 x Z on the
horizontal edges. Thus there are m horizontal equivalence classes, and ged(n, r)
vertical equvalence classes (where ged(n,0) := n). Thus By = Adu+mteged(n.r),

(0,m) (r,m) (n,m)

(0,0) (n,0)

Figure 7.6: Deformation parameters T,,T., are equated if e and ¢’ are adjacent
and parallel. Thus h°(P(M), ’TP}(M)/k) is equal to the number of vertical and
horizontal paths on the torus.

Example 7.5.8. We consider quotients of the following tesselation by squares
Here the valencies are 3 and 6. The translation group is generated by
the vectors (2,1) and (1,2). This gives the following requirements on (n,m,r):
3| nand3|2r—m. By we obtain a description of By, by dividing
out by the ideal generated by T, — 1 for every edge e of Ng which does not
appear in M. Hence there is a single generator T, for every vertex v € M, of
valency 3. The Macaulay2 function used is called crossTesselation.

7.6 Degenerations of K3 surfaces

Let M be a smooth polyhedral sphere. If (P(M), Ops(1)) has a smoothing, it is
to K3 surfaces by [Lemma 7.4.6] However, the conditions of rarely

holds in this case. But there is another way of produce examples of smoothable
P (M), and hence proper families of K3 surfaces. Assume that all vertices of
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7. Deformations of face schemes of polyhedral manifolds

(0,m) (r,m) (n,m)

-- - - = 4

(0,0) (n,0)

Figure 7.7: The universal base space is non-trivial, and as for Ag/G it is generally
a union of varieties defined by binomial ideals.

(n,m,r) Components of B for [Example 7.5.§|

dim B, Degree of polarization

(3,1,2) A?

2 6

(3,2,1) Cone(P! x P1)

3 12

(6,2,1) V(zoyo — 2w, z1y1 — 2w, Tays — zw) C A®

5 12

(6.2,4) V(w46 — 2507, 3%6 — T2X7, TgTe — T1X7, TaLy — T3Ts5,
Y T1Ty4 — TYTL5H, LT — .’,Ell‘g) Q AS

5 12

M has valency 3. We will attempt to define a smoothing of P(M) by choosing
local generic smoothings of A(M,) on the form U, = Spec(k[t,zo,x1,21]/
(xox121 + tF,(20,21,21))), where F,(xg,x1,x1) is a sum of monomials on the
form zgx82§. Note that such schemes are automatically flat over ¢ = 0. Then we
will apply to glue these infinitesimally, which will induce a unique
effective deformation, which may be a smoothing. Thus we will require that
Fy, () maps to Fy () under the transition functions .. This is computationally
feasible for a given polyhedral sphere, but to reduce the complexity of the
situation we will assume that F,, are equal for all v. Thus our problem becomes
finding F' which are invariant under 7.

Definition 7.6.1. Let M be a smooth polyhedral sphere, such that every vertex
has valency 3. Let ¢ be any facet of M, and e any edge contained in ¢. Let ¢’ and
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Degenerations of K3 surfaces

e’ denote the edges of t adjacent to e. Then we assume that n(e’,t) = n(e”,t).
We call such polygons |t| regular. Moreover, if ¢’ and ¢ are the facets of M
containing ¢’ and e” other than ¢, we furthermore assume that n(e’,t') = n(e”, t").
If M satisfies these conditions, we call it 3-regular. See for a picture
describing the situation.

Figure 7.8: Note: the figure is slightly imprecise as the braced lines over each
edge ¢ has length L(|e]) + n(e, ).

Examples of 3-regular polyhedral spheres are 3-regular Archimedean solids,
where its regular polygons replaced by a suitable set of lattice polygons { Py, P2, P},
which are regular in the above sense. See for some basic examples
of regular polygons. Let v be a vertex of M. Let eg,e1,ea be the edges

Figure 7.9: Regular polygons

and tg, t1, ta the facets of M which appear as the vertices and edges of lkps(v),
ordered cyclically in the sense of Consider the tuple

(n(607t0>7n(61at0)7n(617t1)7n(e27t1>7n(62at2)7n(607t2))' (714)
By [Definition 7.6.1] this is an invariant of M up to a permutation of the

edges (and corresponding permutation of the facets). We will now describe a
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7. Deformations of face schemes of polyhedral manifolds

€1

€o

€2

Figure 7.10: The local picture around a vertex of a 3-regular polyhedral sphere

procedure for finding invariant polynomials F'. We will use the notation from
Section 7.2.2] Let e be an edge of M. Using the isomorphism ([7.9)), we get that
the ideal of uc(l:l()e) |a(ar,) is on the form (zoz122 +tF (20,71, 22)), while the ideal

of ué:()eﬂA(Me) is on the form (xomexg(e)f? +tF(zy ", xlajg(e,sl)’x?xg(@,SZ))

where 2 € T'(Ikys(dy(e))) is the variable corresponding to (e, di(€)) € lkps(dy(e)),
and e — s; and e — sg are the facets of M, corresponding to x; and xo
respectively. A sufficient criterion for is that these two ideals are equal
for all edges e. Hence we get three requirements on F' for each vertex v:

)

F(xg,x1,22) = xﬁfﬂ(eO)F(xgl, xlxg(eo’to), xgxg(eo’tz))
F(zo,1,72) = xf_n(el)F(xomyf(el’to),a:l_l,xgx?(el’tl)) (7.15)
F(Io, 71, 1,2) _ xg—"(ez)F(xox;(€2,t2)7 xlxg(GQ’tl), x2—1)

Here e; is the edge corresponding to x;. We posit that F' can be written as a sum
of monomials x§z}x§ for tuples (a, b, c) in some finite subset S C N* containing
(0,0,0). The above transformations maps such a monomial to the following:

x—a+"(€o,tO)b+"(6o,t2)C+2—"(Go) c
0

b
LT3

b, .c —b+n(er,to)a+n(er,ti)c+2—n(e1) ¢
1 T

a . a
x0$1x2 — xox

xgxl{x50+n(€2,t2)a+n(62,tl)b+27n(ez) )
This can be translated to affine transformations f; : Z3 — Z3 given as follows:

fila,b,¢) = (—a + n(eg, to)b + n(eo, t2)c + 2 — n(ep), b, ¢)
f2(a,b,¢) = (a, =b+n(e1,to)a + n(er, t1)c+ 2 —n(e1), c)
fa(a,b,¢) = (a,b, —c +n(ez,ta)a + n(ez, t1)b + 2 — n(ez))

Of course, each affine transformation f; : R3 — R? is a reflection through a
hyperplane. We have to assume that m for all edges e, so that f; will
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Degenerations of K3 surfaces

map (0,0,0) to a vector with non-negative entries. We will now generate a finite
set S C Z? of vectors with non-negative entries containing (0,0, 0), which is
invariant under application of f1, f2, f3. So let G be the subgroup of the group
of isometries Isom(Z?) generated by {f1, fa, f3}, and define S = {g(0,0,0)},ec-
If S consists of vectors with non-negative entries, then we may define F' =
Z( ab,e)ET xd2%xS, and this F will satisfy the equations . Finally, suppose
that V(zoxi122 + tF (20,21, 22)) is generically smooth over Spec(k[t]). Then
we may apply This completes the procedure, and we may now
investigate what configurations of 6-tuples on the form can give rise to a
suitable set S C N and polynomial F.

7.6.1 Resulting smoothings

The above procedure yields an invariant F' for every possible 6-tuple on the form
. We have listed in each situation where the polyhedral complex
M is realizable as an Archimedean solid using regular polygons. Note that M is
not necessarily the boundary of a 3-dimensional lattice polytope; at least not a
priori. The list is a selection of the output of the function regularDeformation
from To see that each tuple is realizable, one simply compares
the listed tuple with the tuple corresponding to the polyhedral complex obtained
from that Archimedean solid with its facets replaced by regular polygons. Note
that there are two non-equivalent listings of the truncated cuboctahedron. The
degree is computed using the Riemann-Roch polarization degree formula L? =
2(H°(X,0x(1)) — 2) for K3 surfaces. Similarly to before, by [Proposition 3.6.3
we have that the degree L? is equal to 2(L(M)—2). The number of lattice points
L(M) is easily calculated. The faces present in these examples are triangles,
squares, hexagons and octagons. It is probable that the Archimedean solids
containing decagons are smoothable as well, although one would have to use
different polynomials F, for each vertex to construct such families.
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7. Deformations of face schemes of polyhedral manifolds

Table 7.3: (P(M), O (1)) has a proper 1-parameter smoothing to polarized K3

surfaces

6-tuple
M is boundary of

Polynomial F
Degree of polarization

(717 717 717 717 717 71)

ri+ i +as+1

Tetrahedron L? =4

(0,0,0,0,—1,—-1) r3xd + s +ad + a3+ 2 + 1

Triangular prism L?> =38

(0,0,0,0,0,0) w3xind + 2do? + 2dad + a3+ 2l + a2t + a3+ 1
Cube L? =12

(1,1,0,0,0,0) x%x%z% + x%xlxg + xoaﬁx% + x%z% + x%xl

Hexagonal prism

—|—x0x% + xoa:% + 3313:% + m% +xg+a1+1
L? =24

(1,1,1,1,—-1,-1)

Truncated tetrahedron

w3xizd + 2da? + 233 + 2l + 23+ 1

L? =28

(1,2,0,0,0,0)

Octahedral prism

2,22 2.2 2 .2 2 2 2
ToriTy + Tox1Ty + XX + LT + Tors + 5

+x9+ 1
L? =44

(1’ 1) 17 170’ O)

Truncated octahedron

2,2 2 2,.2 2,2 2 2
ToTiTy + XX T2 + ToT 1T + Tor1X2 + XX T2

+x0x1x§ + xox1 + ToTo + 122 + 20 + 22 + 1
L? =60

(2? 1’ ]" 2707 0)

Truncated cube

2.2 2 2.2 2.2 2 2
ToTiTy + XgxiT2 + ToT1T5 + Tor1X2 + ToT1T5

—i—ac%xl + xlxg + xor1 + 21209 + 20+ 22+ 1
L?=92

(1,2,0,0,1,1) x3xixd + 2drize + xoaiwa + woT2 + 22 + 1
Truncated cuboctahedron L? = 152
(2,1,1,1,0,0) 23x2a% + xdadre + 2dviwo + w120 + 22 + 1

Truncated cuboctahedron

L? =152
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Appendix A
Kan extensions

We refer to [Mac98, Chapter X, Section 3] for a treatment on Kan extensions.
We will briefly summarize the construction, in particular the case of left Kan
extensions along Yoneda embeddings, and include some results from [IK86] on

monoidal Kan extensions.

Definition A.0.1. Given categories A, B and C, and functors F' : A — C,
I: A — B, aleft Kan extension of F along I is a functor Lan;(F) : B — C
together with a natural transformation np : F' — Lan;(F)I called the universal

transformation, written

A—LE ¢

| = (A1)
Lang (F)

B

satisfying the following universal property: Given any functor M : B — C
together with a natural transformation p : F — M1, there exists a unique
natural transformation 0 : Lan;(F) — M such that the diagram

Lan;(F

)
% X (A.2)
F - MI

The left Kan extension Lan;(F') equipped with its universal transformation
is unique up to natural equivalence. Whenever C is cocomplete, i.e. has all
colimits, then every functor F' : A — C has a left Kan extension. The universal
transformation np : F — Lan;(F)I is natural in natural transformations ¢ :
F — G, inducing a functor on functor categories Lan; : [A, C] — [B, C] which is
left adjoint to the precomposition functor I* : [B,C] — [4, C]. It is a general fact
that left adjoint functors are cocontinuous, i.e. preserves all colimits (see
Chapter V, Theorem 2]). Thus left Kan extensions are always cocontinuous
when C'is cocomplete. If I is fully faithful, then g is a natural equivalence and
Lany is fully faithful as well.

comimutes.

A.0.1 Construction of the left Kan extension

Assume that A and B are small categories. Given a functor F': A — C, the left
Kan extension functor Lan;(F') : B — C along with the universal transformation
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A. Kan extensions

nrp : F — Lan;(F)I can be constructed as follows. For each object b € B,
consider the comma category (I | b) consisting of pairs (a, f : I(a) — b) for
objects a € A, and arrows f : I(a) — b. An arrow (a, f: I(a) = b) — (d/, f':
I(a") — b) consists of an arrow g : a — a’ in A such that f' o I(g) = f.

For each b € B, the functor F : A — C induces a diagram F, : (I |
b) — C, defined by Fy(a, f) = F(a), and F, (g : (a, f) — (¢, ")) = F(g). We
define Lan;(F)(b) as the colimit lim Fy, of this diagram. The colimit comes
equipped with the universal natural transformation 7, : F, — Lan;(F)(b),
where Lan;(F')(b) is regarded as the constant functor on (I | b) with value
Lan;(F)(b). For each a € A, consider the natural transformation 774y : Fr(a) —
Lan;(F)(I(a)). We define np : F — Lan;(F) by nr(a) = 71(a)(a,ids@)) :
F(a) — Lan;(F)(I(a)).

Consider the functor (I | —): B — Cat, sending any b € B to the category
(I 1b), and any arrow h : b — b’ to the functor (I L h): (I} b) — (I V). The
functor (I | h) is defined by mapping any object (a, f) to (a,h o f), and any
arrow g : (a,f) = (d/,f') to g : (a,ho f) = (a’;ho f'). Let h: b — b’ be an
arrow in B. Then the natural transformation 7, : Fyy — Lany(F) (V') yields a
natural transformation 7 (I | h) : F, — Lan;(F)(b"). The universal property of
7p induces the arrow Lan;(F)(h) : Lan;(F)(b) — Lan;(F)(b').

A.0.2 Discrete fibrations

Definition A.0.2. Fix a small category C. Then a category over C is a small
category U equipped with a functor p : U — C, and is denoted (U, p). A discrete
fibration over C' is a category (U, p) over C such that for every object s € U and
arrow f : ¢ — p(s) in C, there exists a unique lifting h : ¢ — s of f along s. This
defines the category Fib(C) of discrete fibrations over C' as a full subcategory of
(Cat | C).

Let X : C°P — Set be a presheaf on C. Consider the category of objects
I(X) = (Yo | X) of X as a category over C via the projection functor px :
I(X) — C defined by (¢, s € X(c)) — ¢ on objects, and (f : (¢/,t) = (¢, 8)) —
(f : ¢ — ¢) on arrows. The following fact is well-known.

Proposition A.0.3. The assignment X — (I(X),px) defines an equivalence of
categories I : Pre(C) =N Fib(C).

A.0.3 Yoneda extensions

Definition A.0.4. Given a functor F': A — B, a Yoneda extension of F is a left
Kan extension of F': A — B along Y4 : A — Pre(A4).

Of particular importance is the Yoneda extension of a composition A i

Bz Pre(B) along the Yoneda embedding Y4 : A — Pre(4). In fact given
a presheaf X : A°P — Set, then using the general construction of the left
Kan extension, we have the following simple formula for the Yoneda extension
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X = Lany, (Y5 o F)(X):

X= lim B(- F(a)). (A.3)
A(—,a)—>X

Notably, for representable functors we have A(/—71) = B(—, F(a)). There is an

alternative way of describing X : B — Set; it is in fact a left Kan extension
itself:

Lemma A.0.5. In the situation above, the functor X = Lany, (Yp o F)(X) is a
left Kan extension of X : A°? — Set along F°P : A°? — B°P. In other words,
there is a natural equivalence of functors Lany, (Yp o F') = Lanpop.

Proof. Note first that since Y4 is fully faithful, the universal transformation
YpoF — Lany, (Y o F) oYy, is a natural equivalence. The adjunction be-
tween Langor and (F°P)* yields a natural bijection Hom(Langor (A(—,a)), Z) =
Hom(A(—,a),Z o F°P)) for every object a € A and preshaf Z : B — Set.
By the Yoneda lemma, there are natural bijections Hom(A(—,a), Z o F°P)) =
Zpay = Hom(B(—, F(a)),Z). It follows that there is a natural bijection
Langes (A(—, a)) = B(—, F(a)). Le, there are natural equivalences Lanpop 0¥y =
YpoF = Lany, (Yp o F)oYy. Since Langer is cocontinuous, using the fact that
every presheaf is a colimit of representable presheaves results in an equivalence

Lanper = Lany, (Yp o F'). O

When F': A — B is a discrete fibration, the functor X has a particularly
nice description.

Lemma A.0.6. In the situation of [Lemma A.0.5, assume additionally that F is
a discrete fibration. Then,

a) for every b € B, X(b) = = r(a) X (a);

b) the universal transformation nx : X — X o FoP js given on each a € A by
the inclusion of the term X (a) into X (F(a));

¢) for each arrow f: b — b in B, the map X(f) : )?(b) — X (V') is given on
components as X (g) : X(a) — X (a') for each a € A with F(a) =b and
lifting g : ' — a of f;

d) zf (/5 X — Y s a natural transformation, the induced transformation
d) X >5Vis for each b € B given on components by ¢q : Xq — Y, for
each a € A with F(a) = b.

Proof. a) By th 1 i have that X (b) = li X
roof. a) By the general construction we have that X (b) gbinf(c) (o),

where the colimit is taken over the comma category (F°P | b) = (b | F). Every
arrow [ : b — F(c) lifts uniquely to an arrow h : a — ¢, where F'(a) = b. This
induces maps X (h) : X(¢) = X(a). Let g : (¢, f") = (¢, f) be any arrow in
(b ] F), and consider the respective liftings h: a — c and b’ : @’ — ¢ of f and
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A. Kan extensions

f’. Since F(g)o f' = f, then goh’ = h by uniqueness of lifts. Hence a = a/, and

the composition X (c) *9) X(c) ) X(a) is equal to X (h). It follows that
_ X(a) is a cone to the diagram (b | F') — Set. It is clearly the initial
b=F(a)

one, since each X (a) already appears in the colimit corresponding to the identity
arrow b — F(a). b) follows immediately by the construction of 7p(,). ¢) follows

from b) and naturality of the universal transformation nx : X — X o Fop. d)
follows immediately from b) and naturality of nx in X. O

A.0.4 Monoidal Kan extensions

We refer to Chapter XI] for the full definition of a monoidal category,
monoidal functors and monoidal natural transformations. We will refer to
for further results. A cocomplete monoidal category D is called monoidally
cocomplete if for each d € D, the functors — ® d,d ® — : D — D are both
cocontinuous. A cartesian closed category is monoidally cocomplete with respect
to the product operation, since these functors are left-adjoints.

Definition A.0.7 (|IK86, Section 4]). Let (C,®,1¢) be a monoidal category.
Then the Day convolution product x : Pre(C) x Pre(C) — Pre(C) is defined as

the left Kan extension of the composite functor C' x C ENJORCN Pre(C') along
Yo x Yo : C x C — Pre(C) x Pre(C).

The convolution product X Y : C°P — Set can be written as

li C(—,c1 ®ca). (A4)
C(*,Cl)%X,C(f,CQ)*)Y

The Day convolution product gives the presheaf category Pre(C') the structure
of a monoidal category with unit Yo (1¢) = C(—, 1¢).

Proposition A.0.8. Let C' be a monoidal category. Then,

a) the presheaf category Pre(C) is monoidally cocomplete under the Day
convolution operation, and the Yoneda embedding Yo : C — Pre(C) is a
strong monoidal functor of monoidal categories;

b) If a monoidal category D is monoidally cocomplete, and F : C — D is
a strong monoidal functor, then the Yoneda extension F: Pre(C) — D
is the unique (up to monoidal equivalence) cocontinuous strong monoidal
functor such that Fo Yo and F are monoidally equivalent. The monoidal
equivalence is given by the universal equivalence 1 : F'— F o Y¢ associated
to F as the left Kan extension of F.

Proof. a) follows from |[IK86l Proposition 4.1], and b) follows from [[K86, Theo-
rem 5.1]. O

Note that Set is a symmetric monoidal category via the cartesian product
operation Set x Set — Set, with the unit being the one-point set. It is also
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cartesian closed, hence monoidally cocomplete. Using this, there is an alterna-
tive way of describing the convolution product more explicitly, analogously to

Lemma A.0.5

Lemma A.0.9. Let (C,®,1¢) be a monoidal category. Then for each pair of
presheaves X, Y € Pre(C), the Day convolution product X xY : C°P — Set is the

XY
left Kan extension of the composition X xY : C°P x C°P M Set x Set = Set
along ®°P : C°P x C°P — C°P. In other words, there is a natural equivalence of
functors Langer = Lany, xy, (Yo o ®).

Proof. Note first that since Yo x Y is fully faithful, the universal transformation
Yoo® — Lany, xy, (Yo o®)o (Yo x Ye) is a natural equivalence. The adjunction
between Langer and (®°P)* induces a natural bijection

Hom (Langes (C(—,¢1) x C(—,¢2)), Z) = Hom(C(—,c1) x C(—,c2), Z o @°P))
(A.5)
for every pair of objects ¢1,co € C and presheaf Z : C°P x C°P — Set. Via a
monoidal version of the Yoneda lemma, there are natural bijections

Hom(C(—,c1) x C(—,¢2),Z 0 Q) = Ze 96, = Hom(C(—,c1 ® ¢2),Z) (A.6)

(the first bijection is given by ¢ = ¢ (., ,)((ide,,idc,))). It follows that Langoes (C'(—, c1) x
C(—,c2)) = C(—,c1 @ ). Le., there are natural equivalences

Langer o(Yo X Yo ) 2 Yo o @ = Lany, x v, (Yo o®)o (Yo x Yo). (A7)

Now, Langes is cocontinuous and both Set and Pre(C') are monoidally cocomplete
(by [Proposition A.0.8|a)), so writing the presheaves in both arguments as colimits
of representables shows the equivalence Langer = Lany, xy, (Yo o ®). O
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Appendix B
Milnor patching

B.1 Milnor patching for flat and projective modules

In this section we will primarily summarize the procedure of patching projective
and flat modules per . The statement below is a generalization of Milnor
patching per , extending the case of projective modules to that of flat
modules as well.

Theorem B.1.1 (|[Fer03| Theorem 2.2]). Let

R4>R2

l | ljz (B.1)

Ry —2> Ry

be a pullback square of rings, with j1 surjective. This is called a Milnor square.
Let Py, Py be projective (resp. flat) modules over Ry and Ry respectively, and let
h:R3s®pg, Po = R3s ®pg, P1 be an isomorphism. Consider the pullback square

P——Ph

l 1®id

P, —— R3 ®Rr, P1

J/ho(l@id) (B.2)

of R-modules yielding an R-module P. Then,

a) P is a projective (resp. flat) R-module. Moreover, if Py and Py are finitely
generated over Ry and Ry respectively, then P is finitely generated over R;

b) the modules Py and Py are isomorphic to Ry ®@p P and Re @ P respectively
via the canonical maps;

c) every projective (resp. flat) R-module arise in this way for appropriately
chosen Py, Py and h.

The following lemma is easily verified.

Lemma B.1.2. Given a Milnor square like (B.1)), then the following sequences
of R-modules are exact:

0 —kerj; - R— Ry — 0, (B.3)

0— R— Ry xRy — Rz —0. (B.4)
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B. Milnor patching

B.2 Milnor squares of schemes

In this section we will show that certain Milnor squares of graded rings induces
pushouts of projective schemes. See [Sch05] and [Fer03] for similar results of
this type, and also p. 6.2] for an example of how a pushout of projective
schemes is not projective in general.

Proposition B.2.1. Let
R—— R2

|

R1 HRQ),

be a Milnor square of finitely generated positively graded k-algebras with Ry — Rs
surjective and Ry — Rg3 finite.

a) for any graded projective R-module P and homogeneous element © € R,
the induced diagram

Py (P ®r R2)(a,)

T

(P ®r R1)(z;) — (P ®R R3) ()

is a pullback square, where x1,xs,x3 are the respective images of x;

b) The induced diagram of schemes

Proj(R) <—— Proj(R2)

T

Proj(Ry) <—— Proj(Rs)
is a pushout square of schemes.

¢) More generally, if U C Proj(R) is an open subscheme, then the induced
diagram
U<~——-0U0,

o

is a pushout square of schemes, where Uy, Uy, Us are the respective preim-
ages of U.

Proof. a) Tensoring the exact sequence (B.4) with P and then localizing yields
an exact sequence

0 — Py = (P ®R Ri1) @) X (P ®Rr R2)(2,) = (P ®r R3)(z,) — 0.
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Milnor patching for vector bundles

It follows that is a pullback square.

b) Let X5, X9, X3 be projective schemes, X5 — X; a closed immersion and
X3 — X a finite morphism. Then the conditions of Theorem 7.1] are
satisfied, so that the amalgated sum X' = X; Ux, X2 of ringed spaces is a
scheme, and the induced morphisms X; — X’ are morphisms of schemes. See
Scolie 4.3] for a precise definition. As a topological space, X’ is just
the pushout X; Ux, X5. The structure sheaf on X’ is defined as the pullback
Ox, xoy, Ox,. If U C X' is an open subset, then one easily observes that U is
the amalgated sum U; Uy, Us of ringed spaces, where each U; is the restriction of
U to X;. If each X; = Spec(A;) is affine, then X’ = Spec(A; X 4, A3). Crucially,
the amalgated sum is a pushout in the category of ringed spaces. In the current
situation, one can without much difficulty show that X’ is a pushout in the
category of locally ringed spaces, and therefore in the category of schemes as
well.

Now, let X = Proj(R), and define X; = Proj(R;). Then via (B.6)), X is a
cone to the diagram. Thus there is a uniquely induced morphism f : X’ =
X1 Ux, X9 = X of schemes. Let x € R be any homogeneous element, and
consider the distinguished open affine Dy (z) C X. Let V = f~}(D,(x)). By
a), we have D (x) = Dy (x1) Up, (z5) D4 (72) (choose P = R). By the above
discussion, this amalgated sum characterizes V' as well. Hence f|y : V — D, (x)
is an isomorphism, so it follows that f : X’ — X is an isomorphism.

¢) follows immediately from the proof of b). O

B.3 Milnor patching for vector bundles
Patching of projective modules via Milnor diagrams of rings can be generalized

to patching vector bundles via pushout squares of schemes. By a vector bundle
we mean a locally free sheaf of finite rank. Let

RHRQ

]

R1 *>R3

be a Milnor square of graded rings as in [Proposition B.2.1} and let

X<~—X

T ’ Tﬂ‘z (B.8)

X <=—X3
J1

be the corresponding pushout square of schemes, where j; is a closed immersion.
We call such a pushout square a Milnor square of schemes. Let i3 denote the
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B. Milnor patching

morphism 41 o j; = ig 0 jo. Since the diagrams (B.5) are pullback squares,

i2 .
Ox ———12.0x,

Jj? J{ (B.9)

Z.1»«(9X1 — i3*OX3

is a pullback square of Ox-modules. The following analogues of
and can be verified locally.

Proposition B.3.1 (Milnor patching for vector bundles). Let & and &
be vector bundles on X1 and Xo respectively, and let h : j3E2 — j7&€1 be an
isomorphism. Let &1 — j1.J7&1 and E2 — jo.j5E2 be the canonical morphisms,
and consider the pullback square of Ox-modules

p2 .
£ 19.Eo

lpl iiz*(jz*honz) (B.10)

. 1M1 ..
1.6 —— 13*Jik51~

Then,
a) & is a vector bundle on X ;
b) the canonical morphisms i{€ — €1 and i5E — & are isomorphisms;

¢) every vector bundle on X arise in this way for appropriately chosen &1,Es
and h.

Lemma B.3.2. Given a pullback square of Ox-modules like , then the
following sequences of Ox-modules are exact:

0 — i1  ker j — Ox — i2.0x, — 0, (B.11)

0= Ox = i1.0x, ®i2.Ox, — i3.0x, — 0. (B.12)

In the situation of , let VB(X) denote the category of vector bundles
on X. The fibered product of categories VB(X1) xvp(x,) VB(X2) consists of
pairs of finite vector bundles (£1,&>) on X; and X5 respectively, equipped with
an isomorphism h : j3& — ji&; of vector bundles on X3. A morphism of pairs
(&1,E) — (&1, EL) equipped with respective isomorphisms h and &/, is a pair of
morphisms ¢; : & = &], g2 : E2 — E5 such that the diagram

. h o
Ji&<=——75&
ij;gl lj;gz (B.13)
. R
J1 5{ I — ngé

142



Milnor patching for vector bundles

commutes. We define the functor
B :VB(X) — VB(X;) XVB(X3) VB(X>) (B.14)

by £ — (i7€,i5E) equipped with the canonical isomorphism he : j3i5E — jii7E,
which is natural in £. A morphism of vector bundles f : £ — F on X maps
to the morphism of pairs (i} f,i5f) : (i1&,i5E) — (i1 F,i5F), which satisfies the
commutative diagram by naturality of he. We also define the functor

by mapping a pair (€1, E2) equipped with an isomorphism A to the vector bundle
& defined as the pullback of (B.10). & is characterized up to isomorphism, so 6
is defined by making a choice of £ for each pair (€1,&2). A morphism of pairs
(f1, f2) : (&1,&2) — (F1, F2) induces a morphism of their corresponding pullback
squares on the form of . If @ maps each pair to €& and F respectively, then
the morphism of pullback squares induces a unique morphism 0(f1, f2) : € — F.
Functoriality of S and 6 is easily verified.

Proposition B.3.3. There is an equivalence of categories
B: VB(X) 2 VB(X1) Xyp(x,) VB(Xa) : 6.

Proof. We will establish natural equivalences 7 : id — #o § and p : id — S0 6 of
the composites of § and 6 with identity functors. Let £ be a vector bundle on
X. Then 0 o 8 maps £ to a vector bundle £’ such that

& ———i2.&

A7

11:61 — 13771 &1

is a pullback square. However, £ is the pullback of the same diagram ,
which means there is a unique isomorphism 7g : £ — £’ such that p} ons = p;
and p), o ne = po. Naturality of 7¢ is easily verified. Conversely, consider a pair
(&1, &2) equipped with an isomorphism h : j3E — j7&1. Let £ = 0(&1, &), and
consider the pullback square (B.10). 3 maps € to the pair (i{€,i3€) equipped
with the isomorphism hg : j5i5E — jiii€. Recall the induced isomorphisms
P10 i5E — &1 and Py 1 15E — & from [Proposition B.3.1|b). To see that this
defines an isomorphism pug, g,y = (¥1,12) @ (i1€,i5E) — (&1,&2), we have to
verify that

he
i€ =—Jj3is€

ljfi/)l J/j;lbz

Ji& <=——Js&

143



B. Milnor patching

commutes. Locally, in the notation of [Proposition B.2.1] this is the diagram

P®R(.7:) (R3)(953) P®R(.7:) (R3>(I3)

| R

h
PL @Ry, (B3)(as) = P2 O(Ro) oy, (B3) (a5)-

However, this is just the diagram (B.2) tensored with (R3)(s,). We conclude
that (B.16) commutes. Next, let (f1, f2) : (£1,&2) — (F1, F2) be a morphism of
pairs, and let F = 6(Fy, F2). By definition of 6(f1, f2), the diagram

& i2*82
Wz) \L
F ———i9.F2 (B.l?)

|

1.6 —i1.F1
commutes. Naturality of jig, ¢,) follows easily. O
We define the tensor product (&1, &2) @ (Fi, Fz) of pairs of vector bundles

(equipped with respective isomorphisms hq,hs) as (€1 ® Fi,E & F2) equipped
with the isomorphism h given by

J5(E2® F2) = 562 j3F2 M5 16 © i © 5 F1 = i (€1 @ F1). (B.18)
Proposition B.3.4. There are natural isomorphisms

a) BE®F)=B(E) ®B(F),
b) 0((&1,&2) @ (F1, F2)) = 0(&1, E2) @ 0(F1, Fa).
Proof. a) Let £ and F be vector bundles on X. Then there are isomorphisms

FERF) = i3E@iF, and i5(E @ F) — i5€ @i5F, natural in € and F. Clearly,
the induced diagram

J3i5(E @ F) 4F>]121(5®]:)

e

iy - he®@hr .. . y -
* ok * 2k * 1k * ok
J315E ® jyisF —— j1i1€ ® jii]
commutes.

b) Let (£1,&2) and (Fi, F2) be pairs of vector bundles with respective iso-
morphisms hq, he, and let H = 6(E; @ F1,E2 @ Fa). Then there exists a unique
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Milnor patching for vector bundles

morphism u : £ ® F — H such that the diagram

EQF

e

194 (E2 ® F2)

] |

i1+(E1 ® F1) ——i3.J1 (&1 ® F1)

l T

1.1 @ Q1. F7 i34J7 €1 @ 13477 F1
(B.20)
commutes. It remains to verify that £ ® F is the pullback of the large square
of (B:20). This may be seen locally, and follows from [Proposition B.2.1] a).
Naturality is easily seen. O]

iQ*gZ ® Z'2>s<]:2

The Picard group Pic(X) is the group of equivalence classes of the subcategory
VB!(X) of VB(X) consisting of vector bundles of rank 1. By [Proposition B.3.3|
and [Proposition B.3.4] we may also consider Pic(X) as the group of equivalence
classes of triples (£, &, h) € VB' (X)) X VB (Xs) VB! (Xy).

Proposition B.3.5. There is an exact sequence of abelian groups
1= HO(X,0%) = H'(Xy,0%,) x H(X5,0%,) = H(Xs,0%,) %
Pic(X) % Pic(X1) x Pic(X2) — Pic(X3),

where ¢ is given by h — isomorphism class of (Ox,,Ox,,h), where h € H(X3, 0x%,)
is considered as an isomorphism between j5Ox, and j7Ox, .

Proof. The map ¢ is multiplicative by|[Proposition B.3.4l Exactness at H°(X, O%)
and H°(X1,0%,) x H°(X2,0%,) follows from exactness of (B.12)), and exact-
ness at Pic(X7) x Pic(X3) follows from [Proposition B.3.3| It remains to show
that kerty C im ¢, since the other inclusion is immediate. So let £ € ker(f).
Then i{€ ® (i5€)Y is trivial, so there exists isomorphisms ¢y : i€ — Ox, and
g2 : 15 — Ox,. Consider the isomorphism h = j5gaoohz ' o(jig1) ™ : j30x, —
JjiOx,, and note that (g1, g2) forms an isomorphism between (i7€,i3E, he) and
(Ox,,Ox,, h). If we consider h as an element of H%(X3, 0%, ), then it is clear
that ¢(h) is equal to the isomorphism class £. O
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Appendix C
Code

C.0.1 Components of the base space

torus = (n,m,r) -> (
f = (a,b) -> (
if b > m-1 then return f(a-r,b-m)
else if b < 0 then return f(a+r,b+m)
else if a > n-1 then return f(a-n,b)
else if a < 0 then return f(a+n,b)
else return {a,b}
);
return f;
);

triangles = (n,m,r) -> (

f := torus(n,m,r)

A :=QQ[t_{0,0}..t {n-1,m-1},u_{0,0}..u_{n-1,m-1},v_{0,0}..v_{n-1,m-1}];
B := A[s_{0,0}..5s_{n-1,m-1},9-{0,0}..9-{n-1,m-1},w_{0,0}..w_{n-1,m-1}1;
I := ideal(0);

for i from 0 to n-1 do (
for j from 0 to m-1 do (

I =1+ ideal(t_{i,jl*v_(f(i,j-1))-v_{i,j}*t_(f(i-1,7)));

I=1+ ideal(t_{i,jr*u_{i,jy-u_(f(i-1,j-1))*t_(f(i-1,3)));

I=1+ ideal(v_{i,jr*u_{i,j}-u_(f(i-1,j-1))»v_(f(i,j-1)));

I =1+ ideal(s_{i,j}*t_{i,j}-1,q-{i,jr*u_{i,j}-1,w_{i,jr*v_{i,j}-1);
);

)i
g := map(B/I,A);
return ker(g);
);

squares = (n,m,r) -> (

f := torus(n,m,r)

A :=QQ[t_{0,0}..t_{n-1,m-1},u_{0,0}..u_{n-1,m-1},v_{0,0}..v_{n-1,m-1}1;
B := A[s_{0,0}..s_{n-1,m-1},9-{0,0}..9-{n-1,m-1},w_{0,0}..w_{n-1,m-1}1;
I := ideal(0);

for 1 from 0 to n-1 do (
for j from 0 to m-1 do (
I =1+ ideal(t_(f(1+2*i+j,1+i+2%j))-1,
Vo (F(1+2%i+], 1+i+2%]3) ) -1, u_(f(2*i+j,i+2%j))-1);
+ ideal(t_{i,jr*v_(f(i,j-1))-v_{i,jr*t_(f(i-1,3)));
ideal(t_{i,jr*u_{i,j}-u_(f(i-1,j-1))*t_(f(i-1,7)));
ideal(v_{i,j¥r*u_{i,j}r-u_(f(i-1,j-1))*v_(f(i,j-1)));
ideal(s_{i,j}*t_{i,j3-1,q-41,i1*u_{i,3}-1,w{i,jt*v_{i,j}-1);

o
o nu
o
+ + +
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C. Code

);
);
g := map(B/I,A);
return ker(g);
)s

basicTesselation = (n,m,r) -> (

J := triangles(n,m,r);
D := decompose(J);
return D;

)

crossTesselation = (n,m,r) -> (

J := squares(n,m,r);
D := decompose(J);
return D;

)s

C.0.2 Invariant polynomials

transform = (n2,n1,m0,m2,rl,r0) -> (
affine = (i,1) -> (
if (i == 1) then (
a := 2-n2-n1-1_0+n1x1_1+n2*1_2;
return {a,1.1,1.2};
)
else if (i == 2) then (
b = 2-mO-m2-1_1+mO*x1_0+m2*1_2;
return {1.0,b,1_2};
)
else if (i == 3) then (
C = 2-r1-r0-1_2+r1*«1_1+r0*1_0;
return {1_0,1_1,c};
)5
);
return affine;

);

neg = 1 -> (
if (1.0 < 0) or (1.1 < 0) or (1.2 < 0) then return true else return false;
)

invariant = r -> (
f := transform(r_5,r_0,r_1,r_2,r_3,r_4);
L = {{0,0,0}};
val := true;

while val do (
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L1 :=L;
val = false;
for 1 in L do (

11 := f(1,1);
12 := f(2,1);
13 := f(3,1);
if not member(11,L1l) then (L1 = L1 | {1l1}; val = true);
if not member(12,L1) then (L1 = L1 | {12}; val = true);

if not member(13,L1) then (L1 = L1 | {13}; val = true);

);
if any(L1l,neg) then val = false;
L =L1;

)i

if not any(L,neg) then (
R := QQ[x_0,x_1,x_21;
F = 0;

for T in L do F = F + x_07™(1_0)*x_1™M(1_1)*x_2"(1_2);

B := singularLocus(ideal(x_0*x_1xx_2+F));
J := ker(map(B,R));
if J == 1 then return F else return 0;

) else return 0;
);

regularDeformation = T -> (

M= {};

for s in T do (
F := invariant(s);
if F 1= 0 then M =M | {{s,F}};
);

return M;

);

cycle =t -> {t.2,t3,t4,t5,t0,t 1};
pert =t -> {t.2,t.3,t.0,t.1,t 4,t.5};

ord =T -> (
Tl =T,
for t in T do (
Tl = delete(t,T1);
Tl = delete(pert(t),T1l);

Tl = delete(cycle(t),T1);
Tl =T1 | {t};
)i

return T1;

);

T = ord(toList({-1,-1,-1,-1,-1,-1}.. {2,2,2,2,2,2}));

M = regularDeformation(T);
for m in M do print m;
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