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Summary 

1. Surveillance of wildlife diseases is logistically difficult, and imperfect detection is a recurrent 

challenge for disease estimation. Using citizen science can increase sample sizes, but it is associated 

with a cost in terms of the anatomical type and quality of the sample. Additionally, biological tissue 

samples from remote areas lose quality due to autolysis. These challenges are faced in the case of 

emerging Chronic Wasting Disease (CWD) in cervids.  

2. Here, we develop a stochastic scenario tree model of diagnostic sensitivity, allowing for a mixture 

of tissue sample types (lymph nodes and brain) and qualities while accounting for different detection 

probabilities during the CWD infection, lasting 2-3 years. We apply the diagnostic sensitivity in a 

Bayesian framework, enabling estimation of age-class-specific true prevalence, including the 

prevalence in latent, recently infected stages. We provide a simulation framework to estimate the 

sensitivity of the surveillance system (i.e., the probability of detecting the infection in a given 

population), when detectability varies among individuals due to different disease progression.  

3. We demonstrate the utility of our framework by applying it to the recent emergence of CWD in a 

European population of reindeer. We estimated apparent CWD prevalence at 1.2 % of adults in the 

infected population of wild reindeer, while the true prevalence was 1.6 %. The sensitivity estimation 

of the CWD surveillance was performed in an adjacent small (~500) and a large (~10,000) reindeer 

population, demonstrating low certainty of CWD absence. 

4. Our method has immediate application to the mandatory testing for CWD in EU countries 

commencing in 2018. Similar approaches that account for latent stages and a serial disease 

progression in various tissues with a temporal pattern of diagnostic sensitivity may enhance the 

estimation of the prevalence of wildlife diseases more generally. 
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Key-words: Bayesian estimation methods, surveillance, wildlife diseases, diagnostic sensitivity, test 

sensitivity, chronic wasting disease, prevalence, prions, PrPCWD 

 

Introduction 

Management of emerging wildlife diseases is a challenge in many parts of the world (Jones et al., 

2008). Mitigating diseases of wildlife often requires estimation of prevalence at a population level, 

either to determine status or whether a disease is emerging or not (Funk et al., 2013). Equally 

important is the assessment of the probability of detecting a disease in a population for a certain 

design prevalence, i.e., the sensitivity of the surveillance system (Martin, Cameron & Greiner 2007). 

In early epidemic stages, the prevalence is low and large sample sizes are required to detect the 

infection when using active surveillance (Doherr & Audigé 2001). Therefore, also establishing the 

absence of disease requires large efforts. For wildlife populations, sample sizes are often limited due 

to logistical constraints, and samples may be of various quality due to hunters’ involvement in 

sampling (Rhyan & Spraker 2010). Tackling such uncertainty is important for estimation processes 

but is rarely accounted for explicitly. 

Chronic wasting disease (CWD) in cervids is a transmissible spongiform encephalopathy involving 

prions as the infectious agent (Williams & Young 1980). CWD was first recognized in 1967 in captive 

mule deer (Odocoileus hemionus) in Colorado, USA, and emerged in wild deer in 1981 (Miller et al., 

2000). It has now spread to 25 states in the USA and 2 provinces in Canada and to South Korea after 

importing infected stock from Canada. The first case of CWD in Europe was detected in a female 

reindeer (Rangifer tarandus) in March 2016 in the Nordfjella mountain range of Norway (Benestad et 

al., 2016). Since then, sampling by aid of hunters and recently, governmental culling, has revealed 19 

cases in total in this population, while no CWD-positive cases have been found in adjacent 

populations. However, it is not clear whether this represents a limited spread of disease or just a lack 

of detection, as evidence from USA sources shows that the prevalence levels of CWD are low for 
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years after the introduction into a population (Heisey et al., 2010). From a management perspective, 

it is urgent to establish methods to assess the CWD prevalence of infected populations and, even 

more importantly, to estimate the probability of detecting CWD in populations adjacent to an 

infected population. The CWD-infected population in Norway has limited, but not absent, physical 

connectivity with adjacent populations. Furthermore, adjacent populations are candidates for 

repopulating Nordfjella zone 1 after a period of fallowing. Therefore, the ability to document 

freedom from CWD at a defined design prevalence is critical. 

A key feature of CWD is the long incubation period (Davenport et al., 2018). The time from infection 

to death is in the range of 1.5-2.5 years in mule deer (Fox et al., 2006). Due to low initial detectability 

and slow disease progression, it is rare to detect infection in juveniles, and the prevalence is lower in 

yearlings than in adults (Samuel & Storm 2016). Prions causing CWD (PrPCWD) most often enter the 

animal through the oronasal cavity and move into the body via the lymphoid system, while it often 

takes a year before brain tissue is affected (Davenport et al., 2017; Hoover et al., 2017). Therefore, 

the type of tissue used will affect the sensitivity of the diagnostic tests for CWD (Keane et al., 2008). 

Retropharyngeal lymph nodes are the preferred tissue enabling early detection but may be difficult 

to identify for non-trained personnel. Due to logistical constraints and the combined use of trained 

professionals and hunters to collect samples of reindeer in the remote mountain ranges of Norway, a 

mixture of samples was collected. Samples include either brain tissue only or both brain and lymph 

nodes, making coherent estimation of prevalence and detection of disease challenging with a 

complex error structure.  

Here, we develop a simulation (scenario tree) model to estimate the test sensitivity of CWD with a 

mixture of samples affecting detectability in early (retropharyngeal lymph nodes), middle (obex) and 

late (brainstem) stages during the disease development (Fig. 1). We develop two applications. 

Application 1 is an estimation of age- and infection-stage-specific true prevalence within a Bayesian 

framework, applied here to the only known CWD-infected population of reindeer in Norway. 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 
 

Application 2 is a framework for estimation of the surveillance sensitivity in a given population with 

unknown CWD status, applied here to adjacent wild reindeer populations differing in size, sample 

type and quality.  

 

Material and methods 

Study areas and the population estimation model 

Our study areas were the Nordfjella and Hardangervidda high alpine mountain ranges of Norway. 

CWD was detected in management zone 1 of Nordfjella (2000 km2) with ~2000 reindeer. Surveillance 

was also initiated in the adjacent herds in Nordfjella management zone 2 (1000 km2) with ~500 

reindeer and on Hardangervidda (8000 km2) with ~10,000 reindeer. We estimated the reindeer 

population size and age and sex structure in each area using a hierarchical change-in-ratio model 

with parameters estimated using Bayesian inference, based on aerial minimum counts in winter, 

calving surveys in summer, harvest data and demographic structure counts in fall. Further details of 

study areas, census data and the population estimation model are shown in Appendix S1. 

Sampling of lymph nodes and brain tissue 

Due to logistical and economic constraints, sampling regimes differed for the smaller and more 

accessible Nordfjella area compared to the larger and more remote Hardangervidda area. In 

Nordfjella, hunters delivered whole heads to six stations in zone 1 and two stations in zone 2. Heads 

collected were then transported to the two most centrally located stations where local trained 

veterinarians sampled the brainstem (medulla oblongata) and the retropharyngeal lymph nodes 

(RLN). In rare cases, the RLN had unintentionally been removed by hunters and alternative head 

lymph nodes (submandibular, parotid) were collected. On Hardangervidda, hunters were provided 

with a sampling kit including gloves, a sampling spoon to harvest brainstem, a tissue container and a 

prepaid postal envelope.  
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Model of disease progression 

A main feature of our model is the incorporation of how CWD infection stages affect detection 

probability in different tissues (Fig. 1). The RLN are typically infected before brain tissue (stage 1). 

The primary site of infection in the brain is the dorsal motor of the vagus nerve (DMVN) at the level 

of the obex part of the brainstem (stage 2), while the whole brainstem gradually becomes infected in 

later stages (stage 3). The main timeline is drawn for an expected two-year progression from 

infection to death. Brainstem accumulation of PrPCWD, as assessed with the obex score from 

immunohistochemistry (IHC) staining, was used to estimate disease progression (Thomsen et al., 

2012; Haley & Richt 2017):  

• Obex score 0: Not detected. 

• Obex score 1: Minimal to moderate IHC staining in the DMNV part of obex only. 

• Obex score 2: Moderate to heavy staining in the DMVN and moderate staining in the adjacent 

nuclei and tracts. 

• Obex score 3: Intense staining in the DMVN and solitarious nucleus, moderate staining in 

other nuclei. 

• Obex score 4: Prominent staining in all the nuclei of the obex area and staining visible in the 

whole brainstem. 

For RLN, we used:  

• RLN score 0: Not detected.  

• RLN score 1: Immunostaining in few follicles, low (<1) optical density (OD) values by 

ELISA (TeSeE SAP ELISA test from Bio-Rad).  

• RLN score 2: Immunostaining in the majority of the follicles, high (>1) OD values by ELISA.  

We hence separated the following stages of infection (Fig. 1): 

• Stage 0 (RLN-, obex-, brainstem-): The animal has recently acquired the infection and the 

amount of PrPCWD is below detectable levels in both the RLN and brain tissue. Stage 0 does 

not include true CWD negative animals.  
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• Stage 1 (RLN+, obex-, brainstem-): RLN can become positive three months post-infection. 

The distribution of PrPCWD is not uniformly distributed in RLN. The sampling of RLN tissue 

may be negative if the few lymphoid follicles containing PrPCWD are missing. The amount of 

PrPCWD is steadily increasing but levels off and reaches a plateau after ~ 6 months.  

• Stage 2 (RLN+, obex+, brainstem-): At approximately 9 months post-infection, PrPCWD are 

detectable in some structures in the obex area. Sample quality is hence a main issue, as the 

amount of PrPCWD is minimal outside the obex part of the brainstem. 

• Stage 3 (RLN+, obex+, brainstem+): After ~12 months post-infection, PrPCWD is also 

detectable outside the obex area, in the rest of the medulla oblongata. The presence of obex 

tissue is no longer crucial to detect infection.  

As the duration of CWD infection varies also depending on the prion protein gene (PRNP) and the 

prion strain and species involved, we also tested how extending to a 3-year disease progression 

affected estimation (Fig. 3B). A prolonged disease progression was modelled by stretching the 

curve(s), making expected death extend to three rather than two years.  

 

Sample quality 

Variation in sample quality arises for different reasons. PrPCWD is resistant enough to be detected in 

autolysed tissues, but it is impossible to assure that the analysed field sample represents obex tissue 

due to anatomical disintegration. In addition, it is more likely that trained personnel will obtain an 

appropriate obex sample, while unexperienced hunters may harvest samples lacking anatomical 

integrity, despite fresh tissues. Hence, early in stage 2, when PrPCWD is detectable only in the obex 

area, the sample quality is of major importance, diminishing as infection spreads outside the obex 

area and into the brainstem. Due to logistical constraints in mass testing, it was not possible to 

record the sample quality. Therefore, the 13 laboratory technicians involved were asked (23rd of 

October 2017) for their expert opinion, and they reported that 20 % of the samples were without 

identifiable obex and hence of low quality (Table 1).  
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Analytical tests  

The primary test was an ELISA (TeSeE® ELISA SAP, Bio-Rad, Hercules, CA, USA). A positive or 

inconclusive result was confirmed by western blot (TeSeE® Western Blot, Bio-Rad, Hercules, CA, 

USA). The analytical tests have close to perfect specificity (European Food Safety Authority (EFSA) 

2005). The analytical test sensitivity for the ELISA is 92.5 % (81.8 – 97.9) for obex and 98.8 % (93.5 – 

99.97) for RLN (Hibler et al., 2003), but note that we pooled samples (Appendix S2).  

Stochastic scenario trees to model diagnostic test sensitivity 

Diagnostic test sensitivity (dSe) is the probability of correctly classifying an infected individual as 

positive by the diagnostic test. We used stochastic scenario trees (Martin, Cameron & Greiner 2007) 

to explicitly model the relationship between dSe, sample quality and disease progression (Fig. 2). For 

each of 10,000 iterations, we randomly drew a point along the axis of time since infection occurred 

(Fig. 1). Due to the long disease development with sampling in the autumn, the time since infection 

will be a maximum of 2 years in adults, 17 months in yearlings and 5 months in calves. A given testing 

regime was specified by the proportion of samples, including RLN (PrRLN), the proportion of samples 

according to age class (PrAdult, PrYearling), the proportion of low-quality obex samples (PrLQ), and 

the tissue-specific sensitivity of the ELISA-test according to disease progression of individual i (SeRLNi, 

SeLQi, SeHQi). This determines how the simulated infected animals distribute through the scenario 

tree (Fig. 2). The tissue-specific sensitivity according to the progression of infection was assumed to 

be a direct function of the expected RLN / obex score at a given time since infection (Table 1). Each 

simulated individual ends up in one of the limbs of the scenario tree, with a corresponding individual 

sensitivity according to the sample, time since infection and the respective stochasticity (as specified 

in Table 1). dSe was modelled as a function of time since infection, by scaling scores above 1 in Figure 

1, between the lower and upper level as given by SeLow (Table 1) and the analytical test sensitivity, 

respectively. The dSe of age class c is then given by the distribution of 10,000 simulated individuals of 

age class c. The dSe was utilized in two applications: 1) prevalence estimation and 2) estimating 

surveillance sensitivity. 
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The proportion of the simulated individuals with no positive outcome was reported as the probability 

of the non-detectable infected sample (Fig. 3, Appendix S3). The non-zero part of the simulated 

distribution of the dSe was fitted by a beta distribution, utilizing the R package “fitdistrplus” 

(Delignette-Muller & Dutang 2015) and the function “fitdist” for each age class and tissue type. The 

resulting dSe is then age class, tissue and individual specific and consists of two parts (Appendix S3): 

1) the distribution of detectable samples (dSe>0) and 2) the probability of non-detectable, early 

stage (stage 0 with RLN and obex sample; stage 0+1 with obex only sample) samples (Fig. 3C,D).  

 

Application 1: Prevalence estimation 

CWD-data from Nordfjella consisted of the number of diagnosed positive and negative per age class. 

We included animals harvested and tested after the first CWD case was detected in Norway and until 

the 1st of November 2017 when ordinary hunting ended (Appendix S4). In addition, one positive 

reindeer sampled from a rectal biopsy during GPS collaring and found positive was included. In total, 

the data included 2 and 4 positive cases of adults, in 2016 and 2017, respectively. For 2017, 

information of age class was lacking for 75 of 350 samples. We distributed the unknown samples 

according to the age-class ratio of the known samples. 

Bayesian approaches to prevalence estimation usually assume that the number of positives is 

approximated by the binomial or Poisson distribution (Lewis & Torgerson 2012). In our case, the 

population is small compared to the number of individuals tested. Hence, we chose to use the 

hypergeometric distribution, which accounts for sampling without replacement from a finite 

population. The prevalence was estimated separately for calves, yearlings and adults (≥2 years). The 

hypergeometric distribution (dhyper) specifies the number of positive samples (kc) to be distributed 

around the number of positives in the population that are likely to be detected (Ninfc - N0c - N1c), so 

that 
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kc ~ dhyper (Ninfc - N0c - N1c, mc, nSamplec)  

where Ninfc is the number of infected animals (all infection stages 0-3) of age class c, N0c is the 

number of early-stage infected animals that are non-detectable (dSe=0), N1c is the expected number 

of detectable animals that are not detected due to imperfect test sensitivity, and mc is the number of 

non-infected animals in the population plus the expected number of infected animals not being 

detected (N0c+N1c). Together, (Ninfc - N0c - N1c) + mc constitutes the number of individuals in age 

class c (PopSizec). The number of individuals tested was given by nSamplec. Apparent prevalence (AP) 

is then the proportion of animals from a representative sample of the population that are positive 

with the diagnostic method used and, specifically, for each age class c: APc =  (Ninfc - N0c - 

N1c)/PopSizec 

Going from AP to true prevalence (TP), we utilized the diagnostic sensitivity as modelled above (Fig. 

3; Appendix S3). Non-detectable infected animals (N0c) were coming from stage 0, if both the RLN 

and obex were tested, and as a proportion from stage 1 that was dependent on the proportion of 

samples tested without RLN (1 – pRLN). Let p0RLNobexc represent the probability of an infected 

reindeer of age class c being non-detectable by RLN, and similarly, let p0obexc represent the 

probability of being non-detectable by only testing the obex. Then, for each age class c, the 

probability of the non-detectable stage Prob_NonDetectablec = p0obexc *(1-pRLN) + 

p0RLNobexc*pRLN. We assume that the number of infected individuals in Nordfjella that are non-

detectable (N0c) can be estimated by drawing from a binomial distribution: 

N0c ~ dbin(NInfc, prob= Prob_NonDetectablec)  

Similarly, we assume that the number of infected individuals in the early stage 0 (Nr_stage0c) can be 

estimated by drawing from a binomial distribution: 

Nr_stage0c ~ dbin(NInfc, prob= p0RLNobexc). 

The TP of age class c is the proportion of infected animals (stage 0-3): 
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TPc = Ninfc / PopSize c.  

The testing regime that was used provided an expected diagnostic sensitivity (defined by a stochastic 

distribution) for the detectable part of the infected animals (Ninfc - N0c): dSec = dSe_obexc *(1-pRLN) 

+ dSe_RLNobexc*pRLN, where dSe_obexc and dSe_RLNobexc are specified by the beta distributions in 

Appendix S3. The expected number of infected individuals that were detectable (dSe>0) but were not 

detected due to imperfect sensitivity is:   

N1c = Ninfc - NrPosc - N0c, where the number of infected being detected as positive was:  NrPosc ~ 

dbin(Ninfc - N0c, prob = dSec). 

The probability of an infected reindeer of age class c being detectable by RLN, but obex negative, is 

given by p0obex.RLNpos (Appendix S3). For the Nordfjella population and according to the simulation 

model for dSe, we assume that the number of individuals in stage 1 and stage 2+3 can be estimated 

by drawing from a binomial distribution:  

Nr_stage1c ~ dbin(NInfc, prob= p0obex.RLNposc) 

Nr_stage23c ~ dbin(NInfc, prob= (1-p0obexc))     

We started by estimating the prevalence in 2016. We set priors for calves and yearlings to be on 

average 0.10 and 0.36 of the adult prevalence, respectively (Samuel & Storm 2016). We then 

estimated the prevalence in 2017 by using the estimated TP of 2016 as a prior (mean and standard 

deviation of 2016-prevalence were used to define beta parameters for the prior-distribution of 2017-

prevalence). For calves, there was no information in the TP (wide standard deviation of estimate) of 

year 2016, so we kept the prevalence-ratio assumption that TPcalves = a1*TPadults, where a1 is beta-

distributed with a mean of 0.1 (range: 0 - 0.5; Appendix S5).  
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The prevalence modelling using Bayesian inference was implemented in R through the library R2JAGS 

(linking R with JAGS version 4.2.0). Prior distributions are required for the unknown model 

parameters, and Markov chain Monte Carlo simulations are used to find the posterior distribution 

and to sample from it (Lunn et al., 2013). Mean and median values with 95 % posterior (credible) 

intervals were calculated as the 0.025 and 0.975 percentiles for each parameter of interest. 300,000 

iterations were generated and the last 100,000 iterations were used to estimate the posterior 

distributions. For each simulation, 3 chains were iterated to facilitate convergence diagnostics and 

thinned by 3. Convergence was confirmed visually (density, trace and autocorrelation plots) as well 

as by calculating the Gelman-Rubin diagnostic (all 1).  

The sensitivity of the prevalence estimation was assessed by using alternative prior distributions for 

the prevalence ratio of calves and yearlings to adults (Appendix S5) and by using a vague prior for the 

2017 prevalence. We tested the impact of the dSe being based on short (2 years) versus long (3 

years) disease progression. If the mortality of individuals is taken into account, as well as a potential 

increase in recently infected individuals, the dSe is likely to be better described by an exponential 

decay of infection times, rather than assuming a random time of infection with equal probability 

along the whole timeline. Hence, we also tested an assumption with infection times exponentially 

decaying (excluding any times > 4 yr), and assumed that the mean time since infection was one year. 

The models using 3 age classes were compared with a model including adults only. Prevalence 

estimates were also compared with a similar model using a binomial instead of a hypergeometric 

distribution.  

Application 2: Estimating surveillance sensitivity 

The scenario-tree model (Fig. 2) was utilized to estimate the surveillance sensitivity for the period 

2016 – 2017 for two adjacent herds of Nordfjella zone 1.  
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We ignored all calves tested (because of the long time period before PrPCWD is found in the lymph 

nodes and the resulting low dSe of calves) and assumed that adults had three times the risk of being 

infected compared to yearlings. The relative risk was adjusted for the population proportion of the 

age classes (Martin, Cameron & Greiner 2007).  In the simulations (1000 iterations), we randomly 

drew the time since infection for each of the tested individuals, and the resulting diagnostic 

sensitivity for individual i in the simulation j (dSeij) was determined by the pathway of individual i 

through the scenario tree and weighted by the adjusted relative risk of the age class. The pathway of 

an individual through the tree was randomly drawn according to probabilities specified by the testing 

regime. 

We used the hypergeometric distribution, assuming a finite and relatively small population compared 

to the number of samples tested. Let ProbAllSampleNegj denote the probability that there were no 

test-positive animals found in iteration j of n samples for a given design prevalence, p. According to 

MacDiarmid (1987), a hypergeometric distribution can be approximated by:  

ProbAllSampleNegj =  (1 –	∑ ݀ܵ݁௡௜ୀଵ ij / PopSize) ^ p*PopSize 

For each of 1000 iterations, we then calculated the surveillance sensitivity as 1 - ProbAllSampleNegj. 

The design prevalence was defined by the number of infected animals (threshold to be detected) and 

the population size. The final distribution of estimated surveillance sensitivities was then summarized 

as the mean with 95 % confidence intervals. The procedure was repeated for a scenario with a 3-year 

infection dynamic and for a scenario with an exponential decay distribution of time since infection.  

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 
 

Results 

Diagnostic sensitivity 

The probability of detecting an infected individual as positive, dSe, was strongly dependent on the 

time since infection, age class and tissue type, as expected, due to the long duration of infection. 

When testing brainstem only, the average dSe (including only the detectable stages) was 82 %, 73 % 

and 0 % for adults, yearlings and calves, respectively, for the parameters and uncertainties chosen 

(Table 1, Fig. 3). The dSe increased when RLN tissue was included, giving an average dSe of 88 %, 85 

% and 45 % for adults, yearlings and calves, respectively (Fig. 3D). There was substantial variation in 

the distribution of dSe, arising mainly from the different detectability along the timeline of infection. 

The distribution of dSe was skewed towards low sensitivities, potentially below 0.6 even in adults 

and yearlings. Additionally, among the simulated animals known to be infected, the probability of 

infected individuals being in non-detectable stages (i.e. stage 0 and 1 if only brain tissue was tested 

and stage 0 when RLN was included) decreased from 100 % to 66 % in calves, 52 % to 20 % in 

yearlings, and from 36 % to 14 % in adults when both RLN and brain tissue were included in the 

sample (Fig. 3C). 

When assuming a 3-year compared to the above 2-year disease development, dSe was 

approximately unchanged for adults, while it decreased for yearlings and calves since a higher 

proportion would be in early stages and hence would not be detectable (Appendix S6). When using 

exponential decay of infection times, dSe decreased for both sample types and all age classes due to 

the increased proportion of individuals in early stages (Appendix S6), while the probability of infected 

adults being in stage 1 increased from 23 % to 28 %. As a result, the variation of dSe also increased, 

with a higher probability of dSe below 0.6.  
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Application 1: Prevalence in the CWD-infected reindeer herd in Nordfjella 

Our model estimated both true (TP) and apparent (AP) prevalence for calves, yearlings and adults 

and separated in the infection stages 0 to 3 (Appendix S7). The TP was 1.6 % (0.7 %, 3.1 %) in adult 

reindeer, while the AP was 1.2 % (0.5 %, 2.1 %) in Nordfjella zone 1 in 2017 (Fig. 4). The prevalence 

estimation was robust to changes in the incubation period, while assuming decay in the distribution 

of infection times increased the TP only, due to more individuals in early stages. The variation in the 

prior-distribution for the demographic pattern of infection also had limited impact on the results 

(results not shown). However, as no calves or yearlings tested positive in 2016 and 2017, there was 

increased variance in the prevalence estimates.  

 

Application 2: Surveillance sensitivity of adjacent reindeer herds 

In 2017, only 9 % of the samples from Hardangervidda and as much as 92 % of the samples from 

Nordfjella zone 2 included RLN (Appendix S4). Due to the different population sizes, a design 

prevalence of 5 and 20 infected individuals would represent 0.05 % and 0.2 % prevalence in 

Hardangervidda and 1 % and 4 % prevalence in Nordfjella zone 2. Combining 2016 and 2017 data, the 

likelihood of having detected CWD in the larger Hardangervidda was 34 % (95 % CI: 33-35 %) and 57 

% (52-61 %) in the smaller Nordfjella zone 2, if assuming five infected individuals (Fig. 5, Appendix 

S8). If assuming 20 CWD-infected individuals, this increased to 78 % (77-80 %) and 96 % (95-98 %) for 

Hardangervidda and Nordfjella zone 2, respectively. By extending the disease progression to 3 years, 

the surveillance sensitivity is unchanged or slightly reduced for both populations. Assuming decay in 

the distribution of time since infection (increasing proportion in early stages) lowered the 

surveillance sensitivity (Fig. 5). 
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Discussion 

Surveillance is a crucial first step to combat emerging diseases (Holmes, Rambaut & Andersen 2018). 

Diseases with long latent stages, slow disease development and a prolonged period of low 

prevalence are difficult to detect and appropriately estimate the prevalence in early epidemic stages. 

Differential detectability during disease progression utterly complicates the estimation processes. 

Here, we approach such challenges posed by the recent emergence of CWD in wild reindeer in 

Norway, regarded among the top 15 most important emerging issues in biodiversity research globally 

(Sutherland et al., 2018).  

 

Accounting for differential detection during infection 

Imperfect detection remains a limiting factor for assessments of infection levels and disease status 

that are critical for wildlife surveillance, and diagnostic sensitivity (dSe) is the term used for the 

probability that an infected animal will be detected by testing. dSe is usually estimated by comparing 

a test to a reference test and using latent class modelling in the absence of a perfect reference test 

(van Smeden et al., 2013). Such approaches do not account for the dependence of detectability on 

disease progression, and the non-detectable, early stages are typically ignored. Individual 

heterogeneity in detectability frequently arises from increasing intensity during the course of 

infection. Earlier studies have approached this using extensions of occupancy modelling frameworks 

to account for  differential detectability with an increasing pathogen load during infection, with case 

examples from amphibians (Miller et al., 2012) and birds (Lachish et al., 2012). This involves repeated 

measurements of individuals and an assumption of the level of individual infection intensity not 

changing between measurements. In our case, we cannot fit occupancy models due to a lack of 

repeated measurements. We provide a novel scenario-tree framework accounting for individual 

heterogeneity in test sensitivity arising from temporal variation in detectability in multiple tissues 

during a reasonably predictable infection dynamic. Stochastic simulations were utilized to describe 
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how the times since infection occurred, and thereby dSe, were distributed among infected 

individuals. We suggest that our approach may be useful for a broader range of diseases with a slow 

development. For example, several tick-borne infections may initially be identified in tissue from ears 

or skin for months post-infection, before later systemic stages may be detected in internal organs, 

while serology may detect antibodies remaining for years post-infection.  

 

We used this scenario-tree model in two related ways: The estimation of age- and infection-stage-

specific true prevalence of CWD in a given population with mixed samples (Application 1), and the 

estimation of the probability of detecting CWD if the disease was present at a low prevalence in 

adjacent populations (Application 2). Our two applications use the same model of diagnostic 

sensitivity, but they differ in that the prevalence model is a Bayesian approach utilizing the age-class- 

and tissue-specific distribution of dSe to go from apparent to true prevalence, while application 2 is a 

direct extension of the scenario-tree model, incorporating relative risk between age classes and 

applied to a specific testing regime and design prevalence. A weighted sum of the dSe of individuals 

tested is utilized in the estimation of the surveillance sensitivity. In our scenario-tree model, 

individual dSe is estimated as a continuous function of time since infection, although the scenario-

tree (Figure 2) is simplified by categorizing infected individuals into four infection stages. 

Incorporation of individual sensitivity in freedom from disease modelling, for which surveillance 

sensitivity is a basic component, is an important application of our framework. In this approach, the 

next step is to combine the surveillance sensitivity of several years to update our probability of 

populations being free from CWD. 

 

A deviation from the expected proportion of RLN to brainstem positives will indicate that the 

underlying model of infection dynamics is inaccurate. We reviewed the North American literature, 

and the predicted 26 % from our model is within the 19-29 % RLN-only positives reported in studies 
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with large sample sizes (Appendix S9). Note, however, that the predicted proportion of infected in 

stage 1 may not be directly comparable to empirical observations, for which some individuals were 

likely to be misclassified due to imperfect dSe. In any case, our current model was broadly accurate 

based on existing evidence.  

 

Applications, limitations and further possibilities 

Modelling always requires choices regarding simplicity versus necessity of including biological details, 

and here, we assess the specifics of the case of CWD.  

We lack data on demographic patterns of CWD infection in reindeer in Norway and therefore set 

broad age-specific priors for calves, yearlings and adults based on American studies of CWD in deer 

(Potapov et al., 2013; Samuel & Storm 2016). Our estimation was robust to changes in prior 

distributions used for details in demographic infection patterns (results not shown). Adult males 

often have a 2-3 times higher infection rate in deer, and adding sex-specificity and further age classes 

would be a natural and technically simple extension of the current application in a North American 

setting with larger sample sizes (Potapov et al., 2013; Samuel & Storm 2016). 

The levels of susceptibility towards CWD and the duration of disease development depend on 

polymorphisms in the prion protein, in turn determined by mutations in the gene termed PRNP 

(Robinson et al., 2012). Our model readily accounts for variation in the incubation period, as we 

demonstrate by varying it from 2 to 3 years or with a mix of these. Reindeer have, in general, a larger 

variation in PRNP (8 types) compared to other cervids (Robinson et al., 2012). The two transmission 

studies inoculating CWD in captive reindeer with different PRNP genotypes suggested that 2-3 years 

were likely to capture the main variation in disease duration (Mitchell et al., 2012; Moore et al., 

2016). This is in agreement with one CWD-positive 2.5-year-old reindeer from Nordfjella that had a 

very high obex score, indicating a late stage of disease. With more empirical data, the model can be 

set to incorporate known proportions of different PRNP genotypes in a population affecting the 
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susceptibility and incubation period, but the result of our modelling suggested that the duration of 

infection did not affect the estimated prevalence at the current low prevalence levels notably (Fig. 4).  

Another issue for estimation is that there may be a higher proportion of individuals in early stages of 

infection if there is an epidemic growth of disease and/or (increased) mortality over the time of 

infection. We simulated such effects by adding an exponential decay of time since infection instead 

of drawing individuals randomly along the infection timeline, as in our main model. This had a 

notable effect on the estimation of true prevalence, by increasing the variance (Fig. 4). The higher 

proportion of individuals in early, non-detectable stages further markedly lowers the surveillance 

sensitivity (Fig. 5). With more data, possibly the force of infection approaches (Heisey et al., 2010) or 

SEIR-modelling can explicitly account for temporal dynamics of infected individuals depending on R0 

and mortality, and possibly also account for a potential seasonal pattern of infection.   

 

Tradition of citizen science involving hunters 

From 2018, a surveillance program for CWD is being implemented by the European Union in all 

countries having populations of moose and/or reindeer, including Sweden, Finland, Estonia, 

Lithuania, Latvia and Poland (EFSA Panel on Biological Hazards (BIOHAZ) et al., 2016). All surveillance 

programs have to incorporate decisions regarding the priority for determining how many areas to 

cover (Russell et al., 2015). The citizen science approach is often used as a strategy to obtain wildlife 

data from large geographic areas, but it is important to know how it may affect sample quality and 

cause bias (Steger, Butt & Hooten 2017). In Scandinavia, hunters are part of a well-developed system 

for population monitoring, and hunters are used to gather tissue samples for scientific purposes. 

However, the willingness to participate depends on a number of factors. In Nordfjella, most hunting 

areas have proximity to roads, and it was feasible to bring the whole head to a sampling station 

where both obex and RLN could be harvested by a professional. In contrast, large parts of 

Hardangervidda are more remote and often require many hours of hiking to reach a road; 
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additionally, this area had no organized sampling stations. The decision regarding whether to ask the 

hunter to carry the head (2-7 kg), which would result in few samples, or to allow hunters to take 

more samples at the site, despite the probable loss of sample quality, required consideration. For 

most untrained personnel, RLN represent a more challenging tissue to localize, and subsequent 

collection can be less successful, but the absence of RLN in the sample will decrease the test 

sensitivity, especially in the first stage, when PrPCWD is only detectable in RLN. Our approach allows a 

unified estimation even in cases with different tissue types arising from a citizen science-based 

sampling approach. 
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Nordfjella zone 2 and Hardangervidda, Norway.  

Appendix S9. An overview of studies testing for CWD in retropharyngeal lymph nodes (RLN) and 
obex.  

Table 1. The parameters used for test sensitivity are based on a combination of published 

information and expert judgements. Note that the lower analytical test sensitivity of RLN and obex 

combined is due to a lower sample mass. Diagnostic sensitivity of a tissue sample is dependent on 

the tissue type (RLN, obex of low or high quality) and is a continuous function of disease progression 

according to Figure 1. Diagnostic sensitivity is modelled by scaling scores above 1 in Figure 1 between 

the lower and upper levels as given by SeLow and the analytical test sensitivity, respectively. 

Sensitivity for scores less than 1 is set to zero. Uncertainty around the two parameters, PrLQ and 

Se_tissue, is modelled as a beta-pert distribution given by the expected value, min and max.  

Term of interest Parameter  Expected (min-max) References 
Analytical test sensitivity obex Se_obex 0.925  (Hibler et al., 2003) 
Analytical test sensitivity RLN Se_RLN 0.988  (Hibler et al., 2003) 
Analytical test sensitivity 
obex+RLN 

Se_RLN &
obex * 0.95 expert opinion 

Proportion of low-quality obex 
samples PrLQ 0.22 (0.02-0.6) expert opinion 
Parameters defining lower 
level of mean Se_tissue  SeLow_RLN 0.25 expert opinion 

SeLow_Obe
xLQ 0.25 expert opinion 
SeLow_Obe
xHQ 0.5 expert opinion 

Tissue/sample sensitivity Se_tissuei 

Se_tissuei

(Se_tissuei^var_low- 
Se_tissuei^var_up) 

function of tissue type 
and time since infection i 

Parameters defining 
variation around mean 
Se_tissue 

var_low 1.25 expert opinion 

var_up 0.6 expert opinion 

*Note: some pooling of samples in first testing, cfr. Appendix.
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Figure captions 
Figure 1. Association between the assumed disease progression of Chronic Wasting Disease and the 

detectability of prions in lymph nodes (RLN, blue line), and brain tissue (obex and brainstem, black 

line), starting at the time of exposure to infection. The duration of the development varied from 24 

to 36 months in the modelling, but the shape of the curves was constant.  

 

Figure 2. Stochastic scenario tree representing the testing regime for Chronic Wasting Disease in a 

reindeer population/herd. The pathway of simulated individuals through the scenario tree is 

determined by time since infection (randomly drawn), population proportions and probabilities 

regarding the testing regime. The probability of detecting CWD (diagnostic sensitivity) for a given age 

class, stage of infection, sample of lymph nodes (RLN) and obex tissue of various quality is modelled 

as a nonlinear function of time since infection (according to Figure 1 and assumptions as specified in 

Table 1).  

 

Figure 3.  Estimated diagnostic sensitivities (dSe), shown for the assumption of A) 2-yr and B) 3-yr 

infection periods, vary according to time since infection and depend on the tissue (lymph nodes, RLN 

and/or brain tissue, obex). A higher dSe indicates later stages of the CWD infection period. C) The 

proportion of non-detectable (dSe=0) CWD-infected calves, yearlings and adults depending on the 

sample type. D) The dSe of calves, yearlings and adults when including both RLN and brain tissue 

compared to only brain tissue. Sensitivity distributions (dSe>0) are summarized by the mean, median 

and the 95 % confidence interval. 

Figure 4. The estimated apparent (AP) and true (TP) prevalence in the CWD-infected reindeer herd in 

Nordfjella zone 1, Norway, in 2017 (the mean and 95 % credible intervals). AP and TP are given for 

the overall population (weighted mean), for adults, and for adults in different infection stages under 

3 different assumptions (see text for details).   
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Figure 5. Surveillance sensitivity for design prevalences assuming 5, 10, 20 or 50 infected individuals 

in a small (“N” - Nordfjella zone 2 with ~500 reindeer) and a large population (“H” - Hardangervidda 

with ~10,000 individuals), Norway. 
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