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Abstract
The potential and density wake behind afinite-sized object in amagnetized collisionless plasma flow is
studiedwith self-consistent numerical simulations.With increasingmagnetization of the plasma, the
standard picture of ion focusing in thewake for plasmaswith large electron to ion temperature ratios
becomes invalid. A strongmagnetic field parallel to the flowdirection leads to a chain of ion depletions
in thewake and enhanced ion density at their envelopes. This is due to a novelmechanismof a
dynamic ion shadow,which is not the geometrical shadowof thefinite-sized object. It corresponds to
a change in topology of thewake potential. Complex ion trajectories resulting from electrostatic
collisionswith the object can lead to significant variations in electrical charging of other objects in
thewake.

1. Introduction

Interactions of plasmaswithfinite-sized objects, such as dust particles and probes in laboratory plasmas or
spacecrafts in themagnetosphere, are fundamental problems in the physics of plasmas [1–5]. The electric charge
of the object determines the plasma density and potential profiles in its vicinity. For stationary conditions and
isolated objects atfloating potentials, when the net current to the surface vanishes, disturbances of the plasma
will extend up to several Debye lengths [5]. The plasmaflowwith respect to the object gives rise tomuch further
extendingwakes in the plasma potential and density distributions, due to both surface absorption and
electrostatic scattering of plasma particles at the object [6–8].

Wake effects have notable implications on the probemeasurements in laboratory experiments [1],
interpretation of data from spacecrafts [2], and charging and dynamics of systems comprising two ormore dust
particles exposed to the plasmaflow, such as in complex (dusty) plasmas [5, 6]. There, accumulation of ions in
thewake can lead to attractive, non-reciprocal forces, which lead toflow-aligned pairing, as observed in
laboratory experiments and numerical simulations [9–16]. Ion focusing by the upstreamobject can also lead to a
considerable reduction of the negative charge on downstreamobjects [15, 17].

Charging of (an) isolated object (s) inflowing unmagnetized plasmas has been a subject of extensive studies
[6]. For large electron to ion temperature ratios, ions can be focused into thewake due to electrostatic scattering
(deflection of ions) by a negatively charged object. This kinetic effect has been confirmed by both particle-in-cell
(PIC) andmolecular dynamics simulations [17–21]. The enhancement in ion density gives rise to a positive
trailing peak in the potential distribution. The resulting oscillatory potentials in thewake correspondwell to
results obtainedwith the linear response (LR) theory [8] and can explain interactions between dust particle pairs
in plasmaswhere collisions are negligible [17, 22]. Analogous studies contribute to the interpretation of data
from spacecrafts in various plasma environments [2, 7, 23, 24].

Most previous theoretical studies have considered thewake formation in unmagnetized plasmas.However,
in the view of recent dusty plasma experiments with externalmagnetic fields [25–27], and also in the general
context of object–plasma interactions, it is of high urgency to understand themicrophysics of wake formation in
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magnetized plasmas. A few such attempts have been done recently with PIC simulations for E B


´


drifting

plasmas, where E


and B


are, respectively, the electric andmagnetic field [28, 29], as well as with the LR
approach for amagnetic field alignedwith the flowdirection [30–34]. The latter configuration is relevant for
recent experiments with dust particle pairs inmagnetic fields [25].With the LR approach, it has been
demonstrated [32, 33] that with increasingmagnetization, there is a change in topology of thewake potential:
extrema in thewake become smaller andmore frequent to eventually disappear at large values of the dynamic
magnetization parameterβi=ωci/ωpi , whereωci is the ion cyclotron frequency andωpi is the ion plasma
frequency. LR calculations provide only thewake potential distribution for a given charge/potential of a point-
like object, and thus do not account for the self-consistent object charging andwake formation.

For finite-sized objects, one should also consider the geometricalmagnetization parameter r rp Lg =a a for
plasma speciesα, which is the ratio of a characteristic radius of the object rp and the gyroradius of speciesα, rLα .
For γα>1 speciesα becomemagnetized from the point of view of the object. Under such conditions, the
charging becomes increasingly anisotropic, and staticmagnetic shadowing, characterized by geometrical plasma
depletion in thewake due to plasma absorption at the object, gets pronounced. This is in addition to dynamic
ion shadowingwhich is related to strong scattering of plasma particles at the object for largeβi as it is
demonstrated in this paper.

To understand thewake formation andwake effects inmagnetized plasmas on a kinetic level, also including
charging of objects located in thewake, it is crucial to consider plasma particle trajectories in self-consistent force
fields. In this work, we address the kinetics of plasma particles inmagnetized collisionless plasma flowswith full
PIC simulations.

Ourmain objective is to explore the differences between unmagnetized andmagnetizedwakes and discuss
thefindingswith respect to LR theory. A further goal is to analyze the fundamentalmechanisms that underly
newnonlinear phenomena inmagnetizedwakes.More detailed comparisonswith experiments will be left to
future investigations.

2. PIC simulations

Weemploy theDiP3D code, which advances trajectories of electrons and ions in self-consistent forcefields in a
three-dimensional Cartesian coordinate system. The details of the implementation are given in previous works
[17, 35], and herewe provide only the systemparameters used for this study.

We simulate the plasmawith a background density of n 10 mi,0
13 3= - and an electron temperature of

Te=3 eV. The electron to ion temperature ratio isTe/Ti=100, which is typical for laboratory experiments of
complex plasmas. The electronDebye length is set to 4.03 10 mDe

3l = ´ - , and a three-dimensional
simulation box extends 0.05 m in each direction.We consider an open systemwith supersonic plasma flows of

v c1.2d s= and v c2.4d s= , with the sound speed given by c kT kT m5 3s e i i= +( ) , where k is the Boltzmann
constant. This givesMach numbersM=vd/cs ofM=1.2 andM=2.4. The ion to electronmass ratio is set to
mi/me=900, which is close to the conditions in a hydrogen plasma, but allows for a reasonable computing
time. Thus, the choice of parameters is a compromise between the numerical constraints and experimental

conditions [15]. Themagnetic field is alignedwith the flow. By varying B

 , we consider different dynamic

magnetizations of plasma, 0, 6.6ib Î ( ), which correspond tomagnetic fields of approximately

B 0, 200 mT


Î  ( ) for our choice of parameters. Note, that in case of argon plasmas, which are often used in
laboratory experiments, this range represents an equivalentmagnetic field, which is 82 times larger and reaches a
maximumofB=1.8 T. In this way, the accessible rangewith superconductingmagnets,B<5 T, is partially
covered by the present simulations. In addition, in order to relate our results to recent studies with the LR
approach [33], we run simulations forM=1.0 andβi=1.5. An additional run atmi/me=450wasmade to
study the influence of an enhanced ion thermalmotion.

A spherical conducting object of radius r 0.1p Del~ , where kT n ee eDe 0
2l = is the electronDebye

length, is placed far away from the boundaries. Here, ò0, e, ne are, respectively, the electric permittivity of
vacuum, electron charge, and the electron number density. Since theDiP3D code is optimized forfinite-sized
objects consisting of dielectric and conductingmaterials, the chosen object size is a necessary trade-off. The
object is charged self-consistently by electron and ion collection currents during the simulation. Upon hitting
the object surface, the plasma particles are removed from the simulation and contribute to the total charge on
the object. The results presented in the following correspond to steady-state conditions for object charging,
which are usually reached after several ion plasma periods 2π/ωpi .
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3. Results

Figure 1 presents slices of the electric potential distribution in the x–y plane for different dynamic
magnetizationsβi . For very lowβi , the potential variation in thewake resembles the case of unmagnetized
plasmaflow [15].With increasingβi , the trailing peak becomes smaller andmoves upstream. At the same time
theminima that follow becomemore pronounced. Forβi>1, the topology of thewake changes significantly:
the trailing peak eventually disappears behind the object and subsequentminima form a chain-like structure.
The potential distribution ismostly positive in thewake, and this feature is pronounced away from the symmetry
axis. At higherβi , the oscillatory pattern gets less pronounced tofinally disappear. Here, the dominant structure
in thewake is the extended positive potential with a narrownegative potential line along the flowdirection
centered at the object.

With respect to general tendencies, the results fromour PIC simulations agreewith recent results obtained
with the LR approach by Joost et al [33]. In both PIC and LR approaches, with increasingβi , the potential
maximamove upstream and getmore frequent, and finally a positive potential distribution appears in thewake
off the symmetry axis.However, forβi>1 there is a significant difference between the results obtainedwith the
two approaches along the symmetry axis in thewake. In PIC simulations, ion shadowing results in a negative
potential along the symmetry axis in thewakewith superimposed oscillations, and this negative potential is not
present in the LR approach.

This is emphasized infigure 2, which shows the potential distribution in the x–y plane fromPIC simulations,
and the potential cut in the x direction through the object for two ion to electronmass ratios forβi=1.5 and
M=1. Lowermass ratio results in larger thermal velocity of ions, when other parameters remain unchanged,
and henceweaker focusing and smaller oscillations in thewake potential.More heavy and hencemore realistic
ions, give significant oscillations andwell pronounced potentialminima in thewake. There is no agreement in
the position ofmaxima along the symmetry line in the two cases, and no clear scalingwith respect to themass
ratios or their square root.We note that in both cases the ion focus is at the same distance from the object
although it is stronger for heavier ions, and that the object’s potential is onlymarginally different in these two
cases, kT e1.67 eF » - .

The results from the LR approach taken along the symmetry axis downstreamof the object [33], shown for
comparison infigure 2(b), do not agree with PIC results. However, the overall wake patterns at larger scales and
far from the symmetry axis for the twomethods approach one another. This suggests that, to afirst-order
approximation, nonlinear effects can be disregarded in the studies of wake formation inweaklymagnetized
plasmas at large scales. However, comparison of results from these two approaches infigure 2(b) reveals that the
wake pattern directly downstreamof the object can be substantially different. LR addresses a point-like
disturbance and does not capture the effects of staticmagnetic shadowing behind finite-sized objects at large γα.
Since LRdoes not provide information on the plasma particle kinetics, it does not give insight into dynamic
shadowing neither.Magnetic shadowing effects can have significant implications on the charge distribution in

Figure 1.Potential distributions in x–y planes through the center of the object for different dynamicmagnetizationsβi=(0.02, 0.33,
1.6, 3.3, 6.6) forM=1.2. The plasmaflow andmagneticfield are in the positive x direction. To emphasize wake features, only the
shallow potential variations are colored. Due to cylindrical symmetry around the x-axis, results for y<0 are not shown.
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thewake, and also charging of objects in suchwakes. Fortunately,microphysics leading to the change inwake
topologywith increasingmagnetization of the plasma can be studied in detail with PIC simulations.

Ion density distributions fromour PIC simulations for differentβi are shown infigure 3 formi/me=900
and two velocities:M=1.2 andM=2.4, together with the corresponding test particle trajectories for cold ions
that enter thewake. The cold ion approximation is justified for supersonic flows, where for our choice of
parameters, the thermal velocity of ions is one order ofmagnitude smaller than the drift velocity. The ion density
distributions reveal that with increasingβi , ion focusing gets weaker andmoves closer towards the object.
Finally, for largeβi the topology of the focusing region changes. The ions are still scattered into thewake, but they
form awing-like structure at an angle to the drift velocity. This angle is related to the flow velocity, being smaller
for fasterflows. In theflowdirection, the v-shapedwing-like structure is directly followed by a localized
depletion in the ion density, the dynamic ion shadows.Dynamic ion shadowing gives almost ion-free areas that
are surrounded by enhanced density with strong density gradients in the envelope region. This pattern is
repetitive and results in the chain of ion depletions.

Formagnetized plasmasβi>1, ions get scattered and accelerated in the vicinity of the object, and continue
along helical orbits in thewake.We observe both an overall depletion in the ion density in thewake along the
symmetry axis, as well as periodic enhancements in the ion density related to the helicalmotion of ions. For a
givenβi, the frequency of enhancements in thewake increases (i.e., regionswith depleted ion density get larger)
with theflow velocity vd , while for a given vd, the frequency decreases with increasingβi .

Figure 2.Potential distributions in x–y planes forβi≈1.5 andM=1 for (a)mi/me=900 andmi/me=450, as well as (b) along the
x-axis through the center of the object. For comparison, the result fromLR calculations (figure 6 in [33]) at the sameβi andM are also
depicted in (b).

Figure 3.Test particle trajectories plotted on-top of normalized ion density distributions in the x–ρ plane (cylindrical symmetry) for
M=1.2 (a) andM=2.4 (b) for differentmagnetizationsβi;mi/me=900.Only trajectories of ions entering thewake are shown.
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The chains of ion depletions and sharp density gradients at their envelopes can also be addressed by studying
particle trajectories with an effective potential of the obstacle, where a radially symmetric Coulomb field can be
taken as an approximation. Ion scattering happens at time-scalesmuch shorter than the gyroperiod and can be
considered as a classical Rutherford scattering. Thus, scattering events inmagnetized flows can be decomposed
into outer trajectory parts, where the particles follow the Lorentz force, and a nearly unmagnetized scattering
eventwithin a ‘collision sphere’, the radius of which is determined by the ion impact parameter. The scattering
results in a dynamic shadow characterized by complex distributions of density and potential in thewake.

4.Discussion and conclusions

In addition to theflow velocity vd, several parameters can influence the formation of amagnetizedwake. The
dynamicmagnetizationβi=ωci/ωpi reflects the anisotropy of plasma. Forβi>1 the ion Larmor radius
becomes smaller than the ionDebye length, rLi<λDi , and ion dynamics will be dominated by themagnetic
field. In agreementwith the LR approach, we observe an overall change inwake topology forβi>1.
Furthermore, the efficiency of collisions cef=ωci τcol , where τcol is the characteristic collision time between the

ion and the object, can be related to the size of ion density shadows. Larger B

 (i.e., shorter gyroperiod) reduces

the time interval when ions are subject to scattering, and gives smaller andmore frequent density depletions.

More efficient scattering for small B

 allows for larger acceleration of ions in both perpendicular and parallel

directions, and hence larger helices and extent of depletions. The collision time depends on both rLi and the
strength of the electricfield in the vicinity of the object. The scattering process and, hence, the phenomenon of
dynamic shadow formation are nonlinear, and are not capturedwith the LR approach.

Another parameter is the geometricalmagnetization γα , which relates to a static shadow in thewake. For the
flow velocities considered in ourwork, this effect ismost pronounced for ions, and electrons can be assumed
stationarywith respect to the object. For largemagnetic fields, γi>1 and the static ion shadow contributes to a
negative potential along the symmetry line in thewake in the closest vicinity of the object. Note that this static
ion shadowing appears in addition to dynamic ion shadowing due to ion scattering at the object in strongly
magnetized plasmaflows.

Dynamic shadowing resulting in chains of depletions and enhancements in the ion density not only explains
the potential variations in thewake, but also has implications on the charging of other objects, such as dust
particles, inmagnetized collisionless plasma flows. The structure of thewake implies that theremay exist either
attractive or repulsive interparticle forces depending on the location of the downstreamparticle. Non-trivial
charge distributions on downstreamdust particles inmagnetized plasmaswill affect dust interactions and
structuring of dust clusters [25, 26]. This knowledge on charging andwake structure in strongmagnetic fields
will contribute to our understanding of dust dynamics inmagnetized plasmas [27].

High dynamicmagnetizationsβi can be encountered inmany laboratory experiments, such as inQ-
machines [36, 37] or rf discharges inside superconductingmagnets [25, 26], and in such cases the diagnostics
should take the dynamic shadows into account.We note that in our study, we consider large electron to ion
temperature ratios. For smaller temperature ratios, the shadowingmay get reduced due to larger ion thermal
velocity. On the other hand the shadowingwill get enhanced for larger ion to electronmass ratios.

The present study considers collisionless plasmaflows. Such plasma conditions are relevant for space
plasmas or some experiments. Collisions with neutrals can significantly influence the plasma particle dynamics,
especially in the presence of externalmagnetic fields. In a limiting case, they can lead to effective
demagnetization of ions. Thus, the effect of collisions on the formation and persistence of wake inmagnetized
plasmas should be a subject of further investigations.

To summarize, with kinetic PIC simulationswe have shown that for stronglymagnetized collisionless
plasmas, the nonlinear dynamic shadowing in thewake results in periodic ion-free regionswith envelopes of
elevated ion density. This new feature has implications on charging characteristics, dust interactions and
dynamics, and plasma diagnostics in stronglymagnetizedwakes.
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