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Summary

In Marginal Structural Models (MSMs), time is traditionally treated as a discrete parameter. In
survival analysis on the other hand, we study processes that develop in continuous time. There-
fore, Røysland (2011) developed the continuous-time MSMs, along with continuous-time weights.
The continuous-time weights are conceptually similar to the inverse probability weights that are
used in discrete time MSMs. Here we demonstrate that continuous-time MSMs may be used in
practice. First, we briefly describe the causal model assumptions using counting process notation,
and we suggest how causal effect estimates can be derived by calculating continuous-time weights.
Then, we describe how additive hazard models can be used to find such effect estimates. Finally,
we apply this strategy to compare medium to long term differences between the two prostate
cancer treatments Radical prostatectomy (RP) and Radiation therapy (Rad), using data from
the Norwegian Cancer Registry. In contrast to the results of a naive analysis, we find that the
marginal cumulative incidence of treatment failure is similar between the strategies, accounting
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for the competing risk of other death.

Key words: Causal inference in survival analysis;Continuous-time Marginal Structural Models;Continuous-

time weights;Prostate cancer therapy.

1. Introduction

To evaluate the effect of medical interventions, randomized controlled trials (RCTs) are desirable.
Such trials, however, are often lacking. RCTs are hard to conduct in many real-life settings,
because they tend to be expensive, time-consuming and sometimes unethical.

In contrast, relevant observational data are often available. Nowadays individual patient
records are frequently collected in clinical registries. These registries may be essential to de-
cision makers who can benefit from data that are cheap to analyze. On the other hand, analyses
of observational data are fundamentally prone to confounding and selection bias. To seriously
address these concerns, there have been major methodological developments in the last decades.
Strategies for causal inference in observational studies have been improved, and several methods
are now accessible for a broader range of researchers. By explicitly stating the causal assump-
tions, such methods allow us to interpret the findings from observational studies causally. In this
framework, observational studies are commonly designed to mimic randomized controlled trials.

In many medical scenarios, the outcome of interest is the time to an event. In particular,
we may be interested in how cancer treatments, e.g. a surgical intervention and radiation, affect
survival times. To evaluate time to event outcomes, we need to observe subjects over time.
The longitudinal structure may complicate the analysis, because the effects may e.g. be time-
dependent and subjects may drop out from the study.

To account for time-varying confounding, Robins (1997) developed the marginal structural
models. The strategy requires the assumption of no unmeasured confounding, and, heuristically,
causal estimates are derived by weighting the subjects to create a pseudopopulation unaffected
by confounding and selection bias. By using weighting to control for confounding, MSMs allow
for flexible definitions of the structural model, which is not only desirable when time varying
confounding is present, but also in other scenarios (Joffe and others, 2004). For time to event
exposures, however, this strategy has considered time to be a discrete unit (Hernán, Brumback
and Robins, 2002). In this approach, IPT weights are typically estimated using pooled logistic
regression where the event times are binned into discrete intervals. This binning of event times is
known to induce either bias or high variance (Ryalen, Stensrud and Røysland, 2018). Since time
to event outcomes usually occur in continuous time, we aim to develop method that consider
time to be a continuous process.

In the probability literature, Røysland (2011) described MSMs in continuous time using mar-
tingale theory. The idea is that desirable features such as randomization can be framed as a
change of probability measure, from an observational measure to a hypothetical measure. The
two measures are related through a Radon-Nikodym derivative that serves as a weight process. By
weighting the observed data, we can mimic observations that are derived from the hypothetical
measure. These methods are theoretically sound and applicable to various observational survival
data, but they have not been applied in the literature.

In this article, we apply continuous-time weights to compare two prostate cancer treatment
regimens, radiation (Rad) and radical prostatectomy (RP), using data from the Norwegian cancer
registry. Our outcome of interest is time to failure of treatment, which is a surrogate for death due
to prostate cancer. There may be confounding between the outcome and treatment assignment,
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and there may be confounding between the outcome and the time to treatment initiation. To
account for the confounding, we attempt to study a scenario where both the treatment mode
(Rad or RP) and the time to treatment initiation are randomized. To construct this scenario,
we rely on propensity weights for the treatment mode, and continuous-time weights for time
to treatment initiation. To assess the outcome, we describe a marginal structural cumulative
incidence model as a function of the two treatment modalities. The model parameters are the
cumulative incidences of death due to prostate cancer if, contrary to fact, we had imposed Rad
treatment on the entire population versus if we had imposed RP treatment, and under either
regime, had we ensured that the treatment initiation rates were randomized. We obtain weighted
nonparametric plug-in estimators that are known to be consistent, assuming no unmeasured
confounders, exchangeability and that the model is correctly specified. Indeed, this strategy is a
general three-step approach to causal survival analysis: 1) Estimate continuous-time weights using
additive hazard models, where covariate selection is informed by local independence graphs. 2) Fit
weighted additive hazard regressions for the time to event outcome. 3) Transform the weighted
hazard estimates to obtain parameters that allow for a causal interpretation (Ryalen, Stensrud
and Røysland, 2017, 2018).

The remainder of this paper is organized as follows. In Section 2 we give a brief account
of the theory that is necessary for our causal analysis. Then we describe sources of bias in the
registry data, and we suggest how to adjust for bias by weighting. Next we describe an estimation
procedure for the continuous-time weights, propose a MSM, before explaining a method for testing
equality of hypothetical cumulative incidences. In Section 3 we give details regarding model fitting
and the weighted analysis, and give outcomes of the performed tests. A discussion is provided in
Section 4.

2. Deriving causal estimates

Our definition of a causal counting process model is derived from Røysland (2011), but we include
an explicit formulation to clarify the concept. Throughout the manuscript we will use subscript
notation to indicate the value of a process at time t.

2.1 Representation of patient information

We consider n i.i.d. individuals over a study period [0, T ]. Each individual i is represented by
a set of d random variables Xi,1, . . . , Xi,d at baseline, and k counting processes N i,1, . . . , N i,k.
In our example, N i,j

t for a particular j will e.g. denote whether or not a particular prostate
cancer treatment is initiated by time t for patient i. In other examples, N i,j

t could also be a time-
dependent confounder. The filtration Ft is generated by all measurable events for every individual
that can occur before time t. In our example, Ft will e.g. include information on all the baseline
variables as well as the treatment initiation times and the treatment failure times until t. Let P
denote the joint density that governs the frequencies of all the events in FT . Moreover, let λi,j

denote the intensity for the counting process N i,j with respect to P and FT . Heuristically, this
means that

λi,jt = lim
∆→0

1

∆
P
(
N i,j
t −N

i,j
t−∆ > 0|Ft−∆

)
, (2.1)

so the intensity can be interpreted as a conditional density in a short time interval. From (Jacod,
1975) we know that the density of the counting processes conditional on the baseline variables
are uniquely characterized by the intensities. We also know that P at baseline is given by the
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conditional densities

dP
(
Xi,m|Xi,m−1, . . . , Xi,1

)
, (2.2)

for m = 1, · · · , d, as the joint density at baseline factorizes as a product of conditional densi-
ties. We can thus determine P uniquely knowing the factors (2.1) and (2.2).

2.2 Causal validity

Suppose that each N i,j represents an exposure for individual i that in principle would allow a hy-
pothetical, but meaningful, intervention γ that would change the joint measure for all the events
to a hypothetical measure P̃ : The intervention would impose a P̃ intensity λ̃i,j for N i,j . If the
intervention is targeted at the j’th process N i,j , that e.g. represents the treatment trajectory,
then this intervention would simply correspond to changing treatment regime λi,j into λ̃i,j . In
our example, we aim to define a hypothetical treatment strategy in which (i) RP and Rad are
initiated independent of baseline covariates, and (ii) the time-to-treatment is equally distributed
for both treatment regimens. To do this, we will consider a scenario in which the time to treat-
ment initiation is derived from a marginal hazard model for the cohort as a whole, regardless of
treatment regimen.

Consider the intervention γ that imposes the P̃ intensity λ̃i,j on N i,j , the j’th counting process
of individual i. Our model is said to be causal if applying γ would not have changed the ’local
characteristics’ for the other components . More precisely this means that

• The functional λi,m would also define the intensity for N i,m with respect to P̃ when m 6= j,
and

• The conditional densities in (2.2) would be the same with respect to both P and P̃ , i.e.

dP
(
Xi,m|Xi,m−1, . . . , Xi,1

)
= dP̃

(
Xi,m|Xi,m−1, . . . , Xi,1

)
,

for m = 1, · · · , d

If the intervention instead was targeted at a baseline-variable, say Xi,j , and this intervention
would replace the conditional densities in (2.2) by densities on the form dP̃

(
Xi,m|Xi,m−1, . . . , Xi,1

)
,

for m = 1, · · · , d, then the model is said to be causal if

• The functional form of the intensity process of N i,m with respect to P and P̃ coincide for
m = 1, · · · , k, and

• The remaining conditional densities at baseline coincide, i.e.

dP
(
Xi,m|Xi,m−1, . . . , Xi,1

)
= dP̃

(
Xi,m|Xi,m−1, . . . , Xi,1

)
,

for m 6= j.

Note that the formulation of a baseline intervention agrees with Pearl’s definition of a causal
model (Pearl, 2000). Furthermore, conditional independence in a Bayesian network corresponds
to local independence in our time-continuous setting.
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2.3 The weights

For the baseline intervention, a basic measure theoretic argument shows that if P̃ � P , then the
likelihood ratio from P to P̃ for individual i is given by:

W i
0 :=

dP̃
(
Xi,j |Xi,j−1, . . . , Xi,1

)
dP
(
Xi,j |Xi,j−1, . . . , Xi,1

) . (2.3)

This is simply the ordinary propensity-score weight, see Pearl (2000).
For an intervention aimed at one of the counting-processes, the likelihood ratio for individual

i at time t is given by the so called Jacod-formula (Jacod, 1975, (14)), that reads

W i
t =

∏
s6t

(θi,js )∆Ni,j
s e

∫ t
0
λi,j
u −λ̃

i,j
u du, (2.4)

where θi,j = λ̃i,j/λi,j . If the intervention is targeted at a process N i,j
t that counts treatment

initiation, individual i’s weight W i
t process will change in a continuous manner whenever he is at

risk of being treated. If he receives treatment at time τ , then ∆N i,j
τ = 1 and his weight process

will jump by a factor θi,jτ . Whenever he is not at risk of receiving treatment, the weight process
will be constant.

If we knew W i
t we could re-weight the observed data to estimate parameters that would be

obtained if we had carried out our hypothetical intervention γ. However, these formulas only
represent the theoretical weights that are likely to be unknown in most statistical situations: In
real life, we have to find good estimates of these weights, usually using the data at hand.

We will use the fact that (2.4) solves the Doleans-Dade equation. This allows us to write it
as a simple integral equation with separate parts driven by the counting process N i,j and the
cumulative intensity terms Λi,jt =

∫ t
0
λi,js ds and Λ̃i,jt =

∫ t
0
λ̃i,js ds:

W i
t = 1 +

∫ t

0

W i
s−(θi,js − 1)dN i,j

s +

∫ t

0

W i
sdΛi,js −

∫ t

0

W i
sdΛ̃i,js . (2.5)

2.4 Calculating continuous-time weights

We consider longitudinal data in which individual i’s time from, say, diagnosis to treatment
is governed by the intensity λi,j . We are interested in making inference in a world where the
treatment regime is governed by an intensity λ̃i,j . In many situations we may be interested in
outcomes of (hypothetical) randomized trials, and λ̃i,j will be a marginal intensity, in our scenario
this marginal intensity is derived from the pooled treatment initiation rate in the population.
Suppose that we can find reasonable hazard models for the treatment initiation times in the
sample (in our example, e.g. an additive model describing time to treatment initiation). Hazard
models typically give cumulative hazards estimates; that is, estimates of the integrated hazard
as a function of time, At =

∫ t
0
αsds, where α is a hazard rate. Using the fitted hazard models

we can extract cumulative hazard estimates Âi,j and thus obtain cumulative intensity estimates
by using the multiplicative intensity model Λ̂i,jt =

∫ t
0
Y i,js dÂi,js , where Y i,j is the at-risk-for-

treatment indicator. From the estimated cumulative intensities, as well as some estimate θ̂i,j of

θi,j , we can estimate W i by simply plugging Λ̂i,j , ˆ̃Λi,j and θ̂i,j into (2.5), obtaining

Ŵ i
t = 1 +

∫ t

0

Ŵ i
s−(θ̂i,js− − 1)dN i,j

s +

∫ t

0

Ŵ i
s−dΛ̂i,js −

∫ t

0

Ŵ i
s−d

ˆ̃Λi,js . (2.6)
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The counting process term
∫ t

0
Ŵ i
s−(θ̂i,js− − 1)dN i,j

s will only make a contribution when individual
i has an event, e.g. receiving treatment. Our candidate for estimating the intensity ratio is

θ̂i,jt =
∆b

ˆ̃Λi,jt

∆bΛ̂
i,j
t

, (2.7)

where ∆b is a difference operator defined by ∆bDt = Dt−Dt−b, for a suitable smoothing param-
eter b. In practice, Λ̃i,j , and hence the numerator of (2.7), is typically estimated from a reference
population, even though this process could have been entirely hypothetical.

The estimator (2.7) can give extreme values when the denominator is close to zero, resulting
in large or even negative estimates. The denominator being close to zero is a violation of the
positivity condition, as the estimated weights then fail to approximate the true likelihood ratio.
Such weights will play a huge role when performing weighted analyses, and thus the weight
estimation must be treated with care. In our experience extreme weights has occurred as a result
of a misspecified model, or for individuals that are fundamentally different from the rest of the
cohort, i.e. for outlying individuals. This is similar to violation of positivity for e.g. propensity
models, but we stress that the choice of model parametrization is likely to be very important for
the continuous-time weights.

We have implemented weight estimators based on the additive hazard model (Aalen, 1989) in
the R package ahw. Equation (2.6) is easy to solve on a computer in this case, since the integrals
on the right hand side then can be reduced to counting process integrals. The estimator (2.6)
then reduces to a piecewise constant, recursive equation, and can easily be solved on a computer
using e.g. a for loop. We have used the ahw package to perform the weighted analysis in this
article.

2.5 The clinical question and sources of bias

We follow patients from time of diagnosis, and we register when (i) treatment is received, and
(ii) death or end of follow-up occurs. We aim to compare the effectiveness of the treatment
regimens RP and Rad. Due to the lack of randomization, we must consider two major sources
of bias. First, the assigned treatment regimen varies among subgroups of the population. In our
scenario, patients receiving RP treatment are e.g. almost four years younger than patients in
the Rad group on average, and this is also consistent with previous trials (Krupski and others,
2005). Socioeconomic factors such as income may also influence the choice of treatment (Krupski
and others, 2005; Woods, Rachet and Coleman, 2005). Second, the rate at which individuals
start treatment depends on the treatment regimen, as well as individual characteristics such as
education level, Gleason score, and Prostate specific antigen (PSA) levels. In an ideal randomized
trial we would not have such dependencies, and the treatment groups would be comparable at
the time of treatment.

2.6 Mimicking randomization by weighting

To adjust for these sources of bias, we will rely on a weighted analysis. We assume that the
important causal relationships are incorporated in the local independence graph displayed in
Figure 1, which describe conditional dependencies (Readers unfamiliar with local independence
graphs may find Didelez (2008) useful).

We assume that age, education and diagnostic measures such as PSA and Gleason score may
influence both the treatment regimen, the time at which treatment is initiated and the outcome,
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e.g. death from prostate cancer. In a desired RCT, the treatment regimen is selected randomly,
and the rate of treatment initiation is the same for all subjects. Removing the arrow from the
diagnostic factors to Treat mode, and the arrow from Treat mode to Treat start in Figure 1 gives
us a local independence diagram that would describe the dynamics in such a trial. If we assume
’no unmeasured confounding’, i.e. that this model is causal, we get that any association between
Treat mode and Failure would represent a causal effect.

Our hypothetical randomization strategy involves two interventions - one on the Treat mode at
baseline, and one on the treatment initiation counting process. From Section 2.3, under causal va-
lidity, we know that the frequency of all the events in the hypothetical scenario would be governed
by the actually observed frequencies, re-weighted by baseline weights (2.3) and continuous-time
weights (2.5). Thus the weighting can be partitioned into two steps. First, we calculate inverse
probabilities of the choice of treatment at baseline by fitting logistic regression models. Second,
to mimic randomization of the time from diagnosis to treatment, we will employ continuous-time
treatment weights. As described in Section 2.3, we find these weights by creating a treatment in-
tensity λ̃ that corresponds to the desired randomized experiment. This intensity will be marginal,
i.e. the intensity is the same for all individuals regardless of variables like treatment group, PSA
levels or age. We let λ̃ be the marginal treatment initiation intensity for the pooled observed
data. In this way, each individual receives a propensity weight at baseline, and a weight process
from the time of diagnosis until end of follow-up. Re-weighting the data according the product of
the propensity weights and the continuous weight-process provides the observational frequencies
we would see if we randomized to correct for (i) confounding of the choice of treatment, and (ii)
the time to treatment initiation.

2.7 Competing risks

The treated individuals are in a competing risk situation between treatment failure and death
by other causes. We therefore introduce two terminating endpoints; Failure and Other death (see
Supplementary Fig. 2 for a multi-state representation). We will evaluate cumulative incidences,
i.e. comparing the cumulative risk of Failure as a function of time, allowing for the competing
event of Other death to occur. The interesting question is whether the cumulative incidences of
Failure differ between the RP group and the Rad group, and whether such a difference is due to
the choice of treatment rather than due to covariate imbalances between the treatment groups.
Thus, our estimands of interest are the cumulative incidences of Failure that we would observe
if, contrary to fact, each treatment had been imposed on all subjects in the population, and
under each treatment, the time to treatment initiation was a random draw from the marginal
distribution of the treatment initiation times in the sample. These estimands would be easy to
calculate using standard survival analysis techniques if the data came from the desired randomized
trial. If Tf is the time from diagnosis to treatment failure, Tod denotes the time to other death,
and the observational scenario P actually were the randomized trial, the estimands would simply
be estimated by the cumulative incidence of Failure within each group; P (t > Tf , Tf < Tod|l) for
l ∈ {Rad,RP}.

2.8 A marginal structural model

We aim to use our observational data to mimic a randomized trial. Let gl denote an intervention
where treatment mode is set to l while the treatment is initiated according to the marginal
initiation rate in the registry data. The distribution of events under this intervention is denoted
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by P̃ gl . A saturated non-parametric marginal structural model for the cumulative incidence
under treatment regime l is then

Glt = P̃ gRad(t > Tf , Tf < Tod)I(l = Rad) + P̃ gRP(t > Tf , Tf < Tod)I(l = RP)

= C̃Rad
t I(l = Rad) + C̃RP

t I(l = RP) (2.8)

Assuming that the treatment groups are exchangeable, we have that P̃ gl(t > Tf , Tf < Tod) =

P̃ gl(t > Tf , Tf < Tod|l) for each l. By assuming exchangeability, positivity and no unmeasured

confounding, we can identify the coefficients C̃Rad and C̃RP in (2.8) by performing a weighted
analysis within each of the treatment groups. We have now obtained a non-parametric structural
model that is easy to estimate: After weighting the original data, we may simply study cumulative
incidence curves, e.g. derived by Nelson-Aalen estimators, for each of the treatment groups. We
only rely on parametric assumptions for the weight estimation.

2.9 Estimating, and testing equality of hypothetical cumulative incidences

We estimate the hypothetical cumulative incidences C̃l, the cumulative incidences we would
have observed under our hypothetical randomization, by recognizing that they solve ordinary
differential equation systems on the form(

C̃lt
S̃lt

)
=

(
0
1

)
+

∫ t

0

(
S̃ls 0

−S̃ls −S̃ls

)
d

(
Ãl,Failure
s

Ãl,Other death
s

)
,

for group l ∈ {Rad,RP}. Here, Ãl,Failure and Ãl,Other death are the hypothetical cumulative haz-
ards (i.e. cumulative hazards under P gl) for the transition from state l to the Failure and Other
death endpoints, respectively, while S̃l is the hypothetical survival function (i.e. the survival func-
tion under P gl). Our estimator is obtained by simply ”plugging in” estimates of the integrators,
which will be the weighted cause-specific Nelson-Aalen estimators Âl,Failure, Âl,Other death. The
”weighting” is simply performed by multiplying the i’th at risk indicator at time t with Ŵ i

t−
for each i = 1, · · · , n in the standard Nelson-Aalen estimator. From Section 2.6 we recall that
Ŵ i in our case is the product of the estimated propensity weight and continuous-time weight for
individual i. We end up with a naturally associated system that reads(

ˆ̃Clt
ˆ̃Slt

)
=

(
0
1

)
+

∫ t

0

(
ˆ̃Sls− 0

− ˆ̃Sls− − ˆ̃Sls−

)
d

(
ˆ̃Al,Failure
s

ˆ̃Al,Other death
s

)
. (2.9)

This is a recursive, piecewise constant equation system that is similar to (2.6).
We can test for equality of the cumulative incidences using the approach suggested by Gray

(1988), i.e. a log-rank test based on comparing subdistribution hazards. We are, however, in-
terested in (hypothetical) randomized trial outcomes, and will consequently compare weighted
subdistribution hazards. By plugging in the weighted quantities the test statistic reads

ˆ̃ZT =

∫ T
0

Kt ·
( d ˆ̃CRAD

t

1− ˆ̃CRAD
t−

− d ˆ̃CRP
t

1− ˆ̃CRP
t−

)
, (2.10)

for a suitable function K.
The estimation procedure that gave rise to (2.9) applies to several other survival analysis

quantities, e.g. relative survival and restricted mean survival, which may be useful for causal
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survival analysis (Ryalen, Stensrud and Røysland, 2017, 2018). Assuming that the cumulative
hazards follow an additive model (Aalen, 1989), and using the weight estimator proposed in
Section 2.4, such plug-in estimators are consistent.

Thus we can state that the quantities (2.9) and (2.10) are consistent. In fact, the latter is
asymptotically normally distributed with mean zero under the hypothesis that the hypothetical

subdistribution hazards ζ̃ltdt =
dC̃l

t

1−C̃l
t

are equal on the study period.

3. Model fitting and analysis

We considered Norwegian males from the cohort diagnosed in 2004-2005, registered by the Nor-
wegian cancer registry until 2015. We restricted our analysis to nonmetastatic subjects who
were assigned to a treatment group; Rad or RP. Subjects who did not receive treatment, e.g.
due to serious health problems, were not included in the analysis. Thereby we selected subjects
who got treatment, which in principle may lead to selection bias. However, the fraction lost from
treatment assignment to treatment initiation is likely to be minor, due to the short time period,
and the fact that only those who are likely to receive treatment are assigned to treatment. Also,
we left out individuals in the highest risk group, because these individuals will in practice always
receive radiation therapy. Hence, we restricted our analysis to subject who, according to current
clinical practice, would be eligible to both treatment strategies.

A summary of the baseline characteristics is found in Table 1, and more information about
the data is found in the supplementary material.

As explained in Section 2.6, we fit logistic regression models for the propensity weights; a
marginal model for the weight numerator, and a covariate dependent model for the denominator.
In the denominator we modeled the probability that individual i receive RP treatment by

logit(pi) = p0 + pPSA(8,15]
I(PSAi ∈ (8, 15]) + pPSA(15,22]

I(PSAi ∈ (15, 22]) + page>65I(agei > 65)

+ pCADI(CADi = 1) + pHYPI(HYPi = 1) + pearlier cancerI(earlier canceri = 1)

+ pgleason>6I(gleasoni > 6) + pT catI(T cati = 1) + p< high schoolI(edui < high school)

+ p>4 years collegeI(edui > 4 years college) + prisk groupI(risk groupi > 1),

where CAD is Coronary artery disease and HYP is Hypertension, risk group is a three-valued
risk variable that is a combination of PSA, Gleason and T cat. It takes the values 1(low risk),
2(intermediate risk) and 3(high risk). For the continuous-time weights we fit additive hazard
models for time to treatment. The patients are split into the two treatment groups, and we fit
covariate dependent models for each of the groups on the form:

αit = α0
t + αage>65

t I(agei > 65) + αPSA>5
t I(PSAi > 5) + αgleason>6

t I(gleasoni > 6)

+ α< high school
t I(edui < high school) + α>4 years college

t I(edui > 4 years college)

+ αrisk group
t I(risk groupi > 1).

We repeat that the model is fitted for the Rad group and RP group separately. We also fit a
marginal additive hazard model α̃it for time to treatment initiation in the pooled sample. Following
Section 2.6 it is the same for all individuals regardless of treatment group, thus α̃i = α̃. Since
it is marginal, we can estimate the cumulative hazard using a Nelson-Aalen estimator. From the
additive hazard regression we obtain cumulative hazard estimates, allowing us to calculate the
continuous time weights in the manner described in Section 2.4. Further details on the model
fitting, including numerical estimates on the coefficients and diagnostic plots, are found in the
Supplementary material.
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3.1 Defining the failure endpoint

Ideally, our primary outcome would have been death by prostate cancer. However, obtaining
satisfactory power with this outcome would require a longer follow-up time and a larger cohort. To
increase the power, we therefore consider the composite endpoint ’Failure of curative treatment’
or ’Failure’, i.e. the first registered indication that the curative treatment was unsuccessful. We
therefore defined Failure to be the first occurrence of either

• For RP patients: Radiation therapy later than 6 months after initial treatment.

• For Rad patients: New radiation treatment applied later than 8 weeks after initial treatment.

• End of a 6 months gap or more of hormone treatment.

• Continued hormone treatment later than 3 years after initial treatment.

• Death by prostate cancer.

Our outcome is a surrogate endpoint, and may be justified as follows: First, RP treatment is
intended to be curative, and should not require subsequent radiation therapy. Any radiation
treatment given prior to 6 months is viewed as adjuvant. Therefore, radiation therapy after 6
months in RP patients indicates that the initial treatment was unsuccessful. Likewise, the initial
radiation therapy treatment failed if a subsequent radiation therapy course was started, usually
lasting for eight weeks, the expected time of the curative radiation cycle.

Third, Rad patients receive adjuvant hormone treatment for 3 years. A longer period of
hormone therapy indicates that there are further signs of disease. Some patients also stop hormone
treatment before three years, possibly because of side effects. If hormone treatment is restarted
after some time, we consider the initial curative treatment to be unsuccessful.

3.2 Weighted analysis

Cumulative incidences under the two treatment regimens are shown in Figure 2. The difference
between the weighted cumulative incidences, i.e. estimates of GRad − GRP, along with boot-
strapped confidence intervals are shown in Figure 3. The failure rates seem to be similar when
mimicking a randomized trial. In the Supplementary material, we have also performed a discrete
time MSM analysis using pooled logistic regression, which resulted in similar (but not identical)
curves.

More rigorously, we perform the weighted Gray test (2.10). The differences between the curves
that occur shortly after diagnosis are likely to be a result of our particular choice of Failure
endpoint: We have described particular time intervals, e.g. a 6 months gap on hormone treatment
or a application of radiation therapy after 8 weeks, as events. These events may be sensitive to the
particular definition of the outcome, e.g. the choice of a gap of 6 months for RP treatment, instead
of, say, 4 months. However, our target of this analysis is the longer time effects of treatment. We
therefore used the function Kt = t0.3 in (2.10), putting less emphasis on differences between
the weighted curves for small t. By bootstrapping the variance with a bootstrap sample of 3000
we get a p-value of 0.3310, indicating that the hypothetical cumulative incidences are not very
different. A similar test for the unweighted cumulative incidences gave a p-value of 0.0083, and
a naive conclusion may have been that Rad treated individuals had a significantly worse failure
rate. The functions Kt = t0.2 and Kt = t0.5 were also used, yielding the same conclusions.
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4. Discussion

We have shown how non-randomized clinical data can be used in a causal survival analysis.
In contrast to previous causal approaches using MSMs, we have treated time as a continuous
variable, not (artificially) discrete. While we have not considered time-dependent confounding in
this article, the continuous-time approach also deals with such scenarios (Røysland, 2011). In our
example, the time from diagnosis to treatment initiation was relatively short (median 137 days,
see the Supplementary materials), and data on time-updated measurements were not available.
However, despite the short time from diagnosis to treatment initiation, we cannot be certain that
some covariates influencing both the exposure and the outcome are time-varying in this period,
potentially leading to time-dependent confounding.

Nevertheless, we believe that MSMs are useful in many survival analysis settings, not only
in scenarios with time-dependent confounding: Heuristically, by obtaining balanced treatment
groups through continuous-time weighting, we are flexible to define a structural model for the
outcome estimand, which in our scenario involved hypothetical cumulative incidences. Further-
more, the weighting approach allows us to study the appropriate time scale of interest: We obtain
the treatment effect measured from the time of diagnosis, which we believe is the most relevant
to patients and decision makers. Other approaches, e.g. use of propensity weighted regression,
may have allowed us to identify the effect measured from the time of treatment initiation, but it
would not be trivial to account for the time between diagnosis and treatment initiation. In prin-
ciple, adjusting for differences in time to treatment may be done in an outcome regression model
if there is no time-varying confounding. However, such modelling would require an appropriate
parametrization of how time from diagnosis to treatment affects the outcome, which is far from
trivial in practice.

A different, but more common alternative to our weighted survival analysis is to assume a
proportional hazards model. The hazard scale is convenient and flexible for regression modeling,
but estimates on the hazard scale, e.g. hazard ratios, often lack a clear causal interpretation
(Hernán, 2010). The problem arise because conditioning on recent survival can open non-causal
pathways, and will therefore make causal interpretations less obvious in many situations. Our
approach using cumulative incidences, which has also been the target parameter in discrete time
MSMs (Moodie, Stephens and Klein, 2014), do not suffer from this bias. Thereby, we do not need
to rely on the proportional hazards assumption.

We suggest that causal survival analysis may be performed in three steps: First, assuming a
causal intervention can be applied, hazard scale regression may be used to estimate treatment
weights. Second, weighted outcome hazard regressions can be fitted to obtain causal cumulative
hazard estimates. Third, cumulative hazard estimates can be transformed to estimate other pa-
rameters by use of differential equations. Steps one and two are described in (Ryalen, Stensrud
and Røysland, 2018), while step three is shown in (Ryalen, Stensrud and Røysland, 2017). This
allows us to study causal parameters in survival analysis that are easy to interpret. Currently we
rely on bootstrapping for inference, but developing analytic strategies to estimate the uncertainty
is an important topic for future research.

We emphasise that the continuous-time weighting is not restricted to time to event outcomes;
the same weights may be used for other outcomes, e.g. binary variables. The continuous-time
weights are desirable when, in the case of treatment weights, the time to treatment initiation is
a time to event variable, as in our prostate cancer example. Since no censoring occurred before
the end of follow-up, we could have used non-survival methods e.g. weighted logistic regression to
model the Failure outcome. Still, we prefer the cumulative incidences as they are easily interpreted
and can be estimated without parametric assumptions.
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Our analysis of Norwegian patients with localized prostate cancer suggest no medium to
long term difference in failure of treatment rates among patients receiving radiation therapy and
radical prostatectomy. These results are relevant for the ongoing discussion on the comparative
effectiveness of RP and Rad (Wallis and others, 2017; Tree and Dearnaley, 2017). A recent
RCT on patients with localized prostate cancer suggested that radiation therapy and radical
prostatectomy gave similar rates of disease progression after 10 years of follow-up (Hamdy and
others, 2016). However, this study has been criticized for being underpowered to detect clinically
significant differences and observational studies have suggested that RP is favorable (Wallis and
others, 2017).

We are currently working on the statistical properties of the weighting process, and methods
for weighted additive hazard regressions are under development. Flexible weight estimation is
implemented in the R package ahw, that will be uploaded to CRAN.

5. Supplementary material

Supplementary material, including details about the data sources, the parametric models for
weight calculation, as well as comparisons between continuous-time and discrete time approaches
is available at http://biostatistics.oxfordjournals.org.

6. Software

Software for estimation and assessment of continuous-time treatment weights, illustrated on sim-
ulated data examples can be found on https://github.com/palryalen/ahw. For questions, com-
ments or remarks about the shared code, contact the corresponding author (p.c.ryalen@medisin.uio.no).
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Table 1. Summary of baseline variables(n = 1296). In the hazard regression we coded the baseline
variables Age at diagnosis, Gleason, Risk Group, PSA, and T category as in (Borocas and others, 2017),
all binary. Education level was included as a categorical variable. The same variables were used in the
logistic regression, only this time PSA was coded categorically. In addition, the logistic regression included
another five Comorbidity variables.

Variable Radiation(n = 544) Radical prostatectomy(n = 752)
Age at diagnosis > 65 (%) 280 (51.5) 211 (28.1)
Gleason > 6 224 (41.2) 257 (34.2)
Risk Group 1 183 (33.6) 385 (51.2)
PSA > 5 488 (89.7) 594 (79.0)
PSA categorical

(0, 8] 189 (34.7) 472 (62.8)
(8, 15] 256 (47.1) 248 (33.0)
(15, 22] 107 (19.7) 40 (5.32)

T cathegory 1 285 (52.4) 455 (60.5)
Education level

Less than high school 135 (24.8) 156 (20.7)
More than four years college 56 (10.3) 97 (12.9)
Between the two above 353 (64.9) 499 (66.4)

Comorbidity variables(1:Yes)
Hypertension = 1 247 (45.4) 255 (33.9)
Coronary artery disease = 1 141 (25.9) 123 (16.4)
Atrial fibrillation = 1 47 (8.64) 33 (4.39)
Diabetes = 1 37 (6.80) 23 (3.06)
Earlier cancer diagnosis = 1 22 (4.04) 27 (3.59)
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Treat mode Treat start Failure

Diagnostic meas.
Age
Education Other death

Censored

Latent disease process

Fig. 1. Local independence graph describing the prostate cancer registry data. Treat mode denotes
either radical prostatectomy (RP) or radiation therapy (RAD). Diagnostic meas. denotes factors that
influence the perceived severity of the diagnosis, e.g. PSA levels and Gleason score. The dashed arrows
indicate dependencies that are present in the registry data, but would not be present in our hypothetical
randomized setting. Censored is included as a node, but is not associated with any arrow in the Figure
for aesthetic reasons. However, an arrow from each of the other nodes should be pointing into the state,
indicating the assumption that Censoring is locally independent of each and every node, conditional on
the remaining ones.
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Fig. 2. Cumulative incidences for FOCT under the two treatment regimens. The weighted analysis is
shown in thick solid lines, while the unweighted naive analysis is shown in dotted lines.
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Fig. 3. Weighted cumulative incidence difference with bootstrapped 95% confidence intervals. The boot-
strap sample size was 3000. By multiplying the solid curve with the sample size one can estimate the
expected difference in number of treatment failures as a function of time. This estimate would be close
to zero, and no more than about 60 in the period of interest(two years after diagnosis and onwards.)


