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Abstract

In this thesis an approach for real-time face detection, identification and emo-
tion recognition is presented, using robust face detectors and convolutional
neural networks (CNN). It is tested on a standard laptop computer without
the use of Graphical Processing Units (GPUs) and is to be implemented on an
autonomous robot stationed in elderly users’ homes. In the real-time emotion
recognition pipeline it is shown that a small CNN trained on a personalized
dataset (images from a single user) is able to find faces, identify the user and
classify seven different emotions in real-time, contrary to related work that
processes data offline with fewer classes to predict. The use of a personalized
dataset reduces training time and increases robustness since a personalized
model is known to be more capable of learning person dependent features, as
substantiated in the results. Offline testing produces a top recognition rate
of 98% and a real-time recognition rate of 83% of seven different expressions.
Performance is expected to drop when introduced to a real-time testing en-
vironment given more noise and variations. A comprehensive comparison
of existing pre-trained face detectors for fast classification is also presen-
ted, showing that a Haar-cascade classifier, a Local-Binary-Pattern-cascade
classifier and a Histogram-Oriented-Gradient classifier all pose as suitable
options for real-time use.

In addition, offline experimentation with edge features in video combined
with recurrent neural networks (RNN) and exploration of benefits and draw-
backs of using sequential data for classifying facial expressions is presented.
This includes the use of Kirsch masks and Local Directional Strength Pattern
as features presented as LDSP-RNN, achieving an average recognition rate
of 73.6% on a fairly difficult dataset. It is compared with more traditional
image classifiers such as CNN and Soft Vector Machines(SVM) for classi-
fication where it is proven to outperform SVMs (72% mean accuracy) and
produce a more robust result than RNN with raw grayscale images as input
(72.8% mean accuracy).
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Chapter 1

Introduction
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Figure 1.1: Illustration of information flow through the system.

1.1 Motivation

The welfare of seniors has always been an essential part of society. By in-
troducing new technology and applications, the people involved will be more
capable of managing their own life without too much help from the public
and private health sectors.

The Multimodal Elderly Care Systems (MECS project) aims at making
the daily life more comfortable for the elderly and at the same time assist
healthcare personnel by providing additional information about the user.
This thesis presents an approach for implementing an application which can
analyze emotions based on facial expressions of the user. This application
will be part of a mobile robot stationed in the users’ home where it also will
perform other tasks like tracking movement, respiration, heart rate and ana-
lyze other features associated with the user. If any anomalies are detected, a
specified response will be actioned to ensure that the users’ health is exposed
to minimum risk, making this robot an autonomous safety alarm without the
need of attachments on the users themselves.

The primary goal of the thesis is to track the facial expression in real-time,
something that may be computationally hard considering the hardware limit-
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ations of the mobile robot. Different types of sensors can be combined to get
the optimal representation of the users’ face, where depth-, thermographic-
and a regular RGB-camera pose as the best options for face tracking and fea-
ture extraction. This may also introduce implications when it comes to pri-
vacy in contrast to digital information (i.e., resolution, colour, etc.). Depth-
and thermal cameras eliminate the privacy issues, but on the other hand,
information that might be vital to obtain a proper classification will be lost.
RGB-cameras provide more detailed images for analysis and are, therefore,
the selected type of sensor utilized for training and testing of the presented
real-time emotion analysis system.

1.2 Research Questions

To get a better understanding of the goal of the thesis, a series of three
research questions are defined and listed below. Each of the questions are
constructed so that the implementation and testing of chapters 4 and 5 are
focused on answering all of them in the best way possible.

1. Is it possible to process facial expressions at a reasonable speed in real-
time on a standard laptop computer, without the help of a GPU?

2. How well does a personalized model perform compared to a generalized
model?

3. Can gradient oriented features in sequence combined with an RNN pose
as an alternative to a standard CNN?

Figure 1.1 illustrates the flow of information through the pipeline. Focus
will be put into the emotion recognition part, considering it is the central
part of the pipeline. Extensive research have been done on face detection
and identification in computer vision, leaving it hard to outperform existing
implementations, see sections 2.4 and 2.5. Comparing and discussing benefits
and drawbacks of existing implementations within these fields will help to
decide on what would improve implementation of the pipeline the most.
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1.3 Contributions

This section gives an overview of different contributions related to this work.

• The first contribution is an approach for real-time emotion classifica-
tion with the use of small customized convolutional neural networks
trained on a personalized dataset for classifying seven different emo-
tions which is presented in chapter 4. Included in this contribution is
a comprehensive comparison of available pre-trained face detectors for
real-time applicability.

• In the following chapter (chapter 5) a combination of features in se-
quences based on Kirsch edge detection and Local Directional Strength
Pattern[1] and a recurrent neural network for emotion classification are
presented. The findings state that the LDSP-RNN approach produces
a more stable and faster learning progression compared with a sequence
of raw image values.

1.4 Limitations

The public dataset, Cohn-Kanade+[2], used in some of the experiments has
shown deficiencies in the sense of a few miss-labeled samples and quite sig-
nificant variations in class representations. This may reduce the ability for
a CNN to learn the proper and generalized features required for a satisfying
outcome. The problems related to this dataset limits the ability to generalize
the results presented in this thesis, but it presents a basis of which improve-
ments are possible with the use of different datasets. Finding a new dataset
for experiments was considered to be work beyond the time frame associated
with this thesis.

1.5 Structure of the Thesis

The majority of figures and tables are made specifically for this thesis. If
not, references to original figures or tables are provided in the captions of
the respective figures or tables.
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The thesis is structured to reflect the investigation of finding answers to
the research questions presented in section 1.2.

• Chapter 2 provides an overview of previous work related to each chapter,
as well as techniques to help improve different deep learning architec-
tures.

• Chapter 3 provides details about the datasets used in the experiments.

• Chapter 4 gives an approach for solving real-time face detection iden-
tification and emotion recognition. Results are presented in section
4.2.

• Chapter 5 explores a new way of analyzing facial expressions in videos,
with the use of edge features and Local Directional Strength Pattern[1].

• Chapter 6 discusses the findings from chapter 4 and chapter 5.

• Chapter 7 provides a conclusion based on results from section 4.2 and
section 5.2, with answers to the research questions presented in 1.2,
followed by future work in section 7.4.
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Chapter 2

Background
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2.1 Human Robot Interactions

Figure 2.1: Illustration of possible use

Humans have multiple ways of displaying their feelings and they differ
from person to person and culture to culture. Facial expressions have a sig-
nificant place when it comes to communicating with one another and in some
way remove the problem of misunderstandings when conveying a message.
Digital communication is a big part of peoples lives, by the sending of e-mails
and chatting on social media. In this form of communication the limited abil-
ity to put a facial expression behind the message can be troublesome. This
is giving rise to problems which most likely would not be an issue if the
conversation was held face to face. The introduction of emojis (small figures
of faces etc.) is enabling people to put a facial expression to their message,
reducing the possibility of misunderstandings.

The same principle is relevant when it comes to communication between
humans and robots. With the advancements in technology, especially autonom-
ous robots which interact with people, a good understanding between robot
and human must be solved to enable further accomplishments. In the last
twenty years machine learning and artificial intelligence have been the cen-
ter of attention in computer science, resulting in a better environment for
significant progress in the human-robot interaction domain. There are a lot
of different aspects of this domain such as natural behavior, optimal path
and following basic norms. For autonomous robots and other assisting ap-
plications, communication and understanding are essential factors to achieve
results surpassing pre-programmed responses to different scenarios. Human
faces is a very complicated part of the body, consisting of multiple tiny
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muscles that together can form a wide specter of expressions. By enabling
robots to use sensors like microphones and cameras, they will be given access
to the domain which also humans are dependent of to interpret one another.

2.2 Feature Extraction

Features, or data descriptors, is a big part of image analysis. Different meth-
ods can be used to extract information within images beyond standard RGB-
values (Red, Green, Blue) or grayscale values. In this section, an overview
is given of methods commonly used in face detection and emotion classifica-
tion[1, 3, 4].

Kirsch Edge Detection

Kirsch edge detection is a mask that considers edge responses in all eight dir-
ections around a single pixel. It is done by applying eight separate filters with
values specifically to highlight edges oriented in the specified orientation[5].
See figure 2.2.

Figure 2.2: Kirsch edge masks in eight directions[1].
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2.2.1 Local Binary Pattern

Local Binary Pattern (LBP) was originally designed for texture descrip-
tion. LBP assigns a binary label to every pixel of an image by comparing
the center pixel of a 3x3 neighborhood. If the surrounding pixels are larger
than the center pixel, it assigns 1, if smaller it assigns 0 [3]. The surrounding
pixels, when considered in all 8 directions, produce an 8-bit representation
of the area (3x3) as illustrated in figure 2.3. The operator is scanned across
all pixels of the image, producing a binary representation for all the pixels
converting this into a decimal representation. The result is a 1-dimensional
vector or histogram of the entire image providing a texture description of the
respected image.

LBP (xc, yc) =
7∑

n=0

s(in − ic)2n (2.1)

s(x) =

{
1, x ≥ 0

0, x < 0
(2.2)

Figure 2.3: LDP vs. LBP on raw grayscale pixels.

2.2.2 Local Directional Pattern

Local Directional Pattern (LDP) compared to LBP, gives a better de-
scription of the edges. This is due to the selection of the top n absolute
values provided by the Kirsch mask (see section 2.2) in all eight directions
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around the center pixel contrary to LBP that only checks if the surround-
ing pixels are larger or smaller than the center pixel. LDP was proposed
by Jabid, Kabir and Chae in 2010 as a local feature descriptor for object
recognition[5]. In 2012 Jabid, Kabir and Chae proposed LDP as a feature
descriptor for face recognition as well, where they described the advantages
of using LDP instead of LBP. LDP provides more consistency in the presence
of noise since the edge response magnitude is more stable than pixel intens-
ities[4]. As we can see in figure 2.3, LDP gives a more detailed description
of the edge response on a raw grayscale image than LBP.

LDP (xc, yc) =
7∑

n=0

s(abs(in))2n (2.3)

s(x) =

{
1, topN(x) = True

0, topN(x) = False
(2.4)

2.2.3 Local Directional Strength Pattern

Local Directional Strength Pattern (LDSP) is an evolved version of
LDP which outputs a 6-bit representation of the surrounding 8-pixels. In-
stead of considering the top n absolute values of the surrounding pixels, it
looks at the maximum- and minimum value. This means that it will get
the strength of the edge and in which direction this edge is pointing. LDSP
was first proposed in “Facial expression recognition using salient features
and convolutional neural network” by Uddin, Khaksar and Torresen[1] as a
feature descriptor of emotions in depth images. LDP considers only absolute
values of edge strength of a pixel, and can result in the generation of equal
patterns for two different types of edge pixels. LDSP can overcome this and
produce more robust patterns than LDP, see figure 2.4.

LDSP (xc, yc) =
7∑

n=0

Ln × 2n (2.5)

L = binary(Arg(h)) || binary(Arg(l)) (2.6)

h is the highest value of the surrounding n neighborhood pixels and l is the
lowest. Their location Arg() is then converted into a binary representation
and combined to form a 6-bit equivalent of their location(Arg) around the
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center pixel, where h is the three left bits and l is the three right bits,
essentially making the highest neighboring pixel the most significant bits.

In figure 2.4 it is shown that LDSP is producing separate edge repres-
entations for different edges, contrary to LDP that produces the same edge
representation for both edges. The figure is partially copied from Uddin,
Khaksar and Torresen’s paper[1].
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(a) First edge

(b) Second edge

Figure 2.4: LDSP vs. LDP on Kirsch edge values[1].
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Figure 2.5: The integral image [8]

2.2.4 Haar-like Features

Haar-like features are digitally computed features used for object detection.
At the beginning of digital image analysis, when considering working with
only RGB-values, it was considered hard to perform complex operations.
Papageorgiou published a paper discussing the possibilities working with
features inspired by Haar-wavelets[6] instead of raw RGB-values [7]. Viola
& Jones was inspired by this idea and proposed Haar-like features.

Haar-like features are based on dividing the image into regions and calcu-
lating the sum of the pixels within these regions. By comparing the results of
neighboring regions it is possible to describe objects in the image. Haar-like
features are considered fast because of the use of the Intergral Image which
works as a table of reference points equal to the size of the image making it
easy to calculate these features between two regions (see figure 2.5). Haar-like
features are used to train several weak classifiers and boosted with AdaBoost
to form the Haar-cascade classifier as discussed in chapter 2 section 2.4.

2.2.5 Histogram Oriented Gradients

Histogram Oriented Gradients (HOG) features is represented as a single
feature vector opposed to a set of feature vectors. It does so by computing
the gradients of a sub-window in the image and its orientations, dividing the
directions into 9 bins from 0 to 180 degrees with 20◦ intervals for each bin,
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[0◦-20◦, 20◦-40◦, ..., 160◦-180◦]. The histogram is spiked where the prominent
gradients are oriented. The calculated feature vector is then fed through a
classifier, usually a Soft Vector Machine(SVM) which decides if there is a
face inside the sub-window or not.

Dalal and Triggs who first proposed the use of HOG-features in person
detection, argued that normalized Histogram Oriented Gradients performed
excellently compared with existing feature descriptors like Haar wavelets, and
managed to prove that HOG reduced false positive rates by a magnitude re-
lative to the best Haar-wavelet-based descriptors (i.e., Haar-like features)[9].

2.3 Machine Learning for Image Analysis

2.3.1 Deep Learning

The definition of deep learning varies somewhat between experts, but one
thing is certain; it is based on the knowledge of how the human brain works
with an intricate network of neurons cooperating to understand the world
around it. An input vector, a hidden vector and an output vector are known
to many as a Multi-layered Perceptron. By expanding the number of hidden
layers the network can solve more complex problems and to some extent get
a deeper understanding of the underlying structure within the dataset. This
is one of the reasons why it is called deep learning.

Deep learning models have substantially improved multiple domains within
computer science such as speech recognition, object detection, object classi-
fication and many other. Deep learning has made advances were problems
in the artificial intelligence community have resisted the best attempts at
solving them with traditional methods[10].

2.3.2 Supervised Learning

Supervised learning is a form of machine learning where the answers to each
data point in the training set are known. This enables the model to get
familiar with the problem in such a way that it can perform well on new
unseen data. By knowing the correct answer to each input, the model can
adjust itself to the point where the error between the predicted value and
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actual value is minimized. This technique is widespread when it comes to
classifying images. CNNs are a form of supervised learning architecture and
has shown great performance in classifying images, object detection and as
a feature extractor for further classification[1, 11, 12, 13, 14].

Convolutional Neural Networks for Feature Extraction

Figure 2.6: Typical CNN architecture[13].

”..manually acquiring some facial features from face images is relatively dif-
ficult, while CNN could extract effective facial features automatically.” [14].

CNNs can find complex features in the raw image which manually would
be very difficult. By training the CNN on multiple images, it is able to extract
complicated features and use them as descriptors for further classification.
In two dimensional convolution, a filter of shape (NxN) slides over the image
resulting in a feature map representation of the input image. Each filter
consists typically of uniform initialized values. During training of a CNN
these values are changed through backpropogation[15] based on the gradient
of the output error and ultimately they converge on the optimal filter values
to find suitable features that represent the image. CNNs usually consist of
multiple layers of convolution where each layer applies multiple numbers of
filters where each filter is trained to find different features, for example edges,
eyebrows, mouth, hair, color etc. The deeper the layer, the more complicated
the features are[13, 14]. Between each convolution layer sub-sampling is used.
This is to reduce the number of trainable parameters which easily can grow
quite large. Two different methods are customarily applied, Max Pooling and
Average Pooling.
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”Pooling enhances the robustness to the variations of images. Such as
rotation, noise and distortion. It also reduces the dimensions of the output
and reserves the notable features.”[14]

This is one of the reasons why CNNs is preferred when it comes to im-
age processing. Figure 2.6 is a simple illustration of a convolutional neural
network.

2.3.3 Classification

Figure 2.7: Simple illustration of a fully connected network

After good features have been extracted from the image, only a matter of
classification remains. There are numerous different classification approaches
such as Soft Vector Machines, K-Nearest Neighbours, decision trees, etc.
However, this section focus on probably the most commonly used classifying
method when it comes to deep learning. A fully connected network (FCN),
also known as a multilayered perceptron, can be used for classification. The
input to the FCN is a flattened vector representation of the extracted features
from the images, as illustrated in figure 2.6. This vector is then fed through
the FCN producing values at the output nodes. The number of output nodes
is equal to the number of classes to predict, but for a binary classification
problem only one node is typically used. Every node in the network is sub-
jected to an activation function that forces a node to ”fire” if presented with
a particular input which is inspired by how the brain works. The Sigmoid
function is an example of such a function applied for a binary classification
problem on the single output node. The Rectified Linear Units Function[16]
(ReLU) is more commonly used in the rest of the network because it avoids
gradient clipping of nodes with high values. As we can see in the function
below, high values for x will result in f(x) = 1 and the gradient is then equal
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to 0 which does not contribute to the learning of the network.

f(x) =
1

1− e(−x)
(2.7)

The Sigmoid function ”squashes” the value of the output node to be
between 0 and 1, making it a probabilistic function that states the probability
of the input belonging to class A or class B.

class =

{
A, if f(x) ≥ 0.5

B, otherwise
(2.8)

Between the layers of nodes are weighted connections called ”weights”.
These weights are multiplied with the input to produce the next layer of
nodes, connecting each node in a layer to every node in the previous layer
(see figure 2.7). After a forward pass through the network, the weights are
adjusted with backpropagation based on the gradient of the error function
(example Mean Squared Error[17]) at the output, and this process is repeated
until the changes of the weights have converged and hopefully resulted in
good classification accuracy.

2.3.4 Improving Convolutional Neural Networks

Through the development of deep neural networks over the recent years dif-
ferent techniques have been explored to stabilize weights with regularization,
reduce overfitting and generalization of the network during training.

A standard convolutional neural network consists of N convolution layers
followed by sub-sampling and an activation function with a fully connec-
ted network at the output. The subsequent section gives a description of
techniques which have improved the performance of deep CNNs over the re-
cent years and gives an understanding of why the architecture used in the
experiments was chosen.
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Batch Normalization

Batch normalization was introduced by S. Ioffe and C. Szegedy in 2015 as a
normalization layer in convolutional neural networks to reduce the number
of training steps by decreasing Internal Covariate Shift, a change in distribu-
tions of internal nodes of a deep neural network during training[18]. Batch
normalization also has a positive influence on the gradient flow through the
network during backpropagation,

”... by reducing the dependence of gradients on the scale of the parameters
or of their initial values..”

making it possible to use a higher learning rate with a reduced risk of
divergence, as described in their paper[18].

This is done on a subset of training samples called mini-batches. Mini-
batches or batches is useful in many ways. For example, when calculating the
gradient of the loss on a mini-batch, you get an estimation of the gradient
over the entire training set[18]. It also gives the advantage of parallel com-
putations compared with single data point examples. Iofee and Szegedy’s
work has inspired many adaptations of batch normalization, such as Layer
Normalization[19] for use in recurrent neural networks and Adaptive Batch
Normalization[20] to increase generalization of deep neural networks.

Mean and variance is calculated for each of the mini-batches and used to
normalize the activations. To avoid limiting what a layer represents, Ioffe
and Szegedy introduced two parameters for each activation x(k) in a layer,
γk and βk, to scale and shift the normalized values.

”... normalizing the inputs of a sigmoid would constrain them to the linear
regime of the nonlinearity”[18].

These parameters are trained along with the weights and other trainable
parameters in the network. For CNNs the parameters γk and βk are learned
for each feature map in a layer instead of each activation.

In algorithm 1 the procedure to calculate a batch normalization for a
mini-batch is described as in Ioffe and Szegedy’s paper. Epsilon(ε) is a small
constant that avoids the scenario of dividing by zero.

In their paper they also argue that with the use of Batch Normalization
the need of Dropout is reduced, which leads us to the next section.
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Algorithm 1 Batch Normalization Transform[18]

Input: Values of x over a mini-batch: B = {x1...m}; Parameters to be
trained: γ, β
Output: {yi = BNγ,β(xi)}

µB ← 1
m

∑m
i=1 xi . mini-batch mean

σ2B ← 1
m

∑m
i=1(xi − µB)2 . mini-batch variance

x̂i ← xi−µB√
σ2
B+ε

. normalize

yi ← γx̂i + β ≡ BNγ,β(xi) . scale and shift

Dropout

Dropout was introduced by Srivastava et al. in 2014 as a regularization tech-
nique to reduce overfitting in large deep neural networks[21]. Overfitting is
the result of deep neural networks that contain many hidden layers and is
capable of learning complex relationships between their inputs and outputs,
learning sampling noise which is only present in the training set and not
in the test set even though it is drawn from the same distribution[21]. This
means the network has become too familiar with the data it is training on res-
ulting in poor performance when introduced with new unseen data. A layer
of neurons will learn what to expect as output from its previous layer making
it vulnerable to small changes. To overcome this dropout was introduced.

Figure 2.8: Dropout illustration from Srivastava et al. paper [21]

Dropout is a term that refers to ”dropping” a unit or node either in hid-
den or visible layers in a neural network. Essentially thinning the network, as
shown in figure 2.8[21]. The dropout rate is the probability of a neuron “dy-
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Figure 2.9: Dropout improvement plot from Srivastava et al. paper [21]

ing” in a specified layer, essentially producing a node-output equal to zero.
This means that a neuron in the following layer will never learn with certainty
what it will receive as input, drastically reducing overfitting. Dropout has
become a standard when implementing deep neural networks, underlining
the quite positive effect dropout has introduced to the deep learning domain.
Figure 2.9 illustrates of how much networks without dropout is improved
with the use of dropout. It is tested on different architectures where each is
subjected to both cases.

Loss Functions

Categorical Cross Entropy(CCE) is one of the most commonly used loss func-
tions for classification of multiple class labels and in many cases outperform
other loss functions such as Squared Error [22, 23, 24].

CCE is a measurement of entropy between two probability distributions.
Considering Softmax as the activation function on the output nodes and one-
hot encoded labels, CEE would make a preferable choice as loss function.

This function describes the mean cross entropy with batch m:

L =
1

m

m∑
i

−yi × log(ŷi) (2.9)
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Where y is the class labels represented as a one-hot encoded matrix and
ŷ is the predicted, Softmax-activated, matrix.

Softmax Labels Hit?
Loss
CCE

Class
Error

0.4 0.3 0.3 1 0 0 yes
A 0.3 0.5 0.2 0 1 0 yes 1.07 0.33

0.6 0.2 0.2 0 0 1 no
0.8 0.1 0.1 1 0 0 yes

B 0.05 0.9 0.05 0 1 0 yes 0.51 0.33
0.6 0.1 0.3 0 0 1 no

Table 2.1: Categorical Cross Entropy vs. Classification Error

Comparing CCE to a simple classification error function that checks
whether the correct class is predicted or not, the benefits of using CCE as a
loss function becomes apparent. In table 2.1 we can see that CCE is much
more descriptive of how well the softmax predictions match the labels. Out-
put A produces the same correct predictions as output B, but the probability
of the predicted class is not as prominent as in output B. The classification
error is 0.33 for each of the cases resulting in the same amount of weight
adjustment during a backpropagation, contrary to CCE which will take into
consideration the differences between these distributions.

Optimizer

Optimizers are used to navigate the solution space of a function with the
goal of finding the global and optimal solution for that function.

In machine learning we try to minimize the loss function as much as pos-
sible without overfitting during training. This is done with weight adjust-
ment through backpropagation where an optimizer tries to steer the gradient
of the loss function in a direction towards the global optimum, meaning that
it attempts to find the correct weight values between each layer in a network
to produce a result closest to the correct answer. The derivative of the loss
function gives the optimizer an estimation in which direction it is moving re-
lative to the optimal solution. It can encounter false optimal solutions called
local optima that can seem like a good solution, but in the bigger picture pro-
duce a sub-optimal result. Optimizers are prone to get stuck in local optima
and different optimizers have been developed over the years trying to escape
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these and reaching the global optimum as fast as possible. Techniques such
as momentum have been added to increase the chance of escaping.

Adam is an optimization algorithm proposed by Kingma and Lei Ba
in 2015[25]. The name Adam is derived from Adaptive Moment estimation
and is based on the best qualities from two popular methods: RMSProp[26]
and AdaGrad [27]. Kingma and Lei Ba concluded that Adam is a suitable
method for large datasets or high dimensional parameter spaces. It is robust,
easy to implement and an efficient optimization algorithm with little memory
requirements[25]. Taking this into consideration Adam is a much-suited op-
timizer to be used in this thesis.

Data Augmentation

Figure 2.10: Random rotation of +/- 10◦ and horizontal flipping.

Convolutional Neural Networks are commonly known to require a sub-
stantial amount of training data. In the cases of sparse training sets with low
variance, CNNs can easily overfit during training. A solution to this problem
can be to generate more data either artificially or by manually labeling new
data.

A second option can be to augment the existing data. The idea is to
apply a random set of operations on the input images, such as rotation, ho-
rizontal/vertical flipping, adding noise and rescaling. In the perception of
the network it will get new training data for every new augmentation, es-
sentially increasing the number of training samples and reducing overfitting.
Perez and Wang explored The Effectiveness of Data Augmentation in Image
Classification using Deep Learning [28], testing different traditional augment-
ation techniques as mentioned above, but also experimented with the use of
Generative Adversarial Networks(GAN[29]) to generate new images. They
concluded with increased classification accuracy and a reduction of overfitting
with the use of traditional augmentation techniques.
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In this thesis, more traditional augmentation methods are applied such
as a small degree of random rotation and random horizontal flipping of the
images. See figure 2.10.

2.3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are designed to handle sequences of data
making classifications based on data point occurrences over time. Examples
of this can be text (sentences) or videos. By looking at how specific obser-
vations develop over time it can predict the next step in a sequence. RNNs
have resulted in many impressive results such as Zach Thoutt’s attempt to
train an RNN on the famous book series Game of Thrones written by George
R.R. Martin, enabling it to write the ”next” book[30]. The result did not
make much sense in most cases, but it is apparent that the network was able
to learn essential writing techniques like quotes, paragraphs and generally
proper spelling, but also relationships between the different characters in the
book.

RNNs process a sample for each time step from the sequence of one-
dimensional vectors. The hidden state is computed based on the previous
hidden state(ht−1) at time(t-1) and the current input(xt) at time(t):

ht = σh(Wixt +Whht−1) (2.10)

The input and previously hidden state is multiplied with Wi, which is
the input weight matrix, and Wh which is the recurrent matrix. The sum of
these two results is then fed through a hidden activation function σh, usually
TanH-activation:

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(2.11)
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which compared to sigmoid-activation extends the ”activation range”
from -1 to 1.

yt = σy(Woht) (2.12)

For every time step an output is computed (yt), where Wo is the output
matrix and σy the output activation function. This means that we can get
the output at the time step that we prefer as illustrated in figure 2.11.

Figure 2.11: Simple RNN illustration, based on figure from[31]

”.. an RNN has the ability to learn to detect an event, such as the presence
of a particular expression, irrespective of the time, at which it occurs in a
sequence.”[31]

In Ebrahimi Kahou et al.’s paper[31] they present an approach that in-
cludes using an RNN to classify facial expressions in videos. Their work is
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very much related to the proposed implementation described in chapter 5
where the classification of facial expressions is done with recurrent neural
networks. Contrary to the implementation in chapter 5 they make use of a
CNN to extract features, whereas the approach explained in this thesis ex-
periments with Local Directional Strength Patterns [1] as features and RNN
combined with FCN as classification.

In Ebrahimi Kahou et al.’s paper they use a variant of RNN called IRNN.
Usually an RNN utilizes TanH as activation function, but with the problem
of exploding and vanishing gradients, which is a problem when handling long
sequences, an alternative was proposed were Rectified Linear Units was used
instead and with a recurrent matrix that was initialized with scaled variations
of the identity matrix, as described in [31, 32].

2.4 Face Detection

The first problem to be solved is to find the face in real-time, which is com-
monly the first stage in almost every face related computer vision system,
and the aim is to get a high positive detection rate even with challenging
backgrounds. In this section an overview of previous work related to face
detection is presented.

Face detection can be quite tricky considering the diversity of faces in
the world including local variations such as light conditions, orientation, etc.
Despite this, significant progress has been made in recent years[33]. A fast
algorithm for face detection is needed in the proposed implementation in
this thesis due to the robots limited computational power. Viola and Jones
proposed a suitable algorithm for fast face detection in “Robust real-time
face detection”[8]. In their paper they introduce a model based on Haar-
like features (see section 2.2.4, and figure 2.12) in a cascade classifier. If a
proposed segment fails on one of the weak classifiers, it is discarded. This
ensures a high classification accuracy, and even though the number of sub-
windows and features are immense, the detector calculates this very quickly.
Though Haar-like features are suitable for real-time face detection, it works
best when it comes to well lit frontal faces as stated in Ranjan, Patel and
Chellappa’s paper[34]:
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”It has been shown that in unconstrained face detection, features like HOG
or Haar wavelets do not capture the discriminative facial information at dif-
ferent illumination variations or poses.”

However, the cascade method can be used in combination with different
features like Local Binary Patterns or automatically accumulated features
from a convolutional neural net, like Li et al. did in their paper [35]. Since
the hardware on the robot is limited, deep CNNs pose a threat when it
comes to speed, leaving traditional methods such as cascade classifiers with
Haar-features[8], local binary patterns or HOG-features as excellent options.

Rajan, Patelan, and Chellappa proposed a quite inventive approach to
combine task solving in a CNN [34]. They called it HyperFace, and it is a
CNN that predicts face detection, landmark localization, pose estimation and
gender recognition. The idea is based on the knowledge of what information
each layer of a CNN is able to extract. The first layers usually detect rough
features like corners, edges, etc. and is suitable for localization and pose
estimation. The deeper layers have more fine-tuned and specific features;
these can be used for gender recognition and face detection. This work can
be applied to my application where face detection, identification and emotion
recognition is constrained to a single CNN, but it is likely not suitable for
real-time classification as stated earlier.

The proposed emotion recognition system only needs to find the face once.
Rather than scanning the whole image searching for a face for each frame
captured by the camera it can look in regions close to the location of where
the face was in the previous frame. This can be done with face tracking. The
python library dlib[36] has a function called correlation tracker which tracks
a given object in an image stream by guessing the next position of the object
in the next frame based on previous frames and a confidence score. This will
probably increase the speed since it only needs to scan the whole frame until
it finds the correct face, optimally only once each time the user is entering
the field of vision.

A similar tracking alternative is implemented by OpenCV [37], called
Kernelized Correlation Filters (KCF). KCF is a tracking method that ex-
ploits circulant matrix properties to enhance processing speed. As written
in OpenCV’s reference guide: This tracking method is an implementation
of Henriques, Caseiro, Martins, Batista Exploiting the Circulant Structure of
Tracking-by-Detection with Kernels [38] which then is extended to KCF with
color features[39].
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Figure 2.12: Haar-like feature extraction[40]

When the face is extracted, it leads to the next step in the pipeline,
identification. This is to ensure that only the users face is analyzed, and so
the privacy of visitors and other people is respected.

2.5 Identification

Figure 2.13: Identification CNN architecture used in DeepFace[41]

In this section, previous work related to the identification of human faces
by the use of the different models available is presented. Also in this stage,
speed is essential as well as accuracy. By identifying the correct face quickly
the system/pipeline will be able to start analyzing the facial expression and
make a classification.

Face identification is a technology with an increasing use on different
devices ranging from unlocking smart-phones and payment verification to
security measures when entering restricted areas. When it comes to mobile
devices, the identification models are expected to be highly accurate, but also
small and fast. Most CNN models that predict with high accuracy are very
deep and is reliant on powerful hardware to make the calculations within a
reasonable time. Chen et al. proposed efficient CNNs for accurate real-time
face verification on mobile devices[42]. The number of trainable parameters
in a CNN is one of the factors that consume processing time. A fairly big
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architecture can easily contain multiple millions of parameters. VGG[43] is
an example of this with 138 million parameters. The MobileFaceNets[42] has
managed to reduce the number to less than 1 million significantly increasing
the speed with no cost in accuracy.

As described earlier, CNNs are one of the best feature extractors of im-
ages. A method utilizing this is described in Guo, Chen and Li’s paper where
they propose a way to enhance classification rates by the use of CNN and
Support Vector Machine(SVM). In their paper they use the CNN to extract
features and the SVM to do the classification. They chose the SVM as an
alternative to a fully connected network;

”..we chose SVM to recognize faces as its excellent performance in solving
linear inseparable problem. [14].

Support Vector Machine is a machine learning classifier which uses sup-
port vectors to define a decision line that separates data based on their
features. As Guo, Chen and Li says in their paper;

” For linear inseparable problem, SVM maps input in low dimensions into
higher dimension feature space that makes separation easier.”[14]

They proved that the combination of CNN + SVM improved the average
classification rate of 0.615 % on their test data compared to a standard CNN
with a fully connected classifier. This approach is a strong candidate, but
since the identification task related to this system is a binary classification
problem (user/not user), a simple CNN should suffice.

2.6 Emotion Recognition

Today, facial expression recognition is a very researched field in computer
vision [1, 11, 44, 45]. Despite this it is proven hard to implement an auto-
matic model to perform this task [11, 46]. To actively monitor the facial
expression frame by frame and make predictions can be quite computation-
ally difficult. The best results within facial expression classification are done
with comprehensive feature extractions combined with deep neural networks
or CNNs as described in Uddin, Khaksar and Torresen’s paper[1].

Offline training and testing of models can give good results, but if presen-
ted with live image streams it may cause poor performance. In recent years,
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Figure 2.14: Emotion recognition in images[2]

approaches involving CNNs have shown the best advancements in the com-
puter vision field [11, 12, 14, 1, 35, 42]. Exploiting the ability of feature
extraction that CNNs possess and perhaps combining them with other fea-
tures to get better classification is proven favorable in many cases[1, 11].

In Uddin, Khaksar and Torresen’s paper they used an approach with
Local Directional Rank Histogram Pattern (LDRHP) in combination with
Local Directional Strength Pattern (LDSP) as features for classifying emo-
tions in depth images. LDSP calculates relative edge response values of a
pixel in different directions based on the outputs from a Kirsch edge detector
since it considers edges in all eighth directions[5] (see section 2.2). This com-
bination where LDSP is augmented with LDRHP is presented as LDRHP ||
LDSP, and it generates a histogram were dimensions are reduced with ker-
nel principal component analysis and general discriminant analysis to better
represent the features in the images. A CNN is then trained on these fea-
tures, and the idea is that the network is more capable of learning salient
features (important features) which again results in better classification. Es-
sentially this approach is based on directions of the gradients in the images
and classified with a CNN. By replacing the CNN with an RNN it is possible
to answer the question about gradient based descriptors combined with an
RNN.
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Uddin, Khaksar and Torresen’s model[1] was trained on 6 classes with
depth images expressing these emotions:

1. Anger

2. Happiness

3. Sadness

4. Neutral

5. Surprise

6. Disgust

Contempt and fear is the seventh and eighth facial expressions as described
in the Cohn-Kanade+ dataset documentation[2], but was not used in the
approach described above.

In Alizadeh and Fazel’s paper[11], they describe an approach solely based
on a CNN architecture and fully connected layers for classification on an
emotion recognition dataset of grayscale images from Kaggle[47]. They ap-
plied different techniques to reduce overfitting on the training set such as
dropout (see section 2.3.4), batch normalization (see section 2.3.4) and L2-
regularization, but their best results did not surpass 60% accuracy on the
test set compared to Uddin, Khaksar and Torresen’s approach that managed
to achieve a recognition rate of 97.08%. Note that these two models were
trained on different datasets where [47] may contain more variations in light,
orientation etc. than [1] that trained on their own depth image dataset.
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Chapter 3

Datasets

In this chapter, a brief overview of the applied datasets is presented. Com-
paring differences and drawbacks related to both a personalized dataset and
a public dataset.
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(a) Anger (b) Contempt (c) Disgust (d) Fear

(e) Happiness (f) Sadness (g) Surprise

Figure 3.1: Images of emotions in personalized dataset.

3.1 Emotion Datasets

For this thesis personalized datasets of myself, as the user, will be applied for
training and testing of the real-time classification system. This is to enable
exploration of the CNNs ability to enhance classification rate and compare
the findings with the use of public datasets like the CK+ facial expression
dataset [2], highlighting the benefits of using a personalized dataset contrary
to a public dataset.

Three data sets was constructed with varying number of facial expres-
sions, see table 3.1.

Every result is compared with the Cohn-Kanade+ dataset as benchmark
[2]. The four class personalized dataset will be a bit different than the CK+
equivalent; this is due to the lack of degrees of happiness in the CK+ dataset.
Instead, degrees of sadness/anger will be used as the CK+ alternative. One
can argue that feature wise, happy/glad is the inverted version of angry/sad.

Cohn-Kanade+ dataset is a public dataset containing sequences of
varying length with eight different expressions as listed in table 3.1. The
eighth expression is Neutral, but has no sequence dedicated to illustrating
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Two classes Four classes Seven classes
Glad Sadness Anger
Not glad Neutral Disgust

Glad Contempt
Happy Fear

Happy
Sadness
Surprise

Table 3.1: The three different dataset with their respective classes

this expression. It is counted as an expression in the CK+ dataset due
to every sequence containing a neutral state before entering full emotion
display, meaning each participant displays an expression from neutral to
peak expression.

When constructing an emotion, certain features must be present in the
face called Action Units - AU where 30 different actions are labeled, see table
3.2 and 3.3. These action units, or muscle contractions, for categorizing
facial expressions are described in Manual For The Facial Action Coding
System[48] also known as FACS, written by P. Eckman and W. Friesen.

AU Name N AU Name N AU Name N
1 Inner Brow Raiser 173 13 Cheek Puller 2 25 Lips Part 287
2 Outer Brow Raiser 116 14 Dimpler 29 26 Jaw Drop 48
4 Brow Lowerer 191 15 Lip Corner Depressor 89 27 Mouth Stretch 81
5 Upper Lip Raiser 102 16 Lower Lip Depressor 24 28 Lip Suck 1
6 Cheek Raiser 122 17 Chin Raiser 196 29 Jaw Thrust 1
7 Lid Tightener 119 18 Lip Puckerer 9 31 Jaw Clencher 3
9 Nose Wrinkler 74 20 Lip Stretcher 77 34 Cheek Puff 1
10 Upper Lip Raiser 21 21 Neck Tightener 3 38 Nostril Dilator 29
11 Nasolabial Deepener 33 23 Lip Tightener 59 39 Nostril Compressor 16
12 Lip Corner Puller 111 24 Lip Pressor 57 43 Eyes Closed 9

Table 3.2: Action Units for Facial Expressions[2]

Regarding generating a personalized dataset, a few things have to
be considered. A person dependent emotion classifier has to get familiar
with the unique expression of its user, meaning that features which make a
person dependent emotion unique have to be present in the images provided
to the classifier, at the same time trying to include the proper action units
describing that emotion in a general view. This is to enhance the ability to
make a reasonable comparison of results between the Cohn-Kanade+ dataset
and the personalized dataset.
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(a) Anger

(b) Contempt (c) Disgust

(d) Fear (e) Happiness

(f) Sadness (g) Surprise

Figure 3.2: Sequence length distribution in the CK+ dataset
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Emotion Criteria
Angry AU23 and AU24 must be present in the AU combination
Disgust Either AU9 or AU10 must be present
Fear AU combination of AU1+2+4 must be present
Happy AU12 must be present
Sadness Either AU1+4+15 or 11 must be present. An exception is AU6+15
Surprise Either AU1+2 or 5 must be present
Contempt AU14 must be present (either unilateral or bilateral)

Table 3.3: Emotion Description with Action Units[2]

In figure 3.3 the class distribution of the whole CK+ dataset is shown,
consisting of 5880 separate grayscale images divided over seven classes. As
we can see, there is not an equal distribution of images between each expres-
sion. The difference between Happy and Contempt is approximately 1100
images, this means that Happiness is 550% greater than Contempt which
is only 3,4% of the entire dataset and is shown in figure 3.3. This skew in
the distribution may be a problem when training the model for classifica-
tion. One explanation could be that there are more neutral images in the
classes with higher representation. In the CK+ documentation[2] it is said
the sequences vary in length from 10 to 60 frames, but in reality, it is 5 to 70
frames. By looking at the sequence length distributions for each expression
in figures 3.2a-g, the classes with the lowest number of images representing
each emotion contain the long sequences. By comparing figure 3.3 and figure
3.4, which is the reduced dataset with only peak emotion displays, the dis-
tribution between the classes remain the same. This indicates that neutral
images in each sequence do not interrupt with the amount of actual emotion
displays for each class.

The CK+ dataset has to be reduced in size since we are only interested
in the peak expressions from each sequence when training a CNN on those
images, making the total size of both the CK+ dataset and the personalized
dataset reasonably similar.

Figure 3.5 presents the class distribution of the personalized dataset con-
taining images of one user. As mentioned earlier, expression criteria - Action
Units - and person independent features of the individual expression, is at-
tempted to co-exist in every emotion display.

A personal judgment was made when deciding which emotion that con-
tains the most subtle features. Contempt stood out as one of those expres-
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Figure 3.3: Class distribution in full CK+ dataset.

Figure 3.4: Class distribution in reduced CK+ dataset.

Figure 3.5: Class distribution in personalized dataset.
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sions, including sadness. In light of these assumptions an increase in the
number of images representing those expressions was made, while keeping
almost the same ratio between the other classes. This difference might have
an impact on how well the models presented can learn from them, but it will
become clear it is not a significant contributor to the contrast between the
results of the personalized and generalized model (i.e., model trained on a
public dataset).

(a) Anger (b) Contempt (c) Disgust (d) Fear (e) Happiness

(f) Sadness (g) Surprise

Figure 3.6: Images of emotions in Cohn-Kanade+ dataset[2].

3.2 Identification Dataset

Separating two classes using deep learning is commonly considered to be a
less complex task. With the need of a relatively small dataset or at least
fewer data representations of each class, a reduction in the number of hidden
layers in the deep learning model is possible, which again results in a decrease
in training time.

The two classes represented in this dataset is User/Not-User, with roughly
the same amount of images in each class. The Not-User class is a set of images
of fellow students which have agreed to participate as test subjects and that
their data can be used for training of an identification model.
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Chapter 4

Real-Time Emotion
Recognition Pipeline

In this chapter the proposed approach for constructing a functional pipeline
of Face Detection - Identification - Emotion Recognition for real-time applic-
ability is presented, visiting different complications and obstacles and the
solutions applied to overcome these.
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Figure 4.1: Illustration of emotion analysis in the system.

4.1 Approach

Simplifications and adjustments have been critical procedures when the goal
is to build a robust and fast application for the MECS-Robot, enabling prob-
lems to be solved gradually and systemically, leaving a low possibility of
failure.

4.1.1 Image Preprocessing

Figure 4.2: RGB image split into separate channels of red - green - blue

Red - Green - Blue Images (RGB) contains almost all the inform-
ation needed to understand which actions, objects and messages occurring
in the presented image, at least for the human eye. With machine learning
the goal is to transfer this human knowledge over to a computer, so that it
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can perform tasks that previously only humans could do. An RGB image is
represented as a three-layered matrix with shape (width x height x channels),
where the channels are Red, Green and Blue ranging in value from 0 to 255.
In an image with pixel values that are all red, the channel values will thereby
look like this [255, 0, 0]. [255, 255, 255] = white, [0, 0, 0] = black.

Image preprocessing is a term used for techniques that are applied
before any calculations or processing is done. An example of this can be
feature extraction, like Local Directional Pattern (see section 2.2), filtering
e.g. Kirsch edge detection and also image value normalization.

Normalization aims at smoothing out the data, removing or muting
extreme values called outliers. Max-Min Normalization is a popular nor-
malization method and is used in this approach. Below is the function that
calculates the normalized pixel values zi which is being used as a normaliz-
ing function on the images before they are presented as input to the CNNs
described in the identification and emotion recognition experiments, section
4.2.

zi =
xi −min(x)

max(x)−min(x)

x = (x1, x2, ..., xn) is the data points or pixels in this case. The min-
imum value of x is subtracted from xi and then divided by the difference
between the maximum and the minimum value of x. The result is z where
all the pixel values are ”squashed” between 0 and 1. OpenCV’s normalize
implementation[37] was used for preprocessing of the image datasets.

Neural networks modifies the weights so that the output value matches
the target or class label. With seven classes, the value to be predicted is
ranging from 0 to 6 where these values are arranged in a way that the correct
class corresponds to its location in a list, called one-hot encoding. With
the example below, we have four images with class labels 4, 2, 5 and 3
respectively. In one-hot encoding, it will be converted into a matrix where
a single row represents one sample and the location where this row equals 1
corresponds to the class label of that same sample.

[4, 2, 5, 3] =


0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0


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With the labels represented in this way, we can use Softmax [49] activation
at the output nodes. Softmax is a logistic activation function similar to
Sigmoid, but it can handle multiple outputs. It takes the output and rescales
it between 0 and 1, turning it into a probabilistic representation where the
node closest to 1 is the most likely class prediction of that input.

In equation 4.1 an example image of class 4 is passed through the deep
neural network. It produces a set of example output values represented in
the first vector with length equal to 7.



1.0
2.0
0.5
3.0
5.0
0.2
0.1


⇒ S(yi) =

eyi∑
j e

yj
⇒



0.014
0.040
0.009
0.110
0.812
0.007
0.006


(4.1)

y is the predicted value at each output node, called logits. After applying
Softmax, the predicted class, as we can see in the far right vector, is closest to
1 in position 4. Using this new vector, we can calculate the loss by comparing
it with the one-hot encoded class labels illustrated above. Since it is the
correct class, the loss will be smaller compared to a different prediction. The
calculated error, or loss, depends on which loss function is used. See section
2.3.4 about Categorical Cross Entropy.

This leads us back to the normalization part. Instead of the neural net-
work generating weight matrices that downscale the pixel values, we apply
normalization before we train the network. This will result in better adjust-
ments of weights during training, and the need of a normalization layer in
the CNN is reduced, but for the models classifying 4 or more emotions, a
normalization layer has been used in the first layer. See section 2.3.4 about
Batch Normalization and figure 4.8.

4.1.2 Face Detection

It exists many face detection algorithms in public python-libraries such as
OpenCV[37] and dlib[36]. One criterion when it comes to choosing a face
detector is speed, but also accuracy. Therefore a comparison between the ex-
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isting methods available from these libraries is conducted. This is to ensure
that the face detector used provided fast calculations and high accuracy.
When measuring accuracy, false-positives are ignored and not counted al-
though it detects a positive face. Considering this, subsequent stages in the
pipeline can focus on actual faces, hence saving time and making the entire
analysis faster.

Scale Factor

Viola & Jones’ face detector scans the input image at many different scales,
like most face detection systems. An image can contain numerous faces loc-
ated at various distances as displayed in figure 4.9a and 4.9b. The scale
factor ensures that faces close- and far from the camera has a higher possib-
ility of detection. Conventionally a scale factor of 1.25 is used to generate
a pyramid of 12 images where each image is 1.25 times smaller than the
previous one. Processing every layer of images in this pyramid and applying
features at each scale is proven to be quite a comprehensive operation[8].
Viola & Jones’s face detector scans the input image at 12 scales. Starting at
the base dimensions of 24x24 to detect faces, for each iteration the sliding
window increases by a factor of 1.25[8]. With a cascade classifier, eliminating
regions and applying features can be done at any scale and location in a few
operations, dramatically speeding up the face detection process.

scaleFactor is a parameter that has to be passed to OpenCV’s detect-
MultiScale[37]. It is important to test for different scales to find the suitable
value which ensures a good classification and processing speed. Low scale
factors are equal to a small difference in size of the sliding window for each
iteration, resulting in a slower, but more accurate classification. A high scale
factor will do the opposite. It requires fewer iterations due to more rapid
increase in sliding window size, but with a higher chance of incorrect classi-
fication. An illustration of how the sliding window increases are depicted in
figure 4.3a, and in figure 4.3b the conventional image pyramid.

Minimum Neighbors

When using a set of features to decide if an object is present or not, it is
almost unavoidable to encounter false-positive classifications, meaning that
the object has been classified to something it is not. An example of this
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(a) Different Image Scales (b) Image Pyramid [50]

Figure 4.3: Image Scales Vs. Image Pyramid

can be finding faces in an image with no faces. Somewhere in the fore- or
background at a specific scale and location, the features describe what is
known to the classifiers as a face and will mark the region accordingly. This
can and will happen if we do not try to dim the sensitivity of the classifier.

(a) Example of minNeighbors=0 [51] (b) Example of minNeighbors=3 [51]

Figure 4.4: Different minNeighbors values.

minNeighbors is the second key parameter to be passed to OpenCV’s
detectMultiScale[37]. It specifies how many neighbors or overlapping bound-
ing boxes that are required for a face to be accepted. In figure 4.4a minNeigh-
bors is set to 0. As we can see, the number of detections is overwhelming
considering that it finds faces in trees, rocks, ground, etc. because features
describing these areas are similar to the features of a face. By increasing the
threshold of the minimum number of neighbors, we eliminate single ”weak”
classifications and focus on those areas which have stronger features. In fig-
ure 4.4b minNeighbors is set to be 3, and the true faces in the image have
been found and it ignores false-positives. Again, finding the right number of
neighbors is also important when it comes to choosing a good face detector.
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Selecting a number which is too low, will result in many false-positives. On
the other hand, selecting too many and it might overlook areas where there
is a face.

Face Descriptor Comparison

The pre-trained face detectors used in this comparison is:

1. Haar-cascade classifier

2. LBP-cascade classifier

3. dlib’s get frontal face detector - returns a face detector based on histo-
gram of oriented gradients (HOG-features)

4. Other pre-trained face detectors available in OpenCV for better com-
parison, that are present in figures 4.10 and 4.11.

Above is the list containing the different face detectors used for compar-
ison in section 4.2.1 with the aim of selecting a face detector best suited for
real-time applicability in the presented emotion recognition system.

The first pre-trained detector to be tested is Haar-cascade classifier which
is trained on Haar-like features as described in section 2.2.4 and 2.4.

The second classifier is also a cascade classifier, but it is trained on Local
Binary Patterns(see section 2.2.1) instead of Haar-like features. Both cascade
classifiers are tested on different scales and minimum neighbors to find the
best-suited parameter settings for good face localization and classification,
see section 4.1.2 and 4.1.2.

The final classifier to be tested is trained on Histogram Oriented Gradi-
ents. HOG-features is what dlib’s default face-detector uses[36] combined
with a linear classifier, a sliding window scheme and an image pyramid. The
image pyramid is decided in the second parameter in dlib’s face detector
called upsample. It determines how many times the image is being enlarged
to enhance smaller faces in the image. The downside with an image pyr-
amid, as mentioned earlier, is an increase in processing time. One extra scale
iteration results in a tripling of the time it takes to process the image, so
zero iterations have been selected for this face detector to see whether it can
compete with a cascade classifier based on LBP or Haar-like features.
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4.1.3 Identification

Figure 4.5: Illustration of face identification.

Figure 4.6: Identification model architecture.

Enabling the robot to differentiate between its user and other people
present will require a classifier that can separate these two cases. A simple
CNN should be able to distinguish between user and not user as discussed
in chapter 2 section 2.5.

For identification a simple CNN architecture depicted in figure 4.6 is
chosen and is based on techniques presented in chapter 2 section 2.3.4, feeding
the input with RGB-images. A batch size of 20 images, Adam optimizer(see
section 2.3.4) with learning rate of 0.001 and CCE-loss(see section 2.3.4)
was selected. Softmax activation was used at the output node and ReLU
activation in the rest of the network. A dropout(see section 2.3.4) probability
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of 0.3 was used in the fully connected layer to increase generalization of the
network. The kernel size in the convolutional layers was set to 3x3 and with
the same pool size in the max-pool layers.

One of the concerns before testing the network was the lack of robustness.
With two layers of convolution and a fully connected network with one hidden
layer at the output, it is considered quite shallow and therefore possibly
making it sensitive to changes in illumination and orientation. To further
reduce this risk, training images were taken during different hours of the
day on separate days with a variation in face position and orientation. To
accommodate this, a simple data augmentation technique was applied such as
random rotations within 10 degrees in each direction as described in section
2.3.4 about data augmentation. Horizontal flipping was not applied since
it would change the location of person dependent features like wrinkles and
freckles in a face essentially confusing the CNN.

Possible Problems Related to Real-Time Identification

For this robot to work correctly, it must be able to distinguish between
different faces in a crowd. It is critical since it is only supposed to track
the user which it has been assigned to and not violate the privacy of other
people. This means that the accuracy when it comes to classifying identity
must be almost perfect. Real-time tracking of faces will subject the model
to extreme variations in light and orientation of the tracked face, which can
result in poor classification accuracy. So, it is crucial to build and train a
model that is light- and orientation invariant. Considering the need for a
compact and fast model the depth will be quite shallow and may limit the
networks ability to generate complex features.
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4.1.4 Emotion Recognition

Figure 4.7: Two-class model architecture.

Figure 4.8: Four- & seven-class model architecture.

Convolution Neural Network architecture

The models used for training varies in size depending on the number of classes
to predict, as illustrated in figure 4.7 and figure 4.8. The smaller model
is used for binary classification and the bigger models for four and seven
class classification problems. The depth of the model is somewhat equal
to its ability to extract complex features as described in Ranjan, Patel and
Chellappa’s paper[34]. This is one of the reasons why a shallow model was
chosen for the binary classification problem of Glad/Not Glad. The features
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representing the difference between glad and not glad is not as complicated
as the features separating the seven different classes. It is therefore assumed
faster during training and real-time testing with no cost in accuracy.

Two-class Model Architecture

For training of the two-class model, which is a three-layered CNN with ReLU
activation and a two-layered FCN at the output with dropout and sigmoid
activation(see figure 4.7), a standard accuracy metric was used. 30 epochs
over a training set of 1371 images, 60 validation images and 94 test images
posed as a suitable duration of training time. The number of expressions
started as a binary classification between Glad and Not Glad, which is every
expression not displaying happiness.

Four- & Seven-Class Model Architecture

When expanding the two-class model to a four- and seven-class model, the
number of layers in the network was increased to four convolutional layers,
and batch normalization(see section 2.3.4) was added in the first convolu-
tion layer. Additionally, a three-layered FCN was added at the output with
dropout between each layer and softmax activation on the output nodes to
handle multiple classes. The four-class version was trained over 30 epochs
contrary to the seven-class version which was trained over 60 epochs. The
reason behind this was a prior knowledge that it takes longer to understand
the differences between the seven classes compared to four classes.

Loss & Optimizers

Both architectures depicted in figure 4.7 and 4.8 utilizes CCE(see section
2.3.4) as loss function and Adam optimizers with a learning rate of 0.001(see
section 2.3.4). The two-class model architecture produces only one output,
converting the categorical cross entropy into binary cross entropy, essentially
indicating that it processes vectors with length equal to 1.
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4.1.5 Evaluation of Real-Time Performance

When it comes to evaluating the model in real-time, a recording of three
videos of myself predicting different emotions ranging from 2 to 7 classes
was used, so each model will be evaluated on their respected video to get
an estimation of real-time performance. The videos are an image stream of
roughly 300 - 800 frames, depending on the number of classes, containing all
the emotions for which the model was trained, making it easier to estimate
the accuracy. Since the system is using a tracking algorithm(see section 2.4)
to increase processing speed, a sanity check has been implemented to ensure
tracking of the true object. For every 100 frames processed, the face detector
is re-run, leaving a couple of frames without any emotion predictions. This
results in an unknown class during testing in real-time, but it has been
excluded from the classification report and confusion matrices in section 4.3.

A pseudo-code representation of figure 4.1 is presented in algorithm 2. It
includes all the stages associated with real-time emotion recognition.

Algorithm 2 Real-Time Emotion Recognition

1: initialize camera
2: initialize face detector
3: load identification model
4: load emotion model
5: Face found = False
6: while True do
7: img ← camera.read()
8: if not Face found then
9: faces← Face detector.findFaces(img)

10: prediction← identification.predict(faces)
11: if prediction = User then
12: Face found = True
13: else
14: face detector.track(face)
15: expression← emotion.predict(face)
16: img.putText(expression)

17: show image(img)
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Possible Problems Related to Real-Time Emotion Recognition

As stated earlier, facial expressions vary a lot from person to person and
culture to culture. Building and training a generalized model for real-time
use can be a difficult problem to solve. In the public datasets, a set of specific
criteria has to be present for a facial expression to be valid [2], possibly
resulting in a non-genuine expression of that person.

Considering that CNNs extract features to be classified, the network has
to learn which features that best describes the majority of its inputs. Thus
limiting the possibility of learning subtle person dependent features that may
be a crucial factor when it comes to classifying the expression.

Fortunately, the robot is being designed as a personal robot. Meaning
that it only needs to track and analyze its user, which in this thesis is me.
The main differences between the implementation presented in chapter 4 and
the previous work described in the background are a personalized approach
and real-time testing on a mobile robot. Related papers also limit the number
of classifications to six different expressions, whereas this thesis considers all
seven classes.

Displaying true emotions for the camera can prove to be difficult. In the
paper describing the CK+ benchmark dataset [2], the subjects portrayed in
the images were told what emotion to display, leaving it possible to ques-
tion the sincerity of that emotion. As discussed in chapter 3 the emotions
displayed in the CK+ dataset are based on Action Units describing each
emotion. In the personalized dataset, I express each emotion as I interpret
them, this means including traits that are uniquely related to me.

The difference between these two types of datasets will be highlighted
when training two identical deep CNNs which will prove a significantly bet-
ter learning ability of the respected emotions in the personalized dataset
compared to the public dataset. This is expected since a personalized model
will always perform better, but it is interesting to see the true difference in
performance proportional to the number of classes.
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4.2 Experiments & Results

4.2.1 Face Detection Results

(a) sample location 1 (b) sample location 2

Figure 4.9: Face detection test images.

A set of 100 images were taken where my face is located at various places
in the image. Each detector was tasked with finding my face in every frame.
When calculating the performance of each detector, Intersection over Union
(IoU ) was used:

IoU =
AreaOfOverlap

AreaOfUnion
(4.2)

This evaluation method provides an estimation of how well the true frame
overlaps with the predicted frame. A IoU > 0.5 is considered a good match
and normally counted as a hit.

Presented in figure 4.10 are the top performing face detectors given the
parameters in the caption, and figure 4.11 shows what happens with accuracy
if the parameters are not adjusted properly. Dlib’s face detector(black dot -
HOG) does not have any parameters to tune except for upsampling, but it
has been left out due to the time consumption if increased from 0 iterations
as mentioned earlier. That is why it is showing a static position in each
plot. One can interpret this as dlib’s face detector being the most stable
option, but as illustrated in the figures LBP-cascade(pink square) pose as
the fastest one with around 0.06 second processing time per image. By
looking at the Haar-cascade option(blue triangle), it shows promising results
with higher accuracy than LBP-cascade(pink square) and less processing
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time than dlib’s face detector(black dot) using HOG-features. These results
match with the description presented in the background, chapter 2 section
2.2. The Haar-cascade classifier is fast and robust but is more likely to
produce more false positives than HOG-features as shown on the accuracy
axis. Haar-like features are also more complicating to calculate than LBP-
features but are better suited as a face descriptor. Essentially the option lies
between a LBP-cascade classifier, Haar-cascade classifier and HOG-feature
combined with a linear classifier where the best choice is depending on what
the specific requirements are. In the implementation, a decision was made to
go for Haar-cascade classifier, which based on the results pose as the middle
ground option that detects faces at an acceptable speed and accuracy.

Figure 4.10: Face detector comparison with scale=1.25, neighbors=5

Figure 4.11: Face detector comparison with scale=1.4, neighbors=2
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4.2.2 Identification Results

The identification model was trained over 30 epochs with the specification
described in section 4.1.3. As we can see from the results, the model managed
to get a 98% accuracy on the test set, that is one miss-classified image given
the size of the test set as shown in the confusion matrix displayed in figure
4.13. It is better to classify a ”user” as ”other” rather than ”other” as a
”user”, in the sense of overlooking the user instead of analyzing the face
of an unknown individual. Judging by the somewhat steady progression of
validation loss compared with training loss in figure 4.12, this model is a
suitable choice for identifying between two individuals.

(a) Accuracy (b) CCE loss

Figure 4.12: Identification training/validation accuracy and loss over epochs.

precision recall f1-score support
User 1.00 0.97 0.98 33
Others 0.97 1.00 0.99 33
avg / total 0.99 0.98 0.98 66

Table 4.1: Classification report on identification model
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Figure 4.13: Identification results confusion matrix.

4.2.3 Emotion Recognition Results

Information Regarding Training & Testing of Emotion Classifiers

Deep neural networks are stochastic processes and can produce a different
result for separate training runs. A result of random initialization of weights
and other parameters during construction of a network. To get a statistically
viable result, one should train each network over a series of runs, depending
on how much the result is fluctuating. In these experiments, 10 runs were
viewed as a suitable number for repetition of training and testing.

The two-class and four class models were trained for 30 epochs with a
repetition of 10 runs. The seven-class model was trained for 60 epochs with
a repetition of 10 runs. The tables below (4.2, 4.3 and 4.4) are from the top
three performances on the test set with a comparison between public (CK+)
and personalized datasets. In the appendix section 8.2 a progression of loss
and accuracy during training is presented for each of the three different cases
of two, four and seven classes. The real-time evaluation was only done on
the models trained on the personalized dataset considering it showed the best
results during offline training and testing, and it is the goal associated with
this thesis.
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When progressing from two to four classes the model used for two classes,
depicted in figure 4.7, was switched out with a model designed to handle a
bit more complex data structures which utilize batch normalization after the
first layer as shown in figure 4.8.

Overall Results

In tables 4.2, 4.3, 4.4 the difference in accuracy’s between the CK+ and
personalized dataset is increasing when adding more classes to predict. In
figure 4.15 an apparent difference is illustrated where the models’ perform-
ances on two-, four-, and seven-classes is shown with average recognition
rate(accuracy). For seven classes the residual of percentage points equals
13,3 on the average prediction accuracy, underlining the benefits of using a
personalized dataset for complicated facial expression recognition. The av-
erage recognition rate of the top three results from the personalized model
is 98.6% on two classes, 96.3% on four classes and 97.6% on seven classes.
It is somewhat surprising that the model performs better on seven classes
then four classes. It can be minor differences when initializing weights for
training, which has given the seven class model a head start, or the case
of distinguishing degrees of one emotion which is the case in the four class
dataset making it a bit harder to separate the classes. The most likely reason
is that the four-class model was trained for 30 epochs contrary to the seven
class model which was trained for 60 epochs; thus it is not reasonable to
compare those two results. As for the CK+ model results, it managed to get
a top three average of 94.3% on two classes, 91,3% on four classes and 84.3%
on seven classes. When increasing from four to seven classes, the CK+ model
experienced a notable dip in accuracy, even more than expected. Given that
the CK+ dataset is quite skewed in the class distribution, the effect of this
has been prominent in the case of seven classes, allowing room for much
improvement.

In figure 4.14, the activation map of layer 2 in the CNN model used for
seven class emotion prediction on the personalized dataset is illustrated. It
is clear that the model is capable of focusing on correct regions in the face
where most of the information describing that emotion lies, such as the eyes
and the angle of the mouth.
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(a) Input image (b) Activations

Figure 4.14: Activation map of layer 2 in personalized model.

Top 3 runs Accuracy
1. 0.95
2. 0.94
3. 0.94
Average 0.943
Standard Deviation 0.005

(a) CK+

Top 3 runs Accuracy
1. 1.00
2. 0.98
3. 0.98
Average 0.986
Standard Deviation 0.009

(b) Personalized

Table 4.2: Top 3 results from both datasets with two classes.

Top 3 runs Accuracy
1. 0.94
2. 0.93
3. 0.87
Average 0.913
Standard Deviation 0.031

(a) CK+

Top 3 runs Accuracy
1. 0.97
2. 0.96
3. 0.96
Average 0.963
Standard Deviation 0.005

(b) Personalized

Table 4.3: Top 3 results from both datasets with four classes.
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Top 3 runs Accuracy
1. 0.88
2. 0.83
3. 0.82
Average 0.843
Standard Deviation 0.026

(a) CK+

Top 3 runs Accuracy
1. 0.98
2. 0.98
3. 0.97
Average 0.976
Standard Deviation 0.005

(b) Personalized

Table 4.4: Top 3 results from both datasets with seven classes.

Figure 4.15: Average model performances. (Two-classes left), (Four-classes
center), (Seven-classes right).
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4.3 Real-Time Evaluation

(a) Predicted glad (b) Predicted happy (c) Predicted neutral

(d) Predicted sad (e) Predicted unknown

Figure 4.16: Predictions from the real-time evaluation of 4 classes.

This section presents the results from the real-time evaluation of a recor-
ded 20 FPS video stream. The predictions were performed while recording
and the labels were assigned afterward to preserve the notion of live predic-
tions.

By looking at the results in the confusion matrix presented in figures 4.17,
4.18 and 4.19 real-time testing accuracy is somewhat lower than offline testing
results. The conditions when the personalized training set was constructed
may differ in many ways compared to conditions when testing in real-time.
So it is to be expected that the real-time testing results show a less satisfying
outcome than offline testing.

Given these priors, the personalized model can produce a total accuracy of
approximately 93% correct classifications on two classes, 83% on four classes
and 83% on seven classes. In figure 4.19 the emotion sad greatly overlaps
with contempt and anger. A reason for this can be that my expression of sad
can easily be interpreted as one of the two other classes which then comes
to light in real time testing. Contempt and disgust also seem to be easily
misclassified, given the action unit 12, Lip Corner Puller, is present in both
of these classes in the personalized dataset.
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Real-Time Evaluation of Two Classes

Figure 4.17: Two-class confusion matrix of real-time evaluation.

Precision Recall F1-score Support
Glad 0.85 0.99 0.92 123
Not-glad 0.99 0.89 0.94 183
avg / total 0.9 0.93 0.93 306

Table 4.5: Classification report on two classes.
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Real-Time Evaluation of Four Classes

Figure 4.18: Four-class confusion matrix of real-time evaluation.

Precision Recall F1-score Support
Glad 0.83 0.88 0.85 124
Happy 0.96 0.87 0.91 52
Neutral 0.90 0.75 0.82 84
Sad 0.95 0.90 0.92 39
avg/total 0.91 0.85 0.88 299

Table 4.6: Classification report on four classes
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Real-Time Evaluation of Seven Classes

Figure 4.19: Seven-class confusion matrix of real-time evaluation.

precision recall f1-score support
Angry 1.00 0.85 0.92 208
Contempt 0.94 0.67 0.79 203
Disgust 0.66 1.00 0.80 61
Fear 0.81 0.79 0.80 56
Happy 0.86 0.93 0.89 124
Sad 0.50 0.84 0.62 70
Surprise 0.87 0.89 0.88 108
avg / total 0.87 0.83 0.84 830

Table 4.7: Classification report on seven classes
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Chapter 5

Emotion Recognition Using
Salient Features & Recurrent
Neural Network in Video

In this chapter for research purposes, I will modify the work from Uddin,
Khaksar and Torresen[1] by using a recurrent neural network instead of a
convolutional neural network as described in section 2.6 and feed the net-
work with an image stream of 5-6 grayscale images contrary to depth images.
Based on the robustness of Local Direction Pattern for facial expression de-
scription presented in their paper, an adaptation of the feature extraction
process is presented in this chapter. The idea is to classify the progression
of the facial expression using LDSP rather than looking at the expression in
a single RGB-image. The proposed implementation is named LDSP-RNN
in this thesis. This will not be implemented on the robot itself, but trained
and tested offline.
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5.1 Approach

Applying LDSP on the input images causes some information to disappear
due to noise and other variations in the dataset. To check whether LDSP
in sequence poses as an alternative to a CNN approach and the difference in
performance between LDSP-RNN and CNN(from chapter 4) pose as the best
option to estimate the benefits and drawbacks. This is compared with an
RNN taking raw grayscale value input images as 1-dimensional vectors and
a Soft Vector Machine with both LDSP and raw grayscale images as input.

5.1.1 Making Sequence Dataset

The first stage in training and testing new models and methods is construct-
ing and preparing the datasets. RNNs, as stated earlier, needs a sequence
of data over time. For example, in this case, facial expressions evolving over
a series of different images. If the input sequence is too long, the RNN will
”forget” during the processing of the images, resulting in poor performance.
The key is then to find a sequence length which is not too long but still
maximizes the RNNs information extraction. Given that the shortest length
of a sequence in the benchmark dataset[2] is 5 images, the number of input
samples is then set to 5. Figure 5.1 are sample sequences of three images per
sequence progressing from a small degree of that expression to a full display.
The illustrated expression are disgust, surprise, and anger respectively.

The selected image sequences are then divided into three subsets; training
set, validation set, and test set. Where the training set is approximately 50%,
validation 25% and test set 25% of the original dataset.

The LDSP-RNN model expects a fixed length on the input sequence, and
since the length of a sequence in the CK+ dataset varies between 5 and 70
images, alterations have been made. In the CK+ dataset documentation[2]
it is stated that the emotions evolve from neutral to full display within each
sequence. This has also been verified by looking at the images manually.
To extract the most potent development of each sequence when constructing
the adjusted dataset, a selection of 5 images covering the steepest ”emotion-
gradient” is extracted. By selecting each of these 5 positions within a se-
quence with varying length; first, center-left, center, center-right, last - the
new sequences will have an approximately equal progression of emotion dis-
play invariant to the original sequence length. The assumption is that the
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highest gradient lies in the middle of each sequence.

Figure 5.1: Emotions evolving over time.

Figure 5.2: Class distribution in sequence dataset.

5.1.2 Image Preprocessing

Before introducing the image sequences to the RNN model, feature extraction
is needed to enhance the classification accuracy as described in the paper[1].
The camera produces RGB images, but the benchmark dataset is grayscale
contrary to [1] which is trained on depth images. This may introduce more
noise compared to the previous work since the presence of edges is far greater
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in raw RGB/gray images than depth images, but on the other hand, it might
find variations that can lead to a better classification.

As stated earlier, in Uddin, Khaksar and Torresen’s paper Local Direc-
tional Strength Pattern and Local Directional Ranking Histogram Pattern is
extracted from each image in the sequence and combined, where the LDSP is
augmented with LDRHP. Dimensionality reduction is applied through Kernel
Principal Component Analysis and Generalized Discriminant Analysis which
results in a 1-dimensional vector for each image in a sequence. So the input
is a 3 dimensional matrix with shape [number-of-images x sequence-
length x features ].

Figure 5.3: Kirsch mask applied in all 8 directions on a single grayscale
image.

In the implementation of LDSP-RNN, and subsequent experiments, a
reduction of the feature extraction process down to Local Directional Strength
Pattern[1] was done, enabling to experiment with the effect of solely applying
a robust gradient descriptor in sequence into an RNN. LDSP is directly fed
into the RNN without the conversion to a histogram representation. The
extraction method is described in figure 5.4 where the binary representation
is converted into decimal numbers. In figure 5.3 an image after applying
Kirsch edge detection is depicted and is what the LDSP is working on.
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Figure 5.4: Local Directional Strength Pattern on a 3x3 pixel neighborhood
in an image. The resulting LDSP code is now a representation for the center
pixel. This is repeated for all pixels of an image.

5.2 Experiments & Results

(a) Grayscale images (b) LDSP-features

Figure 5.5: 3D-plot of raw pixel values and LDSP-features on grayscale im-
ages using LDA dimension reduction. Anger(blue) - Contempt(black) - Dis-
gust(red) - Fear(cyan) - Happy(pink) - Sad(yellow) - Surprise(green)
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(a) Grayscale im-
age of sad

(b) Image after
Kirsch mask and
LDSP

Figure 5.6: Grayscale image before and after applying Kirsch mask and Local
Directional Strength Pattern.

5.2.1 Visualization of Features

In figure 5.5 Linear Discriminant Analysis has been applied to the last frame
of each sequence, reducing the dimension of the feature space down to 3 axes.
It is done purely for illustration purposes, and is not applied on the data be-
fore training of the LDSP-RNN. LDA chooses axes based on their ability to
separate the different classes. Compared to the 3D plot in Uddin, Khaksar
and Torresen’s paper[1] where they manage to separate all the 6 different
facial expressions with the use of Kernel Principal Component Analysis and
General Discriminant Analysis which utilizes a non-linear discriminant func-
tion, the plot in figure 5.5 does not show as good separation. Since the images
used in this experiment are raw grayscale images displaying seven different
emotions contrary to six class display on clear and highly detailed depth
images used in Uddin, Khaksar and Torresen’s paper, it is not expected to
show equally good results.

Defining a decision line between the grouped classes can be a challenging
problem to solve. The results in chapter 4 indicate a problem when trying
to separate seven different classes from the public dataset. The variations in
the CK+ dataset pose as the main obstacle when training a model, irrelevant
to what type of deep learning architecture used. The results in this chapter
bring light to the major faults associated with this dataset.
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5.2.2 Training & Testing of Recurrent Neural Network
Approach

By looking at the progression of the training in the LDSP-RNN approach,
the model overfit very quickly indicating a possibility that the dataset is too
small (see figure 5.7). With 325 samples in total (50% for training, 25%
for testing and 25% for validation) where class representations vary greatly,
none of the different approaches (listed in table 5.1) manage to achieve a
classification accuracy above 81%. The RNN model contains 100 recurrent
cells, meaning the data is processed 100 times per time step, see figure 2.11.

Figure 5.7: Best training run of LDSP-RNN model.

RAW-IMAGE-RNN

When applying raw grayscale images as input to the RNN, consisting of 100
recurrent cells and sigmoid activation, the performance comes short with
roughly 11 percentage points on average recognition rate (72.8% contrary
to 84.3%) compared to the seven class facial expression model in chapter 4
which is trained on the peak expressions from the CK+ dataset (see section
4.2).

LDSP-RNN

Introducing the RNN with LDSP feature vectors as input (LDSP-RNN),
the average recognition rate is increased to 73.6%. The model has been
trained over 10 different runs, similar to the competing approaches in this
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chapter. Though the RNN with raw images as input (RAW-IMAGE-RNN)
produce a higher top recognition rate (81%), the average is less than LDSP-
RNN’s average recognition rate, indicating that with the use of LDSP fea-
tures it produces more robust results in the form of a lower standard deviation
and a higher mean value (see table 5.1). Note that with so few testing images
it is hard to conclude, but it indicates a possible outcome when fine-tuning
hyperparameters and utilizes a better dataset for training.

Soft Vector Machine

As for comparing RNN to a standard image classifier, SVM is trained and
tested on the same input data with a gamma parameter value of 0.01. For
both cases of LDSP and raw grayscale images as input, it produced the same
recognition rate of 72%.

5.2.3 Overview of Results

In table 5.1 the result of 10 training iterations with 50 epochs per iteration
is presented. Since deep neural networks are stochastic, a different result
can be produced for each of the separate training runs, meaning multiple
runs has to be applied to get statistically viable results. In figure 5.8 the
average recognition rate from each approach on seven classes is illustrated
and showing that LDSP-RNN produces the best outcome. The confusion
matrices from testing of LDSP-RNN and RAW-IMAGE-RNN are presented
in figure 5.9, highlighting the emotions that both approaches struggle to
classify. Contempt, anger, and sadness are the classes that show the most
prominent variations between the two models. Both anger and sadness are
present in the cluster of inseparable classes illustrated in figure 5.5. Contempt
is most likely misclassified due to low class representation in the training set
as discussed in chapter 3.
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Top Mean Std
RNN w/ Raw image 0.81 0.728 0.086
RNN w/ LDSP features 0.78 0.736 0.023
SVM w/ Raw image 0.72 0.72 0
SVM w/ LDSP features 0.72 0.72 0

Table 5.1: Test results from the different approaches with top, mean and
standard deviation of the 10 separate runs.

Figure 5.8: Model performances on raw image features and LDSP features.
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(a) Confusion matrix LDSP-RNN, showing recall for each emotion.

(b) Confusion matrix RAW-IMAGE-RNN, showing recall for each
emotion.

Figure 5.9: Confusion matrices from RNN emotion recognition on test set.
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Chapter 6

Discussion

In this chapter results from both experiments, Real-time Face Detection,
Identification & Emotion Recognition and Emotion Recognition Using Salient
Features & RNN in video are discussed.
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6.1 Real-Time Emotion Recognition Pipeline

The results have proved to be significant in the form of implementing a
functional real-time emotion recognition system and establishing the benefits
of using a personalized dataset contrary to a public dataset, although it is
common knowledge that personalized models outperform generalized models.
As discussed in chapter 3, there are some distinctions between the two dataset
to be noted, such as different class distributions and RGB-images contrary to
grayscale images. Despite these variations, the ten different runs testing the
models reveal that the model based on a personalized dataset outperforms
the model based on a public dataset in every instance, regardless of number
of classes to predict. On average, the the generalized model (CK+) achieved
a recognition rate of 84.3% on seven classes, whereas the personalized model
got a recognition rate of 97.6% on the same amount of classes.

Since the variance in the public dataset is more significant, a deeper clas-
sification model is necessary to increase accuracy. A deeper neural network
is more capable of understanding a complex structure within the data, as
discussed in the background and in LeCun, Bengio and Hinton’s paper[10].
It is reasonable to assume that a deeper model would process data at a slower
rate since the number of calculations significantly increase with incrimina-
tion of the number of hidden layers. The Multimodal Elderly Care System
is primarily developed for assisting a single user, which means it has to fa-
miliarize itself with that user. As shown in the results, a fairly shallow CNN
can accomplish an accuracy up to 98% on seven different expressions with
the use of techniques which is quite standard in today’s image classification
field, such as Batch Normalization, Dropout, etc. The personalized model
can learn more complex features that describes the user’s facial expression
with fewer calculations, ergo faster processing.

When reviewing the results for each of the three cases (two-, four-, and
seven-classes), one can see that the difference in accuracy between the CK+
trained models and the personalized models with fewer classes at the output
are not as prominent as the models with a higher number of classes. Happy
and Sad is quite different expressions, making the two-class problem an easier
task to solve. It is when the number of classes is increased that a notice-
able difference in performance develops. For seven classes the personalized
models have almost ten percentage points higher accuracy than the CK+
models. Also, the variance in both loss and accuracy of the CK+ models are
quite high, as can be seen in the plots in the appendix. Figures 8.3 and 8.5
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clearly indicate that the models are struggling to generalize good features
for classification. Since the variance in the CK+ dataset is much higher to
begin with, one should train the models with a lower learning rate or the
number of validation samples should be increased to reduce the variance in
the validation accuracy and loss.

Validation accuracy and loss are only indications of how training pro-
gresses. Since the training accuracy and loss looked promising and test ac-
curacy somewhat matched what is to be expected, a decision not to increase
the number of validation samples was made since this would mean a reduc-
tion in training samples. At the same time minimizing the differences in
the outset for both the personalized models and the generalized models, i.e.
models trained on the CK+ public dataset.

One of the disadvantages of basing the models on a personalized dataset,
is the accumulation process of a proper dataset containing every expression
of its user. Ideally, a well-performing model trained on a public dataset
pose as the best option, since it does not need to be tailored to each person
and therefore only needs to be trained once. However, as shown in the
thesis, small, fast CNNs trained on multiple different faces cannot produce
the desired result as it can with a personalized dataset.

6.2 Emotion Recognition Using Salient Fea-

tures & Recurrent Neural Network in Videos

In “Facial expression recognition using salient features and convolutional
neural network”[1] the model was trained on a depth image dataset and in-
cluded a small experiment on a selected number of samples from the CK+
dataset[2]. A different approach has been presented in this thesis based
on their work, by essentially reducing the feature extraction part to solely
Kirsch edge detection[5] and Local Directional Strength Pattern[1]. A recur-
rent neural network is trained with these features and called LDSP-RNN.
It accomplished an average recognition rate of 73.6% on the test set. The
results produced by this implementation cannot match what Uddin, Khak-
sar and Torresen accomplished with their approach, due to several reasons.
Firstly, it is not sustainable to compare the results, since they selected 40
great samples with short sequence lengths and used a more comprehensive
feature extraction method. Nonetheless, it is not accurate to conclude that
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the approach presented in this thesis come short of good results. Taking
into account that the RNN implementation considers all the seven different
classes described in chapter 3 as well as utilizing all samples available in
the CK+ dataset, it leaves the possibility of an increased recognition rate if
presented with better samples, i.e. filtering out samples that would distort
the network’s understanding of the problem.

The results obtained show a better average recognition rate using LDSP-
RNN compared to RAW-IMAGE-RNN and LDSP-RNN outperformed a Soft
Vector Machine classification in both cases, as presented in table 5.1. Un-
derstanding that edge detectors are sensitive to noise in the image is a key
factor when selecting dataset to be used for training. Utilizing the whole
CK+ dataset for training has shown not to be ideal when applying an edge
detector for feature extraction. Noise can very easily be amplified, causing
worse performance during training. Filtering techniques to remove noise pose
as an option for further work within this implementation. Based on the res-
ults presented in chapter 5 section 5.2, the LDSP-RNN approach has shown
much potential, and with the correct parameters and training data it is most
likely a suitable choice for classifying facial expressions in videos.

6.3 Ethical Dilemmas

Considering that the robot is aimed to be used in the users’ homes, there are
several things to take into account regarding the implementation. The wel-
fare and interests of the users must always be respected above anything else,
and it is reasonable to discuss and evaluate the possibilities of malfunction,
malpractice and exploitation of both the robot’s behavior and the inform-
ation it can collect and process, combined with how this information is to
be distributed to persons of interest, i.e. family and healthcare personnel.
The worst case scenario would be illegal distribution of private and sensitive
information about a reasonably vulnerable group in our population, seniors,
due to their vulnerability when it comes to burglary and fraud. It is our
responsibility as system designers to ensure that this does not occur.

With the rapid advancements in technology, it can be argued that safety
also progresses. Such as our life expectancy with the help of modern medicine
and technology, but that is not necessarily true in the case of information
security. We now live in an era of information where we have reached a
paradigm shift. Social media has contributed significantly to what we now
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consider private information. Every internet site we visit collects informa-
tion about its user and we trust online solutions with our pictures and other
private files. The only thing keeping this from being distributed across the
world for everyone to see is the security measures the storage providers have
implemented. It is a constant battle between new security updates and ma-
licious software trying to reach private data. The companies also have a
responsibility not to misuse the information provided by the user. Privacy
legislation set by the government is there to ensure that privacy is respected
and not exploited in a negative way. However, there is always a risk that the
rules are not obeyed or that loopholes can be found and exploited.

Despite the risk we take entrusting that our information is safe, it has
come to good use. By allowing technology to make use of information that
is commonly not accessible, e.g. facial expressions, we can build and develop
solutions which will help us and hopefully increase our standard of living.
Introducing assisting technologies into elderly peoples’ homes may enable the
user to live at home for a more extended period, relieving resources to be used
elsewhere. By limiting the information the robot distributes to entrusted
personnel, for example with encryption or a purer form of communication,
it is possible to reduce the risk of sensitive information to go astray. With
this in mind, the robot needs to process more of the information it collects
locally. Applying the implementation presented in chapter 4, a complex
mental health analysis, compared to existing facial expression recognition
systems, is possible without the need of cloud-based processing.
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Chapter 7

Conclusion

This chapter presents a conclusion to the work presented in this thesis, in-
cluding a proposition of future work related to chapter 4 and 5.
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7.1 Real-Time Emotion Recognition Pipeline

The thesis has presented an approach for real-time emotion recognition of
human faces, which includes face detection and identification. By compar-
ing public and private datasets, benefits of using a personalized dataset for
classification of multiple expressions and surpassing previous number of clas-
sifications in related work have been established. The introduction described
limitations which may be highlighted when using deep learning models, espe-
cially image analysis, on a mobile robot without high performance hardware.
With the presented approach, a personalized real-time emotion recognition
system with the ability of classifying seven different expressions is capable
of running smoothly on a standard CPU, making it somewhat insensitive to
different hardware specifications.

7.1.1 Is it Possible to Process Facial Expressions at a
Reasonable Speed in Real-Time on a Standard
Laptop Computer, Without the Help of a GPU?

Yes, but with some precautions. When increasing the resolution of the input
image stream, processing speed is dramatically reduced. This is not an issue
when it comes to facial expression recognition since the CNN takes a fixed
size image as input, 100x100 pixels, but it is a problem for the face detection
algorithm. The experiments are conducted on an image stream where each
frame has a resolution of 640x480 pixels. If the resolution is increased to
1280x720 (HD-ready), the number of pixels to process triples in size. With
the use of a GPU this resolution is not an issue, but with the assumption
that all images have a resolution around 640x480, it is possible to detect
faces, identify and classify seven different facial expressions at 20 FPS.

7.1.2 How Well Does a Personalized Model Perform
Compared to a Generalized Model?

A personalized model (trained on images from one person) will always out-
perform a generalized model (trained on images of multiple people) in every
instance of number of classes to predict (see section 4.2), but with the use of
a small customized CNNs complicated facial expressions can be recognized
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with fewer training iterations and faster calculations.

7.2 Emotion Recognition Using Salient Fea-

tures & Recurrent Neural Network in Video

In this chapter(see chapter 5) an adaptation of the features extraction process
presented in [1] combined with a recurrent neural network was proposed, and
named LDSP-RNN. With a standard RNN architecture with LDSP features
as input, the model managed to get an average recognition rate of 73.6%
on the test set of seven classes (see section 5.2). The CNN version’s top
performing model trained on the CK+ dataset got 88% accuracy (see section
4.2), but with an average of around 84.3% over ten runs. Note that the LDSP-
RNN was trained on the CK+ dataset and is therefore compared with the
CNN model trained on the same dataset only with single image input. As a
starting point, we can conclude that an LDSP-RNN model cannot compete
with a CNN approach of single image peak emotion display classification.
LDSP-RNN, on the other hand, produces an overall better recognition rate
compared to a RAW-IMAGE-RNN approach, proving that LDSP features
pose as a suitable option for classifying facial expressions and complies with
the findings presented in Uddin, Khaksar and Torresen’s paper[1].

7.2.1 Can Oriented Gradient Features in Sequence
Combined With an RNN Pose as an Altern-
ative to Standard CNNs?

Under the circumstances presented in this thesis it is not able to compete
with the CNN approach, but with a better dataset combined with an expan-
sion of the feature extraction process, the possibility of an equally or better
performance is very much present.

7.3 Dissemination

During the work on this thesis, the Minister of Commerce (Torbjorn Roe
Isaksen) and the Minister of Higher Education (Iselin Nybo) showed interest
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in projects within Robotics and Artificial Intelligence due to higher priorities
within these fields of inventions. A presentation and live demonstration of
the introduced approach for real-time emotion recognition was held, and was
broadcasted on the evening news on NRK[52], and morning news on TV2[53].
Links to both of the news stories are provided in the bibliography, see citation
above.

7.4 Future Work

7.4.1 Real-Time Emotion Recognition System

As discussed in section 6.1, a generalized model would be preferable when
constructing a facial expression recognition system. This is due to the com-
prehensive work of collecting a person dependent dataset for each user of the
system. Utilizing more of the work described in “MobileFaceNets: Efficient
CNNs for Accurate Real-time Face Verification on Mobile Devices” by Chen
et al.[42], would enable the use of deeper CNNs with fewer parameters to
update during training. It can be applied to all stages in the pipeline, given
that a CNN currently is the preferred architecture for object detection and
classification. This can lead to experiments using the approach presented
in “HyperFace: A Deep Multi-task Learning Framework for Face Detection,
Landmark Localization, Pose Estimation, and Gender Recognition” by Ran-
jan, Patel and Chellappa[34], constraining face detection, identification and
emotion recognition to a single convolutional neural network.

Due to time limitations on implementing and writing this thesis, testing
of the proposed system on a moving robot in different environments has not
been done, where areas of improvements are more easily detected.

7.4.2 Emotion Recognition Using Salient Features &
Recurrent Neural Network in Video

During this thesis much attention has been put to the drawbacks of using
the CK+ dataset[2], leaving the possibility of an improvement if a different
dataset had been used. Furthermore, experimenting with a greater variety
of RNN architectures and parameters can lead to new findings and hope-
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fully increase the recognition rate of an LDSP-RNN on facial expressions.
By expanding the feature extraction process before training an RNN, a bet-
ter separation of expressions is possible. Based on the robustness of LDSP
presented in this thesis and [1], one can utilize the techniques used in Uddin,
Khaksar and Torresen’s paper and expect better results. In section 5.2.1
LDA was applied for vizualization of features in three dimensions. In on-
going experiments LDA has been included in the feature extraction process,
reducing the feature space down to 6 dimensions before applying RNN. It is
showing promising results, surpassing approaches presented in chapter 5.
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Chapter 8

Appendix

8.1 Sensors, Software & Hardware

• Samsung ultrabook series 9

• Intel Core i7-3517U CPU - 1.90GHz x 4

• Microsoft 1080p HD sensor camera

• Ubuntu 16.04

• Python 3.6.6

• TensorFlow 1.8

• Keras 2.1.6

• OpenCV 3.4.2.17

• dlib 19.7.0
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8.2 Emotion Recognition Training Plots

8.2.1 Two Classes

(a) Accuracy run 7/10 (b) Loss run 7/10

(c) Accuracy run 8/10 (d) Loss run 8/10

(e) Accuracy run 10/10 (f) Accuracy run 10/10

Figure 8.1: Cohn-Kanade - Two-class training and validation accuracy and
categorical cross entropy loss over number of epochs
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(a) Accuracy run 5/10 (b) Loss run 5/10

(c) Accuracy run 8/10 (d) Loss run 8/10

(e) Accuracy run 10/10 (f) Loss run 10/10

Figure 8.2: Personalized - Two-class training and validation accuracy and
categorical cross entropy loss over number of epochs
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8.2.2 Four Classes

(a) Accuracy run 1/10 (b) Loss run 1/10

(c) Accuracy run 4/10 (d) Loss run 4/10

(e) Accuracy run 9/10 (f) Loss run 9/10

Figure 8.3: Cohn-Kanade - Four-class training and validation accuracy and
categorical cross entropy loss over number of epochs
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(a) Accuracy run 2/10 (b) Loss run 2/10

(c) Accuracy run 5/10 (d) Loss run 5/10

(e) Accuracy run 10/10 (f) Loss run 10/10

Figure 8.4: Personalized - Four-class training and validation accuracy and
categorical cross entropy loss over number of epochs.
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8.2.3 Seven Classes

(a) Accuracy run 1/10 (b) Loss run 1/10

(c) Accuracy run 2/10 (d) Loss run 2/10

(e) Accuracy 8/10 (f) Loss 8/10

Figure 8.5: Cohn-Kanade - Seven-class training and validation accuracy and
categorical cross entropy loss over number of epochs.
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(a) Accuracy run 1/10 (b) Loss run 1/10

(c) Accuracy run 3/10 (d) Loss run 3/10

(e) Accuracy 5/10 (f) Loss 5/10

Figure 8.6: Personalized - Seven-class training and validation accuracy and
categorical cross entropy loss over number of epochs.
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