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We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting
heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phospho-
rus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional,
shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed
appear to show that magnetotransport in two dimensions is governed by a small number of universality classes
that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature.
The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the
wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they
in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum
critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available
experimental quantum Hall scaling data are in good agreement with these predictions.

DOI: 10.1103/PhysRevB.97.045113

I. INTRODUCTION AND SUMMARY

The continuous and discrete symmetries observed in nature
may be exact or approximate. The continuous case includes
exact symmetries like Lorentz and gauge invariance, which
severely constrains possible dynamical models, while discrete
symmetries usually are finite and approximate. We shall here
investigate a class of experimental data that appear to respect a
new type of symmetry that is called modular. Although these
are finitely generated approximate (emergent) discrete symme-
tries, because they are non-Abelian and infinite, they provide
unusually strong constraints on low-energy model building.

Infinite discrete groups, including modular symmetries,
play an important role in modern mathematics, but because
they are extremely rigid, it is not clear if they can exist in the real
physical world. Indeed, it is only in bespoke physical systems
(“designer universes”), engineered to be effectively (for all
practical purposes) two-dimensional, that modular symmetries
have been found [1–26].

The quantum Hall effect (QHE) appears in materials where
charge carriers are forced to move in a single atomic plane, for
example, on the surface of a crystal or in a sheet of graphene.
Experiments measuring the electromagnetic properties (mag-
netotransport) of Hall systems produce what at first sight
appears to be an impenetrable morass of data. However, first
appearances can be misleading, and if the quantum Hall data
are viewed from a particularly advantageous vantage point,
a hidden pattern of great beauty and utility is revealed [1,2].
This rigid emergent order is encoded in a fractal phase diagram
tightly harnessed by a modular symmetry that allows it to teeter
on the brink of chaos, without actually taking the leap.

Our purpose here is to explore the robustness and univer-
sality of these new symmetries, by comparing and contrasting
data from the most disparate materials available. We do this
in the simplest possible way, by superimposing scaling data
directly onto mathematical diagrams with modular symmetry.
This “phenomenological” approach is unbiased, since no the-

oretical assumptions are invoked, and we are free to represent
(plot) the data in any way we want. We will not here discuss
theoretical ideas that are needed in order to connect the
well-known microphysics (“electrons in a dirty lattice”) to the
emergent macrophysics observed in transport experiments.

Since modular mathematics is unfamiliar to most physicists,
a brief introduction to modular symmetry in physics is provided
in the next section. In order to motivate this, we start by
summarizing the main conclusion: the scaling properties of a
quantum Hall system appears to have a remarkable simplicity
and universality encoded in a modular symmetry.

More precisely, the Hall and magnetoconductivities σH

and σD show a strong dependence on the dominant scale
parameter t (usually temperature), and the scaling functions
βH = dσH /dt and βD = dσD/dt appear to be harnessed by a
modular symmetry. Provided that these functions have certain
analyticity properties, the modular symmetry is so rigid that
they only barely survive; (i) if the symmetry observed in an
experiment is one of the maximal subgroups of the modular
group, then the physical β function is unique, up to an
overall normalization (cf. Fig. 2), and (ii) if the symmetry
observed in an experiment is the largest subgroup shared by
the maximal subgroups, then there is a unique family of β

functions parametrized by a single real number, up to an
overall normalization (cf. Fig. 4). These all but unique β

functions generate equally unique flow diagrams, which we
compare with scaling data. They almost always agree, within
the experimental error (cf. Figs. 6–17).

This transmutation of modular mathematics into quantum
Hall physics follows from a fundamental property of scaling
functions: they must respect any geometric structure with
which the parameter space is endowed. In the QHE, this is the
space of transport coefficients (conductivities or resistivities),
which appears to be equipped with both a complex structure
and an emergent modular symmetry. These circumstances
conspire to give a very strong constraint on low-energy physics,
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and any model of this physics, as we now explain in the context
of the QHE.

It is convenient to combine the real conductivities σH and
σD into a complex quantity σ = σH + iσD that takes values in
the upper half of the complex plane: σ ∈ C+ (�σ = σD > 0).
This is useful because it reduces (transport) matrix operations
to ordinary (complex) algebra, but an examination of the
geometric properties of the scaling flow reveals a more pro-
found reason to use complex coordinates: they are inescapable
if the scaling flow is irrotational and incompressible. Why
this should be the case may be motivated by some empirical
observations that constrain the complexified scaling function
β = dσ/dt = βH + iβD = (βH ,βD), which is a tangent vector
field on the parameter space.

The first condition is that β should be curl free, which
means that it is a gradient flow derived from a scalar potential.
This eliminates limit cycles, which are never seen, presumably
because they would render the conventional physical inter-
pretation of the potential as counting (effectively massless)
degrees of freedom meaningless. In other words, this condition
is consistent with experimental reality, and it is needed for
the scaling flow to adhere to conventional wisdom about
renormalization.

The second condition is that β should be finite onC+, except
for simple zeros at quantum critical points. This means that
there are no sources or sinks (singularities) on C+, so the flow
is incompressible and divergence free.

If this condition is not used, as has been tried in the past
[27], much more complicated flows than those discussed here
are possible. However, we are not aware of any evidence
suggesting that there are sources or sinks for the scaling flow
not on the boundary of parameter space. Furthermore, since it
appears that our much more restrictive framework is sufficient
to account for virtually all scaling data, we will not relax this
condition.

Demanding that a vanishing point of β be simple means that
it is a regular saddle point for the flow, as required for a normal
critical point. Again this condition is needed for the scaling
flow to adhere to conventional wisdom about renormalization.

Demanding that β be free of curl and divergence severely
constrains the geometry of the flow because this is (in two
dimensions) equivalent to the Cauchy-Riemann equations. It
follows that β is a holomorphic function of σ , i.e., antiholo-
morphic in σ [28]. Such Laplacian flows are automatically
gradient flows, i.e., completely determined by a scalar potential
ϕ, which in this context is called the renormalization group
(RG) potential or C function [cf. Eq. (2)].

These constraints are arguably physically sensible and/or
well founded in empirical data, but they are far from obvious.
It would be prudent at this stage to treat them as (reasonable)
assumptions whose veracity may or may not be confirmed
by confronting their consequences with experimental data. In
other words, this is an ansatz that will be validated a posteriori.
At the very least, it provides motivation and a conceptual
framework for pondering the origin of these unusual sym-
metries and their “unreasonable effectiveness” in organizing
quantum Hall data.

Formulating the next condition requires a new vocabulary
that is used in the theory of infinite groups. In order not to
interrupt this summary, we postpone many definitions until the

next (more formal) section, after which the reader may wish to
revisit this narrative. The third condition is that β should have
some type of modular symmetry. This is at present a purely
empirical observation, with little or no theoretical foundation.
Combined with complex analyticity (the Cauchy-Riemann
equations), we may conclude that β is a modular form of
weight two.

It is the paucity of weight two forms on large modular groups
that gives modular symmetry extremely sharp teeth. The first
useful result is that no such forms exist if � is the full modular
group �(1)0 = SL(2,Z), and there are therefore no candidate
β functions with this symmetry. This provides a theoretical
reason, independent of the experimental observation that this
symmetry is too large, for considering smaller groups. So
we turn our attention to subgroups of �(1)0, where further
surprises await us [29], including (i) and (ii).

We shall see that this provides a host of rigid predictions that
are easy to falsify. The most surprising consequence of a modu-
lar symmetry is perhaps that the plateaux must be rational. This
follows from the fact that in order for a modular symmetry to
act “properly” on the real line (in a strict mathematical sense)
[30], the upper half plane C+ is compactified to the extended
upper half-plane C

+
by adding only rational numbers, and the

point at infinity: C
+ = C+ ∪ Q ∪ {i∞}. It is also appealing

that the integer (IQHE) and fractional (FQHE) quantum Hall
effects are automatically unified by a modular symmetry.

The crux of the mathematical primer in Sec. II is Fig. 2,
which shows all viable phase diagrams that are consistent with
maximal modular symmetry, and Fig. 4, which shows how
these fit snugly into a one-parameter family of quantum Hall
phase diagrams with the slightly smaller symmetry �(2). It
should be possible to skip most of the mathematics, retaining
only this atlas of modular maps, in order to follow the
phenomenological analysis of experimental data in the bulk
of this work.

This section is followed by some introductory remarks
about the novel materials that have yielded most of the new
data discussed in the following sections. They give a fairly
comprehensive overview of the current experimental status
of the modular hypothesis, including all scaling experiments
we have found to be of sufficient quality to enable us to
extract a partial flow diagram. Sections IV–VII provide what is
essentially a catalog of fixed point data and scaling diagrams,
organized by the modular symmetry they exhibit. Within each
of these universality classes, the data are grouped according
to the type of material used in the experiment. Section VIII
summarizes previous work and some of the successes of the
modular paradigm so far, as well as some of the outstanding
problems and challenges to be addressed in future work.

II. MODULAR SYMMETRY

The idea to be investigated here is that a two-parameter
scaling theory suffices to describe the QHE at low energy
where transport experiments are performed. These parameters
are the scale dependent conductivities, and since σD � 0 they
take values in C+(σ = σH + iσD). As long as the inelastic
scattering length is smaller than the size of the Hall bar, the
dominant scale parameter is the temperature T . The phase
and flow diagrams on display in this article are obtained by
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studying families σ (T ; B, . . . ) of quantum Hall data, where
B is the magnetic field strength and the ellipsis represents
other nonuniversal quantities that depend on the type of
material used. Before doing so, we give a brief glossary of the
vernacular used in the theory of scaling and renormalization,
and throughout this paper (italics signals that the term is
defined by the sentence in which it appears). Most of it is
borrowed from hydrodynamics.

A flow line tracks how the effective (renormalized) values
of the transport coefficients change when the scale parameter
(temperature) is changed. We are free to dial any starting
point for a flowline by changing nonscale parameters, like the
magnetic field B, which must subsequently remain fixed while
only the scale parameter is changed.

A flow diagram is a collection of such flow lines, which
if possible are chosen so that they “spread out” and probe as
much of parameter space as possible (in practice experimental
limitations severely constrains access to initial values). Since
flow lines cannot cross phase boundaries they chart the phase
diagram. The geometry of any flow diagram is controlled by
fixed points of the flow, i.e., points in parameter space where the
flow (scaling) stops, so they are by definition scale invariant.

Sinks for the flow are called attractive infrared (IR) fixed
points, which we represent by the icon . In the QHE, these are
the plateaux, where σH is a rational number (∈ Q) in units with
e2/h = 1, and σD vanishes. Rational points should therefore
be included in the physical parameter space for the QHE. In
mathematics, this is called a compactification of the open set
C+ toC

+
. For topological reasons, only rational points may be

added (including the “fraction” ∞ = 1/0), and they are called
the boundary of C

+
.

Sources for the flow are called repulsive ultraviolet (UV)
fixed points, which we represent by the icon . Experiments
reveal that these fixed points also lie on the boundary of
parameter space.

Saddle points for the flow (one attractive and one repul-
sive direction) are called semistable fixed points, which we
represent by the icon . In the QHE, these are the quantum
critical points that control quantum phase transitions, some-
times called the localization-delocalization transition, between
phases “attached” to different plateaux. Physical critical points
are vanishing points (zeros) of the vector field β = (βH ,βD)
of scaling functions, which belong to the interior of parameter
space.

This fixed point structure can be extracted directly from
the geometry of the data without any theoretical bias. If they
reveal a hidden order (symmetry), then they are the DNA
of this symmetry from which all else will follow. Our main
assertion is that quantum Hall data does reveal such an order,
encoded in the nested hierarchical structure of phase portraits
(cf. Figs. 6–17). This is the signature of an approximate global
discrete symmetry, which, given some familiarity with infinite
discrete groups, is surprisingly easy to identify by finding some
of the fixed points. The symmetry in question is called modular.

A modular transformation is a special type of Möbius
transformation, familiar from complex analysis, which is a
fractional linear map z → (az + b)/(cz + d) of the complex
plane C(z) onto itself. Recall that such maps preserve angles
but not lengths. If a,b,c,d are integers, and ad − bc = 1, then

this transformation preserves the upper halfC+ of the complex
plane. The set of all transformations restricted in this way (there
are infinitely many) form a group, called the modular group
�(1) = SL(2,Z). It is generated by a (horizontal) translation
T (z) = z + 1, and a duality transformation, which in this
case is the inversion (“reflection”) S(z) = −1/z in the unit
circle. Since the generators T and S do not commute, e.g.,
T S(z) = (z − 1)/z �= −1/(z + 1) = ST (z), this is an infinite,
discrete, non-Abelian group that we sometimes write as 〈T ,S〉.

Subgroups are easily obtained by restricting the coefficients
a, b, c, and d further. For example, if a and d are required to be
odd and b and c are even (the matrix (a,b; c,d) = 1 mod 2),
this gives the important principal congruence subgroup at level
two, usually called �(2), which will play an important role in
the following.

There are larger subgroups of �(1) that contain �(2), three
of which we will call the maximal subgroups �R, �S, and �T.
They are uniquely defined by how they are generated, as shown
below in Eq. (1), or, equivalently, by how they group together
rational numbers into equivalence classes (closed sets) under
the transformations in the group. The latter is particularly use-
ful, since it is the plateaux spectrum (a set of rational numbers)
that is the most obvious property of a universality class.

For example, if T : z → z + 1 belongs to the symme-

try group, then since · · · T−→ −2
T−→ −1

T−→ 0
T−→ 1

T−→
2

T−→ . . . , all integers are equivalent under the symmetry, and
consequently all integer plateaux must appear on an equal
footing in the phase diagram. This transformation preserves
the parity of the denominator (integers n = n/1 all have odd

denominator, and in general p/q
T−→ p/q + 1 = (p + q)/q

preserves the denominator q).
As far as the full modular group �(1) is concerned, all

fractions (plateaux values) are equivalent, i.e., given any two
rational numbers there is always some transformation in �(1)
that takes one into the other. Consequently, if this were a
physically viable symmetry for the QHE we should observe
all possible fractional plateaux. However, we never observe
the full set of fractions in any given quantum Hall experiment,
but only plateaux (fractions) that satisfy certain constraints on
the parities of the numerator, or denominator, or both.

These parity rules, which depend on the two-dimensional
material under consideration, is the key to identifying any
would-be modular symmetry. They link microphysics to
macrophysics, because the observed spectrum of integer fixed
points follows directly from the spectrum of charge carriers
supported by the system in the noninteracting limit (“Landau
level spectroscopy”).

The resistivity ρ = S(σ ) = −1/σ is conveniently given by
the modular duality transformation S, since this is equivalent
to taking the matrix inverse of the conductivity tensor. Note
that it is conventional to choose σH = σ12 and ρH = ρ21 in
order to eliminate an annoying minus sign.

A. Hierarchy of symmetries

So the full modular symmetry is too strong for the QHE,
but the largest subgroups of SL(2,Z) are not. A map showing
the tip of the modular iceberg, including all the groups we
need, is presented in Fig. 1. Lines between groups indicate
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FIG. 1. Some of the groups between GL(2,Q) and �(4) that are
relevant for the QHE. Lines connect a subgroup to its parent groups
higher up in the hierarchy. (A thick solid line means that the subgroup
is normal, and the index of the subgroup labels the line, but this
will not be used here.) There are another twenty groups between
�(1)0 = SL(2,Z) and �(4)5 that are not shown here [31,32]. Both
�(1)0 and �P(2)0, where P = ST (P 3 = 1), are too large to support
a physical β function. The pink groups are not too big, and it is their
flow diagrams that we compare to experiments.

that the lower one is a subgroup of the upper one. One way
to obtain a subgroup of the modular group is to relax the
translation symmetry (T → T n, for n = 2, 3, . . . ), the duality
symmetry [S → Rn, where R(z) = T ST (z) = z/(1 + z)], or
both. Three of these so-called “congruence subgroups at level
two” preserve parities, which means that each of them groups
the fractions into two equivalence classes. Because p and q in
σ = p/q are relatively prime, there are only three types of
fractions with well defined parities.

With “o” representing odd integers and “e” representing
even integers, we have p/q ∈ o/o, o/e or e/o, and it is easy
to verify that the equivalence classes are [33]

�T = �T(2)1 = 〈T ,R2〉 :
{ e

o
,
o

o

}
∪

{o

e

}
,

�R = �R(2)1 = 〈R,T 2〉 :
{ e

o

}
∪

{o

o
,
o

e

}
,

�S = �S(2)1 = 〈S,T 2〉 :
{o

o

}
∪

{o

e
,
e

o

}
. (1)

A class is indexed by if the fractions are attractive fixed points
of scaling in the σ plane, and by if they are repulsive fixed
points. This assignment follows from the requirement that the
direction of the flow is downward at the top of the conductivity
plane, which is a result that can be obtained in a perturbative
analysis of localisation in the weak coupling limit σ → i∞.
The fixed point at vanishing coupling must therefore be
repulsive, i∞ = . Since ∞ = 1/0 ∈ o/e, and all fixed points
in a given class are mapped into each other by the symmetry, all
fractions in the class containing o/e must be repulsive. Notice
that the denominators of attractors always are odd.

Figure 1 shows some of the groups between GL(2,Q) and
�(4)5. The subscript is the number of linearly independent β

functions that the symmetry allows [34]. We know the dimen-
sion of this vector space because β must transform as a vector,
also under modular transformations. In mathematics this is
called a modular form of weight 2, and the number of such
functions has been tabulated for the most common groups [32].

The red arrow is a modular correspondence obtained by
conjugating with G ∈ GL(2,Q), where G(z) = 2z. The rela-
tion �T(4)2 = G�(2)2 G−1 is important in the theory of theta-
functions (modular forms of weight w = 1/2) [35]. Conjugat-
ing �T(2)1 gives the familiar group �R(2)1 = G�T(2)1 G−1,
but �Q(2)1 = G�S(2)1 G−1 is new. The G conjugate Q =
GS G−1(z) = −4/z of the duality generator S is a (non-
normalized) Fricke involution. G changes or transmutes a mod-
ular symmetry into an equivalent group, rather than breaking it
to a smaller subgroup. This corresponds to moving horizontally
and vertically in Fig. 1.

The symmetries that have been found to be relevant for
the QHE are colored pink. When a = −1, 1/2, and 2, the
symmetry of the �(2)2-invariant RG potential ϕa discussed
below (cf. Sec. II C and Fig. 4) is enhanced to one of the
maximal subgroups of �(1)0, as indicated on the diagram.
�X(2)1 (X = Q, R, T) are the symmetries most often observed
in experiments. Since only level two appears to be physically
relevant (so far), we often simplify notation by dropping the
level [�X = �X(2)1].

B. Modular phase diagrams

So far, we have only discussed how the symmetries act on
the plateaux. We now extend this into the interior of parameter
space, i.e., we review how modular symmetries partitions all
of C

+
, not just the points on the boundary.

Because the duality transformation S swaps e/o and o/e,
leaving o/o unchanged, the direction of the flow in the ρ =
S(σ ) plane is reversed if the symmetry acting on σ is �T or
�R, but not if the symmetry is �S or �Q. This dichotomy is a
persistent theme.

The fixed point at the origin of the σ plane (at i∞ in the ρ

plane) has a special significance. If it is attractive this means
that the system has an insulating phase, which we call the
quantum Hall insulator (QHI) and assign the special symbol .
Since 0 = 0/1 ∈ e/o, we conclude that a model with �T or �R

symmetry in the σ plane does have this insulator phase, but that
�S- and �Q-symmetric models do not (cf. Eq. (1) and Fig. 2).

Notice that all plateaux in the Hall conductivity are accom-
panied by vanishing magnetoconductivity (σD = 0 ⇒ σH ∈
Q), also for the insulator phase, as expected from naive
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FIG. 2. Conductivity (σ ) and resistivity (ρ = −1/σ ) phase diagrams with symmetry �X (X = Q, R, S, T). Only �T(σ ) and �S(σ ) are truly
different since �R(σ ) is simply a doubling of �T(σ ), and likewise for �Q(σ ) and �S(σ ). The main physical distinction is that �T (and �R) has
an insulator phase (yellow; σ = 0, ρ = i∞), while �S (and �Q) does not.

localization theory (cf. Fig. 2). The same is true for the
resistivities, except for the peculiar insulator phase (ρD = 0 ⇒
ρH ∈ Q �= 0). In this case, the “plateau” = i∞ is associated

with a diverging magnetoresistivity, while the Hall resistivity
is not quantized (ρD → ∞ ⇒ ρH ∈ R), because there is only
one point at infinity in C

+
.
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TABLE I. (Left) Integer plateaux values of the Hall conductivity
σH constrained by a symmetry �(2) ⊂ �X ⊂ SL(2,Q), with X =
Q, R, S or T, together with the location of semistable fixed points
for transitions between these plateaux, i.e., the position of “integer”
quantum critical points in the complexified conductivity plane.
(Right) Corresponding values of the resistivity (see Sec. II for details).

IQHE σ = σH + iσD ∈ C
+

(σ ) ρ = ρH + iρD ∈ C
+

(ρ)

�X

�T n 2n+1+i

2 n + 1 1
n+1

2n+1+i

2n2+2n+1
1
n

�R 2n 2n + 1 + i 2n + 2 1
2n+2

2n+1+i

4n2+4n+2
1

2n

�S 2n − 1 2n + i 2n + 1 1
2n+1

2n+i

4n2+1
1

2n−1

�Q 4n − 2 4n + 2i 4n + 2 1
4n+2

2n+i

8n2+2
1

4n−2

The experimental signature of this phase is a plateau in the
Hall conductivity with σH = 0, accompanied by a large peak
in the magnetoresistivity, ρD � 1 [h/e2]. This is, for example,
what is observed experimentally when graphene is placed in a
very strong magnetic field [36,37], signaling that the modular
symmetry is changing from �Q to �T, as discussed in Sec. VII.

Observe also that �R and �T are conjugate inside the parent
group GL(2,Q) under the rescaling G(z) = 2z by a factor of
two (cf. Fig. 1). This means that flow diagrams with these two
symmetries are identical, up to a doubling of all coordinates.
A similar rescaling of �S gives a conjugate group �Q that is
not strictly speaking modular (cf. Fig. 1), but its flow diagram
is just a doubling of the �S-symmetric flow.

In summary, since both �(1)0 and �P(2)0 are too large, there
are just two types of physically acceptable conductivity flow
diagrams with maximal modular symmetry: �T (and its G-
conjugate �R), and �S (and its G conjugate �Q). The former
has an insulator phase, the latter does not.

For convenience, an “atlas” of Q-, R-, S-, and T-symmetric
flows, in both σ and ρ, is provided in Fig. 2. In these cases,
the shape of the flow lines (but not the flow rate) is completely
fixed by the large symmetry. They are most easily derived as a
gradient flow of RG potentials with the requisite symmetry [cf.
Eq. (2)]. We defer details to the discussion below of symmetry
transmutations.

For future reference we have also listed the integer fixed
points for these cases in Table I. The complete spectrum of
attractors (plateaux) for these symmetries may be found in
Fig. 2.

�T and �R are the relevant groups for respectively the
ordinary spin-polarized and unpolarized QHE, where quasipar-
ticles have the usual parabolic (“nonrelativistic”) dispersion,
i.e., the QHE that appears in materials without Dirac modes.
We will therefore call these the nonrelativistic polarized and
unpolarized groups.

Graphene is different. Because of the peculiar topology of
its Fermi surface, there is a doubling of degrees of freedom due
to an additional “pseuodspin” or “valley” degeneracy, and there
are gapless (massless) excitations at half filling with linear
dispersion, i.e., their energy is linear in momentum. These
modes therefore behave like relativistic (Dirac) fermions, with
the Fermi velocity replacing the speed of light. The linear

dispersion and unusual band structure leads to a different
noninteracting spectrum, but that is all we need to identify
the potential modular symmetry, and the phenomenological
analysis of graphene is analogous to the parabolic case [12,13].

Note that a topological zero-mode eliminates the insulator
phase, so the relevant groups in this “relativistic” case with
Dirac modes are �S and �Q, for respectively the spin-polarized
and unpolarized QHE. We will therefore call these the relativis-
tic polarized and unpolarized groups.

A phase is by definition the set of all points in C
+

that flow
to a given plateau (IR fixed point), and it is uniquely labeled
by this rational limit point on the real axis. A phase transition
between two plateaux and ′ is permitted by the symmetry if
it has a fixed point located on the semicircle inC

+
connecting

and ′, which we write as ′ or ′. If
one of the attractors is i∞ the semicircle has infinite radius,
i.e., it is a vertical line. We also adopt the convention that

′ refers to a transition in the conductivity plane, whence
an integer plateau-value = σ = σH = n[e2/h] ∈ Z refers
to the IQHE, for which ρH = 1/n[h/e2].

C. Transmutation of symmetries

Degeneracies in the spectrum of delocalized states may
be broken either by external fields, or by internal many-body
interactions between charge carriers within each band, or both.
In the simplest materials, we only have spin-degeneracy to
consider. A symmetry transmutation occurs when the spins
are neither fully polarized, nor fully degenerate, in which
case the modular symmetry is at least partially broken. The
maximal groups are no longer relevant, but it is conceivable
that some smaller symmetry survives. The simplest situation
is if we have minimal symmetry breaking, which means that the
largest common subgroup survives. From our map in Fig. 1,
we see that this group is �(2), and our task is to find a
�(2)-symmetric family of physically sensible β-functions that
interpolates between �R, �T and �S. �Q is not in this family
because it is not in the modular group �(1).

�(2)2 admits a two-dimensional vector space of weight two
forms, which is spanned by two Jacobi theta functions, for
example θ4

3 and θ4
4 . Since θ4

2 is also a weight two form it must
be somewhere in this space, and because θ4

2 = θ4
3 − θ4

4 it is.
Any �(2)-symmetric β function must be a linear combination
of these [22]:

βa ∝ (1 − a) θ4
3 + a θ4

4 = θ4
3 − a θ4

2 ∝ ∂ϕa,

ϕa = ln λ + (a − 1) ln(λ − 1), λ = θ4
2

/
θ4

3 . (2)

This is, as expected, a gradient flow, derived from the �(2)-
invariant RG potential ϕa . It interpolates between the maxi-
mally symmetric cases labeled R, S, and T, while retaining as
much modular symmetry as possible [38]. The phenomenolog-
ical parameter a has an unknown and presumably complicated
dependence on nonuniversal microscopic details, like many-
body interactions and Zeeman splitting. Provided we choose
the normalization of βa to be imaginary, a must be real for
the flow to agree with perturbative localization theory at weak
coupling (1/σD → 0).
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The thousands of nonsemicircular flow lines, phase bound-
aries and separatrices shown in this article were all obtained
directly from ϕa by numerical integration, for a handful of real
values of a. This includes the 282 modular flow lines that are
compared to 1 484 experimental data points in Figs. 6–17. In all
but one case (cf. Fig. 17), the agreement is within the estimated
experimental uncertainty, and the exception is probably not in
the scaling domain. We find that 1 434 data points on 274
flow lines appear to be consistent with modular (�(2) or �Q)
symmetry, for only a few (seven) real values of a, and most of
these (1 295 data points on 243 flow lines) are consistent with
one of the maximal symmetries �X (X = Q, R, S, T). It is this
universality we wish to investigate here.

When a = 0, 1,∞, the β function degenerates to one of
the theta functions (β0 ∝ θ4

3 , β1 ∝ θ4
4 , and β∞ ∝ θ4

2 ), which
are finite. So for these three exceptional values of a (and only
these), βa has no zeros, and the flow has no fixed points (critical
points) in C+. This phenomenon is unavoidable, because the
family has three subfamilies where the plateaux-structures
are quite distinct. Consider, for example, the triplet of fixed
points σ∗ ∈ (0,1,2). We have (0,1,2) = ( , , ) for a < 0,
(0,1,2) = ( , , ) for 0 < a < 1, and (0,1,2) = ( , , ) for
1 < a (cf. Fig. 3). At a = 0,1 the critical points disappear
by merging with the fixed points σ∗ ∈ (0,1,2), allowing a
phase to appear ( → ) or disappear ( → ), as shown
schematically in Fig. 3.

Figure 4 shows the complete family of �(2)-symmetric
flow diagrams for the range of most physical interest. Each
subfamily has one member for which the symmetry is enhanced
from �(2) to one of the maximal subgroups: �R when a = −1,
�T when a = 1/2, and �S when a = 2. For example, a very
strong magnetic field gives a large Zeeman splitting that leads
to �T symmetry in the nonrelativistic case. For weak fields,
this symmetry is transmuted into an unpolarized spectrum,

�T
G−→ �R.

Each panel is labeled on the left by the symmetry of the flow,
and on the right by a function proportional to the β-function
that generates the flow. The yellow region is the insulator phase,
which disappears when a > 1.

Only at the unphysical singular points a = 0, 1 are there no
quantum critical points. Slicing this “family plot” at any value
of the symmetry-breaking parameter a �= 0,1 gives a “warped”
but physicially sensible diagram, i.e. a scaling flow that is finite
except for simple zeros (cf. Fig. 17). These are the quantum
critical points, located at σ = iK ′(a−1)/K(a−1) and all its
�(2) images, where K and K ′ are elliptic integrals of the first
kind [22]. This family is sufficiently large to accommodate
almost all quantum Hall data that we have examined so far
(one possible exception is discussed in Sec. VII).

In some materials, the band structure is more subtle,
with additional “competing” degeneracies, and the pattern of
symmetry breaking may be more complicated. For example,
the four-fold spin-pseudospin degeneracy in graphene giving
rise to �Q symmetry can be broken by internal many-body
or external magnetic field interactions. Independently of the
microscopic mechanism, Fig. 5 shows an idealized pattern
of symmetry breaking that transmutes flow diagrams. In this
scenario, bands split if degenerate spin or pseudospin states (or
both) are resolved. When a band splits a new delocalized state

0 1 2

a 0 a 1: R

0 1 2

0 a 1 a 1 2: T

0 1 2

a 1 a 2: S

FIG. 3. Schematic of the three subfamilies of the �(2)2 family
ϕa . Each of these has one (and only one) member with enhanced
symmetry: ϕ−1 has �R symmetry, ϕ1/2 has �T symmetry, and ϕ2 has
�S symmetry (cf. Fig. 4). We call these subfamilies the R, T, and S
families.

appears, giving rise to a new plateau in the Hall conductivity.
Each symmetry (top row) has a unique spectrum of integer
attractors (IQHE plateaux) (bottom row).

In real materials like graphene, many-body interactions,
which presumably are responsible for pseudospin splitting,
may obfuscate this simple picture. Since electron correlations
appear to be strongest for the lowest Landau level, degeneracies
may not be equally robust for all bands, leading to a hierarchy
of plateaux spectra that only manifests a modular symmetry
for limiting cases (strong and weak magnetic field, say). As
in atomic physics, it may nevertheless be useful to retain the
group theoretic labeling of states for intermediate cases where
the symmetry is broken. Some graphene experiments exploring
this question are discussed in the penultimate section.
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FIG. 4. The one-parameter family βa of �(2)-symmetric RG flows, shown here for values of the symmetry-breaking parameter a in the
range −1.2 < a < 2.2, is divided into three subfamiles by the “ramification points” a = 0, 1.

III. NEW MATERIALS

We have argued that the convergence of modular mathe-
matics and quantum Hall physics suggests that it would be
unnatural to restrict attention to only one of the descendants
of the modular group. We have also seen that there are very
few viable candidates to choose from, and that most of these
fit snugly into a simple and unique one-parameter family
of �(2)2-symmetric β functions (up to normalization). In
other words, while these infinite non-Abelian symmetries are
extremely constraining, they do leave enough flexibility that
we can accommodate almost all experiments to date (but only
barely so).
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FIG. 5. Simplified pattern of symmetry transmutations from band
splitting (lifting of spin and/or pseudospin degeneracies). Band gaps
are labeled by the filling factor. Each symmetry �X (X = Q, R, S, T)
leaves a unique fingerprint on the spectrum X ∈ Q of attractive fixed
points, i.e., rational plateaux values of σH [e2/h].

The discovery in recent years of new types of materials
that support Dirac modes and “robust” topological edge states
presents new opportunities for testing the modular paradigm
sketched above. We will review a number of recent experiments
that have explored large tracts of the modular landscape that
were previously inaccessible.

These experiments have provided substantial evidence for
those level two symmetries that until now have been beyond
our reach. The data we have analyzed suggests that the full
complement of level two symmetries may be present in nature.
In preparation for that discussion, we give a brief summary of
some of the most salient features of these materials.

A. Dirac matter

Dirac matter is a name used to describe materials in which
the low-energy excitations are Dirac fermions. In Bloch theory,
these states appear as a consequence of a finite number of
crossing points in the Brillouin zone where the Hamiltonian
becomes gapless. If the energy dispersion close to these points
is linear, similar to the relativistic dispersion in particle physics,
this is called a Dirac cone, and the effective low-energy Hamil-
tonian is Dirac-like, where the Fermi-velocity replaces the
speed of light. When a Hall effect takes place in such materials,
each zero mode contributes 1/2 to the Hall conductivity [39].
The Nielsen-Ninomiya theorem guarantees that Dirac cones
come in pairs, ensuring an integral conductivity.

The most familiar material with linear (“relativistic”) dis-
persion is graphene, where two Dirac cones sit at corners of
the Brillouin zone. In the presence of a magnetic field, each
Dirac fermion contributes n + 1/2 to the Hall conductivity.
Taking into account both spin and valley (pseudospin) degener-
acy the IQHE in graphene is σH = 4(n + 1/2) = 2 mod 4 ∈

Q (n ∈ Z). The most unusual property of this plateaux spec-
trum is the absence of the attractor = 0, i.e., an insulator
phase, which is a consequence of the zero modes shifting
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FIG. 6. Reconstruction of temperature-driven scaling data (discrete icons) exploring the plateaux transitions 1 = = 2 3 =
= 4 in a semiconducting InGaAs/InP heterojunction [40].

the Hall spectrum. In the ordinary (un-)polarized IQHE, the
plateaux spectrum is Z (2Z) = 0 mod 1 (2).

B. Topological insulators

Topological insulators are special phases of matter charac-
terized by a gapped bulk material with gapless edge or surface
modes [41]. These gapless modes are topologically protected in
the sense that they are robust to perturbations that preserve the
symmetries of the system. The theory of topological insulators
relies on Bloch theory as well as recent mathematical tools like
Chern numbers and homotopy theory to characterize classes
of Hamiltonians that preserve the bulk gap.

A normal insulator is said to be topologically trivial. The
QED vacuum presents an insulator in this class. Here two
bands are associated with electrons and positrons, while a large
gap is associated with the pair production energy. The gapless
surface modes of a topological insulator appear as a necessary
consequence of a topologically nontrivial material ending on
a trivial one (e.g., the vacuum). The only way a topological
property can change across the interface is for the gap to close.
This relation between bulk topology and edge modes are called
the bulk-edge correspondence or duality.

The first topological insulator to be discovered was the
IQHE itself. Here the Landau levels serve as energy bands,
while a strong magnetic field induces a gap up to the first
empty level. The bulk-boundary correspondence is in this case
attributed to electrons skipping along the edges of the Hall
sample due to the magnetic field. In this case, it is not the
material that is considered a topological insulator but the IQHE
as a whole.

Depending on the material in which the Hall effect takes
place, different imprints are seen on the Hall conductivity.
Graphene, for example, has a unique Hall spectrum Q =
4n + 2 due to its two Dirac cones.

Another example is provided by the surface of a three-
dimensional topological insulator, which can serve as an effec-
tive two-dimensional arena for the QHE. The bulk-boundary
correspondence tells us that this surface has massless excita-
tions. Depending on the bulk topology the surface Brillouin
zone has either an even or an odd number of Dirac cones
[41], and the effective two-dimensional material can be seen
as a Dirac material. In the case of an odd number of Dirac
cones the Nielsen-Ninomiya theorem appears to be broken.

This is solved by the existence of partner Dirac fermions at the
opposite surface of the three-dimensional topological insulator
[41]. Under the assumption that the two sides are independent
the Hall conductivity will be a sum of both contributions.

IV. UNIVERSALITY CLASS �T

A. Plateaux transitions in InGaAs/InP

The result of the first scaling experiment in the context of the
QHE, obtained in 1985 using a semiconducting heterojunction
cooled below 4.2 K [40], is reconstructed in Fig. 6 from the
published data. Clear indications of a modular symmetry are
already evident in this diagram (cf. Fig. 2), even with the large
uncertainty in the data.

Figure 6 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateaux transitions
1 = = 2 3 = = 4 in a semiconducting
InGaAs/InP heterojunction with 2D electron density n =
3.4×1011/cm2, mobility μ = 35 000 cm2/Vs and effective
mass m∗ = 0.047 me (me is the free electron mass), in the tem-
perature range 4.2 K (top) to 0.5 K (bottom) [40]. Comparison
with a modular scaling flow (solid lines) with quantum critical
points at = 1/2, 3/2, and 5/2 reveals a �T symmetry in the
transport data (cf. Fig. 2).

In the three decades following this pioneering experiment,
technology has improved and error bars have shrunk. In the
following, we shall see that not only have experiments failed
to contradict the symmetry, the agreement with the coldest
experiments, where the symmetry is expected to be most
accurate, is now in some cases at the per mille level.

B. Plateaux transitions in GaAs/GaAlAs

Figures 7 and 8 provide further evidence for the existence
of a universality class with �T symmetry that unifies the IQHE
(Fig. 8) with the FQHE (Fig. 7).

C. Plateau-insulator transition in Cr(BiSb)Te

The QHE can take place on the top of three-dimensional
topological insulators [44], like bismuth antimonide Bi1−xSbx

which was the first three-dimensional topological insula-
tor to be discovered [45]. The effective edges of these
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FIG. 7. Reconstruction of temperature-driven scaling data (discrete icons) exploring the fractional transitions 0 = =
1/3 ←−

1/2
−→ 3/5 = = 2/3 in a GaAs/GaAlAs heterojunction [42].

two-dimensional surface systems are magnetic domain walls
along which the charge carriers move.

Figures 9 and 10 show our reconstruction of temperature-
driven scaling data (discrete icons) exploring the plateau-
insulator transition 0 = = 1 in a 2D ferromagnetic
topological insulator [thin film of Crx(Bi1−ySby)2−xTe3 grown
on a semi-insulating InP (111) substrate] [46]. After applying
an external magnetic field B = 14 T to saturate the magnetiza-
tion, the magnetic field strength was set to zero and experiments
were performed at different temperatures with tunable gate
voltage. In order to compensate for what is presumably a
systematic error of unknown origin, the data in Fig. 9 have
been shifted slightly to the left so that the plateaux are integer-
valued. In both cases, comparison with a modular scaling flow
(solid lines) with a quantum critical point at = (1 + i)/2
(cf. Table I and Fig. 2) reveals that these transport data are in
excellent agreement with �T symmetry.

D. Plateaux transitions in mercury telluride

Bulk mercury telluride is a semiconductor of the II-
VI type [47], but when used to create a quantum well
(HgCdTe/HgTe/HgCdTe) the electronic properties depend

1
3

2
5

1
2

ΡH h e2

Ρ D
h
e2

FIG. 8. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateaux transition 2 = = 3 in a
GaAs/GaAlAs heterojunction [43].

crucially on the thickness d of the sample. This thickness
introduces a parameter, which can be tuned to find quantum
phase transitions. For thin wells with thickness below the
critical thickness dc ≈ 6.3 nm, the material has a normal band
structure, whereas for wide wells (d > dc) the band structure
is inverted [47,48].

In addition to having a highly specific energy spectrum
with an inverted band structure, the 2DEG in a wide HgTe
quantum well is characterized by a low effective mass, m∗ =
0.02 me [49]. The low effective mass causes a large Landau
level separation 
E = h̄qB/m∗c, and the QHE survives to
relatively high temperatures. In Refs. [50,51], a strong integer
effect was observed up to T ∼ 10–15 K.

0 1
2

1

ΣH e2 h

Σ
D
e2
h

FIG. 9. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateau-insulator transition 0 = =
1 in a 2D ferromagnetic topological insulator (a thin film of
Crx(Bi1−ySby)2−xTe3 grown on a semi-insulating InP(111) substrate)
[46].

045113-10



UNIVERSALITY OF MODULAR SYMMETRIES IN TWO- … PHYSICAL REVIEW B 97, 045113 (2018)

0 1
2

1

ΣH e2 h

Σ
D
e2
h

FIG. 10. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateau-insulator transition 0 = =
1 in a 2D ferromagnetic topological insulator [a thin film of
Crx(Bi1−ySby)2−xTe3 grown on a semi-insulating InP(111) substrate]
[46].

Figure 11 shows our reconstruction of temperature-
driven scaling data (discrete icons) exploring the
plateaux transitions 1 2 3 in a heterostructure
HgxCd1−xTe/HgTe/HgxCd1−xTe (x ≈ 0.7) with a
20.3-nm-wide HgTe quantum well [51]. Since this thickness
is well above dc, there should be no Dirac cones in the bulk
Brillouin zone. The sample was grown by molecular beam
epitaxy on a GaAs substrate, symmetrically modulation doped
with In at both sides of the quantum well, yielding a mobility
of 22×104 cm2 V−2 s−2 and an electron gas density of about
1.5×1015 m−2 [50,51].

The longitudinal and Hall resistivities were measured with
a constant 1 A current in the temperature range 2.9–50 K, and
a magnetic field strength in the 0–9 T range. There is clear evi-
dence for plateaux at ν = 1, 2, 3, and 4, obtained for magnetic
fields in the range 1.8–8 T. For most magnetic field values the
system exhibited scaling behavior for the five lowest temper-
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FIG. 11. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateaux transitions 1 2 3 in a
HgTe/HgCdTe heterostructure with a wide HgTe quantum well [51].

FIG. 12. Reconstruction of temperature-driven scaling data (dis-
crete icons) exploring the plateaux-insulator transitions −1 =

= 1 in a bismuth antimonide topological insulator
(Bi1−xSbx)2Te3, with (a) x = 0.88 and (b) 0.84 [52].

atures T = 2.9, 4.1, 6.1, 8.1, and 10 K, and in one instance
also for 15 and 20 K. In some cases, close to the fix points only
the three lowest temperatures were usable. Comparison with a
modular scaling flow (solid lines) with quantum critical points
at = (2n + 1 + i)/(2n2 + 2n + 1) = 1 + i, (3 + i)/5, (5 +
1)/13, (7 + i)/25, . . . reveals a �T symmetry in the transport
data (cf. Table I and Fig. 2).

E. Plateau-insulator transitions in bismuth antimonide

In Ref. [52], the QHE was studied by measuring surface
conductivities on the top and bottom of the three-dimensional
topological insulator bismuth antimonide. Two 8-nm-thick
TI films of (Bi1−xSbx)2Te3 (x = 0.84,0.88) were grown on
insulating InP (111) substrates using molecular beam epi-
taxy. Quantum Hall signatures were found at magnetic field
strengths above 14 T, for temperatures ranging from 700 mK
down to 40 mK, at various gate voltages VG.

Figure 12 shows our reconstruction of their temperature-
driven scaling data (discrete icons) exploring the two plateau-
insulator transitions −1 = = 1. Inaccessible
data points and clear statistical outliers were not considered
when sampling the data. Comparison with a modular scaling
flow (solid curves) with quantum critical points at = (±1 +
i)/2, (±3 + i)/2, . . . reveals a �T symmetry in the transport
data (cf. Table I and Fig. 2).

F. Plateaux transitions in black phosphorus

In addition to graphene, black phosphorus is the only other
2D atomic crystal where a QHE has been observed. Figure 13
shows a scaling flow derived from our reconstruction of data
obtained in an experiment on a few layers of black phosphorus,
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FIG. 13. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateaux transitions 1 2 3 in black
phosphorus [53].

which were sandwiched between two layers of insulating
hexagonal boron nitride (hBN) and placed on a graphite back-
gate to create a van der Waals heterostructure [53].

The 25-nm bottom layer of hBN allows the electrons in
the graphite to screen the impurity potential at the black
phosphorus-hBN interface, which gives a record high Hall
mobility of 6 000 cm2 V−2 s−2 for this material. It is this large
mobility that gives an observable QHE [53].

The data are extracted from Fig. 7 of the supplementary
material of Ref. [53]. The Hall resistances were measured at
fixed magnetic fields of 27, 29, 31, and 33 T, and temperatures
1.7, 4.1, 4.6, 6, 8, and 10 K, by varying the back gate voltage
from −2 to −0.7 V. Plateaux were discovered for filling factors
ν = 1, 2, and 3. Due to overlap of the Hall resistance curves,
an area of ∼ ±013 V at the inflection point of the 1 2
transition had to be excluded. The curves for 8 and 10 K were
also excluded because the magnetoresistance did not vanish on
the plateaux.

Deriving the magnetoresistivity ρD = λRD from the mea-
sured magnetoresistance RD requires knowing the aspect ratio
λ = Ly/Lx of the Hall bar (of length Lx and width Ly). Since
this information was not provided in Ref. [53] we also fitted λ.
The best fit of the data gave λ ≈ 3, which is consistent with the
optical image of the device (black phosphorus/hBN/graphite
heterostructure) shown in Fig. 1(a) of Ref. [53]. Comparison
with a modular scaling flow (solid lines) with quantum crit-
ical points at = (2n + 1 + i)/(2n2 + 2n + 1) = 1 + i, (3 +
i)/5, (5 + 1)/13, (7 + i)/25, . . . reveals a �T symmetry in the
transport data (cf. Fig. 2).

V. UNIVERSALITY CLASS �R

A. Plateau-insulator transition in GaAs/GaAlAs

Figure 14 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateau-insulator
transition 0 = = 2 in a GaAs/GaAlAs heterojunction
[54]. Comparison with a modular scaling flow (solid lines) with
a quantum critical point at = 1 + i reveals a �R symmetry
in the transport data (cf. Fig. 2).

B. Plateau-insulator transition in graphene

Figure 15 shows our reconstruction of temperature-driven
scaling data (discrete icons) exploring the plateau-insulator

FIG. 14. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateau-insulator transition 0 = =
2 in a GaAs/GaAlAs heterojunction [54].

transition 0 = = 2 in graphene [55]. In order to com-
pensate for what is presumably a systematic error of unknown
origin, the dataset close to the dashed blue semicircle has
been shifted up slightly, so that the flow does not violate the
semicircle law (i.e., so that the flow does not cross the separatrix

FIG. 15. Reconstruction of temperature-driven scaling data (dis-

crete icons) exploring the plateau-insulator transition 0 = =
2 in graphene [55].
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connecting the plateau to the insulator via the critical point
). Comparison with a modular scaling flow (solid lines) with

a quantum critical point at = 1 + i reveals a �R symmetry
in the transport data (cf. Fig. 2).

In this experiment, large-area (0.6 × 0.1 mm2) monolayer
graphene devices were made by epitaxial growth on SiC-
substrate. In the devices, a buffer layer of graphene made partial
covalent bonds with the exposed Si atoms and only the top
graphene layer was conducting. Experiments were made in
the temperature range 2.6–25 K with magnetic fields in the
range 0.1–9 T.

According to Ref. [55] the graphene-substrate coupling,
which includes Si-C covalent bonds and defects, such as
interfacial dangling bonds, can be strong enough to break the
sublattice symmetry of the conducting graphene sheet. In order
to enhance this effect, the Coulomb screening of potential
fluctuations was reduced by engineering the carrier density
to be as low as n ≈ 1015 m−2. This may be the reason for the
appearance of an insulator phase, which signals that the �Q

symmetry observed in ordinary monolayer graphene has been
transmuted to a �R symmetry (cf. Fig. 5).

The data that best fit the flow lines are taken from one of
the least disordered samples which also had the highest surface
roughness (called EG2 in Ref. [55]). The data from the other
sample (EG3) appears to fit slightly better if shifted up by about
0.03e2/h. This may be the result of a small systematic error,
but it is so small that it may be within the random error of this
experiment.

VI. UNIVERSALITY CLASS �Q

We have already mentioned the spectrum of plateaux
observed in some experiments on graphene. The competition
between several scales is not easy to disentangle, especially
in crossover regions where the lowest Landau level may be
more susceptible to symmetry breaking than higher levels.
However, so far, it seems that the symmetries we have discussed
(cf. Fig. 1) suffice to account for the plateaux data.

A much more stringent test is, as we have seen in the
nonrelativistic case, to compare the unstable fixed points with
experimental quantum critical points. Scaling experiments on
graphene are still in their infancy, and the paucity of data
means that this analysis is far from conclusive. Unfortunately,
so far, a meaningful comparison is only possible for the doubly
degenerate IQHE, which should be compared with the phase
and flow diagram in Fig. 2.

Because of the zero mode there is no QHI (σ = = 0) in
this case, so �T and �R are immediately eliminated as potential
symmetries. A glance at the defining characteristics of the
groups in Eq. (1) shows that, up to a factor of two, �S is the
only viable candidate. Because of the double degeneracy in
graphene the conductivity should be doubled [56], σ → 2σ =
G(σ ), giving the �Q-symmetric phase and flow diagram shown
in the bottom panel of Fig. 2.

An immediate consequence is that fractional plateaux in
the doubly degenerate QHE should appear only at σH =
2(2n + 1)/(2m + 1) �� ±1/3. In fact, σH = 1/3 has also been
observed, but only when the magnetic field is so strong that
one expects the spin-valley degeneracy to be lifted, which
transmutes �Q to �R or �T.
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FIG. 16. (a)–(c) Experimental quantum Hall data for graphene
reconstructed from [57–59], compared with modular critical points
(blue ). (d) Scaling flow derived from reconstructed graphene data
published in Ref. [59], superimposed on the phase diagram with �Q

symmetry (cf. Fig. 2).

A. IQHE in graphene

Figure 16 is a reconstruction of some experimental quantum
Hall data for graphene [57–59], compared with modular critical
points (blue ). As explained in Sec. II, ideally we would like
to have a family of scaling data deep inside the scaling domain,
in which case we could obtain the experimental critical point
from the temperature independent crossing point of the curves.
Unfortunately, such data are still not available for graphene.
The family of data published recently are consistent with our
estimate, but not good enough to resolve any discrepancy in
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detail [59]. This is why only the data obtained at the lowest
temperature (4.1 K) has been used in Fig. 16(c).

In lieu of such “family portraits,” we use the translational
symmetry in the conductivity of the IQHE to estimate the
location of experimental critical points. If we are close enough
to the scaling domain critical points should lie at the apex
of the arcs in the conductivity graph connecting neighboring
plateaux, i.e., where the experimental conductivity graph
crosses the vertical lines σH = 4n (cf. Fig. 2). Mapping these
points back onto the resistivity data gives the experimental
critical points (purple icons) shown in Fig. 16, which mostly
eclipse the modular predictions (blue icons).

Figure 16(a) is our reconstruction of the first data on the
2 6 transition, discovered in 2005 [57,60]. Figure 16(b)
shows the 2 6 10 14 transitions explored in 2009
[58]. The latter two transitions are magnified in the inset, but
the distinction between experimental and �Q critical points is
still not resolved in this plot. Figure 16(c) shows more recent
data on the 2 6 10 transitions [59]. In this case, the fixed
point of �Q is totally eclipsed by the experimental critical
point. In all cases, the overlap of experiment and theory is
reasonable, and possibly within experimental error, although
no error analysis of these experiments has been published.
Figure 16(d) shows a scaling flow derived from reconstructed
graphene data published in [59], superimposed on the phase
diagram with �Q symmetry (cf. Fig. 2).

We see that it is possible that the earliest graphene experi-
ments [Figs. 16(a) and 16(b)] had not yet reached the scaling
limit, which is where an approximate low-energy symmetry
would appear. The good agreement with the most recent data
in Fig. 16(c) notwithstanding, since these experiments have
only probed the IQHE in graphene, it is premature to claim that
these experiments unambiguously demonstrate the emergence
of a modular symmetry in this material. This question can
only be settled by more accurate scaling experiments involving
transitions to fractional plateaux.

B. FQHE in graphene

Since they were discovered in 2009 many fractional
plateaux have been found in graphene [62,63]. A recent study
found some intriguing new fractional plateaux in graphene
[64]:

σH =
{

1
3 , 2

3 , 2
5 , 3

5 , 3
7 , 4

7 , 4
9 for 0 < ν < 1,

4
3 , 8

5 , 10
7 , 14

9 for 1 < ν.

The first sequence is consistent with �T, in which case both the
spin and pseudospin has been resolved. Barring coincidences,
the second sequence appears to be constrained to have only
even numerators. Since 4/3, 8/5 �∈ Q, the only possibility
appears to be �R, which has plateaux

R = 2n

2m + 1
� 4

3
,

8

5
,

10

7
,

14

9
. . . .

A possible interpretation is that either the spin or the pseu-
dospin degeneracy has been fully resolved, while the other
remains at least partially degenerate (cf. Fig. 5). This is
consistent with the expectation that the lowest level will be
most susceptible to symmetry-breaking (cf. Fig. 20).

VII. TRANSMUTATIONS

When one or more control parameter of an experiment
changes, an external electric field, say, a modular symmetry
can be transmogrified into another modular symmetry. This
“morphing” may be a consequence of some discrete micro-
scopic symmetry being broken, but unless the new modular
group is a subgroup of the original group, we will call this
a crossover or transmutation, rather than symmetry breaking.
We discuss some examples of this that have been explored
experimentally.

A. �R → �T

We turn now to some experiments that have explored the
transition from nonrelativistic degenerate (unpolarized) to non-
degenerate (fully polarized/spin split) bands, by tuning the spin
splitting using a backgate voltage. By the arguments discussed
in the first section, we expect these data to interpolate between
the two maximal submodular symmetries �R (unpolarized)
and �T (polarized). When the Zeeman splitting is between
these extremes the modular symmetry must be at least partially
broken, but possibly only to their maximal common subgroup
�(2) (cf. Fig. 1).

The panels inside the box on the right hand side of
Fig. 17 shows a reconstruction of temperature-driven scaling
data (discrete icons) exploring the transitions 0 = =
1 = 2 in GaAs with self-assembled InAs dots [61].
The transition from degenerate (unpolarized) to nondegenerate
(fully polarized/spin split) bands is explored by tuning the
spin-orbit interaction using a backgate voltage, and compared
to the family of physically viable �(2)2-invariant RG potentials
(cf. Sec. II) ϕa ∝ ln λ + (a − 1) ln(λ − 1) [22], with values of
the real parameter a ranging from aR = −1 to aT = 1/2 in
this experiment. All solid lines are flow trajectories derived by
numerical integration from the gradient flow generated by this
potential. For clarity, we display only those parts of the modular
phase boundaries (red curtains) that are above all separatrices
(blue canopies).

By comparing the data for the 0 1 transition with the
flow derived from ϕ1/2 (left front panel), we see that the
scaling flow in this case appears to respect �T symmetry.
This is not so for the 1 2 transition (right front panel,
reconstructed from Fig. 2(c) in [61]), which we have included
for completeness. Several of the experimental flow lines cross
the separatrix (dashed blue semicircle). This is a rare example
where the �(2)2 symmetry appears to be broken, but this may
simply be because the experiment did not reach the scaling
domain. Indeed, a closer inspection of the experimental data
(cf. Fig. 8 in Ref. [61]) reveals that only for a couple of
the lowest temperatures are the plateaux well developed. We
should therefore not expect a flow derived from the full set
of data to respect any modular symmetry, since they are not
proper scaling data.

It is instructive to examine these flows in more detail,
compare panels on the left-hand side of Fig. 17, which
also includes some other experiments that were discussed in
Ref. [22]. This reconstruction of temperature-driven scaling
data (discrete icons) is derived from a wide range of different
2D materials, and explores various parts of the landscape of
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FIG. 17. (Left) Reconstruction of temperature-driven scaling data (discrete icons) exploring various parts of the landscape of �(2)-symmetric
scaling flows in σ (t), derived from a wide range of different 2D materials (cf. Fig. 4) [61]. (Right) Reconstruction of temperature-driven scaling

data (discrete icons) exploring the transitions 0 = = 1 = 2 in GaAs with self-assembled InAs dots, for various values of the
spin splitting (parametrized by a), which was tuned using a backgate voltage [61].

�(2)-symmetric scaling flows. As in all our diagrams, solid
lines are flow trajectories derived by numerical integration
from the gradient flow generated by the RG potential ϕa .

It is interesting to note the severe deformation of the
fractional phases when the symmetry is broken to �(2). This
is a consequence of the dramatic transmogrification that must
take place in passing from one subfamily to another (cf. Figs. 3
and 4). When fractional quantum Hall data become available
for these and similar materials, these predictions will provide
a very stringent test of modular symmetry.

B. �Q → �R

Figure 18 illustrates a conjectured modular explanation of
a peculiar phenomenon observed in a graphene device [65].
This experiment appears to show that an insulator phase can
inject itself into the standard graphene sequence · · · − 6 −
2 2 6 . . . , giving · · · − 6 − 2 2 6 . . . ,
without being accompanied by other new plateaux. This would
mean that the modular symmetry is completely broken.

If a modular symmetry is still at large, then the appearance
of an insulator phase at = = 0 could mean that the original
symmetry �Q has been transmuted into �R or �T (cf. Fig. 2).
Since five of the six peaks in σD have roughly the same
height max(σD) ≈ 1 [e2/h] (cf. inset in Fig. 18), the leading
candidate is �R:

Q = 4n + 2i
“split”−−−−→ R = 1 + 2n + i (n ∈ Z).

If so, there should be structure emerging in the −2 2
and ±2 ± 6 ± 10 . . . transitions, signaling that new
plateaux are germinating at = 0 mod 4. In this experiment,
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FIG. 18. Schematic diagram of conductivity data (reconstructed
in the inset) as a function of the filling factor ν = nsh/eB (B = 18 T,
T = 250 mK), from an experiment that perhaps may be interpreted
as probing the crossover �Q → (�R) → �T in a graphene sample
(cf. Fig. 5) [65]. The diagram illustrates how a suppression of a
peak in σD may be the first sign that a new phase is germinating,
before the new plateau in σH or the associated splitting of σD can be
experimentally resolved. If the magnetic field strength is increased
further, we expect the band structure to eventually be fully resolved
(spin-valley splitting), and a second transmutation �R → �T would
suppress the peaks further, σD → 1/2.
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we see two new peaks in σD developing near the new plateau
at = = 0, as expected, but no other new plateaux in σH

are resolved, and the original peaks in σD are suppressed rather
than split.

A possible explanation is that even if both the new plateaux
and the new zeros in σD are insufficiently developed to be
resolved by this experiment, the new zeros in σD that eventually
develop at = ±4,±8, . . . may be forcing an observable
suppression of the peaks of σD . In other words, when a
critical point “splits” in order to make room for a new phase,
the presence of this new pair of critical points could at first
appear as a suppression of the original peak, as is seen in this
experiment. When the plateau is fully developed there should
be two peaks instead of one, both smaller than the original peak
(cf. Fig. 2), as seen for the insulator transitions in Fig. 18.

In this experiment, when the insulator phase is present the
height of all but one of the peaks in σD is consistent with �R

symmetry (cf. inset in Fig. 18). This does not explain why the
remaining peak is twice as large, but the asymmetry in the
data, as well as the crude Hall quantization that only roughly
approximates the expected integers ( = 2 mod 4), suggests
that there are large systematic errors of unknown origin that
may be responsible for skewing the data.

C. �Q → �T

The valley degeneracy in graphene is protected by an
inversion symmetry of the carbon lattice. It seems to be very
difficult to lift some or all of this degeneracy without also
destroying the Dirac cones, and the transmutation �Q → �S

has not been seen (cf. Fig. 5). We consider first the simplest case
where both spin and valley symmetry is broken by a very strong
magnetic field, which gives the transmutation �Q → �T.

Figure 19 shows a reconstruction of resistivity data from
a pair of graphene experiments that appear to be showing the
crossover �Q → �T (cf. Fig. 5) [36,57]. In both experiments
the density of states was controlled by a backgate potential
|Vg| < 80 V , in a fixed background magnetic field B and
constant temperature T .

With B = 9 T and T = 1.6 K at least fourteen plateaux
at σ = 4n + 2 (n = −7,−6, . . . ,5,6) were observed, cf.
Fig. 19 (a), but no insulator phase [57]. This is consistent with
�Q symmetry. The dotted blue lines connected to the stack of
unstable fixed points ( ) is a visual mnemonic to
remind us of the modular quantum critical point expected to
appear at ρ = i/2 [h/e2], which was not accessible in this
experiment.

In a much stronger magnetic field B = 45 T, and similar
temperature T = 1.4 K, the double spin-valley degeneracy
appears to be completely broken, cf. Fig. 19(b). In addi-
tion to the weak field plateaux [Fig. 19(a)], new plateaux
were observed at σ = 0,±1,±4 [e2/h], and ρD is showing
preliminary signs (splitting and suppression) of additional
plateaux germinating at σ = ±3 [e2/h], and perhaps also at
σ = ±5 [e2/h] [57]. This is consistent with the �T symmetry
expected when both the spin and pseudospin degeneracies have
been resolved. The dotted lines connecting some plateaux to
the insulator fixed point ρ = i∞ is a reminder that modular
symmetry does not predict a quantized value of the Hall
potential in this phase (ρH ∈ R). Equivalently, both the Hall
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FIG. 19. Reconstruction of resistivity data (solid curves) from
two graphene experiments in a constant external magnetic field.
Both the plateaux spectrum and relative heights of the peaks in
the magnetoresistivity ρD , (a) in a “weak” field B = 9 T [57], and
(b) in a strong field B = 45 T [36], is consistent with the transmutation
�Q → �T of modular symmetry (cf. Fig. 5).

and magnetoconductivities vanish at the IR fixed point σ = 0
on the boundary of this phase (yellow region in Fig. 2).

In the absence of sufficient information about the geometry
of these Hall devices, we have in both diagrams chosen to
normalize the magnetoresistance ρD so that the principal left
peak takes the maximum value expected from modular sym-
metry (i.e., the height of the relevant semicircular separatrix,
compare top and bottom right panels in Fig. 2). In both cases,
the subleading left peak [and in (b) also the next peak to the
left] are in reasonable agreement with the expected (maximal)
modular values of ρD , indicated here by dashed blue lines.
There is, however, a substantial asymmetry between the data
on the right and left hand side, which is not expected if the
emergent symmetry is fully developed.

Figure 20 shows a schematic illustration of a conjectured
band structure as a function of an external magnetic field
strength B, inferred from graphene data obtained at T = 1.4 K
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FIG. 20. Schematic illustration of conjectured band structure of a
graphene sample investigated at T = 1.4 K as a function of an external
magnetic field strength B < 45 T [66]. Colored regions labeled by
filling factors ν are gaps between the bands, which are represented
here by curves labeled with spin-up state vectors |n; ↑⇑〉 (black) and
|n; ↑⇓〉 (red), and spin-down states |n; ↓⇑〉 (green) and |n; ↓⇓〉 (blue),
for the three Landau levels n = 0,±1. The high and low field limits
are consistent with, respectively, �T and �Q.

with B < 45 T [66]. Each time a band splits, a new delocalized
state appears, giving rise to an additional plateau in the Hall
conductivity. Splitting spin states |n; ↑,∗〉 and |n; ↓,∗〉 gives
a blue gap, while splitting valley states |n; ∗, ⇑〉 and |n; ∗,⇓〉
gives a green gap. Gaps are uniquely labeled by the filling
factor ν.

The weak (left) and strong (right) field limits are consistent
with the transmutation �Q → �T of modular symmetry (cf.
Fig. 5). However, if the degeneracy in the lowest Landau level
is less robust than for higher levels, so that the splitting happens
at different values of the magnetic field B, then at intermediate
values of B neither symmetry will be manifest in the spectrum
of plateaux.

Tilted field data obtained in this experiments [66] seems to
show that spin splitting is easier to achieve than valley splitting
in graphene, at least for the lowest Landau levels, so that there is
a hierarchy in the spin-valley splitting sequence for increasing
values of the external magnetic field (cf. Fig. 20) ([B] = T):

Q
B < 11===== ±2 ± 6 ± 10 · · · B > 11−−−−→

0 ± 2 ± 6 ± 10 · · · B > 17−−−−→
0 ± 1 ± 2 ± 6 ± 10 · · · B > 20−−−−→

0 ± 1 ± 2 ± 4 ± 6 ± 10 · · · B > 45−−−−→
. . . · · · B → ∞−−−−→
0 ± 1 ± 2 ± 3 ± 4 ± 5 · · · = T,

where we have allowed for the possibility (not shown in Fig. 20)
that there are additional levels in the hierarchy if higher Landau
levels are not equally robust.

Since the valley degeneracy is protected by inversion
symmetry of the graphene lattice, which is not broken by the
external field, the valley splitting presumably depends on the
subtle energetics of many-body interactions in this material. A
detailed understanding of this hierarchy is therefore a difficult
dynamical problem that is only tractable in limiting cases (e.g.,
0 ← B → ∞), where the identification of emergent modular
symmetries may be useful.

VIII. DISCUSSION

We have reviewed experimental quantum Hall scaling data
from a wide selection of materials, and compared these with
modular flow diagrams derived from the holomorphic Hall
potential ϕa = ln λ + (a − 1) ln(λ − 1) that is parametrized by
a single real number a [22]. This potential is invariant under the
congruence subgroup �(2) of the full modular group SL(2,Z),
because it is built only from the classical elliptic modular
lambda function λ [67].

In Secs. I and II, we have explained and emphasized that the
physical properties that must be required of any �(2)-invariant
scaling function βa = ∂ϕa renders the functional form of the
RG potential ϕa essentially unique (up to normalization). The
key is to recognize the holomorphic modular structure of
the parameter space, which must be respected by the scaling
functions. It is the pincer movement of a complex structure and
modular symmetry that pins down the RG potential [68].

For a = −1, 1/2, and 2, the symmetry is enhanced to the
maximal subgroups �R, �T and �S, respectively. So, if the
emergent symmetry is observed to be �X (X = Q, R, S, T),
then the β function, and therefore the phase and flow diagram,
is unique (up to normalization). Since these are the symmetries
that are most often encountered in the QHE, it is easy to
falisfy the modular hypothesis (i.e., the relevance of ϕa for
the QHE), but this is not what has happened. As technology
has improved over the past three decades, so has the agreement
between experimental scaling data and modularity. Compare,
for example, our reconstruction of data from 1985 shown in
Fig. 6 with Fig. 10 (data from 2014) or Fig. 12 (data from
2015).

In addition to the fact that some of the modular predictions
from 1992 have been verified at the per mille level [1,2,20,24],
it is perhaps the overall agreement of the unique modular family
of level two flow diagrams with a wide range of different
materials and experimental circumstances that is the most
convincing evidence for “modular universality” in the QHE.

There have been various attempts over the years to analyze
the phase structure of the QHE, starting with a proposal based
on the translation symmetry of RG flows in the IQHE [69]. This
was motivated by a sigma-model of localization [27,70–76],
but the target space geometry does not appear to be rich enough
to include the FQHE.

In Refs. [1,2], it was proposed that a modular symmetry
would be capable of describing both the integer and the frac-
tional Hall effects, by including dualities in addition to trans-
lations, as described in the introduction. The three maximal
subgroups �R, �S, and �T were immediately identified as the
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largest symmetries of physical interest. �T was shown to give
the correct phenomenology for the spin-polarized QHE, �S

was proposed as the relevant symmetry for analogous transport
problems with bosonic quasiparticles, and the symmetry �(2)
and the idea of a potential interpolating between the enhanced
symmetries was introduced [4].

At roughly the same time superficially similar dualities
acting on the filling fraction ν were considered [77–82], and
the resulting transformations are known collectively as “the
law of corresponding states.” Since ν is essentially the plateau
value σ = σH ∈ R, this approach is oblivious to the complex
structure that gives modular symmetry most of its predictive
power. These dualities appear to disagree with experiment,
unlike the complexified duality identified in Refs. [1,2], which
is in excellent agreement with available data [17,19,20,24].

There have been two other attempts to construct families of
interpolating β functions for the QHE [5,6,9–11,14,21]. They
have both retained the original idea that the β function should
be a modular form of weight two [1,2,7,8,15], and their work
looks superficially similar to ours. This is because a flow line
derived from any function with maximal modular symmetry
always has the same shape, so plots of the vector fields will
appear to be identical. As was explained in Refs. [1–4] this
is a mathematical trick, which we also employed in order to
obtain the original phase diagrams, but by itself this is not
sufficient to build a physical model. Subsequent alternative
proposals did not heed this advice. They did not pay sufficient
attention to the physical properties that critical points must
have, nor did they consider the elementary but demanding
experimental constraints on scaling that we discussed in the
introduction. Consequently, the conjectured “β functions” are
not well motivated, nor do they appear to have any reasonable
physical interpretation, as we now explain.

An interpolating β function, which in our notation is βã ∝
(ã λ − 1)/θ4

3 was proposed in Refs. [5,6,9,14]. They conclude
that the location of the zero of this function is not predicted by
�(2) symmetry, which is correct since it depends on the free
parameter ã, similar to our a. However, they seem ambivalent
about the order of the transition point, they do not consider the
family of functions under deformations of ã, and they do not
discuss the points of enhanced symmetry.

A family of meromorphic functions that was conjectured to
be an interpolating β function was postulated in Refs. [11,21].
However, these “scaling functions” have no physical founda-
tion or interpretation. In particular, they have poles where there
should be critical points, i.e., where a physical β function must
vanish. Critical exponents are therefore ill defined, and there
is no physical scaling.

These attempts to implement the modular ideas introduced
in Refs. [1–4] have all failed for the same reason: they ignored
the complex structure and physical requirements that the
scaling function must respect, i.e., the geometric structure of

the effective (emergent) theory. This is in sharp contrast to the
work discussed here. Since our β function is derived from a
physically motivated and physically sensible potential, it is by
construction well behaved everywhere on the interior of param-
eter space. This includes the critical points where it has simple
zeros, and therefore well defined scaling and critical exponents.
The reason that the “mock β functions” used in Refs. [1–4]
turned out to be essentially the same as ∂ϕa , is that they
are subjugated by the same holomorphic modular structure.
Given this geometric structure, the fate of the model is sealed,
and the modular predictions made in 1992 are either right or
wrong, at least for the maximally symmetric cases that are most
frequently encountered in experiments. Fortunately, as we have
seen here, there is now a large and growing body of evidence
in good agreement with many modular scaling predictions.

We have also discussed some experiments where the mod-
ular symmetry is transmuted or broken. We have described
in detail the most benign scenario, where the symmetry is
“morphing” between maximally symmetric cases, while main-
taining a maximal amount of unbroken modular symmetry.
This is captured by a unique interpolating family of scaling
diagrams with minimal symmetry breaking. The simplest
physical example is when cranking up the magnetic field
changes an unpolarized (spin degenerate) QHE to a polarized
QHE. This is consistent with some experiments, but in a few
cases modular symmetry is more severely broken or hidden.
It is an important outstanding problem to find out when and
how this happens, not only to delineate the domain where
emergent modular symmetries are relevant, but also in order
to understand why they are so accurate when they do appear.
In summary, all scaling properties of almost all quantum Hall
systems seems to be encoded in the deceptively simple looking
RG potential ϕa [22].

Perhaps the biggest outstanding problem in the QHE is
to determine the value(s) of the critical (delocalization) ex-
ponent(s), which would completely nail down the quantum
Hall universality class(es). This exponent is determined by the
curvature of the RG potential at a critical point, and therefore
depends on the normalization of the β function. This number
does not follow from symmetry alone, and information about
the dynamics of the collective (emergent) modes relevant at
low energy is required. The Ising model provides a helpful
analogy. Kramers and Wannier managed to calculate the exact
value the critical temperature (location of the critical point)
by exploiting a Z2 duality that is similar to S duality acting
on σD , but the exact value of the critical exponent remained
beyond reach until Onsager solved the model completely.
Similarly, modular symmetry is by itself not sufficient to find
the low-energy effective field theory, but (unlike Z2) because
it is an infinite non-Abelian group, it does severely limit
the supply of candidate models, and may therefore provide
valuable assistance in the search for this theory.
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