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Abstract

Background: The current versions of reference genome assemblies still contain gaps represented by stretches of Ns.
Since high throughput sequencing reads cannot be mapped to those gap regions, the regions are depleted of
experimental data. Moreover, several technology platforms assay a targeted portion of the genomic sequence,
meaning that regions from the unassayed portion of the genomic sequence cannot be detected in those
experiments. We here refer to all such regions as inaccessible regions, and hypothesize that ignoring these regions in
the null model may increase false findings in statistical testing of colocalization of genomic features.

Results: Our explorative analyses confirm that the genomic regions in public genomic tracks intersect very little with
assembly gaps of human reference genomes (hg19 and hg38). The little intersection was observed only at the
beginning and end portions of the gap regions. Further, we simulated a set of synthetic tracks by matching the
properties of real genomic tracks in a way that nullified any true association between them. This allowed us to test our
hypothesis that not avoiding inaccessible regions (as represented by assembly gaps) in the null model would result in
spurious inflation of statistical significance. We contrasted the distributions of test statistics and p-values of Monte
Carlo-based permutation tests that either avoided or did not avoid assembly gaps in the null model when testing
colocalization between a pair of tracks. We observed that the statistical tests that did not account for assembly gaps in
the null model resulted in a distribution of the test statistic that is shifted to the right and a distribution of p-values
that is shifted to the left (indicating inflated significance). We observed a similar level of inflated significance in hg19
and hg38, despite assembly gaps covering a smaller proportion of the latter reference genome.

Conclusion: We provide empirical evidence demonstrating that inaccessible regions, even when covering only a few
percentages of the genome, can lead to a substantial amount of false findings if not accounted for in statistical
colocalization analysis.

Keywords: Assembly gaps, Reference genome, Statistical genome analysis, Colocalization analysis, Co-occurrence
analysis, Region set enrichment analysis, Genomic overlap analysis, BED format

Background
Genome biology research relies on reference genomes
to a large extent to map the high-throughput sequenc-
ing reads against known functional annotations [1]. The
reference genome thus serves as a central entity that inter-
links various genomic features [2]. Therefore, our current
understanding of the genomes is greatly influenced by
the completeness of the reference genomes [3]. However,
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because of the challenges associated with cloning and
mapping certain highly repetitive and complex regions,
the physical maps of the reference genomes of many
species currently contain long-stretches of gaps [4]. For
instance, a considerable proportion of the human genomic
sequence (between 5–10%) remains poorly characterized
to date. In the latest human genome build, hg38, around
200 Mbp mainly from centromeres and acrocentric short
arms, and around 30 Mbp of interstitial gaps mostly in
euchromatic sequences are currently uncharacterized [5].
The genome assemblies of non-model organisms contain
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a higher gap proportion than humans and model organ-
isms (e.g., 6% gap bases in the genome of giant panda)
[6, 7].
High-throughput sequencing reads are not expected to

map against the assembly gap regions of the reference
genome because of the lack of reference sequences. In
many experimental settings, the little reduction in map-
ping rate due to the presence of assembly gaps is not a
major constraint (owing to the relatively smaller size of the
gap regions compared to the whole genome). However,
not accounting for the presence of assembly gaps in the
null model can be problematic in the statistical hypothesis
testing of genomic colocalization.
In genomic colocalization analysis, the overlap or colo-

calization of genomic features is quantitated and subse-
quently tested for its statistical significance. The statistical
significance of colocalization is often assessed by using
either analytical tests (e.g., Fisher’s exact test) or tests
based on Monte Carlo simulations/permutations. At the
heart of either of the approaches is a null model, which
is used to generate the expected null distribution of colo-
calization measure (under the assumption that there is
no relation between the genomic features being tested).
The definitions of null models vary depending upon how
much of the real data characteristics they preserve [8,
9]. Accordingly, the null models can be considered as
being simple/basic or as being conservative. There is no
single null model that can fit all the analysis scenarios.
Even a simple null model can be adequate in some sce-
narios if the assumptions of that null model are valid in
the context of biological relevance. Nevertheless, choos-
ing a null model that is closer to the characteristics of the
real data being studied has been suggested to be a pre-
ferred way to avoid false findings in colocalization analysis
[8, 9].Therefore, irrespective of the choice of the statisti-
cal testing approach or null model definition, one should
ideally account for the assembly gap regions in the null
model as it is still an inherent property of the real data.
However, to our knowledge, no previous study explored
the potential severity in terms of magnitude of false find-
ings of not handling assembly gaps in the null model. The
absence of such empirical evidence could partly be the
reason why none of the current generation of colocaliza-
tion analysis tools [10–18] handle assembly gap regions
by default in the statistical testing. Furthermore, many
technology platforms assay only a restricted part of the
genome (e.g., exome sequencing, custom microarrays and
so on), meaning that the resulting genomic tracks will be
selectively depleted in certain regions. We refer to such
depleted regions in general as inaccessible regions for a
genomic track. Here, we hypothesise that the presence of
inaccessible regions can introduce a bias and lead to false
findings if not handled in statistical testing of genomic
colocalization.We devise a simulation study that allows us

to quantitate the effect of ignoring inaccessible regions in
the absence of other signals.

Results
Overlap of public genomic tracks with genome assembly
gaps
We performed a series of explorative analyses to under-
stand the nature and extent of the intersection of genomic
tracks with genome assembly gaps. For this, we down-
loaded large collections of public genomic tracks (hg19
and hg38) categorized by diverse experimental assays,
including tracks of histone modifications, DNase I hyper-
sensitive sites, and transcription factor binding sites in
the K562 cell line for hg19 and DNase I hypersensitive
sites for hg38 in Table 1. We then intersected the genomic
tracks with assembly gaps of hg19 and hg38. Overall,
we observed a trend of a very modest overlap with the
assembly gaps and the overlap was unsurprisingly local-
ized to the beginning and end portions of the gaps, rather
than crossing over the middle portion of the gaps in
Table 2. Assembly gap regions that overlapped the most
with the public genomic tracks are on the chr4:40296396-
40297096, chr7:139379377-139404377, chr3:194041961-
194047251 followed by chr17:21976511-21976531. These
findings rightly confirm that the sequencing reads do not
map to the assembly gaps on hg19. This is not surpris-
ing, because unlike hg38, which contains sequencemodels
for a large portion of the gaps, hg19 rather contains long-
stretches of Ns in most of the gap regions, thus excluding
the possibility of any read mapping.
We further checked whether the amount of overlap of

genomic tracks with assembly gaps is size-dependent. We
observed that the overlap of public genomic tracks with
assembly gaps increased with an increase in the average
segment length of the tracks (Additional file 1: Figure S1).

The impact of not avoiding the assembly gaps on the
findings of statistical testing in colocalization analysis
To understand whether avoiding/not avoiding the assem-
bly gap regions in the null model would have an impact
on the conclusions of statistical colocalization analysis, we
contrasted the findings of MC-based permutation tests
that either avoided or not avoided assembly gaps in the
null model. For this, we first tested the significance of pair-
wise overlap of 100 pairs of genomic tracks (hg19) by not
accounting for assembly gaps. Each of the pair of genomic
tracks is comprised of a real track obtained from public
repositories, while the other track was simulated to match
the real track in its nature of not mapping to the assem-
bly gap regions. The simulated tracks were generated with
the same properties as real genomic tracks i.e. average
segment length of intervals and number of elements and
the same tendency to avoid assembly gaps. By simulating
genomic tracks in this fashion, one from the outset can
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Table 1 Track collection and aim of analysis

Tracks collection Number of tracks Genome Source of Genomic tracks Purpose

Histone modifications 477 hg19 ENCODE Investigating the nature and extent of over-
lap of public genomic tracks with genome
assembly gaps

DNase I hypersensitive sites 838

Transcription factor binding sites
(K562)

568

DNase I hypersensitive sites 95 hg38

Randomly selected tracks from the
above collections

100 hg19 ENCODE Understand the impact of not avoiding
assembly gaps on the conclusions of statisti-
cal colocalization analysis

All tracks selected from the above
collection

95 hg38

be sure that there is no dependence (association) between
the real and simulated tracks except their shared avoid-
ance of assembly gap regions (H0 is always true). However,
when not accounting for assembly gaps in the statistical
tests, the distribution of p-values of colocalization anal-
ysis is strongly shifted to the left, with H0 being falsely
rejected after multiple testing correction (FDR< 0.05) for
87 out of 100 tests (counted for tracks of histone modifi-
cations, Fig. 1b). This shows that ignoring gaps in the null
model introduces a substantial risk of false discoveries.
The bias of the analysis is also evident from a compar-
ison of the distribution of observed test statistic values
(number of bases overlapping) and the average values for
the test statistic under the null model, where the average
observed test statistic is higher than the average test statis-
tic of the null model when ignoring assembly gaps (Fig. 1a,
b and Additional file 2: Figure S2a, S2b, S2c, S2d).
Furthermore, we repeated the statistical testing on the

same dataset of 100 pairs of genomic tracks, this time by
avoiding the assembly gaps in the MC-based null model.
Accounting for the assembly gaps resulted in uniformly
distributed p-values with no obvious shift in either direc-
tion (Figs. 1a, b and Additional file 2: Figure S2a, S2b and
Additional file 3: Figure S3a, S3b). The comparison of the
distributions of the observed test statistic and the average
test statistic under the null model also substantiated that
the null model is bias-free (Fig. 1c, d and Additional file 2:
Figure S2c, S2c and Additional file 3: Figure S3b, S3c).
To examine further if a smaller proportion of the total

gap size (relative to the genome size) would exclude the
assembly gap bias, we repeated all the experiments dis-
cussed above on genomic tracks of hg38 (Additional file 4:
Figure S5). We observed a similar trend of false findings
as in the experiments with hg19, where the null hypothe-
sis was falsely rejected for 83 out of 95 tests (∼87%) after
multiple testing correction (Additional file 4: Figures S5b).
This observation of nearly equal degree of false findings
on hg38 tracks suggests that the assembly gap bias does
not necessarily cancel out with a reduction in the total gap

size. However notably, the total gap size of hg38 spans up
to 5% of its total size whereas it was 7.6% in hg19. The
degree of false findings might get reduced as the total gap
sizes are minimized. Nevertheless, with the current ver-
sions of genome assemblies of different species, gap bias is
still a technical confounder that is worth paying attention
to avoid false findings in genome analysis.

Discussion
Testing the significance of colocalization of genomic
features is a common analysis approach in biomedical
research. One common characteristic of genomic features
assayed by current generation sequencing platforms is
that the sequencing reads do not map to the gap regions of
the reference genome, as also substantiated in this study.
Similarly, some technology platforms assay only selective
portions of the genome (e.g., excome sequencing, cus-
tom microarrays and so on). This selective depletion of
reads in certain regions of the genome means that any
subsequent statistical analysis should also carefully reca-
pitulate this technical feature to avoid any potential bias.
We hypothesized that failure to account for the selective
depletion of certain genomic regions (here assembly gaps)
is a technical bias that can confound the statistical testing
in genome analysis. To test our hypothesis, we performed
a pairwise colocalization analysis on a combination of real
and synthetic datasets that have no true biological relation
(association), using two different null models that dif-
fered only in whether or not they incorporate inaccessible
regions. Since the datasets have no true association, sta-
tistical testing should not detect a statistically significant
association, irrespective of its other assumptions about
the data characteristics. However, our independent exper-
iments on genomic tracks of both hg19 and hg38 showed
that the null model definition which ignored this techni-
cal bias (assembly gap regions) detected a larger degree
of false positives while the other null model that modeled
the inaccessible regions resulted in a uniform distribu-
tion of p-values in an expected fashion. The bias was
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Fig. 1 Distribution of the test statistic and p-values of colocalization analysis for a collection of 477 genomic tracks with 2113.82 bp average
segment length for histone modifications (hg19). [a and b shows the distribution of p-values of the colocalization analysis with (left) and without
(right) exclusion of assembly gap regions under the null model. c and d shows the observed test statistic and the average test statistic of the same
tracks with (left) and without (right) exclusion of assembly gap regions under the null model. Note: Both values are higher than 1 because the
computations were performed relative to the whole genome size.]

also visible when comparing the distributions of average
test statistic under the null model (number of overlap-
ping bases), where there is decreased overlap under the
null model that did not model the technical bias. Such a
trend of decreased overlap under the null model is not
surprising since the null model is unaware of the tech-
nical bias and can distribute genomic elements in those
regions also, whereas the real genomic tracks being tested
are selectively avoiding those regions. Since the assem-
bly gap regions span only a small portion of the genome
(around 3–6% of the reference genome sizes typically),
one cannot exclude the possibility of overlooking such a
technical bias. However, the extent to which such a mod-
erate bias may lead to a large number of falsely rejected
null hypotheses (even after multiple testing correction) is
noteworthy. The severity of false rejections will depend on
the statistical power of the analysis - since the assembly-
gap-ignorant null hypotheses are not technically true, they
will all be rejected given enough data (even after multiple
testing correction). Thus, the issue of assembly gap bias
(or any other similar technical bias) may be highly prob-
lematic for datasets with many genomic regions, while
it will be affecting conclusions to a lesser degree for
datasets containing fewer genomic regions (see Fig. 2 and
Additional file 5: Figures S4). The same point holds for
other scenarios in which the tracks to be analyzed share a

restriction to certain parts of the genome. This could, for
instance, be datasets that are restricted to coordinates in
transcribed regions or regions included on a custom chip
or microarray. In such situations, data should in the null
model be restricted to occur in the parts of the genome
where observed data could technically occur. Note that
although one should always aim for null models that real-
istically represents technical restrictions for the real data,
the bias discussed in the present paper only applies when
the datasets to be analyzed share a set of excluded regions
(if data is unobtainable in certain regions only for one of
the tracks, it will not lead to a systematic bias as described
here). In this study, we have deliberately chosen to use a
basic null model definition for both the null models (that
differed only in whether they modeled the technical bias
or not) because of the already complex study design. In
this context, a “basic” null model definition is that, which
do not closely preserve the real data characteristics such
as genomic distribution (chromosomal locations), clump-
ing tendencies and so on. However, we circumvented
any potential effects of such a choice through our care-
ful simulation design, where we know from the outset
that the datasets that we are testing for association are
not truly associated and do not have such complicating
characteristics. Therefore, no null model definition should
detect a true signal irrespective of its other assumptions
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Fig. 2 Relation between the p-values of colocalization analysis for a collection of N genomic tracks and the number of elements within each track of
hg19 a for histone modifications (N=477) b for TFBS in K562 (N=568)

about the real data characteristics. The findings of this
study will not only benefit users of colocalization analy-
sis methods, but are also crucial for the future endeav-
ors in the direction of developing a robust bias-aware
methodologies.

Conclusions
This study demonstrates that failure to account for
inaccessible regions, even when covering only a few
percentages of the genome, can lead to a substantial
amount of false findings when performing statistical
testing of genomic colocalization. Since genomic colo-
calization analysis is often hypothesis-generating, users
should be aware of such technical biases to avoid false
findings.

Methods
Datasets
Throughout this study, we used large collections of
genomic tracks that were either obtained from public
repositories or simulated using a shuffling algorithm.
Table 1 shows the genomic track collections used in
this study. To investigate the nature and extent of over-
lap of genomic tracks with genome assembly gaps, we
downloaded large collections of genomic tracks (hg19
and hg38) from ENCODE database. The downloaded
genomic tracks are categorized by diverse experimental
assays including tracks of histone modifications, DNase I
hypersensitive sites, and transcription factor binding sites
in K562 cell line for hg19 and DNase I hypersensitive sites
for hg38.
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To understand the impact of either avoiding or not
avoiding assembly gaps on the findings of statisti-
cal testing of colocalization analysis, we downloaded
genomic tracks corresponding to histone modification
sites (hg19 and hg38) from ENCODE database and ran-
domly retained 100 tracks for the statistical analyses. For
performing pairwise colocalization analysis (based onMC
permutation tests) on the retained tracks of histone mod-
ifications, we simulated 100 synthetic tracks that match
the histone modification tracks in terms of the number
of genomic regions, the average length of the genomic
regions, and the distribution of genomic regions across
the chromosomal arms. The synthetic tracks are also
deliberately simulated in such a way that they also avoid
the genome assembly gaps, mimicking the typical nature
of public genomic tracks. The synthetic tracks are simu-
lated using a standard shuffling algorithm that distributes
genomic elements uniformly across the genome by avoid-
ing assembly gap regions, where chromosome and posi-
tion are randomly chosen. For this analysis, we restricted
the dataset size to 100 tracks because of the computational
time of the MC permutation tests. The study design is
shown on Fig. 3.

We further repeated the same experiments on 95 track
pairs of hg38, where synthetic tracks were simulated to
match the properties of 95 DNase I hypersensitive sites.

Definition of null models
We have in our analyses considered two distinct null mod-
els that differ in whether genomic elements may occur in
assembly gap regions, but are in other ways equal. Both
null models preserve the number of genomic elements and
their empirical size distribution, while assuming that these
elements are distributed uniformly (without intra-track
overlap) within the allowed parts of the genome (the full
genome or the genome excluding assembly gaps for the
two null model versions, respectively).

Rationale behind using simulated genomic tracks to assess
the gap bias
A pair of real genomic tracks from public databases can
be associated in at least two different ways in the context
of this study: (i) they both share the nature of avoiding
the assembly gaps (as demonstrated in the first section
of results section) and (ii) they both can share some true
biological signal of genomic overlap (e.g., enrichment of

Fig. 3 Schematic showing the study design. [To demonstrate the assembly gap bias if not accounted for in the statistical testing, we used two null
model definitions that only differed in whether or not they avoided assembly gaps. For the pairwise colocalization analysis, we deliberately used a
combination of real and synthetic track pairs to nullify any true biological association between them. The synthetic tracks were generated in such a
way that they mimick the real tracks in terms of the genomic distributional properties as shown in the ellipse. The distributions of p-values, observed
colocalization measures, average colocalization measures under the null models were examined to see if or not there is a bias.]
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DNase I hypersensitive exons near promoters). Hereafter,
we refer to (i) and (ii) as “gap bias” and “true signal”,
respectively. A naive null model can detect a significant
association that has resulted because of either gap bias
or true signal or both. This will be problematic if the
detected significant association is not solely because of
true signal (because even a weaker true signal could falsely
appear stronger because of gap bias). The objective of
this manuscript is to demonstrate that an over-optimistic
finding (i.e. a p-value deemed statistically and biologi-
cally significant) could be observed even in the absence of
any true signal between a pair of tracks, because of their
shared nature of avoiding assembly gaps (gap bias). This
can in principle be tested between pairs of real tracks.
However, as pointed out above, real tracks can be asso-
ciated in both ways: gap bias and true signal. Since the
objective is to demonstrate the possibility of false posi-
tive findings even in the absence of true signal, one has to
exclude the possibility of any true signal between the pairs
of tracks being tested. Therefore, to exclude the true sig-
nal we generated synthetic tracks that essentially mimick
real tracks except for their true signal.

Tools
All plots and the information necessary for their repro-
duction can be found at https://hyperbrowser.uio.no/
assemblygaps. All results can be reproduced using the
redo-functionality provided by the underlying Galaxy
system (https://hyperbrowser.uio.no/assemblygaps/u/hb-
superuser/p/assembly-gaps).

Additional files

Additional file 1: Overlap of public genomic tracks with genome
assembly gaps of hg19 and hg38. Overlap of public genomic tracks with
assembly gaps and average segment length of the tracks (a) for DNase I
hypersensitive sites (hg19) (b) for histone modifications (hg19) (c) for TFBS
in K562 (hg19) (d) for DNase I hypersensitive sites (hg38). Overlap of public
genomic tracks with assembly gaps increased with an increase in the
average segment length of the tracks. (PDF 60 kb)

Additional file 2: Distribution of the observed test statistic and the
average test statistic under the null model for DNase I hypersensitive site
(hg19). Distribution of the test statistic and p-values of colocalization
analysis for a collection of 838 genomic tracks with 281.47 bp average
segment length. (a) and (b) shows the distribution of p-values of the
colocalization analysis with (left) and without (right) exclusion of assembly
gap regions under the null model. (c) and (d) shows the observed test
statistic and the average test statistic of the same tracks with (left) and
without (right) exclusion of assembly gap regions under the null model.
(PDF 70 kb)

Additional file 3: Distribution of the observed test statistic and the
average test statistic under the null model for TFBS in K562 (hg19).
Distribution of the test statistic and p-values of colocalization analysis for a
collection of 568 genomic tracks with 3850.15 bp average segment length.
(a) and (b) shows the distribution of p-values of the colocalization analysis
with (left) and without (right) exclusion of assembly gap regions under the
null model. (c) and (d) shows the observed test statistic and the average
test statistic of the same tracks with (left) and without (right) exclusion of
assembly gap regions under the null model. (PDF 69 kb)

Additional file 4: Distribution of the observed test statistic and the
average test statistic under the null model for DNase I hypersensitive sites
(hg38). Distribution of the test statistic and p-values of colocalization
analysis for a collection of 95 genomic tracks with 150.35 bp average
segment length. (a) and (b) shows the distribution of p-values of the
colocalization analysis with (left) and without (right) exclusion of assembly
gap regions under the null model. (c) and (d) shows the observed test
statistic and the average test statistic of the same tracks with (left) and
without (right) exclusion of assembly gap regions under the null model.
(PDF 72 kb)

Additional file 5: Relation between the p-values of colocalization analysis
for a collection of genomic tracks and the number of elements within each
track. Relation between the p-values of colocalization analysis for a
collection of genomic tracks and the number of elements within each track
(a) for DNase I hypersensitive site (N=838, hg19) (b) DNase I hypersensitive
sites (N=95, hg38). (PDF 39 kb)
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