
Word embedding models as
graphs

Conversion and evaluation

Erik Winge

Thesis submitted for the degree of
Master in Informatics: Programming and networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Word embedding models as
graphs

Conversion and evaluation

Erik Winge

© 2018 Erik Winge

Word embedding models as graphs

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In this thesis, we make and evaluate procedures for converting between
different lexical semantic representations. We implement three different
methods for converting from vector space models to graph models: the
threshold method, the kNN method and the variable-k method. We
also implement a single procedure for converting from graph models
to word embedding models. Further, we do comprehensive evaluation
of our conversion procedures and their results. We perform extensive
intrinsic evaluation using several gold standard data sets. We also
do extrinsic evaluation of our converted graph models. We show that
our graph models perform well at two real-world tasks: word sense
induction/disambiguation and hypernym discovery.

The use of word embeddings has become widespread, in large part
because of the increasing use of deep learning methods. However, training
high quality word embeddings is time-consuming and requires large
corpora. Therefore, an increasing number of pre-trained word embedding
models have been made available, for instance by the Nordic language
processing laboratory. These pre-trained word embeddings are useful in
many natural language processing tasks. However, there are also many
graph-based algorithms. We show that we can utilize high-quality word
embeddings in graph-based algorithms by converting word embedding
models to graphs.

i

ii

Contents

1 Introduction 1

2 Distributional semantic models 5
2.1 Distributional semantics . 5

2.1.1 Tokens, types, full-forms and lexemes 6
2.1.2 Corpus processing . 6
2.1.3 Contexts . 7
2.1.4 Measuring similarity . 7

2.2 Vector models . 8
2.2.1 Vector representations 8
2.2.2 Weighting . 9
2.2.3 Measuring similarity . 10
2.2.4 Word embeddings . 10
2.2.5 Dimensionality reduction 10
2.2.6 Prediction based models 11
2.2.7 Word embeddings in neural networks 13
2.2.8 Strengths, weaknesses and applications 15

2.3 Graph models . 15
2.3.1 Graph distributional semantic models 16
2.3.2 Semantic networks . 17
2.3.3 Visualization . 19
2.3.4 Strengths, weaknesses and applications 19

2.4 Summary . 20

3 Converting between graph and vector models 21
3.1 Background and previous work 21

3.1.1 VSM to graph conversion 22
3.1.2 Local graph views . 23
3.1.3 Graph to VSM conversion 24
3.1.4 Generalized node embeddings 24

3.2 Converting from a vector space model to a graph model 25
3.2.1 Threshold method . 26
3.2.2 Nearest neighbors method 27
3.2.3 Variable-k method . 27
3.2.4 Implementation . 28

3.3 Converting from a graph model to a vector space model 28
3.3.1 Sparse matrices . 29

iii

3.3.2 Dimensionality reduction 29
3.3.3 Implementation . 29

3.4 Summary . 30

4 Conversion evaluation by word similarity 31
4.1 Distributional semantic model evaluation 32
4.2 Evaluating conversion results . 33
4.3 SimLex-999 evaluation . 33

4.3.1 Python implementation 34
4.3.2 Threshold method . 34
4.3.3 kNN method . 38
4.3.4 Variable-k method . 41

4.4 Wordvectors.org evaluation suite 44
4.5 Summary . 46

5 Conversion evaluation by word sense induction 47
5.1 Word senses . 48

5.1.1 Word sense disambiguation 48
5.1.2 Word sense induction . 49
5.1.3 HyperLex . 51

5.2 Implementation . 52
5.2.1 Graph model . 53
5.2.2 Neighborhood graph extraction 54
5.2.3 HyperLex . 56
5.2.4 Igraph spinglass community detection 56
5.2.5 Alternative, on-the-fly conversion 57

5.3 Evaluation . 57
5.4 Results . 58

5.4.1 Spinglass . 59
5.4.2 HyperLex . 61

5.5 Error analysis . 62
5.6 Summary . 63

6 Conversion evaluation by WordNet hypernym discovery 67
6.1 Previous work . 68
6.2 Implementation . 69

6.2.1 Graph construction . 69
6.2.2 Hypernym proposal . 69
6.2.3 Centrality . 70
6.2.4 Models . 71
6.2.5 Evaluation . 71
6.2.6 Centrality ties . 71
6.2.7 Baselines . 72

6.3 Results . 73
6.3.1 Ties broken arbitrarily . 75
6.3.2 Ties broken by term frequency 76

6.4 Error analysis . 77
6.4.1 Fully connected graphs 78

iv

6.4.2 Ties . 80
6.4.3 Different center . 85

6.5 Summary . 85

7 Conclusion 89
7.1 Results and contributions . 89
7.2 Future work . 92

v

vi

List of Figures

2.1 2-D VSM with dimensions “Eat” and “Drink” 8
2.2 The two different word2vec architectures 11
2.3 Sample GDSMs . 17

3.1 Neighborhood of “line” using threshold method 26
3.2 Neighborhood of “line” using kNN method 27

5.1 Neighborhood of “apple” using threshold method 53
5.2 Neighborhood of “apple” using kNN method 54
5.3 ARI scores from SemEval-2013 evaluation 60
5.4 Distribution of number of clusters in gold standard data. . . . 64
5.5 Distribution of number of clusters in spinglass clusterings. . . 64
5.6 Distribution of number of clusters in HyperLex clusterings. . 65

6.1 Graph with the hypernym “lamp” and its WordNet hyponyms 70
6.2 Accuracy of hypernym predictions with Gigaword 73
6.3 Accuracy of hypernym predictions with Wikipedia 74
6.4 Accuracy of frequency assisted hypernym predictions with

Gigaword-based models . 74
6.5 Accuracy of frequency assisted hypernym predictions with

Wikipedia-based models . 75
6.6 The hypernym “dog” and its WordNet hyponyms 80
6.7 The hypernym “hawk” and its WordNet hyponyms 81
6.8 The hypernym “protein” and its WordNet hyponyms 82
6.9 The hypernym “dislike” and its WordNet hyponyms 83
6.10 The hypernym “airplane” and its WordNet hyponyms 83
6.11 The hypernym “chicken” and its WordNet hyponyms 84
6.12 The hypernym “disadvantage” and its WordNet hyponyms . . 84
6.13 The hypernym “kindness” and its WordNet hyponyms 86
6.14 The hypernym “rejection” and its WordNet hyponyms 86
6.15 The hypernym “larva” and its WordNet hyponyms 87
6.16 The hypernym “cloud” and its WordNet hyponyms 87

vii

viii

List of Tables

4.1 Models used for evaluation . 33
4.2 Notation used in the evaluation tables 35
4.3 Threshold mode on 10 000 terms, 21.5% OOV, ρo = 0.398 . . . 36
4.4 Threshold mode on 15 000 terms, 9.4% OOV, ρo = 0.403 36
4.5 Threshold mode on 20 000 terms, 5.0% OOV, ρo = 0.414 . . . 36
4.6 Threshold mode on 40 000 terms, 0.9% OOV, ρo = 0.420 . . . 37
4.7 Threshold mode on 80 000 terms, 0.2% OOV, ρo = 0.419 . . . 37
4.8 Threshold mode on 261 794 terms, 0.2% OOV, ρo = 0.419 . . . 37
4.9 kNN mode on 10 000 terms, 21.5% OOV, ρo = 0.398 39
4.10 kNN mode on 15 000 terms, 9.4% OOV, ρo = 0.403 39
4.11 kNN mode on 20 000 terms, 5.0% OOV, ρo = 0.414 40
4.12 kNN mode on 40 000 terms, 0.9% OOV, ρo = 0.420 40
4.13 kNN mode on 80 000 terms, 0.2% OOV, ρo = 0.419 40
4.14 kNN mode on 261 794 terms, 0.2% OOV, ρo = 0.419 41
4.15 Variable-k mode on 10 000 terms, 21.5% OOV, ρo = 0.398 . . . 42
4.16 Variable-k mode on 15 000 terms, 9.4% OOV, ρo = 0.403 42
4.17 Variable-k mode on 20 000 terms, 5.0% OOV, ρo = 0.414 . . . 42
4.18 Variable-k mode on 40 000 terms, 0.9% OOV, ρo = 0.420 . . . 43
4.19 Variable-k mode on 80 000 terms, 0.2% OOV, ρo = 0.419 . . . 43
4.20 Variable-k mode on 261 794 terms, 0.2% OOV, ρo = 0.419 . . . 43
4.21 Faruqui and Dyer (2014) gold standard evaluation data 44
4.22 Evaluation suite on full model, using the kNN method 45
4.23 Evaluation suite on full model, using Variable-k 45

5.1 SemEval-2013 task 11 terms that are not in our graph model . 55
5.2 Results of SemEval-2013 task 11 59
5.3 SemEval-2013 Task 11 running time 61
5.4 SemEval-2013 5 highest scoring target words 62
5.5 SemEval-2013 5 lowest scoring target words 62

6.1 Models used in WordNet exploration 71
6.2 Accuracy scores with ties broken arbitrarily 77
6.3 Accuracy scores with ties broken by term frequency 78
6.4 Excerpt of WordNet betweenness centrality evaluation data . 79

ix

x

Preface

I wish to thank my main supervisor Andrei Kutuzov, and co-supervisor
Erik Velldal. Without their steady guidance, this thesis would not be the
same. I would also like to thank the faculty and staff of the Department of
Informatics, who have contributed to making the master’s programme an
enjoyable experience.

xi

xii

Chapter 1

Introduction

In this thesis, we investigate various ways to convert between different
lexical semantic representations. Semantics is the systematic study of the
meaning of language, both of individual words and sentences. We focus
on word meaning in this thesis. Word meaning is also referred to as
lexical semantics. The meaning of words has traditionally been presented
in printed dictionaries as short definition texts, sometimes along with
synonyms. However, textual definitions are of limited use in computer
applications, such as natural language processing applications. Therefore,
many forms of computer readable lexical semantic representations have
been created. We focus on vector space models and graph-based models.
These are among the most widespread contemporary models.

Both vector space models and graph models have long traditions in
language technology. Osgood, Suci and Tannenbaum (1957) suggested
using a Euclidean vector space to represent word meaning. Vector space
semantic models represent words as vectors in a high-dimensional space.
The axes of the space are the features we use to represent a word. The value
for each element in a word vector is commonly a floating-point number,
which indicates the frequency or magnitude of this feature for this word.
Graph semantic models on the other hand, represent words as nodes in
a graph. Different kinds of relationships between words are represented
as edges between the nodes. Graph models are used in many algorithms.
Semantic networks, like WordNet(Miller 1995), are examples of graph
models that are widely used.

Vector and graph semantic models have different and somewhat
complementary strengths and weaknesses. Graph models can contain
a wider range of information than standard vector space models. For
example, WordNet has a hierarchy of hypernym/hyponym1 relationships,
as well as many other relationships between words, which we discuss in
section 2.3.2. In this way, WordNet explicitly models more relations than
vector space models.

Lexical semantic models can be divided in two categories by how they
are constructed, or their data source. These categories are distributional

1The hypernym/hyponym relation is the relation between a more general term, such as
“animal”, and a more specific, subordinate term, such as “cat”.

1

semantic models and models that are constructed more or less manually.
Manually constructed models can be built entirely by hand, like WordNet.
Alternatively, they can be made with some degree of automation, but based
on handcrafted features or annotations, for instance vector space models
using handmade semantic features.

Distributional semantics (Harris 1954; Firth 1957) is the study of word
meaning using the statistical distribution of words and their co-occurrences
in a large corpus, that is a large collection of text. Distributional semantics
uses unsupervised techniques, and can work with raw text with minimal
and automatic preprocessing. No manual processing or annotation is
required. In distributional semantics, the meaning of a word is somehow
represented by its context. We can use various kinds of models and
definitions of context. Different distributional semantic models represent
the meaning of words in different ways. They can also represent different
aspects of the meaning of a word, and different relationships between
words. Such relationships can for instance be the hypernym/hyponym
relationship. Distributional semantics, vector space models and graph
models are discussed in further detail in chapter 2.

Word embeddings (Bengio et al. 2003; Mikolov, Chen et al. 2013),
which are a kind of vector space models, have received much attention
in the last few years. This is partly due to their use in artificial neural
networks and deep learning. Word embedding models are vector space
models with a lower number of dimensions, commonly in the order of
hundreds. Word embeddings are also dense, vector elements are rarely
zero. This low dimensionality makes them more efficient to use, which is
beneficial in general, and is particularly important for neural networks.

An increasing number of pre-trained word embedding models have
been made available on the web over the last years. It would be beneficial
if we could convert these models to graph models, for use with graph-
based algorithms. In this thesis, we investigate if this conversion can be
done without significant loss of data. However, there are many ways of
converting vector models to graph models. For instance, for large models
it is expensive to produce fully connected graphs. Therefore, we evaluate
different conversion methods and their hyperparameters.

We also explore converting the other way, from graph models to word
embedding models. This is useful for making embeddings based on existing
graph models. Such a graph model might for instance be a semantic
network like WordNet, or a graph distributional semantic model.

To measure the effectiveness of our conversion procedures, we perform
comprehensive evaluation. We do both intrinsic and extrinsic evaluation
of our conversion results. We use both SimLex-999 (Hill, Reichart and
Korhonen 2015) and other gold standard data sets in a thorough intrinsic
evaluation. Additionally, we perform extrinsic evaluation in two different
application settings. First, we evaluate our converted graph models in a
word sense induction and word sense disambiguation task from SemEval-
2013. Finally, we evaluate the converted graph models in an exploratory
hypernym discovery task.

We show that both these conversions can be done without significant

2

information loss. We also demonstrate the usefulness of the resulting
models in two application settings. Further, we discuss the pros and cons
of the different conversion methods and hyperparameters.

We have made software to do the conversion and evaluation. Our
software was implemented in Python, using standard open source libraries.
All the project software is freely available on GitHub.2

The rest of this thesis is structured as follows: In chapter 2 we discuss
some background material on distributional semantic models. We first
introduce some terms and concepts from natural language processing and
distributional semantics. Then we discuss vector and graph distributional
semantic models in some detail.

In chapter 3 we introduce procedures for converting between vector
and graph lexical semantic representations. We consider and implement
different approaches for converting word embedding models to graph
models. We also examine and implement conversion the other way, from
graph models to word embedding models.

Chapter 4 contains a thorough intrinsic evaluation of the various
conversion procedures that we have implemented. We use SimLex-999 and
other word similarity based gold standard data sets to evaluate the quality
of our converted models. We also evaluate the time and space use of our
conversion procedures.

In chapter 5 we do an extrinsic evaluation in an application setting.
The evaluation is done by means of a word sense induction and word
sense disambiguation task. We implement word sense induction and
disambiguation using our converted model. The result of the word sense
disambiguation is then used to evaluate the quality of the conversion.

In chapter 6 we do further extrinsic evaluation, in another application
setting. We explore whether our converted graphs can be used in hypernym
discovery. To this end, we use subgraphs containing hypernyms and
hyponyms from WordNet, and attempt to identify the hypernyms. This
hypernym identification is done using node centrality information obtained
from the graph.

In summary, in this thesis we make a bridge between two different
lexical semantic representations. We convert vector space models to graph
models, and vice versa. We evaluate the performance of our conversion
procedures and the resulting models, by both intrinsic and extrinsic
evaluation. Finally, we demonstrate that our converted graph models are
useful in real-world tasks such as word sense induction and word sense
disambiguation.

2 https://github.com/ewinge/converter

3

https://github.com/ewinge/converter

4

Chapter 2

Distributional semantic
models

Words are arbitrary labels for things and ideas in the real world. Since
children can learn the meaning of words by being exposed to language,
it should be possible for computers to do the same. Distributional
semantic models are attempts at this. In this chapter, we investigate the
current state of distributional semantic models. The main contenders
are vector space models and graph distributional semantic models. We
discuss the different variants of these models, and their strengths and
weaknesses. Hopefully, this give some insight into a field that has seen
rapid development in the last few years.

In the next section, we give some background on distributional se-
mantics. In section 2.2, we discuss vector models, and in section 2.3 we
discuss graph models. In section 2.4 we summarize this chapter. In the
next chapter, we look at how these different architectures can be combined
to get the best of both worlds.

2.1 Distributional semantics

The idea that the meaning of a word can be defined by or learned from
the contexts it appears in goes back at least to Wittgenstein (Wittgenstein
1953). While he wrote mainly of the physical context, it has later come
to mean a textual context. Distributional semantics is based on the
distributional hypothesis (DH), which is that words that are used in similar
contexts, tend to have similar meanings (Harris 1954; Firth 1957). Firth
was among the first to recognize this, and wrote the well-known quote:
‘You shall know a word by the company it keeps!’ (Firth 1957, p. 11).
However, Firth’s interest in the subject goes further back. In 1935 he
seems to consider the contextual view of semantics to be an established
principle, when he writes ‘Secondly, the complete meaning of a word is
always contextual, and no study of meaning apart from a complete context
can be taken seriously.’ (Firth 1935, p. 37).

Distributional semantics is a type of statistical semantics. The dis-
tributional hypothesis is the foundation of distributional semantic mod-

5

els (DSMs) used in computational linguistics. The two main approaches
are vector space models (VSMs) and graph distributional semantic mod-
els (GDSMs). They are both constructed with data-driven methods. Vec-
tor space models represent words as vectors in a high-dimensional space,
where the dimensions are some kind of semantic features. Graph-based
models represent words as nodes that are connected (related) by weighted
edges. Both kinds of model are commonly generated by processing large
amounts of text from a corpus. Normally, a larger and more varied corpus
will yield a more accurate and representative model.

2.1.1 Tokens, types, full-forms and lexemes

When processing natural language, the text is first split or tokenized into
separate pieces called tokens. A token is an atomic unit of text like a word,
number or punctuation, usually separated by whitespace. However, some
tokens, like punctuation, can follow other tokens immediately, without
intervening whitespace. Contractions are often split into their separate
components. For example, the text “I haven’t seen her.” contains the
following six tokens: [“I”, “have”, “n’t”, “seen”, “her”, “.”].

Tokens are instances of types, which are unique combinations of
characters. The text “He had never had a car” contains six tokens, but
only five types, because the type “had” is repeated. Tokens and types
can be recorded in two forms, either full-forms or lemmas. A full-
form is the inflected surface form as it occurs in the text. A lemma
or lexeme is the uninflected dictionary form of a word. Because of
ambiguity like homonymy, reducing a type to its corresponding lemma is
not straightforward. The units used in distributional models are often full-
forms, but can also be lexemes.

2.1.2 Corpus processing

A distributional semantic model reflects the corpus it is built on. When
making an all-round model, it is important to gather a large corpus covering
different genres and a wide range of topic matter. The corpus is generally
processed sequentially. Before the corpus text is processed statistically, it
undergoes linguistic preprocessing. The first step is tokenizing, splitting
the text into tokens corresponding to words and other text units like
numbers and punctuation. For most distributional semantic applications,
punctuation is skipped. The tokenizer might also skip stop words, which
are high-frequency function words like “an” or “it”. Because they occur in
nearly every context, stop words are of little use in discriminating contexts.

Next, each token might be normalized, for example by lowercaseing,
stemming or lemmatisation. A lemma is the uninflected dictionary form
of a word, while a word stem is a morphological unit where some or all
suffixes have been removed. For example, “friendships” is lemmatized to
“friendship”, while a stemmer may yield either “friend” or “friendship”
depending on the degree of stemming used. Lemmatisation requires a
dictionary and morphological analysis. It does not handle words that are

6

not in the dictionary. Stemming is cruder but more efficient, mainly just
chopping off the ends of words. It uses a set of rules detailing which
suffixes should be removed. Stemming does not always result in proper
words, for example “angrily” could yield “angri”. Nor does it handle
irregular inflection, like “bad”/“worst”. Identical tokens identify a term,
and normalizing maps several different tokens or words to the same term.
The amount of normalizing to use depends on the application.

An optional, third step is annotation of the tokens. This adds
information that is not explicitly part of the text, like word class tags or
grammatical information. This can for example help differentiate between
the verb-sense and noun-sense of ambiguous words like “cook”.

2.1.3 Contexts

The foundation of all distributional semantic models is a set of observations
from a corpus of text. These observations are made by processing the
tokens in the corpus sequentially. Each observation consists of a target
term, corresponding to the current token, and its context, consisting of one
or more context features. How these observations are stored and processed
are the main differences between different DSMs.

Various context types are used, for example the context can be
the sentence or paragraph the token occurs in. Bag of words (BoW)
contexts are unordered lists of N words surrounding the target word.
Context windows are lists of ±n neighboring words, possibly weighted by
distance. Grammatical contexts use grammatical relationships between
the words, for example: “object-of(give)”. This requires using a parser
for deeper linguistic analysis. The different context types can also be
used in combination, for instance a context window plus grammatical
dependencies.

2.1.4 Measuring similarity

Measuring word similarity is an important application of distributional se-
mantic models. The similarity function si m(ta , tb) calculates the similarity
of two terms ta and tb . The implementation of this function depends on the
structure of the model. For graph models, the similarity is often the num-
ber of shared features. However, it can also be calculated by various graph
metrics, such as the length of the shortest path between nodes. For vec-
tor space models the function measures the distance between points in the
space. Additionally, there are probability distribution models, which use
probability distributions for measuring similarity. All these models build
on the distributional hypothesis. They all have three layers of abstraction,
with the bottom two layers in common. These are “connected” by the dis-
tributional hypothesis:

Meaning
D H←→Contextual similarity←→


Graph distance
Geometric distance
Prob. distribution divergence

7

Eat

Drink

water

yogurt

bread

Figure 2.1: 2-D VSM with dimensions “Eat” and “Drink”

The top layer is the vectors, graph or probability distributions which can be
used in applications.

Different ranges are used for the similarity function. Vector space
models often use the range [0,1], where 0 means no similarity and 1
represents identical meaning. We can also use an unbounded similarity
measure, with the range [0,+∞). Although the three models use different
similarity functions, it is desirable that they give more or less the same
relative ranking of similarity between word pairs. The ideal is that a
similarity function should approximate the “true” semantic similarity of the
terms.

2.2 Vector models

As the name implies, vector space models represent the meaning of words
as vectors in a high-dimensional space. Each dimension represents a
context feature. Figure 2.1 is a small example of a two-dimensional vector
space model. It has the dimensions “eat” and “drink”, and shows that the
term “water” co-occurs frequently with “drink”, while “bread” co-occurs
with “eat”. While real VSMs have much larger numbers of vectors and
dimensions, the general principles are the same.

2.2.1 Vector representations

Vector space models use a matrix that records the words and their contexts.
Usually, the rows correspond to words (terms) in the vocabulary, and the
columns correspond to contexts that the words occur in. The matrices
are built by counting occurrences of words in each context. The main
difference that separates VSMs, is their definition of the context. The two
most common variations are term–document and word–word matrices,
while pair–pattern matrices are a newer development (Turney and Pantel
2010).

Term–document matrices use entire documents as the context. The

8

rows are term-vectors which define terms by the documents they occur
in. The columns are document-vectors which represent documents by the
term used in them. Term–document matrices are common in information
retrieval.

Word–word matrices register co-occurrences of words within shorter
contexts. The type and size of the context varies, and can be for instance
a window of ±100 words, or just a single sentence. Like in term–
document matrices, the rows are also word-vectors. They represent the
meanings of the words by the frequencies of other words they co-occur
with. These vectors are somewhat similar to handmade semantic feature
vectors. For example, a handmade vector for rooster could be (+bird,
+male, -flighted, -young,. . .). The corresponding VSM vector could be
(hen:231, egg:42, corn:78, coop:96,. . .). However, word vectors have much
higher dimensionality than feature vectors that can reasonably be made
by hand. A word–word matrix is of size V ×C , where V is the size of the
vocabulary and C is the number of context features. For smaller models,
the entire vocabulary can be used, so that V = C . But for models with a
large vocabulary, the number of context words can be limited, for example
to the 300 000 most frequent words. C is the number of dimensions in the
VSM.

2.2.2 Weighting

Some context words are more informative or discriminating than others.
For example, the word “sell” occur in the context of many things, like
“car”, “stock” and “book”. Words like “drive” and “wheel” provide more
information specific to “car”. Thus it makes sense to give them more
weight. A common method of weighing the terms in the matrix, is Positive
Pointwice Mutual Information (PPMI) (Church and Hanks 1989; Turney
and Pantel 2010). This is a measure of how often two words occur together,
compared to the statistical expectation. However, PMI is biased towards
infrequent words. One way to mitigate this, is to use Laplace smoothing to
add a small constant to all counts in the matrix.

An alternative to PPMI is the t-test statistic, which comes from
hypothesis testing. The test examines the mean and variance of samples,
and tells if we can reject the null hypothesis that occurrences of two words
are independent (C. D. Manning 1999).

For word–document models, tf-idf (term frequency ×inverse document
frequency) weighting is widely used. The term frequency is multiplied
by the idf, which is a measure of how common the term is in the corpus
as a whole. idft = log(N /nt), where N is the corpus size, and nt is the
number of documents containing the term t . This gives more weight
to terms that occur in few documents, because they are probably more
discriminative. Another weighting method used in information retrieval,
is length normalization. This is necessary when the search favors longer
documents.

9

2.2.3 Measuring similarity

Measuring word similarity is one of the main uses of word vectors. Each
word vector represents a point in N-dimensional space. The closer two
vectors point, the more similar are the contexts of the words they represent,
and hence the words themselves, by the distributional hypothesis. The
relative frequency of the words affect the length of the word vectors.
In order to be able to compare frequent words, with longer vectors, to
infrequent words, it is helpful to normalize all the vectors to unit length.
Unit vectors all point to the unit hypersphere.

There are several different ways of calculating vector similarity. The
cosine of the angle between vectors and the Euclidean distance between
their endpoints are widely used. The cosine of the angle increases from
−1 for vectors pointing in opposite directions, through 0 for perpendicular
vectors to 1 for vectors pointing in the same direction. For unit vectors, the
cosine is simply the dot product, ~u ·~v . For example, in a small test corpus,
the cosine similarity between the two words “pepper” and “salt” was 0.573,
and the similarity between “pepper” and “California” was 0.032. While
the absolute value of the numbers alone do not tell much, their relative
difference matches the expectation. The Euclidean distance is the length of
the vector difference |~u −~v |. With unit vectors, these two measures give the
same ranking of the vectors.

2.2.4 Word embeddings

Vectors and matrices can be sparse or dense. Sparse vectors contain a
high proportion of zeros. Dense word vectors are also known as word
embeddings, from the mathematical concept of embedding, where one
structure is mapped into another. While sparse vectors can have from
thousands to millions of dimensions, word embeddings usually have only
hundreds. The dimensions of sparse models have meaning, because
they correspond directly to semantic features. However, the individual
dimensions of word embeddings have no meaningful interpretation. The
meaning of the vector is distributed among the dimensions. There is
a many-to-many relationship between the dimensions and the semantic
features. A feature can influence multiple dimensions, and each dimension
represents many features. Word embeddings can either be produced by
reducing the dimensionality of sparse vectors, or made directly.

2.2.5 Dimensionality reduction

After processing the text corpus, the resulting raw word-vectors have high
dimensionality, often in the order of magnitude of 100 000. Because most
words do not co-occur, most of the values will be zero, so the vectors are
sparse. Thus the model will be more efficient if the number of dimensions
can be reduced.

Traditionally, dimensionality reduction has been done by mathematical
transformation of the co-occurrence matrix. Singular Value Decomposi-

10

wtSum

wt−1

wt−2

wt+1

wt+2

OutputProjectionInput

CBOW

wt

wt−1

wt−2

wt+1

wt+2

OutputProjectionInput

Skip-gram

Figure 2.2: The two different word2vec architectures

tion (SVD) is a method for factorizing matrices. It is used in Latent Se-
mantic Analysis (LSA) (Deerwester et al. 1990). LSA uses SVD to factorize
the co-occurrence matrix, and then keeps only the k most significant di-
mensions, measured by variance. This is called truncated SVD.

There are numerous other methods of dimensionality reduction, includ-
ing Random indexing (Kanerva, Kristofersson and Holst 2000), NMF (Lee
and Seung 1999) and t-SNE (van der Maaten and Hinton 2008). Brown
vectors are a special case, that do not use a co-occurrence matrix. Brown
clustering (Brown et al. 1992) uses class-based language models to make a
hierarchical clustering of the vocabulary. The paths in the resulting tree can
be used as binary vectors to represent the words at the leaf nodes, similar
to Huffman trees. One can also use a path to an internal node to represent
the subtree/cluster rooted there, which gives dimensionality reduction.

2.2.6 Prediction based models

A new approach is to make word embeddings directly, without an inter-
mediate sparse representation. Bengio et al. (2003) was among the first to
use an artificial neural network for creating word embeddings. The concept
was developed further in the word2vec software (Mikolov, Chen et al. 2013;
Mikolov, Sutskever et al. 2013). In word2vec the neural network learns
embeddings by iteratively improving an initially random vector, making it
similar to the embeddings of context words. Word2vec comes in two vari-
eties, the continuous bag-of-word (CBOW) and skip-gram models. Both
models have input, projection and output layers. They differ in how they
relate a word to its context, as fig. 2.2 shows.

11

Depending on the architecture, the word2vec neural network attempts
to predict one or more output words from one or more input words. The
word2vec objective is to maximize the conditional probability of an output
word given an input word. In a naïve implementation, this conditional
probability of output wo given input wi is calculated by the following
softmax function:

p(wo |wi) = exp(v ′
wo

Tvwi)∑
w∈W exp(v ′

w
Tvwi)

(2.1)

Here, vw and v ′
w are the input and output vectors or weights of the word

w . The denominator consists of a sum over all terms in the vocabulary.
This is very costly to compute. Therefore, word2vec is implemented with
hierarchical softmax, or other optimizations. Hierarchical softmax replaces
the output layer of the network with a tree structure. This reduces the
computational cost, as we discuss further below.

Word2vec uses gradient descent to optimize the weights, with the loss
function:

J (θ) =− log p(wo |wi ;θ) (2.2)

The full formula for the loss function depends on whether we are using the
CBOW or Skip-gram architecture (Rong 2014).

Word2vec employs some optimizations to increase the efficiency.
Hierarchical softmax uses a binary tree model of the vocabulary, where
the leaves are the words of the vocabulary. The probability of a word is
represented by the path from the root to its leaf node. This reduces the
complexity of processing a token from O(V) to O(log2 V), where V is the size
of the vocabulary (Rong 2014).

Negative sampling is a simpler alternative to hierarchical softmax. It
is a simplification of noise contrastive estimation (NCE) (Gutmann and
Hyvärinen −0013–2010). Rather than updating the vectors for the whole
vocabulary it uses a random subset of k samples, typically 5 to 20. The
samples are drawn using a noise distribution. Lower values of k give shorter
training times, and for large corpora fewer samples are needed, maybe only
2 to 5. Depending on the value of k, negative sampling can outperform
hierarchical softmax both in terms of training time and word embedding
quality (Mikolov, Sutskever et al. 2013; Baroni, Dinu and Kruszewski
2014). However, hierarchical softmax can give better representations of
infrequent words.

The Continuous Bag-of-Word model

The CBOW model uses the context as the input of the neural network,
and the target word as the output, as illustrated on the left-hand side
of fig. 2.2. The network is then trained to minimize the error in
predicting the target word. The resulting output weights are used as word
embeddings. Calculating the weights from the input to the projection
layer is straightforward. However, because of the large number of vectors
that need to be updated for each token, the calculation of the weights

12

from the projection layer to the output layer is computationally expensive.
Therefore, word2vec uses hierarchical softmax or negative sampling to
increase the performance.

The skip-gram model

The skip-gram model is the opposite of the CBOW model. The target word
is used as the input to the network, and the context as the output, as shown
on the right-hand side of fig. 2.2. The network attempts to predict the
entire context from the target word. The skip-gram model can also use
hierarchical softmax or negative sampling. Because the context, which
is large, is connected to the output side, which is more computationally
expensive, the total complexity is greater than for CBOW. Therefore, the
skip-gram model is slower than CBOW. However, this extra processing
makes the skip-gram model better for infrequent words.

Performance

Word2vec has several parameters that can be tuned, for example the
context window size and vector dimensionality, and most importantly the
choice of model. Whether the CBOW or skip-gram model works better is
task dependent, as is the choice of hyper-parameters. When implementing
a system using word2vec, various combinations of model and parameters
should be tested with real data in the full application.

As mentioned in section 2.2.2, frequent words can be less informative.
Both CBOW and skip-gram can use subsampling of frequent words, usually
above a given threshold. This ignores context words with a probability
proportional to their frequencies. Not only does subsampling improve the
quality of the word embeddings, it also increases performance significantly
(2x-10x) because fewer tokens are processed (Mikolov, Sutskever et al.
2013). Subsampling is similar to weighting in count-based models.
Subsampling also has more or less the same effect as stop word removal
during linguistic preprocessing. However, it differs in that it removes most
but not all tokens corresponding to the most frequent words. Therefore,
stop word removal might be more efficient.

Both the CBOW and skip-gram models use bag of words contexts. They
can also both skip tokens when using subsampling. Therefore, the names
are not really representative of the difference between the models.

2.2.7 Word embeddings in neural networks

Neural networks are a major application of word embeddings. Word
embeddings are also an important building block in neural networks for
natural language processing (NLP). Neural networks can now be used for
many NLP tasks (Goldberg 2016). Some common applications of neural
networks are:

Neural network language models use neural networks for language
modeling. N-gram language models are used to predict the next word

13

given a preceding sequence of words. Traditionally, this has been
done by building statistical tables that are similar to co-occurrence
matrices. With neural language models, a neural network is trained
to perform such predictions.

Machine translation can also be done using neural networks. The task
is to automatically translate text from one language into another.

Image captioning is a combination of image recognition and language
processing. Here, a neural network identifies the content of a given
image and produces an appropriate caption.

There are several different varieties of neural networks. The main
architectures commonly used for NLP tasks are feedforward, recurrent and
recursive neural networks (Goldberg 2016).

Feedforward neural networks process single input vectors, usually of
fixed size. Common layers include fully connected and convolutional
layers.

Recurrent neural networks (RNNs) can handle multiple inputs, like
time series or sentences. The input vectors are processed sequen-
tially. RNNs can for example be used for machine translation, where
both the input and output are sequences of words.

Recursive neural networks also work with multiple input vectors.
However, here the input is processed as a tree. This is suitable
for instance for producing parse trees of sentences. We can also
combine these network styles, for instance by using some feedforward
convolutional layers to preprocess each input to a recurrent neural
network.

Since neural networks are essentially mathematical functions, they
operate on numbers in various forms. Their input is commonly given
as vectors of floating-point numbers or one-hot vectors. One-hot vectors
correspond to integers, and can be used when there is a limited number of
choices, for example categories. They are binary vectors that contain zero
in all places but one. This nonzero or “hot” element is one, and its position
gives the corresponding integer.

Neural networks for language processing can be character-based or
word-based. Character-based networks use letters and other characters
as their basic unit. Since alphabets contain a limited number of letters,
character-based networks can use one-hot vectors.

Word-based networks use words and other tokens as their basic
unit. Because most application require dictionaries with at least tens of
thousands of words, it would be both inefficient and impractical to use one-
hot encoding of words. Instead, word-based neural networks tend to use
word embeddings, typically with 100 to 1000 dimensions.

There are also some systems, like fastText (Bojanowski et al. 2017),
which use an intermediate level of character N-grams. Character N-
grams resemble syllables, and are especially useful for languages with a

14

high degree of morphology. With character N-grams, embeddings for e.g.
“beginner” and “beginning” will have high similarity, because they share
several N-grams. This makes better representations for compound words
and inflected words.

2.2.8 Strengths, weaknesses and applications

Vector space models are well suited to calculating the similarity of arbitrary
words. But because the vectors are not grouped or structured in any way,
finding neighbors requires an exhaustive search. This makes applications
that use the semantic neighborhood of a word computationally expensive.

Word embeddings lack interpretable dimensions. This means that
while a VSM with word embeddings can tell that the words “trout” and
“salmon” are quite similar, only an abstract mathematical explanation
involving similarity of meaningless dimensions can be given. Sparse
vectors do have meaningful dimensions, and thus can give a meaningful
comparison of the words. However, they are less computationally efficient
and less used. Because of the huge feature space of sparse vectors, using
them in artificial neural networks is infeasible. Word embeddings on the
other hand, work well with neural networks due to their low dimensionality.

Visualization is a great tool for aiding human understanding of models.
Figure 2.1 shows a simple example of a graphic visualization of a vector
space model. Full-scale VSMs and word vectors are hard to visualize
because of their high dimensionality. Visualizing high dimensional vectors
requires projecting them into a 2 or 3-dimensional space, and this can not
give an accurate or faithful visualization of vectors with at least hundreds
of dimensions.

There are numerous other applications of vector space models and word
vectors. They can for example be used in word sense disambiguation (see
section 5.1.1) and spelling correction. In information retrieval VSMs are for
instance used for ranking and clustering of results. A new development is
the use of word vector arithmetic. VSMs can capture relational similarities
between pairs of words. For example, in the country-capital relationship,
Norway:Oslo is like Denmark:Copenhagen. A well-known example is the

calculation
−−−→
King−−−−→

Man+−−−−−−→
Woman ≈−−−−−→

Queen. This can be used to solve word
analogy problems like “Smith is to iron as carpenter is to X”, where task is
to find X, in this case “wood”. Word vectors are also somewhat composable.
Vectors can be added to form new vectors representing composite words,
phrases or even sentences.

2.3 Graph models

Graphs are data structures consisting of a set of nodes or vertices connected
by edges. The edges can be directed or undirected, and weighted or
unweighted. A node’s degree is the total number of edges into or out from
that node. A sparse graph has few edges, and thus a low average degree,

15

while a dense graph is the opposite. A graph is complete if each node has
an edge to every other node. A clique is a complete subgraph.

A dense graph can be represented efficiently by an adjacency matrix,
which for each node–node combination records the presence and possibly
weight of an edge between them. For sparse graphs, most of the entries
in an adjacency matrix will be zero. Therefore, it is more efficient to use
adjacency lists for each node. These lists only contain nonzero values.

2.3.1 Graph distributional semantic models

Like other distributional models, graph distributional semantic models
are made by processing large amounts of text. Graph models can use
the same types of contexts and context features as vector models. For
example, the features can be co-occurrences of terms in context windows of
different sizes, or grammatical dependencies from a parsing of the context,
as discussed in section 2.1.3. The JoBimText (Gliozzo et al. 2013) graph
model uses a generic “holing system” to extract generalized terms called
“Jos” and contexts called “Bims” from observations. The Jos may consist of
multiple words, and the Bims can contain several holes where Jos occur.

Rather than using a co-occurrence matrix, each target word in the
vocabulary is recorded as a node in the graph. For each node n, a list
Cn of context features with occurrence counts is kept. When the corpus
has been processed, these lists can be truncated or pruned to the top p
most informative entries for each node, to increase performance. The most
informative entries can be measured by frequency, possibly weighted by
some kind of mutual information measure, similarly to weighting in VSMs.
This pruning is somewhat like dimensionality reduction in VSMs, however
the “dimensions” are local to the node/term. In word embeddings, all
vectors share the same dimensions. So the total number of context features
in the graph can be much greater than p (Biemann 2016).

The usual measure of the similarity between two nodes, is the number of
shared context features, sim(a,b) = ∣∣{ f | f ∈Ca ∧ f ∈Cb}

∣∣. This measure does
not take into account the frequencies of the features. Only terms which
share at least one context feature can be compared. Because the context
feature lists are pruned, terms that share only infrequent, pruned features
will get a similarity of zero. This contrasts to word embeddings, where even
quite dissimilar words will usually get a nonzero similarity score.

The nodes in the graph are connected by weighted edges corresponding
to the similarity measure. Because most terms are unrelated, the graph
will be sparse. The density can be controlled by only adding edges with a
minimum weight, or by limiting the outdegree of the nodes.

Apart from basic similarity, graph models can also record other
relationships between nodes. Some relations, like similarity and synonymy,
are symmetric and yield undirected edges. Others are asymmetric, for
example hypernymy. They are represented by directed edges. JoBimText
can infer synonymy and hypernymy by using word sense induction (see
section 5.1.2), clustering and an algorithm that extracts IS-A relationships
(hypernyms) (Gliozzo et al. 2013, p. 8). Figure 2.3 illustrates two variants

16

fish

salmontrout

eat

drinkmilk

fish

salmontrout

eat

drinkmilk

Figure 2.3: Sample GDSMs modeling similarity (left) and similarity +
hypernymy (right)

of a simple graph distributional semantic model. The thickness of the lines
indicate the edge weights, and arrows indicate hypernyms.

While finding neighbors in a VSM usually requires an exhaustive search
of all the vectors, in a GDSM they are listed in the adjacency list. This makes
graph models more efficient than vector models for some applications that
entail searching for neighbors.

2.3.2 Semantic networks

Cognitive science is the interdisciplinary study of mind and thought.
It includes aspects of neuroscience, computer science, linguistics and
psychology, among others. Semantic networks are used in many fields,
including cognitive science and natural language processing. They can
represent meaning and semantic relationships on different levels, for
instance in natural language. They can also be used as a model of the
semantic memory structure in the brain.

Semantic networks are graphs that model various types of semantic
relationships. The nodes can consist of both terms and abstract concepts or
meanings. The edges represent relationships between the nodes. An edge
between a term and a concept identifies the concept as one meaning of the
term. There can also be edges representing other relations like synonymy,
antonymy and hypernymy (Steyvers and Tenenbaum 2005).

WordNet

WordNet (Miller 1995) is a semantic network that is much used in natural
language processing. It contains English content words, which are nouns,
verbs, adjectives and adverbs. The words are organized into synonym
sets, also called synsets, that are WordNet’s version of concepts. There
is a many-to-many relationship between words and synsets, so that each
word can have multiple meanings, and each meaning or synset can have
multiple members. Like traditional, printed dictionaries WordNet was

17

created manually by professional lexicographers. However, it was made
specifically for use by computers in natural language processing. Text
classification and word sense disambiguation are some of its many possible
applications.

WordNet uses a number of different relationships between synsets.
These include familiar ones like synonymy and antonymy, but also less
commonly used relations. Hypernymy/hyponymy relates nouns with
broader/narrower meaning, and troponymy is the same relation for verbs.
For example, “animal” is a hypernym of “cat”, and “sprint” is a troponym
of “run”. The hypernym/hyponym relation is also referred to as the is-a
relation. This is convenient, for instance “salmon” is-a “fish”. Meronymy
is a relationship between a part and the whole it belongs to, like between
“wheel” and “car” or between “tree” and “forest”. Other relations in
WordNet include entailment, similarity of words that are not synonyms and
derived words.

Network structure

Semantic networks are often found to have a number of distinctive
structural regularities (Steyvers and Tenenbaum 2005). The structure of
the networks are typically characterized by the following properties:

Sparseness The nodes of the network have a low average degree,
compared to the size of the network. Steyvers and Tenenbaum (2005)
report an average degree ranging from 1.6 to 22 for different semantic
networks with thousands of nodes.

Scale-free structure The degree k of the nodes in a scale-free network
(Barabási and Albert 1999) follows a power law distribution, P (k) ≈
k−γ. Values for γ are typically in the range between 2 and 4, and
for semantic networks γ ≈ 3 is common. This scale-free distribution
means that most nodes have only a few neighbors, while a few nodes
have many. These nodes with a high degree function as hubs in the
network. This is known as a heavy-tailed distribution, because the
tail where k → ∞ is heavier, or contains more elements, than the
exponential distribution.

Small-world structure It has long been speculated that all living people
can be connected by a short chain of acquaintances, “six degrees
of separation”. Small-world networks (Milgram 1967; Watts and
Strogatz 1998) exhibit high local clustering and low average path
length between nodes. This is a phenomenon found in many naturally
occurring networks, like social networks.

High clustering coefficient The local clustering coefficient of a node
measures how connected its neighbors are, how close they are to
being a clique. The number of edges in a clique of size k is

(k
2

) =
k(k − 1)/2. The clustering coefficient Ci of a node i is given by the
ratio Ci = Ti /

(ki
2

)= 2Ti /ki (ki −1) where Ti is the total number of edges

18

between the k neighbors. The clustering coefficients of the nodes are
averaged to find the coefficient of the graph.

DSMs and semantic networks

All graph distributional semantic models are semantic networks, since
they consist of terms connected by semantic similarity. But most current
GDSMs have a much simpler structure than for instance WordNet.
JoBimText (see section 2.3.1) clusters terms into sets of word senses, and
provides hypernyms. The rest of the relationships present in WordNet
seems not to be supported yet. On the other hand, not all semantic
networks are distributional. For instance, WordNet is made by hand, not
by distributional methods.

Steyvers and Tenenbaum (2005) explored whether semantic networks
based on vector space models have the same properties as other semantic
networks, listed above. As discussed in section 3.1, there are several ways
to convert a VSM to a graph model. Steyvers and Tenenbaum used a vector
space model generated by Latent Semantic Analysis (LSA) (Deerwester et
al. 1990), and used two different methods of converting it to a semantic
network, or “LSA network”. The two methods were kNN and a similarity
threshold ε, see section 3.1.1. They found that while the LSA networks had
a small-world structure, they did not display scale-free distribution. This
suggests that some information is lost, either when producing the VSM or
in the conversion process.

2.3.3 Visualization

Graph models represent network structures, and are therefore naturally
suited to visualization. Graphs are commonly visualized similarly to
fig. 2.3. Some graph models can contain different types of nodes. Semantic
networks can for example consist of terms and concepts. They can also
have many different kinds of relationships between the nodes. This can be
illustrated using different kinds of graphics for nodes and edges.

The size of the graph is determined by the size of the vocabulary. Full-
scale graph distributional semantic models will have at least thousands
of nodes, usually hundreds of thousands. Since that many nodes are
impossible to fit on a single page or screen, a zoom function is required.
Some kind of hierarchical clustering is useful for selecting the nodes to
display for different zoom levels. Hypernymy relations between words can
be used if the model contains them. In the case of a flat model, a separate
clustering step could be run before the visualization.

2.3.4 Strengths, weaknesses and applications

Graph distributional semantic models excel when it comes to exploring
semantic neighborhoods. They work well for finding the k nearest
neighbors of a word, and word sense induction. However, because the
feature lists are truncated, words that only share infrequent, pruned

19

features will get a similarity score of zero. Therefore, GDSMs are not a
good choice for calculating the similarity of arbitrary words.

Graph models can be interpreted as network structures, and are thus
naturally visualized as networks like in fig. 2.3. Graph distributional
semantic models are ideal for visualizing semantic relationships like
synonymy and hypernymy.

Like sparse vectors, graph models keep meaningful semantic features
in the model. This means that the word representations are directly inter-
pretable, and we can make meaningful comparisons of words. However,
“word arithmetic” like composition of compound words or phrases has not
yet been done with GDSMs. On the other hand, graph distributional se-
mantic models are closer than VSMs to being full semantic networks with
other relationships like hypernymy. Other applications of GDSMs include
word sense disambiguation and out of vocabulary word replacement.

2.4 Summary

There are two fundamentally different ways of building distributional
semantic models: vector space models and graph-based models. While
they use different representations and data structures, they also share
some properties. Both types of model can be used to represent the
semantics of terms, and to find the similarity of terms. They also employ
some of the same methods for preprocessing observations, like weighting.
While dimensionality reduction of vectors is mathematically different from
pruning of context feature lists in GDSMs, the performance objective is
similar. Both vector space models and graph distributional semantic
models should be considered when implementing distributional semantics
in an application.

The models have complimentary strengths and weaknesses. Vector
space models excel at calculating word similarity and “word arithmetic”,
while graph models are the best choice for navigating the semantic
neighborhood of words. Graph models are also the natural choice
for visualizing semantic models and semantic networks. Therefore, it
should be rewarding to combine the two model types. This can be
done in many ways. In the next chapter, we discuss different ways of
converting between vector space and graph models. We first discuss various
conversion methods and their hyperparameters. Then we implement
different conversion procedures.

20

Chapter 3

Converting between graph
and vector models

In this chapter we attempt to make procedures that can convert lexical
semantic vector space models to graph models, and vice versa. Our
hypothesis is that lexical semantic vector space models can be converted
to graph models, or vice versa, without losing significant information. We
also discuss whether we should produce a complete graph, where all nodes
are connected, or drop some edges. We hypothesize that our models will
perform better if we drop insignificant, low similarity edges.

The conversion was implemented in Python, a high level language that
is well-suited to computational science. The Python ecosystem provides
a wide range of open-source libraries, including many that are useful in
natural language processing. The project software is built on standard
open-source tools like Gensim (Řehůřek and Sojka 2010) and igraph
(Csardi and Nepusz 2006).

Igraph is an efficient graph library written in C, with the Python package
python-igraph on top. It was chosen for the graph representation because
of its ability to efficiently work with large graphs. Gensim is a Python
package for working with vector space models and topic modeling.

In the next section, we discuss methods for combining or converting
different lexical semantic representations. We also discuss some previous
work in this field. In section 3.2, we discuss our implementation of
conversion from vector space to graph models. Then, in section 3.3 we
discuss our implementation of conversion from graph to vector space
models. Finally, in section 3.4 we summarize this chapter.

3.1 Background and previous work

Vector space models and graph models can be combined in various ways.
We can convert entire models to a different representation, or build a model
that contains only an excerpt of the original model. Such an excerpt might
for instance be a graph view of a neighborhood in a vector space model, or
word embeddings that represent a neighborhood from a graph model.

21

A vector space model can be converted to a graph model by making
nodes for all terms and edges based on the similarity function of the
VSM. Unfortunately, conversion the other way, from a graph to a vector
space model, is not so straightforward. There is no direct correspondence
between the non-Euclidean geometry of graphs and Euclidean vector space
models (W. L. Hamilton, R. Ying and Leskovec 2017). However, there are
methods for making vectors or embeddings from graphs. In section 3.3
we discuss a direct method for making word embeddings based on the
adjacency matrix of a graph model. Below, we discuss converting between
vector and graph models.

3.1.1 VSM to graph conversion

Converting a vector space model to a basic graph model is quite straight-
forward. Ustalov et al. (2018) is a recent example that involves creating
a graph model from word embeddings. However, there are some variants
and hyperparameters to consider. In creating a vector space model, vari-
ous processing has been applied to the raw observations from the original
corpus, like weighting and dimensionality reduction. This means that the
original data is not available for use in the graph model, like they would
be if making a GDSM directly. The best way to convert a vector model to a
graph model depends on the particulars of the VSM, like its size and dimen-
sionality. The basic steps are to make nodes corresponding to each vector,
and edges that connect similar nodes.

Nodes

If the vector model is large, it might be necessary to reduce the number of
nodes that are made. This can be done by merging synonymous terms,
with a similarity close to one, into a single node. This node can then
store a list of the synonyms it represents, to avoid loss of information.
Another method is to ignore infrequent terms. This requires sorting the
terms by frequency, and discarding terms below an appropriate threshold.
If the vectors in the VSM have been normalized, and do not otherwise store
frequency information, this is not possible.

Vectors can also be split into multiple nodes, for example when vectors
represent ambiguous terms. This can amount to word sense induction
(WSI), and requires some sort of semantic or mathematical analysis.

Edges

When the set of nodes is complete, edges must be added. In the rare
case that the VSM happens to use a sparse representation, each vector
can be used as the feature list for the corresponding graph node. In this
case, regular GDSM methods can be used to complete the graph model,
as described in section 2.3.1. Word embeddings might also be used as
feature lists. However, because of their low dimensionality and distributed
nature, they will not work well with the normal similarity measure for

22

graph models. This measure counts the number of features that two
nodes share, but word embeddings will have nonzero values for most
dimensions. Therefore, a similarity measure that takes into account the
feature frequencies should be used, like with vector space models. Another
option is to store the similarity values given by the vector model, usually a
cosine similarity. In that case, it might not be necessary to store a feature
list at all.

For performance reasons, it might be useful to limit the number of
edges. The straightforward way of doing this, is by setting a minimum
similarity value ε. Edges with a similarity weight lower than this threshold,
are discarded. Another option is to limit the degree or number of edges
of the nodes. This can be done by setting a limit k on the number of
edges in each edge list. When constructing the graph, edge lists with
more than k elements are truncated, discarding the edges with the lowest
similarity scores. This effectively makes a local similarity threshold per
node. Alternatively, a kNN algorithm can be used to limit the edges to the
k nearest neighbors. Depending on the definition of a neighbor, this might
give different results from using the k most similar nodes. For example, if
it means immediate neighbor, two nodes are not considered neighbors if
there is another node between them, as discussed next, in section 3.1.2.

3.1.2 Local graph views

Relative neighborhood graphs (RNGs) (Gyllensten and Sahlgren 2015)
can be built on a VSM to explore the local properties of semantic
neighborhoods. The RNG is a graph representation of the neighborhood
around a given vector or point in the vector space V . Only a small part of
the VSM is represented. A relative neighborhood graph is a kind of empty
region graph, where two points a and b are considered to be neighbors if
the region between them is empty. This region is defined as the intersection
of two hyperspheres centered in a and b, and with radiuses equal to the
distance between the two points. The relative neighborhood graph of (the
endpoint of) a vector v consists of nodes corresponding to the given vector
nv , and all its neighbors ni , with undirected edges between nv and each ni .
Finding all the neighbors of a point requires searching through the entire
VSM. For large models, this is computationally expensive. Therefore, a
kNN-algorithm or precomputed table can be used to limit the search space.
This also limits the number of neighbors found, but it should be possible
to find a suitable value, for example k = 1000, which finds most relevant
neighbors.

The neighbors of a term will often represent different senses of the
term. Therefore, relative neighborhood graphs can be used for word sense
induction. In order to find all the senses of a term, we must compute an
RNG considering every other term in the model’s vocabulary V , in other
words with k = |V |. Gyllensten and Sahlgren (2015) calls this “global”
RNG of a vector its Semantic horizon. This graph contains all immediate
neighbors of the term.

23

3.1.3 Graph to VSM conversion

There are many lexical resources, like WordNet, that have a graph
structure. Because VSMs are better suited to some tasks, it can be useful
to convert a graph model to a vector space model. If the context lists are
kept in the finished graph, these can be used to construct a co-occurrence
matrix. This can then be used in a vector space model of the graph. If the
lists have been pruned, this matrix will contain less information than if it
had been constructed directly from the corpus. However, not many graph
models have context lists. Few lexical resources come with such detailed
information.

For general graph models, it is possible to make synthetic contexts by
performing random walks on the graph (Piña and Johansson 2016). The
nodes of a graph model are connected to nodes representing related terms.
For each node in the graph G, Nw alk random walks are performed, yielding
Nw alk ×|G| random contexts, or pseudo-sentences. Each walk starts in the
given node, follows random edges from node to node, and terminates with
probability pstop in each node. This results in contexts of variable length.
Longer contexts mean that the walk will wander further away from the
target term, and the context terms will be less closely related. Therefore,
pstop should not be too small. When a corpus of synthetic contexts have
been constructed, any method can be used to make a VSM from it.

The synthetic corpus that is generated in this way, may lack some of the
detail and variation that is present in natural language. However, because
Nw alk contexts are generated for each node, even infrequent terms will be
well represented in the corpus.

3.1.4 Generalized node embeddings

In section 3.1.3 we discussed an NLP specific approach that built synthetic
contexts by performing random walks on the graph (Piña and Johansson
2016). These contexts were then used to train a skip-gram model. There are
also more general methods for creating node embeddings based on graphs.

Graph structures are usually represented by adjacency lists or an
adjacency matrix. Depending on the size and density of the graph, these
data structures can be large. The size of an adjacency matrix is quadratic in
the number of nodes. In many machine learning applications, especially
neural networks, it is preferable to work with low dimensional node
embeddings.

W. L. Hamilton, R. Ying and Leskovec (2017) review the field of
representation learning on graphs. There are many algorithms for making
embeddings based on graphs. These can be divided into methods that
make representations of nodes, and methods that make representations
of entire graphs or subgraphs. We only discuss methods for making
representations of nodes. These methods create one embedding per node,
and aim to represent nodes that are close in the graph by embeddings that
are close in the corresponding vector space, in other words neighboring
nodes have similar embeddings (W. L. Hamilton, R. Ying and Leskovec

24

2017). Algorithms for learning node embeddings are often unsupervised,
but supervised learning can also be used, for instance for classification
tasks.

W. L. Hamilton, R. Ying and Leskovec (2017) further divide methods
for making node embeddings into shallow and deep approaches. Shallow
methods learn embeddings with no parameter sharing between nodes.
Shallow methods are commonly matrix factorization based or employ
random works on the graph. GraRep (Cao, Lu and Xu 2015) and HOPE
(Ou et al. 2016) are examples of matrix factorization based node embedding
algorithms, while DeepWalk (Perozzi, Al-Rfou and Skiena 2014) and
node2vec (Grover and Leskovec 2016) use random walks.

There are two kinds of deep methods, autoencoders and neighborhood
aggregation. Autoencoders are neural networks used to compress its
input to a dimensionality reduced representation, z. They are made
up of two parts, an encoder and a decoder. The objective is to make
representations that can be decoded so that the result is as close to the input
as possible, decode(encode(x)) = decode(z) ≈ x. The autoencoder is trained
to minimize the loss on a data set, in this case the graph to be encoded. The
neural network learns weights that can be used to encode nodes, including
new nodes that are added to the network later.

Deep Neural Graph Representations (DNGR) (Cao, Lu and Xu 2016)
and Structural Deep Network Embeddings (SDNE) (D. Wang, Cui and Zhu
2016) are examples of deep methods based on autoencoders. SDNE is
similar to our approach in that it uses adjacency vectors as input to the
encoder. However, our approach differs in that it does not employ an
autoencoder.

Neighborhood aggregation include information from neighboring
nodes in the embeddings. This is done by iteratively updating the embed-
ding for each node with the embeddings of its neighbors. Thus, each it-
eration increases the radius of the neighborhood that is included by one.
GraphSAGE (W. Hamilton, Z. Ying and Leskovec 2017) is a neighborhood
aggregation algorithm.

3.2 Converting from a vector space model to a
graph model

As discussed in section 3.1.1, the basic approach to making a graph model
from a vector space model is to make nodes for all the terms, and weighted
edges connecting each of the nodes. However, a naïve conversion function
will produce a complete graph. The number of edges in a complete graph
with n nodes is

(n
2

) = n(n − 1)/2. This means the space requirement of
the graph is O(n2), which is impractical for large models. Additionally,
a complete graph does not reflect the structure of semantic networks
discussed in section 2.3.2. Semantic networks tend to be sparse, with a
small-world, scale-free structure. Therefore, it is desirable to have some
way to restrict the number of edges.

We investigate two different approaches here: a threshold-based

25

line

railway

connect

rail

stretch

terminus

gauge

freight

tramway

electrify

Figure 3.1: Neighborhood of “line” using threshold 0.4 in a graph with
10 000 terms. This term has quite few neighbors above this threshold.
Colors indicate clusters, except yellow, which is the center.

method and a nearest neighbors method. For both methods, the starting
point is a set of word embeddings. These embeddings are loaded from files
stored in word2vec (Mikolov, Sutskever et al. 2013) binary format.

A graph node nt is created for each term t in the VSM M . Thus, the set
of nodes or vertices is:

V = {nt | t ∈ M } (3.1)

Each node is labeled with the term it represents, to enable lookup of terms
in the graph. We use weighted edges. The edge weights w is the similarity
of the terms the two nodes represent. Thus, an edge can be written as a
triple (n1,n2, w), where ni are node identifiers.

The conversion functions have different parameters. The number of
terms to include is a common parameter for both methods. A lexical
semantic model can contain many infrequent terms. We might not
necessarily want to convert the full model, either to save time or because
we do not need infrequent terms.

3.2.1 Threshold method

The threshold method uses a global similarity threshold ε. Only edges with
a similarity (weight) greater than ε are added to the graph. This is an
indirect limit on the number of edges, and the resulting number of edges for
a given εmight vary depending on the nature of the model that is converted.
We must still compute the pairwise similarity for all terms, so the amount
of computation required is the same as for the naïve method. However,
we end up with fewer edges, which saves space. Given a model M , and
similarity function si m, the edge-set is given by:

Eε = {(na ,nb , si m(a,b)) | a,b ∈ M ∧ si m(a,b) ≥ ε} (3.2)

Figure 3.1 shows the neighborhood of the term “line” from a graph
constructed using the threshold method.

26

line

route

railway

stop

connect

branch

rail

railroad

tunnel
stretch

junction

curve

terminus

loop

gauge

freight

depot

metro
subway

high-speed

siding

tramway
electrify

mainline viaduct

trolley

Figure 3.2: Neighborhood of “line” using k = 25 in a graph with 10 000
terms. Because the degree is fixed at 25, the node gets more neighbors than
in fig. 3.1. Colors indicate clusters.

3.2.2 Nearest neighbors method

The nearest neighbors (kNN) method adds edges for each node to the k
most similar terms, or nearest neighbors. This is somewhat similar to
kNN classification, and requires searching through the vector space for
the nearest neighbors of each term. Thus, the amount of processing is the
same as for constructing a complete graph, but the space required for the
resulting graph is significantly smaller. For a constant k and model M , the
number of edges is k|M |. Thus, the space complexity is O(|M |).

To find the nearest neighbors, we use the method most_similar(term,
topn = N) provided by gensim’s KeyedVectors class. Given a term, this
method finds the top N most similar terms. The algorithm for the nearest
neighbors method is similar to the one for the threshold method. The only
difference is the step where the edges are added to the graph. With this
method, the set of edges is defined as:

Ek = {(na ,nb , si m(a,b)) | a,b ∈ M ∧b ∈ most_si mi l ar (a,k)} (3.3)

Figure 3.2 shows the neighborhood of the term “line” from a graph
constructed using the kNN method. Because the degree is fixed, the node
gets more neighbors than in fig. 3.1.

3.2.3 Variable-kmethod

The Variable-k method is a variation of the kNN method. As discussed
in section 2.3.2 semantic networks tend to have a scale-free structure.
However, the kNN method assigns each node a fixed number of neighbors,
which does not result in a scale-free network. The vector space model we
are converting probably has local structure that could be used to adjust the
number of neighbors for each node. However, this would require much
processing to analyze the local neighborhood of each term. We use a

27

simpler approach, based on the assumption that frequent terms tend to
have more meanings and synonyms. Thus we can reduce k for infrequent
terms. This only requires a minor modification of the kNN method, because
we are already processing the terms in order of frequency. This is made
possible by the fact that the word embeddings we use are ordered by
frequency, as discussed in section 4.2.

We start out with kmax as the initial value for k. This must then be
reduced by an appropriate amount for each new term. We do this by
making k inversely proportional to the logarithm of the frequency rank of
the term. We use the logarithm to scale down the rank because the number
of terms is much larger than kmax . If we denote the rank of a term t by rt

and given a model M the edge-set is:

Evar = {(na ,nb , si m(a,b)) | a,b ∈ M ∧b ∈ most_si m(a,kmax /l og10(10+ ra)}

The Variable-k method can also reduce the amount of memory required for
large models. In a space constrained application, it is probably reasonable
to store less information about less frequent terms.

3.2.4 Implementation

The conversion from vector space model to graph model is implemented by
the function VSM2graph(model, mode, threshold=-1, k=None).
The parameter mode indicates the conversion method to use. threshold
is used with the threshold method, and k is used with the kNN and
Variable-k methods.

The function creates an igraph Graph object, and populates it with
the terms from the VSM. Then, the edges are added according to the
algorithm given above. The igraph method for adding multiple edges,
Graph.add_edges, takes a list or generator of unweighted edges. There-
fore, we first add all the edges, and then set all the weights.

3.3 Converting from a graph model to a vector
space model

A graph G with N nodes can be represented by an N ×N adjacency matrix.
We only consider weighted graphs, where this matrix contains the edge
weights. The matrix element ai , j gives the similarity (edge weight) between
nodes i and j. A value of zero indicates that there is no edge connecting
the nodes. This representation has much in common with a word–word
co-occurrence matrix. The entries in a co-occurrence matrix are the co-
occurrence frequencies of the corresponding words. The similarity scores
recorded in our graph’s adjacency matrix are related to these frequencies.
Thus, the row for a term a in an adjacency matrix should contain much
of the same information, as the row for a in a co-occurrence matrix.
Therefore, it might be possible to use the adjacency matrix directly as a
vector space model. This is what we attempt here.

28

3.3.1 Sparse matrices

As discussed, semantic networks tend to be sparse. The graph models
produced by the VSM to graph conversion described in section 3.2 are also
sparse to a varying degree. This means that a regular matrix representation
will store many zeros. Therefore, we can save space by using a matrix
representation optimized for storing only the non-zero values of sparse
matrices. Reducing memory use should lead to increased performance
because of better data locality. With a more economic data representation,
less time is spent on transferring data between main memory and cache.

3.3.2 Dimensionality reduction

Regardless of the matrix representation used, the resulting word vectors
will be high dimensional. In full-scale lexical semantic models the number
of terms, N , will be upwards of 10 000. Since the adjacency matrix is
square, this yields a VSM with N dimensions. Because this is impractical,
we want to apply dimensionality reduction to produce word embeddings
with only some hundreds of dimensions. Dimensionality reduction reduces
the space needed to store the word embeddings, and this should help
performance.

3.3.3 Implementation

NumPy N-dimensional arrays (ndarrays) are widely used for represent-
ing matrices in Python. They provide an efficient, vectorized matrix im-
plementation written in C (Walt, Colbert and Varoquaux 2011). SciPy has
several implementations of sparse matrices for different purposes. We use
scipy.sparse.lil_matrix, which is suited to matrices with changing
sparseness, where entries are changed from zero to some other value. This
is required because we add edges iteratively to the matrix.

The conversion from graph to VSM is implemented by the function
graph2VSM(graph). This function initializes a square NumPy or SciPy
matrix to the size of the graph’s vocabulary. Then, it iterates over the edges
in the graph, adding each one to the new matrix. In addition, every entry
on the matrix diagonal represents a term’s similarity to itself, and is set to
one.

Scikit-learn is a Python toolkit for machine learning (Pedregosa et
al. 2011). For dimensionality reduction, we apply TruncatedSVD from
sklearn.decomposition. Scikit offers two different SVD algorithms,
arpack, and a fast, randomized algorithm (Halko, Martinsson and Tropp
2011). While the randomized algorithm is significantly faster, it yields
nondeterministic results. This leads to evaluation scores which vary
between different runs. To get reproducible results we therefore use the
deterministic arpack algorithm. In a production environment however, it
would probably be preferable to use the faster randomized algorithm.

TruncatedSVD returns a NumPy ndarray containing the word embed-
dings with the specified number of features or dimensions. We use 300

29

dimensions, because that is the dimensionality of the pre-trained word em-
bedding models we use for evaluation in chapter 4.

The dimensionality reduced matrix is used as the basis for a gensim
KeyedVectors instance. This class provides various methods for working
with word embeddings. However, it does not have a constructor for
making an object based on an existing matrix. Therefore, making the
object requires tinkering with KeyedVectors internals. This makes
the conversion function dependent on undocumented internal details of
KeyedVectors, but such things seem to be common in the Python world.

3.4 Summary

We have created procedures for converting lexical semantic representa-
tions. We have implemented three different methods for converting vector
space models to graph models: the threshold method, the nearest neigh-
bors method and the variable-k nearest neighbor method. We have also
implemented a simple procedure for converting graph models to word em-
bedding models. This conversion from graph to word embedding model
only works with weighted graphs. All the conversion procedures were im-
plemented in Python, using igraph for efficient graph operations.

Next, we investigate how our conversion procedures perform. In the
next chapter, we evaluate the intrinsic performance of our conversion
procedures. We evaluate the conversion quality using a word similarity
metric, as well as the time and space use. In the following chapters, we
evaluate our conversion in two different applications.

30

Chapter 4

Conversion evaluation by
word similarity

Evaluation is an important aspect of language technology. In order to
measure and compare the performance of different tools and methods,
they must be evaluated somehow. Evaluation methods can be intrinsic or
extrinsic.

Intrinsic evaluation means measuring the performance of a function or
the quality of data in isolation. Usually, a function is tested on sample
input, and the resulting output is compared to a gold standard. The gold
standard is the expected, “correct” result, and is usually produced manually
by a human. For example, when evaluating a part-of-speech-tagger, the
sample input is a number of sentences to be tagged. The gold standard
is the correct POS-tags. There exists a number of standard evaluation
benchmarks and data sets for different language processing problems.

Extrinsic evaluation is measuring the performance of a function or tool
within a larger system or context. This often means testing in a setting
close to real-world usage. The evaluation can be based on user feedback,
or automatic recording of various performance measures. In the case of a
POS-tagger, we can do extrinsic evaluation by employing the tagger as part
of a larger system. This might for instance be a named entity recognizer
or a parser. We evaluate the system’s performance at its task, for example
named entity recognition. This requires test data, possibly annotated gold
data, and an evaluation metric for this task. We keep the rest of the system
fixed and change only the POS-tagger or its parameters, to isolate the effect
of the changes we want to evaluate.

Extrinsic evaluation can be advantageous, because it measures the
end result in a real-world application. However, it usually requires
more resources and a more complicated setup than intrinsic evaluation.
Therefore, intrinsic evaluation is often used in practice.

In this chapter, we evaluate the results of the conversion procedures
described in chapter 3. We first use SimLex-999, which is a set of gold
standard data for evaluating similarity scores. This is as close as we can
get to intrinsic evaluation of distributional semantic models, given the
absence of gold standard distributional semantic models. We may consider

31

word similarity evaluation as intrinsic because it is based directly on vector
arithmetic. We also evaluate our results with a suite of other gold standard
word similarity data from wordvectors.org.

In the next chapter, we evaluate the graph models used in an application
context with SemEval-2013 task 11. That is an extrinsic evaluation task
consisting of using word sense disambiguation and word sense induction
to cluster search results in an information retrieval setting.

In the next section, we discuss evaluation of distributional semantic
models. In section 4.2, we discuss our method for intrinsic evaluation.
In section 4.3, we discuss our evaluation using SimLex-999. Section 4.4
contains our evaluation using more gold data sets from the wordvectors.org
evaluation suite. In section 4.5 we summarize our intrinsic evaluation
results.

4.1 Distributional semantic model evaluation

There currently exists no gold standard distributional semantic models or
word embeddings. In fact, because many methods for generating word
embeddings are nondeterministic, the same tool will generate entirely
different word embeddings each time it is run on the same input. Therefore,
it is probably not feasible to create gold standard word embeddings. Thus,
we must evaluate the quality of distributional semantic models by how well
they work in solving semantic problems.

As discussed in section 2.2.8 and section 2.3.4, there are several
standard problems that can be solved using distributional semantic models.
Common tasks are measuring word similarity and word analogy problems.
These problems have been used as the basis for a number of benchmarks
and gold standard data sets for evaluating distributional semantic models.

SimLex-999 (Hill, Reichart and Korhonen 2015) is a state-of-the-art
gold standard data set for evaluating similarity scores. It consists of 999
word pairs with similarity scores averaged from ratings given by groups
of human annotators. The word pairs consists of 666 noun pairs, 222
verb pairs and 111 adjective pairs. SimLex-999 emphasizes the difference
between similarity and relatedness. For instance, the nouns “tea” and “cup”
are highly related, since tea is served in cups. However, the two things are
quite dissimilar, and have few properties in common except from being
physical objects. It is therefore desirable that a distributional semantic
model should be able to differentiate between similarity and relatedness.

Evaluation of similarity scores is one step away from the actual
distributional semantic model, but this is currently as close as we get
to intrinsic evaluation of VSMs. We might call this intrinsic evaluation,
because similarity is a basic function of the semantic model, and is
ordinarily only a building block of larger NLP systems.

32

Algorithm NLPL id Corpus Vocabulary Window

Word2vec skip-gram 11 Gigaword 261 794 5
GloVe 13 Gigaword 262 269 5
fastText skip-gram 15 Gigaword 262 269 5

Table 4.1: Models used for evaluation

4.2 Evaluating conversion results

The graph model that is produced by the VSM to graph conversion,
contains the exact same similarity scores as the original vector space
model yields. Evaluating the graph model therefore amounts to evaluating
the performance of the original VSM. We therefore only evaluate the
performance of the word embeddings produced by the graph to VSM
conversion. The evaluation is done by applying both conversion functions
to a model. The original VSM is first converted to a graph model, and
then back to a VSM. This way, the performance of the resulting VSM can
be compared to the original word embeddings.

The NLPL word embeddings repository (Fares et al. 2017) offers pre-
computed vector space models built using a wide range of tools, algorithms
and corpora.1 We have used some of these models when evaluating the
conversion results. To compare the performance of the conversion of mod-
els built using different tools, we have run the evaluation on models built
with GloVe (Pennington, Socher and C. Manning 2014), word2vec (Miko-
lov, Sutskever et al. 2013) skip-gram and fastText (Bojanowski et al. 2017)
skip-gram. The word2vec models are built using Gensim’s word2vec im-
plementation.

To minimize the impact of other variables, we have used models trained
using similar parameters on the same corpus, the Gigaword corpus (Parker
et al. 2011). All the models use untagged lemmas. The models used for
evaluation are listed in table 4.1.

These models are large, with more than 200 000 terms each. Therefore,
we might want to convert and evaluate only a subset of each model. The
most frequent terms are probably the most relevant ones. Therefore, it
would be reasonable to partition a model by frequency. Conveniently, the
terms in the models are sorted by decreasing frequency. Thus, if we load
the N first embeddings, we get the most frequent ones.

4.3 SimLex-999 evaluation

The VSM to graph conversion comes in three variants: the threshold-based
method, the kNN method, and the variable-k method. We have evaluated
all, with a wide range of parameters. The parameters to be tested are the
number of terms N to include in the conversion and the method-specific
edge limiting parameter ε, k, or kmax . Both the conversion method and

1http://vectors.nlpl.eu/repository/

33

http://vectors.nlpl.eu/repository/

the parameters influence the running time of the conversion as well as the
performance of the resulting model.

ε is the similarity threshold, and possible values are in the range [−1,1].
Most word pairs will have positive similarity, but we have included ε=−1 as
a data point to catch any outliers with negative similarity, to get a complete
model. Therefore, we have used ε ∈ [−1,0.9].

k is the number of neighbors each node in the graph will have. We have
evaluated with k ∈ [15,1000]. This should cover a reasonable range of values.
Since semantic networks tend to be sparse, values of k much greater than
1000 are probably not helpful, and would not yield a graph model with a
semantic network-like structure.

N is the model size. We have run the evaluation for increasing values of
N , by extracting the N first embeddings from the evaluation model.

We have selected a single model, the word2vec skip-gram model, for
detailed evaluation using this wide range of different parameters. That way
we get a sense of the effect of the parameters. In section 4.4 we evaluate all
models with a larger suite of gold standard data, but a narrower range of
parameters.

4.3.1 Python implementation

While the absolute magnitudes of similarity scores can vary, we want
the rank ordering of the word pair similarities to be consistent with the
gold standard. Thus, Spearman’s rank order correlation ρ is used to
measure the agreement between the model’s scores and the gold standard
data from SimLex-999. We use evaluate_word_pairs from gensim’s
KeyedVectors class. It calculates the Spearman correlation between a
model’s similarity scores and a set of gold standard similarity ratings.

We calculate both the absolute score after conversion ρc and the score
relative to the original score ρc /ρo . The relative score indicates how close to
the original vector space model’s performance we get after conversion. It is
also possible to evaluate the performance of the vectors in the intermediate,
square matrix. However, this score does not vary significantly from the
results after dimensionality reduction. Since dimensionality reduction is
not the focus here, we have not evaluated the intermediate matrix.

To compare the performance of the different conversion methods, we
have also measured their execution time and memory use. We have
used Python’s timeit module for timing the different operations. For
measuring memory use, we have used Process from the psutil2 package.
We have measured the total memory use of the Python process.

4.3.2 Threshold method

We first evaluate the threshold method for a small model, N = 10 000, over
the full range of possible thresholds. This model contains only the 10 000
most frequent word embeddings from our skip-gram model. Table 4.2 lists

2https://github.com/giampaolo/psutil

34

https://github.com/giampaolo/psutil

Term Meaning

k Number of nearest neighbors to include
kmax Starting, maximum value of k for Variable-k method
ε Similarity threshold
ρ Spearman correlation score
ρo ρ for the original model
ρc ρ for the final, converted VSM
ρc /ρo Proportion of converted to original correlation
e Number of edges in the resulting graph
n Number of nodes in the resulting graph
d Density of the graph, e/

(n
2

)
tv2g Time used for the conversion from VSM to graph model, in

seconds
tg 2v Time used by the conversion from graph to VSM
tr Time used by the dimensionality reduction
m Total memory in use by the process, in megabytes
OOV Percentage of gold standard word pairs not present in the model

(out-of-vocabulary)

Table 4.2: Notation used in the evaluation tables

the notation we use in our evaluation. The results are listed in table 4.3. As
expected, the number of edges is inversely proportional to the threshold.
We see that the Spearman correlation increases with the number of edges,
peaking at a threshold of 0.30, with a Spearman correlation ρc of 0.331
and relative score ρc /ρo of 0.831. From that point, adding more edges
(by lowering the threshold) degrades the performance. Table 4.3 shows
that only a small fraction of the potential edges is included for the optimal
threshold. For the threshold 0.30, the graph density is d ≈ 0.019. This
means that only 1.9% of the possible edges are included in the graph.
Thus, we can save a significant amount of space compared to producing
a complete graph. The table also shows that thresholds above 0.5 result in
very low evaluation scores. Therefore, we limit further evaluation to ε< 0.6.

Memory and time use increase sharply as the threshold approaches -1,
where the graph becomes complete. This is because the number of edges in
a complete graph is quadratic in N . Thus we can expect 2N terms to require
4m memory. However, since the quality of the resulting model peaks
around ε ≈ 0.3, it is probably not desirable to compute a complete graph.
For ε ≈ 0.3 the memory requirement is smaller. To avoid unnecessary
computation, we limit further evaluation to 0.2 < ε < 0.6, and instead use
smaller steps to get a more detailed picture. We next evaluate the method
for N ∈ {15 000, 20 000, 40 000, 80 000, 261 794}.

Evaluation scores

Tables 4.3 to 4.8 show that the max value for relative performance ρc /ρo

increases with N , up to 15 000 terms. Then it more or less flattens out.

35

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.90 0.020 0.051 1.0 ·103 2.0 ·10−5 1227 0 3 1810
0.80 −0.012 −0.031 4.0 ·103 8.0 ·10−5 1226 0 6 1935
0.70 0.010 0.025 9.6 ·103 1.9 ·10−4 1224 0 4 1959
0.60 0.121 0.303 2.3 ·104 4.5 ·10−4 1226 0 4 1912
0.50 0.259 0.651 6.1 ·104 1.2 ·10−3 1228 1 4 1967

0.40 0.322 0.811 2.1 ·105 4.3 ·10−3 1232 3 5 2011
0.30 0.331 0.831 9.6 ·105 1.9 ·10−2 1252 14 9 2198
0.20 0.299 0.751 5.2 ·106 1.0 ·10−1 1372 82 34 3025
0.10 0.275 0.691 2.7 ·107 5.3 ·10−1 2009 23 32 4516

−1.00 0.287 0.721 5.0 ·107 1.0 2789 42 36 5886

Table 4.3: Threshold mode on 10 000 terms, 21.5% OOV, ρo = 0.398

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.55 0.218 0.541 8.0 ·104 7.1 ·10−4 2751 1 7 1861
0.50 0.301 0.749 1.4 ·105 1.2 ·10−3 2748 2 7 1881
0.45 0.336 0.835 2.4 ·105 2.2 ·10−3 2718 4 8 1904
0.42 0.344 0.855 3.4 ·105 3.0 ·10−3 2774 5 9 1926

0.40 0.344 0.855 4.8 ·105 4.2 ·10−3 2729 7 9 1979
0.39 0.338 0.841 5.5 ·105 4.9 ·10−3 2744 8 10 2004
0.38 0.351 0.871 6.4 ·105 5.7 ·10−3 2737 10 11 2034
0.36 0.349 0.866 8.6 ·105 7.6 ·10−3 2775 13 13 2095

0.35 0.344 0.855 1.0 ·106 8.9 ·10−3 2774 15 14 2139
0.30 0.330 0.819 2.2 ·106 1.9 ·10−2 2804 33 21 2336
0.25 0.312 0.774 4.9 ·106 4.4 ·10−2 2870 77 40 2956

Table 4.4: Threshold mode on 15 000 terms, 9.4% OOV, ρo = 0.403

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.55 0.241 0.581 1.5 ·105 7.4 ·10−4 4887 2 10 1894
0.50 0.309 0.745 2.5 ·105 1.2 ·10−3 4879 4 10 1923
0.45 0.342 0.825 4.4 ·105 2.2 ·10−3 4876 7 11 1967
0.42 0.353 0.851 6.1 ·105 3.0 ·10−3 4850 9 13 2031

0.40 0.348 0.839 8.6 ·105 4.3 ·10−3 4900 13 16 2112
0.39 0.348 0.840 9.9 ·105 5.0 ·10−3 4918 15 16 2156
0.38 0.354 0.855 1.1 ·106 5.7 ·10−3 4907 17 18 2204
0.36 0.357 0.862 1.5 ·106 7.7 ·10−3 4911 24 21 2308

0.35 0.354 0.854 1.8 ·106 9.0 ·10−3 4926 27 21 2370
0.30 0.337 0.812 3.9 ·106 2.0 ·10−2 4986 61 37 2767
0.25 0.321 0.774 8.8 ·106 4.4 ·10−2 5112 143 72 3814

Table 4.5: Threshold mode on 20 000 terms, 5.0% OOV, ρo = 0.414

36

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.55 0.249 0.593 7.1 ·105 8.9 ·10−4 19873 11 25 2048
0.50 0.310 0.738 1.1 ·106 1.4 ·10−3 20263 17 31 2159
0.45 0.339 0.808 1.9 ·106 2.4 ·10−3 19969 28 37 2309
0.42 0.356 0.849 2.6 ·106 3.2 ·10−3 20319 39 44 2520

0.40 0.351 0.835 3.6 ·106 4.5 ·10−3 20238 55 56 2779
0.39 0.355 0.845 4.1 ·106 5.1 ·10−3 20300 63 63 2938
0.38 0.357 0.850 4.7 ·106 5.9 ·10−3 20173 73 64 2986
0.36 0.351 0.837 6.3 ·106 7.9 ·10−3 20438 98 78 3378

0.35 0.350 0.835 7.3 ·106 9.1 ·10−3 20227 116 87 3651
0.30 0.340 0.810 1.6 ·107 2.0 ·10−2 20378 256 177 5401
0.25 0.324 0.771 3.5 ·107 4.4 ·10−2 20878 608 316 9665

Table 4.6: Threshold mode on 40 000 terms, 0.9% OOV, ρo = 0.420

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.55 0.263 0.627 2.6 ·106 8.3 ·10−4 80583 40 71 2640
0.50 0.311 0.741 4.3 ·106 1.3 ·10−3 81221 67 88 3064
0.45 0.343 0.819 7.3 ·106 2.3 ·10−3 83426 119 122 3742
0.42 0.362 0.865 9.9 ·106 3.1 ·10−3 80625 159 153 4359

0.40 0.339 0.808 1.4 ·107 4.2 ·10−3 82281 226 229 5184
0.39 0.340 0.812 1.5 ·107 4.8 ·10−3 81441 255 215 5693
0.38 0.343 0.819 1.8 ·107 5.5 ·10−3 80763 297 233 6184
0.36 0.344 0.822 2.3 ·107 7.2 ·10−3 81238 402 350 7399

0.35 0.344 0.821 2.7 ·107 8.3 ·10−3 82188 465 383 8299
0.30 0.339 0.808 5.7 ·107 1.8 ·10−2 82062 1039 699 14583
0.25 0.324 0.772 1.3 ·108 4.1 ·10−2 85126 2506 1394 30522

Table 4.7: Threshold mode on 80 000 terms, 0.2% OOV, ρo = 0.419

ε ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

0.55 0.210 0.501 4.4 ·107 1.3 ·10−3 936897 762 752 11892
0.50 0.254 0.606 7.2 ·107 2.1 ·10−3 864718 1287 1184 17504
0.45 0.269 0.642 1.2 ·108 3.5 ·10−3 874222 2235 1718 27329
0.40 0.288 0.689 2.1 ·108 6.1 ·10−3 891863 3933 2878 45251

Table 4.8: Threshold mode on 261 794 terms, 0.2% OOV, ρo = 0.419

37

The best relative score is achieved with ε = 0.38 and N = 15000. For this
configuration, the relative performance ρc /ρo is 0.871. The best absolute
performance is attained with the largest model, N = 80000. Here, the
threshold ε= 0.42 yields a Spearman correlation ρc = 0.362.

Time and space use

Table 4.7 shows that the time use for models with 80 000 terms is
substantial. The majority of the time is taken up by the conversion from
word embeddings to graph model, tv2g . This step takes more than 80 000
seconds, or 22 hours. For the full model with 261 794 terms, shown in
table 4.8, the conversion takes 864 718 seconds, or around 10 days. This
time is independent of the threshold, since all possible pairs of nodes
must be examined to determine if their similarity is above the threshold.
Therefore, the threshold method is very time-consuming for large models.
The memory requirement is still moderate for 80 000 terms, with the
optimal threshold of ε = 0.42 using only around 4 GB memory. The full
model however, requires around 17 GB memory for the conversion, with a
high threshold of 0.5.

4.3.3 kNN method

We evaluate the performance of the kNN method for N ∈ {10 000, 15 000,
20 000, 40 000, 80 000, 261 794}. 261 794 is the size of the full word
embedding model. The results are listed in tables 4.9 to 4.14. The kNN
method outperforms the threshold method both in terms of relative score
ρc /ρo , execution time and memory use.

The kNN method gives higher scores with far fewer edges than the
threshold method. This might be because the kNN method ensures that
all nodes in the graph are connected to k neighbors, regardless of their
similarity. In contrast, the threshold method can result in some nodes
having very few neighbors. A constant number of neighbors might yield
a better representation of the neighborhoods, which could explain the
superior correlation scores of this method. Another possible explanation,
is that the edges with a high similarity score need not be the most
characteristic.

Time and space use

The kNN method is much more efficient than the threshold method. The
conversion of a model with 80 000 terms takes only around 900 seconds, or
15 minutes. In contrast, the threshold method used more than 22 hours for
a model of this size. The main reason for this improved performance is the
efficient lookup of the k nearest neighbors in the word embedding model
provided by gensim. Table 4.14 shows that we can convert the full word
embedding model in 2 to 3 hours. The memory requirement for converting
the full model varies with k, from around 5 GB for low values of k with low
evaluation scores, to around 30 GB for larger values with higher scores.

38

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

15 0.356 0.895 1.0 ·105 2.1 ·10−3 6 2 4 1759
20 0.364 0.915 1.4 ·105 2.8 ·10−3 7 2 4 1894
25 0.367 0.923 1.7 ·105 3.4 ·10−3 8 3 5 1922
30 0.369 0.927 2.0 ·105 4.1 ·10−3 9 3 5 1877

40 0.364 0.916 2.7 ·105 5.4 ·10−3 11 4 5 1958
50 0.365 0.917 3.3 ·105 6.7 ·10−3 13 5 5 1990
60 0.358 0.900 4.0 ·105 8.0 ·10−3 15 6 6 1949
70 0.353 0.888 4.6 ·105 9.2 ·10−3 17 7 6 2031

100 0.353 0.888 6.5 ·105 1.3 ·10−2 23 10 7 1967
150 0.346 0.870 9.6 ·105 1.9 ·10−2 33 14 9 2087
200 0.338 0.850 1.3 ·106 2.5 ·10−2 43 19 11 2256
300 0.329 0.826 1.9 ·106 3.8 ·10−2 61 28 15 2400

Table 4.9: kNN mode on 10 000 terms, 21.5% OOV, ρo = 0.398

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

20 0.362 0.900 2.1 ·105 1.9 ·10−3 12 3 8 1839
25 0.374 0.928 2.6 ·105 2.3 ·10−3 13 4 9 1861
30 0.371 0.922 3.1 ·105 2.8 ·10−3 15 5 9 1882
40 0.372 0.924 4.1 ·105 3.7 ·10−3 18 6 10 1922

50 0.370 0.920 5.1 ·105 4.6 ·10−3 21 7 10 1960
60 0.370 0.920 6.1 ·105 5.4 ·10−3 24 9 11 1955
70 0.369 0.917 7.1 ·105 6.3 ·10−3 27 10 12 2035

100 0.363 0.902 1.0 ·106 8.9 ·10−3 36 14 14 2120

150 0.352 0.874 1.5 ·106 1.3 ·10−2 50 21 17 2277
200 0.351 0.871 1.9 ·106 1.7 ·10−2 65 28 20 2396
300 0.340 0.845 2.9 ·106 2.6 ·10−2 92 42 26 2623

Table 4.10: kNN mode on 15 000 terms, 9.4% OOV, ρo = 0.403

Evaluation scores

The best relative score ρc /ρo ≈ 0.928 is achieved at k = 25 with ρc = 0.374 for
one of the smaller models, with N = 15000. However, the best absolute score
is obtained with the configuration k = 50 and N = 20000, with Spearman
correlation ρc = 0.382. From there, increasing the model size slightly
decreases the evaluation score. This might be due to noise introduced by
infrequent terms. The quality of low-frequency terms or vectors may be
lower because of data sparseness. We try to alleviate this by using a variable
value for k next.

39

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

20 0.380 0.916 2.9 ·105 1.4 ·10−3 18 4 12 1899
25 0.379 0.914 3.5 ·105 1.8 ·10−3 20 5 12 1933
30 0.378 0.912 4.2 ·105 2.1 ·10−3 22 6 12 1959
40 0.379 0.915 5.6 ·105 2.8 ·10−3 26 8 13 2001

50 0.382 0.921 6.9 ·105 3.5 ·10−3 30 10 14 2044
60 0.378 0.911 8.3 ·105 4.1 ·10−3 35 12 15 2104
70 0.372 0.898 9.6 ·105 4.8 ·10−3 39 14 16 2173

100 0.370 0.893 1.4 ·106 6.8 ·10−3 51 20 19 2225

150 0.362 0.872 2.0 ·106 1.0 ·10−2 73 29 25 2484
200 0.357 0.862 2.6 ·106 1.3 ·10−2 92 39 30 2690
300 0.354 0.854 3.9 ·106 1.9 ·10−2 133 57 37 2924

Table 4.11: kNN mode on 20 000 terms, 5.0% OOV, ρo = 0.414

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

30 0.369 0.880 8.8 ·105 1.1 ·10−3 102 13 29 2201
40 0.369 0.880 1.2 ·106 1.5 ·10−3 109 17 32 2291
50 0.371 0.884 1.5 ·106 1.8 ·10−3 121 21 35 2395
60 0.374 0.892 1.7 ·106 2.2 ·10−3 127 26 38 2519

70 0.376 0.897 2.0 ·106 2.5 ·10−3 136 30 41 2510
100 0.378 0.901 2.8 ·106 3.6 ·10−3 151 42 49 2910
150 0.369 0.879 4.2 ·106 5.3 ·10−3 208 64 68 3009
200 0.365 0.869 5.6 ·106 6.9 ·10−3 262 85 75 3235

300 0.361 0.861 8.2 ·106 1.0 ·10−2 331 124 98 3855
400 0.359 0.855 1.1 ·107 1.3 ·10−2 422 164 118 4502
600 0.355 0.845 1.6 ·107 2.0 ·10−2 584 243 195 5740

Table 4.12: kNN mode on 40 000 terms, 0.9% OOV, ρo = 0.420

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

30 0.338 0.807 1.8 ·106 5.7 ·10−4 658 29 79 2683
40 0.347 0.829 2.4 ·106 7.6 ·10−4 399 37 97 2944
50 0.351 0.839 3.0 ·106 9.4 ·10−4 418 46 87 3144
60 0.350 0.836 3.6 ·106 1.1 ·10−3 469 55 94 3333

70 0.351 0.838 4.2 ·106 1.3 ·10−3 488 65 99 3513
100 0.360 0.860 5.9 ·106 1.8 ·10−3 516 92 113 3578
150 0.363 0.867 8.8 ·106 2.7 ·10−3 612 138 149 4231
200 0.359 0.856 1.2 ·107 3.6 ·10−3 701 182 182 4923

300 0.356 0.851 1.7 ·107 5.4 ·10−3 890 273 243 6160
400 0.354 0.844 2.3 ·107 7.0 ·10−3 1056 362 306 7482
600 0.353 0.842 3.3 ·107 1.0 ·10−2 1438 541 399 10041

Table 4.13: kNN mode on 80 000 terms, 0.2% OOV, ρo = 0.419

40

k ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

50 0.270 0.646 1.0 ·107 3.0 ·10−4 3555 158 335 5726
60 0.271 0.646 1.2 ·107 3.6 ·10−4 3603 189 367 6221
70 0.272 0.650 1.4 ·107 4.2 ·10−4 3653 222 400 6711

100 0.272 0.649 2.0 ·107 6.0 ·10−4 3878 318 496 8006
150 0.290 0.692 3.0 ·107 8.8 ·10−4 4173 468 547 10233

200 0.297 0.708 4.0 ·107 1.2 ·10−3 4533 636 687 12630
300 0.304 0.726 5.9 ·107 1.7 ·10−3 5184 943 951 16920
400 0.311 0.742 7.8 ·107 2.3 ·10−3 5806 1262 1325 21553
600 0.314 0.749 1.2 ·108 3.4 ·10−3 7060 1891 1930 29972

1000 0.313 0.747 1.9 ·108 5.5 ·10−3 9612 3157 2978 46383

Table 4.14: kNN mode on 261 794 terms, 0.2% OOV, ρo = 0.419

4.3.4 Variable-kmethod

We evaluate the Variable-k method using the same values for N as for the
kNN method. The parameter to this method is the starting value kmax .
The value of k decreases sharply for the first terms, to kmax /2 for term
90, kmax /3 for term 990 and kmax /4 for term 9990. This means that we
must use kmax approximately 3-4 times the k we would use with regular,
static kNN. The results are listed in tables 4.15 to 4.20. They show that the
Variable-k method scores somewhat better than the kNN method.

Evaluation scores

The Variable-k method achieves the best relative score with the smallest
model, where N = 10000. Here, kmax = 80 yields ρc /ρo = 0.944 and ρc = 0.375.
For the full model with all 261 794 terms, the Spearman correlation is ρc =
0.339. This is the best result for the full model, higher than the correlation
of 0.314 for the kNN method.

Time and space use

The Variable-k method retains less information for infrequent terms. This
saves memory, possibly at the cost of accuracy for rare terms. However,
SimLex-999 contains few rare words. The evaluation data report 5% out of
vocabulary words when evaluating the 20 000 most frequent words from
the word2vec skip-gram model. This means that 95% of the SimLex-999
terms are among the 20 000 most frequent words. Therefore, evaluation
with SimLex-999 does not cover the remaining around 200 000 terms in
the model. This means that SimLex-999 will not give a good indication of
the quality of the infrequent terms in the model. Thus, we are unable to
measure the accuracy cost of the Variable-k method for infrequent words.

41

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

20 0.339 0.852 4.6 ·104 9.1 ·10−4 4 1 6 1750
40 0.351 0.883 8.4 ·104 1.7 ·10−3 5 1 6 1879
60 0.362 0.910 1.2 ·105 2.5 ·10−3 7 2 5 1775
80 0.375 0.944 1.6 ·105 3.2 ·10−3 8 2 5 1910

100 0.370 0.930 2.0 ·105 4.0 ·10−3 9 3 5 1938

120 0.365 0.919 2.4 ·105 4.7 ·10−3 10 3 5 1894
160 0.361 0.909 3.1 ·105 6.2 ·10−3 12 5 5 1972
200 0.356 0.894 3.9 ·105 7.7 ·10−3 15 6 6 1880
240 0.349 0.878 4.6 ·105 9.2 ·10−3 17 7 6 2026
280 0.347 0.874 5.3 ·105 1.1 ·10−2 19 8 7 1925

Table 4.15: Variable-k mode on 10 000 terms, 21.5% OOV, ρo = 0.398

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

20 0.333 0.827 6.4 ·104 5.7 ·10−4 8 1 10 1790
40 0.362 0.900 1.2 ·105 1.1 ·10−3 9 2 9 1811
60 0.372 0.923 1.8 ·105 1.6 ·10−3 11 3 8 1832
80 0.378 0.938 2.3 ·105 2.1 ·10−3 12 4 8 1858

100 0.377 0.938 2.9 ·105 2.6 ·10−3 14 4 8 1875

120 0.378 0.938 3.4 ·105 3.1 ·10−3 16 5 9 1897
160 0.375 0.931 4.5 ·105 4.0 ·10−3 19 7 9 1942
200 0.368 0.915 5.6 ·105 5.0 ·10−3 23 8 10 1945
240 0.364 0.904 6.7 ·105 6.0 ·10−3 26 10 11 2029
280 0.362 0.900 7.8 ·105 6.9 ·10−3 29 12 12 2061

Table 4.16: Variable-k mode on 15 000 terms, 9.4% OOV, ρo = 0.403

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

20 0.368 0.887 8.4 ·104 4.2 ·10−4 12 1 16 1816
40 0.374 0.901 1.6 ·105 8.0 ·10−4 13 2 13 1850
60 0.377 0.910 2.3 ·105 1.2 ·10−3 15 4 13 1877
80 0.388 0.937 3.1 ·105 1.5 ·10−3 18 5 12 1909

100 0.381 0.919 3.8 ·105 1.9 ·10−3 20 6 12 1941

120 0.386 0.932 4.5 ·105 2.3 ·10−3 23 7 12 1970
160 0.383 0.923 6.0 ·105 3.0 ·10−3 26 9 13 2020
200 0.381 0.920 7.4 ·105 3.7 ·10−3 30 11 14 2080
240 0.377 0.910 8.8 ·105 4.4 ·10−3 35 13 15 2135
280 0.372 0.898 1.0 ·106 5.1 ·10−3 42 15 16 2172

Table 4.17: Variable-k mode on 20 000 terms, 5.0% OOV, ρo = 0.414

42

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

40 0.358 0.853 3.1 ·105 3.8 ·10−4 86 5 28 1991
60 0.367 0.874 4.5 ·105 5.6 ·10−4 88 7 31 2069
80 0.372 0.886 5.9 ·105 7.4 ·10−4 93 9 32 2119

100 0.369 0.879 7.3 ·105 9.1 ·10−4 97 11 34 2156

120 0.372 0.887 8.7 ·105 1.1 ·10−3 102 13 35 2227
160 0.377 0.899 1.1 ·106 1.4 ·10−3 111 17 31 2322
200 0.377 0.899 1.4 ·106 1.8 ·10−3 119 22 39 2408
240 0.375 0.893 1.7 ·106 2.1 ·10−3 124 25 38 2497

280 0.377 0.899 2.0 ·106 2.5 ·10−3 139 29 40 2621
400 0.376 0.896 2.8 ·106 3.5 ·10−3 163 43 56 2751
600 0.366 0.871 4.1 ·106 5.2 ·10−3 210 63 70 3042

Table 4.18: Variable-k mode on 40 000 terms, 0.9% OOV, ρo = 0.420

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

40 0.321 0.766 6.0 ·105 1.9 ·10−4 354 10 74 2296
60 0.328 0.784 8.7 ·105 2.7 ·10−4 348 14 77 2419
80 0.334 0.797 1.1 ·106 3.6 ·10−4 361 18 75 2510

100 0.339 0.810 1.4 ·106 4.4 ·10−4 376 21 77 2616

120 0.336 0.801 1.7 ·106 5.3 ·10−4 376 26 78 2708
160 0.350 0.836 2.2 ·106 6.9 ·10−4 395 34 89 2877
200 0.356 0.849 2.8 ·106 8.6 ·10−4 409 42 81 3068
240 0.352 0.839 3.3 ·106 1.0 ·10−3 465 51 84 3192

280 0.353 0.842 3.8 ·106 1.2 ·10−3 450 58 100 3412
400 0.361 0.862 5.4 ·106 1.7 ·10−3 524 82 108 3438
600 0.362 0.864 8.0 ·106 2.5 ·10−3 594 123 141 4049

Table 4.19: Variable-k mode on 80 000 terms, 0.2% OOV, ρo = 0.419

kmax ρc ρc /ρo e d tv2g (s) tg 2v tr m (MB)

40 0.337 0.806 1.8 ·106 5.3 ·10−5 3282 29 284 3670
60 0.339 0.810 2.7 ·106 7.9 ·10−5 3304 42 261 3965
80 0.328 0.782 3.5 ·106 1.0 ·10−4 3405 54 300 4237

100 0.323 0.772 4.4 ·106 1.3 ·10−4 3393 67 294 4402

120 0.291 0.694 5.2 ·106 1.5 ·10−4 3392 79 302 4552
160 0.280 0.669 6.9 ·106 2.0 ·10−4 3460 105 332 4894
200 0.289 0.691 8.5 ·106 2.5 ·10−4 3511 130 306 5299
240 0.284 0.678 1.0 ·107 3.0 ·10−4 3562 156 334 5693

280 0.285 0.680 1.2 ·107 3.4 ·10−4 3606 179 358 6084
400 0.283 0.677 1.7 ·107 4.9 ·10−4 3785 253 436 7143
600 0.288 0.688 2.5 ·107 7.2 ·10−4 4058 381 473 8972

Table 4.20: Variable-k mode on 261 794 terms, 0.2% OOV, ρo = 0.419

43

Name Word pairs Reference

MC-30 30 Miller and Charles (1991)
MEN 3000 Bruni et al. (2012)
MTurk-287 287 Radinsky et al. (2011)
MTurk-771 771 Halawi et al. (2012)
RG-65 65 Rubenstein and Goodenough (1965)
Rare-Word 2034 Luong, Socher and C. Manning (2013)
SimLex-999 999 Hill, Reichart and Korhonen (2015)
Verb-143 143 Baker, Reichart and Korhonen (2014)
WS-353 353 Finkelstein et al. (2002)
WS-353-REL 252 Agirre, Alfonseca et al. (2009)
WS-353-SIM 203 Agirre, Alfonseca et al. (2009)
YP-130 130 Yang and Powers (2006)

Table 4.21: Faruqui and Dyer (2014) gold standard evaluation data

4.4 Wordvectors.org evaluation suite

Wordvectors.org is a website for evaluation and exchange of vector
space models (Faruqui and Dyer 2014). It provides an evaluation
suite consisting of evaluation software and several sets of gold standard
evaluation data3. We use only the gold standard data sets here, not
the evaluation software. For consistency, we continue to use gensim for
evaluation. Otherwise, we might get slightly different evaluation results
with gensim and the wordvectors.org evaluation suite due to different
evaluation implementations. Table 4.21 lists the gold standard similarity
data sets.

To compare the performance of the conversion of word embeddings
built with different tools, we evaluate the results of converting three
different vector space models. The models are made with word2vec skip-
gram, GloVe and fastText, and are listed in table 4.1.

Each model is evaluated with both the kNN and Variable-k methods.
For both methods the full word embedding models are converted to graph
models and then back to vector models. We do not evaluate the threshold
method here, because converting the full models with the threshold method
would be excessively time-consuming. We use the parameters that achieved
the highest SimLex-999 evaluation score in the previous section. For the
kNN method, this is k = 600, while for Variable-k we use kmax = 60. We
evaluate the resulting, converted VSM as well as the original model.

Tables 4.22 to 4.23 list the resulting Spearman correlation scores. They
suggest that the conversion performs well with all three different tools used
to generate the models. Results for the converted models are mostly within
20-30% of the scores for the original models. The worst performance is
with the Verb-143 data set. For this gold data set, all the models get a
Spearman correlation score close to zero. However, this also applies to the

3https://github.com/mfaruqui/eval-word-vectors

44

https://github.com/mfaruqui/eval-word-vectors

Dataset word2vec ρo word2vec ρc fastText ρo fastText ρc GloVe ρo GloVe ρc

MC-30 0.647 0.676 0.667 0.696 0.704 0.496
MEN 0.604 0.539 0.617 0.558 0.608 0.477
MTurk-287 0.682 0.599 0.692 0.640 0.601 0.552
MTurk-771 0.587 0.480 0.611 0.501 0.591 0.442

RG-65 0.605 0.558 0.611 0.544 0.688 0.483
Rare-Word 0.489 0.388 0.499 0.388 0.407 0.352
SimLex-999 0.419 0.314 0.412 0.316 0.377 0.273
Verb-143 0.069 0.028 0.039 0.029 −0.071 −0.117

WS-353-REL 0.591 0.500 0.611 0.514 0.536 0.436
WS-353-SIM 0.688 0.550 0.697 0.571 0.590 0.471
WS-353 0.646 0.517 0.655 0.534 0.556 0.438
YP-130 0.545 0.230 0.551 0.278 0.506 0.262

Table 4.22: Evaluation suite on full model, using the kNN method

Dataset word2vec ρo word2vec ρc fastText ρo fastText ρc GloVe ρo GloVe ρc

MC-30 0.647 0.543 0.667 0.446 0.704 0.338
MEN 0.604 0.437 0.617 0.451 0.608 0.467
MTurk-287 0.682 0.472 0.692 0.497 0.601 0.537
MTurk-771 0.587 0.356 0.611 0.373 0.591 0.442

RG-65 0.605 0.451 0.611 0.326 0.688 0.363
Rare-Word 0.489 0.351 0.499 0.317 0.407 0.311
SimLex-999 0.419 0.339 0.412 0.305 0.377 0.313
Verb-143 0.069 0.040 0.039 −0.011 −0.071 −0.084

WS-353-REL 0.591 0.357 0.611 0.428 0.536 0.456
WS-353-SIM 0.688 0.403 0.697 0.372 0.590 0.527
WS-353 0.646 0.384 0.655 0.408 0.556 0.489
YP-130 0.545 0.249 0.551 0.240 0.506 0.291

Table 4.23: Evaluation suite on full model, using Variable-k

original models, which suggests that the origin of the poor performance is
in the original data. The variable-k method scores best on the SimLex-999
evaluation for two of the three models. Variable-k outperforms kNN for the
word2vec and GloVe models, while kNN scores best for the fastText model.

The tables also contain the results for the Rare-Words gold data set.
This is a collection of 2034 word pairs, where at least one of the terms in
each pair is infrequent (Luong, Socher and C. Manning 2013). We use this
data set to evaluate the performance of our converted models for infrequent
terms. Table 4.22 shows the scores for the models converted with the
kNN method. The converted word2vec, fastText and GloVe models get
Spearman correlation scores ρc of 0.388, 0.388 and 0.352, respectively,
for the Rare-Words data set. This is higher than the scores for the models
converted with the Variable-k method, listed in table 4.23. With the
Variable-k method, the scores are 0.351, 0.317 and 0.311, respectively.
This matches our expectation that the Variable-k method will have lower
performance than the kNN method for infrequent terms. The reason for
this, is that the Variable-k method keeps less information for rare words.

45

4.5 Summary

We have performed an intrinsic evaluation of our conversion procedures for
lexical semantic representations. The evaluation of the conversion results
was done using SimLex-999 and several other gold standard data sets from
the wordvectors.org evaluation suite. We have evaluated three different
methods for converting from vector space models to graph models: the
threshold method, the kNN method and the variable-k method. Our
evaluation shows that all of these methods are suitable for converting vector
space models to graph models.

The methods have different benefits and drawbacks that makes them
suitable for different problems. The threshold method is most likely to
produce graphs with a small-world structure. Some algorithms works only
with small-world graphs. This includes HyperLex (Véronis 2004), which
we discuss in section 5.1.3. For the threshold method, we obtain the best
evaluation scores with thresholds in the range between 0.2 and 0.5. The
kNN method outperforms the threshold method in terms of both evaluation
scores and efficiency. The optimal value for k increases with the size of
the model to be converted, from 25 with 15 000 terms 600 for the full
model. However, the variable-k method scores best on the SimLex-999
evaluation for two of the three word embedding models we use. Variable-k
outperforms kNN for the word2vec and GloVe models, while kNN has the
highest score for the fastText model.

Our evaluation results show that the conversion procedures work quite
well. The Spearman correlation score of the converted word embeddings is
generally about 80% of the score for the original word embedding models.
The best score is above 94% of the original score. This score is nearly
perfect, thus most of the information from the original model is retained. In
other words, the conversion is nearly lossless. This supports our hypothesis
that lexical semantic representations can be converted without significant
loss of information. Our results also support our hypothesis that it is
beneficial to drop some edges. The evaluations of all three methods show
that the performance increases, in terms of both quality and computing
cost, when insignificant edges are dropped. In the next two chapters, we
show that this level of performance also results in good performance in two
applications.

We have also evaluated our conversion from a graph model to a word
embedding model. All our evaluation scores are for the full evaluation,
converting from word embeddings to a graph model, and back to word
embeddings. Therefore, some of the loss can be attributed to each
conversion step. Our results suggest that the conversion loss is small in
both conversion steps.

In this chapter, we have evaluated word embeddings. These were
obtained by converting word embedding models first to a graph model, and
then back to word embeddings. Therefore, we also implicitly evaluated the
intermediate graph representation. In the next chapter, we evaluate the
graph model itself. This is done as extrinsic evaluation by means of a word
sense induction task from SemEval-2013.

46

Chapter 5

Conversion evaluation by
word sense induction

In this chapter, we perform extrinsic evaluation of our converted graph
models. Extrinsic evaluation means evaluating some function or data as
part of a larger system. Extrinsic evaluation is usually closer to real-world
use than intrinsic evaluation. Often, extrinsic evaluation in the end-user
application will give the most realistic results. However, such evaluation
can be expensive. We evaluate the performance of our graph models when
employed in word sense induction (WSI) and word sense disambiguation
(WSD) in SemEval-2013 task 11.

Task 11 (Navigli and Vannella 2013) of the SemEval-2013 workshop on
semantic evaluation was an extrinsic evaluation task. It evaluated WSI and
WSD systems in the context of web search. Participating systems were
given 100 ambiguous web search queries with corresponding sets of 64
search results for each query.1 The search queries contained one to four
words, either single words or multiword expressions. The search results
contained the title, URL and a text snippet from each page. The systems
were required to cluster each result set according to the senses of the search
query. With a WSI system, this can be done by first inducing senses for the
query, and then use these senses to cluster the results.

We have used task 11 for extrinsic evaluation of the converted graph
model. This entails using a graph-based word sense induction algorithm
to induce a set of senses based on our graph. We have attempted to use
both the HyperLex and spinglass (Reichardt and Bornholdt 2006) graph
clustering algorithms for word sense induction and matching of search
snippets to senses.

Our hypothesis is that a graph model with low similarity edges filtered
out will perform better at word sense induction. The assumption is that low
similarity edges contributes little useful information for this task. To test
this hypothesis, we have evaluated doing WSI on graph models produced
with different similarity thresholds.

In the next section, we discuss word senses. We discuss word sense
induction and disambiguation in general, and HyperLex in particular. In

1 https://www.cs.york.ac.uk/semeval-2013/task11/index.php%3Fid=data.html

47

https://www.cs.york.ac.uk/semeval-2013/task11/index.php%3Fid=data.html

section 5.2 we discuss our implementation of word sense induction and
disambiguation. We have employed two methods for word sense induction:
HyperLex and spinglass clustering. In section 5.3 we discuss our method
for evaluating our word sense induction and disambiguation. Section 5.4
contains the evaluation results, and in section 5.5 we do an error analysis.
Finally, in section 5.6 we summarize our results in this chapter.

5.1 Word senses

Individual word semantics is an important building block in sentence
semantics. To be able to understand the meaning of the text, we must
first understand the words it consists of. Words can have many different
meanings or senses. Homonyms are entirely different words that are
spelled or pronounced the same. For instance, the word “bank” can mean
a financial institution or the land beside a river. Words with different but
closely related meanings are known as polysemous. The polysemous word
“card” can refer to a playing card or credit card. There is no clear-cut
line between homonymy and polysemy, but a gradual transition. Different
senses of a word are usually denoted by a number. The different senses of
“bank” can be called bank1, bank2 and so on.

Dictionaries and thesauruses are well-known sources of information
about word senses in everyday life. In natural language processing we
use lexical resources like WordNet. WordNet groups words with similar
meaning into synonym sets or synsets. Words that have different meanings
are linked to the synsets that represent each of the meanings.

5.1.1 Word sense disambiguation

Homonymy and polysemy are important factors in the ambiguity of
natural language. In NLP tasks where we need some understanding of
the semantics of text, we might need to disambiguate it. Word sense
disambiguation is the task of determining which sense a type or token
of text refers to. Similarly to part-of-speech tagging, it is commonly
done by tagging ambiguous tokens with its sense. For instance, the
sentence “I like to fish” could be tokenized and word sense annotated as
[I , l i ke/l i ke1, to, f i sh/ f i sh3].

There are two standard WSD tasks: all words and lexical sample WSD.
A lexical sample is a short fragment of text with only a single or a few target
words to be disambiguated. It could for instance be a search string from an
information retrieval system. Normally, a set of senses is provided only
for the target word(s). This makes the search space quite small. In all
words WSD the goal is to disambiguate all polysemantic words in a longer
text. This problem is similar to part-of-speech tagging. However, part-of-
speech tagging uses a small set of perhaps 50 tags, while in WSD each word
can typically have five to ten senses. In a generic system with a dictionary
containing at least 10 000 words, there can be more than 100 000 senses.

48

This makes word sense disambiguation much more complex than part-of-
speech tagging.

There are three main approaches to word sense disambiguation (Navigli
2012). Supervised WSD is trained on a corpus that is manually annotated
with word senses. Supervised classifiers include memory based methods
and SVM classifiers. Creating handmade corpora is expensive and time-
consuming. This limits the use of supervised WSD.

Knowledge-based WSD builds on existing knowledge resources like
lexicons, thesauruses and ontologies. WordNet is an important knowledge
resource, but many different lexicons and domain specific resources exists.
A common approach is to use graph based methods that explore a graph
built on for instance WordNet. Another well-known method is the Lesk
algorithm (Lesk 1986). This algorithm measures the overlap between the
context of the word to be disambiguated and dictionary definitions of its
senses.

Unsupervised WSD uses unlabeled corpora to automatically learn
words senses. This is also known as word sense induction. Word sense
induction can be used to automatically build sense inventories from a
corpus of text.

WSD Evaluation

Word sense disambiguation is usually not a goal in itself, but is used as
a processing step in a larger system that requires semantic information.
As such, WSD should ideally be evaluated extrinsically as part of the
intended application. However, it is sometimes necessary to evaluate
word sense disambiguation intrinsically. Intrinsic evaluation is commonly
done with manually annotated gold standard test data. The word sense
disambiguation is run on an untagged version of the test data, and the
resulting tags are compared to the gold standard tags. If the disambiguation
is allowed to skip ambiguous words, precision and recall can be calculated.
Otherwise, a simple accuracy score is sufficient.

The Senseval project, later renamed SemEval has made several re-
sources for WSD evaluation (Kilgarriff and Palmer 2000). They include
test problems and gold standard data for intrinsic evaluation of word sense
disambiguation. SemEval also has several tasks involving text analysis that
can be used as extrinsic evaluation of a WSD component as part of a larger
system.

5.1.2 Word sense induction

Word sense induction bypasses the need for manually created resources
like tagged corpora, lexicons or other knowledge resources. Different word
senses are induced from regular text. WSI can be used to make lexical
resources similar to WordNet from large text corpora. This can be general
resources, or domain specific resources built from domain specific corpora.
Word sense induction can also use smaller fragments of text, for instance
to cluster search results by topic (Navigli and Crisafulli 2010).

49

Most forms of word sense induction use some kind of clustering based
on the distributional hypothesis. This hypothesis states that words with
similar meaning tend to occur in similar contexts. The idea is to use this to
find words with similar semantics. The clustering generally gathers words
with similar meaning into synsets. There are several variations:

Context clustering uses the context of each word, represented as a
context vector, often just a bag of words. These contexts are clustered
into synsets.

Word clustering also clusters words by their meaning, but use different
representations from context clustering. Here, syntactic contexts are
often used.

Co-occurrence graphs builds graph based on the co-occurrence of
context features. The graphs are analyzed to find synsets. One
example is HyperLex (Véronis 2004). HyperLex analyzes graphs to
find hubs at the center of high-density components.

Probabilistic clustering uses probabilistic methods to generate context
distributions for different senses of a word.

Topic modeling approaches use topic modeling methods like Latent
Dirichlet Allocation (LDA) for clustering.

WSI Evaluation

Word sense induction is a less mature field than word sense disambigu-
ation. This is also the case with evaluation of WSI. A good way to evalu-
ate word sense induction is extrinsic evaluation as part of a larger system.
However, this is not always possible or desirable. In such cases, we must
use intrinsic evaluation. Since word sense induction essentially is a cluster-
ing problem, this amounts to evaluation of the resulting clustering. Evalu-
ation of clustering is a difficult problem that is often done using annotated
test data. This is unfortunate, since avoiding hand-annotating data is one of
the objectives of word sense induction. However, there are some resources
for WSI evaluation. The SemEval project included word sense induction
tasks in several of its iterations (Navigli and Vannella 2013; Manandhar et
al. 2010).

Several different evaluation strategies have been tried, but a standard
approach for WSI evaluation has yet to emerge. Navigli and Vannella
(2013) evaluated clustering of search results. The results were clustered
according to the induced senses of the search query. They used four
different measures of clustering quality based on a gold standard clustering:

• Rand index (RI) (Rand 1971)

• Adjusted Rand index (ARI) (Hubert and Arabie 1985)

• Jaccard index (Jaccard 1901)

50

• F1 measure (van Rijsbergen 1979)

All these measures are also relevant for intrinsic evaluation of word sense
induction. However, they require handmade gold standard clusters as a
basis of comparison.

5.1.3 HyperLex

HyperLex is a word sense induction algorithm originally intended for
clustering results in information retrieval (Véronis 2004). It exploits the
small-world structure of co-occurrence graphs. Small-world graphs (see
section 2.3.2) have clusters of highly connected nodes, and thus a high
clustering coefficient. These clusters are also connected, giving a short
average path length between arbitrary nodes.

While the HyperLex algorithm was originally intended for use in
information retrieval, it can also be generalized to use regular corpora
(Agirre, Martínez et al. 2006).

Construction

HyperLex does unsupervised word sense induction based on an untagged
text corpus. The basic HyperLex algorithm does word sense induction for a
single word. A separate co-occurrence graph is constructed for each target
term. Each co-occurrence graph is specific to this search term or target
word, and is used to disambiguate this term. Therefore, the algorithm first
makes a subcorpus specific to the target term. This subcorpus consists of
all sentences containing the target term.

Stop words and infrequent terms are removed from the subcorpus,
and a co-occurrence matrix is made, similarly to traditional vector space
models. The co-occurrence matrix is used to construct a co-occurrence
graph. The edges in the graph have weights in the interval [0,1]. The
weight indicate the distance between the two words it connects. Thus,
completely synonymous terms are connected by an edge with weight 0.
This is the opposite measure of the well-known word similarity. The edge
weight between nodes a and b is wa,b = 1 − max[P (a | b),P (b | a)] where
P (a | b) = fa,b/ fb .

Once the graph has been constructed, the algorithm uses it to find
clusters or high-density components. These components are taken to
represent word senses. Clusters are identified by their center nodes, or
hubs, which have a high degree. Candidate hubs are nodes with degree
and clustering coefficient over given thresholds. The algorithm selects the
node with the highest degree in the graph. If this node is a candidate hub,
it is assumed to represent a word sense. The hub is added to the set of
word senses, and it and all its immediate neighbors are “removed” from the
graph. This is usually done by tagging them as used. Now, the next word
sense can be identified by the node which currently has the highest degree.
This procedure is repeated until no candidate hubs remain.

51

Since frequent terms tend to co-occur with many different terms,
they are likely to have many neighbors. Hence, the node degree can be
approximated by its term frequency for efficiency.

When all word senses have been identified, all nodes are arranged into
a tree. The root of the tree is the target term, and the cluster hubs are
connected as its children with edge weights zero. These children of the root
node are the induced senses. The rest of the tree is constructed by making
a minimum spanning tree using the rest of the nodes. This way, each node
is attached to the cluster hub closest to it in the original graph.

Disambiguation

The minimum spanning tree is used to make vectors that represent its
terms. The vectors have as many dimensions or components as the target
word has senses. All the terms are given a score vector containing zeros in
all but one position. This position is equal to the sense number, and the
value indicates the degree of association between the term and the sense.

For instance, when disambiguating the target term “bank”, the context
term “river” could be represented by the vector (0.0,0.0,0.79). This indicates
that the target term has three different senses, and that “river” is associated
with the third sense. The component values are in the range [0,1], where
high values mean a close association with that sense. Formally, a term t is
represented by a vector v , with components given by

vi =
{

1
1+d(si ,t) , if t is a descendent of sense si

0, otherwise
(5.1)

Here, d(si , t)) is the weighted distance from the sense hub si to the term
node t .

Disambiguation is done on a target word in a small context, for example
a sentence or a search snippet. All the terms in the context of the target
word are collected, and their vectors are summed. The resulting vector
represents collective “meaning” of the context, and the largest component
is the sense most strongly associated with this meaning. A reliability score
can also be calculated, based on the difference between the components of
the vector sum.

5.2 Implementation

We do word sense induction on a graph model by graph clustering or
community detection. We evaluate the effectiveness of both HyperLex and
spinglass community detection for WSI. Since graph clustering is sensitive
to the density of the graph, the number of edges influence the performance.
Hence, the similarity threshold used to construct or convert the graph is an
important hyperparameter. To be able to efficiently cluster the graph, we
extract a local subgraph from the original source graph.

We use the page title and snippet from each search result for word sense
induction and disambiguation. These data are provided as text strings,

52

tree

computer

software

fruit

windows
apple

microsoft

pc

hardware

mac

app

google

processor

ibm

grape

nintendo

os

itunes

bean

potato
android

linuxflavor

sony

browser

candy

vine
banana cherry

orchard

pie

berry

juice

desktop

intel

ios

iphone

laptop

cultivar

smartphone

atari

usb

Figure 5.1: Neighborhood of “apple” using threshold 0.4 in a graph with
10 000 terms. The colors illustrate clusters.

so we use Stanford CoreNLP (C. Manning et al. 2014) to tokenize and
lemmatize the text. We use the same CoreNLP options that were used to
generate our word embedding model. These options are “tokenize, ssplit,
pos, lemma, ner”, which also enables part-of-speech tagging and named
entity recognition (NER). We do not employ the POS-tags here. We must
lemmatize the text to match the embeddings in our original vector space
model.

5.2.1 Graph model

The basis for the word sense induction is a graph model converted from a
word embedding model as described in section 3.2. We make this graph
model from word embeddings trained on a Wikipedia corpus. Graph-based
word sense induction algorithms like HyperLex tend to exploit the small-
world structure of semantic graphs, as discussed in section 5.1.3. The kNN
method yields graphs where the node degree is fixed at k, which is definitely
not a small-world structure. This makes the kNN method ill suited for this
task.

Figure 5.1 and fig. 5.2 illustrate the difference between the threshold
method and the kNN method. Figure 5.1 shows the neighborhood of “apple”
in a graph produced using the threshold method. The nodes cluster nicely
into two groups, representing the computer manufacturer and fruit senses
of “apple”. In contrast, fig. 5.2 plots the neighbors of “apple” in a graph
produced using the kNN method. Although in the full graph produced by
the kNN method, all nodes have degree 25, in this subgraph the degree
varies somewhat. This is because edges to nodes outside the neighborhood
are not included. Nevertheless, this graph seems to be harder to cluster

53

fruit

apple

microsoft

mac app

google

processor

ibm

ram

nintendo

os

bug

android

linux

sony

candy

banana

cherry

orchard

pie

berry

juice

desktop

mini

intel

ios
iphone

gb

adobe

smartphone

atari

Figure 5.2: Neighborhood of “apple” using k = 25 in a graph with 10 000
terms. Because all nodes have a similar degree, this subgraph is harder to
cluster then the one in fig. 5.1.

than the one produced using the threshold method. We therefore make a
graph based on the threshold method. We create the largest feasible graph
to encompass as many of the terms from SemEval-2013 task 11 as possible.
This yields a graph containing the 220 000 most frequent terms from the
VSM, with a threshold of 0.4.

Task 11 contains named entities and other multiword expressions that
are currently not recognized by the CoreNLP named entity recognizer,
like “Romeo and Juliet”. Since this is not an evaluation of NER systems,
we overcome this problem by manually gluing together all the multiword
expressions from task 11, so that for instance “bald eagle” becomes
“bald::eagle” throughout the corpus. This means that we must use a
purpose built vector space model for this task. We train a word2vec skip-
gram model on our modified Wikipedia corpus. Still, rare expressions
like “the::wizard::of::oz” are missing from the model, due to data sparsity.
Table 5.1 lists the terms from task 11 that do not exist in our graph model.
There are 21 of these out-of-vocabulary (OOV) terms.

5.2.2 Neighborhood graph extraction

We want to do word sense induction on the neighborhood of the target
term to be disambiguated. To do this, we must first extract the relevant
neighborhood as a separate subgraph. We therefore collect all terms from
all the contexts given for the target. We select the nodes corresponding to
these context terms as well as the target term. These nodes, and the edges
connecting them, make up the subgraph we use for word sense induction.
Thus, the same graph is used to disambiguate the target in all contexts.

54

OOV term

ten::commandments
brett::butler
courtney::cox
babel::fish
the::last::supper
romeo::and::juliet
medal::of::honor
arch::of::triumph
dead::or::alive
man::in::black
heaven::and::hell
stand::by::me
prince::of::persia
billy::the::kid
sense::and::sensibility
soldier::of::fortune
beauty::and::the::beast
lord::of::the::flies
battle::of::the::bulge
the::da::vinci::code
the::wizard::of::oz

Table 5.1: SemEval-2013 task 11 terms that are not in our graph model

55

Of course, this is only possible when all contexts to be disambiguated are
known when we perform the word sense induction.

Since the density of a graph influences graph clustering, it is beneficial
to have a means of adjusting it. The base threshold is set when the source
graph is constructed, and any edges with similarity below this threshold
are lost. Therefore, we are unable to lower the threshold. However, we can
raise the threshold by dropping edges from the graph. Thus, we include the
similarity threshold as a parameter to the WSI procedure.

Some context terms might not be connected to the rest of the graph.
This means that they form separate small or singleton clusters. These small
clusters should probably most often not be interpreted as separate senses
of the target word. In addition, some clustering algorithms, like spinglass,
require connected graphs to work. Therefore, we remove disconnected
nodes by only using the largest connected component of the subgraph.
When the subgraph to be used for word sense induction is constructed, we
apply one of the following algorithms.

5.2.3 HyperLex

HyperLex is implemented as described in Véronis (2004), see section 5.1.3.
Because our lexical semantic model has already been converted to a graph
representation, we can skip the graph construction step of HyperLex. Thus,
we start out with the clustering step of HyperLex, and build a minimum
spanning tree. HyperLex tends to produce many small clusters, which give
many small “micro-senses”.

We build a HyperLex instance for each query string to be disambigu-
ated. This instance is then used to disambiguate the query sense for each
search result. The resulting clustering is written to a file on the format spe-
cified by the task 11 evaluator software, see section 5.3. The evaluator is
then run on the results file to obtain the evaluation scores.

5.2.4 Igraph spinglass community detection

Igraph implements several community detection algorithms. Here, we
apply the spinglass algorithm (Reichardt and Bornholdt 2006). Word sense
induction consists of running the spinglass algorithm on the neighborhood
subgraph described above. Spinglass produces a clustering of all the nodes
in the subgraph, where each cluster represents a sense.

Spinglass clustering can be done with or without using the edge weights.
With complete or high-density graphs, the edge weights are needed to
successfully cluster the graph. The weights also contain information that
can be useful when clustering sparser graphs. Therefore, we use spinglass
with edge weights enabled. Because spinglass is a stochastic algorithm, the
result can differ between different executions on the same graph.

The spinglass algorithm has a parameter for limiting the maximum
number of clusters. Such a limit would be useful if we had some other way
of determining the number of word senses before running the clustering.
However, we have no way of knowing this number a priori. Determining the

56

number of senses is indeed part of the problem of determining the senses
of a word, which we are trying to solve.

Each of the clusters produced by spinglass is interpreted as a sense
of the target word. When the clustering is complete, we perform word
sense disambiguation based on these clusters or senses. We disambiguate
the meaning of the search result snippets. For each cluster, we count the
number of tokens from the text snippet that belongs to it. The cluster with
the highest count is selected as the induced sense.

5.2.5 Alternative, on-the-fly conversion

The word sense induction procedure described above uses a complete graph
model, which in our case was converted from a word embedding model.
We can call this a pre-converted graph model. For large models, this
conversion can be time-consuming, up to several days for a model with
around 200 000 terms. An alternative approach is to construct only the
required neighborhood graph or regional graph directly from the word
embedding model. This on-the-fly conversion is done by building a list
of context words as described in section 5.2. Then, a new graph is built
containing only nodes for the target and context words. We add edges to
this graph by the regular threshold method, as described in section 3.2.1.
To find an appropriate value for the threshold parameter, we run the
evaluation for different values of the threshold. When the neighborhood
graph has been constructed, we use the same method as before for WSI and
WSD.

Such an on-the-fly converted neighborhood graph should be isomorphic
to a subgraph with the same terms made from a graph based on the same
VSM. Say we use word embedding model E to create graph model G using
threshold ε. Further, we have a list of terms t . We then create a subgraph
S of G consisting of the terms in t and the edges connecting them. We
also make a graph U from E containing the terms in t using on-the-fly
conversion with threshold ε. Now, both S and U both consists of nodes
corresponding to the terms in t . Both graphs also have the same edges
between the nodes based on the similarities in E , using the threshold ε.
Since S and U have exactly the same nodes and edges, they are isomorphic.

For low thresholds, the number of edges increases towards
(n

2

) =
n(n − 1)/2. This makes building large graph models for thresholds near
zero impractical. For tasks requiring such low thresholds, this on-the-fly
approach would be more efficient.

5.3 Evaluation

The word sense disambiguation yields a clustering of the search results.
We evaluate the clustering results with the evaluation software provided
for SemEval-2013 task 11.2 The evaluation suite consists of a Java program

2 https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/semeval-2013_task11_
evaluator.tar.gz

57

https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/semeval-2013_task11_evaluator.tar.gz
https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/semeval-2013_task11_evaluator.tar.gz

and gold standard clustering data.3 The program computes the correlation
between our clustering and the gold standard clustering. It outputs several
different scores, including Rand Index, Adjusted Rand Index (ARI), F1 and
Jaccard Index. We focus on the ARI, since this score corrects for incidental
correlation.

We evaluate our word sense induction and disambiguation with three
different lexical semantic models. First, we evaluate WSI and WSD on a
graph model converted from a word embedding model with threshold 0.4.
This graph model contains 220 000 terms. As discussed in section 5.2.1
this word embedding model is custom built to include the multi-word
expressions that occur in SemEval-2013 task 11. We evaluate HyperLex
and spinglass word sense induction with thresholds ranging from 0.4 to
0.54. We also evaluate both WSI methods using on-the-fly conversion
from the same word embedding model. Because of the smaller memory
requirement of on-the-fly conversion, we are able to evaluate this method
with thresholds ranging from zero to 0.54. We evaluate two different
variations of on-the-fly conversion. First, we limit the number of terms to
the size of the full, pre-converted graph model, 220 000 terms. This means
the results should be comparable to the pre-converted graph model. Next,
we do an evaluation based on the full 634 999 terms in the word embedding
model. That way, we use the full vocabulary of our word embedding model.
To sum up, we perform our evaluation with three different models:

1. A pre-converted graph model with 220 000 terms.

2. A word embedding model with 220 000 terms, using on-the-fly
conversion.

3. A word embedding model with 634 999 terms, using on-the-fly
conversion.

We evaluate word sense induction and disambiguation with HyperLex
and spinglass on each of the three models. This makes six different
configurations in all.

Because the spinglass algorithm is stochastic, the results might vary
between different executions with the same graph. We therefore run sp-
inglass five times for each configuration of hyperparameters, and calculate
the mean and standard deviation of the ARI scores.

5.4 Results

Table 5.2 lists the results of our evaluation in bold. The results of
SemEval-2013 task 11 are included for comparison, taken from Navigli and
Vannella (2013). The table lists the optimal threshold for each method,
and the corresponding Adjusted Rand Index score. Spinglass clustering
with on-the-fly conversion scores best of our methods. Our system scores

3https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/datasets/
semeval-2013_task11_dataset.tar.gz

58

https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/datasets/semeval-2013_task11_dataset.tar.gz
https://www.cs.york.ac.uk/semeval-2013/task11/data/uploads/datasets/semeval-2013_task11_dataset.tar.gz

System ARI Threshold Model size

HDP-CLUSTERS-NOLEMMA 21.49 – –
HDP-CLUSTERS-LEMMA 21.31 – –
Spinglass, on-the-fly, full model 10.44 0.42 634999
Spinglass, on-the-fly 9.73 0.36 220000
Spinglass 9.36 0.44 220000

HyperLex, on-the-fly, full model 8.23 0.24 634999
HyperLex, on-the-fly 8.18 0.36 220000
HyperLex 7.57 0.42 220000
SATTY-APPROACH1 7.19 – –
DULUTH.SYS7.PK2 6.78 – –

DULUTH.SYS1.PK2 5.74 – –
UKP-WSI-WP-LLR2 3.77 – –
UKP-WSI-WP-PMI 3.64 – –
DULUTH.SYS9.PK2 2.59 – –
UKP-WSI-WACKY-LLR 2.53 – –

Table 5.2: Results of SemEval-2013 task 11, from Navigli and Vannella
(2013). Our results are added in bold.

higher than seven of the nine systems that participated in the WSI part
of SemEval-2013 task 11. If we account for the fact that the two best
performers, HDP-CLUSTERS-LEMMA and HDP-CLUSTERS-NOLEMMA,
were variations of the same system, our system ranks second in this list.

Figure 5.3 plots the ARI scores for different thresholds, with error bars
that indicate the standard deviation. Table 5.3 lists the time used. The
times include both WSI and WSD on the 100 target terms in the data set.
Overall, we achieve the best scores with thresholds in the interval from 0.2
to 0.5.

The plot in fig. 5.3 shows that scores for on-the-fly conversion are more
or less the same as the scores for WSI based on a full graph model of the
same size. This is as expected, since the neighborhood graph should end
up the same whether the selection of terms is done before or after the
graph conversion. Nevertheless, the optimal thresholds in table 5.2 are
different, because on-the-fly conversion is evaluated over a wider range of
thresholds. The plot shows that there is some variation in the results for the
same threshold, which is probably due to the nondeterministic nature of the
spinglass algorithm. HyperLex can also be somewhat nondeterministic, in
cases where two nodes are tied for the highest degree.

5.4.1 Spinglass

We obtain the best score with the largest model, as might be expected. The
best score for the full model is around 10.4%, with threshold 0.42. The best
score for the smaller model is around 9.7%, and is obtained with a threshold
of 0.36. Interestingly, the evaluation score increases by only 0.7 percentiles

59

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0.00

0.02

0.04

0.06

0.08

0.10

Ad
ju

st
ed

 R
an

d
In

de
x

HyperLex
HyperLex on-the-fly
HyperLex on-the-fly, full model
spinglass
spinglass on-the-fly
spinglass on-the-fly, full model

Figure 5.3: ARI scores from SemEval-2013 evaluation. Error bars show
standard deviation.

60

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

HyperLex 29 9.9
Spinglass 400 97
HyperLex, on-the-fly 868 601 397 317 300 294
Spinglass, on-the-fly 31 890 21 690 4059 1301 677 382
HyperLex, on-the-fly, full model 926 675 459 356 333 330
Spinglass, on-the-fly, full model 32 469 21 885 3916 1149 730 426

Table 5.3: Running time in seconds of WSI and WSD on the SemEval-2013
task 11 data set

when the vocabulary increases from 220 000 to 634 999 terms. This is
probably because the first part of the word embedding model contains the
most frequent terms. These terms are more likely to occur in contexts, and
thus influence the score. The scores vary somewhat with the threshold,
and sink rapidly for thresholds above 0.46. Figure 5.3 shows that for the
same model size, the difference between on-the-fly and regular conversion
is generally within the standard deviation.

The plot in fig. 5.3 shows that spinglass yields relatively high scores
even for complete graphs made with threshold zero. However, table 5.3
shows that the spinglass running time increases rapidly with the number
of edges. While spinglass is able to cluster complete graphs, this is very
time-consuming. Our evaluation with threshold zero takes more than
eight hours. This is because the number of edges in a complete graph
is quadratic,

(n
2

) = n(n − 1)/2, and probably also because the spinglass
algorithm itself has polynomial complexity. The results show that dropping
edges benefits not only the running time but also the ARI score for this task.

5.4.2 HyperLex

HyperLex is made to exploit the small-world structure of graph models. It
is not well suited to word sense induction on complete graphs. This can be
seen clearly in the results in fig. 5.3, where the score for HyperLex is very
low for thresholds below 0.15. For complete or nearly complete graphs,
HyperLex fails completely. HyperLex removes all neighbors of hubs or
candidate senses, see section 5.1.3. In complete graphs, this means that
all nodes are removed for the first sense that is found. Therefore, HyperLex
will always yield only one sense for a complete graph.

For thresholds in the range 0.2 to 0.45, HyperLex does better with ARI
scores between 7% and 8.5%. As with spinglass, we achieve the highest
score with the largest model. The best score is around 8.23%, obtained with
threshold 0.24. For the smaller model, we achieve the best score, 8.18%, for
HyperLex using on-the-fly conversion and threshold 0.36. This is the same
threshold as the optimal threshold for spinglass. This score is still below the
scores for spinglass clustering, which suggests that spinglass is better suited
to this task in terms of clustering quality. This could be because the number
of clusters produced by spinglass is closer to the number of clusters in the

61

Target id ARI Clusters Gold clusters Term rank

hedonism 37 0.524 6 6 54 546
queen 13 0.408 8 14 1111
bald::eagle 41 0.392 9 3 24 107
kangaroo 2 0.376 10 17 11 163
pods 32 0.332 5 5 155 631

Table 5.4: SemEval-2013 5 highest scoring target words using spinglass,
ε= 0.36

Target id ARI Clusters Gold clusters Term rank

fort::recovery 53 -0.021 8 5 199 594
nickelodeon 24 -0.011 9 13 10 668
far::cry 79 -0.008 5 3 39 186
aurora::borealis 76 -0.003 8 4 82 728
harry::potter 65 -0.002 6 4 12 223

Table 5.5: SemEval-2013 5 lowest scoring target words using spinglass,
ε= 0.36

gold standard data, because the cluster members match better, or both.
However, HyperLex is much faster than spinglass. That is because

HyperLex has linear complexity, while spinglass is polynomial. For some
applications where speed is more important than quality, HyperLex might
be preferable. This might for example be the case for web search and other
on-line use. Here, the response time for the user is critical.

5.5 Error analysis

An Adjusted Rand Index of around 10% shows little correlation between
our clustering results and the gold standard clusters. We therefore analyze
the data to try to find the reason for the low performance. We do the error
analysis on data from the evaluation on the smaller word embedding model,
with 220 000 terms. The results reported in fig. 5.3 are the average ARI
scores for all the 100 target words. Tables 5.4 to 5.5 lists the 5 top and
bottom scoring target words, using the spinglass algorithm and ε= 0.36.

The highest score is achieved for the target word “hedonism”, at 52.4%.
In this case, the spinglass clustering finds the same number of clusters as
the gold clustering. However, for the second highest scoring word, “queen”,
spinglass produces only eight clusters, only half as many as the 14 clusters
in the gold data. This suggests that while a perfect result requires finding
the correct number of clusters, it is possible to achieve a quite high score
even without finding the correct number of clusters.

All the five lowest scoring target terms are proper nouns. Most are also
quite infrequent terms, like “fort::recovery” with rank 199 549. That could

62

suggest that the representations of these terms are inaccurate, because
of data sparsity. However, some of the highest scoring terms are also
infrequent, for instance “pods” has rank 155 631. Therefore, it is more
likely that the poor results for these terms are due to some properties of
the clusters themselves.

The target term “fort::recovery” yields the lowest score, at -2.1%. The
negative score indicates a negative correlation between our clustering and
the gold data clustering. This means that search snippets belonging to
the same cluster in the gold data, are more likely to belong to different
clusters in our clustering results. The gold clusters or senses for the term
“fort::recovery” are described as:

53.1 Fort Recovery, Ohio, a present-day village near the Ohio fort

53.2 Fort Recovery, a fort from 1793 in Ohio

53.3 Fort Recovery, Tortola, a fort from 1620 in the British Virgin Islands

53.4 Other

53.5 Fort Recovery (album), an album by Centro-Matic

The differences between these senses are quite subtle. Depending on the
context, the difference between sense 1, 2 and 3 might be difficult to tell,
even for humans. Thus, it is not surprising that WSI can struggle with these
senses.

A good clustering result partly depends upon finding the correct number
of clusters. Figures 5.4 to 5.6 shows of the distribution of the number of
clusters over the 100 different terms to be disambiguated. The mean
number of clusters are 7.7 for the gold standard data, 15.9 for HyperLex
and 8.2 for spinglass. HyperLex is quite far from the gold standard. While
the mean number of clusters for spinglass is closer to the gold standard, the
distributions are different. The gold standard distribution as two maxima,
at 5 and 12 clusters. Spinglass, on the other hand, has one maximum
around eight clusters. This indicates that neither algorithm tends to find
the correct number of clusters.

5.6 Summary

The results support our hypothesis that low similarity edges contribute
little information, and should be filtered out. Dropping low similarity
edges enhances the performance in terms of both speed and clustering
quality. These results agree with our results in the previous chapter, where
we also found it beneficial to drop some edges. We have achieved an
Adjusted Rand Index score of around 10.4% on SemEval-2013. While this
is not a high score, only two of the nine systems that participated in the
WSI part of SemEval-2013 task 11 achieved an ARI score higher than 8%
(Navigli and Vannella 2013). The two best systems, HDP-CLUSTERS-
LEMMA and HDP-CLUSTERS-NOLEMMA both attained ARI scores of

63

2.5 5.0 7.5 10.0 12.5 15.0 17.5
clusters

0

5

10

15

20

fre
qu

en
cy

Gold standard
Mean

Figure 5.4: Distribution of number of clusters in gold standard data.

4 6 8 10 12
clusters

0

5

10

15

20

fre
qu

en
cy

Spinglass
Mean

Figure 5.5: Distribution of number of clusters in spinglass clusterings,
ε= 0.36.

64

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
clusters

0

2

4

6

8

10

12

fre
qu

en
cy

HyperLex
Mean

Figure 5.6: Distribution of number of clusters in HyperLex clusterings,
ε= 0.36.

around 21%. This indicates that WSI and WSD are hard problems. Our
system outperforms seven of the nine participating systems in the WSI part
of this task.

The results show that both the full graph model and on-the-fly
conversion can be successfully used for WSI. Converting a large word
embedding model to a graph model is time-consuming and can take days
for models with around 200 000 terms. Therefore, for applications where
the underlying VSM model is updated frequently, or where the number
of queries is relatively low, on-the-fly conversion will probably consume
fewer resources. However, in an application with many queries, the time to
convert the full graph model can be amortized over all the queries. Here, it
will be beneficial to convert the whole model once, and extract subgraphs
for each query.

For very dense graphs, say for thresholds below 0.2, doing full graph
conversion is impractical. HyperLex also works poorly with such dense
graphs. While it is possible to use spinglass with on-the-fly conversion, this
will be time-consuming. The results make it hard to justify using such low
thresholds except in applications where running time is not an issue.

For applications where clustering quality is paramount, spinglass
clustering is probably preferable. However, HyperLex is a significantly
faster alternative, with the trade-off of a small reduction in quality. Our
results seem to imply that determining the correct number of senses is
one of the largest hurdles in word sense induction. While graph clustering
algorithms like Spinglass and HyperLex can be used for WSI with some
success, there is still room for improvement.

65

As an extrinsic evaluation of our converted graph models, this experi-
ment can be said to be a success. The evaluation shows that the converted
models can be successfully used in the word sense induction and disam-
biguation task. The performance suggests that the conversion of the word
embeddings into a graph model preserves a significant portion of the in-
formation in the model. We achieve best evaluation scores with thresholds
in the range between 0.2 and 0.5. This is consistent with the results of
the intrinsic evaluation in the previous chapter. The intrinsic evaluation
showed that our converted models could achieve performance within 80%
to 94% of the performance of the original model. In this chapter, we have
shown that this translates to reasonable performance at a real-world task.
In sum, the results seem to support use of converted graph models for word
sense induction. In the next chapter, we do further extrinsic evaluation of
our graph models. We use our graphs for hypernym discovery, and evaluate
the results for different hyperparameters.

66

Chapter 6

Conversion evaluation by
WordNet hypernym
discovery

WordNet is a lexicon and taxonomy of the English language. A taxonomy
is a hierarchical structure classifying concepts or objects. As discussed in
section 2.3.2, WordNet defines many different relations between synsets.
One of the most important relations, which defines the hierarchical
structure of WordNet, is the hypernym/hyponym relation. A hypernym is a
more general, superordinate concept, such as “vehicle”, and a hyponym is a
more specific subconcept, such as “car”. The hypernym/hyponym relation
is also referred to as the is-a relation.

Here, we do an explorative study to see if we can use centrality in local
graph models as an indicator of hypernymy. We do this as further extrinsic
evaluation of our converted graph model. We evaluate the performance
of the graph model in an application for hypernym discovery. If we
find a correspondence between centrality and hypernymy, it might be
possible to use our models for taxonomy extraction or hypernym discovery.
Taxonomy extraction entails automated creation of a taxonomy from
language resources like a corpus. Hypernym discovery is a subtask of
taxonomy extraction that focuses only on extracting hypernym/hyponym
relations. Hypernym discovery systems use various techniques and
features, for instance substring matches or syntactic Hearst patterns
(Bordea, Lefever and Buitelaar 2016). We use WordNet as our source of
hypernym/hyponym relations.

In the next section, we discuss previous work on hypernym discovery.
In section 6.2, we discuss our implementation of hypernym discovery using
graph centrality. Then, in section 6.3, we discuss our evaluation results. In
section 6.4, we do an error analysis on our results. Finally, in section 6.5
we summarize our results in this chapter.

67

6.1 Previous work

Both supervised and unsupervised learning are used for hypernym discov-
ery. Pattern based methods and distributional or distributional semantic
methods are two major approaches to this task (C. Wang, He and Zhou
2017). Distributional semantic methods employ distributional semantic in-
formation, like word embeddings, in various ways. The term distributional
method might arguably be a slight misnomer. This is because pattern based
methods might also be said to utilize distributional information, in that a
pattern specifies the distribution of words in a text.

One of the most common pattern based methods is lexico-syntactic
patterns, also known as Hearst patterns (Hearst 1992). Hearst patterns
are unsupervised, and have long been used for hypernym discovery. They
are simple patterns like “X such as Y”. “Vehicles such as cars. . . ” is an
example of a text fragment matching this pattern. From this, we can
infer that “vehicle” is a hypernym of “car”. Hearst patterns have high
precision, but low recall. High precision is achieved because texts will rarely
contain expression matching a pattern, where the hypernym/hyponym
relation does not hold. The recall is low because there will be many
hypernym/hyponym pairs that do not occur together in a text. However,
Hearst patterns can outperform unsupervised distributional methods for
some tasks, like direction predicting (Roller, Kiela and Nickel 2018). This is
because patterns may capture more detailed information about the context,
in this case the direction of the is-a relationship.

Substring matching is a simple, rule-based method utilizing composi-
tionality of terms. With substring matching, a term is assumed to be a hy-
pernym of a candidate term if it is contained in the candidate. For instance,
substring matching will infer “fish” to be a hypernym of “flying fish”. Des-
pite its simplicity, this method can be quite effective (Bordea, Buitelaar et
al. 2015). However, it will also yield some incorrect results. For example,
substring matching will incorrectly infer “apple” to be a hypernym of “pine-
apple”.

Word embedding methods are distributional machine learning meth-
ods for hypernym discovery. They are based on word embeddings and word
embedding arithmetic or projections. Unlike pattern-based methods, these
methods utilize learned vector representations of words. The word embed-
dings are often pre-trained. Word embeddings are often used in supervised
systems. The system learn a function that classifies whether or not a hyper-
nym and candidate word has a hypernym/hyponym relation. This function
is learned from data consisting of hyponym/hyponym pairs, as well as pairs
of nonrelated words as negative examples. This is often done by learning a
projection of terms, so that the nearest neighbor of the projected term is its
hypernym. Different projection matrices can be used to represent different
kinds of hypernymy (Bernier-Colborne and Barriere 2018).

There are also hybrid systems which combine distributional semantic
and pattern methods. These can for example create separate lists of
hypernym candidates with each method, and then merge the lists, giving
higher scores to candidates that occur in both lists. CRIM (Bernier-

68

Colborne and Barriere 2018) is a recent example of a hybrid system. It
achieved top score in three of the five subtasks of hypernym discovery in
SemEval-2018 Task 9 (Camacho-Collados et al. 2018).

6.2 Implementation

We use the Natural Language Toolkit (Bird and Loper 2004), also known
as NLTK, to work with WordNet. We find all suitable hypernyms in
WordNet. These hypernyms should:

• Be mid-frequent, that is have rank in the range [1000,100000] in the
word embedding model

• Have at least five hyponyms in the word embedding model

WordNet contains more than 1000 hypernyms matching these criteria. For
each suitable hypernym, we create a neighborhood graph containing the
hypernym and its hyponyms from WordNet. We include only terms that
exist in the vocabulary of the word embedding model.

6.2.1 Graph construction

We create each graph using on-the-fly conversion. The conversion is
done using the threshold method, as described in section 3.2.1. This
method adds an edge between two nodes only if their similarity is
above the threshold ε. This limits the number of edges in the graph.
We evaluate the correspondence between centrality and hypernymy for
different thresholds.

The terms to include are from WordNet, while the edges are generated
from the word embedding model by the conversion procedure. Figure 6.1
shows a plot of a graph constructed for the hypernym “lamp”.

Some centrality measures consider the edge weights when calculating
the centrality. Edge weights commonly indicate some measure of distance
between two nodes, with lower weights meaning smaller distance. How-
ever, in our graphs high weights indicate high similarity, with lower weights
meaning lower similarity and thus larger distance. Therefore, we invert the
weights in our graph before calculating centrality. We do this by setting the
weights to w = 1/w .

WordNet groups lemmas into synsets, and we only include one lemma
from each synset in our graphs. Since WordNet orders the lemmas by
frequency, we use the first lemma from each synset that is also in the word
embedding model. Using the most frequent lemmas should be beneficial,
since they should also have higher quality word embeddings.

6.2.2 Hypernym proposal

When the graph has been constructed, we run a graph centrality measure
to find the most central node in the graph. The centrality measure returns

69

limelight

flash

lamp
streetlight

candle

taillight

spotlight

lantern

Figure 6.1: Graph with the hypernym “lamp” and its WordNet hyponyms

the centrality score of each node in the graph. We use this score to sort the
nodes by their centrality, and pick the top scoring one. This most central
node is proposed as a prediction of the hypernym. For some graphs, two
or more nodes might be tied for the highest centrality score. Therefore, we
need some way of breaking ties. This is discussed in section 6.2.6.

6.2.3 Centrality

We are looking for correspondence between hypernyms and central nodes
in our WordNet graphs. Centrality is a measure of the importance of a
graph node. This can be defined in different ways, for instance central
nodes can be nodes that are important for the overall connectivity of the
graph, or nodes with many neighbors. Thus, there are several different
measures of node centrality in a graph. We evaluate three different
measures:

Betweenness measures the number of shortest paths a node lies on.
Betweenness is high for nodes that are on the shortest paths between
many different pairs of nodes. The betweenness measure can use
edge weights when calculating shortest paths. We therefore supply
the edge weights as an argument to the algorithm.

PageRank measures the importance of a node by the number of its
neighbors, and their importance. It was originally developed by

70

Baseline accuracy

Algorithm NLPL id Corpus Vocabulary Hypernyms Random Frequency

Skip-gram 5 Wikipedia 273 992 1248 0.115 0.288
Skip-gram 11 Gigaword 261 794 1078 0.116 0.242

Table 6.1: Models used in WordNet exploration

Google for web search.1 PageRank also considers edge weights when
calculating centrality.

Degree centrality is the number of edges adjacent to the node. The
degree centrality is high for nodes with many neighbors. This
centrality measure does not take edge weights into account.

6.2.4 Models

We evaluate the accuracy of using centrality to predict hypernymy in
graph models produced by on-the-fly conversion from word embedding
models. As in section 4.2 we use models from the NLPL word embeddings
repository. We run the evaluation with two different word embedding
models, produced from two different corpora. The models are built on the
Gigaword corpus and Wikipedia, and are listed in table 6.1. Both models
are word2vec skip-gram models built with gensim. We use two different
models to gauge the impact of the corpus on the accuracy.

6.2.5 Evaluation

For each graph, we check whether the proposed hypernym is the actual
hypernym. Each graph contains exactly one hypernym. We assign a binary
score of zero or one to each graph. If the hypernym is identical to the
proposed hypernym, the score is one, otherwise zero. The results are then
averaged over all the suitable WordNet hypernyms, yielding a total score
between zero and one. This score measures the overall accuracy of our
predictions. We run this evaluation procedure with different threshold
values ranging from zero to one, with each of the different centrality
measures.

6.2.6 Centrality ties

We can expect that two or more nodes will be tied for top centrality in some
cases. Both the betweenness and degree centralities yield integer values.
Betweenness centrality measures the number of shortest paths each node is
part of. This is limited upwards by the maximum number of combinations
of two nodes in the graph, which is

(n
2

) = n(n − 1)/2. Degree centrality
measures the degree of, that is the number of edges adjacent to, each node.

1We use Personalized PageRank, because of a bug in igraph’s PageRank implementation
that causes a segmentation fault.

71

This is limited by the number of nodes in the graph. In either case, each
node is assigned a centrality score from a quite limited range, so collisions
are likely to occur. In some cases, this can lead to a tie for the highest
centrality score. Therefore, we need some way to break ties in order to
choose our proposed hypernym.

Breaking ties arbitrarily

The simplest approach is to select an arbitrary node when there are ties.
When the nodes have been sorted by centrality, we can simply select the
first node in the list, without checking for ties. This requires no extra
processing, and can be sufficient when speed is more important than
accuracy. However, depending on the implementation the results might
be nondeterministic.

Breaking ties by term frequency

The terms in our word embedding models are ordered by decreasing
frequency. We hypothesize that this information can be useful for
proposing hypernyms. Figure 6.1 shows the hypernym “lamp” and its
WordNet hyponyms. We can expect many of the hyponyms, like “spotlight”
and “limelight” to be less frequent than “lamp”. Therefore, we attempt to
improve our hypernym proposals by selecting the most frequent term in the
event of a tie. This is implemented by first sorting the nodes in the graph by
frequency, and then by centrality. When implemented with a stable sorting
algorithm, this ensures that nodes with the same centrality score is ordered
by frequency.

6.2.7 Baselines

An accuracy score in itself does not tell much unless we can compare it with
something. Therefore, we have computed two baseline scores to use as a
basis of comparison for our results. These baselines were calculated from
the hypernym and hyponym terms, without any use of graphs.

Random baseline

The random baseline accuracy was computed as the expected score for
each graph. Each graph consists of one hypernym and all of its WordNet
hypernyms. If a graph contains N terms in all, the chance of randomly
picking the right term as hypernym is 1/N . The overall baseline score is the
mean of the baseline scores for each graph.

The random baseline accuracy is 0.116 for the Gigaword model, and
0.115 for the Wikipedia model. This means that our hypernyms have
around eight hyponyms on average. Table 6.1 lists the baseline scores for
our models.

72

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.1

0.2

0.3

0.4

0.5
Av

er
ag

e
sc

or
e

Centrality measure
pagerank
degree
betweenness
random baseline
frequency baseline

Figure 6.2: Accuracy of hypernym predictions with Gigaword-based
models. Ties are broken arbitrarily.

Frequency baseline

In many cases, a hypernym is more common than its hyponyms. Figure 6.1
shows the hypernym “lamp” and its WordNet hyponyms. Here, we can
expect many of the terms, like “spotlight” and “limelight” to be less frequent
than “lamp”. Thus, if we assume that the most frequent term is the
hypernym, we should get a reasonable baseline. Our word embedding
models are ordered by frequency rank. We use this ordering to sort the
terms in our hypernym/hyponym sets by frequency.

We calculate the frequency baseline by selecting the most frequent term
in each set of hypernym/hyponyms. This proposed hypernym is then
evaluated with the usual scoring function, as described in section 6.2.5.

The frequency baseline is 0.242 for the Gigaword model, and 0.288 for
the Wikipedia model. In other words, the hypernym is the most frequent
term in around 25% of the cases. This is significantly better than the
random baseline.

6.3 Results

The Wikipedia and Gigaword models contain respectively 1248 and 1078
hypernyms matching our criteria. The accuracy of our hypernym predic-
tions varies greatly with the threshold and the centrality measure we use.

73

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.1

0.2

0.3

0.4

0.5
Av

er
ag

e
sc

or
e

Centrality measure
pagerank
degree
betweenness
random baseline
frequency baseline

Figure 6.3: Accuracy of hypernym predictions with Wikipedia-based
models. Ties are broken arbitrarily.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

sc
or

e

Centrality measure
pagerank
degree
betweenness
random baseline
frequency baseline

Figure 6.4: Accuracy of frequency assisted hypernym predictions with
Gigaword-based models

74

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.1

0.2

0.3

0.4

0.5
Av

er
ag

e
sc

or
e

Centrality measure
pagerank
degree
betweenness
random baseline
frequency baseline

Figure 6.5: Accuracy of frequency assisted hypernym predictions with
Wikipedia-based models

6.3.1 Ties broken arbitrarily

Table 6.2 lists the best thresholds and accuracy scores for the various
centrality measures, while fig. 6.2 and fig. 6.3 plots the accuracy scores for
different thresholds. For all three centrality measures, the best accuracy is
achieved with thresholds in the interval 0.2-0.5. This is consistent with the
results for word sense induction in section 5.4. There, the optimal threshold
values also lie in the range from 0.2 to 0.5.

The plots in fig. 6.2 and fig. 6.3 show that the betweenness measure
achieves a high accuracy even with low thresholds. This suggests that the
betweenness algorithm benefits appreciably from using edge weights. With
the betweenness measure, there is only small variation in the accuracy for
thresholds in the range from 0.0 to around 0.3.

Gigaword model

Figure 6.2 shows the accuracy of the hypernym predictions for graphs based
on the Gigaword model. Betweenness is the best overall centrality measure.
The best score of 0.308 is obtained with the threshold 0.263.

The degree centrality is second best in this configuration of hyper-
parameters, and beats the frequency baseline for substantial range of
thresholds, from around 0.2 to 0.5. PageRank yields the lowest accuracy
for this configuration, lower than the frequency baseline. This suggests that
the frequency baseline is quite strong.

75

Wikipedia model

Figure 6.3 shows the accuracy of our predicted hypernyms for graphs based
on the Wikipedia model. Here, the betweenness centrality is also best
overall. The best accuracy, 0.320, is obtained with a threshold of 0.333.
In addition to this global optimum, the betweenness score has several local
optima, for instance around threshold 0.18, where the accuracy is around
0.31.

The degree centrality is second best for a wide range of thresholds for
this model as well. However, PageRank has a peak for threshold 0.394
which beats the degree centrality by a small margin. For this model,
only betweenness manages to beat the frequency baseline by a significant
margin. PageRank and degree centrality only matches the frequency
baseline.

6.3.2 Ties broken by term frequency

Table 6.3 lists the best thresholds and accuracy scores for the different
centrality measures when ties are broken by frequency. These scores
are considerably higher than the results above, where ties are broken
arbitrarily. Both betweenness and degree centrality beat the frequency
baseline by a large margin. This confirms our hypothesis that term
frequency is useful in predicting hypernymy.

Gigaword model

Figure 6.4 shows the accuracy of the frequency assisted hypernym predic-
tions for the Gigaword model. While the optimum threshold varies between
the different centrality measures, the peaks mostly lie in the range between
0.2 and 0.5. The only exception is the betweenness centrality, which has
its maximum score for thresholds around 0.08. However, this optimum is
lower than the one for the degree centrality. For this setup, the degree cent-
rality outperforms betweenness by a clear margin. The best score of 0.410
is obtained with a threshold of 0.283. It is clear that degree centrality bene-
fits more from frequency information than does betweenness. The reason
for this is probably that the degree centrality has more ties.

Table 6.3 shows that the degree centrality results in ties for 406
graphs, while the number is only 201 for betweenness. Since we use
1078 hypernyms from the Gigaword model, this means that around 38%
of the graphs result in ties with the degree centrality. As discussed in
section 6.2.6, the degree centrality has a smaller range of output values than
betweenness. Degree centrality is limited upwards by the number of nodes
in the graph. Since there are fewer values to choose from, more nodes are
likely to be assigned the same value, and there will probably be more nodes
in a tie than with betweenness. In all, we can expect the degree centrality
to yield more ties involving more terms than betweenness. This means that
there is more use for the frequency information, and we have more nodes
in a tie to “choose” from.

76

Model Centrality A Best ε # FC A FC A ex. FC # ties A ties

Gigaword Random baseline 0.116 – – – – – –
Gigaword Frequency baseline 0.242 – – – – – –
Gigaword PageRank 0.243 0.343 31 0.097 0.247 48 0.375
Gigaword Degree 0.282 0.343 31 0.097 0.287 373 0.351
Gigaword Betweenness 0.308 0.263 75 0.080 0.325 195 0.221

Wikipedia Random baseline 0.115 – – – – – –
Wikipedia Frequency baseline 0.288 – – – – – –
Wikipedia PageRank 0.292 0.394 50 0.180 0.297 48 0.417
Wikipedia Degree 0.289 0.354 74 0.149 0.298 425 0.278
Wikipedia Betweenness 0.320 0.333 86 0.140 0.333 242 0.194

Legend: FC: fully connected, A: accuracy, ex.: excluding

Table 6.2: Accuracy scores with ties broken arbitrarily

Wikipedia model

Figure 6.5 plots the accuracy scores of our hypernym predictions for the
Wikipedia model, when ties are broken by term frequency. Again, the
optimum threshold varies between the different centrality measures, and
the peaks mostly lie in the range between 0.2 and 0.5. The exception
is again the betweenness centrality, which has its maximum score for
thresholds around 0.09. Like for the Gigaword model, the degree centrality
outperforms the two other centrality measures by a substantial margin. The
best accuracy is 0.458, and is obtained with a threshold of 0.242 using the
degree centrality. This optimal threshold is somewhat smaller than for the
Gigaword-based model. Still, it is within the range from 0.2 to 0.5 that
tends to produce the best results. This lower optimum might be an arbitrary
effect, or it can be due to some interaction between the centrality scores and
the frequency data.

The accuracies for the Gigaword-based and Wikipedia-based models are
roughly the same. The difference in accuracy can probably be explained by
the different vocabularies of the two models. Yet, even the best accuracy
score is only moderate. We therefore do an error analysis to attempt to find
the reason for this low accuracy.

6.4 Error analysis

We have produced only moderately accurate predictions of hypernyms. The
results above show that the hypernym is the most central word in less
than one third of the graphs we have used for evaluation. We therefore
examine the data in an attempt to find reasons for this. All the data and
plots used here are for the best result with the Wikipedia model, ties broken
arbitrarily, threshold 0.333 and the betweenness centrality measure, unless
otherwise specified.

Table 6.4 lists the evaluation data for the first 40 of our selected
WordNet hypernyms. The first 10-15 lines contain terms from the top

77

Model Centrality A Best ε # FC A FC A ex. FC # ties A ties

Gigaword Random baseline 0.116 – – – – – –
Gigaword Frequency baseline 0.242 – – – – – –
Gigaword PageRank 0.257 0.343 31 0.097 0.262 48 0.688
Gigaword Degree 0.410 0.283 65 0.554 0.401 406 0.672
Gigaword Betweenness 0.362 0.081 481 0.407 0.325 201 0.567

Wikipedia Random baseline 0.115 – – – – – –
Wikipedia Frequency baseline 0.288 – – – – – –
Wikipedia PageRank 0.305 0.424 37 0.135 0.310 73 0.685
Wikipedia Degree 0.458 0.242 186 0.570 0.438 602 0.669
Wikipedia Betweenness 0.397 0.091 646 0.440 0.352 320 0.541

Legend: FC: fully connected, A: accuracy, ex.: excluding

Table 6.3: Accuracy scores with ties broken by term frequency

levels of the WordNet hierarchy, and are probably not quite representative
of the rest of the data. The term “substance” occurs twice, representing
two different synsets with different meanings. Of the actual hypernyms
listed in the table, around half are identical with the proposed hypernyms,
that is centers. This is better than the 32% overall accuracy. The table
shows that there can be a substantial difference between the centrality of
the proposed and actual hypernyms. Below, we examine the graphs of
selected hypernyms in greater detail.

There appears to be three major error sources that contribute to our low
accuracy scores, which we detail below. For comparison, fig. 6.6 illustrates
a case where the hypernym is the most central term.

6.4.1 Fully connected graphs

Even though some centrality measures take edge weight into account, fully
connected graphs make it harder to find or even define the most central
node. This is especially true when the edge weights are similar. In many
cases the centrality measure yields zero for all nodes.

Table 6.2 lists the number of fully connected graphs for the different
optimal thresholds. As expected, lower thresholds yield more edges, and
therefore more fully connected graphs. (These numbers are not comparable
across different models, that is Wikipedia and Gigaword.) Table 6.2 shows
that of the 1248 graphs based on the Wikipedia model, 86 are complete
using the optimal threshold for the betweenness measure. For these fully
connected graphs, the accuracy is 14.0%, which is less than half the total
accuracy of 32.0%. Table 6.3 also lists the scores we obtain when excluding
fully connected graphs. For the betweenness centrality, the accuracy
increases from 32.0% to 33.3% when complete graphs are excluded. Thus,
even though the betweenness measure can in theory find the center of
complete graphs based on the weights, this fails in many cases. This might
be because the weights are too similar.

For instance, fig. 6.7 shows the graph for the term “hawk” and its
hyponyms. This graph is fully connected, and all the nodes get a

78

Centrality

Hypernym Center Hypernym Center Difference

abstraction set 0.0 0.0 0.0
object object 66.0 66.0 0.0
whole assembly 0.0 0.0 0.0
organism organism 85.0 85.0 0.0
substance substance 11.0 11.0 0.0

substance humectant 3.0 66.0 63.0
matter substance 0.0 12.0 12.0
artifact paving 0.0 209.0 209.0
cognition perception 16.0 20.0 4.0
attribute trait 0.0 29.0 29.0

feeling emotion 47.0 71.0 24.0
shape shape 10.0 10.0 0.0
relation causality 2.0 36.0 34.0
communication message 0.0 6.0 6.0
phenomenon phenomenon 6.0 6.0 0.0

kindness kindness 1.0 1.0 0.0
accomplishment accomplishment 15.0 15.0 0.0
departure departure 1.0 1.0 0.0
discovery discovery 8.0 8.0 0.0
propulsion throw 10.0 21.0 11.0

recovery rescue 0.0 2.0 2.0
touch touch 20.0 20.0 0.0
arrival anchorage 0.0 2.0 2.0
entrance intrusion 0.0 2.0 2.0
withdrawal retreat 0.0 2.0 2.0

failure failure 3.0 3.0 0.0
mistake mistake 11.0 11.0 0.0
blunder bobble 1.0 1.0 0.0
acquisition inheritance 1.0 1.0 0.0
seizure seizure 1.0 1.0 0.0

rescue rescue 1.0 1.0 0.0
liberation emancipation 0.0 1.0 1.0
throw throw 13.0 13.0 0.0
pitch pitch 7.0 7.0 0.0
push push 2.0 2.0 0.0

pull pull 1.0 1.0 0.0
shooting shoot 0.0 5.0 5.0
connection interconnection 10.0 15.0 5.0
fastening bonding 4.0 6.0 2.0
determination validation 0.0 3.0 3.0

Table 6.4: Excerpt of WordNet betweenness centrality evaluation data for
the Wikipedia model, breaking ties arbitrarily.

79

toy (0)

griffon (0)

cur (0)

poodle (0)
dog (10)

Newfoundland (0)

spitz (0)

puppy (0)

pooch (0)

Leonberg (0)

pug (0)
lapdog (0)

corgi (0)

dalmatian (0)

Green diamond: hypernym, which is also most central

Figure 6.6: The hypernym “dog” and its WordNet hyponyms

betweenness score of zero. The betweenness scores are given in parenthesis
for each node in the plot. Figure 6.8 is another example of a fully connected
graph. Here, all nodes also get a betweenness of zero. In both cases, our
algorithm selects an arbitrary node as the proposed hypernym. “Hawk”
and “protein” are both concrete terms, but abstract terms can also yield
fully connected graphs. “Dislike” is an example of this, shown in fig. 6.9.

When we break ties by choosing an arbitrary node, we will sometimes
choose the correct hypernym by happy accident. This will happen with
probability p = 1/N , where N is number of nodes in the subgraph.

6.4.2 Ties

In addition to complete graphs, which often result in ties, other graphs can
also have ties. Then it is also impossible to determine a single most central
node. However, it might be possible to consider all the most central nodes
as candidate hypernyms.

Table 6.2 shows that the number of ties varies with the threshold and
centrality measure. Using the betweenness centrality, 242 of the 1248
graphs based on the Wikipedia model have two or more nodes that are tied
for the most central node. This constitutes 19% of the graphs, while for
Gigaword models the number of ties is slightly lower at 18%. Table 6.2 also
lists the accuracy score for graphs where there are ties. The accuracy for
the betweenness centrality with the Wikipedia model is 0.194. This is still

80

goshawk (0)

redtail (0)

falcon (0)

hawk (0)

osprey (0)

harrier (0)

buzzard (0)

kite (0)

Red triangle: hypernym, blue square: highest betweenness, centrality score
in parenthesis

Figure 6.7: The hypernym “hawk” and its WordNet hyponyms

81

ferritin (0)

protein (0)

fibrin (0)

antibody (0)

nucleoprotein (0)

cytokine (0)

gluten (0)

proteome (0)

phosphoprotein (0)

opsin (0)

enzyme (0)

capsid (0)

amyloid (0)

Red triangle: hypernym, blue square: highest betweenness, centrality score
in parenthesis

Figure 6.8: The hypernym “protein” and its WordNet hyponyms

82

antagonism (0)

disgust (0)

disinclination (0)

disapproval (0)

contempt (0)

alienation (0)

dislike (0)

antipathy (0)

Red triangle: hypernym, blue square: highest betweenness, centrality score
in parenthesis

Figure 6.9: The hypernym “dislike” and its WordNet hyponyms

amphibian (0)

fighter (0)

monoplane (0)

biplane (1)

airliner (0)

jet (0)

airplane (1)

seaplane (1)

bomber (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.10: The hypernym “airplane” and its WordNet hyponyms

83

fryer (0)

broiler (1)
chicken (1)

roaster (0)

capon (0)

hen (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.11: The hypernym “chicken” and its WordNet hyponyms

inferiority (1)

awkwardness (0)

limitation (1)

loss (7)

drawback (0)

defect (0)

penalty (0)

unprofitability (0)

disadvantage (7)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.12: The hypernym “disadvantage” and its WordNet hyponyms

84

better than the random baseline.
We could increase hypernym recall, at the cost of precision, by including

all the terms included in a tie as proposed hypernyms. Proposing multiple
hypernyms makes most sense when only a few terms are involved in the
tie. Giving more than 5 or 10 candidates is probably not very helpful. In the
extreme case of fully connected graphs, all the nodes often have the same
centrality score of zero. In this case, proposing all the terms as candidate
hypernyms does not give any information at all. Therefore, if precision is
an issue, the number of proposed hypernyms should be limited.

Figure 6.10 has the term “airplane” and its hyponyms. Here, the graph
is only nearly complete. As a result, the terms “airplane” and “biplane” are
tied for the top betweenness score, shown in parenthesis, with betweenness
1.0. Figure 6.11 plots the graph for the hypernym “chicken”. The hyponym
“broiler” is tied with “chicken” with a betweenness score of 1.0. An
abstract example is “disadvantage”, shown in fig. 6.12. In this plot, both
“disadvantage” and “loss” have centrality 7.0.

Naturally, when we use term frequency as a tiebreak, ties become much
less of an issue. Table 6.3 lists the accuracy scores when we use term
frequency to break ties. Here, the scores for graphs that have ties, in the
last column, are higher than the overall scores. This shows that frequency
assisted centrality is more useful than centrality alone.

6.4.3 Different center

In many cases, the graph simply has a center different from the hypernym.
This happens with both concrete and abstract terms. Figure 6.13 shows
an example with abstract terms. Here, “forgiveness” is more central
than the hypernym “kindness”. Again, the centrality scores are shown in
parenthesis in the plot. Similarly, fig. 6.14 shows the plot for the abstract
term “rejection”. Figure 6.15 displays a graph where the concrete hypernym
“larva” has centrality 0.0, while “caterpillar” has centrality 5.0. Figure 6.16
plots the graph for the term “cloud”.

6.5 Summary

The results show that there is some correspondence between centrality
and hypernymy in our hypernym/hyponym graphs. The hypernym is the
most central term in at best around 32% of the cases. This suggests that
centrality alone is insufficient to determine hypernymy. However, when we
additionally use term frequency to break ties in centrality, the results are
better with accuracy around 46%.

All our centrality measures consistently beat the random baseline. With
ties broken arbitrarily, only betweenness beats the stronger frequency
baseline. When term frequency is utilized, both betweenness and degree
centrality beat the frequency baseline by a substantial margin. Our results
are consistent across the two models and corpora used. We can therefore
expect similar performance with other comparable models and corpora.

85

kindness (0)

favor (4)

endearment (0)

benevolence (0)

forgiveness (6)

consideration (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.13: The hypernym “kindness” and its WordNet hyponyms

abandonment (4)

banishment (0)

rejection (0)

displacement (0)

renunciation (0)

avoidance (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.14: The hypernym “rejection” and its WordNet hyponyms

86

mealworm (0)
caterpillar (5)

cercaria (0)

wiggler (0)

doodlebug (0)

leptocephalus (0)

larva (0)

grub (5)

tadpole (0)

bot (0)

nymph (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.15: The hypernym “larva” and its WordNet hyponyms

cumulonimbus (1)

cumulus (0)

cirrocumulus (0)

cirrus (0)

cloud (0)

nimbus (0)

stratus (0)

contrail (0)

Red triangle: hypernym, blue square: highest betweenness

Figure 6.16: The hypernym “cloud” and its WordNet hyponyms

87

Depending on the requirements of a specific application, even 46%
accuracy might not be sufficient. In such cases, graph centrality might
be useful as one of many features in a larger hypernym induction system.
Our results suggest that such a feature extraction algorithm should employ
the degree centrality measure, using term frequency to break ties. An
appropriate threshold seems to be in the range from 0.2 to 0.5.

However, to use this method, either alone or as part of a larger system,
we would need a quite small neighborhood graph containing hypernym and
hyponym candidates. Selecting the terms that are relevant to include in this
neighborhood graph is another substantial task in itself.

As extrinsic evaluation of our converted graph models, these results
seem to agree with the results in the previous chapters, both in terms of
performance and optimum threshold. The intrinsic evaluation showed that
our converted models could yield performance within 80% to 94% of the
performance of the original model. In this chapter, we have determined
that we can use our converted models for hypernym discovery. This tells us
that our converted models retains information that is useful for this task.

While the optimum threshold varies between the different centrality
measures, the maxima tend to lie in the range between 0.2 and 0.5. This
result is consistent with the evaluation of the threshold method in the
previous two chapters. In both the intrinsic evaluation and the evaluation
by word sense induction, we found it beneficial to drop some edges. In both
cases, the optimal threshold was in the range from 0.2 to 0.5. In summary,
we have demonstrated that we can use our converted graph models for
hypernym discovery. However, there still remains work to turn this into
a complete hypernym discovery system.

The next chapter is the conclusion of this thesis. We summarize our
results, and draw a conclusion. We also discuss possible future work.

88

Chapter 7

Conclusion

In this thesis, we have made and evaluated procedures for converting
between different lexical semantic representations. To the best of our
knowledge, this is the first work that sets out to do a comprehensive
evaluation of conversion between lexical semantic vector space models
and graph models. We have implemented three different methods for
converting from vector space models to graph models: the threshold
method, the kNN method and the variable-k method. We have also
implemented a single method for converting from graph models to word
embedding models. Further, we have done comprehensive evaluation of
our conversion procedures and their results. We have performed extensive
intrinsic evaluation using SimLex-999 (Hill, Reichart and Korhonen 2015)
and other gold standard data sets from the wordvectors.org (Faruqui and
Dyer 2014) evaluation suite. We have also done extrinsic evaluation of
our converted graph models. We have evaluated our graph models in
two real-world tasks: word sense induction/disambiguation and hypernym
discovery.

The use of word embeddings has become widespread, in large part
because of the increasing prevalence of deep learning methods. However,
training high quality word embeddings is time-consuming and requires
large corpora. Therefore, an increasing number of pre-trained word
embedding models have been made available, for instance by the Nordic
language processing laboratory.1 These pre-trained word embeddings are
useful in many natural language processing tasks. However, there are
also many graph-based algorithms, which cannot use word embeddings
directly. In this thesis, we have converted high-quality word embeddings to
graph models. Thus, we have been able to use these models in graph-based
algorithms. We have also evaluated our conversion results thoroughly.

7.1 Results and contributions

We have hypothesized that we can convert lexical semantic representations
without significant loss. Our results support this hypothesis. Our

1 http://vectors.nlpl.eu/repository/

89

http://vectors.nlpl.eu/repository/

evaluation shows that all three of our methods are suitable for converting
vector space models to graph models. All our conversion methods leave
out some potential edges, so they are certainly lossy. Nevertheless, our
evaluation shows that we can achieve good results despite leaving out a vast
majority of the edges. This shows that the left out, low similarity edges do
not contribute information that is significant for our tasks.

We have also hypothesized that filtering out or dropping low similarity
edges is advantageous. Our results in both the intrinsic and extrinsic
evaluation support this. Across all tasks, graph models with a large amount
of edges filtered out outperform complete graphs. This applies to both
time/space use and the various evaluation metrics. We can therefore
conclude that producing complete graphs is rarely desirable.

The methods have different benefits and drawbacks that make them
suitable for different problems. Thus, the best conversion method and
hyperparameters is task specific. The threshold method is most likely
to produce graphs with a small-world structure. Some algorithms, such
as HyperLex, work only with small-world graphs. Therefore, they likely
require the threshold method. For the threshold method, we achieve the
best evaluation results with thresholds in the range between 0.2 and 0.5.
This applies to both the intrinsic and the extrinsic evaluation. However,
the actual optimal value differs between different applications, and must
be determined by evaluation in the actual application.

Both the kNN method and the variable-k method outperform the
threshold method on the SimLex-999 intrinsic evaluation. Therefore, one
of these methods is probably preferable for applications that do not require
small-world graphs. The variable-k method stores less information about
infrequent terms, and is therefore unlikely to be optimal in applications
where infrequent terms are important. For both these methods, the
optimum value of k varies with the model size. Therefore, an appropriate
value should be chosen by doing an evaluation in the intended application.

When developing an application based on converting vector space
models to graphs, we should evaluate all three conversion methods with
a wide range of parameters. This way, we ensure a thorough exploration of
the parameter space. However, this requires a performance metric for the
application.

We have also evaluated our procedure for converting graph models to
word embeddings. Our conversion method consists of simply using the
adjacency matrix as a vector model. We perform dimensionality reduction
on the adjacency matrix to obtain our converted word embeddings. While
there are many other methods based on the adjacency matrix, as discussed
in section 3.1.3, this simple approach does not seem common. However,
our method only works with weighted graphs. This conversion has only
one parameter, which is the dimensionality of the word embeddings. This
conversion is therefore simple to evaluate. We have kept the dimensionality
fixed at 300, which is the size of the pre-trained word embeddings we have
used for evaluation. While it would have been interesting to evaluate the
effect of the vector dimensionality as well, we deemed that to be outside the
scope of this thesis. We have only evaluated this procedure as part of the

90

intrinsic evaluation, with SimLex-999 and the wordvectors.org evaluation
suite. Our intrinsic evaluation has shown that this conversion method
works well. We have obtained scores within 80% to 94% of the original
models with both SimLex-999 and most of the other gold data sets. These
scores are for the full evaluation, converting from word embeddings to a
graph model, and back to word embeddings. Therefore, some of the loss
can be attributed to the first conversion from word embeddings to graph
model. These results suggest that the conversion loss is small in both
conversion steps.

We have performed extrinsic evaluation of our converted graph models
in two real-world tasks. The results of the extrinsic evaluation agree with
the intrinsic evaluation. We have demonstrated that our graph models are
suitable for use in both word sense induction and hypernym discovery. We
have successfully used HyperLex for word sense induction based on our
graph models. We have also demonstrated that spinglass clustering can
be used for word sense induction, outperforming our implementation of
HyperLex.

We have made the following three contributions to the field of natural
language processing in this thesis:

Conversion methods and evaluation. Our first contribution is the
software procedures for converting between different lexical semantic
representations. Our procedures implement three methods for converting
from vector space models to graph models, and one method for converting
the other way. All the project software is freely available on GitHub.2

Additionally, we have contributed a comprehensive evaluation of these
conversion procedures. We have done a thorough intrinsic evaluation of
our conversion in both directions. For the extrinsic evaluation, we have
focused on the conversion from word embeddings to graph models. These
conversion procedures and the evaluation should be useful in projects
involving a combination of vector and graph lexical semantic models.

Word sense induction method. Our method for word sense induc-
tion is another contribution. Traditionally, HyperLex has been used with
co-occurrence graphs based on small corpora made from contexts of the
target word (Véronis 2004). Therefore, the co-occurrence graphs only con-
tain semantic information from these limited contexts. We have used Hy-
perLex and spinglass clustering with graphs converted from high quality
word embeddings trained on large, diverse corpora. We have shown that
when these word embeddings are converted to a graph model, the result
can be a good representation of the target term and its context. Our system
outperformed seven of the nine participants in the WSI part of SemEval-
2013 task 11 (Navigli and Vannella 2013).

Hypernym discovery method. Our last contribution is our experi-
mental method of hypernym discovery. We have shown that graph cent-

2 https://github.com/ewinge/converter

91

https://github.com/ewinge/converter

rality can indicate hypernymy. This can be useful as a feature in a larger
hypernym discovery or taxonomy extraction system. Our method requires
a small graph of candidate terms, but it should be possible to develop a
method for constructing such graphs from a text.

7.2 Future work

We have made three different procedures for converting vector space
models. However, it might be possible to better utilize local structure in the
vector space. It would be beneficial to vary the number of edges depending
on the density of the vector space. With the threshold method, this happens
automatically, to some extent. Dense regions of the vector space will have
nodes that are closer, and thus are more likely to have similarity above the
threshold. However, with the kNN method all nodes get the same number
of neighbors or edges. If we could use higher values of k for dense regions
of the vector space, and lower for sparse regions, the resulting graph would
better reflect the VSM. This should also yield graphs with a more small-
world like structure.

Further, our word sense induction method can probably be improved.
It would be useful to support multi-word entities in the algorithm.
Our current approach only supports multi-word entities that exist as
embeddings in the word embedding model. We can add support for
combining terms into multi-word entities either by vector arithmetic before
the conversion, or by merging nodes in the graph model. Different
implementations of these two approaches should be evaluated to determine
the best method.

Our hypernym discovery method should also be explored further.
Hypernym discovery is a challenging but important task. It is useful in
both information retrieval and artificial intelligence. While we show that it
is possible to use centrality to predict hypernyms, we have not developed a
way to apply this to text. To use our method on a text, we must extract
relevant candidate nouns from the text. Different methods of selecting
candidate nouns and the size of the context to look in should be evaluated.

It would also be interesting to combine our hypernym discovery method
with other graph-based methods for taxonomy extraction. For example,
Jana and Goyal (2018) employ five other graph measures for co-hyponymy
detection. They use graph measures such as shortest path between nodes
and edge density in neighborhoods in a supervised classifier. While their
method is based on co-occurrence graphs, not word embeddings, it would
be interesting to adopt this method to our converted graph models. In
conclusion, there are many opportunities for future research following up
on the results in this thesis.

92

Bibliography

Agirre, Eneko, Enrique Alfonseca et al. (2009). ‘A Study on Similarity and
Relatedness Using Distributional and WordNet-Based Approaches’. In:
Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for
Computational Linguistics. NAACL ’09. Boulder, Colorado, pp. 19–27.

Agirre, Eneko, David Martínez et al. (2006). ‘Two Graph-Based Algorithms
for State-of-the-Art WSD’. In: Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing. EMNLP ’06.
Sydney, Australia, pp. 585–593.

Baker, Simon, Roi Reichart and Anna Korhonen (2014). ‘An Unsupervised
Model for Instance Level Subcategorization Acquisition’. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing. Doha, Qatar, pp. 278–289.

Barabási, Albert-László and Réka Albert (1999). ‘Emergence of Scaling in
Random Networks’. In: Science 286.5439, pp. 509–512.

Baroni, Marco, Georgiana Dinu and Germán Kruszewski (2014). ‘Don’t
Count, Predict! A Systematic Comparison of Context-Counting vs.
Context-Predicting Semantic Vectors’. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Baltimore, Maryland, pp. 238–247.

Bengio, Yoshua et al. (2003). ‘A Neural Probabilistic Language Model’. In:
Journal of machine learning research 3 (Feb), pp. 1137–1155.

Bernier-Colborne, Gabriel and Caroline Barriere (2018). ‘CRIM at SemEval-
2018 Task 9: A Hybrid Approach to Hypernym Discovery’. In: Proceed-
ings of The 12th International Workshop on Semantic Evaluation. New
Orleans, Louisiana, pp. 725–731.

Biemann, Chris (2016). ‘Vectors or Graphs? On Differences of Repres-
entations for Distributional Semantic Models’. In: Proceedings of the
5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V). The
26th International Conference on Computational Linguistics (COLING
2016). Osaka, Japan, pp. 1–7.

Bird, Steven and Edward Loper (2004). ‘NLTK: The Natural Language
Toolkit’. In: Proceedings of the ACL 2004 on Interactive Poster and
Demonstration Sessions. ACLdemo ’04. Barcelona, Spain.

Bojanowski, Piotr et al. (2017). ‘Enriching Word Vectors with Subword
Information’. In: Transactions of the Association for Computational
Linguistics 5, pp. 135–146.

93

Bordea, Georgeta, Paul Buitelaar et al. (2015). ‘SemEval-2015 Task 17:
Taxonomy Extraction Evaluation (TExEval)’. In: Proceedings of the
9th International Workshop on Semantic Evaluation (SemEval 2015).
Denver, Colorado, pp. 902–910.

Bordea, Georgeta, Els Lefever and Paul Buitelaar (2016). ‘Semeval-2016
Task 13: Taxonomy Extraction Evaluation (Texeval-2)’. In: Proceedings
of the 10th International Workshop on Semantic Evaluation (SemEval-
2016). San Diego, California, USA, pp. 1081–1091.

Brown, Peter F. et al. (1992). ‘Class-Based N-Gram Models of Natural
Language’. In: Computational Linguistics 18.4, pp. 467–479.

Bruni, Elia et al. (2012). ‘Distributional Semantics in Technicolor’. In: Pro-
ceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics. ACL ’12. Jeju, Republic of Korea, pp. 136–145.

Camacho-Collados, Jose et al. (2018). ‘SemEval-2018 Task 9: Hypernym
Discovery’. In: Proceedings of The 12th International Workshop on
Semantic Evaluation. New Orleans, Louisiana, pp. 712–724.

Cao, Shaosheng, Wei Lu and Qiongkai Xu (2015). ‘GraRep: Learning Graph
Representations with Global Structural Information’. In: Proceedings
of the 24th ACM International on Conference on Information and
Knowledge Management. CIKM ’15. New York, NY, USA, pp. 891–900.

Cao, Shaosheng, Wei Lu and Qiongkai Xu (2016). ‘Deep Neural Networks
for Learning Graph Representations’. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona,
pp. 1145–1152.

Church, Kenneth Ward and Patrick Hanks (1989). ‘Word Association
Norms, Mutual Information, and Lexicography’. In: Proceedings of the
27th Annual Meeting on Association for Computational Linguistics.
ACL ’89. Vancouver, British Columbia, Canada, pp. 76–83.

Csardi, Gabor and Tamas Nepusz (2006). ‘The Igraph Software Package
for Complex Network Research’. In: InterJournal, Complex Systems
1695.5, pp. 1–9.

Deerwester, Scott et al. (1990). ‘Indexing by Latent Semantic Analysis’. In:
Journal of the American Society for Information Science 41.6, pp. 391–
407.

Fares, Murhaf et al. (2017). ‘Word Vectors, Reuse, and Replicability: To-
wards a Community Repository of Large-Text Resources’. In: Pro-
ceedings of the 21st Nordic Conference on Computational Linguistics,
NoDaLiDa. Gothenburg, Sweden, pp. 271–276.

Faruqui, Manaal and Chris Dyer (2014). ‘Community Evaluation and Ex-
change of Word Vectors at Wordvectors.Org’. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguist-
ics: System Demonstrations. Baltimore, USA.

Finkelstein, Lev et al. (2002). ‘Placing Search in Context: The Concept Re-
visited’. In: ACM Transactions on Information Systems 20.1, pp. 116–
131.

Firth, J. R. (1935). ‘The Technique of Semantics.’ In: Transactions of the
Philological Society 34.1, pp. 36–73.

94

Firth, J. R. (1957). ‘A Synopsis of Linguistic Theory 1930-55.’ In: Studies in
Linguistic Analysis, pp. 1–32.

Gliozzo, Alfio et al. (2013). ‘JoBimText Visualizer: A Graph-Based Ap-
proach to Contextualizing Distributional Similarity’. In: Proceedings
of TextGraphs@EMNLP 2013: The 8th Workshop on Graph-Based
Methods for Natural Language Processing. Seattle, Washington, USA,
pp. 6–10.

Goldberg, Yoav (2016). ‘A Primer on Neural Network Models for Natural
Language Processing’. In: Journal of Artificial Intelligence Research
57.1, pp. 345–420.

Grover, Aditya and Jure Leskovec (2016). ‘Node2Vec: Scalable Feature
Learning for Networks’. In: Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
KDD ’16. New York, NY, USA, pp. 855–864.

Gutmann, Michael and Aapo Hyvärinen (−0013–2010). ‘Noise-Contrastive
Estimation: A New Estimation Principle for Unnormalized Statistical
Models’. In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics. Vol. 9. Proceedings of Machine
Learning Research. Sardinia, Italy, pp. 297–304.

Gyllensten, Amaru Cuba and Magnus Sahlgren (2015). ‘Navigating the Se-
mantic Horizon Using Relative Neighborhood Graphs’. In: Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal, pp. 2451–2460.

Halawi, Guy et al. (2012). ‘Large-Scale Learning of Word Relatedness with
Constraints’. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’12.
Beijing, China, pp. 1406–1414.

Halko, Nathan, Per-Gunnar Martinsson and Joel A. Tropp (2011). ‘Finding
Structure with Randomness: Probabilistic Algorithms for Constructing
Approximate Matrix Decompositions’. In: SIAM Review 53.2, pp. 217–
288.

Hamilton, Will, Zhitao Ying and Jure Leskovec (2017). ‘Inductive Repres-
entation Learning on Large Graphs’. In: Advances in Neural Inform-
ation Processing Systems 30. Long Beach, California, USA, pp. 1024–
1034.

Hamilton, William L., Rex Ying and Jure Leskovec (2017). ‘Representation
Learning on Graphs: Methods and Applications’. In: arXiv: 1709.05584
[cs].

Harris, Zellig (1954). ‘Distributional Structure’. In: Word 10.23, pp. 146–
162.

Hearst, Marti A. (1992). ‘Automatic Acquisition of Hyponyms from Large
Text Corpora’. In: COLING 1992: Proceedings of the 15th International
Conference on Computational Linguistics, Volume 2. Nantes, France.

Hill, Felix, Roi Reichart and Anna Korhonen (2015). ‘SimLex-999: Evaluat-
ing Semantic Models With (Genuine) Similarity Estimation’. In: Com-
putational Linguistics 41.4, pp. 665–695.

Hubert, Lawrence and Phipps Arabie (1985). ‘Comparing Partitions’. In:
Journal of Classification 2.1, pp. 193–218.

95

http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584

Jaccard, Paul (1901). ‘Étude Comparative de La Distribution Florale Dans
Une Portion Des Alpes et Des Jura’. In: Bulletin del la Société Vaudoise
des Sciences Naturelles 37, pp. 547–579.

Jana, Abhik and Pawan Goyal (2018). ‘Network Features Based Co-
Hyponymy Detection’. In: Proceedings of the Eleventh International
Conference on Language Resources and Evaluation. Miyazaki, Japan.

Kanerva, P., J. Kristofersson and A. Holst (2000). ‘Random Indexing of
Text Samples for Latent Semantic Analysis’. In: Proceedings of the 22nd
Annual Conference of the Cognitive Science Society. Vol. 22. Erlbaum,
New Jersey, p. 1036.

Kilgarriff, A. and M. Palmer (2000). ‘Introduction to the Special Issue on
SENSEVAL’. In: Computers and the Humanities 34.1, pp. 1–13.

Lee, Daniel D. and H. Sebastian Seung (1999). ‘Learning the Parts of
Objects by Non-Negative Matrix Factorization’. In: Nature 401.6755,
p. 788.

Lesk, Michael (1986). ‘Automatic Sense Disambiguation Using Machine
Readable Dictionaries: How to Tell a Pine Cone from an Ice Cream
Cone’. In: Proceedings of the 5th Annual International Conference
on Systems Documentation. SIGDOC ’86. Toronto, Ontario, Canada,
pp. 24–26.

Luong, Thang, Richard Socher and Christopher Manning (2013). ‘Better
Word Representations with Recursive Neural Networks for Morpho-
logy’. In: Proceedings of the Seventeenth Conference on Computational
Natural Language Learning. Sofia, Bulgaria, pp. 104–113.

Manandhar, Suresh et al. (2010). ‘SemEval-2010 Task 14: Word Sense
Induction & Disambiguation’. In: Proceedings of the 5th International
Workshop on Semantic Evaluation. Uppsala, Sweden, pp. 63–68.

Manning, Christopher D. (1999). Foundations of Statistical Natural Lan-
guage Processing. In collab. with Hinrich Schütze. Cambridge, Mass:
MIT Press.

Manning, Christopher et al. (2014). ‘The Stanford CoreNLP Natural Lan-
guage Processing Toolkit’. In: Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstra-
tions. Baltimore, Maryland, pp. 55–60.

Mikolov, Tomas, Kai Chen et al. (2013). ‘Efficient Estimation of Word
Representations in Vector Space’. In: arXiv: 1301.3781 [cs].

Mikolov, Tomas, Ilya Sutskever et al. (2013). ‘Distributed Representations
of Words and Phrases and Their Compositionality’. In: Advances in
Neural Information Processing Systems 26. Lake Tahoe, Nevada, USA,
pp. 3111–3119.

Milgram, Stanley (1967). ‘The Small World Problem’. In: Psychology Today
1.1, pp. 60–67.

Miller, George A. (1995). ‘WordNet: A Lexical Database for English’. In:
Communications of the ACM 38.11, pp. 39–41.

Miller, George A. and Walter G. Charles (1991). ‘Contextual Correlates of
Semantic Similarity’. In: Language and Cognitive Processes 6.1, pp. 1–
28.

96

http://arxiv.org/abs/1301.3781

Navigli, Roberto (2012). ‘A Quick Tour of Word Sense Disambiguation, In-
duction and Related Approaches’. In: Proceedings of the 38th Interna-
tional Conference on Current Trends in Theory and Practice of Com-
puter Science. SOFSEM’12. Špindlerův Mlýn, Czech Republic, pp. 115–
129.

Navigli, Roberto and Giuseppe Crisafulli (2010). ‘Inducing Word Senses to
Improve Web Search Result Clustering’. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing.
Cambridge, MA, pp. 116–126.

Navigli, Roberto and Daniele Vannella (2013). ‘SemEval-2013 Task 11:
Word Sense Induction and Disambiguation within an End-User Applic-
ation’. In: Second Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013). Atlanta, Georgia,
USA, pp. 193–201.

Osgood, Charles E., George J. Suci and Percy H. Tannenbaum (1957). The
Measurement of Meaning. Urbana, Ill: University of Illinois Press.

Ou, Mingdong et al. (2016). ‘Asymmetric Transitivity Preserving Graph
Embedding’. In: Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. New
York, NY, USA, pp. 1105–1114.

Parker, Robert et al. (2011). English Gigaword Fifth Edition LDC2011T07.
Philadelphia: Linguistic Data Consortium.

Pedregosa, F. et al. (2011). ‘Scikit-Learn: Machine Learning in Python’. In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Pennington, Jeffrey, Richard Socher and Christopher Manning (2014).
‘Glove: Global Vectors for Word Representation’. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language
Processing. Doha, Qatar, pp. 1532–1543.

Perozzi, Bryan, Rami Al-Rfou and Steven Skiena (2014). ‘DeepWalk: Online
Learning of Social Representations’. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’14. New York, NY, USA, pp. 701–710.

Piña, Luis Nieto and Richard Johansson (2016). ‘Embedding Senses for
Efficient Graph-Based Word Sense Disambiguation’. In: Proceedings of
the 2016 Workshop on Graph-Based Methods for Natural Language
Processing, NAACL-HLT 2016. San Diego, California, USA, pp. 1–5.

Radinsky, Kira et al. (2011). ‘A Word at a Time: Computing Word
Relatedness Using Temporal Semantic Analysis’. In: Proceedings of
the 20th International Conference on World Wide Web. WWW ’11.
Hyderabad, India, pp. 337–346.

Rand, William M. (1971). ‘Objective Criteria for the Evaluation of Clustering
Methods’. In: Journal of the American Statistical Association 66.336,
pp. 846–850. JSTOR: 2284239.

Řehůřek, Radim and Petr Sojka (2010). ‘Software Framework for Topic
Modelling with Large Corpora’. English. In: Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks. Valletta,
Malta, pp. 45–50.

97

http://www.jstor.org/stable/2284239

Reichardt, Joerg and Stefan Bornholdt (2006). ‘Statistical Mechanics of
Community Detection’. In: Physical Review E 74.1. arXiv: cond- mat/
0603718.

Roller, Stephen, Douwe Kiela and Maximilian Nickel (2018). ‘Hearst Pat-
terns Revisited: Automatic Hypernym Detection from Large Text Cor-
pora’. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Melbourne,
Australia, pp. 358–363.

Rong, Xin (2014). ‘Word2vec Parameter Learning Explained’. In: arXiv:
1411.2738 [cs].

Rubenstein, Herbert and John B. Goodenough (1965). ‘Contextual Correl-
ates of Synonymy’. In: Communications of the ACM 8.10, pp. 627–633.

Steyvers, Mark and Joshua B. Tenenbaum (2005). ‘The Large-Scale
Structure of Semantic Networks: Statistical Analyses and a Model of
Semantic Growth’. In: Cognitive science 29.1, pp. 41–78.

Turney, P. D. and P. Pantel (2010). ‘From Frequency to Meaning: Vector
Space Models of Semantics’. In: Journal of Artificial Intelligence
Research 37, pp. 141–188.

Ustalov, Dmitry et al. (2018). ‘Unsupervised Semantic Frame Induction
Using Triclustering’. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers).
Melbourne, Australia, pp. 55–62.

Van der Maaten, L. J. P. and G. E. Hinton (2008). ‘Visualizing High-
Dimensional Data Using t-SNE’. In: Journal of Machine Learning
Research 9 (nov), pp. 2579–2605.

Van Rijsbergen, C.J. (1979). Information Retrieval. 2nd ed. London:
Butterworths.

Véronis, Jean (2004). ‘HyperLex: Lexical Cartography for Information
Retrieval’. In: Computer Speech and Language 18, pp. 223–252.

Walt, Stéfan van der, S. Chris Colbert and Gaël Varoquaux (2011). ‘The
NumPy Array: A Structure for Efficient Numerical Computation’. In:
Computing in Science & Engineering 13.2, pp. 22–30.

Wang, Chengyu, Xiaofeng He and Aoying Zhou (2017). ‘A Short Survey
on Taxonomy Learning from Text Corpora: Issues, Resources and
Recent Advances’. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Copenhagen, Denmark,
pp. 1190–1203.

Wang, Daixin, Peng Cui and Wenwu Zhu (2016). ‘Structural Deep Network
Embedding’. In: Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. New
York, NY, USA, pp. 1225–1234.

Watts, Duncan J. and Steven H. Strogatz (1998). ‘Collective Dynamics of
‘Small-World’ Networks’. In: Nature 393.6684, pp. 440–442.

Wittgenstein, Ludwig (1953). Philosophical Investigations. Translated by
G.E.M. Anscombe. Oxford: Blackwell.

Yang, Dongqiang and David M. W. Powers (2006). ‘Verb Similarity on
the Taxonomy of Wordnet’. In: Proceedings of the Third International
WordNet Conference. South Jeju Island, Korea.

98

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/1411.2738

	Introduction
	Distributional semantic models
	Distributional semantics
	Tokens, types, full-forms and lexemes
	Corpus processing
	Contexts
	Measuring similarity

	Vector models
	Vector representations
	Weighting
	Measuring similarity
	Word embeddings
	Dimensionality reduction
	Prediction based models
	Word embeddings in neural networks
	Strengths, weaknesses and applications

	Graph models
	Graph distributional semantic models
	Semantic networks
	Visualization
	Strengths, weaknesses and applications

	Summary

	Converting between graph and vector models
	Background and previous work
	VSM to graph conversion
	Local graph views
	Graph to VSM conversion
	Generalized node embeddings

	Converting from a vector space model to a graph model
	Threshold method
	Nearest neighbors method
	Variable-k method
	Implementation

	Converting from a graph model to a vector space model
	Sparse matrices
	Dimensionality reduction
	Implementation

	Summary

	Conversion evaluation by word similarity
	Distributional semantic model evaluation
	Evaluating conversion results
	SimLex-999 evaluation
	Python implementation
	Threshold method
	kNN method
	Variable-k method

	Wordvectors.org evaluation suite
	Summary

	Conversion evaluation by word sense induction
	Word senses
	Word sense disambiguation
	Word sense induction
	HyperLex

	Implementation
	Graph model
	Neighborhood graph extraction
	HyperLex
	Igraph spinglass community detection
	Alternative, on-the-fly conversion

	Evaluation
	Results
	Spinglass
	HyperLex

	Error analysis
	Summary

	Conversion evaluation by WordNet hypernym discovery
	Previous work
	Implementation
	Graph construction
	Hypernym proposal
	Centrality
	Models
	Evaluation
	Centrality ties
	Baselines

	Results
	Ties broken arbitrarily
	Ties broken by term frequency

	Error analysis
	Fully connected graphs
	Ties
	Different center

	Summary

	Conclusion
	Results and contributions
	Future work

