UiO ¢ Department of Physics

University of Oslo

Exploring the Single Event Effect Sensitivity of the
TMS570 MCU for a CubeSat Application

Yassine Elfarri
Master’s Thesis, Autumn 2018

Abstract

The thesis aims to explore the single events sensitivity of TMS570 microcontroller
for the CubeSat application. This device is automotive with a range of features
that can be used to increase the reliability of the devices in a radiation envi-
ronment. To understand the sensitivity of the devices ones needs to test in the
devices as close as possible to the environment, it will operate in. The decapping
methods are explored in this thesis. This will be important to be able to perform
heavy ions testing. In the rest of the test, we explore the sensitivity of the devices
in mixed field environment CHARM.

il

v

Acknowledgments

[would like to thank associate professor Ketil Rged for the opportunity to induce
me to the embedded world of electronics in a radiation environment. Your help
and guidance challenged me to ask the right questions.

I dedicate a special thanks for Olav Bjerke, Pal Bjerke and Ottar Opland for
using there personal time and knowledge to provide a 3D Xray at the facility
of FFIL. T thank my classmates Emil Ulvestad and Eirik Nobuki Kosaka for the
support and incredible journey. Last but not least I thank my wonderful girlfriend
Alla Johannessen for her unwavering support and encouragement during my work
on this thesis.

vi

Nomenclature

ADC Analog-to-Digital Converter

CCS Code Composer Studio

CERN Conseil Européen pour la Recherche Nucléaire
CHARM Cern High energy AcceleRator Mixed field /facility
CMOS Complementary Metal-Oxide-Semiconductor
COTS Commercial off-the-shelf

DAC Digital-to-Analog Converter

DCC Dual clock comparator

DMA Direct Memory Access

DUT Device Under Test

EDAC Error Detection And Correction

ESM Error Signaling Module

FMPLL Frequency Modulated Phase-Locked Loop
GCR Galactic Cosmic Ray

HALCOGEN Hardware Abstraction Layer COde GENerator
HEH High Energy Hadrons

I2C Inter-Integrated Circuit

IC Integrated Circuit

LEO Low Earth Orbit

LET Linear Energy Transfere

LHC Large Hadron Collider

LPOCLKDET Low Power Oscillator Clock Detector

m-NLP Multi-Needle Langmuir Probe

vi

vil

MBU Multiple Bit Upset

MCU Multiple Cell Upset

NIEL Non-Ionizing Energy-Loss

OBC On Board Computer

SAA South Atlantic Anomaly

SBU Single Bit Upset

SCPI Standard Commands for Programmable Instruments
SEE Single Event Effects

SEFT Single Event Functional Interrupt
SEL Single Event Latchup

SEPs Solar Energetic Particles

SET Single Event Transiant

SEU Single Event Upset

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

UART Universal Asynchronous Receiver-Transmitter

vii

viil

Contents

List of Figures xiii
List of Tables xvii
1 Introduction 1
1.1 4DSpace e 1
1.2 Motivation 1
121 Goals.o 2

1.3 Outline. 2

2 Theoretical Framework 3
2.1 Radiation Environment oL 3
2.1.1 Space Radiation Environment 3

2.1.2 CHARM 6

2.2 Radiation Interaction oL 8
221 Units.o 10

2.2.2 Stopping Power oL 10

2.2.3 Linear Energy Transfer 12

224 CMOS technology 12

2.3 Cumulative Effects 0o 13
2.4 Single Event Effects o0 15
2.5 Soft Errors. 16
2.5.1 6T Static Random-Access Memory (SRAM) 17

2.5.2 Mixed-signal integrated devices 18

2.6 Single Event Latchup (SEL) 18
2.7 Mitigation 19
2.8 Crosssection 21
2.8.1 Test SEU memory 21

2.9 Future Trends 21
2.10 Conclusion 21

1X

CONTENTS X
3 Decapping 23
3.1 Motivation and Goal L 23
3.2 Background information 000 23
3.2.1 Environment, Health and Safety (EHS) 24
3.2.2 Requirements 25

3.3 Method 25
331 3DXray 26
3.3.2 Mechanical CNC execution 28
333 WetEtch 30

34 Results. 32
3.4.1 TMSH70 Decapping 33
3.4.2 ADT768 decapping 35

3.5 Discussion 36
3.5.1 Future Work. 37
3.5.2 Regions Mappingof aDie 37

3.6 Conclusion 38
m-NLP System Firmware 39
4.1 Motivation and Goal L 39
4.2 Background Information 39
4.2.1 ADC-AD7T768 41
4.2.2 DC/DC digital power controller-LTC3887 42
423 BiasDAC 43
4.2.4 Power Rails Monitoring and Control 44
4.2.5 Error Signaling Module (ESM) 45
4.2.6 Requirements L. 47

4.3 Method 49
4.4 Results. 49
4.4.1 Command Line Interface 50
4.4.2 UART Speed and Reliability 50
4.4.3 SRAM Pattern 51
4.4.4 Reading Registers L. 51
4.4.5 Communication with LTC3887 51
4.4.6 Communication with AD7768 52
4.4.7 Board Status 52
4.4.8 Boot-loader oL 52

4.5 Discussion e 53
4.5.1 Future Work 54

4.6 Conclusion 57

xi CONTENTS
5 Radiation Testing of m-NLP System at CHARM Facility 59
5.1 Motivation and Goal 59
5.2 Background Information 59
5.2.1 Requirements 60
5.3 Method 62
5.3.1 Data collection 62
5.3.2 Data Processing 0. 65
54 Results 68
5.4.1 Current and Voltage measured 69
54.2 Boardstatus. L oo 70
54.3 SRAM 73
5.4.4 TMSHT0 registerso 78
5.4.5 LTC3887 registers and board status 79
5.4.6 ADT768 registers 82
5.5 Discussion 83
5.5.1 Future Work. L. 85
5.6 Conclusion 85
6 Conclusion 87
Appendicies 87
A SPENVIS Spacecraft Trajectory 91
B Multi-Needle Langmuir Probe (m-NLP) System Firmware 93
B.1 Command Line Interface 93
B.2 Drivers and Functionality 103
B.3 System Main 178
B.4 Firmware offset and Bootloader 180
B.5 CRCI16 packing and uart message 181
C Radiation Testing 185
C.1 Powersupply 185
C2 m-NLPevents 186
Bibliography 187

X1

CONTENTS

xil

xii

List of Figures

2.1 An artist image of earth Van Allen radiation belts. Public Domain
Image is by NASA [1] o o 4
2.2 World map of SAA proton flux at 600 km, generated using SPENVIS[2| 5
2.3 Galactic Cosmic Ray (GCR) and Solar Energetic Particles (SEPs)
interaction with the atmosphere cause cascade of secondary particles.©IEEE

June 2003[3] . Reprinted, with permission. 6
2.4 CHARM irradiation area and test location of our system (©IEEE
Sept 2016[4] . Reprinted, with permission. 7

2.5 CHARM HEH flux normalized at 100 MeV for test GO , and the
expected HEH flux for a 600-km LEO orbit with 98 inclination.

(©IEEE April 2017[4] . Reprinted, with permission. 8
2.6 Bragg’s curves for alpha particles. This plots are generated using

Nucleonical|5] web portal for nuclear data. 12
2.7 Radiation interaction with p-n junction. ©IEEE April 2017 [6] .

Reprinted, with permission. 13
2.8 An overview cumulative effects [7]o o oL 14
2.9 An overview over the single event effects categorization|[7] 16
2.10 Transistor schematic and logic gates for a 6T SRAM cell [8] . . . 18
3.1 The procedure followed for decapping. 26
3.2 3D X-ray of TMSH70. 27
3.3 Measurements that give to [.LAB for CNC of device. 28
3.4 Measurements that give to [.LAB for CNC of device. 29
3.5 Measurements that give to [-LAB for CNC of device. 30
3.6 Measurements that give to [.LAB for CNC of device. 31
3.7 TMS570 decapped exposing wire Bonding. 34
3.8 TMS570 decapped with exposing of bonding wire close up. 34
3.9 TMS570 decapped without exposing bonding wires. 34
3.10 AD7768 Analog-to-Digital Converter (ADC) decapped exposing

wire bonding. oL 35
3.11 AD7768 ADC CNC damage. 36

LIST OF FIGURES xiv

3.12

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10

4.11
4.12

4.13

5.1
5.2

5.3
5.4
9.9

5.6

2.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Photonic emissions analysis of ATMega SRAM.(©)Springer April

2013|9] . Reprinted, with permission. 38
The next generation m-NLP system hardware, designed by ELAB. 40
Overview of m-NLP communication 41
ADT7768 board configuration and communication paths 42
LTC3887 board configuration and communication paths 43
Bias DAC board configuration and communication. 43
Overview of m-NLP system power lines. Current and voltage mon-

itor of different supply lines 44
Overview of TMS570 safety features [10] 45
Process of firmware developement 49
Behavior of command line interface 50
Frequency Modulated Phase-Locked Loop (FMPLL) slip detector

module (©Texas Instruments [10] L. 54

Dual clock comparator (DCC) module (©Texas Instruments [10] . 55
Low Power Oscillator Clock Detector (LPOCLKDET) module (¢ Texas

Instruments [10] Lo 55
Watchdog timer module (©Texas Instruments [10] 56
Test position at CHARM facility 60
To the left is the control room with a rack of PC, Moxa and power

supply. To the right is the test area showing GO position. 63
Data collection and monitoring using power supply software. . . . 64
Data types that is collected and the process of data analysis . . . 66
Processing method of the SRAM data. The results is file that

contains only detected bitflipso 67

Processing method of the Registers data. The results a file that
contains only detected few register. Those are compare personally

to determine whether it is a bit flipornot 68
Current and voltage measured from power supply fo m-NLP system 70
Board status of voltage and current for power traces 71
Board status DAC voltage read back 72
SRAM counted single event upset for ECC on and off 73
TMS570 ECC on Frequency of ESM flag 74
SRAM with ECC on frequency of bitflips per address 75
SRAM with ECC off frequency of bitflips per address 76
SRAM bitflip pattern 7
TMS570 counted single event upset in registers 78
TMS570 number of single event upset in registers 79
LTC3887 counted single event upset in registers 80

Xiv

XV LIST OF FIGURES
5.18 Board status LTC3887 current drawn 80
5.19 LTC3887 number of Single event upsets by address 81
5.20 ADT7768 counted single event upset in registers 82
5.21 ADT7768 number of Single event upsets by address 83
C.1 Event that effect the Power supply data collection 185
C.2 TMS570 relevent events that affected data collection 186

XV

LIST OF FIGURES xvi

XVv1

List of Tables

2.1

2.2

3.1
3.2
3.3

4.1
4.2
4.3

5.1

5.2
5.3

Hadrons(> 20 MeV /cm? /year) for different radiation environments.
Data is from J.Mekki[l1]..
Glenn F.Knoll’s|12] categorization of radiation that originates from
an atomic or nuclear process L.

The requirements of decapping processing
equipment’s used for wet etch. L.
Damaged ICs, only one TMS570 was not damaged in the process

Task that need to be performed by TMS570
Features that system need to perform for radiation testing
Safety features that have to be a part of the system

General features for power and m-NLP data collection software for
PC . e
Goal to determind sensitivity of the follow devices in LEO

Data from literature for Single Event Upset (SEU) and SEL

A.1 Spacecraft craft trajectory configuration in SPENVIS

Xvil

1 Introduction

This chapter we will present the motivation for validating the m-NLP system in
radiation environment, the main goals that and an overview of every chapter.

1.1 4DSpace

4DSpace is a research group at the University Of Oslo with a cross-faculty corpo-
ration that involves the departments of Informatics, Mathematics, and Physics.
The goal of the research group is to understand plasma instabilities and turbu-
lence in the ionosphere.

The sun is the primary source of changes in space weather. During the high
solar activity, large amounts of particles are ejected into space. When that con-
siderable amount of particles reach the ionosphere in high concentrations, they
cause irregularities in form of plasma structures [13]. Those plasma structures
lead to deterioration of radio signals due to phenomena called scintillation.

In the long term, studying the effects of space weather on earth ionosphere will
help predict the electron density and help to mitigate the impact of scintillations
in the northern region. The space weather and its effects on the ionosphere are
beyond the scope of this thesis. However, it provides an understanding of the
goals and motivations of the 4DSPACE research group.

1.2 Motivation

A nanosatellite is used to study plasma turbulence in the ionosphere. This satel-
lite is equipped with m-NLP system [11, 15] that enables the 4Dspace group
to collect and process data. The system is a scientific instrument developed by
UIO. The scientific payload uses four Langmuir probes at a fixed bias to measure
different plasma parameters. The instrument is made entirely of commercially
available electronic components.

Commercial off-the-shelf (COTS) are increasingly used in Nanosatellites. COTS
are increasingly attractive for space applications because of the low price tag,

Introduction 2

small size, high performance and power efficiency[l6]. The risk of using them
in a radiation environment need to be understood and mitigated. Screening the
devices that will operate in the radiation environment contribute to a better un-
derstanding of the sensitivity and causes of failures. This increase the confidence
level that this device will perform in a radiation environment and throughout the
lifetime of the planned mission.

1.2.1 Goals

The primary objective of this thesis is to understand whether the selected pro-
grammable COTS in m-NLP systems can operate in Low Earth Orbit (LEO).
The work will contribute by laying the groundwork for the system level testing
of the m-NLP at an accelerated radiation facility. Decapping is one of the stages
of testing that is essential to test components with heavy ions|[17]. Heavy ions
testing was not performed in this thesis. However, The goal is to explore the
possibility of using the available resources at the University of Oslo. This will en-
able the future projects to do in-house injection testing with laser and cyclotron.
The rest of the thesis is developing firmware for radiation testing, along with data
collection and processing. The radiation test is done at CHARM. In the thesis we
will be highlighting some mitigation techniques that can be utilized to improve
the reliability of the system.

1.3 Outline
The thesis is divided into the follow chapters.

e Chapter 1 Introduction to the thesis

Chapter 2 Relevant theoretical framework for this thesis

Chapter 3 The process of exposing COTS die

Chapter 4 The firmware development of m-NLP system

Chapter 5 Radiation validation of m-NLP system at CHARM

Chapter 6 Conclusion

2 Theoretical Framework

This chapter is an overview of relevant theoretical fundamentals of radiation inter-

action with electronics. The primary focus is the Complementary Metal-Oxide—Semiconductor
(CMOS) technology. The chapter starts with an introduction to radiation envi-

ronments, the radiation interaction with silicon material, followed by radiation

effects on electronics, and mitigation techniques.

2.1 Radiation Environment

Understanding the radiation environment is crucial to find suitable Commercial
off-the-shelf (COTS). Engineers have to take into account the radiation environ-
ment when selecting components that are not designed to operate in harsh con-
dition. Understand the ionization energy of the particles population and whether
it is a concern for the devices used in this environment. Radiation is classified as
natural and artificial[3, 18]. The Natural radiation is ionizing particles trapped
in belts around planets, Galactic Cosmic Ray (GCR), and solar events. Artificial
radiation is a human-made source that is used either in the medical domain, nu-
clear power plants and high energy experiments like the Large Hadron Collider
(LHC).

This section discusses the radiation environment in space with a more empha-

size on the LEO, and LHC.

2.1.1 Space Radiation Environment

Space is not an empty vacuum it is populated by ionized particles and electromag-
netic radiation from Galactic Cosmic Ray (GCR) and Solar Energetic Particles
(SEPs)[3, 15].

GCR are made up of highly energetic particles that originate from sources
beyond our solar system. these particles can reach a maximum energy of TeV
[3]. They are continues present with some fluctuation. The solar activity has
an inverse correlation to the GCR. During the maximum solar activity, GCR is

Theoretical Framework 4

decreasing due to the hot ionized gas ejected by the sun. This gas contains a
magnetic field that deflects the low energy GCR [15].

SEPs are the results of event such as coronal mass ejections and flares|3].
These events produce energetic protons, heavy ions and electrons with energies
up to GeV|[3]. The flux level of solar particles is directly correlated to the solar
activity. This activity has an 11 years cycle that divided into four low activity
years and seven highly active years|3]. The high energy particles from GCR and
SEPs have high enough energies to penetrate the earth magnetic field[3]. These
particles are hazardous to orbiting satellites.

Earth’s Radiations Belts

The particles that do not have enough energy to penetrate the magnetic field of
earth tend to get deflected or trapped into belts|[3]. These belts are called after
James Van Allen. He confirmed the existence of radiation belts in the late 50s.
The Van Allen belts are made of an inner and outer belts[3]. The inner belts are
about 2500 km from the equator|3]. This belt is populated mostly by protons
with energies that can reach up to 100s MeV|[3]. The magnetic pole is tilted and
offset with respect to the rotational axis of the earth. This tilts the inner belts as
close as 300 km over South America|3]. This phenomenon is called South Atlantic

Anomaly (SAA).

Rotational

N

Outer
Radiation

Inner
Belt

RELIENT
Belt Inner
Radiation
Belt

Outer
Radiation
Belt

Magnetic /

FAV(S

Figure 2.1: An artist image of earth Van Allen radiation belts. Public Domain
Image is by NASA [1] .

5 2.1 Radiation Environment

Since the 70s much effort went into building models of radiation belts. NASA’s
AP-8 model is the standard for trapped protons. The model takes into account

protons with energies greater than 10 MeV[2]. Such a model can be generated
using SPENVIS tool Figure 2.2[2].

1000 =

100 —

Latitude

AP—8 MIN Intagral Flux > 1000 Mav (zm™ a7
=

Langitude

Figure 2.2: World map of SAA proton flux at 600 km, generated using
SPENVIS|2|

Atmosphere

The particles from GCR and SEPs that has enough energy enters the atmosphere.
They interact with nitrogen and oxygen atoms creating a cascade of secondary
particles [3]. The resulting particles from this interaction are protons, electrons,
neutrons, heavy ions, muons, and pions|3]. According to barth, the neutrons are
the most import result of this interaction. Neutrons are the dominant cause of
failures in electronics in lower altitudes lower than 20 km. The neutron flux varies
from 1 KeV to 100 MeV. According to Barth[3] neutrons with energies greater
than 10 MeV are significant contributors to SEU.

Theoretical Framework 6

Primary Heavy lon Incident on Atmosphere

Low Energy Nucleonic

Componet-Disintegration

> Product Neutrons
Degenerate to "Slow"

N,P = High Energy Nucleons
n,p = Disintegration Produce Neutrons
.= Nuclear Disintegration

-

Electromagnetic Meson
or "Soft" or "Hard"
Component Component

Nucleonic Component

Energy Feeds Across from Nuclear Small Energy Feedback
to Electromagnetic Interactions from Meson to Nucleonic Component

Figure 2.3: GCR and SEPs interaction with the atmosphere cause cascade of
secondary particles. ©IEEE June 2003[3] . Reprinted, with permission.

2.1.2 CHARM

Radiations environments in Conseil Européen pour la Recherche Nucléaire (CERN)
facilities such as Cern High energy AcceleRator Mixed field/facility (CHARM)
are populated with particles ranging from thermal energies to up to GeVs [11].
This mixed environment is composed of neutrons, protons, muons, pions, kaons,
and leptons|11]. In relation to radiation effects in electronics, these particles are
grouped intoHigh Energy Hadrons (HEH), which are hadrons ! above 20 MeV,
and thermal neutrons with energies around 0.025 eV|[19].

This facility was built with the aim to provide a well-characterized mixed field
radiation environment for testing electronics|l1, 19]. The radiation field in the
test area is adjustable by changing the shielding and target configuration|[!1]|. The
radiation field is generated by a proton beam of 24 GeV impinging on a target
of various materials such as e.g. copper and aluminum|!]. The intensity of the
radiation can be controlled by changing the intensity of the beam. The flux of
HEH in CHARM ranges from a minimum to a maximum by merely varying test
location, target, and beam intensity configuration|!1].

'Hadrons are neutrons, protons, pions and kaons|!1]

6

7 2.1 Radiation Environment

At Test location GO is considered for the Device Under Test (DUT) placement
at the facility Figure 2.1. The HEH flux is normalized at 100 MeV together with
the flux expected in 600 km circular LEO orbit with a 98 inclination [20, 4, 19].
This orbit is the same as the orbit for the previous nanosatellite NORSAT-1 [21]
and the most likely for the future missions. The energy spectrum for particles at
the last mentioned position is representative of the LEO environment [20, 4, 19].
Figure 2.5 shows differential HEH spectrum obtain using FLUKA simulation tool
together with data extracted using CREAM96 data [20, 4, 19]. The Annual levels
fluences at LEO does not exceed 10 HEH cm™2 as shown in Table 2.1[11]. This
can be achieved easily in test location GO in less than a week of exposure time[! 1].

900 |- 24 GeV
Proton
Beam

Movable Shieldings

m)
?g ooooooo
3456789

300

200

100

200 400 600 800 1000
z [em]

Figure 2.4: CHARM irradiation area and test location of our system (©IEEE
Sept 2016[1] . Reprinted, with permission.

Theoretical Framework 8

Table 2.1: Hadrons(> 20 MeV /cm? /year) for different radiation environments.
Data is from J.Mekki|l1].

Spectrum Ground level Avionics ISS LHC Machine LHC detectors

Flux 1-2¢° 2e” 10° 106 - 10 ~10M"

10—

d¢(E)/dE

[— 600 km, 98° ;
102 H & CHARM (R4) |-\ S
| 4 CHARM (G0) ’

)
E (MeV)

Figure 2.5: CHARM HEH flux normalized at 100 MeV for test GO , and the
expected HEH flux for a 600-km LEO orbit with 98 inclination. (©IEEE April
2017|1] . Reprinted, with permission.

2.2 Radiation Interaction

Radiation is an energy transfer mechanisms|22]. The transfer occurs either as
an emission or transmission of energy in the form of electromagnetic waves or
particles that passes through a medium|22]. In this thesis, we are interested in
radiation sources that originate from an atomic or nuclear process. We use Glenn
F.Knoll’s[12] categorization which divides radiation into two main categories with

8

9 2.2 Radiation Interaction

two subgroups for each Table 2.2.

Table 2.2: Glenn F.Knoll’s[12] categorization of radiation that originates from an
atomic or nuclear process

Fast electrons

Charged particle radiation
Heavy charged particles

Electromagnetic radiation
Uncharged radiation

Neutrons

Knoll[12] divides radiation into charged particulate radiation and uncharged
radiation. The charged particulate radiation interact with material via Coulomb
forces. This category is further divided into two subsections fast electrons and
heavy charged particles. The uncharged radiation does not interact using Coulomb
force with the material, but rather via other mechanisms. This group contains
neutrons and electromagnetic radiation. In this thesis, we are interested in heavy
charged particles and neutrons.

The radiation ability to penetrate thickness is a key factor when examine
effects of radiations on matter whether it is electronics components or biological.
A radiation source that has a high penetration is call hard radiation and low
penetration ability is called soft|[12]. this terminology is useful when comparing
two particle penetrability of material.

Heavy Charged Particles

Heavy charged particles include all charged particles that have a mass of 1
atomic mass unit or higher|12]. this includes protons, alpha particles and fis-
sion fragments|[12]. These particles are capable of causing Single Event Effects
(SEE)|[7]. They are found naturally in space (Section 2.1.1) and impurities in de-
vice package|6]. These charged particles interaction with materials via direct ion-
ization. The energy transfer is dominated by electronic (Coulomb) interaction|19].
This interaction can results in excitation or ionization of atomic electrons|l2].
When the ionization occurs in electronics devices it cause an effect know as SEE
as discussed in Section 2.4.

Neutrons

Neutrons generated in various nuclear processes. They found both in LHC
and atmosphere[6, 19]. They are further divided into slow and fast neutrons

9

Theoretical Framework 10

subcategories|[12]. The neutron ability of interaction with material is dependent
on it kinetic energy. Neutrons interact with matter through indirect ionization
which is know asNon-Ionizing Energy-Loss (NIEL) [6]. This is a nuclear collec-
tion with can be elastic or inelatic. The Most important is inelastic collisions
[8, 23]. When neutrons collide with Si it does initiate a nuclear reaction, result-
ing in emissions of secondary nuclear fragments|24]. This fragments are usually a
lighter ions protons,and alpha particles with can directly ionize the silicon [24, 23].

Slow neutrons usually are not issues in causing SEE in electronics. There
kinect energy is below 1 MeV [6]. This role becomes important when interacting
with Boron-10. Boron is used as p-type doping in silicon or dielectric layer (BPSG
)[6]. the interaction of a slow neutron with Boron-10 is, and it produces fragments
of lithium-7 and alpha particles with are both capable of causing SEE[(].

As Neutrons, the rest of other hadrons such as protons, pions, and muons
transfer energy by indirect ionization. Protons can interact both by direct and
indirect ionization. For protons with energies above 50 MeV they are similar to
neutrons and the dominant interaction is indirect ionization|25, 23].

2.2.1 Units

The unit for measuring radiation energy is electron volt(eV) [12]. It is defined
as the kinetic energy gain by an electron that is accelerated through a potential
difference of 1 volt. For example, if we take a particle with a net charge of +1
and accelerate it through 1000 volts the energy gain by the particle will be 1KeV.
The equivalent value of electron volts in joule(J) is

leV =1.602 x 10717J (2.1)

The activity of radioisotope[l2] is defined to be the rate of decay and is given
by the fundamental law of radioactive decay. It measured using Si unit Bq which is
a unit that measures the rate of disintegration of a radioactive object per second.
However, this does not tell us about the energy deposited into a material.

Absorbed dose is the measurement of energy deposited by a radiation source
per unit mass of the martial|l2], the units used are Gray or Rad. These two units
are the measurements of energy deposited in the material by the particle. Even if
both units common in literature it is important to note that Gray(Gy=J - Kg~')
is an SI unit.

1Gy = 100rad (2.2)

2.2.2 Stopping Power

The total stopping power is defined as the rate of energy loss by particle per
unit distance[12, 24, 23]. The units of stopping power is MeV /cm [12]. The

10

11 2.2 Radiation Interaction

energy transfer to the material is due to electronic(Coulomb) and nuclear(elastic
or inelastic) contributions|[19]. The stopping power is described using the Beth’s
formula [12]. This formula is valid for heavy charged particles with energies that
is greater than 1 MeV /amu [19]. In expression B equation (2.4) the Z (atomic
number of absorb atoms) is only significant value for a none relativistic charged
particles. This because the second term in B equation (2.4) will vary slowly
with increase of particle velocity /energy[12]. When talking about the absorber
material the significant values are the product of N(number of density of absorber
atoms)and Z.

For the same absorbent two factors describe the stopping power of particles,
velocity and the charge of the incident particle equation (2.5). Particles with a
larger z have greater stopping power, thus having a greater ionizing ability|l2].

The stopping power is inversely proportional to particle velocity /energy|l2].
As the particle propagate throw the absorber, it will low energy /velocity. When
enough velocity is lost the charged particles, spend more time close to electrons.
This allows a higher energy transfer to electrons.

0FE 4metz?
g _2% _ NB 2.3
ox mov? (2:3)
B 2mov? v? v?
B=Z[in 7 In(1— g) — c_2] (2.4)
2
z

11

Theoretical Framework 12

Stopping Power for 10MeV alphas on Aluminum
|—!—Electr0nic =&~ Nuclear —&—Total
1.4 [AL B ML A A o 2 P

1.2 1

E
=2]
£

> 08
-]
£

g 06 |
[=]

o .

2 o04f
o,

=N L

e I

n 02|

0L

10-3 102 101 100 101 102 103 104
Energy (MeV)

Figure 2.6: Bragg’s curves for alpha particles. This plots are generated using
Nucleonica|5| web portal for nuclear data.

2.2.3 Linear Energy Transfer

Linear Energy Transfere (LET) is local energy deposited along the particle track| 2]
and the stopping power is total energy loss [19].In literature LET and stopping
power is used interchangeably. For heavy ions, they are nearly equal since pre-
dominant energy loss is the electronic contribution, excluding Delta electrons and
bremsstrahlung effects.

1 0F
LET = -+ — 2.
p ox (26)

2.2.4 CMOS technology

Most used technology today for constructing electronic components is CMOS.
This construction technique used n-type and p-type MOSFET transistors. In
silicon substrate one electron hole pair is produced for every 3.6 eV of energy lost

12

13 2.3 Cumulative Effects

by ion.[6]. According to Baumann [0] the radiation interaction with p-n junction
is three-phase process as seen in Figure 2.7.

(a) When ionizing radiation passes, throw a p-n junction. Along the path, it
will create a set of holes and electrons.

(b) Free electrons are collected rapidly by an electric field. A funnel is created
which extended the depletion region deep into the substrate. This increases the
collection area of electrons. A more extensive collection area means a higher
current spike. The duration of this process lasts only for a few nanoseconds.

(c)After this, a slow phase which lasts in hundreds of nanoseconds until all
carrier has been collected, recombined or diffused away from the junction.

n+ lon track [. it

1. ,'I —3 (b) Prompt
- - b= charge —
+ M- - T_-t S | collection i (c) Diffusion
4 O+ _ -+ > charge
H o~ S - @ collection
S :+ + + + 7 = 2
v 4 - - + =
5703 - ..t s
2, + - -]
+++\- S - @ 1 (a) Onset
& 2 + 4 + = of event
EE - - " 3 |
1-_._1' + + - l
0
b c
(b) (©) 10% 102 10" 100 10°

Time (seconds)

Figure 2.7: Radiation interaction with p-n junction. ©IEEE April 2017 [0] .
Reprinted, with permission.

2.3 Cumulative Effects

As the name suggests, these effects are because of successive additions, in our case
radiation interaction with the material. It is a long-term exposure of electronic
components to radiation that introduces defects to the material which in turn
changes the electrical properties of the device this effects can be attenuated using
shielding to the devices operating in a radiation environment|7]. The categorized
into Total Ionizing Dose and Displacement Damage[26, 7].

Total Tonizing Dose is due to the accumulated exposure to ionizing radiation|7].
The prolonged exposure to the ionizing dose alters the properties of dielectric ma-
terials, such as the one found in CMOS based transistors|7|. This material plays
a role of electrically isolate the gate from the channel. When a voltage is applied
to the gate an electrical field open channel allowing electrons to flow between the
drain and source of the transistor. An ionizing energy interaction with dielectric

13

Theoretical Framework 14

insulator results in holes trapped into the gate oxide, this causes a change in the
voltage requires to change the state of the transistor[26, 7|. This build-up of the
positively trapped particles can cause NPN transistor to get stuck in on-state
even if the gate voltage is zero[20, 7].

Displacement Damage is due to accumulating of NIEL (non-ionizing energy-
loss) interaction. Fluences is the unit used to measure the displacement damage in
a device|20, 7]. Defects introduced to the material is due to nuclear interactions
as mentioned earlier interacts with the material through elastic and inelastic
collisions these interactions displace atoms from it lattice position[26, 7]. In
optoelectronics, this displacement reduces the sensitivity of the device to photons.
This alteration of the material causes degradation of the current transfer ratio
(CTR) of the device|7].

Cumulative Effects

\

None lonizing

'

Displacemment
Damage(DD)

Change of crystal
lattice of material Interaction

results
Physical
displacement of
atoms

'

Bipolar, Opto
electronics

Figure 2.8: An overview cumulative effects [7]

14

15 2.4 Single Event Effects

2.4 Single Event Effects

The single event effects (SEEs) are disruption caused by a single particles ionizing
a sensitive volume of an electronic device[3, 7|. The sensitive volume is the area
that ionizing particles have to strike to cause a hard or soft error[3, 7]. SEEs has
a stochastic nature, which is a statistical approach to a single particle to strike
a sensitive volume [3]. This probability is expressed in cross-section|3, 7]. These
errors are induced by heavy ions,protons, and neutrons [3|. The categorization is
divided between hard and soft errors|7, &]. In one hand soft errors are compro-
mised of failures that are recoverable by a reset or a rewrite, in other hand, hard
errors are none recoverable that may result in erroneous operation or permanent
damage to the component|7].

Soft errors are the nondestructive errors induced in the electronics|7, 8]. Even
if there are not damaging the component, they can compromise the reliability of
the device in question|7]. This reliability is in term of data or functionality of the
device. Soft errors, in turn, are divided into subcategories|3|. Each subcategory
is based on the effects caused by bit flips on a device.

e Single Event Upset (SEU)

Single Event Functional Interrupt (SEFI)

Single Event Transient (SET)

Multiple Bit Upset (SBU)

Single Bit Upset (MBU)

Multiple Cell Upset (MCU)

Hard errors are destructive effects caused by particles in electronics|7, &|. The
deposited energy by particle requires to induce hard errors tend to be higher
than the energy for SEU[7]. They are often caused by heavy particles|7]. When
considering component to operate in a radiation environment, it is crucial to find
the threshold of the destructive event occurring in that device|7]. The subcate-
gorization is based on technology used for constructing electronic component|7].

e Single Event Burnout (SEB) occurring in power MOSFET ,BJT(IGBT) and
power diodes.

e Single Event Gate Rupture (SEGR) occurring in power MOSFETs.
e Single Event Latch up (SEL) occurring in CMOS.

15

Theoretical Framework 16

Single event effects (SEE)

v v

Soft Errors | Hard errors ‘

i ‘,

Non-Destructive Destructive SEEs
SEU, SEFI : Digital ICs SEL: CMOS
SET: Combinational logic and SEB: BJT and Diodes
Opamps. SEGP: Power mosfets

. /

Figure 2.9: An overview over the single event effects categorization|7]

2.5 Soft Errors

It is crucial to understand the categorization by the device to understand Single
Event Upset (SEU). A bit-flip in memory may go unnoticed if it happens in a
measured value[8]. It different story if the same happens in control data stored in
the SRAM. This can result in the system to crash or enter an undefined state[3].

SEU is the alteration of stored data by radiation event|7, 8] . This term is
used to cover Single Bit Upset (SBU),Multiple Bit Upset (MBU), and Multiple
Cell Upset (MCU).

e SBU a particle causes a single bit flip in the memory cell.
e MBU an event caused two or more bit flips in a memory cell.
e MCU when an even causes upset of two or more memory cells or latch.

SEF1I is a special of SEU since it happens when devices such as microcontrollers
stop responding or enter an undefined state of operation|s, 7]. This can happen
when a bit flip occurs in control registers[3]. The only way to get the system
back to normal operation is to rest the device[%, 7, 24]. That is why often it is

16

17 2.5 Soft Errors

advised to use an external watchdog to reset the microcontroller if no response is
detected|7].

Single Event Transiant (SET) is a voltage spike generated via particle strike
near a sensitive area|3, 7|. This event cause voltage to propagate through an
analog device and combinatorial logic|%, 7]. If SET results in a wrong value been
latched, then it is considered SEU|3].

As explained in Nicolaidis[%] the ability of radiation to alter the state of a tran-
sistor is dependent on the critical charge of the transistor. This is the minimum
charge of the devices requires to change its state. The simplest approximation is
to consider the total capacity Ci at the node and the supply voltage Vdd. For
CMOS, the total capacitance at the node is the sum of capacitance in drain-
substrate and drain-substrate capacity|$]. When charge deposited by radiation
in a sensitive area is larger than the critical charge a change of the devices state
occurs.

Qc=Ci-Vdd (2.7)

The presence of a high-Z material like tungsten increase the SEU in devices|27].
This increases as well the MCU cross section for devices when exposed to neutrons
with energies greater then 100MeV|[27].

2.5.1 6T Static Random-Access Memory (SRAM)

According to Nicolaidis [8] when enough energy is deposited by hadrons or heavy
particles in the sensitive area of a MOS transistor, it will result in a change of
state. In the case of the 6T cell, a change of the state of one cell results in a
wrong value to latch into the cell. For this scenario to occur, the energy collected
has to be greater than the critical charge of the device. If we consider that Node
A = 1in Figure 2.10 , The 6T cell design has a feedback loop this used to store
the value in the cell. When radiation alters the node A from 1 to 0, this feedback
loop reinforces a new value.

17

Theoretical Framework 18

Vad
Ll

Figure 2.10: Transistor schematic and logic gates for a 6T SRAM cell [8]

2.5.2 Mixed-signal integrated devices

Mixed-signal devices contain both digital and analog circuit. Complex devices
like microcontrollers are mostly digital. However, these devices contain analog
circuits like ADC. SET is an effect commonly seen in combinatorial logic and
analog circuits [3]. According to Nicolaidis[3| for SET to be considered a SEU
the particles have to cause a transient able to propagate through the circuit to
the memory element. Transient pulse has to have enough amplitude and duration
to change the state of the latch. The transient has to arrive at the latching edge
of a clock. The higher the operating frequency, the greater the probability of a
transient been latch.

2.6 Single Event Latchup (SEL)

SEL is a destructive event that occurs in CMOS technologies|7, &]. Latch-up
initiates by ion striking the sensitive area. If enough charge is free to turn on one
of the parasitic BJT structures, it will cause an increase in current drawn by the
cell. If going unchecked the current will rise until the device is damaged|3]. This
can be interrupted by cutting the power supply to the device.

SEL is not only caused by heavy ions. In the case of the complex devices like
microcontrollers; The has been a few cases where SEL is observed in Hadron en-
vironment |7]. However, Tungsten near the sensitive areas can introduce a strong

18

19 2.7 Mitigation

SEL cross section [28]. J.R. Schwank|29] observed for some SRAM are sensitive
to SEL. He showed that proton interaction with silicon could not generate nuclear
recoils with enough LET to induces SEL. Both papers |28, 29| determines that
proton interaction with tungsten plugs in most high-density Integrated Circuit
(IC) are the primary cause of SEL in hadron environment.

Paul E.Dodd|[30] has shown that latch-up is highly dependent on temperature
and power supply dependent. A high temperature or power supply increases the
SEL cross section in the device.

2.7 Mitigation

One approach to reducing soft errors in a system is by removing the sources
of errors. Baumann [6] showed that semiconductors containing Boron-10 are
sensitive to low energy neutrons. By removing Boron-10, the amount of bit
flips caused by thermal neutrons are eliminated|(]. Purification of materials can
reduce alpha contamination in solder causing the SEU in ICs. Producers results
in methods of keeping materials with high alpha particles away by physically
separating from the sensitive circuit|6]. All those methods are mitigations can be
done by the IC developers. From a user, perspective it is challenging to access
information on what producers have done in-process level.

In the case of COTS both concerning hard and soft errors, one has to manage
error risk to the system. In a radiation environment, high energy particles that
can penetrate shield and package as mention in Section 2.1. Manufacturer of
COTS uses different methods to increase the reliability of their products. The
approach to mitigate the soft errors are more highly dependent on a device in
question. Complex devices such as microcontroller would have a broader mix
of different methods to ensure the reliability of the circuit[I0]. The mitigation
techniques are categories into process, circuit redundancy, and recovery.

Process and Layout

Generally speaking, when talking about a process level the idea is limiting the
charge collection in substrate[6, 17] this is done by using process technologies
that Silicon on insulator or epitaxial substrates both limit collection areas of
charge[0, 17]. There is another counter-measurement that are used to reduce
further the rate of SEE. This is out the scope of the thesis. For the interested
check "space product assurance" [17].

19

Theoretical Framework 20

Mitigation by Circuit Redundancy

Redundancy can be increased by using radiation hardened circuit design[3, 17].
Those libraries are made out of components can resist change by increasing cir-
cuitry redundancy|[17]. This limits the impact of errors on the system|7]. The
redundancy is implemented as triple modular redundancy (TMR) with a concept
of a majority voter|7]. This method requires at least two voters to have the same
value to work. This can increase the reliability of the circuit as well decrease SET
that will latch a wrong value to a latch.

Mitigation by Recovery

This two examples of recovery methods parity check and watchdog timer.

Parity Check

Parity is a bit added to the binary code to increase the reliability of the data
transmitted [31]. The received and transmitted are configured to have the same
parity type even or odd. The parity bit is used by the receiver to check that
all packages are correct. The error can be detected but not correct. The parity
can be implemented on hardware or software level[31]. According to Kenneth
A.Label|31], other algorithms use the same concept of the parity. This algorithms
such as Hamming code can detect double errors and correct single ones. Another
algorithm is Cyclic redundancy check (CRC) used to detect an error. The beauty
of this method is that it can be used as a check for a large of data packages.

Watchdog Timer

The watchdog timer can be implemented either in hardware, or software, [31].
They can be either integrated internally or externally[31]. A watchdog timer
is a recovery technique that can be used to increase the reliability of a device
such as microcontrollers. This method reliable periodically single send by the
CPU to a watcher dog timer, this signal indicates that the devices I stilling
working within the time windows desired [32, 10]. If the signal is not received
within the time frame from the microcontroller the watchdog timer takes action
to recover the functionality|10]. This action can be a reset signal issued to restart
the microcontroller. This device is handy to deal with Single Event Functional
Interrupt (SEFI) special when physical access to the devices is not possible[31].

20

21 2.8 Cross section

2.8 Cross section

According to Nicolaidis|3| SEE cross section is the probability of that incoming
particles will induce an SEE. Cross section is determined by the ratio of the num-
ber events observable and,F is particle fluence multiplied by total bits monitored.
The unit of cross sections is [em2/bit] or [em2/device|]. Fluence total number of
particles passing a unit of surface area in a given interval of time|particles/cm2]

N
= 2.
“ f * bits (28)
Ne'[}en S
Uncertainty = N—tt (2.9)

2.8.1 Test SEU memory

According to Nicolaidis [8] memory testing is done by writing a known value to
the memory. During the irradiation of the devices, the values are read from the
memory to determine the number of single bit flips that occurred. This count of
values along with the fluences the devices have been subjected to determines the
sensitivity of the SRAM.

2.9 Future Trends

According to [3, 30]SEU effects worsen with the technology scaling where the
electronics industry is decreasing device dimensions and increases the number of
transistors per chip. A result of this trend is the decrease in the supply voltage,
and the node capacitance. For space environment, this means that the charge
necessary to induce an SEU has been decreased as well. For SEL the trend of
reduction of the power supply reduces the sensitivity of the circuits.

2.10 Conclusion

Understanding the radiation environment and interactions with electronics are
essential when using COTS in spaces. It requires that designers of hardware or
firmware to identify the components that have mitigation features that can be
utilized to reduce the impact of radiation induce failures. This increases system
reliability and the success of the mission.

21

Theoretical Framework

22

22

3 Decapping

The chapter is documenting decapping of a TMS570 microcontroller and AD7768
Analog-to-Digital Converter (ADC). We start by explaining the background in-
formation and the relevance to environment radiation verification of COTS. We
show the different methods available, and the one choosen base on the resources
available at UIO. The chapter provides an insight into the process of decapping
and the steps needed.

3.1 Motivation and Goal

It is important to test complex microcontroller COTS to determind LET thresh-
old of destructive events caused by heavy charged particles [17]. Heavy ion ground
level testing is performed in vacuum|!7],as explained in Section 2.2 Heavy ions
are directly ionizing. They lose energy as they propagate through materials in-
cluding air and devices packaging. Decapping ensures that ionization energy loss
occurs in the die. That helps us correctly determine LET threshold required to
induce SEL in Device Under Test (DUT). From that, we can obtain a cross sec-
tion curve used to estimate the SEL rate that the devices will experience in the
environment|7|. The failure analysis of COTS increases the confidence level on
whether the device suitable for this radiation environment. The goal is to explore
and share the method used to expose TMS570 die.

3.2 Background information

Decapping is a process to remove packaging to IC in order to expose the die.
In our case this enables us to irradiate the device either using laser or heavy
ions. IC package for TMS570 and AD7768 are both QFP packages in different
sizes. It is not easy to tell what kind of materials are used by just looking at
those packages. Generally speaking, QFPs package are made using process of
moulding where it covers wire bonding and die [33]. The die is glued into a
copper plate called lead frame which serves as a structural and thermal. Most of

23

Decapping 24

the manufacturers do not disclose the type of packaging used. Texas instruments
producer behind the TMS570 microcontroller. They disclose a list of materials
used in there component as there initiative to use greener materials|34|. Analog
the owner of AD7768 ADC. They do not disclose any information about the
materials used in their products. Even with information from Texas instruments,
it is nearly impossible to determine what kind of package is in use. However, We
can see that copper is used for bonding wire[31]. Package wise the only thing
that can be said is it is. It is a molded Epoxy based packaging [33]. We follow
methods done by Matthew J. [35]and Huiwei [36] as this two show how the shift
from gold to other metals has made it challenging to use wet etching. Gold is
inert and does not corrode during wet decapping. Unlike gold, bonding wires
made of Copper, silver, and aluminum are easily corroded by wet etching.
Wet etching is dependent on solution temperature, exposure time, and the
surface state of the wires (light coat such as Pd on wires to reduce corrosion) [35,
|. Those are important as acids attack copper bonding wires. The overexposure
to acids such as nitric acid can cause wire thinning or pitting, and bond pad
corrosion, all which impacts the mechanical and electrical properties of circuit|35].
Both Matthew J. and Huiwei are using the nitric acid, or a nitric, sulfuric acid
mix is used [35]. The process starts decapping with pre-cavity by a mechanical
drill or lase, followed by an acid etching to expose the die[35, 36].

3.2.1 Environment, Health and Safety (EHS)

It is essential to take precautions when working with lab graded chemicals. This
especially the case when handling acids. Those acids have a concentration higher
than 90% precaution, and correct handling is essential. We followed UIO guide-
lines for safety when working in this experiment[37]. A background reading was
done to understand the results of reactions to ensure safety. When the decision
reached on the method, were discussed with the EHS coordinator in the chem-
istry department. From those meetings, we discussed which chemical that will
be used and execution order. It is to ensure that reaction that will take place is
safe.
The following precautions were taken when working with acid.

e Flammable chemicals have to be kept in hazardous storage cabinets.
e All the experiments were executed under a fume hood.

e While the reaction is taking place, the fume hood has to be closed, and
airflow set to Max.

e We did not work directly from large bottles of acid. We transported chem-
ical using pipes to smaller containers.

24

25 3.3 Method

e Reduces risk of spill and limit chemical fumes by closing the flasks, and
containers.

e Gloves do not stop acids they give time to remove them.

e Safety glasses to protect the eyes.

e Lab-coats (Gives you time to remove).

e Equipment that will be in contact with acid were made from glass.

e None glass materials can only be used after acid is neutralized with acetone
e.g. stainless steel Tweezers.

e Be aware of placements of fire equipment and chemical treatments stations.

3.2.2 Requirements
The requirements was set based on the safety requirements and availability of
tools at UIO.

Table 3.1: The requirements of decapping processing

Requirements for decapping

Decapping in room temperature.

Using locally availible resources at UIO.
Develop process that can be followed in future.
Removing package without damaing IC.

Functional testing of 1C

3.3 Method

Decapping was started by sending TMS570 to FFI for a 3D Xray. This analysis
helps us determine the placement of the dies, size, and bonding wire height.
Knowing the area the bonding wire is placed help use determine the depth of
cavity and surface area that need to milled in the package. This model from
FFT helps to have a 3D model where you can measure distances accurately. After

25

Decapping 26

determining the position. The IC was given to I-LAB with measurement of depth
and area of the cavity. When the cavities received back, the IC was optically
analyzed. IF we found no damage, one could continue to wet etching in the lab.
The wet etching is time-consuming as it is slow and demands optical inspection
after each amount of steps. If the sample if pass the visual inspection the IC then
is cleaned and then we are done. The same processes from Mechanical removal
were done to do all. AD7768 was never X-rayed at FFI. An overview of the steps
of the decapping process is seen in Figure 3.1.

Etching time
3D X-Ray Mechanical at Optical
T™MS570 [] removal [WETeh 1 Room [inspection
temperature
Y Y L
T)
t 3
- No.

Cleaning IC

{

End

Figure 3.1: The procedure followed for decapping.

3.3.1 3D Xray

At FFI the engineers took an initial scan to find the best optimal way to show
the wire bonding in the IC package. After multiple scans, it was clear that only
a small area could be scanned to reveal the wire bonding.

The small surface area as seen from Figure 3.2 resulted in the left side is a bit
been shorter than the right side, that is because the IC was not center correctly.
Taking direct measurements from lead frame is nearly impossible to get a precise
reading from it. We can measure the die area and depth we want to remove the
package mechanically then do the rest with a wet chemical etching. We made the
assumptions that the die is centered in the lead frame and that all die are placed
in same precision by Texas Instruments.

The way we can go about it by using the corners of IC to find the center
of the package. The center of the package will be used as a reference point to

26

27 3.3 Method

the CNC machine. This, not the ideal way of doing it but this can give us an
approximation of a start point where we can start drilling. One could assume
that 3D x-ray scan reveals the letters on the surface on the package which could
be used as a reference for the drill points. This latter method has even more

limitations since some letter on the package changes. That makes it even harder
to have repeatability in making cavities.

!

i

Figure 3.2: 3D X-ray of TMS570.

Measurements for CNC machines

In Figure 3.3 show the maximum distance relative to the center of the die. The
CNC machine needs to remove according to this values. From center 2.80 mm

27

Decapping 28

from left and right and 2.28 mm top and bottom. Those are the absolute max-
imum values, so the cavity won’t cause damages the bonding wires. That is
assuming that the CNC machine has a high accuracy in the posting. If we stay
within the parameter described above, we can remove 0.5 mm in depth from the
package without damaging the IC. This as well the absolute maximum

Figure 3.3: Measurements that give to I-LAB for CNC of device.

3.3.2 Mechanical CNC execution

The measurements were given to the mechanical workshop at the physics de-
partment. The CNC process needed to have solutions that amount the IC in an
amount to hold it in place during the CNC process. The mount role has to hold
the 1C steady in place. It ensures that measurements are correct and not change
during the process. The as well prevent pins from getting stressed during the
process. The plate that is screw down is used as a reference point to the area the
drill needed to move in. This hopefully will reduce the damage to the bonding
wires. The metal mount has groves for pins so that they slid along sides. The

28

29 3.3 Method

center pins had to endure a bit of friction. Pushing in the IC had to be done with
care.

The holding metal block held tightly in the CNC machine. The CNC ma-
chine is hand operated in 3 axes with 3 turning wheels that are turned by the
operator. The precision is in 1/100 mm according to the operator. The operator
centered the drill head on the center of the IC then he started moving with the
measurements to creating a "well" in the package.

Figure 3.4: Measurements that give to I-LAB for CNC of device.

29

Decapping 30

Figure 3.5: Measurements that give to I-LAB for CNC of device.

3.3.3 Wet Etch

The wet etch is done as seen in the Figure 3.6. It is done experimentally by first
finding the time need to remove the package. Removing the package without
corroding the bonding wires is a must since we intend to mount the IC on PCB.
The solutions mix chosen is three drops of nitric acid to one drop of sulfuric acid
[35]. The use of sulfuric acid is to dilute nitric acid. Those two acids do not react
which each other. We did some tests with just sulfuric acid and noticed nothing
happens to package beside a slight discoloration. The challenge was to decapped
with three uncontrollable variables as temperature, solution delivery and mixing
exposure times. All the experiments were done at room temperature. One of
the idea that we tested was to head the devices into a controlled temperature,
but that quickly found to be difficult. The solutions delivery method was using a
glass pipette with a rubber bulb. When adding pressure on the bulb acids drops

30

31 3.3 Method

are delivered on the IC surface. The pipettes were used for mixing the solutions
three drops of nitric acid and one drop of sulfuric acid. The exposure time started
when the last drop of sulfuric acid was added. During the experiment, the timing
of acid exposure was adjusted based on the visual inspection. If no visual trace of
bonding wires then we used ten mins. if we see bonding wires after the rens, then
we reduce the exposure time to 5 min. Then 2.5 min intervals until we remove
all the package covering the die.

The Rensing process starts with using acetone which neutralizes the acid.
Then it is followed by a none ionized water rens. We could not find any ionized
water, so we used purified instead. A careful dab with paper to remove any access
water will do. Rense using isopropanol is to remove any dust of particulates on
the surface of a die. The last step in the process is dehumidification nitrogen or
any other means. We could not find a suitable method available at the moment.

.3.Dr0p of 1 Drop of Wait for x Rense using Rense with Remoye Rense using
Start nitric acid on|—| - gy = . - - | water with "
sulfuric acid minutes Acetone water isopropanol
IC paper
@ Yes

Figure 3.6: Measurements that give to [-LAB for CNC of device.

No.

31

Decapping 32

Table 3.2: equipment’s used for wet etch.

Equipment Purpose

2xBeaker Pippette holding and rensing with aceton.
2xPipette with Bulb Used to deliver acid on the IC.

2xPipette Serological Move acid from larger flask to Erlenmeyer Flask.
2xErlenmeyer Flask Hold sulfuric and nitric acid.

Petri dish used to hold IC.

3xLab wash bottles ~ Used to hold Acetone,water and Isopropanol

Fuming nitric acid Use to remove packaging.

Sulfuric acid Used to control the concentration of nitric acid.
Acetone Neutralise sulfuric and Fuming nitric acid.
Water Rensing.

Isopropanol Final rensing to remove any particles.

3.4 Results

The decapping is to a certain degree is possible to achieve using CNC and chemical
means. The results show it is possible, but the repeatability is low. The bonding
wires made of gold seemed more resistance to nitric acid attacks. The copper one
we much more sensitive to contract with nitric acid. The difference packaging
properties between AD7768 and TMS570 results in adjustements to the CNC and
etching process. The AD7768 package was much thinner than that of TMS570.
From the CNC it was clear that the device’s package was softer as it was easier
to make grooves on the package by merely sliding the drill on the package. The
most case of damage to IC wasn’t by the acid attack on wire bonding. It was
instead that CNC machine did a significant amount of damage. The operator
manages to damage either the wire bonding or the die by itself Figure 3.11. The
holder of the packages as seen in Figure 3.4 caused much stress on pins after each
operation the user had to straighten the pins again.

Both TMS570 and AD7768 IC that have been drilled closed to die experienced

32

33 3.4 Results

short wet etching and more considerable area exposure of the die. The IC with
least drilled depth where exposed long to acid. This did not damage wire bonding,
but it took longer to expose the die. The process had to be repeated multiple
times. Each time we wash acid some of it ends up on pins which made very
corroded and very brittle. An extreme example can be seen in Figure 3.10 all the
pins became so brittle that they fall off during a the rens process.

Table 3.3: Damaged ICs, only one TMS570 was not damaged in the process

IC CNC ACID Total
ADT768 5 1 6
TMS570 5 1 7

3.4.1 TMS570 Decapping

Decapping of TMS570 Figure 3.7 is the result obtained from CNC as close as
possible to the die. The dies show some scratching on it surface caused by the
drill bit. The Second that was noticed under the microscope is that the copper
bonding suffers from the thinning effects. The last mentioned causes the struc-
tural properties of the wire bonding to change which lead to bending or breaks
Figure 3.8. The Thinning will mean as well that the wire bonding changes the
electrical properties of the IC. The last IC in Figure 3.9 showed that is more
promising then the rest. Here only the dies that have been exposed this keeps
bonding wires protected from corrosion. However, When this IC was mounted on
PCB to test its functionality, a CLK pin broke off. Those IC were handled with
care during the mounting processes. It shows how crucial it is to minimize the
exposure to nitric acid.

33

Decapping 34

Figure 3.8: TMS570 decapped with exposing of bonding wire close up.

Figure 3.9: TMS570 decapped without exposing bonding wires.

34

35 3.4 Results

3.4.2 AD7768 decapping

The gold wire bonding withstands nitric acid effects. Not thinning effects ob-
served under the microscope Figure 3.10. The pins where far less resistant to
acid attacks as in the previously mentioned figure. The lengthen exposure caused
the pins to fall off during the rens process. Most of the damages cause the IC is
due the fact caused by the drill. Looking at the Figure 3.11 it shows damaged
caused by the drill bit on the die.

Figure 3.10: AD7768 ADC decapped exposing wire bonding.

35

Decapping 36

Figure 3.11: AD7768 ADC CNC damage.

3.5 Discussion

We had only one successful decapping. From a visual standpoint, this had good
results the pins were intact and slight corrosion from the washing process. The
devices were mounted on board to test whether the functionality is still intact of
the device. During the soldering one, pins broke off clean. It is clear that acid
and mechanical stress did weaken the mechanical properties of this pin.

The results from the decapping process were promising but were restricted by
the control ability of variables during the experiment. The tools used were mostly
basic to do the process of decapping. The main reason for damages to the die
and bonding wires were because of the mechanical removal of plastic Table 3.3.
The accuracy proved by CNC has proven to be low in precision and repeatability.
Even if the same dimensions were given to the operator, some human errors did
occur along the way. The main reasons are the method used to measure the
center of the devices. It was clear that putting the drill accurately on the center
was not a simple task. This caused offset from the center of the package to
damage the bonding wires. For the successful removal, small errors result in the

36

37 3.5 Discussion

significant different amount of plastic that encloses the die. This changed the
required etching time for each experiment. This cause pins and bonding to be
exposed longer to acid.

One of the parameters that were not taken into consideration during the
experiment was the surface area of the package. The larger the area, the more
consideration had to be taken to determine a better exposure time for the acid
and the mixture. The behavior acid on the packaging is hard to predict. The
removal tended to be not even. In general acid interaction with material is not
isometric. During the experiment, there was always some different amount of
material converging the die.

The only way we reduced the humidity is by leaving the IC with bags of
moisture absorb of silica gel. This bags normally shipped with electronics to
ensure a low moisture levels in packing. This was more as a precaution and a
last resource. We have no idea if this method has worked or not. Nitrogen gas
drying was not possible to get access to. This would have been a more favorite
approach|35].

3.5.1 Future Work

In the article by Mathew advises removing as much package as possible before
starting wet etch process [35]. He advice using laser ablation to have a higher
precision, and repeatability. This reduces the total time needed for a wet etch
to some couple of seconds. The methods of laser removals would provent to be
accurate but that boils down to what kind of capability the devices used to create
a cavity. An industry laser machines will do much better just at accuracy and
reputability. While a hobbits devices would have a low intensity suitable for
engraving into matterials. If one can you this capability to engrave a cavirty
slowly in a controble manner it may result in event get as expose the die.

3.5.2 Regions Mapping of a Die

Decapping aims to expose the die for physical fault injection. Failure analysis
using heavy ions or laser helps to understand the robustness of the COTS. This
helps expose the limitations of the recovery mechanisms implemented by the
producer and helps develop a mitigation strategy. Having the ability of an in
house fault injection will help develop and test new methods of bitflip mitigation
before testing in a radiation facility. Laser fault injection of COTS is challenging.
The user has to map different areas using to determine their functionality before
start with injection testing.

One of the methods that have been widely used by the fault analysis com-
munity is photonic emissions analysis |38, 9]. According to Schlosser and Dmitry

37

Decapping 38

[38, 9] when MOSFET transistors changes state a photon is emitted. This effect
is called hot carrier luminescence and was discovered in the 1950 [38]. An electric
field accelerates charge carriers traveling between the drain and source. In this
process, some of the electrons gain energy. The energy is released as a form of
a photon with a frequency of 1400 nm. The intensity of the photon is directly
correlated to the operational power supply. A decrease in features size lowers the
intensity of the emitted photon [38] . To detect this effect one needs a microscope
with a Near InfraRed(NIR) imaging sensor. When Writing an alternating pattern
to the SRAM will help switch on and off transistors, and the results will be as
seen in figureFigure 3.12.

el ol el gy G A

oy
o ot

{a) Reflective tvpe image of ATMega SRAM {(b) Emission image of ATMega SHAM

Figure 3.12: Photonic emissions analysis of ATMega SRAM.(©)Springer April
2013[9] . Reprinted, with permission.

3.6 Conclusion

The results from the decapping process were promising but were restricted by the
control ability of variables during the experiment. The tools used were mostly
basic to do the process of decapping. This method requires sacrificing a good
amount of devices before getting function device. It is necessary to expose the
die to be able to do any form for heavy ions or laser testing. In the future, one
should explore the use of a computer numerical control (CNC) laser to do the
decapping process.

38

4 m-NLP System Firmware

This chapter presents the development of firmware for the m-NLP system. This
chapter begins with an introduction to the functionality of the system, the pro-
grammable components, and the process of developing firmware for radiation
testing.

4.1 Motivation and Goal

The main controller of the m-NLP system is a microcontroller from Texas In-
struments. The TMS570LS12x series includes important safety mechanisms that
make this series an attractive candidate for COTS in LEO. Initially, this micro-
controller family is built with enhanced safety features for transport applications.
The safety features are implemented to deal with systematic and random failures.
In our case, radiation is the source of random failures. The firmware is developed
with the goal that the system will be tested in a radiation ground facility. This
will help us determined the sensitivity of the devices. The purpose of the firmware
is data collection so we can determine the cross-section of Hercules SRAM and
Registers, Ad7768 registers, and LTC3778 registers.

4.2 Background Information

39

m-NLP System Firmware 40

M5 PROG - e o -PROG

e

i m

sigE o

MEV1D0512DC

D1722

Langium front end Egun Antenna release and detect Power input Communication to PC

Figure 4.1: The next generation m-NLP system hardware, designed by ELAB.

The m-NLP system is used to collect data on plasma density in the ionosphere
using four Langmuir probes. An Egun is used to control satellite platform poten-
tial. Tore Andre Bekkeng developed this method, and the E-lab group developed
electronics. The board seen in Figure 4.1 is the first generation m-NLP system
with microcontroller as the main control unit. This board was the first hardware
design iteration. The board had to be verified by functional testing, along with
the firmware development for radiation testing. The Board contains main control
unit TMS570 microcontroller, Bias Digital-to-Analog Converter (DAC), AD7768
ADC and LTC3887 DC/DC digital power controller. We approach AD7768 and
LTC3887 from the functionality point of view. The functionality is based on the
technical information got from the E-lab. The theoretical background behind
the operation of Langmuir and E-gun are beyond the scope of this thesis. You

can read more about miniature Langmuir and E-gun in the Ph.D. thesis of Tore
Andre Bekkeng.

Hercules is the main controller tasked primarily with the task of data collection

40

41 4.2 Background Information

from external ADC. Also, The controller has housekeeping tasks with external
modules for either current monitoring, power lanes management, and device con-
figurationFigure 4.2. The data from the TMS570 will be communicated back to
the central On Board Computer (OBC) via RS-422 communication.

Controller
power switch
for 5V, +/-12
and LTC3887

Voltage and

current monitor Set Bias gain.

<«—Configure via SPI—l

RS422 T
interface
| nHET 4 channel urrent sampling
Antenna
Realse and
detect

Figure 4.2: Overview of m-NLP communication

4.2.1 ADC-AD7768

ADT7768 is an external ADC used to sampling current at a fixed point from
four probes Figure 4.3. Hercules programmes this device via SPI. Hercules pro-
vides a CLK signal, and the indication start/stop data conversion. In return,
AD7768 communicates back via nHET interface. nHET is an interface with
own event-driven co-processor which can be programmed to handle custom data
transmissions|10]. When ready signal is received from the AD7768, nHET starts

41

m-NLP System Firmware 42

shifting data simultaneously from channel 1 to 4 into an internal buffer[39]. This
data awaits to be transfer to SRAM by nHET local Direct Memory Access (DMA)
called HT'U[10].

Current sampling

CLK

Devices configuartion via SPI /—)% Probe | ")
y vy . _
«—Channel 1—] - £
Hercules «—Channel 2—] -< Prgbe ‘g
«—Channel 3— AD7768 > £
TMS570 Probe -
«—Channel 4—| < o
- 3 S
A Probe 3
¢—Ready signal4 4 ?

J

Start/Stop

Figure 4.3: AD7768 board configuration and communication paths

4.2.2 DC/DC digital power controller-LTC3887

LTC3887 is a programmable DC/DC digital power controller. This device is
command based system is expected to be configured each time at the start of
its operation by the microcontroller via Inter-Integrated Circuit (I12C)(PMBus).
This devices contains Registers, SRAM and ECC[10]. We did not explore the
mitigation available since they were deemed as a secondary task. However, the
presence of complicated logical in this device compelled us to include the device
as part of the radiation test. The role of the device is the ability to translate
a command into voltage difference between the positive and negative terminals
of the Egun. The user can change the potential difference from 0 to 5V. The
5V is not the absolute upper limit. It is set to prevent any malfunction to the
LTC3887. The devices can provide the user with current, Voltage output between
the terminals and Device internal temperature. One can use this temperature
sensor to determined the ambient temperature. To do so, one needs to calibrate
the device. We will not be doing that as its out the scope of this thesis.

42

43 4.2 Background Information

Difference

2

—,® of 100V
H | : } Controllable
ercules ; . difference 0-5 V
TMS570 <«—I2C(PM Bus)—:> LTC3887 4>O
Power plane 1 Power plane 2

Figure 4.4: LTC3887 board configuration and communication paths

4.2.3 Bias DAC

This module is controlled by Serial Peripheral Interface (SPI) communication.
The user can configure each channel individually. This flexibility gives the user
the ability to bias probes with different voltage. To verify the bias voltage output
Hercules internal ADC is used to read back values on those lines. The interaction
with the device is via SPI. This a write-only operations communication|!1]. The
read-back of configuration is not possible, so the only way to determine that the
command executed correctly is by internal ADC read-backFigure 4.5.

Readback CH1

Readback CH2———— »| Probe 1
vy VY
> —| Probe 2
Hercules SPI Bias > Gain select
TMS570 | =7
> » Probe 3
— . Probe 4
Readback CH3 -
Readback CH4

Figure 4.5: Bias DAC board configuration and communication.

43

m-NLP System Firmware

44

4.2.4 Power Rails Monitoring and Control

The TMS570 controller is tasked to monitor current and voltage on difference
power lanes as seen in Figure 4.6. The blue dots on the figure represent the
switches those are not turn on by default. The user has to use GPIO pins to

switch on the current supply.

monitor using internal ADC.

The green lines show the lines that are has a

Power supply

’ 3.3V > Digital

3.3V AD7768 IC

| ? 5V—|_> Analog

3.3V

&V On/Off
I
L] i
1&V——] "
[—
1 2\/j__> ?ﬁ,{g‘;‘?g mNLP board level
e Ic 1&V. Analog Front end
+-12— 12

‘ On/Off.
|

On/Off

LTC3887 IC
egun 5V ;. >
: GPIO switch
Power supply ADC | and V monitor
-+— - ‘4—

Figure 4.6: Overview of m-NLP system power lines. Current and voltage monitor
of different supply lines

44

45 4.2 Background Information

4.2.5 Error Signaling Module (ESM)

gingl{l'l-gegormnagce Hercules TMS570 [Wemory [EESSSSSSSSSSSSSSSSSSSSSSE
ortex-R Core 256KB to 4MB 1 |
* Up to 300 MHz BTN) Power Clock, & Safety

(500 DMIPS) 32KB to 512KB 0SC PLL POR
* Floating-point unit RAM wi ECC
» Memory-protection 16KB to 128KB
» B-stage pipeline ,._‘\ Up to 300 MHz Data Flash w/ ECC LBIST RTIDWWD |

- Memory Protection
Memory Interface

Systems Monitoring

s 0SC, PLL, clock
= Voltage

- | sonaenr

Architecture S Bt

-] I‘h’::k'::l‘:‘éspﬁg: System Bus and Vectored Interrupt Module o
:;ler primt;vrg g{ﬁes Lo e/l Flexible Real-Time

« Physical diversity: - 100 EMAC ’ High-End Control Peripherals
checking CPU is v Itl'k;ﬁf? : 1010 MibADC1 Timer(s) » Parity on select
flipped and rotated ulti-Buffere MultiBuffered (NZHET) et e

* Clock diversity: SEits) FlexRay™ 12:bit ADC « Dual 12-bit ADC with

separate clock tree
distribution per CPU

shared channels
(butoll e * Motor control and
. ogic built-in timer co-processor(s)
self test (LBIST) SPi(s) CAN(s) MibADC2 AR « Multi-buffered SPls

Multi-Buffered = CAN interfaces
12-bit ADC * LIN interfaces

GIO/INT * FlexRay with
dedicated DMA

Figure 4.7: Overview of TMS570 safety features [10)]

The TMS570 series have safety functionalities embedded into this micro-
controller. This functionalities are divided into programmable and none pro-
grammable features[32]. A none programmable safety features are hardware im-
plemented that cannot be turn off [32]. The programmable features are the most
relevant once to us. They can be utilized to increase the reliability of the TMS570.
This microcontroller has 64 programmable functionality. We will not be going
through all of them. Only a few are highlighted in this thesis.

This microcontroller is filled with safety features and redundancy. Some fea-
tures are fault/slips clock detection, Dual LockStep CPU, EDAC for SRAM and
parity bits between internal busses. All safety functionality report to the one
error handler[32, 10, 42|. Tt is important to keep in mind that the programmable
safety function will not report to ESM if they are not activated. The error signal
module is a module that manages error conditions in the microcontroller. The
errors are classified into three different levels, where each level /group have prop-
erties that described the severity [32, 12]. The user has more flexibility in dealing
with errors that have low severity[32]. The ESM monitor 128 error channels with
64 channels for Group1,32 channels group2 and 32 channels group3|[10]|. Depend-
ing on the severity of the report to ESM, an action is taken by issuing a flag,
nError, and interrupt.

This ESM is handling errors internally or externally. The external errors are

45

m-NLP System Firmware 46

exported via nError pin to an external/board level watchdog circuit[32]. This
monitor issues a cold reset via nPORRST. Such a device is the TPS6538x family
for automotive use, and this device includes an array of fault detection and reac-
tion freatures|!2]. Some of the most notable are Voltage monitor, current limiter
and reset when an error signal is issued. The circuit design used at this moment
did not include external monitor capability, so it is critical to see how Hercules
circuit mange in a radiation environment on it own. The m-NLP control system
focuses fundamentally on handling error locally. We do not want to mitigate
against radiation effect. We rather detect them using the ESM module. This
module helps us monitor nearly all the TMS570 circuit.

ESM Severity group 1

The group 1 is a low severity group that gives the user the flexibility of configuring
the issued errors to an interrupt, error output pin or just nothing. This flexibility
means that the user can choose, not to deal with the error, issue a soft reset or
a routine that resolves the error. This all depends on the configuration of the
system. This group has to be configured by the user. When accessing address
from SRAM ECC values are checked to determine whether the value in that
address is correct. An ESM flag is raised when an error is detected. The user has
had to handle this flag.

ESM Severity group 2

The group 2 error is a none maskable high priority error that signals both the
nERROR pin and interrupt. The interrupt generation has a predefined behavior,
an example CCMR4 - dual-CPU lock-step error can cause the device to reset.
This type of reset is a warm reset, that means that the content of ESM status
register will be preserved and can be read to determine the cause of the issue. The
way this error function when every an error is detected it will behave accordingly
look at the table groups and activities for detailed information.

ESM Severity group 3

The group 3 error is the highest severity ranking, that is means when issued it
causes a CPU abort and asserts the error pin output. Such an error is a double
error detected in an SRAM address. This results in a system to abort the CPU
and issues a signal to an external watchdog circuit. If no watchdog time is existing
it is important to implement an internal watchdog which will reset the device.

46

47 4.2 Background Information

4.2.6 Requirements

When the Firmware was under development, the test facility was not decided.
The firmware had to be as flexible as possible. It has to be suited for a mono-
energetic facility and mix field CHARM test facility. CHARM facility has some
requirements mainly none accessibility to the device physically for a week. This
required more functionality to secure that change or fix could be introduced
during the week via a boot-loader. The cabling distance between the PC and m-
NLP had a distance of about 40 m in length. Operation in such lengths one needs
to ensure that the package transfer contains reliable information to eliminate any
distorted data packages. We do not know the rate of bitflips that can occur in the
system, and how often double bit error would occur. The Universal Asynchronous
Receiver-Transmitter (UART) have to run as fast as possible to ensure that all
single bit flips are transferred. This has to happen before a none recoverable
double error forces the system to reset itself. SEU are none recoverable once the
device is restarted. The following requirements for functionality Table 4.2.

Table 4.1: Task that need to be performed by TMS570

Description Interface

Communicate with PC UART

Current and voltage monitoring on power lines Internal ADC

Antenna release and detect GPIO
Setting Bias DAC SPI

Bias DAC readback Internal ADC
Bias gain set/select GPIO

Control Switches for 5V, +/-12V and EGUN GPIO

Configure and control egun -LTC3887 PMBus(12C*)
Configure AD7768 external ADC Configure via SPI
Received data from ADT7768 nHET

47

m-NLP System Firmware 48

Table 4.2: Features that system need to perform for radiation testing

Description Purpose
Command line interface Ability to request any package or configuration
Reprogram via bootloader Upload new firmware without JTAG

Fast way to transmitt via uart Retrieve as much data

CRC16 with uart Increase the relability of the transmitted data
SRAM pattern save a large array of known pattern

Register Read all readable registers

Board status Powerline monitor, DAC bias, and LTC current.
ADT768 Write to register and readback

LTC3887 Write to register and readback

Table 4.3: Safety features that have to be a part of the system

Description Purpose

Enabling SRAM ECC Autocorrect single bit that occurs in device
Disabling SRAM ECC Do not correct single bit that occurs in device
Interface respons timeout External devices have to respond within a time limit
Enable PBIST Startup test to check for faulty behavor of SRAM

Enable parity bit Transfere data from SRAM to CPU with parity

48

49 4.3 Method

4.3 Method

The system was developed using the Texas instrument tools Code Composer
Studio (CCS) and Hardware Abstraction Layer COde GENerator (HALCOGEN).
The TMS570 is a sophisticated device with the considerable amount of features
to increase the reliability of our system, and the development process included
the use of HALCOGEN to generate drivers. Generated drivers do not mean that
everything handed down to the user. The user has to determine the behavior
of every single section of the microcontroller. The development of the process
was started by consulting the technical documentation provided for the product,
then execute it in HALCOGEN, write user code and test the behavior Figure 4.8.
The development process was divided into modules as see in Table 4.1 this is to
increase the testability.

HALCOGEN gives the user the possibility to choose between FreeRTOS OS
or bare bone. Our choice was to go with a barebone solution as we could control
the number of dynamic variables in SRAM. It is because we do not know how
sensitive the SRAM is to radiation and how often bit-flips will occur. A bit flip
in a control dynamic data variable will cause a SEFI. The FreeRTOS is deemed
excellent at the predictable timing response, but its most substantial disadvantage
is the dynamic data stored in SRAM.

Technical)
datasheet [HALCOGEN || CCSs | Usercode || Testing End

No- Pass? Yes

Figure 4.8: Process of firmware developement

4.4 Results

The results of this chapter are rather the firmware and the features that are
developed for radiation testing.

49

m-NLP System Firmware 50

4.4.1 Command Line Interface

The development of a command line interface was mainly practical. There are
three reasons behind the choosing this instead of a loop based system. The
first reason was testing the firmware. Implementing the Command base interface
enabled testing commands and arguments to ensure that the firmware performs
as expected. This includes testing valid and none valid commands. Negative
acknowledgment (NAK) command is issued when the system detects a wrong
command. In case of a valid command, the system replays by executing the
command and return the package to the PC. The second reason for choosing this
method over a based loop system was to eliminate change to the firmware that
has been tested. This prevents the user from introducing bugs and increase the
reliability of the system. The last reason was the flexibility of the device and
the data that can be requested. Instead of hard-coding the packages structure,
It is moved to the control software in PC. This allows us to change the packaged
requested without changing the firmware.

Command
received from
UART

Processing

—»<Valid command?>—Yes»| Parse —>
command

Figure 4.9: Behavior of command line interface

Execute
Yes—+|
command

4.4.2 UART Speed and Reliability

UART is the communication protocol used between the PC and m-NLP system.
The baud rate is set to be 230.4 kHz which is the maximum possible by TMS570
series. This communication is sent over RS-422. RS-422 is a differential point to
point transmission standard. The data have to be transmitted over at least 60
meters. To make sure that the data received is correct we have to use CRC16
and send data as packages. The commands will be issued by the PC then answer
is issued by m-NLP. This a standard slave master configuration to control the
data flow. Working in a radiation environment and the overlong length it is
standard to add parity to verify the correctness of data received. Securing the
data transmission is done using CRC16. CRC16 has an advantage over other
parity algorithms mainly in the processing needed to encode packages. It is

50

51 4.4 Results

simple and needs only two bytes to verify a package with a maximum size of 249
bytes. The biggest drawback of CRC16 is its inability to correct a faulty package.
The usual method to correct the error is to request the same package again. Due
to using the CRC16, It decided to disable UART parity in transmission. The
CRC16 decoder checks the validity of the transmission.

4.4.3 SRAM Pattern

0x48 value stores 140000 bytes from start address 0x08001600. The area is about
73% of the total SRAM available on TMS570. This a way to detected bit flips
caused by radiation so we can determine the sensitivity of the device. During the
radiation test, we will be running rounds with configurations with SRAM. One
will be with ECC off where the error is read by directly checking for deviation
from a defined the pattern. The second configuration is to run it with ECC on
and use the ESM to determine whether the value is correct of fault. The ESM
is a flag is issued only when address accessed is has a bitflip. The ESM does
not correct errors automatically when detected. The user has to write back the
same flag value into ESM, and This starts a hardware routine to write a correct
value to the address into the SRAM. So to prevent the probability of double
errors occurring a correction method is developed for the memory. This method
checks the ESM register after accessing each read address. When a single error
is detected the software starts a routine that corrects the data.

4.4.4 Reading Registers

To determine the sensitivity of registers, one needs to read and verify that no bit
flips have occurred. The register can be a bit tricky as one can not write a pattern
to determine whether they have changed on not. Many registers have reserved
bits that are used internally by the digital logic. This can be read but can not
be changed. One of the ways of doing this is by recording all available register
to the user in a run simulation to the one that will be done during radiation
testing. It is to store all possible combinations possible. This has to be done for
multiple days to have large enough sample to determine what is normal values
for this registers and what is a deviation caused by radiation. More on this topic
is explained in Chapter 5.

4.4.5 Communication with LTC3887

Reading and writing to register in this device required implementation of PMBus
protocol. This protocol an extension of SMBus protocol with a specific focus
on power control. SMBus and PMBus protocol is compatible with 12C timing.

o1

m-NLP System Firmware 52

The difference is the order of information sent. The information that devices
require to interact with the device are address type, command, length of data
read or written. The address type can Global or PAGED. During the development
process, we detected that the initial board that was used faulty. These boards are
the first generation of, so we had to programme the functionality of the device
to ensure that the hardware works as expected. After discovering behavior issues
with the board. The same test was performed on another board. We found out
the board I was using has issues with Egun circuitry. That one of the primary
decision where made to determine that full programmability of the LTC3887 has
to be done to verify that hardware is stable. This as well to have full control of the
board behavior under normal conditions. After establishing the communication
and programming the behavior of the device. We select three register device
temperature, current drawn and the potential difference between positive and
negative terminals. The temperature sensor is embedded internally in the device.
It is a measure of the IC operational temperature.

4.4.6 Communication with AD7768

The configuration of ADC is done using SPI protocol. The communication is to
configured the device analog devices technical datasheet called this communica-
tion method off frame protocol [39]. For a send bits long values with the most
significant as read or write a bit. Then followed by the same value but this time
for a read functionality. If the command issued is illegal, this will be detected by
the device, and an illegal error will be sent back.

4.4.7 Board Status

This includes a range of different analog values collected one of the important
values are current and voltage which is monitored by TMS570 internal ADCFigure
4.6. This values will help users determine whether a specific device causes a
latchup. This helps narrow down to the component that is the source of latchup.
This category includes monitoring the Bias DAC readback. It is to verify that the
values set to DAC does not get altered by radiation. The final value is to monitor
the current drawn between the positive and negative terminal of the LTC3887.
This is done to determine whether the consequence of a bit flips to the current
drawn by the Egun.

4.4.8 Boot-loader

The Bootloader is the first firmware to run after a reboot. This firmware has
to be in lowest possible addresses in Flash memory to be considered a boot-

52

53 4.5 Discussion

loader. The bootloader was not developed but instead integrated into the code.
We had to create a new system link files that have firmware offset of 0x20000
from the start address. This allows the bootloader to have the lowest value to
be the first firmware to run at the start of the system. Bootloader enables us
to change firmware without the need of needing an external debugger. As well
if we are in test areas like CHARM the distance is too large to use the JTAG
programmer. Thus the only way to reprogram the device will be via a bootloader.
The bootloader runs with ECC on parity and parity bits to increase the reliability
of the program. When the device is uploaded to SRAM the bootloader, the system
is installed in flash memory.

4.5 Discussion

All of the set requirements were met for the development of the firmware for the
m-NLP system. However, this does not mean that improvements are not possible
for future iterations. One of the features that deemed secondary is the ability to
collect data in software about which part of execution has failed. An example
of the timeout that was implemented when communication with AD7768 and
LTC3887. When those two devices fail to reply within the assigned time the soft-
ware continues. The user externally will not receive any information that those
devices did not respond. This information helps to understand whether AD7768
and LTC3887 experience some functional interrupts. This is important to under-
stand what parts of the software failed. This one example many other sections
of the firmware can report the errors, but missing part is the error handling
implementation.

For ECC off no software mitigation techniques were implemented in the firmware.
The redundancy by duplication was avoided the idea that we went with that re-
ducing the footprint of dynamic values to an absolute minimum will reduce the
chance of bit flip in a control value [3]. When the ECC is on the fact that ECC
corrects and detects errors, it is more enough to use this method. The method
I used after reading a memory address is ESM check. It is to detect and correct
bitflips. This helps to correct data in different address gradually. This reduces
the chance of error accumulation in the long run. This method does not cover all
the SRAM, but it helps reduce the risk of double errors occurring in often used
areas. To be able to cover all the SRAM one needs to implement a scrubbing
mechanism of SRAM as a part of housekeeping task|13].

23

m-NLP System Firmware 54

4.5.1 Future Work

The important future works for this device are utilizing the mitigation capa-
bility that the TMS570 family provides. The user has to define the how the
programmable mitigation functionality can be utilized properly. Here are some
suggestions on mitigation functionality that could be useful to implement. All
the information in this section is from technical datasheet of the TMS570 family
[10, 32, 42].

Clock

Hercules microcontroller is asynchronous systems that require a clock signal to be
able to function properly. The microcontroller supply as well the AD7768 with
a clock as seen in Figure 4.3. It is important that the user handle errors when
detected. The TMS570 family have three safety features related to clock.

FMPLL slip detector module detect slips in phase lock between input and
output signals. The response to such an event is programmable and up to the
user on how to modify the response to such error. The user can choose between
resetting the devices or bypass on slips. Bypassing on slips means a flag is raised
to the ESM where the user can determine the behavior in firmware. This enables
the user to switch to other clock sources as PLL2 or internal Oscillators.

CLK Signal to
CLK Control Module

Input from
Oscillator

To Device Reset

Figure 4.10: FMPLL slip detector module (©)Texas Instruments [10] .

DCC are a diagnostic feature that uses two clocks to detect drift between fre-
quencies between two clocks sources. The TMS570 family has two PLLs available
for the user. This two PLLs can be used in DCC modules to detect any drift
between the systems clock and reference clock. The user can determine the drift
tolerance before it is indicated to the ESM module. This particularly important
if real-time response required.

o4

55 4.5 Discussion

Error : I_l

Countd and Valid 0 do not
Clock0 count down due fo an
inactive dock 0

Valid0

Clock1 —~

Y

relcad Lirrre
Counter1 reaches 0 at the

right time, but since ClockD is not running,
Valid0 hasn't started, thus an eror is generated.

Figure 4.11: Dual clock comparator (DCC) module (©)Texas Instruments [10]

This safety feature is used to detect the failure of the primary clock oscillator.
The module compares the crystal frequency to two internal oscillators HF LPO
and LF LPO. If the crystal exceeds the defined ranges, hardware issues a response
by either resetting device or switching to internal clock source LPO. This user
determines this.

The LPOCLKDET is a feature that used to detect the failure of the primary
clock oscillator. The modules compare the value from crystal frequency to two
internal oscillators. Using that two oscillator the user can define the range of
the desired frequency that the external crystal should be operating. The range is
made up of an upper and lower frequency where the detectors issue a flag to the
ESM module. It is essential to note clock frequencies failures that are within the
valid range are not detectable with this module.

S

T T frequencie& [MHz]

T
Lower threslhold Upper threshold
HFLPO_min/4 HFLPO_max*4

Figure 4.12: Low Power Oscillator Clock Detector (LPOCLKDET) module
(©Texas Instruments [10]

25

m-NLP System Firmware

Internal watchdog

The Hercules microcontroller family supports an internal watchdog timer. This
functionality is useful to reset the devices if a SEFI results in malfunction of
the software. The watchdog timer will ensure that the device restarts to resume
functionality. The watchdog implemented can be two types of a digital watch
(DWD) or digital windowed watchdog (DWWD). The difference lays in the how
often the CPU have to check back with the watchdog timer. The DWD is a single
threshold which means that only one response is required before the timeout
counter expires. After a response, the timeout count is automatically reset. In
the DWWD mode, the user has to define an upper and lower timeout threshold.
CPU has to between this time window to be counted as a valid. The DWWD
allows the user to determine the windows that are acceptable for the CPU to

respons.
Figure 13-10. Digital Windowed Watchdog Timing Example
M~ M
DWD Down e \ \'\‘-\1
Counter _\ =
100% window ' open window open window open window
50% window : Ao | pRn o | tbpdls ‘
1 [[|
25% window ! wndow I windew | window
12.5% window i (oo 2 Im
1
1
6.25% window 1 F:‘
1
3.125% window : I'q
Figure 13-11. Digital Windowed Watchdog Operation Example (25% Window)
A
0x1FFFFFF| .
Preload Register Value
DWD left shifted 13bits
Down
Counter|

Preload Register
Value left shifted

0 \ \ | .

bt
time

| 1
' ' 1 ' : 5
CPU } T ! : ! m ! Reget/NMI
1 265% bie 1 rite
access own Ha WD
to DWD m Keys

Figure 4.13: Watchdog timer module (©Texas Instruments |10]

26

57 4.6 Conclusion

4.6 Conclusion

All the primary requirement put for the Circuit were achieved. The firmware is
developed to be a command based systems that can send packages with about
SRAM pattern, Registers of TMS570, AD7768, and LTC3887. On the top of
that, a method of using the Error Signaling Module (ESM) is used as a bitflips
monitor. This method allows the detects and corrects of errors to reduces the
chance of uncorrectable double errors from occurring.

57

m-NLP System Firmware

58

o8

5 Radiation Testing of m-NLP
System at CHARM Facility

This chapter is about the test that was conducted at CHARM Facility. The
chapter lays out the technical requirements that were the need to be able to run
such a test. An automatic software to control data from the m-NLP system.
The data collected is stored into files for analysis. The software to control power
supply to log voltage and currents data into files. Finally, the data process that
needs to be done to extract the information that is needed.

5.1 Motivation and Goal

CHARM is the facility that was used for the testing m-NLP system. As mentioned
earlier it is a mix field environment with high energetic hadrons. The goal of this
chapter is to test m-NLP system in this radiation environment. It is to determine
the sensitivity and the rate of failure in such a radiation environment. The devices

that will be a part of the test are TMS570, AD7768 ,DAC and LTC3887 devices.

5.2 Background Information

Radiation environment in CHARM is discussed in the theoretical framework chap-
ter. Here we will mostly refer to the technical challenge that rises from testing
the system in CHARM facility. The length of the testing is one week. During this
period there is no physical access to the m-NLP system. The total transmission
over the cables for the power supply and data is 40 meters Figure 5.1 [14]. This
data is transferred using duplex RS-422. For this chapter, we need to develop
control software for the m-NLP and the power supply for data collection. The
m-NLP control software is tasked with two roles one for configuration the system
and the other for data collection. The configuration mode is categories into a
bootloader and run mode. The bootloader mode enables the user to upload new
firmware to the m-NLP system. The run mode is the mode where the user can

29

Radiation Testing of m-NLP System at CHARM Facility 60

change the configurations of the running board like witching powerlines or change
the packages that we need to access.

The power supply control software has the role of monitoring and collection
data on voltage and current. The monitor capability is to switch offline if the
current is higher then a defined limit by the user.

Both control software will be collecting data for a total period of two weeks.
This data is collected into a PC. The PC used is a small size client with a 250
GB data storage and the ability to connect to the internet. Teamviewer is used
to access PC remotely. It is used to monitor and introduce changes. For the
processing files, a cloud base service was used to sync the files from PC at CHARM
to a local disk at the University of Oslo.

The facility provides the data relevant to the radiation environment during
the testing period. This data includes the time stamp, fluence, and dose at the
test position.

—USB
24 GeV

Proton

] : Beam

=R yse

PC |
— 1
Power ::84'22 |40 meters
supply uplex !

200

100

Cables 40 I\Iieter

400 600 800 1000
z [em]

Control room ’ Test area

Figure 5.1: Test position at CHARM facility

5.2.1 Requirements

The Software developed for data collection and processing have to be developed
in the same language. The software development should be as flexible as reused

60

61 5.2 Background Information

by the two systems for power data collection and m-NLP. We set the following
requirements for data collection to be Table 5.1.

Table 5.1: General features for power and m-NLP data collection software for PC

Description Purpose

Command line Flexibility to reconfigurate the system

Data collection in file system All data receive has to be store in a set of files

Multiple small files Store in multiple files with a size of 100 Mb
Fast developement time features versus developement time

Auto mode automatic data collection from m-NLP
Stop auto mode Stop the auto mode in safe manner

Time stamp Data packages are timestaped by the PC

The requirement for data collection is to determine the sensitivity of the de-
vices listed in Table 5.2. The languages used to collect data will be the same to
reduces the development time. The goal of this to determine the radiation sensi-
tivity from the collected data. This is done during the data processing phase. In
this phase, we will be looking for bitflips from those we will determine the cross
section of each device.

61

Radiation Testing of m-NLP System at CHARM Facility 62

Table 5.2: Goal to determind sensitivity of the follow devices in LEO

Description

TMS570 registers
TMS570 SRAM
DAC

LTC3887 registers
LTC3887 analog

ADT768

5.3 Method

Collection and processing of data are the way of determines the hard and soft
errors that occurred in the system during the radiation test. The first one data
collection will quickly highlight the most important results. Then data processing
will tell us about the meaning of the data we have received.

5.3.1 Data collection

Data collection and control was done by two systems as see in Figure 5.2. To the
right we have a programmable power supply and m-NLP system is shown to the
right.

62

63 5.3 Method

s Y
i A
—

1

gL

PC, RS-422 and
power supply

mNLP system

Figure 5.2: To the left is the control room with a rack of PC, Moxa and power
supply. To the right is the test area showing GO position.

Power supply

Control software communicates with power supply via USB using Standard Com-
mands for Programmable Instruments (SCPI)[15, 16]. The power supply has a
role to collect data and monitoring of current and voltage to determine the SEL
of this device. The current is always monitored during the data collection pro-
cess. That is to detect a current surge in each channel. When current is greater
then the defined threshold the software sends a command to turn off the channel.
Protecting the devices from experience a SEL that damages the devices perma-
nently. As well logging the SEL to determine the sensitivity of the devices in
this environment. Since we have multiple devices on the same board, we want to
extract as much data as possible to determine the SEE for other devices.

The user can configure the upper current threshold from the command line of
the software. Its possible as well to turn off individual channels manually. Along
with this, a real-time monitoring platform was running to displaying the current
per channel. It is to enable the user to monitor the current drawn by the devices
manually. The control software was written in python scripting language with
an implementation of threading to reduces the latency between detection and
response. The response of the power supply was measured to be about 34 ms in
average for three channels.

63

Radiation Testing of m-NLP System at CHARM Facility 64
Turn off Write data
channel ["] tofile
*
No
\i
Terminate
Request time stamp Current < Write data and close
Start current and Yes-»|) .
data Max_threshold? to file file
power
A l ‘
Yes
Stop command?
No.

Figure 5.3: Data collection and monitoring using power supply software.

m-NLP system

The data collection by m-NLP control software is a bit different as here the data is
packaged based. When the software is in automatic data mode, the pc requested
packages in the following order. It is a continues loop that will stop only if the
user issues a stop command. One revolution take about 30 seconds getting all the
packages. The software does not relay on handshake to request packages but it
is done by using a thread that put in sleep mode with an interval of 30 seconds.

e SRAM for TMS570.
e Register data includes TMS570, LTC3887 and ADT7768.

e Board status data is analog data.

The SRAM data include information about time, address, values in that ad-
dress and finally the ESM registers values. In this way, we use the same data
package to run with ECC and without ECC. The ESM register is used to monitor
all the faults that have been detected by the module. The main reason why this
module is read on each SRAM address is to use it as a detection method of bitflip
when the ECC is on.

64

65 5.3 Method

The register information made of time, address and value of that address. The
data accessed is all registers available for the user in a none privileged mode in
TMS570, LTC3887, and AD7768 devices. The privileged mode is a mode where
the user is given access to all register. It is only possible when JTAG is used.
The Registers in TMS570 covers nearly all register in the devices, here we are
monitoring 3100 32 bits registers. The AD7768 and LTC3887 we are monitoring
all the registers.

Board status data is made up of the following data. Current and voltage data
helps us narrow down the area where the devices that have experienced SEL.
The readback of DAC channels helps determined the sensitivity of the DAC as
this is the only way we can detect a bitflip. As for The LTC3887 reading, the
analog value of current between the positive and negative terminals will help us
understand the consequences a bitflip has on the measured value.

e Current and Voltage from power traces.
e Four channels of DAC.

e LTC3887 measured current drawn by + /- terminals.

5.3.2 Data Processing

The data collected was a considerable amount. With a varying degree of com-
plexity to extract information about the sensitivity of each device. The total
amount of data is 47 GB for a two weeks run. This data was rearranged into
data frames to simplify data processing. The data frames were divided based on
the following data types Figure 5.4.

The power supply and board information data set were the easiest to analyze
as they contained analog measurements. The power supply was relatively easy
and was ready to be put straight into a data frame for further processing. The
Board information data were extracted from m-NLP data then rearranged into
data frames. The Challenge was in processing data from SRAM and all other
registers.

The software language chosen for this task is python with Jupyter labs as a
platform for rapid data analysis. The software is written is not a stand-alone. It
is made into modules that can be used an reused in different stages of the data
analysis. The behavior of m-NLP data is very dependent on the data of the power
supply, devices stop responding and change of firmware. each time one of those
events occurs SEU that is not extracted will is lost.

65

Radiation Testing of m-NLP System at CHARM Facility 66

v Y Y Y

SRAM Registers Board status Power —»(Plot data
supply

A

\/

Reaarange
into new
CSV file
Complex
—» . |
processing

Figure 5.4: Data types that is collected and the process of data analysis

SRAM Data Processing

The amount of data here is overwhelming. The most interesting here is the
data that has a deviation from the patter written to the SRAM. We have to
extract those deviations to be able to determine the single event upsets that have
occurred. The data extract is put into data frames. This gives us the flexibility
to rearrange and manipulating data. The descending sort the SRAM data will
allow us to extra all the data which different then the pattern into a new file
made only of bit-flips detected. The same has to be done to rearrange the data
from Ascending this time. This method helped the processing a large amount of
data for SRAM in a matter of 10 minutes.

It helps to determine the correctness of the bitflips detected. This for example
as |7, 18] said that the should a relation between the increase of the count SEU
and the fluence of that the devices have received. Another way to check using
bitflip frequency by address. The radiation interaction is random it is expected
the chance of recursing of a bitflip in same address should be low. The last one
is more of an assumption rather than a factual.

66

67

5.3 Method

SRAM data

SRAM data
CSV

Ascending
Sort by
SRAM data

Descending
Sort by
SRAM data

Bitflips
detected in
SRAM

l

Store in
CSV file

Figure 5.5: Processing method of the SRAM data. The results is file that contains
only detected bitflips

Registers Data processing

Determining whether SEU has occurred in registers are not an easy task. In
the microcontroller, the size of the registers are 32 bits, and different bits in
a single register means different configurations. In the technical datasheet|l0],
some spots of the register are reserved read-only. These reserved registers are
used by the microcontroller logic, as noticed this have a very dynamic behavior.
The way we approach this problem is by providing reference data for comparing
and detecting deviation. The reference collected data is run in the same way
as the ones run at CHARM facility. The two data-frames will be compared to
remove all the duplicates. A duplication is determined when address and values
stored is recurring multiple times. The duplicates represent the typical values in
registers that present in both cases. Same as SRAM here we are interested only
in the deviation and values which are not recurring. This method works well
for registers that are static or changing seldom. The method is not enough for
highly dynamic registers that change values regularly. After the process, we were
left with 300 registers. The only way was to manually consult the datasheet to

67

Radiation Testing of m-NLP System at CHARM Facility 68

determine the position and role of that anomalies. If the bitflip in question was
apart of the reserved bit, then data will be excluded. This process helped reduce
the data to 47 confirmed deviations from the default values. The last step in our
verification is to plot bitflips frequency by address.

Data from CHARM Refence data

L]
1
1
1
1
1
! Ref
. 1 eference
Registers . Registers
1
1
' I !
Sort by time 1 Sort by time
from Young 1 from Old to
to Old : Young
1
' - '
1
Remove 1 Remove
duplicate 1 duplicates
1
1
' I !
1
1
Ready 1 Ready
1
1
1
1
1
1
Compare |«—ij
1
1
1
1
Extract only :
unique 1
values 1
1
L]

Figure 5.6: Processing method of the Registers data. The results a file that
contains only detected few register. Those are compare personally to determine
whether it is a bit flip or not

5.4 Results

The results will be categories based on device. We will comment on each category
and the significance of the key results. After analysis we found out that all the bit

68

69 5.4 Results

flips detected on all devices where of SBU. The test was running for two weeks. We
achieved all the requirements set. During the test period, we experienced seven
functional interrupts. The m-NLP system stopped responding to the commands.
Three of them caused the system to reset. To determine the reason of reset we
check register that preserves their values even after reset. Those registers are
known as shadow registers. The ESM module has such a register. Checking the
value of the shadow register, we determined that the cause of the three resets is
dual lock CPU.

5.4.1 Current and Voltage measured

The systems were running in two weeks no SEL where detected current spikes to
indicate. The Figure 5.7 shows the times when we turn off and on corresponding.
The significant data gaps in power data are due to the automatic sync with a
cloud solution. This cause some files to be written. The main reason for that a
combination of files name management by the python software and the behavior
of Dropbox. The event file that was tasked to log events that exceed the defined
current threshold was not affected. During the two weeks of testing no SEL where
detected. This corresponds with the finding of Jano [13]. It is important to keep
in mind that this is true for this LOT number of COTS.

69

Radiation Testing of m-NLP System at CHARM Facility

70

Power supply

Current [A]

=
[=]
L

=

W

[—

May 25 May 27 May 29
2018

=
5]
i

Al

[o R

May 31

ot
t

=
m

Jun 2

ﬂfv — | _TMS570
—_ TMS570
A
=1
3 -
=
. B
=
1
0
Jun4d

Figure 5.7: Current and voltage measured from power supply fo m-NLP system

5.4.2 Board status

The board status two figures Figure 5.8 and Figure 5.9 show that no effect on
the DAC and internal ADC of Hercules. The values got in two weeks test are as

expected.

70

71 5.4 Results

Board Status Overview

10
W‘W-’m"m

s 025
Z, at
: T =
2 :
5 015 O
— g
o =
= -5 0.1 [§]
0.05

—j -
Fr e - T e e —— -]

May 25 May 27 May 29 May 31 Jun 2 Jund Jun®
2018

Date and time

— PSVO(V) -——— P3V3(V) —— PSVO(A) =— P3V3{A) -— P12V(V), — P12V(A4)
— N12W{A) —— P1V2(A) =——— EGUN(A) — N12V{V)

Figure 5.8: Board status of voltage and current for power traces

71

Radiation Testing of m-NLP System at CHARM Facility

72

Voltage [V]

-

Board Status Overview

May 25 May 27 May 29 May 31 Jun2 Jun4
2018

nd time

Date

il
A T]

— DACI(V) DACZ(V) = DAC3(V) = DACLV)

Figure 5.9: Board status DAC voltage read back

72

Jun &

73 5.4 Results

5.4.3 SRAM

The SRAM data is made of data collected from ECC on and ECC off modes. One
exciting fact when the ECC is on we found out that the ESM module could be
used as a built-in radiation detector Figure 5.10. The data collected for SRAM
was only from the last week. The second week had less fluence than the first.
The reason lays in technical difficulties faced during the testing period. When
disabling the ECC in HALCOGEN;, it merely means function call to initiate ECC
is removed. This works when one firmware is running. When adding a bootloader
that initiates ECC the same configurations are passed to running firmware. A
work around this is by calling the assembly method to disable ECC.

Nevent 103 cm?
= ovemt =1.03x 1073 =—"—49.85 5.1
7T F x Bits _ 0.8944 x 10° x 1.12 x 106 % bit % (5.1)

SEU count against fluence

&0 l ® ECCon
> o ECCoff

Number of SEU

Fluence[HeH fem?] x 10°

Figure 5.10: SRAM counted single event upset for ECC on and off

ECC ON

The frequency ESM flag raised in Figure 5.11 are all for the SRAM. The module
that determines the correctness of the value stored in the register divided 32 bits

73

Radiation Testing of m-NLP System at CHARM Facility 74

values into 2. Even and odd bytes these flags represent that division. We have
no comment on why one flag is raised more often than the other.

The Figure 5.12 show the flag detection by address. All addresses are displayed
as unique, but only one of them that has three flags raised to ESM that is since we
read some SRAM values that are not scrubbed and the ESM flag is not cleared.
The flag is cleared " -on after the first address and last time after the end address
of stored pattern. In general, when analyzing data from ESM we see we see that
the data is indeed is corrected back to correspondent address. To do so, one has
to write back the same flag to the ESM module which triggers a mechanism that
writes the correct value back into SRAM address.

Nevent 63 _13 Cm2
= = =121 x107"°—— £ 125 5.2
7= F x Bits _ 0464 x 10° x 1.12 x 109 . bit % (5:2)
ESM flag frequency

Event frequency

(=]

L=

0:x10000000

Esm flag

Figure 5.11: TMS570 ECC on Frequency of ESM flag

74

75 5.4 Results

SRAM Address frequency

3 B ECC
&
c 2
w
=5
o
W
e
[t
4
c
g
o i
0
oo ooOooooOoOoooOoOooODoDoOoOoDooooooOoooODoooooD o0
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Do DO OO DO OO OO DO OO DO OO OO0 0O OO OO0 0O OO 0O OO OO 0O OO0 0O OO OO OO 0O 0O OO OO OO 00 OO 0O 0O 0O o
CoooCooooooCoCoooooooooooooooooDoDooCooDD o0
SRR — = — I — = — I — = i — i — i — [— e =R xE]]
—rr\.lr\.lLu.b-mmmmLDmEEUnn_rumnmmmmﬁﬁ.ﬂ-mmﬂmmljmn—i—tm
R R T R e B el o = e
SEmhkmooo @S Enm®@an mnmmmgnmmnnmmnanan o3 oa
Address
Figure 5.12: SRAM with ECC on frequency of bitflips per address

The ECC off bit flips appeared by address is unique as expect Figure 5.13. The
pattern chosen to write to the SRAM was unfortunate we could have chosen a
pattern like checkerboards which will help determine whether SRAM is easier to
bitflip to 0 or 1. That depends on the configuration of the pull-up and down
transistors in the cell.

Nevent 40 =y ch
O Fx Bits 0439 x 100 x 112 x 108~ 032X 107 g £15.8% - (5.3)

75

76

Radiation Testing of m-NLP System at CHARM Facility

SRAM Address frequency

W NoECC

Aduanbau) Juaal

0=B0177d0
0=B01521c
0=BO05208
0=BO00C253
0=B0163d0
0«BOT06TE
0xB0231e0
0xB071b4dn
0=BO078dC
0xBO0CS 14
A
0=BO009b44 @i
e
oxmoimbamww
=T
0=801364cC
0=B021d40
0=B071d18c
0=B001d4c
0=BO003214
0=B00abce
0xB022d38
0=B023044
0xBO0B210

0xB022db0

Figure 5.13: SRAM with ECC off frequency of bitflips per address

76

5.4 Results

Event frequency

Bit flip patterns frequency

Jh;'rg -h{,? 41'.;9 -h{,? 41'.;9 4’,{9_ -hq9 . 4&{9_ -{’.79 . *‘3’9 -h;? . Jh-;s, -l’q?
& & (3 0 % %c‘ ¥ Se & ¥ & g
= O, L79)) : & ;55‘ & S‘ﬂ n

Bit flip pattern

Figure 5.14: SRAM bitflip pattern

7

Radiation Testing of m-NLP System at CHARM Facility 78

5.4.4 TMS570 registers

The SEU upset was reduced to the total shown in Figure 5.15. We have three
addresses that appear to have a frequency of two times. A possibility for bitflip
to occur in same address is quite low. We choose to disqualify those three values
from the cross-section. That reduces the number of SEU to 45.

Nevent 45 _ucm?
= = =116 x 107" —— £ 149 5.4
77 Fx Bits _ 39.08 x 10° x 9.92 x 104 8 bit % (54
SEU count against fluence
50 ® TMS570reg
..
" g
40 . ..
2 g
8 . o
hc 7
E 20 P o
E - []
; "y
0 []
|
. L]

0 10 20 30 40

Fluence[HeH em?] x 10°

Figure 5.15: TMS570 counted single event upset in registers

78

79 5.4 Results

TMS570 registers Address frequency

[on]

Number of events

%0
%D
®D
%0
X0
®D
XD
*0
%D
®D
%0

YRIIAD
®D
XD
*0
%D
®D
%0
%0
®D
®D
*0
X0

I =
T 2 2 A4 4 4 & 4 R " 3 3 3 F 33 e oz gz O3
m =2 B O 5] o = = = = == o o o o 5 o o O
| = = Ln [ml =5] £ (=] == = = = = = I 2 B = = =
= g g = = = 2 07 3 B~ = R 7= o= ks B

Addresses

Figure 5.16: TMS570 number of single event upset in registers

5.4.5 LTC3887 registers and board status

This here we had some exciting effect observed in the LTC3887. In the radiation
test, the devices values start alternating dramatically. This can be seen in the
values in the frequency of events by address Figure 5.17. This is as well the case
when looking at Figure 5.17 and Figure 5.18 the analog values read in this state
does not make any sense. The system was recovered to it normal operation only
after a rest was issued. The Figure 5.18 shows the current measured by LTC3887
is in the range of 60 A. This value is not corrent. It is clear when checking
the total current consumption by the Egun circuitry that everything is usual.
The explanation for this two events is that they occurred at the same times the
registers start alternating dramatically.

N.vent 64 _pcm?
_ _ 161 x 10729 4105 5.5
7T Fx Bits _ 41.89 x 109 x 944 % bit % (5:5)

79

Radiation Testing of m-NLP System at CHARM Facility 80
SEU count against fluence
.
&0 'l ® LTC3287reg
50 ‘
> A
= . e
U 40 f'
S .o !
g 20 :
il
5 20
z
10
0
0 10 20 30 40
Fluence[HeH fem?] x 10°
Figure 5.17: LTC3887 counted single event upset in registers
Board Status Overview
60 —— EGUN(A)
— LTC)
50
£ w
iE
o
v 30

_,

(

20

May 25 May 27 May 29 May 31 Jun2 Jun 4 Jun &
20

Date and tims

Figure 5.18: Board status LTC3887 current drawn

80

5.4 Results

81

LTC3887 registers Address frequency

sjUuana JO daquunp

0=fa
D=6
0=f5
Dl
0=d
0=hb2
O=ie
0=7c
0=A65
0=64
0=h2
0x61
0=60
0=5d
0=58
0=56
0=55
0x54
0=53
0=50
D
0=4a
046
045
IEE)
0=43
0=42
0=
0=40
0=38
0=37
0=36
0=35
0=33
0=27
0=26
0=25

Addresses

Figure 5.19: LTC3887 number of Single event upsets by address

81

Radiation Testing of m-NLP System at CHARM Facility 82

5.4.6 ADT768 registers

The AD7768 ADC showed very little an over all small sensitivity to radiation.
Three bit-flips on the first and the three on the second week. This test does not
include analog data output from the ADC.

. Nevent . 4
77T F x Bits _ 4.00 x 10° x 256

2
=477 x 1072 £ 50.0% (5.6)
bit

SEU count against fluence

- - ® ADTT68 register

Number of SEU
[]

ra
.

0 1 2 3 4

Fluence[HeH em?] x 10°

Figure 5.20: AD7768 counted single event upset in registers

82

83 5.5 Discussion

AD7768 registers Address frequency

Number of events

w21

Addresses

Figure 5.21: AD7768 number of Single event upsets by address

5.5 Discussion

Most of the targets that were set for this chapter were achieved. Along the way,
some technical difficulties occurred during testing one related to the SRAM and
other cloud base synchronization. The technical difficulties associated with the
firmware is related turning the ECC on and off. In the first run we tough that
the ECC was off, but after some hours of running, we found that no bit-flips
where detected. After some examining we realized that it is a combination how
of HALCOGEN and boot-loader behaves, this causes a wrong configuration of
the error detection and correction module.

ADT7768

We tested the digital part of the AD7768 ADC. The cross-section data we got is
for bitflips in the control registers of the device. We did not collect data from the
analog part of the device. To be sure about the sensitivity of the analog device
one need to test the analog data output|17]. We had a limited amount of SRAM
memory to be able to buffer data from ADC and test SRAM. The decision was
made to prioritize the SRAM sensitivity over the data received from ADT7768.

83

Radiation Testing of m-NLP System at CHARM Facility 84

The choice was made as well since we had no idea on how sensitive the SRAM
is to the radiation and how often we would detect bitflips. Testing both SRAM
and AD7768 could prove to be hard as we would be able to say for sure where
the bitflip has occurred. In future one could use Error Detection And Correction
(EDAC) present in the Hercules microcontroller increase the reliability of SRAM.
In that way, one can use the analog output of AD7768 with the knowledge that
bitflips occurring in the TMS570 RAM are detected and correct.

LTC3887

The LTC3887 has experienced two SEFT it proven to be useful to check the analog
values. This showed clearly that the device needed to be reset. Its necessary to
add some monitoring function that can detect that the device is not functioning
as expected. This can be used by monitoring the values of the analog circuitry.

SRAM

The SRAM pattern chosen was random. This pattern has more zeros than ones.
The rule of thumb for testing SRAM is using a checkerboard pattern|s, 18]. This
pattern consists of an alternating between Os and 1s written to the memory. In
general the SRAM data it shows that one can use ESM circuit as a detector for
radiation. The same method can be used on flight as on board radiation detection
unit.

We have no explaination about difference between the counted SEU for ECC
on and off. The firmware used was ECC on where we have a small methods that
disables the ECC functionality. We could not find an explaination on why such
difference has occured.

SEL

No SEL was detected in the mix field environment. Devices that show SEL
sensitivity is deemed unacceptable for space mission [18]. From the perspective
of indirectly ionizing particles, O’Neill shows that probability of SEL is very low
in short time missions [19]. However, since we tested in CHARM, we do not
know the sensitivity of the devices to heavy particles is. One of the drawbacks
of testing in CHARM is the temperature cycling in LEO cannot be simulated
during the testing phase. The SEL is very depend on temperature [50].

Comparison with other Microctrollers

The data comparison with other complex devices from litterature. We could not
find spesific values for registers.

84

85 5.6 Conclusion

Table 5.3: Data from literature for SEU and SEL

Devices SEU SRAM SEU Registers SEL
TMS570 1.03 x 107139.85% 1.16 x 1071214.9% None
LTC3887 - 1.61 x 107*212.5% None
ADT7768 - 4.77 x 1071250% None ’
MSP320[51] 1 x 10712 - None
TMS570*%[51] 1 x 1072 - None

5.5.1 Future Work

Heavy ions testing of the circuit is required to determine the sensitivity. Quinn
tested the TMS570 Hercules with heavy ions, and the results found that the
device is not sensitive to SEL[51]. The LET used was up to 60 MeV x % . Even
though the test detected no SEL it s important to keep in mind that this is true
for tested batch [|. Changed by the produces can happen without notifying the
users this may cause the device to become sensitive. Texas Instruments changed
TMS570 from 130 nm node to 65nm in 2011[52|. To be able to test the device
one need to remove the package to expose the die. The same test has to be done
for LTC3887 and AD7768.

ADT7768 have to undergo another test where the testing the analog and regis-
ters.

5.6 Conclusion

The devices tested at the CHARM facility show an acceptable amount of bitflips.
The SRAM of the TMS570 has the larges value of 103 Single Event Upset (SEU) in
one week. We have shown in the chapter that this can be corrected using software
methods with Error Signaling Module (ESM) to ensure that no accumulations
of errors will result in uncorrectable errors. In the case of the registers in all
three devices, needs to implement periodic reconfigurations to write over any
errors. Regarding Single Event Latchup (SEL) none where detected in hadrons
environment. That can not be said about heavy ions. One need to decapped all
the three devices to be able to test in a SEL heavy ion sensitivity.

85

Radiation Testing of m-NLP System at CHARM Facility

86

86

6 Conclusion

The results from the decapping process were promising but were restricted by the
control ability of variables during the experiment. The tools used were mostly
basic to do the process of decapping. This method requires sacrificing a good
amount of devices before getting function device. It is necessary to expose the
die to be able to do any form for heavy ions or laser testing. In the future, one
should explore the use of a computer numerical control (CNC) laser to do the
decapping process.

All the primary requirement put for the Circuit were achieved. The firmware
is developed to be a command based systems that can send packages with about
SRAM pattern, Registers of TMS570, AD7768, and LTC3887. On the top of
that, a method of using the Error Signaling Module (ESM) is used as a bitflips
monitor. This method allows the detects and corrects of errors to reduces the
chance of uncorrectable double errors from occurring.

The devices tested at the CHARM facility show an acceptable amount of
bitflips. The SRAM of the TMS570 has the larges value of 103 Single Event
Upset (SEU) in one week. We have shown in the chapter that this can be corrected
using software methods with Error Signaling Module (ESM) to ensure that no
accumulations of errors will result in uncorrectable errors. In the case of the
registers in all three devices, needs to implement periodic reconfigurations to write
over any errors. Regarding Single Event Latchup (SEL) none where detected in
hadrons environment. That can not be said about heavy ions. One need to
decapped all the three devices to be able to test in a SEL heavy ion sensitivity.

87

Conclusion

88

88

Appendices

89

A SPENVIS Spacecraft Trajec-
tory

The trajectory is based on NORSAT-1 LEO orbit[21]. The mission duration is 1
year.

Table A.1: Spacecraft craft trajectory configuration in SPENVIS

Trajectory duration 30 days

Perige Altitude [km]| 584

Apogee altitude [km] 607
Inclination [deg] 90.0

R.asc of asc. node [deg w.r.t. gammab0] 108.4140
Argument of perigee [deg] 67.8160

True anomaly|deg| 292.4826

91

SPENVIS Spacecraft Trajectory

92

92

B m-NLP System Firmware

B.1 Command Line Interface

1 /=

2 * Commandline.h

3 *

4 * Created on: Sep 21, 2017

5 % Author: Yassine Elfarri
6 */

7

& #ifndef INC_COMMANDLINE H_
9 #define INC_COMMANDLINE H_

"

11 #include "sys common.h"

13 #define True ’'1°
14 /+% @Qdef True

15 * @brief Alias name for 1
16 %/
17

18 #define False 0’
19 /+xx @def False

20 * @brief Alias name for 0
21 x/
22
24
25 #define CR ’\r’
26 /xx @def CR
27 @brief Alias name for Carriage return
28 x/
29 #define LF ’\n’
/** @def LF
* @brief Alias name for Line feed
* /
#define BS ’\x8’
/** @def BS
* @brief Alias name for Backspace
%/
| A e 4 Help menu "?7"
41 enum cmd commands
42 { -
43 SCI_HELP, /+!< corresponded to Help menux/
44 ENABLE_RAILS, /*!< Enabling rails 0 turning of all off and 7 is oppositex/
45 IVMeasur, /*!< Read Current and Voltage values on enabled railsx/
46 DAC_SPI_ config,
47 DAC_Gain_SEL_EN,
48 DAC _Status,
49 ANT DTC_ RLS config,
50 LTC_ON_OFF,
LTC_Write,
LTC_Read,
LTC_tempature,
5¢ LTC 1,
55 LTC_Readback,
56 LTC_get_V,
57 LTC_set_voltage,

93

m-NLP System Firmware

94

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

94

96
97
98
99
100

DU W N

= O © 0

12

b

#define lastcmd

AD7768 _hetstart ,
AD7768 hetstop,
AD7768 _read_regs,
AD7768 _write_reg,
AD7768 setMCLK,
AD7768 setDCLK,
AD7768 DRate,

AD7768 setfilter ,
AD7768 start,

ADT7768 reset,

ADT7768 getregs,
AD7768 print_settings,
AD7768 print_samples,
TMS570_reg_addr,
TMS570_ SRAM,
TMS570_Status,
TMS570_samples,

SCI_RESET, /x!< Soft reset !NB reset only

SCI_RESET

typedef struct{

}CLI

unsigned char cmd_no;
const char xcommand;
const char *usage;

const char *xdescription;
Menu;

#define ltc_chO 0

void

wait (uint32 time);

void SCINewline(uint32 numOflines) ;

int

int

void
void
void
void
void
void
void
void
void
void
void
int

SendStringSCI(char data[100],

int Newline

SendRawSCI(int data, int Newline);

SciEndCmd () ;
SciSendACK (uint8 ack);
ScilnvalidCmd () ;
ScilnvalidArgs () ;
SciTooManyargs () ;
start _info () ;
get _HWinfo (void) ;
executeCmd (int c¢cmdNum, char
init ();
Parsing () ;
putChar (char c);
toupper (int c);

#endif /+ INC_COMMANDLINE H x/

~

¥ Ok K X ¥ * ¥

R A N

*
/

* /
#inc
#inc
#inc
#inc
#inc
#inc
#inc
#inc
#inc
#inc

Commandline. c

Created on:
Author :

Sep 21, 2017
Yassine Elfarri

@Qbrief
Q@date 21—Sep—2017
@version 01.06.0

* This file contains:
— Initializing need drivers

argl [7] ,char

uart command line file

— uart commandline menu and parsing

This file is for commandline

lude "system .h"
lude "reg_ system.h"
lude "stdio.h"

lude "sci.h"

lude "reg sci.h"
lude "string.h"

lude "Commandline.h"

lude "SysBoard.h"
lude "adc.h"
lude "Sysboard.h"

behavor .

94

squential logicx*/

)5

arg2[7],char

arg3 [7]);

95 B.1 Command Line Interface

29 #include "i2c.h"
30 #include "spi.h"

31

32

33

34 /+x Q@typedef CmdTable]

35 * @brief containt command values, string and description

36 x/

37 CLIMenu const CmdTable[] = {

38 {SCI_HELP , "7 , "=", "Available command list."},

39 {ENABLE_RAILS , "ENA512", "1", "<0-7> Enable/disable P5V,DCDC12V,P5V EGUN"},

40 {IVMeasur VAL , "=", "Voltage and current measurements"},

41 {DAC_SPI_config , "DACC" , "3", "<Channel>,<Mode>,<Voltage> value"},

42 {DAC_Gain_SEL_EN , "DACSE" , "1", "<0—3>Enable gain and select G10/20"},

43 {DAC_Status , "DACST" , "—", "Return value of select and Enable values"},

44 {ANT_DTC_RLS_ config , "ANT" , "1", "<0-3>Antenna Realse and detect"},

45 {LTC_ON_OFF , "LTCON" , "1", "<0—1>Turn on/off ltc"},

46 {LTC_Write , "LTCW" , "=", "Write to LTC via I2C"},

47 {LTC_Read , "LTCR" , "=", "Read from LTC via I2C"},

48 {LTC_tempature , "LTCT" , "=", "Read from LTC internal temperature"},

49 {LTC_I , "LTCI" , "=", "Read from LTC output current"},

50 {LTC_Readback , "LTCRB" , "—", "Readback config regs"},

51 {LTC:get7V , "LTCGV" , "—", "Get output voltage"},

52 {LTC_set_ voltage , "LTCSV" , "1", "<1-3k>set output milivolt"},

53 {AD7768 hetstart , "ADSTA" , "—", "Start HET"},

54 {AD7768 hetstop , "ADSTP" , "—-", "Stop HET"},

55 {AD7768 read_regs , "ADR" , "1", "<reg addr> Read from register for AD"},

56 {AD7768_write_reg , "ADW" , "2", "<reg addr><value>write to register for AD"},

57 {AD7768_setMCLK , "ADMCK" , "1", "<32—8-4>Set MCLK division for AD"},

58 {AD7768_setDCLK , "ADDCK" , "1", "<8-4—2> Set DCLK division for AD"},

59 {AD7768 _DRate , "ADDRA" , "1", "<32—-64—128—-256—512—1024> set Drate for AD"},

60 {AD7768 setfilter , "ADSTF" , "1", "<O=wide—1l=sinc5>Set filter for AD"},

61 {AD7768 start , "ADST" , "—", "Start AD7768"},

62 {AD7768 reset , "ADRST" , "—", "Reset AD7768"},

63 {AD7768 getregs , "ADGRS" , "—", "Read all readable reg from AD"},

64 {AD7768_print_settings , "ADCON" , "—", "values for MCLK_DIV, fmod,decRate, ODC, and DCLK "
s

65 {AD7768 print_samples , "ADC" , "=", "<number of samples> print number of samples"},

66 {TMS570 reg addr , "REG" , "=", "print all registers and address"},

67 {TM55707§RA1\Z , "SRAM" , "=", "Request SRAM values"},

68 {TMS570_Status o MET , "—=", "Request SRAM values"},

69 {TMS570 samples , "SAM" , "—=", "Request SRAM values"},

70 {SCI_RESET , "RESET" , "—", "Cold reboot"}

(AN

72

73 uint8 CommandEntered =0; // indicates where to reformating the received command

74 char PromptChar[50]; // stored SCI RX value

75

76

77 /x*x @fn void Parsing ()

78 % @brief Function for reformating received chars from command line used in main

79 *

80 x* User can add arguments in this function as well.

81 *

82 x/

83 void Parsing ()

84 {

85 uint8 x,y;

86 char cmdData[20];

87 int cmdvalue;

88 int SWCaseVal=0;

89

90 char argsl[7] = {0};

91 char args2[7] = {0};

92 char args3[7] = {0};

93

94

95

96 if (CommandEntered == 1)

97 {

98

99 //save the first section of command

100 for (x=0; x<50;x++)

101 {

102 if (PromptChar[x] != 0

103 cmdData [x]= PromptChar|[x];

104 }

105 else

106

107 while (x<50)

108

109 if (PromptChar[x] != 0)

110 {

95

m-NLP System Firmware

96

129

146
148

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170

switch (SWCaseVal)
{

ease 1
if(y < sizeof(argsl)—1){
argsl[y] = PromptChar[x];

else

SciSendACK (2) ;
ScilnvalidArgs () ;
goto exit;

break ;

case 2:
if(y < sizeof(args2—1)){
args2[y] = PromptChar[x];}
else
{
SciSendACK (2) ;
ScilnvalidArgs () ;
goto exit;
}

break ;

case 3:
if(y < sizeof(args3—1)){
args3[y|] = PromptChar|[x];}

else

{

SciSendACK (2) ;
ScilnvalidArgs () ;
goto exit;

break;
// more args can be added here
}
y++;

else
{

y=0;

if (SWCaseVal <4){

SWCaseVal++;}
}

x++;

for (y=0; y <= lastcmd ;y++)

if (strcmp (CmdTable[y].command,cmdData) == 0)

cmdvalue=CmdTable[y].cmd_noj;
executeCmd (cmdvalue , argsl ,args2 ,args3);
goto exit;

}
if (strlen ((charx)PromptChar) != 0)
{
SciSendACK (2) ;
ScilnvalidCmd () ;
}

exit :

// clear strings
for (x=0; x<sizeof (PromptChar) ;x++)

PromptChar[x] = 0;

}

for (x=0; x<=sizeof (cmdData) ;x++)
{

96

97 B.1 Command Line Interface

194 cmdData[x]=0;

195

196 for (x=0; x<=sizeof (argsl); x++)
197

198 argsl [x]=
199 args2 [x]|=
200 args3 [x]|=
201 }

202 y=0;

203 x=0;

204 SWCaseVal =0;

206 SCINewline (1) ;
207 CommandEntered = 0;

217 /%% @Qfn void putChar(char c)
* @brief This function is used by sci interrupt to add single char to array of chars.

219 * @param|[in] ¢ receives a single char

220 *

221 * This method does not need to be changed by the user. This function does trigger as well

on carried return and backspace.

222 x

223 x/

224

225 void putChar(char c)

226

227 static volatile int 1i;
228

if (i == 49)
while (i > —1)

PromptChar[i——] = 0;

}

sciSend (scilinREG , 2,(unsigned char *)&"\r\n");
while (!scilsTxReady (scilinREG));

else if(c == ’\x8’)
if (i = 0){PromptChar[i] = 0;}
else {

PromptChar[i] = 0;
PromptChar[i —1]=0;

—i

sciSend (scilinREG, 1,(unsigned char *)&"\x8");
while (!scilsTxReady (scilinREG));

sciSend (scilinREG , 1,(unsigned char *)&" ");
while (!scilsTxReady (scilinREG));

sciSend (scilinREG , 1,(unsigned char *)&"\x8");
while (!scilsTxReady (scilinREG));

}
else if(c = ’\r’)
PromptChar[i] = 0;
// start register value
CommandEntered = 1;
sciSend (scilinREG , 1,(unsigned char *)&" ");
while (!scilsTxReady (scilinREG));
sciSend (scilinREG, 1,(unsigned char *)&"\x8");
i=0;
}
else if(c == ’\x20’)
PromptChar[i++] = 0;
sciSend (scilinREG , 1,(unsigned char *)&" ");
while (!scilsTxReady (scilinREG));
}

97

m-NLP System Firmware

277 else {

278 PromptChar[i] = toupper(c);

279 sciSend (scilinREG ,1,(unsigned char =)&PromptChar|[i++]);
280 while (!scilsTxReady (scilinREG));

281 }

283 //wait (30) ;
284 while (!scilsTxReady (scilinREG));

*
*

@fn void executeCmd(int cmdNum, char argl|[],char arg2][])
@brief this function executes command modes

@param|[in] type int value passed by parsing() to select meny
@param |[in]| first argument of type char passed by parsing()
@param |[in]| second argument of type char passed by parsing()

N
©
e

The is already implemented to received values from parsing function. Here the user can
add more menu values

296 *

207 x/

299 void executeCmd(int cmdNum, char argl|[],char arg2][],char arg3][])
300 {

301 char tempChar[100]={0};

302 int x;

304 for (x=0; x<sizeof (PromptChar) ;x++)
{

306 PromptChar[x] = 0;

309 switch (cmdNum)

311 case SCI_HELP:

313 if (argl[0]!= 0 || arg2[0]!= 0)
{

315 SciSendACK (2) ;
316 //SciTooManyargs () ;
317 //goto Error;

320 SciSendACK (1) ;
321 for (x=0;x<=lastcmd ; x++)
322 {
323 snprintf (tempChar, sizeof (tempChar) ," %9s %b5s Tos "
324 ,CmdTable[x | . command, CmdTable[x] .
usage ,
CmdTable[x]. description);
while (!scilsTxReady (scilinREG));
SendStringSCI (tempChar, True) ;

}

break ;

case ENABLE RAILS:
cmd _enable rails(atoi(argl), atoi(arg2));
break ;

case IVMeasur:
cmd_IV_measur(atoi(argl),atoi(arg2));
break ;

case DAC_SPI_config:
cmd_DAC_SPI_config(atoi(argl), atoi(arg2),atoi(arg3));

break;
346
347
348 case DAC_Gain_SEL_EN:
349 cmd DAC_ Gain_Sel EN(atoi(argl),atoi(arg2));
350 break; -
351

case DAC_Status:
cnd_DAC_GAIN_SET_STATUS(atoi(argl), atoi(arg2));
break ;

case ANT_DTC_RLS_ config:

98

99 B.1 Command Line Interface

cmd_ Antenna_RLS_DTCT (atoi(argl) ,atoi(arg2));
break ;
case LTC_ON_OFF:
cmd 1tc3887 turn_on_ off channel(atoi(argl));
break ; - - -
case LTC_ Write:
if (atoi(argl) =— || atoi(arg2) == 0)

SciSendACK (2) ;

SendStringSCI("Not implemented" ,True) ;
break ;

case LTC_Read:

if (atoi(argl) =— || atoi(arg2) == 0)
{
SciSendACK (2) ;

SendStringSCI("Not implemented" ,True) ;
break;

T3

QUL WN -

-~

case LTC_tempature:
cmd_1tc3887 Read internal Temperature(atoi(argl),atoi(arg2));
break ;

SRS

case LTC_I:
cmd 1tc3887 output current(atoi(argl),atoi(arg2));
break ; - -
case LTC_Readback:
cmd_1tc3887 _read_config () ;
break ;
case LTC_get_V:
cmd_1tc3887 _Read_output_voltage(atoi(argl),atoi(arg2));
break ;
case LTC_set_voltage:
cmd_1tc3887 _set_output_voltage(atoi(argl) ,0);
break;

case ADT7768 hetstart:
start _het () ;
break ;
case AD7768 hetstop:
stop het () ;
break ;
case ADT7768 read regs:
cmd AD7768 GET REG((uint8)atoi(argl));
break ; - -
case ADT7768_ write_reg:
cmd_AD7768_SET_REG ((uint8)atoi(argl) ,(uint8)atoi(arg2));
break ;
case ADT7768_ setMCLK:
cmd_AD7768 _SET_MCLK_div(atoi(argl));
break;
case AD7768_setDCLK:
cmd_AD7768 SET_DCLK_div(atoi(argl));
break ;
case AD7768 DRate:
cmd _AD7768 SET DRATE(atoi(argl));
break ; - -
case ADT7768 setfilter:
cmd AD7768 SET FILTER(atoi(argl));
break ; - -
case AD7768 start:
cmd_AD7768_run() ;
break;
case ADT7768 reset:
cmd_AD7768 _stop () ;
break ;
case ADT7768 getregs:
cmd_AD7768 _GET _ AllConfigs () ;
break ;
case AD7768_ print_settings:
ad7768 print_settings () ;
break ;
case AD7768 print_samples:
cmd AD7768 print Data() ;
break ; - -
case TMS570_ reg addr:
reg data cmd () ;
break;

case TMS570 SRAM:
RAM _data_read () ;
break ;

case TMS570_Status:

99

m-NLP System Firmware 100

440 raw _board_status () ;

441 dac_status () ;

442 break;

443

444 case TMS570 samples:

445 N

446 raw_board_status();

447 dac_status () ;

448 reg_data_cmd () ;

449 wait (200) ;

450 RAM _data_read () ;

451 wait (200) ;

452 //cmd_AD7768 print_Data () ;

453 //wait (100) ;

454 break ;

455

456 case SCI_RESET:

457 if (argl[O]!= 0 || arg2[0]!= 0)

458 {

459 SciSendACK (2) ;

460 //SciTooManyargs () ;

461 //goto Error;

462 }

463 SciSendACK (1) ;

464 while (!scilsTxReady (scilinREG));

465 SendStringSCI (" Restarting .. " ,True) ;

466 wait (3000) ;

467 systemREG1—>SYSECR = (0x10) << 14;

468

469 break ;

470

471 VX To add new arguments you need to add a new switch case:
472 * — First define value in Commandline.h e.g SCI_HELP
473 * — Add line to CmdTable|[] in Commandline.c

474 * — add argument in function Parsing() under switch (SWCaseVal)
475 * — Still in parsing() increase value in if (SWCaseVal < value)
476 «/

477

478}

479

480 //Error:
481 //SciEndCmd () ;

485 /xx @fn void init ()

486 = @brief add modules that needs to be initiated to this function
487 *

488 *

489 x This function is the first function to be run during startup/rest of mcu
490 =

491 =/

492

493 void init ()

494

495 /*Initialize scix/

496 scilnit ();

497 /*Enable SCI interrupts*/

498 sciEnableNotification (scilinREG , SCI_TX INT);
499 giolnit () ;

500 hetInit ();

501 stop_het () ;

502 canlnit () ;

503 spilnit () ;

504

505 /*internal ADCsx/

506 adcInit ();

507 adcResetFiFo (adcREG1, adcGROUP1) ;

508 adcStartConversion (adcREG1l, adcGROUP1) ;
509

510 /*12C 1tc3887 digital switcherx*/

511 i2cInit ();

512 i2cSetBaudrate (i2cREG1, 100);

513 i2cSetMode (i2cREG1, 12C_MASTER) ;

514

515 /*Turn on the railssx*/

516 P5V0_EN_PIN On;

517 DCDC12V_EN_PIN On;

518 P5V0_EGUN_EN_PIN_On;

519 wait (1000);

520

521 ad7768 init () ;

522 /*Enable interruptx/

100

101

B.1 Command Line Interface

523 _enable_IRQ() ;
524
525 /+*Enable SCI interrupt*/

sciEnableNotification (scilinREG, SCI_RX INT);
/*Config LTC3887x/

1tc3887 init () ;

1tc3887 turn_on_off channel (0,true);
start het ();

RAMtest _init () ;

start _info () ;
esm _monitor () ;

void wait(uint32 time)

while (time——);

/x% @fn void SCINewline(int newline)

* @brief simplify the use of uart by packing it
* @param [in] data[] is char value that will be send
* @param [in] newline True will result in newline
*
* @return returns 1 if function is successful
*
* simplifies the use of uart example user needs only
)
560 =
561 */
562
563 void SCINewline(uint32 numOflines)
564
565 while (numOflines ——){
566 // wait for Tx buffer to be ready
567 while (!scilsTxReady (scilinREG));
568 sciSend (scilinREG , 2,(unsigned char *)&"\r\n");
569 i
570
571 }
572
573 /*x* @Qfn int SendStringSCI(char data|[, int Newline)
574 *
575 * @brief simplify the use of uart by packing it
576 * @param [in] data[] is char value that will be sent
577 * @param [in] newline True will result in newline in
578 *
579 * Qreturn returns 1 if function is successful
580 *
581 % simplifies the use of uart example user needs only
)
*
* True indicate starting a newline.
*/
int SendStringSCI(char data[], int Newline)
{
uint32 i;
uint32 size ;
size = strlen (data);
for(i = 0; i <size; 4+i)
while (!scilsTxReady (scilinREG));

sciSend (scilinREG ,1, (unsigned char

}

if (Newline

True)

while (!scilsTxReady (scilinREG));

sciSend (scilinREG , 2,(unsigned char *)&"\r\n");

101

in function

in terminal.

SendStringSCI(" This is a string",True

in function

terminal.

SendStringSCI (" This is a string",True

*) &data[i]);

m-NLP System Firmware 102

604

605 return 1;

606 }

607

608 int SendRawSCI(int data, int Newline)
609 {

610

611 while (!scilsTxReady (scilinREG));
612 sciSend (scilinREG ,4 ,(uint8 *)&data) ;
613

614 if (Newline == True)

615 {

616 while (!scilsTxReady (scilinREG));
617 sciSend (scilinREG, 2,(unsigned char *)&"\r\n");
618

619

620 return 1;

621 }

622

623 void SciEndCmd ()

624 {

625 while (!scilsTxReady (scilinREG));
626 SendStringSCI("+" ,True) ;

627 }

629 /x*% @fn void SciSendACK (uint8 ack)
630 =*
@brief Ack or NAK depending on input value
@param|[in] ack show if command is ack or not:
— ack is 1 the command is acknoledged
— ack is 2 the command is not acknoledged

EE

this should be added in the good for give feedback to the user
637 */
638 void SciSendACK (uint8 ack)
639 {
640 if (ack == 1)
{

642 while (!scilsTxReady (scilinREG));
643 SendStringSCI("... <ACK>", True);

}
645 else if (ack == 2)

{
647 while (!scilsTxReady (scilinREG));
648 SendStringSCI("... <NAK>", True);

650 while (!scilsTxReady (scilinREG));
651 SCINewline (1) ;
652 }

654 /x*x @fn void ScilnvalidArgs ()
655 *

* @brief If command is not found

*

*

* Seen in terminal if the command entered is not found
660 */

661 void ScilnvalidCmd ()

662 {

663 while (!scilsTxReady (scilinREG));

664 SendStringSCI("Invalid command" ,True) ;

665 }

667 /x*x @fn void ScilnvalidArgs ()
668 =*
@brief feedback to user about args overflow

*
*

671 =
* This is show in terminal when the argumenmts surpase 8 bit value
*

/
675 void ScilnvalidArgs ()

677 while (!scilsTxReady (scilinREG));
678 SendStringSCI("Invalid arguments" 6 True);
679 }

681 /xx @fn void SciTooManyargs ()
682 x
@brief feedback to wuser

*
*
*
*

This see when user enters arguments for commands that does not require them

102

103 B.2 Drivers and Functionality

687 %/

688

689

690 void SciTooManyargs/()

691 {

692 while (!scilsTxReady (scilinREG));

693 SendStringSCI("Too many cmd args" ,True);

694 }

695 /*xx @fn void start info(void)

696 * B

697 * @brief this used to share screen on debugg mode.
698 *

699 x

700 * This function displayed bebugg function of the system
701 %/

702 void start_info ()

703

704 /*Send to user promptx*/

705

706 // header

707 /* build infox/

708 char developer [20] = " Yassine Elfarri";
709 char SWRev[10] = " 2.0.1";

710 SCINewline (1) ;

711 SendStringSCI(" == UIO Hercules MCU safety ==", True);
712 while (!scilsTxReady (scilinREG));

713

714 SendStringSCI(" Dev:" ,False);

715 SendStringSCI(developer , False);

716 SendStringSCI(" SWRev:",False);

717 SendStringSCI(SWRev, True) ;

718

719 while (!scilsTxReady (scilinREG));

720 get_ HWinfo () ;

721 SendStringSCI("= Type ? for help =", True);
722

723 }

724 /+% @fn void get HWinfo(void)

725 * B

726 * @brief reads and sends values of LOT and WAFER to UART
727 *

728 *

729 * This function reads and print manufacturing value LOT WAFER to UART
730 %/

3

void get_HWinfo(void)
{

uint32 LOT_NUM, WAFER num;
uint8 WAFER_Y COOR, WAFER X COOR;

/** — LOT number x/
LOT_NUM = ((systemREG1—>DIEIDH) & OxO0FFFFFF) ;

/*%x — Wafer number x/
WAFER_num = ((systemREG1—>DIEIDL) >> 24) ;

/*x — Wafer Y coordinatesx*/
WAFER_Y COOR = (((systemREG1—>DIEIDL) & O0x00FFF000) >> 12);

/*% — Wafer X coordinates=x/
WAFER X COOR = (((systemREG1—>DIEIDL) & O0x00000FFF)) ;

obc__debug ("LOT#,%d , WAFER#,%d ,WAFER_Y,%d ,WAFER_X %d" ,LOT_NUM, WAFER_num,WAFER_Y_COOR,

WAFER_X_COOR) ;

//Clock frequency

//cast float to an int

uint8 value =(uint8) GCLK_FREQ;
obc_debug("System Clock —> %d MHz", value);

//Serial port
//TODO get current value
obc_debug("SCI Baud rate —> 230400");

B.2 Drivers and Functionality

*
2 * SysBoard.h

103

m-NLP System Firmware 104

3 *

4 % Created on: Sep 21, 2017

5 * Author: Yassine Elfarri
6 %/

8 #ifndef INC_SysBoard H __
9 #define INC SysBoard H
10 #include "adc.h" -
11 #include "gio.h"

12 #include "het.h"

13 #include "can.h"

14 #include "stdio.h"

15 #include "stdlib.h"

16 #include "Commandline.h"
17 #include "reg_adc.h"

18 #include "spi.h"

19 #include "reg_spi.h"

20 #include "i2c.h"

21 #include "sci.h"

22 #include "reg sci.h"

23 #include "math.h"

24 #include "htu.h"

25 #include "sys vim.h"

26 #include "system.h"

27 #include "obc_ communication.h"

30 /x* SWITCHES ¥/

32 /xx @def Led1On

33 * @Qbrief set Led 1 to "on"

34 x

35 % Turn on ledl (D14) on mNLP board

36 x/

37 #define Led1lOn gioSetBit (hetPORT1, PIN_HET_ 30, 0)
38 /xx @Qdef LedlOff

39 = @Qbrief Set Led 1 to "off"

40 =

41 % Turn off ledl(D14) on mNLP board

42 x/

43 #define LedlOff gioSetBit (hetPORT1, PIN HET 30, 1)
44 /*x @def Led20n - -

45 * @Qbrief Set Led 2 to "on"

46 *

47 x Turn on led2(D8) on mNLP board

48 =/

49 #define Led20n gioSetBit (hetPORT1, PIN_HET_17, 0)
50 /xx @def Led20ff

51 = @Qbrief Led 2 off

52 x

53 % Turn off led2(D8) on mNLP board

4 */

55 #define Led20ff gioSetBit (hetPORT1, PIN HET 17, 1)
6

7

/xx @def LedlToggle
58 % @Qbrief Led 1 toggle value

59 *

60 = Turn off ledl(D14) on mNLP board

61 */

62 #define LedlToggle gioSetBit (hetPORT1, PIN _HET_ 30, gioGetBit(hetPORT1, PIN HET_ 30) -~ 1)
63

64 /xx @Qdef Led2Toggle

65 x Q@brief Led 2 toggle value

66 *

67 Turn off led2(D8) on mNLP board

68 */

69 #define Led2Toggle gioSetBit (hetPORT1, PIN HET 17, gioGetBit(hetPORT1, PIN HET 17) ~ 1)

72 /*x @def P5VO_EN_PIN_On

73 @brief Turn On enables current sense x21 to do measurements.

T4 *

75 *x Turns on transistor P19 for current sense(x21) on mNLP board. When On LED P5 on analog
PWR will light up.

76 x — Current can be read by Hercules’s ADC Curr_P5V0(Pin 62) ADIIN
77 %/

78 #define P5VO_EN_PIN On gioSetBit (hetPORT1, PIN_HET 9, 1)

79

80 /xx @def P5VO_EN_ PIN Off

81 * @Qbrief Turn Off disables current sense x21 measurments

82 *

83 Turns off transistor P19 for current sense(x21) on mNLP board. When Off LED P5 on analog
PWR will off or dim.

104

105 B.2 Drivers and Functionality

84 x/
86 #define P5VO_EN_PIN_ Off gioSetBit (hetPORT1, PIN_HET_9, 0)

88 /xx @def DCDCI2V_EN_PIN Off

89 @brief Turn Off disables current sense x22(P12v),X23(N12) and output +/— 12V

90 *

91 Turns off transistor P14 for current senses (x22 and x23) on mNLP board.When Off LED P12
and N12 on analog PWR will off or dim.

92 * — Turns off 4/— 12V

93 — Disable current sense

94 x/

95

96 #define DCDCI2V_EN_PIN Off gioSetBit (hetPORT1, PIN HET 22, 0)
97

98 /+x @def DCDCI2V_EN_PIN_On

99 * @brief enables current sense x22(P12v),X23(N12) and output +/— 12V

100 *

101 = Turns on transistor P14 for current senses (x22 and x23) on mNLP board.When On LED P12
and N12 on analog PWR will on.

102 * — !!Obs turning on this function will output a volatage of 25V rating !!!

103 * — Enables positive and negative 12V output to langmiur

104 * — Enable hercules ADC current sense CURR_NI12V(pin 70 ADI1IN[70]) and CURR_ P12V (pin 71
ADI1IN[00]) N -

105 =/

106

107 #define DCDCI2V_EN_PIN_On gioSetBit (hetPORT1, PIN_HET_22, 1)

108

109 /*x @def P5VO_EGUN_EN_PIN_Off
110 = @brief disables current sense x16 and EGUN functionality

111 =

112 = Turns off transistor P7 for current senses x16 on mNLP board.When On LED D13 lights on.
113 = — !1Obs turning on this function will output a high volatage !!!
114 % — This disables voltage to EGUN

115 * — NO current measurements can be done with hercules ADC

116 =/

117

118 #define P5VO_EGUN_EN_PIN_Off gioSetBit (hetPORT1, PIN_HET_ 25, 0)

119

120 /= @def P5V0_EGUN_EN PIN On

121 x* @brief enables current sense x16 and turns on EGUN

122

*
123 * Turns on transistor P7 for current senses x16 on mNLP board.When On LED D13 lights on.
124 * — !!Obs turning on this function will output a high volatage !!!
* — Enables use of EGUN
126 = — Enable current sense done by hercules in pin CURR_P5V0 EGUN(pin 65) ADIIN(21)
127 */
128 #define P5V0O_EGUN_EN_PIN_On gioSetBit (hetPORT1, PIN_HET_25, 1)
129 /%! This struct holds values of the switches. x/
130 typedef struct Power switches{

131 int P5VO_EN_PIN; “/#!< 5V rail to frontend and AD7768%/

132 int DCDCI2V_EN_PIN; /x!< DCDC —12 and +12 volt railx/

133 int P5VO_EGUN_EN_PIN; /x!< 5V rail for Egunx/

134 }Power_Rails;

135 /*= : Hercule’s ADC — : : : : : : * /
136

137 /+% @def ADCmVPerBit

138 % @brief ADC resolution which is mV per bits
139 *

140 */

141 #define ADCmVPerBit 3300.0/4095.0

142 /x% @def ADC _ Channels cnt

143 = @brief total number of channels that is read from
144 *

145 x/

146 #define ADC_Channels_cnt 10

147 /%! This enum holds values for the order of the adc channels, the ADC multiplexes between
148 % channels starting from the lowest channel ADI1IN[0O] number to the highest. x/
149 enum adc_groupl_channels{

150 P12V_V_ID , /#!< corresponded to channel ADIIN[00]*/
151 P12V_1I_ID, /x!< corresponded to channel ADIIN[O1]x/
152 P5V0_V_ID, /*!< corresponded to channel ADIIN|[04]x*/
153 P3V3_I_ID, /x!< corresponded to channel ADIIN[OT7]x/
154 N12V_1I ID, /*!< corresponded to channel ADIIN[09]x*/
155 P3V3 V_ID, /#!< corresponded to channel ADIIN[11]x/
156 N12V_V_ID, /*!< corresponded to channel ADIIN|[17]x%/
157 P1V2 1 ID, /*!< corresponded to channel ADIIN[18]x/
158 P5V0_I ID, /%!< corresponded to channel ADIIN[19]x/
159 EGUN_I ID, /#!< corresponded to channel ADIIN[21]x/
160 };

161

162 /%! This struct holds global values that conversion from from ADC. x/
163 typedef struct MeasuredVI{

105

m-NLP System

Firmware

106

164
165
166
167
168
169
170

212
213
214
215
216

219

227
228
229
230

237
238

P12 to channel ADIIN[0O] %/

channel ADIIN[04] %/
channel ADIIN[OT7] %/
channel ADIIN[09] %/
channel ADIIN[11]x%/
channel ADIIN[17]=x/
channel ADIIN[18]x/
channel ADIIN[19]x/
channel ADIIN|[21]=x/

int P12V_V; /x!< Voltage
int P12V_I; /x!< Current P12 to channel ADIIN[01]x*/
int P5V0_V; /x!< Voltage P5V0 to
int P3V3_1I; /x!< Current P3V3 to
int N12V_1I; /x!< Current NI12V to
int P3V3_V; /x!< Voltage P3V3 to
int N12V_V; /x!< Voltage NI12V to
int P1V2 _I; /x!< Current P1V2 to
int P5V0_I; /x!< Current P5V0 to
int EGUN_I; /x!< Current EGUN to
}VI;
extern struct MeasuredVI MON_I_V;

/** @def VMONP5VO

* @brief Voltage ratio based on voltage
*/

#define VMONP5VO 2.0

/** @def VMON_P3V3

* @brief Voltage ratio based on voltage
*/

#define VMON_P3V3 2.0

/*+ @def VMON_P12V

* @brief Voltage ratio based on voltage
*/

#define VMON_PI12V 5.02

/** @def VMON_ NI2V

* @brief Voltage ratio based on voltage
*/

#define VMON_NI12V 5.0

/** @Qdef VMON_NI2V

* @brief the current measured on shunt
*/

#define ADC_IMON

1.0/(200.0%0.05)

/+% @def Magnitude thresholdl

dividers

dividers

dividers

dividers

resistor

* @brief magnitude threshold interrupt, is it

*/

#define Magnitude_thresholdl

/ Antenna release
*/

/*+ @def Antenna Release Reg

* @brief GIO register for antenna release

*/

#define Antenna_Release_Reg gioPORTA

/*% @def Ant_RLS_1_On

* @brief Switch RLS 1 on

*/

#define Ant_RLS_1_On gioSetBit (gioPORTA, 7, 1)

/*% @def Ant_RLS_1_On

* @Qbrief Switch RLS 1 off

*/

#define Ant_RLS_1_Off gioSetBit (gioPORTA, 7, 0)

/+% @def Ant RLS 2 On

* @brief Switch RLS 2 on

*/

#define Ant_RLS_ 2 On gioSetBit (gioPORTA, 6, 1)

/% @def Ant RLS 2 Off

* Q@brief Switch RLS 2 off

*/

#define Ant_RLS_2_Off gioSetBit (gioPORTA, 6, 0)

/*% @Qdef Ant_RLS_3_On

* @Qbrief Switch RLS 3 On

*/

#define Ant_RLS_3_ On gioSetBit (gioPORTA, 5, 1)

/*% @def Ant_RLS_3_Off

* @Qbrief Switch RLS 3 Off

*/

#define Ant_RLS_3_Off gioSetBit (gioPORTA, 5, 0)

/*+ @def Ant RLS_4 On

* @brief Switch RLS 4 On

*/

#define Ant_RLS_4 On gioSetBit (gioPORTA, 2, 1)

/+* @def Ant RLS 4 Off

* Q@brief Switch RLS 4 Off

*/

#define Ant_RLS_4_Off gioSetBit (gioPORTA, 2, 0)

/#*% @def Antenna_DTCT_1_

* @Qbrief Gio
*/

register

2_Reg

used

used

used

used

used full

for antenna detection 1 and 2

106

to

to

to

to

by current

?

and detection

get

get

get

correct

correct

correct

correct

sens

value

value

value

value

107 B.2 Drivers and Functionality

246 #define Antenna_DTCT_1_2_ Reg canREG2
247 /*x @def Antenna_ DTCT_3_ 4 Reg

248 * @brief Gio register for antenna detection 3 and 4
249 x/

250 #define Antenna_ DTCT_3_ 4 Reg canREG3

251

252 /%! This struct holds values of the switches. x/
253 typedef struct antenna status{

254 int Antenna_ 1; /*!< status of Antenna number 1x/

255 int Antenna_2; /x!< status of Antenna number 2x/

256 int Antenna_3; /x!< status of Antenna number 3x/

257 int Antenna_4; /x!< status of Antenna number 4x/

258 }Antennaj;

259 / BIAS DAC * /
260 /x* Source datasheet and mNLP schematics * /

261

262 /*x @Qdef Gain_Enable Off

263 * @brief GIO Gain_Enable Off off for channel 1 to 4

264 */

265 #define Gain_Enable Off gioSetBit (hetPORT1, PIN_HET_15, 0) // for channel 1 to 4
266 /%% @def Gain_Enable On

267 * @brief GIO Gain Enable On on for channel 1 to 4

268 */ n a

269 #define Gain_ Enable On gioSetBit (hetPORT1, PIN HET 15, 1) // for channel 1 to 4
270 /%% @def Gain SEL G10

271 * @brief Set Gain to 10 for channel 1 to 4

272

273 #define Gain_SEL_G10 gioSetBit (hetPORT1, PIN_HET_19, 0) // for channel 1 to 4
274 /xx @def Gain_SEL_ G20

275 * @brief Set Gain to 20 for channel 1 to 4

276 */

277 #define Gain_SEL_G20 gioSetBit (hetPORT1, PIN_HET_19, 1) // for channel 1 to 4

279

280 /*x @def BIAS_ADC_Channels_cnt

281 = @brief total number of bias channels that is read from

282 *

283 */

284 #define BIAS ADC_ Channels cnt 4

285 /%! This enum holds values for the order of the adc channels, the ADC multiplexes between
286 * channels starting from the lowest channel ADIIN[06] number to the highest. x/

287 enum BIAS adc_group2 channels{

288 DAC BCH3 ID, /*!< corresponded to channel ADIIN[06] %/
289 DAC_BCH2_ID, /#!< corresponded to channel ADIIN[08]*/
290 DAC_BCH1_ID, /#*!< corresponded to channel ADIIN[14]x/
291 DAC BCH4 ID, /*!< corresponded to channel ADIIN[22]x/
202 }; - -

293

294 /x! This struct holds global values that conversion from from bias voltage values.x/
295 typedef struct Bias Measured V{

296 int DAC_BIAS CH1;/+!< Bias voltage read back CHl to channel ADIIN[14]x/
297 int DAC_BIAS_CH2; /+!< Bias voltage read back CH2 to channel ADIIN[08] %/
208 int DAC_BIAS_CH3; /x!< Bias voltage read back CH3 to channel ADIIN[06] %/
299 int DAC_BIAS CH4; /x!< Bias voltage read back CH3 to channel [22]x/

300 }BIAS_V;

301 extern struct Bias_Measured V BIAS MON_V;

302

303 /x! This struct holds values of Gain_Select and whether its on or off.x/
304 typedef struct Gain_ sel om{

305 int Gain_on_off; /%!< Gain_on = 1 and Gain_off=0%/

306 int Gain_10; /%!<Gain_ 10 is selected when it s equal to 1x/

307 int Gain_20;/+!< Gain _20 is selected when it s equal to 1x/

308 }gain_sel;

309 /#k=——————— 1tc3887 Digital switcher regulator * |
310 /4= Source LTC3887 datasheet and LTpowerplay E———————— 1
311

312 /*xx @Qdef LTC3887_Page
313 * @brief Channel (page) presently selected for any

314 * paged command.

315 * — Paged : N

316 * — Typed : R/W byte

317 * — Data format : REG
318 =x — Default value : 0x00
319 */

320 #define LTC3887_Page 0x00
321 /*x @def LTC38387 OPERATION
322 * @brief Operating mode control. On/off, margin high and margin

323 * low .

324 =x — type R/W byte

325 * — Paged N

326 * — Data format is REG
327 * — NVM Y

328 * — Default value. 0x40

107

m-NLP System Firmware 108

329 x/

330 #define LTC3887_OPERATION 0x01

331

332

333 /x* @def LTC3887_ ON_OFF_CONFIG

334 =* Q@brief RUN pin and PMBus bus on/off command configuration .
335 * — type R/W byte

336 * — Paged Y

337 * — Data format is REG

338 * — NVM Y

339 * — Default value. 0x40

340 */

341 #define LTC3887_ON_OFF_CONFIG 0x02

342

343 /x% @def LTC3887_ CLEAR_FAULTS

344 x @Qbrief Clear any fault bits that have been set.
345 x — type R/W byte

346 * — Paged Y

347 x — Data format is REG

348 = — NVM Y

349 =* — Default value. 0x40

350 */

351

352 #define LTC3887 CLEAR_FAULTS 0x03

353

354 /xx @def LTC3837 PAGE PLUS WRITE

355 * Q@Qbrief Write a command directly to a specified page
356 * — type W block

357 * — Paged N

358 * — Data format is —

359 * — NVM —

360 =x — Default value. —

361 */

362

363

364 #define LTC3887_PAGE_PLUS_WRITE 0x05

365

366 /*x*% @def LTC3887 PAGE_ PLUS READ

367 * Q@brief Read a command directly from a specified page
368 x — type R/W byte

369 * — Paged Y

370 * — Data format is REG

371 * — NVM Y

372 * — Default value. 0x40

373 x/

374

375

376 #define LTC3887_PAGE_PLUS_READ 0x06

377 /x% @def LTC3887_ WRITE_PROTECT

378 x Q@Qbrief Level of protection provided by the device
379 = against accidental changes.
380 * — type R/W block

381 = — Paged N

382 x — Data format is

383 =* — NVM —

384 * — Default value —

385 x/

386

387

388 #fdefine LTC3887_ WRITE PROTECT 0x10

389 /xx @def LTC3887 STORE USER_ALL

390 =x Qbrief Store user operating memory to EEPROM.
391 = — type R/W block

392 x — Paged N

393 x — Data format —

394 = — NVM —

395 x — Default value —

396 */

397

398

399 #define LTC3887_ STORE_USER_ALL 0x15

400 /%% @def LTC3887 RESTORE USER_ALL

401 = Q@Qbrief Restore user operating memory from EEPROM.
402 = — type R/W byte

403 =* — Paged N

404 = — Data format is REG

405 = — NVM Y

406 * — Default value. 0x40

407 */

408

409 #define LTC3887_ RESTORE_USER_ALL 0x16

410 /x% @def LTC3887_CAPABILITY

411 = Q@Qbrief Summary of PMBus optional communication

108

109 B.2 Drivers and Functionality

412 = — type R/W byte

413 * — Paged N

414 * — Data format is REG
415 * — NVM Y

416 * — Default value. 0x40
417 x/

418 #define LTC3887 CAPABILITY 0x19
419 /x% @def LTC3887 SMBALERT MASK

420 * @brief Mask ALERT activity .

421 * — type R/W byte

422 * — Paged Y

423 * — Data format is REG
424 * — NVM Y

425 * — Default value. 0x40
426 */

427

428 #define LTC3887_SMBALERT_ MASK 0x1B
429 /x* @def LTC3887_VOUT_MODE

430 * @brief Output voltage format and exponent (2712).
431 * — type R/W byte

432 * — Paged Y

433 * — Data format is REG

434 * — NVM Y

435 * — Default value. 0x40

436 */

437

438 #define LTC3887_VOUT_MODE 0x20
439 /xx @def LTC3887 VOUT COMMAND

440 * @brief Nominal output voltage set point.
441 = — type R/W byte

442 * — Paged Y

443 * — Data format is REG

444 * — NVM Y

445 * — Default value. 0x40

446 x/

447

448 #define LTC387_VOUT_COMMAND 0x21
449 /x* @def LTC3887_VOUT_MAX

450 * Q@brief Upper limit on the commanded output voltage including VOUT MARGIN HI.
451 * — type R/W byte B B
452 * — Paged Y

453 * — Data format is REG

454 * — NVM Y

455 * — Default value. 0x40

456 x/

457

458 #define LTC3887_VOUT_MAX 0x24
459 /%% @def LTC3887 VOUT MARGIN HIGH

460 * @brief Margin high output voltage set point. Must be greater than VOUT_COMMAND.
461 * — type R/W byte

462 * — Paged Y

463 = — Data format is REG

464 * — NVM Y

465 * — Default value. 0x40

166 */

467

468

469 #define LTC3887_ VOUT_ MARGIN HIGH 0x25
470 /x% @def LTC3887 VOUT_ MARGIN HIGH

471 * @brief Margin low output voltage set point. Must be less than VOUT COMMAND.
472 * — type R/W byte

473 * — Paged Y

474 * — Data format is REG

475 * — NVM Y

476 * — Default value. 0x40

477 %/

478

479

480 #define LTC3887_VOUT_MARGIN_LOW 0x26
481 /xx @def LTC3887 VOUT TRANSITION RATE

482 * @brief Rate the output changes when VOUT commanded to a new value.
483 * — type R/W byte

484 * — Paged Y

485 * — Data format is REG

486 * — NVM Y

487 * — Default value. 0x40

488 %/

489

490 #define LTC3887_VOUT_TRANSITION_RATE 0X27
491 /x% @def LTC3887 FREQUENCY SWITCH

492 * Q@brief Switching frequency of the controller.
493 * — type R/W byte
494 * — Paged N

109

m-NLP System Firmware 110

495 — Data format is REG
496 * — NVM Y

497 x — Default value. 0x40
498 =/

499

500

501 #define LTC3887 FREQUENCY SWITCH 0x33
502

503 /+x @def LTC3887 VIN ON

504 % Q@brief Input voltage at which the unit should start power conversion.
505 * — type R/W byte

506 * — Paged N

507 * — Data format is REG
508 * — NVM Y

509 x* — Default value. 0x40
510 */

511

512

513 #define LTC3887_VIN_ON 0x35
514 /+* @def LTC3887 VIN OFF

515 * Q@Qbrief Input voltage at which the unit should stop power conversion.

516 x* — type R/W byte

517 % — Paged N

518 * — Data format is REG

519 = — NVM Y

520 x* — Default value. 0x40

521 =/

522

523

524 #tdefine LTC3887_VIN_OFF 0x36

525

526 /*x @def LTC3887_ IOUT_CAL_GAIN

527 * Q@Qbrief The ratio of the voltage at the current sense pins to the sensed current. For
devices using a fixed

528 % current sense resistor , it is the resistance value in mohm.

529 x — type R/W byte

530 * — Paged Y

531 = — Data format is REG

532 x — NVM Y

533 * — Default value. 0x40

534 x/

535

536 #define LTC3887 IOUT CAL_ GAIN 0x38
537 /%% @def LTC3887 VOUT OV_FAULT LIMIT

538 * Qbrief Output overvoltage fault limit
539 x — type R/W byte

540 x* — Paged Y

541 — Data format is REG

542 * — NVM Y

543 * — Default value. 0x40

544 */

545

546 #define LTC3887_VOUT_OV_FAULT_LIMIT 0x40
547 /+x @def LTC3887_VOUT_OV_FAULT_ RESPONSE

548 * @brief Action to be taken by the device when an output overvoltage fault is detected.
549 * — type R/W byte

550 * — Paged Y

551 = — Data format is REG

552 % — NVM Y

553 — Default value. 0x40

554 %/

555

556 #define LTC3887_VOUT_OV_FAULT_ RESPONSE 0x41

557 /%% @def LTC3887 VOUT OV_WARN_LIMIT

558 x Qbrief Output over voltage warning limit.
559 x — type R/W byte

560 * — Paged Y

561 = — Data format is REG

562 % — NVM Y

563 * — Default value. 0x40

564 */

565

566

567 #define LTC3887 VOUT OV_WARN LIMIT 0x42
568 /*% @def LTC3887 VOUT UV_WARN LIMIT

569 * Q@brief Output under voltage warning limit.
570 * — type R/W byte

571 * — Paged Y

572 * — Data format is REG

573 x — NVM Y

574 x — Default value. 0x40

575 */

576

110

111 B.2 Drivers and Functionality

577 #define LTC3887_VOUT_UV_WARN_LIMIT 0x43
578 /xx @def LTC3887 VOUT UV _FAULT LIMIT
579 * @brief Output undervoltage fault limit.

580 * — type is R/W byte

581 * — Paged is Y

582 x — Data format is L16

583 * — units is V

584 * — NVM is Y

585 * — Default value. 0.9 0x0E66

586 */

587 #define LTC3887_VOUT_UV_FAULT_LIMIT 0x44

588 /*x @def LTC3887_VOUT_UV_FAULT_ RESPONSE

589 * @brief Action to be taken by the device when an output undervoltage fault is detected

590 = — type is R/W byte

591 — Paged is Y

592 x — Data format is REG

593 * — units is none

594 * — NVM is Y

595 x — Default value 0xB8

596 */

597 #define LTC3837 VOUT UV _ FAULT RESPONSE 0x45

598 /% @def LTC3887 IOUT OC_ FAULT LIMIT

599 @brief Output overcurrent fault limit .

600 * — type is R/W byte

601 =* — Paged is Y

602 =* — Data format is L11

603 =* — units is A

604 * — NVM is Y

605 = — Default value 29.75 0xDBBS8

606 */

607 #define LTC3887_IOUT_OC_FAULT_LIMIT 0x46

608 /*x @def LTC3887_IOUT_OC_FAULT_RESPONSE

609 * @brief Action to be taken by the device when an output over current fault is detected

610 * — type is R/W byte

611 x* — Paged is Y

612 * — Data format is REG

613 * — units is none

614 * — NVM is Y

615 — Default value 0x00

616 =/

617 #define LTC3887 IOUT_ OC_FAULT RESPONSE 0x47

618 /xx @def LTC3887 IOUT OC_ WARN _ LIMIT

619 * @brief Output overcurrent warning limit

620 =* — type is R/W byte

621 * — Paged is Y

622 * — Data format is L11

623 * — units is A

624 * — NVM is Y

625 * — Default value 20.0 0xDAS8O

626 */

627 #define LTC3887_IOUT_OC_WARN_LIMIT 0x4A

628 /%% @def LTC3887 OT_ FAULT_ LIMIT

629 * @brief External overtemperature fault limit .

630 * — type is R/W byte

631 * — Paged is Y

632 * — Data format is L11

633 * — units is C

634 * — NVM is Y

635 * — Default value 100.0 0xEB20

636 *

637 #define LTC3887_ OT_FAULT_LIMIT 0x4F

638 /*x @def LTC3887_OT_FAULT_RESPONSE

639 * @brief Action to be taken by the device when an external overtemperature fault is
detected ,

640 = — type is R/W byte

641 * — Paged is Y

642 * — Data format is REG

643 x — units is NONE

644 * — NVM is Y

645 x — Default value 0xB8

646 */

647 #define LTC3887 OT FAULT RESPONSE 0x50

648 /xx @def LTC3887 OT WARN LIMIT

649 * @brief External overtemperature warning limit

650 * — type is R/W byte

651 * — Paged is Y

652 * — Data format is L11

653 * — units is C

654 * — NVM is Y

655 * — Default value 85.0 OxEAAS8

656 */

111

m-NLP System Firmware 112

657 #define LTC3887_OT_WARN_LIMIT 0x51

658 /x% @def LTC3887 UT_ FAULT_ LIMIT

659 x @brief External under temperature fault limit.

660 * — type is R/W byte

661 * — Paged is Y

662 x — Data format is L11

663 * — units is C

664 * — NVM is Y

665 * — Default value 40.0 0xE580

666 */

667 #define LTC3887_UT_FAULT_LIMIT 0x53

668 /x* @def LTC3887_UT_FAULT_RESPONSE

669 x Qbrief Action to be taken by the device when an external undertemperature fault is
detected .

670 = — type is R/W byte

671 * — Paged is Y

672 = — Data format is REG

673 * — units is —

674 = — NVM is Y

675 = — Default value 0xB8

676 */

677 #define LTC3887 UT FAULT RESPONSE 0x54

678 /#+ @def LTC3887_VIN_OV_FAULT_ LIMIT

679 * Q@brief Input supply overvoltage fault limit.

680 =* — type is R/W byte

681 * — Paged is N

682 * — Data format is L11

683 * — units is V

684 * — NVM is Y

685 * — Default value 15.5 0xD3EO

686 */

687 #define LTC3887_VIN_OV_FAULT_LIMIT 0x55

688 /x% @def LTC3887_VIN_OV_FAULT_RESPONSE

689 x Q@brief Action to be taken by the device when an input over voltage fault is detected.

690 * — type is R/W byte

691 = — Paged is Y

692 x — Data format is Reg

693 * — units is —

694 * — NVM is Y

695 * — Default value 0x80

696 */

697 #define LTC3887_VIN_ OV_FAULT RESPONSE 0x56

698 /xx @def LTC3837 VIN UV _WARN LIMIT

699 * Q@brief Input supply undervoltage warning limit .

700 x — type is R/W byte

701 * — Paged is N

702 x — Data format is L11

703 * — units is V

704 * — NVM is Y

705 * — Default value 6.3 0xCB26

706 x/

707 #define LTC3887_VIN_UV_WARN_LIMIT 0x58

708 /*x @def LTC3887_ IIN_OC_WARN_LIMIT

709 * @brief Input supply overcurrent warning limit.

710 % — type is R/W byte

711 % — Paged is N

712 % — Data format is L11

713 * — units is A

714 % — NVM is Y

715 * — Default value 10.0 0xD280

716 =/

717 ftdefine LTC3887_ IIN_OC_WARN_LIMIT 0x5D

718 /+x @def LTC387 TON_ DELAY

719 * @brief Time from RUN and/or Operation on to output rail turn—on.

720 * — type is R/W byte

721 * — Paged is Y

722 * — Data format is L11

723 % — units is ms

724 x — NVM is Y

725 x — Default value 0.0 0x8000

726 *x/

727 #define LTC3887_TON_DELAY 0x60

728 /** @def LTC3887 TON RISE

729 % Q@Qbrief Time from when the output starts to rise until the output voltage reaches the
vouT

730 * commanded value .

731 % — type is R/W byte

732 x — Paged is Y

733 x — Data format is L11

734 * — units is ms

735 x — NVM is Y

736 x — Default value 8.0 0xD200

737 */

112

113 B.2 Drivers and Functionality

738 #define LTC3887_TON_RISE 0x61
739 /%% @def LTC3887 TON_MAX_ FAULT LIMIT
740 = @brief Maximum time from the start of TON_RISE for VOUT to cross the

VOUT_UV_FAULT LIMIT.

741 % — type is R/W byte

742 x — Paged is Y

743 * — Data format is L11

744 * — units is ms

745 * — NVM is Y

746 * — Default value 10.00 0xD280

747 */

748

749 #define LTC3887_TON_MAX FAULT_ LIMIT 0x62

750 /*x @def LTC3887_ TON_MAX FAULT_ RESPONSE

751 % @brief Action to be taken by the device when a TON_MAX FAULT event is detected.

752

753 % — type is R/W byte

754 * — Paged is Y

755 x — Data format is REG

756 * — units is ms

T57 * — NVM is Y

758 * — Default value 0xB8

759 x/

760 #define LTC387 TON MAX FAULT RESPONSE 0x63

761 /#x @def LTC3887 TOFF_ DELAY

762 * @brief Time from RUN and/or Operation off to the start of TOFF_ FALL ramp.

763 * — type is R/W byte

764 * — Paged is Y

765 * — Data format is L11

766 * — units is ms

767 * — NVM is Y

768 x — Default value 0x80000

769 */

770

771 #define LTC3887_TOFF_DELAY 0x64

772 /*xx @def LTC3887_ TOFF_FALL

773 * @brief Time from when the output starts to fall until the output reaches zero volts.

774 * — type is R/W byte

775 * — Paged is Y

776 * — Data format is L11

T * — units is ms

778 x — NVM is Y

779 x — Default value 8.00 0xD200

780 x/

781 #define LTC3887_ TOFF_FALL 0x65

782 /xx @def LTC3887 TOFF MAX WARN LIMIT

783 * @brief Maximum allowed time, after TOFF_FALL completed, for the unit to decay below
12.5%

784 = — type is R/W byte

785 * — Paged is Y

786 * — Data format is L11

787 * — units is ms

788 * — NVM is Y

789 x — Default value 150 0xF258

790 x/

791 #define LTC3887_ TOFF_MAX WARN_LIMIT 0x66

792 /xx @def LTC3887_ STATUS_BYTE

793 * @brief One byte summary of the units fault condition

794 * — type is R/W byte

795 * — Paged is Y

796 * — Data format is REG

797 * — units is —

798 x — NVM is —

799 x — Default value —

800 */

801 #define LTC3887_STATUS_BYTE 0x78

802 /*x @def LTC3887_STATUS_ WORD

803 * @brief Two byte summary of the units fault condition

804 * — type is R/W byte

805 * — Paged is Y

806 x — Data format is REG

807 * — units is —

808 * — NVM is —

809 x* — Default value —

810 x/

811

812 #define LTC3887_ STATUS WORD 0x79

813 /%% @def LTC3837 STATUS VOUT

814 = Q@brief Output voltage fault and warning status.

815 =x — type is R/W byte

816 * — Paged is Y

817 x — Data format is REG

818 x* — units is —

113

m-NLP System Firmware

114

819
820
821

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

839
840

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

€ —
* —

*/

NVM is —
Default value —

#define LTC3887 STATUS VOUT
/%% @def LTC3887 STATUS IOUT

* Q@brief

¥ ¥ X ¥ % ¥
|

*/

type is R/W byte
Paged is Y
Data format
units is —
NVM is —

Default value —

is REG

#define LTC3887_STATUS_IOUT
/*% @def LTC3887_STATUS_INPUT

* Qbrief

* X X X X X

*/

type is R/W byte
Paged is N
Data format
units is —
NVM is —

Default value —

is REG

#define LTC3887_ STATUS INPUT
/** @def LTC3887 STATUS TEMPERATURE

* Qbrief

* X K % % %
|

*/

type is R/W byte
Paged is Y
Data format
units is —
NVM is —

Default value —

is REG

#define LTC3887_STATUS_TEMPERATURE
/*% @def LTC3887_STATUS_CML

* @Qbrief

R

*/

type is R/W byte
Paged is N
Data format
units is —
NVM is —

Default value —

is REG

#define LTC3887 STATUS CML
/** @def LTC387 STATUS MFR_SPECIFIC

* Qbrief

EE

*/

Manufacturer

specific
type is R/W byte

Paged is Y
Data format
units is —
NVM is —

Default value —

is REG

#define LTC3887 STATUS_MFR_SPECIFIC
/#* @def LTC3887_READ_VIN

* Q@brief

* —
* —
* —
* —
* —
* _
./

Measured input supply

type is R byte
Paged is N

Data format is L11
units is V

NVM is —

Default value —

#define LTC3887_READ_VIN
/*% @def LTC3887 READ_ VIN

* Qbrief

* X X X X x

*/

Measured input supply

type is R byte
Paged is N

Data format is L11
units is A

NVM is —

Default value —

#define LTC3887_ READ_IIN
/*+ @def LTC3887 READ_ VOUT

* Q@brief

IR R
|

Measured input supply

type is R byte
Paged is Y

Data format is L16
units is V

NVM is —

Default value —

Ox7A

0x7B

_Input supply fault and warning status

0x7C

" Output voltage fault and warning status.

0x7D

0x7E

fault and state

0x80

voltage .

0x88

voltage .

0x89

voltage .

114

Output voltage fault and warning status.

For READ TEMERATURE 1.

“Communication and memory fault and warning status.

information .

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

B.2 Drivers and Functionality

115

#define LTC3887_READ_VOUT 0x8B
/*% @def LTC3887 READ IOUT

* @brief "Measured output current

* — type is R byte

* — Paged is Y

* — Data format is L16

* — units is V

* — NVM is —

* — Default value —

*/

#define LTC3887_ READ_IOUT 0x8C
/** @def LTC3887 READ_TEMPERATURE_1

* @brief External temperature sensor. This is the wvalue
* used for all temperature related processing,
* including IOUT_CAL_GAIN.

* — type is R byte

* — Paged is Y

* — Data format is L11

* — units is C

* — NVM is —

* — Default value —

*/

#define LTC3887 READ TEMPERATURE 1 0x8D
/#% @def LTC3887 READ TEMPERATURE 2

* @brief Internal die temperature. Does not affect any other
* — type is R byte

* — Paged is N

* — Data format is L11

* — units is C

* — NVM is —

* — Default value —

*/

#define LTC3887_ READ_TEMPERATURE_2

/** @def LTC3887_ READ_DUTY_CYCLE
* @brief Duty cycle of the
— type is R byte
— Paged is Y
— Data format
— units is %
— NVM is —

— Default value

is

* X K X X %

*

/

#define LTC387 READ DUTY_ CYCLE
/** @def LTC3887 READ FREQUENCY
* Q@brief

is R byte

is Y

— type
— Paged
— Data format
— units is kHz
— NVM is —

— Default value

is

x% @def LTC3887 READ POUT
@brief ~ Measured output
— type is R byte
— Paged is Y
— Data format
— units is W
— NVM is —
— Default value

*
*

*

*

*

*

*/

#define LTC3887 READ FREQUENCY
/

*

*

*

* is
*

*

*

*

#define LTC3887_READ_POUT

/** @def LTC3887_ PMBUS_REVISION
* Q@brief PMBus revision
— type is R byte
— Paged is N
— Data format
— units is W
— NVM is —

— Default value

is

X X X X X %

*

/

#define LTC3887_PMBUS_REVISION
/*% @def LTC3887 MFR ID

* @brief "The manufacturer
* — type
* — Paged is N
* — Data format is
* — units is —

* — NVM is —

* — Default value
*

#

/
define LTC3887_MFR_ID

supported by this

0x8E

top gate control signal.

L11

0x94

Measured PWM switching frequency .

Li11

0x95

power

L11

0x96

device. Current revision

REG

0x22

0x98

ID of the LTC3887 in ASCII.

is R String

ASC

LTC

0x99

115

is

registers .

i,

22

m-NLP System Firmware

116

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

/+% @def LTC3887_MFR_ID

* @Qbrief The manufacturer ID of the LTC3887 in ASCII.
* — type is R String

* — Paged is N

* — Data format is ASC

* — units is —

* — NVM is —

* — Default value LTC3887

*

/

#define LTC3887_ MFR_MODEL 0x9A
/*x @def LTC3837 MFR_ SERIAL

* Q@brief Serial number of this specific unit.
* — type is R Block

* — Paged is N

* — Data format is CF

* — units is —

* — NVM is —

* — Default value —

*/

#define LTC3887 MFR_SERIAL

/%% @def LTC387 MFR_ VOUT_ MAX
* @brief B in
— type is R word
— Paged is Y

— Data format is
— units is V

— NVM is —

— Default value

L16

* ¥ X ¥ X ¥

*/
#define LTC3887 MFR_VOUT MAX
/%% @def LTC3887_ USER_DATA_00

Maximum allowed output voltage

0x9E

including VOUT_OV_FAULT_ LIMIT..

5.7 0x5B34

0xA5

* Q@Qbrief "OEM RESERVED. Typically used for part serialization .
* — type is R/W Word

* — Paged is N

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value —

*/

#define LTC3837_ USER_DATA 00 0xB0
/*+ @def LTC3887 USER_DATA 01

* Q@brief Manufacturer reserved for LTpowerPlay
* — type is R/W Word

* — Paged is y

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value —

*/

#define LTC3887_USER_DATA_01 0xB1
/*% @def LTC3837_ USER_DATA_02

* @brief OEM RESERVED. Typically used for part serialization
* — type is R/W Word

* — Paged is y

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value —

*/

#define LTC3837 USER_DATA 02 0xB2
/** @def LTC3887 USER_DATA 03

* @Qbrief A NVM word available for the user.
* — type is R/W Word

* — Paged is N

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value 0x0000

*/

#define LTC3887_USER_DATA_ 03 0xB3
/*% @def LTC3837 USER_DATA_ 04

* @Qbrief A NVM word available for the user.
* — type is R/W Word

* — Paged is N

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value 0x0000

*/

#define LTC3887_USER_DATA_ 04 0xB4
/#*% @def LTC3887_ MFR_EE_UNLOCK

* Qbrief Unlock user EEPROM for access by MFR_EE ERASE and MFR_EE DATA commands.

* — type is R/W Word

116

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

1112
1113
1114
1115
1116
1117
1118
1119

117 B.2 Drivers and Functionality
* — Paged is N

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value —

*/

#define LTC387 MFR_EE UNLOCK 0xBD

/*% @def LTC3887 MFR EE ERASE

* @brief Initialize user EEPROM for

* — type is R/W Word

* — Paged is N

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value —

*/

#define LTC3887_MFR_EE_ERASE 0xBE

/** @def LTC3887 MFR_EE_ DATA
* Q@brief

Supports bulk programming.
* — type is R/W Word
* — Paged is N
* — Data format is Reg
* — units is —
* — NVM is —
* — Default value —
*/
#define LTC387_MFR_EE_DATA 0xBF
/** @def LTC3887_ MFR_CHAN_CONFIG_LTC3887
* @brief Configuration bits that are channel
* — type is R/W byte
* — Paged is Y
* — Data format is Reg
* — units is —
* — NVM is Y
* — Default value 0x1D
*/

##define LTC3887_MFR_CHAN_CONFIG_LTC3887
/*+ @def LTC3887_ MFR_CONFIG_ALL_LTC3887
* Q@brief Configuration bits that are common to

0xDO

all

* — type is R/W byte

* — Paged is N

* — Data format is Reg
* — units is —

* — NWM is Y

* — Default value 0x21
*/

#define LTC3887_MFR_CONFIG_ALL_LTC3887 0xD1

/** @def LTC3887_ MFR_GPIO_PROPAGATE _ LTC3887

* @brief Configuration bits that are common to all
* — type is R/W byte

* — Paged is Y

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value 0x21

*/

#define LTC3887 MFR_ GPIO PROPAGATE LTC3887 0xD2

/*% @def LTC3887 MFR_PWM MODE LTC3887

* @brief Configuration that determines which faults
* — type is R/W byte

* — Paged is Y

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value 0x6993

*/

#define LTC3887_MFR_PWM_MODE_LTC3887 0xD4
/#* @def LTC3887 MFR_GPIO_ RESPONSE

* @brief Action to be taken by the device when

* — type is R/W byte

* — Paged is Y

* — Data format is Reg

* — units is —

* — NVM is Y

* — Default value 0xCO

*

#define LTC3887_ MFR_GPIO_RESPONSE 0xD5

/** @def LTC3887 MFR OT FAULT RESPONSE

* @brief Action to be taken by the device when an
cleteetedl .

* — type is R/W byte

117

Data transferred to and from EEPROM using sequential PMBus word reads or

the GPIO pin

bulk programming by MFR_EE DATA.

writes .

specific.

pages .

pages .

are propagated to the GPIO pins.

is externally asserted low

internal over Temperature fault is

m-NLP System Firmware

118

* — Paged is Y
* — Data format is Reg
* — units is —
* — NVM is Y
* — Default value 0xCO
*

/

#define LTC3837 MFR_OT_FAULT RESPONSE

/** @def LTC3887 MFR_OT_FAULT RESPONSE

* @brief Report the maximum measured value
* — type is R Word

* — Paged is Y

* — Data format is L11

* — units is A

* — NVM is —

* — Default value —

*/

#define LTC3887_MFR_IOUT_ PEAK
/** @def LTC387 MFR_ADC_CONTROL

* @brief ADC telemetry parameter selected for
* — type is R/W Byte
* — Paged is N
* — Data format is Reg
* — units is —
* — NVM is —
* — Default value 0x00
*
/

#define LTC387 MFR_ADC_CONTROL
/*x @def LTC3887 MFR_ ADC TELEMETRY STATUS

* Qbrief ADC telemetry status
the short round robin ADC loop is enabled

* — type is R/W Byte
* — Paged is N
* — Data format is Reg
* — units is —
* — NVM is —
* — Default value 0x00
*

/

#define LTC387 MFR_ADC_TELEMETRY STATUS
/*+ @def LTC387 MFR_RETRY_ DELAY
* @brief Retry interval

indicating which parameter

0xD6

of READ IOUT since last MFR_CLEAR PEAKS

0xD7

repeated fast ADC read back

0xD8

is most recently converted when

0xDA

during FAULT retry mode

* type is R/W Word
* — Paged is Y
* — Data format is L11
* — units is ms
* — NVM is Y
* — Default value 350 OxFABC
*/
#define LTC3887_ MFR_RETRY_ DELAY 0xDB
/#*% @def LTC3887_ MFR_RETRY_DELAY
* Q@Qbrief Minimum time the RUN pin is held low by the LTC3887.
* — type is R/W Word
* — Paged is Y
* — Data format is L11
* — units is ms
* — NVM is Y
* — Default value 500 OxFBES
*
/

#define LTC3887 MFR_RESTART DELAY
/xx @def LTC3887 MFR VOUT PEAK

* @brief Maximum m
type is R Word
Paged is Y
Data format
units is V
NVM is —

Default value —

is L16

* X X % % %
|

*/

#define LTC3887_MFR_VOUT_PEAK

/*% @def LTC3887_ MFR_VOUT_PEAK

* @brief Maximum measured value
type is R Word
Paged is N
Data format
units is V
NVM is —
Default value —

— is L11

R

*/
#define LTC3887 MFR_VIN PEAK
/** @def LTC387 MFR_TEMPERATURE 1 PEAK

* @brief Maximum measured value of external
MFR_CLEAR_PEAKS.

* — type is R Word

* — Paged is Y

118

measured value of READ _VOUT since

of READ_VIN since

0xDC

last MFR_CLEAR_PEAKS.

0xDD

last MFR_CLEAR_PEAKS.

0xDE

Temperature (READ TEMPERATURE 1) since last

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

1312

119 B.2 Drivers and Functionality

* — Data format is L11

* — units is C

* — NVM is —

* — Default value —

*/

#define LTC3887 MFR_ TEMPERATURE 1 PEAK 0xDF
/#% @def LTC3887 MFR_CLEAR_PEAKS

* @brief Clears all peak values

* — type is Send Byte

* — Paged is N

* — Data format is —

* — units is —

* — NVM is —

* — Default value —

*/

#define LTC3887_MFR_CLEAR_PEAKS 0xE3
/** @def LTC3887_ MFR_CLEAR_PEAKS

* @brief Digital status of the I/O pads.

* — type is R Word

* — Paged is N

* — Data format is REG

* — units is —

* — NVM is —

* — Default value —

*/

#define LTC3887_ MFR_PADS 0xE5
/** @def LTC3837 MFR ADDRESS

* @brief Sets the 7—bit I2C address byte.
— type is R/W Byte

— Paged is N

— Data format is REG

— units is —

— NVM is Y

— Default value O0x4F

% K X X ¥ %

*/

#define LTC3887_MFR_ADDRESS 0xE6

/** @def LTC3887_ MFR_SPECIAL_ID

* @brief Manufacturer code representing the LTC3887.

* — type is R Word

* — Paged is N

* — Data format is REG

* — units is —

* — NVM is —

* — Default value 0x470X

*/

#define LTC3887_ MFR_SPECIAL_ID 0xE7
/** @def LTC3887_ MFR_IIN_OFFSET

* @brief Coefficient used to add to the input current to account
* — type is R/W Word

* — Paged is Y

* — Data format is L11

* — units is A

* — NVM is Y

* — Default value 0.050 0X9333

*

/

#define LTC3837 MFR IIN OFFSET 0xE9

/#% @def LTC3887 MFR_FAULT LOG_ STORE

* @brief Command a transfer of the fault log from RAM to EEPROM.
— type is Send Byte

— Paged is N

— Data format is —

— units is —

— NVM is —

— Default value —

%X ¥ X X X ¥

*/

#define LTC3887_MFR_FAULT_LOG_STORE O0xEA

/** @def LTC387 MFR_FAULT_ LOG_CLEAR

* @brief Initialize the EEPROM block reserved for fault logging.
— type is Send Byte

— Paged is N

Data format is —

— units is —

— NVM is —

— Default value —

R
|

*

/

#define LTC387 MFR FAULT LOG CLEAR O0xEC
/#% @def LTC3887 MFR_READ IIN

* @brief Measured input current per channel

— type is R Word

— Paged is Y

— Data format is L11

— units is A

— NVM is —

% ¥ X X *

119

for

the IQ of the

part .

m-NLP System Firmware 120

1313 = — Default value —

1314 x/

1315 #define LTC3887_ MFR_READ_IIN 0xED

1316 /%% @def LTC3887 MFR_ FAULT LOG

1317 = @brief Fault log data bytes. This sequentially retrieved data is used to assemble a

complete fault log.

1318 =* — type is R Block

1319 = — Paged is N

1320 = — Data format is Reg

1321 = — units is —

1322 =* — NVM is Y

1323 = — Default value —

1324 =/

1325 #define LTC387_MFR_FAULT_LOG 0xEE
1326 /** @def LTC387_ MFR_COMMON

1327 = @brief Manufacturer status bits that are common across multiple LTC chips.
1328 = — type is R Byte

1329 = — Paged is N

1330 = — Data format is Reg

1331 =* — units is —

1332 — NVM is Y

1333 = — Default value —

1334 x/

1335 #define LTC3887 MFR_COMMON OxEF
1336 /+x @def LTC3887 MFR_COMPARE USER _ ALL

1337 =* @brief Compares current command contents with NVM.
1338 =* — type is Send Byte

1339 x* — Paged is N

1340 — Data format is Reg

1341 = — units is —

1342 = — NVM is Y

1343 = — Default value —

1344 =/

1345 #define LTC3887_MFR_COMPARE_USER_ALL 0xF0
1346 /+% @def LTC3887 MFR_TEMPERATURE 2 PEAK

1347 = @brief Compares current command contents with NVM.
1348 = — type is R Word

1349 = — Paged is N

1350 =* — Data format is L11

1351 = — units is C

1352 = — NVM is —

1353 = — Default value —

1354 =/

1355 #define LTC3887_ MFR_TEMPERATURE_2 PEAK 0xF4
1356 /x% @def LTC3887 MFR_TEMPERATURE 2 PEAK

1357 @brief Set numerous parameters for the DC/DC controller including phasing.
1358 * — type is R/W Byte

1359 = — Paged is N

1360 =* — Data format is Reg

1361 = — units is —

1362 = — NVM is Y

1363 = — Default value 0x10

1364 =/

1365 #define LTC3887_MFR_PWM _CONFIG_LTC3887 0xF5
1366 /%% @def LTC3887 MFR IOUT_ CAL_GAIN_ TC

1367 = @brief Temperature coefficient of the current sensing element.
1368 =* — type is R/W Word

1369 = — Paged is Y

1370 =* — Data format is CF

1371 * — units is —

1372 * — NVM is Y

1373 * — Default value 3900 0x0F3C
1374 =/

1375 #define LTC3887_MFR_IOUT_CAL_GAIN_TC 0xF6
1376 /+* @def LTC3887_MFR_TEMP_1_GAIN

1377 x @brief Sets the slope of the external temperature sensor.
1378 * — type is R/W Word

1379 = — Paged is Y

1380 = — Data format is CF

1381 = — units is —

1382 =* — NVM is Y

1383 = — Default value 1.0 0x4000

1384 x/

1385 #define LTC3887_MFR_TEMP_1_ GAIN 0xF8

1386 /%% @def LTC387 MFR_TEMP 1 OFFSET
1387 =* Q@brief Sets the offset of the external temperature sensor with respect to 273.1 C

1388 =* — type is R/W Word

1389 =x — Paged is Y

1390 = — Data format is L11

1391 = — units is C

1392 * — NVM is Y

1393 = — Default value 0.0 0x8000
1394 */

120

121 B.2 Drivers and Functionality

1395 #define LTC3887_MFR_TEMP_1_ OFFSET 0xF9
1396 /xx @def LTC3887 MFR RAIL ADDRESS

1397 * @brief Common address for PolyPhase outputs to adjust common parameters .
1398 =* — type is R/W Byte

1399 * — Paged is Y

1400 * — Data format is Reg

1401 * — units is —

1402 x* — NVM is Y

1403 = — Default value 0x80

1404 */

1405 #define LTC3887_MFR_RAIL_ADDRESS O0xFA
1406 /x* @def LTC3887_MFR_RESET

1407 = @brief Commanded reset without requiring a power down
1408 = — type is Send Byte

1409 = — Paged is N

1410 = — Data format is Reg

1411 = — units is —

1412 = — NVM is —

1413 = — Default value —

1414 */

1415 #define LTC3887_MFR_RESET 0xFD
1416

1417

1418 4#define One_Byte 1

1419 4#define Two_Bytes 2

1420 #define LTC3887 GLOBAL_ ADDRESS (0xb4 >> 1)
1421 #define LTC3887_PAGED_ADDRESS (0xb6 >> 1)

1422 #define LTC3837_PAGE 0x00
1423 enum {GLOBAL, PAGED, COMPLETE};
1424 typedef struct{

1425 unsigned int ltc_config_ Address;
1426 const int ltc_Command;
1427 const int ltc_byte_ Length;
1428 const int ltc_Lower_byte;
1429 const int ltc_upper_byte;
1430 }1tc_config;

1431

1432 typedef struct ltc_read

1433

1434 uintl6 ltc_voltage;

1435 uintl6 ltc_temperature;
1436 uintl6 ltc_current;

1437 }ltc _read values;
1438 extern struct ltc_read ltc_m_values;

1439 /x AD7768 External ADC
*
/
1440 /skoskoskorskokkokkkokkokokkkkkkkkkk*kk sources is analog.com ad7768 drivers and ELAB-Halvor + Erelend sxx
*/

1441

1442 /*+ @def MCLK_FREQ

1443 = @brief the clock frequency by ECLK

1444 */

1445 #define MCLK_FREQ system _get sys MCLK ()

1446

1447 /%% @def ad7768 Illegal Command

1448 * @brief the AD7768 SPI detects whether it received an illegal command.

1449 * This illegal command issued when

1450 x* — Illegal command is writen to read only register
1451 = — Address register is none existing

1452 = — Read from a register address that does not exist
1453 =*

1454 =

1455 #define ad7768_Illegal Command 0x0EO00
1456 /x* @def AD7768_ channel standby

1457 = @brief This register is to configurate Bit[n] = CH_n
1458 = — status: not used

1459 = — defult value 0x0

1460 * — Type:RW

1461 */

1462 ftdefine AD7768 channel_ standby 0x00
1463 /*x @def AD7768_ Channel Mode A
1464 = @brief This register is to configurate bit[3]filter type A and Bit[2—-0]DEC_rate A

1465 * — status: used to configure filter and dec rate
1466 * — defult value 0x0D a
1467 * — Type:RW

1468 */

1469 #define AD7768 Channel Mode A 0x01

1470 /+x @def AD7768 Channel Mode B
1471 * @brief This register is to configurate bit[3]filter type b and Bit[2—-0]DEC_ rate B
1472 — status: not used

1473 — defult value 0x0D
1474 * — Type:RW
1475 %/

121

m-NLP System Firmware 122

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

1486
1487
1488
1489
1490
1491
1492
1493

1494
1495
1496
1497
1498
1499
1500

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

#define AD7768_Channel Mode B 0x02

/%% @def AD7768 Channel mode select

* @brief This register is to configurate Bit[n] = CH n_mode

* — status: not used -

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel mode _select 0x03

/*x @def AD7768 POWER MODE

* @brief This register is to configurate Bit[7] = SLEEP _MODE, Bit[5—4] = Power mode, Bit[3]
= LVDS enable, Bit[1—-0]= MCLK div

* — When setting power mode a mclk div should be choosen accordinling

* — status: Used to configure MCLK_ DIV and POWER_MODE

* — defult value 0x00

* — Type:RW

*/

#define AD7768 POWER_MODE 0x04

/*% @def AD7768 General_ configuration

* @brief This register is to configurate look at (REGISTER MAP DETAILS (SPI CONTROL) page
72 AD7768/AD7768—4)

* — status: Not used

* — defult value 0x08

* — Type:RW

*/

#define AD7768 General configuration 0x05

/*+ @def AD7768 General configuration

* @brief This register is to configurate look at (REGISTER MAP DETAILS (SPI CONTROL) page
72 AD7768/AD7768—4)

* — status: not used

* — defult value 0x80

* — Type:RW

*/

#define ADT7768_ Data_control 0x06

/*% @def AD7768 Interface configuration

* @brief This register is to configurate CRC_SELECT(Bits[3 —2]) and DCLK_DIV(BITs[1—0])

* — status: used to config DCLK_DIV

* — defult value 0x0

* — Type:RW

*/

#define AD7768 Interface configuration 0x07

/*+ @def AD7768 BIST control

* @brief This register is to configurate this has bit[0]=RAM_ BIST START
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 BIST _control 0x08
/+% @Qdef AD7768 Device_status

* @brief This register is to configurate this has bit[0]=RAM_BIST START
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_ Device_status 0x09
/%% @def AD7768 Revision ID

* @brief This register for read IC revision number
* — status: not used

* — defult value 0x06

* — Type:R

*/

#define AD7768 Revision ID 0x0A
/*x @def AD7768 GPIO control

* @brief This register GPIO info

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_GPIO _control 0x0E
/*% @def AD7768_ GPIO_write_ data

* @brief This register Change output for the GPIO
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 GPIO_write data 0x0F
/*+ @def AD7768 GPIO_ read data

* @brief register reads the GPIO value

* — status: not used

* — defult value 0x00

* — Type:R

*/

#define AD7768 GPIO_read_data 0x10
/*% @Qdef AD7768_ Precharge Buffer_ 1

122

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

123

B.2 Drivers and Functionality

* @brief register note used

* — status: not used

* — defult value OxFF

* — Type:RW

*/

#define ADT7768 Precharge Buffer 1 0x11

/*+ @def ADT7768 Precharge Buffer 2

* @brief register look at datasheet

* — status: not used

* — defult value OxFF

* — Type:RW

*/

#define ADT7768 Precharge Buffer 2 0x12

/** @Qdef AD7768_ Positive reference_ precharge_buffer
* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Positive reference precharge buffer 0x13
/** @def ADT768 Negative reference precharge buffer
* @brief register look at datasheet B

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Negative reference_precharge buffer 0x14

/** @def AD7768 Channel 0 offset MSB

* Q@brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel_0_offset_ MSB 0x1E
/** @Qdef AD7768_ Channel 0_offset_ MID

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_ Channel 0_offset MID 0x1F
/*+ @def AD7768 Channel 0 _ offset LSB

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 0_offset LSB 0x20
/** @Qdef AD7768 Channel 1 _offset_ MSB

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

##define AD7768_Channel_1_offset_ MSB 0x21
/*% @def AD7768 Channel 1 offset MID

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel 1 _offset_ MID 0x22
/** @def AD7768 Channel 1 offset LSB

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 1 _offset LSB 0x23
/*+ @Qdef AD7768 Channel_ 2 offset MSB

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define ADT768 Channel 2 offset MSB 0x24
/%% @def AD7768 Channel 2 offset MID

* @brief register look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel 2 offset_ MID 0x25

123

m-NLP System Firmware

124

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

/*% @def AD7768 Channel_ 2 _ offset LSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 2 offset LSB 0x26
/*+ @def AD7768 Channel 3 offset MSB

* Q@brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define ADT7768 Channel 3 _offset_ MSB 0x27
/*% @def AD7768_Channel 3 _offset MID

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel_3_offset_ MID 0x28
/%% @def AD7768 Channel 3 offset LSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_ Channel 3_offset LSB 0x29
/+% @def AD7768_Channel_0_gain_MSB

* Q@Qbrief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel 0_gain_MSB 0x36
/*% @def AD7768 Channel 0_gain_MID

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 0_gain_MID 0x37
/*+ @def AD7768 Channel 0 gain LSB

* Q@brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel_0_gain_LSB 0x38
/*% @def AD7768 Channel 1_gain_MSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 1 _gain_MSB 0x39
/xx @def AD77687Chann<;l717gain7MID

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 1 _gain_MID 0x3A
/*% @Qdef AD7768_Channel 1 _gain_LSB

* Q@brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel_1_gain_LSB 0x3B
/*% @def AD7768 Channel 2 gain MSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define ADT7768 Channel 2 gain MSB 0x3C
/#x @def AD7768 Channel 2 gain MID

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

124

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

125

B.2 Drivers and Functionality

##define AD7768_ Channel 2 _gain_MID 0x3D
/*% @def AD7768 Channel 2 gain LSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 2 gain_ LSB 0x3E
/** @def AD7768 Channel 3 gain MSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 3 gain_MSB 0x3F
/** @Qdef AD7768 Channel 3_gain_MID

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define ADT7768 Channel 3 gain MID 0x40
/#% @def AD7768 Channel 3_gain_LSB

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768_Channel 3_gain_LSB 0x41
/** @Qdef AD7768 Channel 0_sync_offset

* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

##define AD7768 Channel_0_sync_offset 0x4E
/*+ @def AD7768 Channel 1 _ sync_offset

* @brief register : look at datasheet
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel 1 sync_offset 0x4F
/** @def AD7768 Channel 2 sync offset
* @brief register : look at datasheet

* — status: not used
* — defult value 0x00
* — Type:RW

*/

#define AD7768 Channel_ 2 _ sync_offset 0x50
/** @Qdef AD7768 _ Channel_ 3 _ sync_offset

* @brief register : look at datasheet
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Channel_ 3 _ sync_offset 0x51
/*+ @def AD7768 Diagnostic_Rx
* @brief register : look at datasheet

* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Diagnostic_Rx 0x56
/** @Qdef AD7768 Diagnostic_mux_control
* @brief register : look at datasheet
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define ADT7768 Diagnostic_mux_control 0x57
/*+ @Qdef AD7768 Modulator delay control

* @brief register : look at datasheet
* — status: not used

* — defult value 0x00

* — Type:RW

*/

#define AD7768 Modulator delay control 0x58
/** @def AD7768 Chop control

* @brief register : look at datasheet
* — status: not used

* — defult value 0x00

* — Type:RW

125

m-NLP System Firmware

126

1827
1828

1829

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877

1878
1879

126

*
/
j #define AD7768_ Chop_control 0x59
VEES
* @brief ad7768 config address
*
This pointer used to read the values AD7768 config table
*
/
typedef struct{
unsigned int ad7768_config_Address;/+*< stores position at config table. x/
}ad7768 config;
/%% -
% @brief holds values for ad7768 filter settings
*
*/
enum{ad7768 _filter _wide,
ad7768 filter SINC};
/%% - -
* @brief struct ad7768 settings t holds values of the following configurations to AD7768
* — MCIK is clock provided by TMS570 ECLK 8MHz
* — DCLK DIV control division of the DCLK clock used to clock out conversion data on
the DOUTx pins this derived from MCLK
* — decRate is Decimation rate output a data output from each channel. The decimation
rates allow the user to reduce the measurement bandwidth, reducing the speed but
increasing the resolution.
* — filter mode configured
* — fmod is the internal modular frequency that is used by each of the ADCs in the
AD7768 this is deerived from MCLK. this dependent on MCLK and MCLK div. this fMOD, to
reject tones or harmonics related to the modulator clock.
* — DCLK this controller the rate of the output data data like DRDY framing output,
and the data output pins DOUT[0 —7]
* — ODR the output data rate 32 128 and 256 kSPS
*/
typedef struct {
uint8 t MCLK; /*x< Master clock. x/
uint8 _t DCLK_DIV; /*x< data clock division. =/
uint8 t MCLK_DIV; /**x< Master clock division. x/
uintl6_t decRate; /+x*< Decimation rate. x/
uint8 filter ; /*x<Filter wide or SINC read more in datasheet for AD7768. x/
uint8 t fMOD; /**<frequency modular. =x/
uint8 t DCLK; /**<Data Clock. x*/
float ODR; /**<Output data rate in Kilo samples per second x/
} ad7768 settings t;
/* = = HTU and NHET Y
/* High End Timer read address = ((instruction number x 4) + 2) x/
#define NHET_ RAM _ADDRESS (38)
/* Number of 32—bit elements. Four data channels and one counter x/
#define NHET DATA FIELD ELEMENT COUNT (5)
/* HTU_FRAME TRANSFER_COUNT_ MAX must be a multiple of
* NHET DATA_FIELD ELEMENT_ COUNT but smaller or equal
* to Oxff which is the maximum HTU frame size
*
/
#define HTU FRAME TRANSFER_COUNT MAX (255)
uint32 t htu_buffer a[HTU FRAME TRANSFER COUNT MAX];
uint32_ t htu_buffer b [HITU FRAME TRANSFER COUNT MAX] ;
#define ADC_BUFFER_SAMPLE COUNT (4000)
#define ADC_BUFFER_ CHANNEL COUNT (2)
#define ADC_BUFFER_SIZE (NHET DATA FIELD ELEMENT COUNT x \
ADC_BUFFER_SAMPLE_COUNT)
struct adc_samples_s {
union {
struct {
uintl6_t counter [ADC_BUFFER_SAMPLE COUNT];
uint16 _t data[ADC_BUFFER_CHANNEL_ COUNT][ADC_BUFFER_SAMPLE COUNT];
uint64_t x;
uintl6_t index;
s
uint8 t all [ADC_BUFFER_SAMPLE COUNT];
s
s
/% The 7 least significant bits of the counter channel is not used x*/
#define SAMPLE COUNTER_SHIFT (7)
/ * reg data and safety features
*/ -
/ Functions
*/

127 B.2 Drivers and Functionality

1880 void IVmeasurements () ;

1881 void EnablePower5V12V (int);

1882 void EnablePower5V12_ readback () ;

1883 int Antenna RLS DTCT(int);

1884 void Antenna get status();

1885 void DAC SPI confi(uint8 ,uint8 ,uint8);
1886 void DAC_Gain_SET_SELECT(uint8);

1887 void DAC _get gain_status();

1888 void DAC_ GAIN SET STATUS() ;

double pow(double ,double);

void cmd _enable rails(int ,int);

void cmd IV measur(int ,int);

void cmd_DAC_SPI_conﬁg(mt , int ,int);
void cmd_DAC_Gain_Sel_EN(int ,int);
void end DAC GAIN SET STATUS(int ,int);
void cmd_Antenna RLS DTCT(int ,int);

int ltc_I2C_TxRx_timeout (uint8);

void I2C_config(uint32, uint32, bool);

int PMBus_read (uint8 ,uint8x%, uint8);

int PMBus_write (uint8 , uint8x , uint8);

int 1tc3887 ready (void);

int 1tc3887 init (void);

int 1tc3887 read config();

int 1tc3887 write register (uint8 , uint8 ,uint8 , uintl6) 8
9 int 1tc3887 readiregister (uint8, uint8 ,uint8, uintl6=*);
1906 int 1tc3887 L16u_reg (uintl6, uint8x);

1907 int 1tc3887_L16u_data (uint8 x ,uintl6x);

1908 int 1tc3887_ Lb5s_1ls_reg (uintl6 ,uint8 x);

1909 int 1tc3887 L5s 11s data (uint8 *, uintl6 x);

1010 int 1tc3887 turn_ on_off channel (uint8, bool);

1911 int 1tc3887 set output_voltage (uint8 , uintl6);

1912 int 1tc3887 output current (uint8, uintl6 *);

1913 int 1tc3887 _ “Read 1nternal_Temperature (uint8 , uintl6 =*);
1914 int 1tc3887 _ Read _output_voltage (uint8, uintl6 x*);

1915 void cmd 1tc3887 turn_on_off channel(int);

1916 void cmd_1tc3887 Read _ _output_voltage(int ,int);

1917 void cmd _ ltc3887 Read _internal_ Temperature(int ,int);

1918 void cmd_1tc3887 _ outputicurrent(int, int);

1919 void cmd 1tc3887 set output voltage(int , int);

1920 void cmd 1tc3887 read config();

int high speed transfer unit init (void);
void start het (void);

void stop_het (void);

int ad7768 init (void);

int ad7768 spi_read (uint8, uint8 x);
1027 int ad7768 spi_write (uint8 , uint8);
1928 int ad7768 calc_fMOD (void);

1929 int ad7768 calc_ DCLK (void);

1930 int ad7768_ calc_ ODR (void);

: int ad7768_ set DCLK_div (uint8);

int ad7768 set MCLK _div (uint8);

int ad7768 set Drate (uintl6);

int ad7768 _set Filter (uint8);

int ad7768 reset () ;

int ad7768 sync() ;

void ad7768 print settings();

void cmd AD7768 GET REG(uint8 arg);

void cmd_ AD7768 SET REG(uint8 reg,uint8 value);
1940 void cmd_ AD7768 GET AllConflgs(vmd),
1941 void cmd AD7768 SET FILTER(uint8 arg);
void cmd_AD7768 SET DRATE(uintl6 arg);
void emd_AD7768 SET MCLK div(uint8 arg);
void cmd_AD7768 run(void);

void cmd_AD7768_ stop(vold)

void cmd_AD7768_pr1nt_Data(void) ;

void cmd_AD7768 _SET_DCLK_div(uint8 arg);

int reg_data_MibAdc2() ;
int reg data MibAdcl () ;
int reg data Dcan3 () ;
int reg_data_Dcan2();
int reg_data_Dcanl();
int reg_data_ePWNI1();
int reg data_ePWN2() ;
int reg data_ePWN3();
int reg data ePWN4() ;
int reg_data_ePWN5();
int reg_data_ePWNG6 () ;
int reg_data_ePWNT7();

)

)

int reg_data_eCAP1(
1962 int reg_data_eCAP2(

3

3

127

m-NLP System Firmware 128

1963 int reg_data_eCAP3(
1964 int reg_data_eCAP4(
1965 int reg_data_eCAPS5 (
1966 int reg data eCAPG6 (
1967 int reg data eQEPI1 (
1968 int reg data eQEP2(
1969 int reg_ data_ Gio();
1970 int reg_data_GioA ()
1971 int reg data_ GioB ()
1972 int reg_data_I2C();
1973 int reg_data NHETI1() ;

1974 int reg_data_ NHET2() ;

1975 int reg_data_HTUL() ;

1976 int reg_data_HTU2() ;

1977 int reg_data_ IOMM () ;

1978 int reg_data_MibSpil();

1979 int reg_data_Spi2();

1980 int reg_data_MibSpi3 () ;

1981 int reg_data_Spi4();

1982 int reg_data_MibSpip5 () ;

1983 int reg_data_Lin2();

1984 int reg data Linl();

1985 int reg data CcmR4 () ;

1986 int reg data Crc();

1987 int reg_data_ Dccl();

1988 int reg data Dcc2();

1989 int reg_data_Dmal() ;

1990 int reg_data_Esm() ;

1991 int reg_data_flashWrapper () ;

1992 int reg_data_Pbist () ;

1993 int reg_data_ PMMJ() ;

1994 int reg_data_Rti();

1995 int reg_data_Stc();

1996 int reg_data_Sys();

1997 int reg_data_Sys2();

1998 int reg_data_Vim() ;

1999 int reg_data_VimPar() ;

2000 int reg_data_Pom¢() ;

2001 int reg data Emif();

2002 int reg_data_Pecr();

2003 int reg_data RamWrapper Even () ;

2004 int reg data RamWrapper Odd() ;

2005 int RAM _ data read() ;

2006 void reg data cmd() ;

2007 void RAMtest _init () ;

2008 void raw_board_status() ;

2009 static int add_to_buffer (unsigned int a, unsigned int b, int state,uint8 message_id);
2010 void dac_status();

2011 int esml_read();

2012 int esm2_read();

2013 void ecc_data_test () ;

2014

2015 #endif /x INC_SysBoard H_ x*/

5
5

1 /*

2 * SysBoard.c

3 *

4 = Created on: Sep 21, 2017

5 * Author: Yassine Elfarri
6 */

7

8 #include "SysBoard.h"

/* %
10 * @brief declare the struct of adc samples
11 *

12 %/

13 volatile struct adc_samples_s adc_samples = {
14

15 .index = 0,

16 };

17

18 /% TODO set false/true using command x*/
19 bool raw_data = true;

20 bool new_sampling run = false;

21

22 /x*

23 * @brief initial MeasuredVI gobal variable to be used internal adc to read current and
voltage values.

24 *

25 */

26 struct MeasuredVI MON_I_V;
27 [xx

28 x @brief initial Bias_ Measured V gobal variable to be used internal adc to readback values

128

129 B.2 Drivers and Functionality

of bias applied on the probes. This part of DAC bias

29 *

30 x/

31 struct Bias_Measured V BIAS MON_V;
32

33 struct ltc_read ltc_m _values;

34

35 /xx @fn void EnablePower5V12V (int number)

36 * @brief Enables power rails 5V,DCDC 12V, and Egun P5VO0.

37 * @param [in] number a single variable that turn on power rails values should be between
W=7,

The reasoning behind this to make a think binary of 3 bits.

*
*
*
41 * the first bit is from MSB to LSB where 5V is the MSB, MID = DCDC 12V, and lab egun P5v0
42 *
43 * number = (5V) "2+ (DCDC 12V) ~1+(egun P5v0) "0
44 * where 0 is off and 1 is on
45 *
46 *
47 *
48 */
49 void EnablePower5V12V (int number)
50 {
51 switch (number)
52 {
53 case O0:
54 P5V0_EN_PIN_Off;
55 DCDC12V_EN_PIN_ Off;
56 P5V0_EGUN_EN_PIN_Off;
57 break;
58
59 case 1:
60 P5V0_EN_PIN_ Off;
61 DCDC12V_EN_PIN_ Off;
62 P5V0_EGUN_EN_PIN_On;
63
64 break ;
65 case 2:
66 P5V0_EN_ PIN Off;
67 DCDC12V_EN_PIN_On;
68 P5V0_EGUN _ EN _ PIN Off;
69 B -
70 break;
71 case 3:
72 P5V0_EN_PIN _Off;
73 DCDC12V_EN_PIN_On;
74 P5V0_EGUN_EN_PIN_On;
75
76 break;
7 case 4:
78 P5V0_EN_PIN_ On;
79 DCDC12V_EN_PIN_ Off;
80 P5V0_EGUN_EN_PIN_ Off;
81
82 break;
83 case 5:
84 P5V0_EN _ PIN On;
85 DCDC12V_EN_PIN _Off;
86 P5V0_EGUN_EN_ PIN On;
87 B -
88 break ;
89 case 6:
90 P5V0_EN_PIN_On;
91 DCDCI12V_EN_PIN_On;
92 P5V0_EGUN_EN_PIN_Off;
93
94 break;
95 case T:
96 P5V0_EN_PIN_ On;
97 DCDC12V_EN_PIN_On;
98 P5V0_EGUN_EN_PIN_On;
99
100 break ;
101 }
102 EnablePower5V12 readback () ;
103 N
104 /%%

105 % @brief initial Status power rails gobal get status of which pin is on or off x/
106 struct Power_switches Status_power _rails;

107

108 /*x@fn void EnablePower5V12_ readback ()

109 * @brief Function reads back the setting of the pins

129

m-NLP System Firmware

130

value

110 *

111 # This functions reads back the configuration of 3 rails

112 * — DCDC12V: supplies P12V and NI12V

113 * — P5VO Supplied for the AD7768 and others circuits that requires this

114 * — P5V0 _EGUN: supply for Egun.

115 */ B

116

117 void EnablePower5V12 readback ()

118 {

119 Status_power_rails .P5V0_EN_PIN = gioGetBit (hetPORT1,PIN_HET_9) ;

120 Status_power _rails .DCDCI2V_EN_PIN = gioGetBit (hetPORT1,PIN_HET_22);

121 Status_power _rails .P5V0_EGUN_EN_PIN = gioGetBit (hetPORT1,PIN_HET_25);

122 }

123 /x*% @fn void IVmeasurements ()

124 x @brief Reads current and voltage values from the TMS570 internal ADC.

125 = The values are updated only if the method is call.

126 = Voltage monitor values:

127 = — Egun 5V0 trace monitor

128 = — P12V positive 12 volt trace

129 = — N12V negative 12 volt trace

130 = — P3V3 3.3V power trace monitor

131 = — P5V0 5V power trace

132

133 =* Current values:

134 =* — P1V2 1 current monitor

135 =* — Egun 5V0 trace monitor

136 * — P12V positive 12 volt trace

137 — N12V negative 12 volt trace

138 % — P3V3 3.3V power trace monitor

139 =* — P5V0 5V power trace

140 =

141 * Todo: from technical document i see that possible to use ADC DMA unit
continues without taking resources from the CPU.

142 *

143 */

144 void IVmeasurements ()

145

146 /*number of ADC channels to read from x/

147 adcData_t data[ADC_Channels cnt];

148 /*Empty ADC FIFO to ensure reading the correct channel in right order */

149 adcResetFiFo (adcREG1, adcGROUP1) ;

150 /+*Conversion of values and put them in FIFOx/

151 adcStartConversion (adcREG1l, adcGROUP1) ;

152 //wait (20000) ;

153 /*Wait for the conversion to completex/

154 while (!adcIsConversionComplete (adcREG1, adcGROUPL1)) ;

155 /*Start reading data from FIFOx/

156 adcGetData (adcREG1, adcGROUP1, data) ;

157 /*Odd issues the if function should have do thisx/

158 MON_I V.P1V2_I= ADCmVPerBit * ADC_IMON x data[P1V2_I ID].value ;

159

160 MON_I V.EGUN_I = ADCmVPerBit * ADC_IMON # data[EGUN_I ID]. value ;

161

162 MON_I V.P5V0_I = ADCmVPerBit * ADC_IMON # data[P5V0_I_ID]. value ;

163 MON_I V.P5V0_V = ADCmVPerBit * VMONP5V0 % data[P5V0_V_ID]. value ;

164

165 MON I V.P3V3 V = ADCmVPerBit *+ VMON_P3V3 % data [P3V3 V ID]|.value ;

166 MON_I V.P3V3_I = ADCmVPerBit * ADC_IMON * data[P3V3_I_ID].value ;

167

168 MON I V.P12V_V = ADCmVPerBit * VMON P12V % data[P12V_V ID]. value ;

169 MON I V.P12V_ I = ADCmVPerBit * ADC IMON x data[P12V_1 ID]. value ;

170

171 MON_I_V.N12V_V = ADCmVPerBit * VMON_NI2V % data[N12V_V_ID]. value ;

172 MON_I_V.N12V_1I = ADCmVPerBit * ADC_IMON % data[N12V_I_ID]. value ;

173

174 if (!raw_data){

175 obc_debug("P1V2(mA),%d", MON_I V.P1V2_1I);

176 obc_debug("Egun(mA), %d", MON_I_V.EGUN_I);

177 obc_debug ("P5V0(mV) (mA),%d,%d", MON_I_V.P5V0_V, MON_I V.P5V0_I);

178 obc_debug ("P3V3(mV) (mA),%d,%d", MON_I _V.P3V3_V, MON_I V.P3V3_1I);

179 obc_debug("P12V (mV) (mA),%d,%d", MON_I V.P12V_V, MON_I V.P12V_1);

180 obc_debug ("N12V (mV) (mA),—%d,%d", MON_I V.N12V_V, MON_I V.N12V _1I);

181 }

182

183

184 }

185

186 /%% @fn void Antenna RLS DTCT ()

187 @brief Reads current and voltage values from the TMS570 internal ADC.

188 =x @param [in] Antenna RLS NR annetna released each number corspondes to antena

189

190 the function received the antenna that needed to be released wait for the

it detects a

release .

130

systems

to update values

until

191

192
193

194
195
196

250

252

131

B.2 Drivers and Functionality

number of antennas to be release are 4. to release each antenna method should be called
each time.
Antenna is released when can2—3 input is pulled low. For testing use a large resistor
connect one side to GND and other to corrisponding channel pin. when the pin is pulled
down a realse signal is detected.
*/
int Antenna_ RLS DTCT(int Antenna_ RLS NR)
{
switch (Antenna_RLS_NR)
{
case O0:
Ant_RLS_1_On;
while (canloRxGetBit (Antenna_ DTCT_1_2_ Reg)) ;
Ant_RLS_1_Off;
return 1;
case 1:
Ant_RLS_2_ On;
while (canloTxGetBit (Antenna_ DTCT_1_2 Reg)) ;
Ant_RLS_2_Off;
return 1;
case 2:
Ant_RLS_ 3 On;
while (canloRxGetBit (Antenna_ DTCT_3_4_Reg)) ;
Ant_RLS_3_ Off;
return 1;
case 3:
Ant_RLS_4_On;
while (canloTxGetBit (Antenna_ DTCT_3_4_Reg)) ;
Ant_RLS_4_Off;
return 1;
default :
return 0;
}
}
[* %
* @brief initial antenna status get status of antenna[l —4]
*
*/
struct antenna_ status antenna getstatus;
/*%@fn void Antenna_get status()
* @brief Function reads back the setting of the pins
*
* This functions get back the configuration antennas 0 is for released
*
./
void Antenna_get status()
{
antenna_getstatus.Antenna 1 = canloRxGetBit (Antenna DTCT_ 1 2 Reg) ;
antenna_getstatus.Antenna 2 = canloTxGetBit (Antenna DTCT 1 2 Reg) ;
antenna getstatus.Antenna 3 = canloRxGetBit (Antenna DTCT 3 4 Reg) ;
antenna_getstatus.Antenna_4 = canloTxGetBit (Antenna_DTCT_3_4_Reg) ;
}
/*% @Qfn void DAC_SPI_confi(uint8 dac_channel ,uint8 dac_mode, uint8 bias_voltage)
* @brief Setts a channel to a spesific bias voltage and mode
* @param|[in] dac_channel channel
* @param [in] dac_mode
* @param|[in] bias_voltage in voltages
*
* the param are:
* — channel 0—-3 for DAC
* — Mode :
* — 0 = write to channel, do not update.
* — 1 = write to channel. update channel bias voltage
* — 2 = write and update all the channels with the same bias voltage.
* — 3 = power down DAC.
*
* The command send over SPI :
* The dac is labeled X15 in mNLP Hercules schematics. The model is a TI DAC104S085. This

131

m-NLP System Firmware 132

DAC is configured to receive data via spi.

271 % The data received will be put into a shift register. The shift register size if 16 bits.
272 %
273 % | AL] AO| OP1] OP0| Dil| D10| D9| D8| D7| D6| D5| D4| D3| D2| Di1| DO |
274 % Al is MSB bit 15 and DO is LSB bit [0].
275 =
276 * — A[1—-0] this are address bit to channel from channel[0—3]. values 00 for channel 0
277 x — OP[1—-0] Operation bits determ the mode named earlier
278 x — D[11—-2] the those bit determin the bias voltage.
279 *
280 *
281 *
282 %/
283
284 void DAC_SPI_confi(uint8 dac_channel ,uint8 dac_mode, uint8 bias_voltage)
285 {
286
if (! gioGetBit (hetPORT1, PIN HET 22))
DCDC12V_EN_PIN_ On;
//SendStringSCI("12V is turned on.", 6 True);
//implement wait for rail to reach 12V
}
spiDAT1_t dataconfigl t;
dataconfigl t.CS _HOLD = FALSE;
dataconfigl t.WDEL = True;
dataconfigl t.DFSEL = SPI_FMT_0;
dataconfigl t.CSNR = OxFE;
/% Calculate code to write to DAC to do
* 10bit DAC = 1024, 5V range * 4 weighting from OPAMPs = 20
% change opamp weight if gain is changed
*/
int calc_value = (10 — bias_voltage) x 1024/20;
uint16 Buff tx;
/*Format the DAC to type DAC can readx/
Buff tx = (dac_channel & 0x3) << 14 |(dac_mode & 0x3) << 12 |[(calc_value & 0x3ff) << 2;
spiTransmitData (spiREG3, &dataconfigl t, 1,(uintl6x*)&Buff tx);
}
/** @fn DAC_Gain_ SET SELECT(uint8 Gain SEL)
* @brief Setts a channel to a spesific bias voltage and mode
* @param [in] Gain_ SEL the gain can be selected to be 10 or 20
*
* valid params are:
* — 0 turn off gain and set Gain to 10 as default
* — 1 turn on gain the values is gain = 10
* — 2 gain to 10
* — 3 set gain to 20
*
*
./

void DAC_Gain_SET_SELECT(uint8 Gain_SEL)
switch (Gain_SEL)

case O0:
Gain_ Enable_ Off;
Gain_SEL_G10;
break ;

case 1:
Gain_ Enable_On;
Gain_SEL_G10;

break;
case 2:
Gain_SEL_G10;
break ;
case 3:
Gain_ SEL G20;
break;
default :

SendStringSCI("Not valid value",True);

132

133 B.2 Drivers and Functionality

struct Gain_sel_om Gain_status;
/*% @fn DAC _get_gain_status()

* @brief Get status of which gain is selected
*
* This functions get the value of gain from GPIO channels:
* — Gain is enabled to channel 1-4 is value 1
* — GAin_10 is selected to channels is value 0
* — GAin_20 is slected to channels value 1
* This values are from the GPIO PIN HET 15 and 19
*/
void DAC _get_gain_status()
{
Gain_status.Gain_on_off =gioGetBit (hetPORT1,PIN_HET_15) ;
if (gioGetBit (hetPORT1,PIN_HET_19) == 0)
Gain_status.Gain_10 =1;
Gain_status.Gain_20=0;
}
else if(gioGetBit (hetPORT1,PIN HET_19) == 1)
{
Gain_status.Gain_10 =0;
Gain_status.Gain_20=1;
}
}
/** @fn DAC_GAIN_ SET STATUS()
* @brief Readback value of all channels
*
* this function will be handy to verify the functionality of DAC value during remote
operation
383 *
384 *
385 *
386 x/
387 void DAC_GAIN_SET_STATUS()
388 {
389
390
391

392 adcData t data[BIAS ADC_Channels cnt];

393 adcResetFiFo (adcREG1, adcGROUP2) ;

adcStartConversion (adcREG1l, adcGROUP2) ;

//wait (20000) ;

39 while (!adcIsConversionComplete (adcREG1, adcGROUP2)) ;
397 adcGetData(adcREG1, adcGROUP2,data) ;

398

399 BIAS_MON_V.DAC_BIAS_CHIl= ((data[DAC_BCH1_ID].value — 3134)%— 2.9) +500 ;
400

401 BIAS_ MON_V.DAC_BIAS CH2= ((data [DAC_BCH2 ID].value — 3134) x—2.9) + 500;
402

403 BIAS_ MON_V.DAC_BIAS CH3= ((data[DAC_BCH3 ID].value — 3134)%—2.9) + 500;
404

405 BIAS MON_V.DAC_BIAS CH4— ((data|[DAC BCH4 ID].value — 3134) *—2.9) + 500;
406

407 if ('raw_data){

408 obc_debug("Bias CH1(mV): %d" ,BIAS MON V.DAC BIAS CHI1) ;

409 obc_debug("Bias CH2(mV): %d" ,BIAS MON_V.DAC BIAS CH2);

410 obc_debug("Bias CH3(mV): %d" ,BIAS MON_V.DAC BIAS CH3);

411 obc _debug("Bias CH4(mV): %d" ,BIAS MON_V.DAC BIAS CH4);

112 ¥

413 }

414

415

416 /%% @fn void cmd enable rails(int argl, int arg2)

417 = @brief This function cmd check for validation of value

418 = @param [in] argl should be between [0—7]

419 * @param [in] arg2 not used just to check for unvalid args

420 *

421 =/

422

423 void cmd_enable_rails(int argl, int arg2)

424

425 if (argl > 7 || arg2 != 0)

426

427 SciSendACK (2) ;

428 //SciTooManyargs () ;

429 //goto Error;

430 }

431 EnablePower5V12V (argl) ;

432 }

433

434 /%% Qfn void cmd_IV_measur(int argl,int arg2)

133

m-NLP System Firmware 134

460

462
463
464
465
466
467
468
469
470
471
472

* @brief This function cmd check for validation of value
* @param|[in] argl not used just to check for unvalid calls
* @param|[in] arg2 not used just to check for unvalid args
*
./

void cmd_ IV _measur(int argl,int arg2)

if (argl!= 0 || arg2!= 0)
SciSendACK (2) ;

}

IVmeasurements () ;
}
/*% @fn void cmd_DAC_SPI_config(int argl, int arg2,int arg3)
* @brief This function cmd check for validation of value
* @param|[in] argl channel to be set
* @param|[in] arg2 Mode value to be set
* @param|[in]| arg3 Voltage value to be selected
*/
void cmd_ DAC_SPI_ config(int argl, int arg2,int arg3)
{

if (argl> 3 || arg2> 3)

SciSendACK (2) ;
//SciTooManyargs () ;

}
DAC_SPI_confi(argl ,arg2,arg3);

}

/*% @fn void cmd_ DAC_Gain_Sel EN(int argl, int arg2)

* @brief This function cmd check for validation of value
* @param|[in] argl set gain

* @param|[in]| arg2 none

*

*/

void cmd DAC_ Gain_Sel EN(int argl, int arg2)
if (argl> 3 || arg2> 3)

SciSendACK (2) ;

DAC_Gain_SET_SELECT (argl) ;

}

/*% @fn void cmd DAC_GAIN_SET STATUS(int argl,int arg2)

* @brief This function cmd check for validation of value
* @param|[in] argl channel to be set

* @param|[in] arg2 Mode value to be set

*

x/

void ecmd DAC_ GAIN_SET STATUS(int argl, int arg2)
if (argl!= 0 || arg2!=0)

SciSendACK (2) ;

DAC_GAIN_SET_STATUS() ;

}

/#% @fn void cmd_Antenna_RLS_DTCT(int argl,int arg2)

* @brief This function cmd check for validation of value
* @param|[in] argl channel to be set

* @param|[in] arg2 Mode value to be set

*

x/

void cmd_Antenna_RLS DTCT(int argl,int arg2)
if (argl> 3 || arg2> 3)
SciSendACK (2) ;
}Antenna_RLS_DTCT(argl);

/3¢ ok sk ok sk sk ok sk ok sk ok ok sk s ok sk ok sk sk ok sk K ok sk ok sk ok ok sk ok ok sk kkk ok k ok ok ok - L'TC3887 functions

134

135 B.2 Drivers and Functionality

518
519 /%
520 x* @brief table that hold the information from type of command, register address, size and
values
521 =
522 % the LTC3887 uses two type of address values use some register can be access using global
address while other needs a paged address.
523 * this table is the best way to hold use the correct address with the command. Some
registers requires two bytes while other only one.
* this a good way to this information on what to expect while reading and writing.
*
* — Address , command, size to be written or read, LSB then MSB.
Ny
Itc_config const ltc_config table[] = {
{GLOBAL, LTC3837 WRITE PROTECT One_Byte, 0x00, 0x00},

{GLOBAL, LTC3887_ FREQUENCY_ SWITCH
{GLOBAL, LTC3887_VIN_ON

{GLOBAL, LTC3887_VIN_OFF

{GLOBAL, LTC3887_VIN_OV_FAULT_LIMIT
{GLOBAL, LTC3887_VIN_UV_WARN_LIMIT
{GLOBAL, LTC3887_IIN_OC_WARN_LIMIT
{GLOBAL, LTC3887_STATUS_ INPUT

{GLOBAL, LTC3887_STATUS CML

{GLOBAL, LTC3887_USER_DATA_00

{GLOBAL, LTC3887_ USER_DATA 02

{GLOBAL, LTC3887_ USER_DATA 04

{GLOBAL, LTC3887 MFR_CONFIG_ ALL _ LTC3887
{GLOBAL, LTC3887 MFR_ADDRESS

{GLOBAL, LTC3887_ MFR_PWM _CONFIG LTC3887
{GLOBAL, LTC3887 Page

{PAGED, LTC3887 OPERATION

{PAGED, LTC3887_ ON_OFF_ CONFIG

{PAGED, LTC3887_VOUT COMMAND

{PAGED, LTC3887_VOUT_MAX

{PAGED, LTC3887_VOUT_MARGIN_HIGH
{PAGED, LTC3887_VOUT MARGIN LOW
{PAGED, LTC3887_VOUT_TRANSITION_ RATE
{PAGED, LTC3887_IOUT_CAL_GAIN

{PAGED, LTC3887_VOUT_OV_FAULT_ LIMIT
{PAGED, LTC3887_VOUT_ OV_FAULT RESPONSE
{PAGED, LTC3887_VOUT_OV_WARN_LIMIT
{PAGED, LTC3887_VOUT_UV_WARN_LIMIT
{PAGED, LTC3887_VOUT_ UV_FAULT LIMIT
{PAGED, LTC3887_ VOUT_UV_FAULT RESPONSE
{PAGED, LTC3887_ IOUT_OC_FAULT_LIMIT
{PAGED, LTC3887 IOUT_OC_FAULT RESPONSE
{PAGED, LTC3887 IOUT_OC_WARN_LIMIT
{PAGED, LTC3887_ OT_ FAULT LIMIT

{PAGED, LTC3887_OT_ FAULT RESPONSE
{PAGED, LTC3887_OT_WARN_LIMIT

{PAGED, LTC3887 UT_ FAULT LIMIT

{PAGED, LTC3887_UT_FAULT RESPONSE
{PAGED, LTC3887_VIN_ OV_FAULT_ RESPONSE
{PAGED, LTC3887_TON_DELAY

{PAGED, LTC3887_ TON_RISE

{PAGED, LTC3887 TON MAX FAULT LIMIT
{PAGED, LTC3887 TON MAX FAULT RESPONSE
{PAGED, LTC3887_ TOFF_DELAY

{PAGED, LTC3887_ TOFF_FALL

{PAGED, LTC3887 TOFF_MAX WARN_LIMIT
{PAGED, LTC3887_STATUS_ VOUT

{PAGED, LTC3887_ STATUS_IOUT

{PAGED, LTC3887_ STATUS TEMPERATURE
{PAGED, LTC3887_ STATUS MFR_SPECIFIC
{PAGED, LTC3887 USER_DATA 01

{PAGED, LTC3887 USER_DATA 03

{PAGED, LTC3887 MFR_CHAN_ CONFIG LTC3887
{PAGED, LTC3887_MFR_GPIO_PROPAGATE_LTC3887
{PAGED, LTC3887_MFR_PWM_MODE_LTC3887
{PAGED, LTC3887_MFR_GPIO_RESPONSE
{PAGED, LTC3887_MFR_RETRY_ DELAY
{PAGED, LTC3887_MFR_RESTART_ DELAY
{PAGED, LTC3887_ MFR_IIN_ OFFSET

{PAGED, LTC3887 MFR IOUT CAL_ GAIN TC
{PAGED, LTC3887 MFR TEMP 1 GAIN
{PAGED, LTC3887 MFR_TEMP_1_OFFSET
{PAGED, LTC3887_ MFR_RAIL ADDRESS
{GLOBAL, LTC3887 Page

{PAGED, LTC3887 OPERATION

{PAGED, LTC3887_ON_OFF_CONFIG

{PAGED, LTC3887 VOUT COMMAND

{PAGED, LTC3887 VOUT_ MAX

Two_Bytes, OxEE, 0x02},
Two_Bytes, 0xCO, 0xCB},
Two_Bytes, 0x40, 0xCB},
Two_Bytes, 0x00, 0xD3},
Two_Bytes, 0x80, 0xCB},
Two_Bytes, 0x80, 0xCA},
One_Byte, 0x00, 0x00},
One Byte, 0x00, 0x00},
Two_Bytes, 0x00, 0x00},
Two Bytes, 0x00, 0x00},
Two_ Bytes, 0x00, 0x00},
One_Byte, 0x61, 0x00},
One_Byte, 0x4F, 0x00},
One_Byte, 0x00, 0x00},
One_Byte, 0x0, 0x00},

One_Byte, 0x80, 0x00},
One_Byte, O0x1E, 0x00},
Two_ Bytes, 0x00, 0x10},
Two_Bytes, 0x00, 0x58},
Two_Bytes, OxAE, 0x67},
Two_Bytes, 0x66, OxOE},
Two_Bytes, O0x8F, 0x82},
Two_Bytes, 0x58, OxFA},
Two_Bytes, 0x00, 0x68},
One Byte, 0x00, 0x00},
Two_Bytes, 0xD7, 0x67},
Two Bytes, 0xCD, 0x0C},
Two Bytes, 0x33, 0x0B},
One_Byte, 0x00, 0x00},
Two_Bytes, 0xB8, 0xA2},
One_Byte, 0x00, 0x00},
Two_Bytes, O0x8F, 0xA2},
Two_Bytes, 0x20, OxEB},
One_Byte, 0x00, 0x00},
Two_Bytes, 0xA8, OxEA},
Two_Bytes, O0xDA, OxFD},
One_Byte, 0x00, 0x00},
One_Byte, 0x00, 0x00},
Two_Bytes, 0x00, 0x80},
Two_Bytes, 0x58, 0x02},
Two_Bytes, 0xE8, 0x03},
One Byte, 0xB8, 0x00},
Two_ Bytes, 0x00, 0x80},
Two_Bytes, 0x00, 0xD2},
Two Bytes, 0x58, 0xF2},
One_Byte, 0x00, 0x00},
One_Byte, 0x00, 0x00},
One_Byte, 0x00, 0x00},
One_Byte, 0x11, 0x00},
Two_Bytes, 0x61, 0xDT7},
Two_ Bytes, 0x00, 0x00},
One_Byte, 0x1D, 0x00},
Two_Bytes, 0x93, 0x69},
One_Byte, 0xC1, 0x00},
One_Byte, 0xCO0, 0x00},
Two_Bytes, 0xBC, OxFA},
Two_Bytes, O0xE8, OxFB},
Two_Bytes, 0x33, 0x93},
Two_Bytes, 0x00, 0x00},
Two_ Bytes, 0x00, 0x40},
Two_Bytes, 0x00, 0x80},
One Byte, 0x80, 0x00},
One_Byte, 0x1, 0x00},

One_Byte, 0x00, 0x00},
One_Byte, O0x1E, 0x00},
Two_Bytes, 0x00, 0xAO},
Two_ Bytes, 0x00, 0xBO},

135

m-NLP System Firmware 136
597 {PAGED, LTC3887_ VOUT_MARGIN_ HIGH , Two_Bytes, 0xCD, 0xAO0},
598 {PAGED, LTC3887_VOUT_ MARGIN LOW , Two_Bytes, 0x33, 0x9F},
599 {PAGED, LTC3887_VOUT_TRANSITION RATE , Two_Bytes, 0x8F, 0x82},
600 {PAGED, LTC3887 IOUT_ CAL_GAIN , Two_ Bytes, 0x9A, 0xBB},
601 {PAGED, LTC3887 VOUT OV _FAULT LIMIT , Two_ Bytes, 0x9A, O0xAl},
602 {PAGED, LTC3887 VOUT_ OV_FAULT RESPONSE , One Byte, 0xB8, 0x00},
603 {PAGED, LTC3887 VOUT OV_WARN LIMIT , Two_ Bytes, 0x48, OxAl},
604 {PAGED, LTC387 VOUT_ UV_WARN_LIMIT , Two_Bytes, 0xB8, 0x9E},
605 {PAGED, LTC387 VOUT_ UV_FAULT LIMIT , Two_ Bytes, 0x66, 0x9E},
606 {PAGED, LTC3887_VOUT_UV_FAULT_RESPONSE , One_Byte, 0xB8, 0x00},
6 {PAGED, LTC3887_IOUT_OC_FAULT_LIMIT , Two_Bytes, 0xB8, 0xDB},

{PAGED, LTC3887_IOUT_OC_FAULT_RESPONSE , One_Byte, 0x00, 0x00},
{PAGED, LTC3887_IOUT_OC_WARN_LIMIT , Two_Bytes, 0x80, 0xDA},
{PAGED, LTC3887_OT_FAULT_LIMIT , Two_Bytes, 0x20, O0xEB},
{PAGED, LTC3887_OT_FAULT_RESPONSE , One_Byte, 0xB8, 0x00},
{PAGED, LTC3887_OT_WARN_LIMIT , Two_Bytes, 0xA8, OxEA},
{PAGED, LTC3887_UT_FAULT_LIMIT , Two_Bytes, 0x80, OxE5},
{PAGED, LTC3887_UT_FAULT_RESPONSE , One_Byte, 0xB8, 0x00},
{PAGED, LTC3887_ VIN_OV_FAULT_ RESPONSE , One_Byte, 0x80, 0x00},
{PAGED, LTC3887_TON_DELAY , Two_Bytes, 0x00, 0x80},
{PAGED, LTC3887_ TON_RISE , Two_Bytes, 0x00, 0xD2},
{PAGED, LTC3887 TON_MAX FAULT LIMIT , Two_Bytes, 0x80, 0xD2},
{PAGED, LTC3887 TON_MAX FAULT RESPONSE , One_ Byte, 0xB8, 0x00},
{PAGED, LTC3887 TOFF_ DELAY , Two_ Bytes, 0x00, 0x80},
{PAGED, LTC3887 TOFF_ FALL , Two_Bytes, 0x00, 0xD2},
{PAGED, LTC387 TOFF MAX WARN _ LIMIT , Two_ Bytes, 0x58, O0xF2},
{PAGED, LTC3887_STATUS_VOUT , One_Byte, 0x00, 0x00},
{PAGED, LTC3887_STATUS_IOUT , One_Byte, 0x00, 0x00},
{PAGED, LTC3887_STATUS_TEMPERATURE , One_Byte, 0x00, 0x00},
{PAGED, LTC3887_STATUS_MFR_SPECIFIC , One_Byte, 0x11, 0x00},
{PAGED, LTC3887_USER_DATA_ 01 , Two_Bytes, 0x64, OxAE},
{PAGED, LTC3887_USER_DATA_ 03 , Two_Bytes, 0x00, 0x00},
{PAGED, LTC3887_MFR_CHAN_CONFIG_LTC3887 , One_Byte, 0x1D, 0x00},
{PAGED, LTC3887_MFR_GPIO_PROPAGATE_LTC3887 , Two_Bytes, 0x93, 0x69},
{PAGED, LTC3887_ MFR_PWM_MODE_LTC3887 , One_Byte, 0x83, 0x00},
{PAGED, LTC3887_MFR_GPIO_RESPONSE , One_Byte, 0xCO, 0x00},
{PAGED, LTC3887_MFR_RETRY_ DELAY , Two_Bytes, 0xBC, OxFA},
{PAGED, LTC3887 MFR_RESTART_ DELAY , Two_Bytes, 0xE8, O0xFB},
{PAGED, LTC3887 MFR_IIN OFFSET , Two_Bytes, 0x33, 0x93},
{PAGED, LTC3887 MFR_IOUT_ CAL_ GAIN_ TC , Two_Bytes, 0x3C, 0x0F},
{PAGED, LTC3887 MFR_ TEMP 1 GAIN , Two_ Bytes, 0x00, 0x40},
{PAGED, LTC3887 MFR_TEMP_ 1 OFFSET , Two_Bytes, 0x00, 0x80},
{PAGED, LTC3837 MFR_RAIL ADDRESS , One_ Byte, 0x80, 0x00},
{COMPLETE, 0x00, 0x00, 0x00, 0x00}

s

/#% @fn int ltc_I2C_TxRx_timeout (uint8 TxRx)

* @brief Checks if I2C tx or RX buffer is ready to be used

* @param [in] TxRx choose out Tx= 1 or Rx = 2

*

* @return returns 0 if function is successful , and return 1 = failed when is

never received
650 x*
651 x* Checks if the Tx or Rx buffer flag is set. Returns if flag is not set flag

it self.
This function will return Return_ Fail only

int ltc_I2C_TxRx_ timeout (uint8 TxRx) {

#define timeout 0x200000
int cnt=0;

switch (TxRx)

{
case 1:
while (cnt < timeout) {
if (i2cIsTxReady (i2cREG1) != 0U)
return 0;
cnt—++;
}
break ;
case 2:
while (cnt < timeout)
if (i2cIsRxReady (i2cREG1) != 0U)
return 0;
cnt++;

break ;

136

if Param/|in |

not

equal to

678
679
680
681
682
683
684
685
686
687
688
689
690

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

707
708
709
710
711
712
713
714
715

716
717
718
719
720
721
722

723
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

137 B.2 Drivers and Functionality

* K K K X K
3
*

*
*
*

*/

default :
return 1;

}
return 1;

@fn void I2C _ config(uint32 length, uint32 dir, bool reset in)
@brief Checks if I2C tx or RX buffer is ready to be used
@param [in] length size of byte read/write

@param [in] dir Transmission or receive mode

@param |[in] reset in reset I2C configuration before each call

This function reconfigures I2C settings to meet the need of switching between rx and tx as
well different sizes of
bytes that needs to be read and written to the LTC3887 digital power controller.

void I2C_config(uint32 length, uint32 dir, bool reset_in)

L]
s
*

% K K X X % %

*/

int

if (reset _in == 1)

/* Module in reset. Status bits cleared =x/
i2cREG1—>MDR = I2C_RESET _IN;

/* Length of data to be read/transimi x*/

i2cREG1—>CNT = length ;

/* read in technical documents page 1821x/

i2cREG1—>MDR = 12C_FREE_RUN | I2C_STOP_COND [I2C_MASTER | dir | I2C_START_COND |
12C_RESET_OUT;

@fn int PMBus_read (uint8 address, uint8 x reg_and_data, uint8 length)
@brief Function that use SMBUS protocol to read from LTC3887

@param [in] address 8bits address

@param [out| *reg and data values of the register

@param [in | length the length of value read it could be 1 byte or 2 bytes

Qreturn returns 0 if function is successful. returns 1 failed(I2C ready flag never
received)

this function reads from send the following data in order
— Write address(Global or paged)+ register
— Read from register (1 byte or 2 bytes)

Information about SMBus and PMBus

— SMBus is a two—wire interface that is often used to interconnect a variety of system
management chips to one or more host systems. It uses I2C with some extensions as the
physical layer. There is also a protocol layer, which defines classes of data and how
that data is structured. Both the physical layer and protocol layer add a level of
robustness not originally embodied in the I2C specification. The SMBus Slave component
supports most of the SMBus version 2.0 Slave device specifications with numerous
configurable options.

— PMBus is an extension to the more generic SMBus protocol with specific focus on power
conversion and power management systems. With some slight modifications to the SMBus
protocol, the PMBus specifies application layer commands, which are not defined in the
SMBus. The PMBus component presents all possible PMBus revision 1.2 commands and allows
you to select which commands are relevant to an application.

PMBus_read (uint8 address, uint8 * reg_and_data, uint8 length) {

int cnt;
/*Delay between each operationsx/
wait (4000) ;

/* slave address use 0—6 bits for a 7 bits comx/
i2cREG1—>SAR = (uint32_t)(address);

12C _config (1,12C_TRANSMITTER, 1) ;
if (ltc_I2C_TxRx_timeout (1))
return 1;
i2cREG1—>DXR = (uint32)reg and data[0];

if (ltc_I2C_TxRx_timeout (1))
return 1;

137

m-NLP System Firmware

138

775
776

802
803
804
805
806
807
808
809
810
811
812

813
814

815
816
817

* X K X X X
*
*

* ¥ X ¥ X ¥

*
*
int

12C_config ((uint32)length ,I2C_RECEIVER,O0) ;
for (cnt=1; cnt < length+1; cnt++) {
if (ltc_I2C_TxRx_timeout (2))
return 1;
reg_and_data[cnt] = ((uint8)i2cREG1—>DRR) ;

i2cREG1—>STR = (uint32)I2C_SCD_INT;

return O0;

@fn int PMBus_write (uint8 address, uint8 % reg_ and_data, uint8

@brief Function that use write protocol from LTC3887
@param|[in] address 8bits address
@param [out] xreg_and_data values of the register

length)

@param|[in] length the length of value read it could be 1 byte or 2 bytes

Qreturn returns 0 if function is successful. returns 1 failed(I2C ready flag never

received)

this function reads from send the following data in order

— Write address(Global or paged)+ register + data

Information about SMBus and PMBus

— SMBus is a two—wire interface that is often used to interconnect a variety of system
management chips to one or more host systems. It uses I2C with some extensions
physical layer. There is also a protocol layer, which defines
that data is structured. Both the physical layer and protocol

robustness not originally embodied in the I2C specification.
supports most of the SMBus version 2.0 Slave device specifications

configurable options.

— PMBus is an extension to the more generic SMBus protocol with

conversion and power management systems. With some slight
protocol , the PMBus specifies application layer commands,

SMBus. The PMBus component presents all possible PMBus

revision

you to select which commands are relevant to an application.

PMBus_write (uint8 address, uint8 % reg_and_data, uint8
int cnt;
while (i2cIsBusBusy (i2cREG1)) ;
i2cREG1—>SAR = (uint32_t) (address);
12C_config ((uint32)length ,J2C_TRANSMITTER,1) ;
for (cnt=0; cnt < length; cntt+) {
if (ltc_I2C_ TxRx_timeout (1))

return 1;
i2cREG1—>DXR = (uint32)reg and data[cnt];

if (ltc_I2C_TxRx_timeout (1))
return 1;

i2cREG1—>STR = (uint32)I2C_SCD_INT;

return O0;

@fn int 1tc3887 ready (void)
@brief Function checks if the LTC3887 ready to received

@return returns 0 if function is successful. returns 1 failed(I2C ready flag never

received)

This function checks if the LTC3887 is ready by ready buffer.
it is an indication that LTC3887 is ready to receive a command.

1tc3887 ready (void) {

138

length)

a write

classes
layer

specific focus

modifications
which are not defined

of data and how
add a level
The SMBus Slave component
with numerous

on power
to the SMBus
in the

1.2 commands and allows

{

or

read command

when the buffer value

is 68

818
819
820

822
823
824
825
826

828
829
830
831
832
833

834

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

877
878
879
880
881
882
883
884
885

886
888
889
890
891
892

893
894

139

B.2 Drivers and Functionality

/®*

* ¥ *

int

/
/ox %
*

*

*/

int

uint8 reg and_data []
do{

if (PMBus_read (LTC3887 GLOBAL_ADDRESS,

return 1;

}
while ((reg_and data[1] & 0x68)

return 0;
@Qfn int 1tc3887 _init (void)

@brief Function i use to write

@return returns 0 if function
To be able to use this model as
configurations. This

Since he design and configurate
system .
from table

The functions reads

1tc3887 init (void) {

int cnt=0;
uint8 reg_and_data[3];
uintl6 address;

— {LTC3887 MFR_COMMON, 0x0 };

reg _and_data, 1))
= 0x68);
the correct configuration to the 1tc3887
is successful. returns 1 failed
intented the systems needs a to write the right

configuration got from ELAB—erlend

an earlier test circuit to fit the need for the our mNLP

of commands and data ltc_config_ table.

if (1tc3887 turn_on_off channel (0, false))
return 1;
while (ltc_config table[cnt].ltc_config Address != COMPLETE) {

switch (ltc_config

table [cnt].ltc_config Address) {

case GLOBAL:

address

break ;

LTC3887 GLOBAL_ADDRESS;

case PAGED:

address

break ;

default :

reg_and_data[0]
reg_and_data[1]
reg_and_data[2]

if (1tc3887 ready (
return 1;

if (PMBus_write(address,

LTC3887_PAGED_ADDRESS;

return 1;

ltc_config table[cnt].ltc_Command;
ltc_config_ table[cnt].ltc_Lower_byte;
ltc_config table[cnt].ltc_upper byte;

))

reg and data, (ltc_ config table[cnt].ltc byte Length

+ 1))
return 1;
cnt++;

}

return 0;
}
@fn int 1tc3887 read_config()
@brief Readback of all the registers. this used to verify that none are effect either
under debbuging and testing or the system.
Qreturn returns 0 if function is successful. returns 1 failed
THe functions compare the values that should be read and from the table. Data will be
send our regardless whether the system has detected an err or not.
if a different value is read then written it in dicated by sending Errl or Err2 = upper
bite (MSB)

1tc3887 _read _config ()

139

m-NLP System Firmware

140

int cnt = 0;
uint8 reg and_data[3];
uintl6 address;

while (ltc_config table[cnt].ltc config Address != COMPLETE) {

switch (ltc_ config table[cnt].ltc config Address) {
case GLOBAL:

if ((ltc_config table[cnt]|.ltc Command == LTC3887 PAGE) && (

Itc_config_table[cnt].ltc_Lower_byte = 0x01))
return 0;

address = LTC3887_ GLOBAL_ADDRESS;

break;
case PAGED:
address = LTC3887_PAGED_ADDRESS;
break;
default :
return 0;
}
reg_and data[0] = ltc_ config table|[cnt].ltc Command;

//char temp[60];

if (1tc3887 _ready ())
return 1;

if (PMBus_read(address, reg_ and_data, ltc_config_ table[cnt].ltc_byte Length))

return 1;

if (ltc_config_ table[cnt].ltc_byte Length = 1){

if (reg_and_data[l] != ltc_config_ table[cnt].ltc_Lower_ byte)

if (raw_data)

add _to_ buffer (reg and_ data[0] ,reg _and_ data[1l], CONTINUE,

Message TMS_REG) ;
else{

}

if (raw_data)

obc_debug("%x, %x Errl",reg and data[0], reg and data[1l]) ;

else

add_to_buffer (reg_and_data[0] ,reg_and_data[1], CONTINUE,

Message_ TMS_REG) ;

else{
obc_debug("%x, %x",reg_and_data[0], reg_and_data[1l]) ;
}
if (ltc_config table[cnt].ltc_byte Length == 2)
if (reg_and data[2] != ltc config table[cnt].ltc upper byte)

if (raw_data)

{
, CONTINUE, Message_ TMS_REG)) ;

add_to_buffer (reg_and_data[0],((reg_and_data[2]<<8)

else{
obc_debug ("%x, %x, %x err2",reg_and_data[0],
reg_and_data[2]) ;
}

else
if (raw_data)

add_to_buffer (reg_and_data[0],((reg_and_data[2]<<8)

, CONTINUE, Message_ TMS_REG) ;

else {
obc debug("%x, %x, %x",reg_and_ data[0], reg and data[l],
[21);
}
}
//SendStringSCI("\r\n",False);

cnt++;

return 0;

140

reg_and_data[1l],

reg_and_data[1])

reg_and_data[1])

reg _and_data

971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044
1045
1046
1047
1048
1049
1050
1051

141 B.2 Drivers and Functionality

s
*

* K X K X K X

*

2
~

int

3
*

¥ K K K K K X K =

=%
B~
o

-~

* KX
2
*

* X K X X % ¥

% K K X X X X %

@fn int 1tc3887 L1l6u reg (uintl6 data, uint8 * reg addr)

@brief this function convert data received to format linear for voltage related commands
@param [in] data needed to be converted e.g milliVolts

@param [out] reg_ addr valid register value to to write

@return returns 0 if function is successful. (todo, detected overflow??)

this function is done according to LTC3887 datasheet consolt the table about data format.
Y = (data % 1/1000 % (2%%x—12)) where Y is register value

1tc3887_L16u_reg (uintl6 data, uint8 % reg_addr) {

/* Y = (Value * 1/1000 x (2x%x—12)) x/
/*voltage in mVx/

float tmp = (float) ((data)/0.244140625) ;
reg_addr[0] = (uint8)tmp;

reg_addr[1] = (uint8) ((uintl6)tmp >> 8);
return 0;

@fn int 1tc3887 L16u_data (uint8 x reg addr,uintl6x* data)

@brief this function convert register received to format from linear to integer
@param |[in] reg addr valid register value to to write

@param [out| data needed to be converted

@return returns O if function is successful. (todo, detected overflow??)

this function is done according to LTC3887 datasheet consolt the table about data format.
data = (Y * 1000% (2%%x—12)) the data could voltage in mv

1tc3887 L16u_data (uint8 x reg addr,uintl6x data)

/* Value = (Y * 1000% (2x%x—12)) x/
/* voltage in mV x*/

uintl6 y = ((reg_addr|[1] << 8) | reg_addr[0])& Oxffff;
double tmp;

tmp = ((double)y=*1000)/4096.0;

* data =(uintl6)tmp;

return 0;

@fn int 1tc3887 L5s 11ls reg (uintl6 data,uint8 % reg addr)
@brief this function convert data to L5s 1ls reg format
@param [in] data needed to be converted

@param|[out]| reg_addr valid register value to to write

@return returns O if function is successful. (todo, detected overflow?7?)

this function is done according to LTC3887 datasheet consolt the table about data format.
Value = (Y * (2xx—N))

Y = 2’s complement of b[10:0]

N = 2’s complement of b[15:11]

this function is not implemented, this can be useful to read register that holds wvalues
in format L5s_11s and convert

them to readable format of data.

1tc3887 _L5s_11s_reg (uintl6 data,uint8 % reg_addr)

/%

* Value = (Y * (2xx—N))

* Y = 2’s complement of b[10:0]

* N = 2’s complement of b[15:11]

*

* Assuming Y is positive and N is negative
*/

urn 0;

@fn int 1tc3887 L5s 11s data (uint8 % reg addr, uintl6 * data)

@brief This function is read register of type L5s_11s data format and converts it to a
readable data

@param [in | reg_addr valid register value to to write

@param [out| data needed to be converted e.g milliVolts

@return returns O if function is successful. (todo, detected overflow??)

this function is done according to LTC3887 datasheet consolt the table about data format.
data = (Y * (2*%%x—N))

Y = 2’s complement of b[10:0]

N = 2’s complement of b[15:11]

141

m-NLP System Firmware 142

1052 *

1053 = Assuming Y is positive and N is negative

1054 =

1055 =/

1056 int 1tc3887 Lb5s 11s data (uint8 % reg addr, uintl6 * data) {

1057 - N

1058 /* data = (Y * (2%x—N))

1059 * Y = 2’s complement of b[10:0]

1060 * = 2’s complement of b[15:11]

1061 *

1062 % Assuming Y is positive and N is negative

1063 */

1064

1065 double tmp;

1066 uint32_t y = ((reg_addr[1] << 8) | reg_addr[0]) & Ox7ff;

1067 uint8 n = (((reg_addr[1] << 8) | reg_addr[0]) >> 11) & Ox1f;

1068

1069 tmp = (1/pow (2.0, (double)((("n)+1) & 0xf)))*y=*1000;

1070 x*data = (uintl6)tmp;

1071

1072 return O0;

1073 }

1074

1075 /#x @fn int 1tc3887 turn_ on_off channel (uint8 channel, bool on_off)

1076 = @brief This function is read register of type L5s_11s data format and converts it to a
readable data

1077 % @param[in] channel channel to turn on off currently we are using only one channel[0]

1078 * @param [in] on_ off l=on

1079 *

1080 = @return returns 0 if function is successful.

1081 *

1082

1083 =* this function important to remamber to turn off the channel before writting new
configurations. and that power rail for egun is on!.

1084 =

1085 =/

1086

1087

1088 int 1tc3887 turn_on_off channel (uint8 channel, bool on_off) {

1089

1090 uint8 data;

1091

1092 if (on_ off) {

1093 data = 0x80;

1094 }

1095 else

1096 {

1097 data = 0x0;

1098

1099 1tc3887 write_register (LTC3887_OPERATION, 3,3,data);

1100 return O0;

1101 }

1102

1103 /** @fn int 1tc3887 set output voltage (uint8 channel, uintl6 voltage)

1104 = @brief This function is a setting voltage for channel[0]

1105 = @param [in] channel default value is [0]

1106 = @param|[in] voltage in mV to control egun

1107 =

1108 = @return returns 0 if function is successful.

1109 =*

1110

1111 = this function varies the potential applied to the egun. Read about this in Tore andre
bekkeng PHD source ask ketil roed.

1112 =

1113 */

1114

1115 int 1tc3887_set_output_voltage (uint8 channel, uintl6 voltage) {

1116

1117

1118 if (1tc3887 write register (LTC387_VOUT_COMMAND, 3,1, voltage))

1119 return 1;

1120

1121 return O0;

1122 }

1123

1124 /+x @fn int 1tc3887 output_ current (uint8 channel, uintl6 * output current)

1125 = @brief Function to read current value applied to channel [0]

1126 = @param [in] channel default value is [0]

1127 * @param [out| output current current value read from 1tc3887 on this channel

1128 =

1129 = @return returns 0 if function is successful.

1130 x*

1131 *

142

143 B.2 Drivers and Functionality

1132

e
1133 %/
1134

int 1tc3887 output current (uint8 channel, uintl6 * output current) {

11¢
1151

1137
1138 if (1tc3887 read register (LTC3837 READ_ IOUT, 2,2, output_ current))
1139 return 1;
1140
1141 return O0;
1142 }
1143
1144 /*x @fn int 1tc3887_Read_ internal Temperature(uint8 channel, uintl6 % External_ Temperature)
1145 = @brief Function to read current value applied to channel[0]
1146 = @param |[in] channel default value is [0]
1147 = @param |[out]| External Temperature value read from 1tc3887 on this channel
1148 =*
1149 = @return returns 0 if function is successful.
*
*

This is can be used to read the operational temperature of the IC. Could be use to measure
approximate temperature of the system.

1152 */

1153 int 1tc3887 Read internal Temperature(uint8 channel, uintl6 x External Temperature)

1154

1155

1156 if (1tc3887 read register (LTC387 READ TEMPERATURE 2,2,2, External Temperature))
1157 returnil; - - - - -

1158

1159 *External _Temperature /= 1000;

1160 *External Temperature —— 20;

1161 return O0;

1162

1163}

1164

1165 /*x Qfn int 1tc3887_ Read output_voltage(uint8 channel, uintl6 * voltage)

1166 = @brief Function to read current value applied to channel[0]

1167 = @param [in] channel default value is [0]

1168 = @param [out]| voltage value read from 1tc3887 on this channel

1169 x*

1170 = Qreturn returns 0 if function is successful.

1171 *

1172 % this a verification method to read that value set is wvalid.

1173 =/

1174

1175 int 1tc3887 Read output voltage(uint8 channel, uintl6 x voltage)

1176 - B B

1177

1178

1179 if (1tc3887 read _register (LTC387_READ_VOUT, 2,1, voltage))

1180 return 1;

1181 return O0;

1182

1183 }

1184

1185 /xx @fn int 1tc3887 read register (uint8 reg command, uint8 lenght ,uint8 dataformat, uintl6=x
read data) B B B

1186 = @brief Function to read current value applied to channel[0]

1187 = @param [in] reg command default value is [0]

1188 =* @param[in| lenght byte length of read value.

1189 =* @param [in] dataformat L16U_data or L5s_11s_data other can be added

1190 =* @param [out| read data

1191 = N

1192 * @return returns 0 if function is successful.

1193 *

1194 % This functions made to meet the needs of PMBus and format the read value to readable
integer .

1195 %/

1196

1197 int 1tc3887 read_register (uint8 reg command, uint8 lenght ,uint8 dataformat, uint16x
read data) {

1198 #define L16U_data 1

1199 #define L5s_11s_data 2

1200 #define channel 0

1201

1202 uint8 reg and data[3];

1203 N N

1204 if (1tc3887 ready ())

1205 return 71;

1206 reg_and_data[0] = LTC3887_ PAGE;
1207 reg _and data[l] = channel;

1208 -

1209 if (PMBus_write(LTC3887_ GLOBAL_ADDRESS, reg and_data, lenght))
1210 return 1;

143

m-NLP System Firmware 144

if (1tc3887 ready ())
return 1;

reg_and_data[0] = reg command;

if (PMBus_read (LTC3887 GLOBAL_ ADDRESS, reg and_data, lenght))
return 1;

switch (dataformat)

case L16U_data:
if (1tc3887_L16u_data(®_and_data[l], read_data))
return 1;
break ;
case Lbs_11s_data:
if (1tc3887_Lb5s_11s_data(®_and_data[l], read_data))
return 1;
break ;

}

return 0;

@fn int 1tc3887 write register (uint8 reg command, uint8 length ,uint8 dataformat, uintl6
data)

1239 = @brief Function to read current value applied to channel[0]
1240 = @param|[in] reg_command default value is [0]
1241 = @param[in] length byte length of read value.
1242 =« @param[in] dataformat L16U_data or L5s_11s_data other can be added
1243 =* @param[out] data
*
* @return returns 0 if function is successful.
*
* This functions made to meet the needs of PMBus and format the read value to readable
integer .
1248 */
1249

1250 int 1tc3887 write register (uint8 reg command, uint8 length ,uint8 dataformat, uintl6 data)

1252

1253 #define L16U_reg 1

1254 #define L5s_1ls_reg 2

1255 #define reg_addr 3

1256 #define channel 0

1257

1258 uint8 reg_and_data[3];

1259

1260 if (1tc3887 ready ())

1261 return 1;

1262

1263 reg_and_data[0] = LTC3887 PAGE;

1264 reg_and_data[l] = channel;

1265 - -

1266 if (PMBus_write (LTC3887 GLOBAL_ ADDRESS, reg and data, length —1))
1267 retur1171; - - - -

1268

1269 if (1tc3887 ready())

1270 return 1;

1271 reg _and data[0] = reg command;

1272 N B N

1273 switch (dataformat)

1274

1275

1276 case L16U_reg:

127 if (1tc3887_L16u_reg(data, ®_ and_data[1l]))
127 return O0;

1279 break;

1280 case Lb5s_11s_reg:

1281 if (1tc3887_Lb5s_11s_reg(data,®_and_data[1l]))
1282 return O0;

1283 break;

1284 case reg addr:

1285 reg_and data[l] = (uint8)data;

1286 length = length —1;

1287 break ;

1288

1289 }

1290

1291 if (PMBus_write(LTC3887 PAGED_ADDRESS, reg_and_data, length))

144

145 B.2 Drivers and Functionality

1292 return 1;

1293

1294

1295 return 0;

1296

1297

1298 /xx @fn void cmd 1tc3887 turn on off channel(int argl)

1299 =* @brief This function cmd check for validation of value
1300 =* @param [in]| argl channel to be set

1301 =*

1302 */

1303

1304 void cmd_1tc3887_turn_on_off channel(int argl)

1305

1306 if (argl>1)

1307

1308 SciSendACK (2) ;

1309 //SciTooManyargs () ;

1310 }

1311 1tc3887 turn_on_off channel(ltc_chO,argl);

1312

1313

1314 /xx @fn void cmd 1tc3887 Read output voltage(int argl,int arg2)
1315 =* @brief This function cmd check for validation of value
1316 =* @param |[in] argl channel to be set

1317 * @param |[in] arg2 channel to be set

1318 %/

1319

1320 void cmd_1tc3887_Read_output_voltage(int argl,int arg2)
1321

1322

1323 if (argl !'= 0 || arg2 != 0)

1324

1325 SciSendACK (2) ;

1326 }

1327 1tc3887 _Read_output_voltage(0,&(ltc_m_values.ltc_voltage));
1: if (!raw_data)

obc_debug ("LTC Voltage (mV),%d" ,ltc_m_values.ltc_voltage);

}

/%% @fn void cmd_1tc3887 Read internal Temperature(int argl,int arg2)
* @brief This function cmd check for validation of value

* @param [in] argl to detect fault args

* @param [in] arg2 detect fault command

*

* This args are used just to void wrong arg inputs

*/

void cmd_1tc3887_ Read_internal Temperature(int argl,int arg2)

{
if (argl != 0 || arg2 != 0)
{ SciSendACK (2) ;
1tc3887 Read internal Temperature (0, &(ltc_m _values.ltc_ temperature));

if (!raw_data) {
obc_debug("LTC temperature (C),%d" ,ltc_m values.ltc temperature);
}

}
/%% @fn void cmd_ 1tc3887 output current(int argl,int arg2)
* @brief This function c¢md check for validation of value
* @param [in] argl to detect fault args

* @param [in] arg2 detect fault command

*

*

This args are used just to void wrong arg inputs

*/
void cmd_1tc3887 output_current(int argl, int arg2)
1360 {
1361
1362 if (argl != 0 || arg2 != 0)
1363 {
1364 SciSendACK (2) ;
1365
1366 1tc3887 output current (0,&(ltc_m _values.ltc current));
1367 if (!raw_data)
1368 obc_debug ("LTC current (mA),%d" ,ltc_m_values.ltc_current) ;
1369 }
1370
1371 /x% @fn void cmd 1tc3887 set output voltage(int argl,int arg2)
1372 @brief This function cmd check for validation of value
1373 * @param [in] argl to detect fault args
1374 = @param [in] arg2 detect fault command

145

m-NLP System Firmware

146

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
13¢
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

1410

*
* This args are used just to void wrong arg inputs
*/
void cmd _1tc3887 set output_ voltage(int argl, int arg2)
if (argl< O || argl>3000)
SciSendACK (2) ;

1tc3887 _set_output_voltage (0,argl);

}
/*% @fn void cmd_1tc3887 read config(int argl, int arg2)
* @brief This function cmd check for validation of value
* @param|[in] argl to detect fault args
* @param|[in] arg2 detect fault command
*
* This args are used just to void wrong arg inputs
*/
void cmd_1tc3887 read_config()
{
1tc3887 read config();
}
/* AD7768 External ADC
/*% @fn int system_get_ sys MCLK()
* @brief Function to read current value applied to channel[0]
*
* @Qreturn returns Eclk value in MHz.
*
* This function gets the value of MCLK to ADC based on source clk used, division and clock

rate. If the user chooses to
% change values in halcogen this has to be up to date.

*/
int system get sys MCLK()

int clk;

int eclk;

//sources set to external osc 16MHz

if (((systemREG1—>ECPCNTL)& 0x00080000) == 0)

clk = (int)OSC_FREQ ;

//source set to VCLK source
else if (((systemREG1—ECPCNTL)& 0x00080000) == 1)
{

clk = (int)GCLK_FREQ;
}

eclk = clk /(((systemREG1—>ECPCNTL)&0x0000FFFF) +1);
return eclk;

}
ad7768 settings t ad7768;

/*% @fn int ad7768 init (void)
* @brief init configuartion to the ADT7768
*

* @Qreturn returns 0 when success, —1 when wrong value of ECLK is detected.
*

*/

int ad7768 _init (void) {

ad7768 .MCLK — MCLK_FREQ;
i f (MCLK_FREQ==8){
ad7768 .DCLK DIV — 4;
ad7768 set DCLK div(ad7768.DCLK DIV) ;

ad7768 .MCLK_DIV= 8;
ad7768 _set_ MCLK _div(ad7768 .MCLK_DIV) ;

ad7768.decRate = 64;
ad7768 _set_Drate(ad7768.decRate);

146

147

B.2 Drivers and Functionality

1457 ad7768. filter = ad7768 _filter wide;

1458 ad7768 set_Filter (ad7768. filter);

1

1460

1461 else{

1462 return —1;

1463 }

1464

1465

1466 ad7768 .fMOD = ad7768 calc_fMOD () ;

1467 ad7768 .DCLK = ad7768_calc_ DCLK () ;

1468 ad7768 .ODR = ad7768 calc_ ODR() ;

1469 T

1470 ad7768 _sync () ;

1471

1472 high_speed_transfer unit_init () ;

1473

1474 return 0;

1475 }

1476

1477

1478

1479 /%% @fn int ad7768 spi_ read(uint8 regaddr, uint8 s*read value)

1480 * @brief this function uses SPI interface to read registers

1481 =* @param|[in] regaddr address to the register

1482 =* @param [out| read value value read from register

1483 N

1484 Q@return returns 0 when success, —1 for spi timeout and 2 for illegal command respons.

1485 *

1486 * This function uses the SPI, AD7768 uses an off frame protocol which means two 16 frames
are sent

1487 = 1st frame for read is address then followed with address and read

1488 *

1489 */

1490

1491 int ad7768 spi_read(uint8 regaddr, uint8 xread_value)

1492 {

1493 /*Return value from SPI5 functionsx/

1494 uintl6 buffer [2];

1495 /+*configure SPI5x/

1496 spiDAT1 t spib5_ ctrl_dataconfig t;

1497 spi5_ctrl_dataconfig t.CS_HOLD = FALSE;

1498 spid_ctrl dataconfig t.WDEL = TRUE;

1499 spi5_ctrl_dataconfig_t.DFSEL = SPI_FMT_0;

1500 spi5_ctrl_dataconfig_t.CSNR = OxFE;

1501

1502 /*Tx buffer [0] bit 15 is set for readx/

1503 buffer [0] = 0x8000 | (regaddr & O0x7F) << 8;

1504 /*Rx buffer [1] emptyx*/

1505 buffer [1] = 0x0;

1506

1507 /*AD7768 uses an off frame protocol which means two 16 frames are sent

1508 * 1st frame for read is address then followed with address and read=x/

1509 /+*Transmitt address to read fromx/

1510 if (spiTransmitData (spiREG5, &spi5_ ctrl_dataconfig ¢t , (uint16 =*)&buffer [0]) !=0U)

1511 return —1;

1512 if (spiTransmitAndReceiveData (spiREG5, &spi5 ctrl_dataconfig t, 1, (uintl6 *)&buffer[0], (
uintl1l6 =*)&buffer [1]) !=0U)

1513 return —1;

1514

1515 /*Check if an illegal commandx/

1516 if (buffer[l]== ad7768_Illegal Command) {

1517 return 2;

1518 }

1519

1520 *read _value = buffer [1] & OxFF;

1521 /*success*/

15 return 0;

@fn int ad7768 spi_write(uint8 regaddr, uint8 write

@param [in| regaddr address to the register

Q@return

are sent

147

1st frame for read is address then followed with address

_value)
@brief this function uses SPI interface to write registers

@param|[in] write value value to be written to the register
returns 0 when success, —1 for spi timeout and 2 for illegal command respons.

This function uses the SPI, AD7768 uses an off frame protocol which means two 16 frames

and read

m-NLP System Firmware 148

1537 int ad7768_ spi_write(uint8 regaddr, uint8 write_ value)

1538

1539

1540 /*Buffer [0] for Tx and Buffer [1] for rxx/

1541 uintl16 buffer [2];

1542 /* Configurate SPI5x/

1543 spiDAT1_t spi5 ctrl_dataconfig t;

1544 spi5_ctrl_dataconfig t.CS_HOLD = FALSE;

1545 spi5 ctrl dataconfig t.WDEL = TRUE;

1546 spi5_ctrl_dataconfig_t.DFSEL = SPI_FMT_0;

1547 spi5_ctrl_dataconfig_t.CSNR = OxFE;

1548

1549 /*Writ command as specifised in datasheetx/

1550 buffer [0] = (regaddr & 0x7F) << 8 | write_value;

1551

1552 if (spiTransmitData (spiREG5, &spi5_ctrl_dataconfig_t, 1, (uintl6é x)&buffer[0]) !=0U)

1553 return —1;

1554 if (spiTransmitAndReceiveData (spiREG5, &spib5_ctrl_dataconfig t, 1, (uintl6 x*)&buffer[0], (
uintl16 *)&buffer [1]) !=0U)

1555 return —1;

1556 /*Check if an illegal commandsx/

1557 if (buffer|[l]== ad7768 Illegal Command) {

1558 return 2; - -

1559

1560 /*success x/

1561 return O0;

1562

1563 }

1564 /** @fn int ad7768_set DCLK_div(uint8 arg)

1565 = @brief this functions sets value for DCLK div

1566 @param [in] arg value of DCLK div <2—4—8>

1567 * Qreturn returns 0 when success, —1 for readback value does not match written value

1568 =

1569 *

1570 = DCLK divider. These bits control division of the DCLK clock used to clock out
conversion data on the DOUTx pins.

1571 = The DCLK signal is derived from the MCLK applied to the AD7768. The DCLK divide mode
allows the user to optimize the

1572 = DCLK output to fit the application. Optimizing the DCLK per application depends on the
requirements of the user.

1573 = When the AD7768 are using the highest capacity output on the fewest DOUTx pins, for
example, running in decimate

1574 = by 32 using the DOUTO and DOUTI1 pins, the DCLK must equal the MCLK; thus, in this
case , choosing the no division

1575 * setting is the only way the user can output all the data within the conversion period

There are other cases,

1576 however, when the ADC may be running in fast mode with high decimation rates,

1577 or in median or eco mode where the DCLK does not need to run at the same speed as
MCLK. In these cases,

1578 * the DCLK divide allows the user to reduce the clock speed and makes routing and
isolating such signals easier

1579 = — 00 divide by args = 8

1580 = — 01 divide by args = 4

1581 = — 10 divide by args = 2

1582 =* — 11 No division

1583 = — bit shift to the right MCLK freq >> arguments

1584 = -

1585 =/

1586 int ad7768 set DCLK div(uint8 arg) {

1587 - B

1588

1589 uint8 reg = AD7768_ Interface_configuration;

1590 uint8 read_reg;

1591 uint8 write reg;

1592 -

1593

1594 switch (arg)

1595

1596 case 8:

1597 write _reg = 0x00;

1598 break;

1599 case 4:

1600 write _reg = 0x01;

1601 break;

1602 case 2:

1603 write reg = 0x10;

1604 break;

1605 default :

1606 return 1;

1607

1608

1609 ad7768 _spi_write(reg, write_reg);

1610 ad7768 spi_read(reg, &read_reg);

148

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

1687
1688

1689

149 B.2 Drivers and Functionality

L I e
*
*

* ¥ *

*/

int

VEE

* %X ¥ %

*

if (read _reg == write_reg){
ad7768 .DCLK_DIV = arg;
ad7768 sync() ;

else {
return —1;
}

return O0;

@Qfn int ad7768_set MCLK_div(uint8_t arg)

@brief this functions sets value for MCLK div

@param [in] arg value of MCLK div <2—4—8>

@return returns 0 when success, —1 for readback value does not match written value

bit [5:4] power mode this sets currents modes used by ADC does not effect MCLK div
— when sett to 00 eco N
— 10 median
— 11 fast

bit [1:0] MCLK DIV controls div ration between ECLK and clock used in each adc module

— 00 MCLK/32 with a base MCLK of 32.768 MHZ set to eco mode
— 10 MCLK/8 set to median mode
— 11 MCLK/4 for fast mode

ad7768 _set MCLK _div(uint8_ t arg) {

uint8 reg = AD7768_POWER_MODE;
uint8 read_reg;
uint8 write_ reg;

switch (arg)

case 4:
write_ reg
break ;

case 8:
write _reg = 0x22;
break ;

case 32:
write reg
break;

default :
/*invalid argumentx/
return 1;

0x33;

0x00;

ad7768 spi_write(reg, write reg);
ad7768 spi_read(reg, &read reg);
if (read reg == write reg){

ad7768 .MCLK DIV = arg;
ad7768 _sync () ;

}
else{

return —1;
}

return 0;

@fn int ad7768 set Drate(uintl6 arg)

Q@brief this functions sets decimation rate

@param [in]| arg decimation rates <32—64—128—256—512—1024> Kilo samples per second
Qreturn returns 0 when success, —1 for readback value does not match written value

The ADC provides the user with two channels Mode A and B. Using the channel mode select
register (Register 0x03),

the user can assign each channel to either Channel Mode A or Channel Mode B,

which maps that mode to the required ADC channels. These modes allow different filter
types and decimation

rates to be selected and mapped to any of the ADC channels. In this we are using just
one rate for all channels.

149

m-NLP System Firmware

150

1690 =/

1691

1692 int ad7768_ set_Drate(uintl6 arg) {

1693

1694

1695 uint8 reg = AD7768 Channel Mode A; //Config channel mode A register address

1696

1697

1698 uint8 read_reg;

1699 uint8 write_reg;

1700 //Read in current value of config register to get filter setting .;

1701 ad7768 spi_read(reg, &read reg);

1702 - -

1703 switch (arg)

1704 {

1705 case 32:

1706 write _reg = (read_reg & 0x08) | 0x00;

1707 break ;

1708 case 64:

1709 write _reg = (read_reg & 0x08) | 0x01;

1710 break ;

1711 case 128:

1712 write reg = (read reg & 0x08) | 0x02;

1713 break; -

1714 case 256:

1715 write reg = (read reg & 0x08) | 0x03;

1716 break ;

1717 case 512:

1718 write_reg = (read_reg & 0x08) | 0x04;

1719 break;

1720 case 1024:

1721 write_reg = (read_reg & 0x08) | 0x05;

1722 break ;

1723 default :

1724 return 1;

1725 }

1726

1727

1728 ad7768 spi_ write(reg, write reg);

1729 - B

1730 ad7768 spi_read(reg, &read reg);

1731 - -

1732 if (read reg == write reg){

1733 ad7768 .decRate = arg;

1734 ad7768 _sync () ;

1735

1736 else {

1737 return —1;

1738 }

1739

1740 return O0;

1741 }

1742 /%% @fn int ad7768 set Filter(uintl6 arg)

1743 = @brief this functions sets filter type

1744 = @param [in] arg should be set to either ad7768 filter SINC=1 or ad7768 filter wide=0

1745 = Qreturn returns 0 when success, —1 for readback value does not match written value

1746

1747 = The ADC provides the user with two channels Mode A and B. Using the channel mode
register (Register 0x03),

1748 =* the user can assign each channel to either Channel Mode A or Channel Mode B,

1749 = which maps that mode to the required ADC channels. These modes allow different
types and decimation

1750 % rates to be selected and mapped to any of the ADC channels. In this we are using
one rate for all channels.

1751 */

1752 int ad7768 set_Filter(uint8 arg) {

1753

1754 uint8 reg — AD7768_Channel Mode_ A;

1755

1756 uint8 read_reg;

1757 uint8 write_reg;

1758

1759 /*Read Drate setting and store it since they share same registerx*/

1760 ad7768 spi_read(reg, &read reg);

1761 read reg = read reg & 0x07;

1762 - -

1763 write reg = (arg <<3) | read reg;

1764 - -

1765 ad7768 _spi_write(reg, write_reg);

1766

1767 ad7768 spi_read(reg, &read_reg);

1768

1769 if (read _reg == write_reg){

150

select

filter

just

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795

1796

1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815

1816

1817

1818
1819

1820

151 B.2 Drivers and Functionality

2
*

L T]

*

*/

ad7768 . filter = arg;
ad7768 sync () ;

}
else{

return —1;
}

return O0;

@fn void ad7768 print_ settings ()
@brief Function prints values of MCK _ div, DCLK div, fMOD, decRate, and filter type used.

function prints values configure the ADT768.
— fmod Modulator frequency The internal modulator frequency (fMOD)
— decRate Decimation rate data rate from each channel in kSPS
— MCLK_div master clock division that ad7768 is operation with
— DCLK_div data clock use to sample on all channels
— filter in all probs

void ad7768 print_settings () {

* K X
=
*

%%
B~
o+

* K K K X K
3
*

*

*/

int

VEE

* ¥ % ¥

*

if (raw_data)

{

else {
obc_debug ("MCLK_ DIV,%d ,fMOD (MHz) ,%d , DecRate,%d ,ODR(SPS),%d ,DCLK_DIV,%d ,DCLK (MHz) ,%d ,
Filter ,%d",
ad7768 .MCLK_DIV, ad7768 calc_fMOD (), ad7768.decRate, ad7768 calc_ ODR (), ad7768.
DCLK_DIV, ad7768 calc_ DCLK (), ad7768. filter);

@fn int ad7768 calc_ DCLK (void)
@brief Function calculates the data clock from MCLK and DCLK_DIV

the function calculate the data clock rate.

ad7768 calc_ DCLK (void) {
/*DCLK = MCLK/DCLK_ DIV /
return ad7768 .MCLK/ad7768 .DCLK_DIV;

@fn int ad7768 calc fMOD (void)
@brief Function calculates the function modular frequency
@return returns Fmod value

the function calculate fmod

that is used by each of the ADCs in the AD7768/AD7768—4 is derived from the externally
applied MCLK signal.

The MCLK division bits allow the user to control the ratio between the MCLK frequency and
the internal modulator

clock frequency. This control allows the user to select the division ratio that is best
for their configuration.

The appropriate clock configuration depends on the power mode, the decimation rate,

and the base MCLK frequency available in the system. The relationship between the input
signal and the modulator

frequency is expressed in a normalized manner as a ratio of the input signal (fIN) to the
modulator frequency (fMOD) .

This data demonstrates the ADC frequency response relative to out of band tones when
using the wideband filter .

The input frequency (fIN) is swept from dc to 20 MHz. In fast mode, using an 8.192MHz
fMOD frequency ,

the x—axis spans ratios of fIN/fMOD from 0 to 2.44 (equivalent to fIN of 0 Hz to 20 MHz).

A similar characteristic occurs in median and eco modes.

ad7768 calc_fMOD (void) {
/*fMOD = MCLK/MCLK_DIVx /
return ad7768 .MCLK/ad7768 .MCLK_DIV;

@fn int ad7768_calc_ ODR(void)
@brief Function calculates the output data rate ODR
@return returns ODR value

This function calculate the output data rate.

Thus, for this example, where MCLK = 32.768 MHz, ODR = (32.768 MHz/32) /64 = 16
kHz

Minimizing the DCLK frequency means selecting DCLK =

MCLK/8, which results in a 4 MHz DCLK signal. The period of DCLK in this case is
1/4 MHz = 250 ns.

The data conversion on each DOUTx pin is 32 bits long. The conversion data takes

32 x250 ns = 8 us to be output. AIll 32 bits must be output within the ODR period

151

m-NLP System Firmware

1

52

of 1/16 kHz,

1842 = which is approximately 64 us. In this case, the 8 us required to read out the
conversion data is well within the

1843 = 64 us between conversion outputs.

1844 =«

1845 */

1846 int ad7768 calc_ ODR (void)

1847 return ((ad7768 .MCLK/ad7768 .MCLK DIV)*1000%1000)/ad7768.decRate;}

1848

1849 /+x @fn int ad7768 sync()

1850 * @brief function to apply the new configures to ADT7768

1851 * @return 0 for sucess

1852 *

1853 %

1854 = this function toggles GPIO pin to signal that AD will apply the new configurations.
The default of this pin is active higth to detect a sync signal the signal should put
for a short period then to active hight again.

1855 * SPI control offers the superset of flexibility and diagnostics to the user. The
following sections highlight the functionality and

1856 * diagnostics offered when SPI control is used. After any change to these configuration
register settings , the user must provide a sync signal to the AD7768/AD7768—4

1857 % through either the SPI SYNC command, or by applying the

1858 % appropriate pulse to the START pin or SYNC_IN pin to ensure

1859 x* that the configuration changes are applied correctly to the ADC and digital filters.

1860

1861 *

1862 x/

1863 int ad7768 sync() {

1864 /*Toggel signal twice for start conversionx/

1865 /* Canl TX —> 1 — 0 — 1%/

1866

1867 canREG1—>TIOC = ((canREG1—>TIOC & OxFFFFFFFDU) | (0 << 1U));

1868 canREG1—>TIOC = ((canREG1—>TIOC & OxFFFFFFFDU) | (1 << 1U));

1869

1870 return O0;

1871

1872 }

1873 /** @fn int ad7768 reset ()

1874 = @brief function to apply the new configures to AD7768

1875 =* @Qreturn 0 for success

1876 =

1877 * After a power—on or reset, the AD7768/AD7768—4 default

1878 x configuration is set to the following low current consumption settings:

1879 =* — Eco power mode with fMOD = MCLK/32.

1880 = — Interface configuration of DCLK = MCLK/8, header output enabled, and CRC disabled.

1881 = — Filter configuration of Channel Mode A and Channel Mode B is set to sinc5 and
decimation = x1024.

1882 = — Channel mode select is set to 0x00, and all channels are assigned to Channel Mode A.

1883 = — The analog input precharge buffers are enabled and the reference precharge buffers
disabled on all channels.

1884 — The offset , gain, and phase calibration are set to the zero position.

1885 =* — Continuous conversion mode is enabled.

1886

1887 =

1888 */

1889 int ad7768 reset () {

1890 /+xToggle signal twice for reset reset configs of ADT7768x/

1891 /* Canl RX —> 1 — 0 — 1%/

1892

1893 canREG1—>RIOC = ((canREG1—>RIOC & OxFFFFFFFDU) | (0 << 1U));

1894 canREG1—>RIOC = ((canREG1—>RIOC & OxFFFFFFFDU) | (1 << 1U));

1895

1896 return O0;

1897

1898 }

1899

1900 /#% @fn void cmd_ AD7768 GET_REG(uint8 arg)

1901 = @brief function used to readback the values of from single register from CMD.

1902 * @param [in] arg

1903 *

1904 = function used by commandline file to check of validity of arguments passed.

1905 =*

1906 =

1907 */

1908 void cmd_ AD7768 GET_REG(uint8 arg)

1909 {

1910 uint8 spi_rx;

1911 uint32 return value;

1912 -

1913 if (arg == 0){

1914 SciSendACK (2) ;

1915 }

1916 return_value = ad7768 spi_read(arg, &spi_rx);

152

low

are

153 B.2 Drivers and Functionality

obc_debug("value %x rtr %u",spi_rx,return_value);

}

/*x @Qfn void cmd AD7768 SET REG(uint8 reg,uint8 value)

* @brief function used to set register value from commandline
* @param [in] reg

* @param [in | value

*

* this function writes value from cmd to register this used for debugging
*

*

*/

void cmd_AD7768 SET_REG(uint8 reg,uint8 value)

{

if (reg == 0){
SciSendACK (2) ;

ad7768 spi_write(reg, value);

/ * %
1‘)1(] * @brief table ad7768 config used to read the values from all register this used for
debugging
1941 =
* this function writes value from read all values in register for debugging
*
*

Ny
ad7768 config const AD7768 config_table[] = {
{AD7768 Channel Mode A},
{AD7768 Channel Mode B},
{AD7768_Channel _mode_select},
{AD7768 POWER, MODE}
{AD7768 General configuration},
{AD7768 Data control},
{AD7768 Interface configuration},
{AD7768 "BIST control},
{AD7768 Device status},
{AD7768 Revision ID},
{AD7768 GPIO control},
{AD7768 GPIO_ write data},
{AD7768 GPIO read data},
{AD7768 Precharge Buffer 1},
{AD7768 Precharge Buffer 2},
{AD7768 Positive reference precharge buffer},
{AD7768 Negative reference precharge __buffer},
{AD7768 Channel 0_offset MSB},

1965 {AD7768_ Channel 0_offset MID},
1966 {AD7768 Channel 0_offset LSB},
1967 {AD7768 Channel 1 _offset MSB},
1968 {AD7768 Channel 1 offset MID},
1969 {AD7768 Channel 1 offset LSB},
1970 {AD7768 Channel 2 offset MSB},
1971 {AD7768 Channel 2 offset MID},
1972 {AD7768 Channel 2 offset LSB},
1973 {AD7768 Channel 3 offset MSB},
1974 {AD7768 Channel 3 offset MID},
1975 {AD7768 Channel 3 offset LSB},
1976 {AD7768 Channel 0 gain MSB},
1977 {AD7768_Channel_0_gain_MID },
1978 {AD7768_Channel_0_gain_LSB},
1979 {AD7768 _Channel _1_gain_MSB},
1980 {AD7768_ Channel_1_gain_MID},

1981 {AD7768 _Channel_1_gain_LSB},
1982 {AD7768 Channel 2 gain MSB},
1983 {AD7768_ Channel 2 _gain_MID},
1984 {AD7768_ Channel 2 gain_LSB},
1985 {AD7768 Channel 3 gain MSB},
1986 {AD7768 Channel 3 _gain_MID},
1987 {AD7768_Channel_B_galn_LSB} s
1988 {AD7768 Channel 0_sync_offset},
1989 {AD7768 Channel 1 _ sync_offset},
1990 {AD7768 Channel 2 sync_offset},
1991 {AD7768 Channel 3 sync_ offset},

{AD7768 Diagnostic_Rx},
{AD7768 Diagnostic_mux_control},
{AD7768_Modulator _delay control},
{AD7768 _Chop_control},

1(1% {570}

1997 };

1998

153

m-NLP System Firmware 154

1999 /%% @fn void cmd_AD7768 GET_ AllConfigs(void)

2000 = @brief function is used to read all configuration registers
2001 =
2002 * all redable registers are read when calling this function.
2003 =
2004 =
2005 */
2006 void cmd_ AD7768 GET _AllConfigs(void)
2007 {
2008
2009 uint8 spi_rx;
2010 int cnt = 0;
2011 while (AD7768 config_table[cnt].ad7768 config_Address != 570)
2012
2013 ad7768 spi_read (AD7768 config_table[cnt].ad7768 config Address, &spi_rx);
2014 if (raw_data)
2015
2016 add_to_buffer (AD7768 config_table[cnt].ad7768 config_Address,spi_rx, CONTINUE,
Message_ TMS_REG) ;

2017
2018 }else{
2019 obc _debug("%x %x",AD7768 config table[cnt].ad7768 config Address,spi_rx);
2020
2021 cnt++4;
2022
2023
2024
2025
2026 }
2027
2028 /x* @fn void cmd_AD7768 SET_FILTER(uint8 arg)
2029 =* @brief function is used to set function filter
2030 *
2031 % function is used to set value for filter from cmd
2032 *
2033 *
2034 =

void cmd AD7768 SET FILTER(uint8 arg)

{

if (arg == 1 || arg == 0)
ad7768 set Filter(arg);
}

/*% @fn void cmd_AD7768_ SET_FILTER(uint8 arg)
2045 * @brief function is used to set function drate

2046 =

2047 % function is used to set value for drate

2048 =

2049 =

2050 *

2051 =%/

2052 void cmd_AD7768_SET_DRATE(uintl6 arg)

2053 {

2054 if (arg == 32 || arg = 64 || arg = 128 || arg = 256 || arg == 1024)
2055

2056 ad7768 set Drate(arg);

2057 -

2058

2059 else

2060 obc debug("Error—argument") ;

2061 -
2062 }
2063
2064
2065
2066
2067
2068
2069

/#% @fn void cmd_AD7768 SET_MCLK_div(uint8 arg)
*
*
*
*
2070 *
*
*
v
{

@brief function is used to set MCLK_div from cmd

function is used to set value for MCLK_div from cmd. used for debugging

2071
2072
2073
2074
2075 if (arg==8 || arg==4 || arg ==2) {
2076 ad7768 _set_ DCLK_div(arg);

2077 }

2078 else

2079 obc_debug("Error—argument") ;
2080 }

/
/
oid cmd AD7768 SET DCLK div(uint8 arg)

154

155 B.2 Drivers and Functionality

2081
2082
2083
2084
2085
2086
2087
2088 */

2089 void cmd_AD7768 SET MCLK div(uint8 arg)
2090 {

2091 if (arg==32 || arg==8 || arg ==4) {
2092 ad7768 _set MCLK _div(arg);
2093 }

2094 else

2095 obc_debug("Error—argument") ;
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109 /x* @fn void cmd_AD7768_stop(void)

2110 =* @brief function is used to stop

2111 =

2112 % function send reset signal to ad7768

2113 =

2114 x/

2115 void cmd_AD7768_stop(void)

2116

2117 ad7768 reset () ;

2118

2119 }

2120

2121 /#% @fn void cmd AD7768 manual init(void)

2122 * @brief function can used to reinitialize ad7768

2123 *

2124 % function can be used after reset is called.

2125 *

2126 x/

2127 void cmd AD7768 manual init ()

2128 { - - -

2129 ad7768 init () ;

2130 }

2131 /%% @fn void cmd_AD7768 print_Data(void)

* @brief function used to print all data received via HTU and NHET,

#% @fn void cmd_AD7768_SET MCLK_div(uint8 arg)
@brief function is used to set MCLK_div from cmd

function is used to set value for MCLK_div from cmd. used for debugging

LR R 2R I R N

s
*

@fn void cmd_AD7768_ run(void)
@brief function is used to sync system

function is used to sync from cmd. used for debugging

/
/
oid cmd_AD7768 run(void)

ad7768 _sync () ;

R T R R N

*
* function not implemented
*
*/
void cmd_AD7768 print_ Data(void)
{
add_to_buffer (0, 0, NEW_RUN, MESSAGE CONFIRM_ADC) ;
int j,cnt = 0;
while (cnt < ADC_BUFFER_SAMPLE COUNT-1)
if (ADC_BUFFER_CHANNEL_ COUNT == 2)
if (raw_data)
add _to_buffer (adc_samples.counter [cnt], adc_samples.data[j][cnt++], CONTINUE,
MESSAGE_CONFIRM_ADC) ;
else{
obc_debug("%d,%d" ,adc_samples.counter [cnt],adc_samples.data[j][cnt++]);
}
else
obc_debug ("%d,%d,%d,%d,%d" ,adc_samples.counter [cnt],adc_samples.data[j][cnt],
adc_samples.data|j+1][cnt],adc samples.data[j+2][cnt],adc_samples.data[j+3][cnt++]);
2153
2154 }
2155 add_to_buffer (0, 0, RUN_COMPLETE, MESSAGE CONFIRM_ADC) ;
2156
2157
2158 }
2159

2160 /*** HTU + buffer
Hsk sk ok ok K ok ok sk sk ok R oK sk sk sk sk R oK oK sk ok ok R oK sk sk sk ok R oK sk sk sk kR oK oK Sk ok kR oK oK Sk Ok ok R ok ok ok ok /

155

m-NLP System Firmware

156

2161 /s xkkkxxkkkxxkk**xthis code under is made by erlend and halvor

s ok ok sk ok K oK sk ok ok K ok ok ok ok ok ok sk /

from ELAB this

not mine

2162
2163
2164
2165
2166
2167
2168 int high speed transfer wunit_ init (void) {
2169
2170 /% Configure DCPO for transfer of sampled data from N2HET RAM to CPU RAM x/
2171
2172 /* Initial Transfer Count Register (HTU ITCOUNT)
2173 * 20—16 IETCOUNT = Initial Element Transfer Count
2174 * 7—0 IFTCOUNT = Initial Frame Transfer Count
2175 */
2176 htuRAM1—>DCP [0] .ITCOUNT = (NHET DATA_ FIELD ELEMENT_ COUNT << 16) |
217 (HTU_FRAME_TRANSFER_COUNT MAX / NHET_ DATA_ FIELD ELEMENT COUNT)
5
/* Initial N2HET Address and Control Register (HTU IHADDRCT)
* 23 DIR — Direction of Transfer
* 22 SIZE — Size of Transferred Data
* 21 ADDMH — Addressing Mode N2HET Address
* 20 ADDFM — Addressing Mode Main Memory Address
* 19—-18 TMBA — Transfer Mode for Buffer A
* 17—16 TMBB — Transfer Mode for Buffer B
* 12-—2 IHADDR — Initial N2HET Address

*

(0x0 << 23) |
(0x0 << 22) |
(0x0 << 21) |
(0x0 << 20) |
(0x3 << 18) |
(0x3 << 16) |
(NHET RAM_ADDRESS << 2);

/+* DCPO start address of destination buffers x/
htuRAM1—>DCP [0] .IFADDRA = (unsigned int)htu_buffer a;
htuRAM1—>DCP [0] .IFADDRB = (unsigned int)htu buffer b;

/% Enable DCPO CPA x/
htuREG1—>CPENA = 0x00000001 ;

/* Enable buffer full interrupt for DCP0 CPA and CPB x/
htuREG1—>BFINTS = 0x00000003;

/* enable HTU x/
htuREG1—>GC = 0x00010000 ;

return EXIT_SUCCESS;

¥
/ Interrupt assignment 11: HET TU high level
It currently takes about 4ms to fill htu_buffer x

HTU is not supported by HalCoGen, and sys_ vim.c must be
manually updated after a rebuild of sources. For channel
in s vim init, replace phantomInterrupt with

* }1igh:spee7d7transferiunit7interrupt

=y

#pragma CODE_STATE(high _speed_transfer unit_interrupt, 32)

#pragma INTERRUPT (high speed_transfer unit_interrupt, IRQ)

*
*
*
* NOTE:
*
*
*

void high_speed_transfer_ unit_interrupt (void) {
volatile uint32_t offset_ register , i, j;

/* Read of offset register will automatically clear the
offset register = htuREG1—>INTOFFO;

switch (offset register & 0x00000300) {
case 0x00000100:

if ((offset register & 0x0000000F) == 0x0) {

for (i=0; i < HTU_FRAME TRANSFER_COUNT MAX;

156

htuRAMI1—>DCP [0] .THADDRCT = (htuRAMI1 —>DCP[0].IHADDRCT & 0x0)

interrupt

// TODO run science routine on data in htu_ buffer a

flags

Ay

157 B.2 Drivers and Functionality

NHET_DATA_FIELD ELEMENT COUNT) {

2243 adc_samples.counter [adc_samples.index] = (htu_buffer_a[i] >>
SAMPLE_COUNTER, SHIFT) ;

for (j=0; j < ADC_BUFFER_CHANNEL COUNT; j++)
adc_samples.data|j][adc_ samples.index] = (htu_ buffer a[itj+1] & 0
xfFEF);
adc_samples.index++;

if (adc_samples.index > ADC_BUFFER_SAMPLE_COUNT)
adc_samples.index = 0;

} else if ((offset_register & 0x0000000F) = Ox1) {

// TODO run science routine on data in htu_buffer b

for (i=0; i < HIU FRAME_TRANSFER_COUNT MAX; i 4=
NHET_ DATA_FIELD ELEMENT_ COUNT) {
2260
2261 adc_samples.counter [adc_samples.index] = (htu_buffer b[i] >>
SAMPLE_COUNTER_SHIFT) ;

for (j=0; j < ADC_BUFFER_CHANNEL_COUNT; j-++)
adc_samples.data|j]|[adc_samples.index] = (htu_buffer_b[itj+1] & 0
xffff);

adc_samples.index++;
if (adc_samples.index > ADC_BUFFER_SAMPLE_ COUNT)
adc_samples.index = 0;

}

break ;

default:
break ;

void stop_het (void)

hetREG1—>GCR = (0x00000000U
| (uint32) ((uint32)0U << 24U)
| (uint32) ((uint32)1U << 16U)
| (0x00000000U)) ;

}
void start het (void){

new_sampling run = true;

hetREG1—>GCR = (0x00000001U
| (uint32) ((uint32)0U << 240U)
| (uint32) ((uint32)1U << 16U)
| (0x00000000U)) ;

//////// TEST

static int add_ to_ buffer (unsigned int a, unsigned int b, int state,uint8 message id) {

uint8 t buffer [MESSAGE PAYLOAD LENGHT MAX];
static int buffer index = 0;

if (state == NEW_RUN)

buffer index = 0;

buffer [buffer index + 0] = (uint8_t)(a >> 24);

157

m-NLP System Firmware

158

2:

34
3
2351
3
3

NN N

2380
2381
2382
2383
2384
2385
2386

2393
2394
2395

2397
2398

//

/3 3k sk sk sk sk ok sk ok sk ok ok K K K K K K R k ok ok ok ok ok ok ok ok K K K K

buffer [buffer index
buffer [buffer index
buffer [buffer index
buffer [buffer index
buffer [buffer index
buffer [buffer index
buffer [buffer index

o+

buffer index += 8;

1] = (uint8_t)(a
2] = (uint8_t)(a

3] = (uint8_t) (a
4] = (uint8 t) (b
5] = (uint8 t) (b
6] = (uint8 t)(b
7] = (uint8 t) (b

>>
>>
>>
>>
>>
>>
>>

/% About to run out of buffer space. Send

obc_raw_bytes (buffer,

buf?er_index = 03

}
return EXIT_ SUCCESS;

///// TEST SLUTT

int reg_data_MibAdc2()

int

unsigned int % start_address_pointer =(unsigned

unsigned int * last_address_pointer

int reg_cnt = 0;

readout
e ok o oK ok oK oK K K ok ok sk K K ok K ok sk K oK K K ok K oK o K oK K K ok K oK ok oK oK K K Kok K ok ok ok ok /

system

message
if ((buffer index > (MESSAGE PAYLOAD LENGHT MAX — (8 * 2))) || (state
buffer index , message_ id);

(unsigned

add_to_buffer (0,0, NEW_RUN, Message_ TMS_REG) ;

do

{

if (raw_data) {
add_to_buffer
Message TMS REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

(start address pointer ,*start address pointer , CONTINUE,

start _address _pointer+-+;

reg_cnt++;

int

int

*/

*) OxFFF7C200;

*) OxFFF7C3FC;

while (start _address _pointer <= last_address_pointer);

return reg cnt;

reg_data_MibAdcl ()

unsigned int = start

address _pointer

=(unsigned

int

%) O0xFFF7C000;

unsigned int x* lastiiaddressipointer =(unsigned int =) OxFFF7C1FC;

int reg_cnt = 0;
do

if (raw_data) {
add _to_ buffer
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart_address_pointer);

(start _address_pointer ,*start_address_pointer , CONTINUE,

start _address _pointer-+-+;

reg_cnt++;

while (start _address pointer <= last_address_pointer);

return reg cnt;

int reg_data_Dcan3()

{

unsigned int % start_address_pointer =(unsigned
unsigned int % last_address_pointer =(unsigned

int reg_cnt = 0;

158

int
int

*) Oxfff7EO000 ;
*) OxFFF7E1FC;

RUN_COMPLETE)) {

159 B.2 Drivers and Functionality

2399 do

2400 {

2401 if (raw_data) {

2402 add _to_buffer (start_ address_ pointer ,xstart_ address_ pointer, CONTINUE,
Message . TMS REG) ;

2403 } else {

2404 printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

2405

start _address_pointer++;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg cnt;

}

int reg_data_Dcan2()

unsigned int x start_ address pointer =(unsigned int %) OxFFF7DE00;
unsigned int x last address pointer =(unsigned int %) OxFFF7DFE4;
int reg cnt = 0;

do -

{

if (raw_data)
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;
2426 } else {
2427 printf("\r\n %x ,%x",start_address_pointer ,xstart_ address_pointer);

start _address_pointer++;
reg_cnt++;

while (start _address pointer <= last_ address_ pointer);

return reg cnt;

}
int reg data Dcanl ()

unsigned int x start_address_pointer =(unsigned int *) OxFFF7DCO00;
unsigned int x last_address_pointer =(unsigned int %) OxFFF7DDE4;
int reg_cnt = 0;

do

{

if (raw_data) {
add_to_buffer (start_ address pointer ,xstart_ address_pointer, CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart_ address_pointer);

start _address_pointer+-;
reg_cnt++;

while (start _address _pointer <= last_address_pointer);

return reg_cnt;

eg_data_ePWNI ()

unsigned int x start_address_pointer =(unsigned int %) OxFCF78C00;
unsigned int x last_address_pointer =(unsigned int x*) OxFCF78CFC;
int reg_cnt = 0;

do

if (start address pointer == (unsigned int %)0xFCF78c3c || O0xFCF78c38)
goto skip;

}
if (raw_data)
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,*xstart address_pointer);

159

m-NLP System Firmware 160

skip:
start _address_pointer--+;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg _cnt;

}
2489
2490 int reg_data_ePWN2()
2491

unsigned int % start_address_pointer =(unsigned int x) OxFCF78DO00;
unsigned int % last_address_pointer =(unsigned int x) OxFCF78DFC;

int reg_cnt = 0;
do
{
if (start _address pointer == (unsigned int =%)0xFCF78d3c || OxFCF78D38)

goto skip;

if (raw_data) {
add_to_ buffer (start address pointer ,xstart address pointer, CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);

}

skip:

start _address pointer-+-+;
reg_cnt++;

while (start _address _pointer <= last_address_pointer);

return reg cnt;

}
int reg data ePWN3()

unsigned int * start address pointer =(unsigned int x) OxFCF78E00;
unsigned int * last address pointer =(unsigned int) OxFCF78EFC;
int reg_cnt = 0;

do

if (start _address_pointer == (unsigned int %)0xFCF78E3c|| OxFCF78E38)
goto skip;

if (raw_data) {
add _to_buffer (start_ address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

skip:
start _address_pointer--;
reg_cnt+4-+;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

}

int reg_data_ePWN4()

unsigned int % start_address_pointer =(unsigned int x) OxFCF78F00;

unsigned int % last_ address_pointer =(unsigned int x) OxFCF78FFC;
int reg_cnt = 0;
do
if(start address pointer == (unsigned int x)O0xFCF78F3c|| OxFCF78F38)
goto skip;
}

if (raw_data) {
add _to_buffer (start_address_pointer ,*start_ address_pointer , CONTINUE,
Message_ TMS_REG) ;
2557 } else {

160

[CECECEN

NN NN

2595
2596

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609

2610
2611
2612
2613
2614
2615
2616

161

B.2 Drivers and Functionality

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

skip:
start _address_pointer+-;
reg_cnt++;

while (start address pointer <= last address pointer);

return

}

reg_cnt;

int reg_data_ePWNS5 ()

unsigned int x start_address_pointer =(unsigned int x) O0xFCF79000;

unsigned int x last_address_pointer =(unsigned int %) OxFCF790FC;
int reg_cnt = 0;
do
{

if (start _address pointer == (unsigned int x)0xFCF7803c|| O0xFCF78038)

{
goto skip;
if (raw_data) {

add_to_buffer (start address pointer ,xstart address pointer, CONTINUE,

Message TMS REG) ;
} else
printf("\r\n %x ,%x",start_address_pointer ,*start_ address_pointer);
skip:
start _address _pointer++;
reg_cnt++;

while (start _address pointer <= last_address_pointer);

return

}

reg_cnt;

int reg_data_ePWNG6 ()

unsigned int % start address_ pointer =(unsigned int %) O0xFCF79100;

unsigned int % last address pointer =(unsigned int %) OxFCF791FC;
int reg_cnt = 0;
do
{
if (start _address_pointer = (unsigned int *)0xFCF7813c|| O0xFCF78138)
goto skip;
if (raw_data) {
add_to_buffer (start_address pointer ,xstart_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {
printf("\r\n %x ,%x",start address pointer ,xstart address_pointer);
skip:
start _address_pointer+-;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return

}

reg_cnt;

int reg_data_ePWNT7()

unsigned int x start_address_pointer =(unsigned int %) OxFCF79200;

unsigned int x last_ address_pointer =(unsigned int %) OxFCF792FC;
int reg_cnt = 0;
do
if (start address pointer == (unsigned int x)0xFCF7823c|| 0xFCF78238)

if

Message

}

goto skip;

(raw_data) {

add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
TMS_REG) ;
else {

printf("\r\n %x ,%x",start_address_pointer ,xstart_ address_pointer);

161

m-NLP System Firmware 162

2655
2656
2657
2658
2659
2660
2661

2662
2¢

2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677

2686
2687
2688
2689

2690
2691
2692
2693
2694

2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718

}

skip:

start _address_pointer-+;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg cnt;

}
int reg_data_eCAP1()
{
unsigned int % start_address_pointer =(unsigned int x) O0xFCF79300;
unsigned int % last_address_pointer =(unsigned int x) OxFCF793FC;
int reg_cnt = 0;
do
if (start _address pointer == (unsigned int %)0xFCF79314 || O0xFCF79310)
goto skip;
}
if (raw_data) {
add_to_buffer (start address pointer ,xstart address pointer , CONTINUE,
Message TMS_REG) ;
} else {
printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);
skip:
start _address pointer+-+;
reg_cnt++;
while (start _address pointer <= last_address_pointer);
return reg_cnt;
}

int reg_data_eCAP2()

unsigned int * start address_pointer =(unsigned int %) OxFCF79400;

unsigned int * last address pointer =(unsigned int %) OxFCF794FC;
int reg_cnt = 0;
do
{
if (start _address_pointer == (unsigned int x)0xFCF79414 || O0xFCF79410)
{
goto skip;
}

if (raw_data) {
add _to_buffer (start_ address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

skip:
start _address_pointer-;
reg_ cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

int reg_data_eCAP3()

unsigned int % start_address_pointer =(unsigned int x) O0xFCF79500;

unsigned int x last_ address pointer =(unsigned int %) OxFCF795FC;
int reg_cnt = 0;
do
{
if (start address pointer = (unsigned int x)0xFCF79514 || OxFCF79510)
goto skip;
}

if (raw_data) {

162

163 B.2 Drivers and Functionality

2719 add_to_buffer (start_address_pointer ,xstart_address_pointer , CONTINUE,
Message_ TMS_REG) ;
2720 } else {
2721 printf("\r\n %x ,%x",start address pointer ,xstart address_pointer);
skip:
start _address_pointer+-;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

}
int reg_data_eCAP4()

NN NN N

27 unsigned int x start_address_pointer =(unsigned int %) OxFCF79600;
27 unsigned int x last_ address_pointer =(unsigned int %) OxFCF796FC;
27 int reg_cnt = 0;

27 do

2

2 if (start address pointer == (unsigned int x)0xFCF79614 || OxFCF79610)
2

2 goto skip;

2 }

2

2

if (raw_data) {
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;

V)

274 } else {

274 printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);
27 }

27F skip:

27° start_address_poinher++;

2752 reg_cnt++;

N

NN

while (start address pointer <= last address pointer);

return reg cnt;

}
int reg data eCAP5()

{
unsigned int x start_address_pointer =(unsigned int *) O0xFCF79700;
unsigned int x last_ address_pointer =(unsigned int x) OxFCF797FC;
int reg_cnt = 0;
do
{
if (start _address_pointer == (unsigned int x)0xFCF79714 || OxFCF79710)
goto skip;
if (raw_data) {
add_to_buffer (start_ address pointer ,xstart_ address_ pointer, CONTINUE,
Message TMS_REG) ;
} else
printf("\r\n %x ,%x",start address pointer ,xstart address pointer);
skip:
start _address_pointer++;
reg_cnt++;
while (start _address pointer <= last_address_pointer);
return reg_cnt;
2786 }
2787
2788 int reg_data_ eCAP6()
2789
2790 unsigned int x start address pointer =(unsigned int %) OxFCF79800;
2791 unsigned int * last_ address_ pointer =(unsigned int %) OxFCF798FC;
int reg_cnt = 0;
do
{
if (start_address_pointer = (unsigned int *)0xFCF79814 || OxFCF79810)
{
goto skip;
}

163

m-NLP System Firmware 164

2799

2800 if (raw_data) {

2801 add _to_buffer (start address_pointer ,*start address_pointer , CONTINUE,
Message TMS REG) ;

2802 } else {

2803 printf ("\r\n %x ,%x",start address pointer ,xstart address pointer);

2804 } - - B -

2805 skip:

2806 start address pointer-+;

2807 reg cnt++;

2808 B

2809

2810 while (start _address_pointer <= last_address_pointer);

2811

2812 return reg_cnt;

2813}

2814

2815 int reg_data_ eQEPI1()

2816 {

2817 unsigned int % start_address_pointer =(unsigned int x) O0xFCF79900;

2818 unsigned int % last_ address_pointer =(unsigned int x) OxFCF799FC;

2819 int reg cnt = 0;

2820 do N

2821 {

2822

: if (start address pointer = (unsigned int x)0xFCF7997C || OxFCF79978)

goto skip;

if (raw_data) {
add _to_buffer (start_address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart_address_pointer);

skip:
start _address_pointer-+;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg cnt;

}
int reg_data_eQEP2()

2844 {
2845 unsigned int % start_address_pointer =(unsigned int x) OxFCF79A00;
2846 unsigned int % last_address_pointer =(unsigned int x) OxFCF79AFC;
2847 int reg_cnt = 0;
2848 do
2849
2850 if (start _address pointer == (unsigned int %)0xFCF79a7C || OxFCF79a78)
2851
2852 goto skip;
2853 }
2854
2855 if (raw_data)
2856 add_to_buffer (start address pointer ,xstart address pointer, CONTINUE,

Message TMS REG) ;

} else {

printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);

skip:
start _address _pointer-+-+;
reg_cnt++;

while (start _address pointer <= last_address_pointer);

return reg cnt;

int reg data_ Gio()

unsigned int % start_address_pointer =(unsigned int x) OxFFF7BCO00;
unsigned int * last_address_pointer =(unsigned int x) OxFFF7BC33;
int reg_cnt = 0;

do

164

165 B.2 Drivers and Functionality

2879 {

2880

2881 if (raw_data) {

2882 add _to_buffer (start_ address_ pointer ,xstart_ address_ pointer, CONTINUE,
Message_ TMS_REG) ;

} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

start _address_pointer++;

reg_cnt++;
2890
2891 while (start _address_pointer <= last_address_pointer);
2892
2893 return reg_cnt;
2894 }
2895
2896 int reg_data_GioA ()
2897
2898 unsigned int x start_ address_ pointer =(unsigned int %) OxFFF7BC34;
2899 unsigned int x last address pointer =(unsigned int =*) OxFFF7BC53;
2900 int reg cnt = 0; - -

do

{

if (raw_data)
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,

Message_ TMS_REG) ;
2906 } else {
2907 printf("\r\n %x ,%x",start_address_pointer ,xstart_ address_pointer);
2908
2909
2910 start _address_pointer++;
2911 reg cnt+-4;
2912 -
2913
2914 while (start _address pointer <= last_ address_ pointer);
2915
2916 return reg cnt;
2917 } -
2918
2919 int reg data_ GioB ()

unsigned int x start_ address_pointer =(unsigned int *) OxFFF7BCb54;

unsigned int x last_ address_pointer =(unsigned int *) OxFFF7BCFF;
int reg_cnt = 0;

do

{

if (raw_data) {
add_to_buffer (start_ address pointer ,xstart_ address_pointer, CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart_ address_pointer);

start _address_pointer+-;
reg_cnt++;

while (start _address _pointer <= last_address_pointer);

return reg_cnt;

}

int reg_data_I2C()
2944 unsigned int x start_address_pointer =(unsigned int %) OxFFF7D400;
2945 unsigned int x last_ address_pointer =(unsigned int %) OxFFF7D4FF;
2946 int reg_cnt = 0;
2947 do
2948 {

if (raw_data) {
add_to_buffer (start address pointer ,xstart address pointer, CONTINUE,
Message TMS_REG) ;
} else
printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);

start _address_pointer++;
reg_cnt++;

165

m-NLP System Firmware 166

2958

2959 while (start _address pointer <= last_address_pointer);

2960

2961 return reg cnt;

2962} -

2963

2964

2965 int reg data NHET1 ()

2966 B B

2967 unsigned int % start_address_pointer =(unsigned int x) OxFFF7B800;
2968 unsigned int * last_address_pointer =(unsigned int x) OxFFF7b8FF;
2969 int reg_cnt = 0;

2970 do

2971 {

if (raw_data) {
add _to_buffer (start_ address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

start _address_pointer--;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

}
2987
2988 int reg_data NHET2()
2989
2990 unsigned int % start_address_pointer =(unsigned int x) OxFFF7B900;
2991 unsigned int % last_address_pointer =(unsigned int x) OxFFF7b9FF;
2992 int reg_cnt = 0;
2993 do
2994 {
2995
2996 if (raw_data)
2997 add_to_buffer (start address pointer ,xstart address pointer , CONTINUE,
Message TMS REG) ;
2998 } else {
2999 printf ("\r\n %x ,%x",start address pointer ,xstart address pointer);
3000 B - B B
3001
3002 start _address _pointer-+-+;
3003 reg_cnt++;
3004
3005 while (start _address _pointer <= last_address_pointer);
3006
3007 return reg_cnt;
3008 }
3009 int reg_data_ HTUL()
3010
3011 unsigned int * start address pointer =(unsigned int %) OxFFF7A400;
3012 unsigned int * last address pointer =(unsigned int %) OxFFF7A47b;
3013 int reg cnt = 0; -
3014 do -
3015 {
3016
3017 if (start _address_pointer = (unsigned int *)0xFFF7A418 || O0xFFF7A415)
3018
goto skip;
if (raw_data) {
add_to_buffer (start_ address_pointer ,xstart_ address_pointer , CONTINUE,
Message_ TMS_REG) ;
3023 } else {
3024 printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);
3025 }
3026
3027 skip:
3028 start address pointer-4-+;
3029 reg cnt++; -

while (start _address _pointer <= last_address_pointer);

return reg_cnt;

}
: int reg_data_HTU2()
3037 {

166

3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048

3049
3050
3051

3059
3060
3061
3062
3063
3064

3065
3066
3067
3068
3069
3070
3071
3072

3073
3074
3075
3076
3077
3078
3079
3080

3081
3082

167

B.2 Drivers and Functionality

}

unsigned int x start_address_pointer =(unsigned int %) OxFFF7A500;
unsigned int x last_ address_pointer =(unsigned int %) OxFFF7A5FF;
int reg_cnt = 0;
do
{
if (start _address pointer == (unsigned int x)0xFFF7A518 || OxFFF7A514)

goto skip;

if (raw_data) {

add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,

Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start_address_pointer ,xstart_ address_pointer);

skip:
start _address_pointer++;
reg_cnt++;

while (start _address pointer <= last address_pointer);

return reg cnt;

int reg data IOMM ()

int

int

unsigned int * start_address_pointer
unsigned int * last_address_pointer
int reg_cnt = 0;

do

{

if (raw_data) {

=(unsigned
=(unsigned

int
int

%) OxFFFFEA00;
#) OxFFFFEBFF;

add_to_buffer (start_address_pointer ,xstart_address_pointer , CONTINUE,

Message_TMS_REGT 5
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address_pointer);

start _address _pointer-+-;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

reg_data_MibSpil ()

unsigned int * start_ address_pointer
unsigned int x last_address_pointer
int reg cnt = 0;

do -

{

if (raw_data) {

=(unsigned
=(unsigned

int
int

%) O0xFFF7F400;
*) OxFFF7F5FF;

add_to buffer (start address pointer ,xstart address pointer, CONTINUE,

Message TMS_REG) ;
} else {

printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);

}

start _address_pointer++;
reg_cnt++;

while (start address pointer <= last_ address_pointer);

return reg cnt;

reg data_ Spi2()

unsigned int * start_address_pointer
unsigned int * last_address_pointer
int reg_cnt = 0;

do

=(unsigned
=(unsigned

167

int
int

*) OxFFF7F600;
*) OxFFF7F7FF ;

m-NLP System Firmware 168

3118
3119 if (raw_data) {
3120 add _to_buffer (start address_pointer ,*start address_pointer , CONTINUE,
Message TMS REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,*start address pointer);

}

start address pointer-+;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg cnt;

}
int reg_ data_MibSpi3 ()
{
unsigned int % start_address_pointer =(unsigned int x) OxFFF7F800;
unsigned int % last_ address_pointer =(unsigned int x) OxFFF7F9FF;
int reg_cnt = 0;
do
{
if (raw_data) {
add_to_buffer (start_address_pointer ,*start_ address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {
printf("\r\n %x ,%x",start address_pointer ,xstart_ address_pointer);
start _address pointer-+-+;
reg_cnt++;
while (start _address pointer <= last_address_pointer);
return reg_cnt;
}

int reg data_ Spi4 ()

unsigned int * start address pointer =(unsigned int %) OxFFF7FA00;

unsigned int % last_address_pointer =(unsigned int x) OxFFF7FBFF;
int reg_cnt = 0;
do

3163 {

3164

3165 if (raw_data) {

3166 add _to_buffer (start_address_pointer ,*start_ address_pointer , CONTINUE,
Message_ TMS_REG) ;

3167 } else {

3168 printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

3169 }

3170

3171 start _address_pointer-+;

3172 reg cnt+4+4;

3173 N

3174

3175 while (start address pointer <= last address pointer);

3176

3177 return reg_cnt;

3178 }

3179

3180 int reg_data_MibSpip5 ()

3181 {

3182 unsigned int % start_address_pointer =(unsigned int x) OxFFF7FCO00;

3183 unsigned int % last_address_pointer =(unsigned int x) OxFFF7FDFF;

3184 int reg_cnt = 0;

3185 do

3186 {

3187

3188 if (raw_data) {

3189 add_to_buffer (start address_ pointer ,xstart address_ pointer , CONTINUE,
Message TMS REG) ;

3190 } else {

3191 printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

3192

3193

start _address _pointer+-+;
reg_cnt++;

168

169 B.2 Drivers and Functionality

3197
3198 while (start address pointer <= last_ address_pointer);
3199
3200 return reg cnt;
3201 } B
3202
3203 int reg data Lin2()
3204 - -
3205 unsigned int % start address pointer =(unsigned int %) OxFFF7E500;
3206 unsigned int x last_ address_pointer =(unsigned int %) OxFFF7E5FF;
int reg_cnt = 0;
do
{

if (raw_data) {
add_to_buffer (start_address_pointer ,xstart_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

}
start _address_pointer-+-;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

}
6 int reg_data_Linl ()
3227 {
3228 unsigned int x start_address_pointer =(unsigned int x) OxFFF7E400;
3229 unsigned int x last_address_pointer =(unsigned int %) OxFFF7E4FF;
3230 int reg_cnt = 0;
328 do
{
if (raw_data) {
add_to_buffer (start_ address pointer ,xstart_ address_ pointer, CONTINUE,
Message TMS_REG) ;
} else {
printf("\r\n %x ,%x",start address pointer ,xstart address pointer);
start _address_pointer++;
reg_cnt++;
while (start _address pointer <= last_address_pointer);
return reg_cnt;
}

int reg_data_ CcmR4()

unsigned int x start address pointer =(unsigned int %) OxFFFFF600;

unsigned int * last_ address_ pointer =(unsigned int %) OxFFFFF6FF;
int reg_cnt = 0;

do

{

if (raw_data) {
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;

3259 } else {

3260 printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);
3261 }

3262

3263 start _address_pointer++;

3264 reg_cnt++;

3265

3266

3267 while (start address pointer <= last address pointer);
3268 B - - -

3269 return reg_cnt;

3273 int reg_data_Crc()

3275 unsigned int x start_address_pointer =(unsigned int *) O0xFE000000;
3276 unsigned int * last_ address_pointer =(unsigned int x) O0xFE000143;

169

m-NLP System Firmware 170

3277 int reg_cnt = 0;

3278 do

3279 {

3280

3281 if (raw_data)

3282 add_to_buffer (start address pointer ,xstart address pointer , CONTINUE,
Message TMS_REG) ;

} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);
start _address _pointer-+-+;
reg_cnt++;

}

while (start _address_pointer <= last_address_pointer);

return reg cnt;

}
: int reg_data_Dccl ()
3297
3298 unsigned int * start address pointer =(unsigned int %) OxFFFFECO00;
3299 unsigned int x last address pointer =(unsigned int x) OxFFFFEC2B;
3300 int reg cnt = 0; - -
3301 do
3302 {
4 if (raw_data) {
3305 add _to_buffer (start_ address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
3306 } else {
3307 printf("\r\n %x ,%x",start address_pointer ,xstart_ address_pointer);
3308
3309
3310 start _address_pointer--;
3311 reg_cnt++;

while (start address pointer <= last address pointer);

return reg _cnt;

int reg_data_Dcc2()

unsigned int % start_address_pointer =(unsigned int x) OxFFFFF400;

unsigned int % last_address_pointer =(unsigned int x) OxFFFFF42B;
int reg_cnt = 0;

do

{

if (raw_data) {
add _to_buffer (start address_ pointer ,*start address_pointer , CONTINUE,

Message_TMS_ﬁEGT g
} else {

} printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

start _address_pointer-;
reg_ cnt++;

while (start _address_pointer <= last_address_pointer);

return reg cnt;

}

int reg_data_Dma()

{
unsigned int % start_address_pointer =(unsigned int x) OxFFFFFO000;
unsigned int % last_address_pointer =(unsigned int x) OxFFFFF1D7;
int reg_cnt = 0;
do

if (raw_data) {
add_to_buffer (start_address_pointer ,*start_ address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,*start_ address_pointer);

170

171 B.2 Drivers and Functionality

start _address_pointer—+-+;
reg_cnt++;
while (start address pointer <= last address pointer);

return reg_cnt;

}

int reg_data_Esm()

3368 unsigned int x start_address_pointer =(unsigned int x) OxFFFFF500;

3369 unsigned int x last_ address_pointer =(unsigned int x) OxFFFFF55B;

3370 int reg_cnt = 0;

3371 do

3372 {

3373

3374 if (raw_data) {

3375 add _to_buffer (start_ address pointer ,xstart_ address pointer, CONTINUE,
Message_ TMS_REG) ;

3376 } else {

3377 printf("\r\n %x ,%x",start address pointer ,xstart address_ pointer);

start address pointer++;
reg_cnt++;
wait (20) ;

while (start _address_pointer <= last_address_pointer);

return reg cnt;

int reg data_ flashWrapper ()

unsigned int % start address_ pointer =(unsigned int %) OxFFF87000;

unsigned int * last address_ pointer =(unsigned int %) OxFFF870c3;
int reg_cnt = 0;

do

{

if (raw_data) {
add_to_buffer (start_address_pointer ,xstart_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start_address_pointer ,xstart address_pointer);

¥
start _address_pointer—+-+;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg_cnt;

}

int reg_data_Pbist ()

{
unsigned int x start_address_pointer =(unsigned int *) OxFFFFES500;
unsigned int x last_ address_pointer =(unsigned int x) OxFFFFE5CF;
int reg_cnt = 0;
do
{

if (raw_data) {
add _to_buffer (start_ address pointer ,xstart_ address pointer, CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

start address pointer++;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

171

m-NLP System Firmware 172

0

3459
3460

3498
3499
3500
3501

3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515

return reg cnt;

int reg_data PMM/()

{

int

}

int

unsigned int % start address pointer =(unsigned int %) OxFFFF0000;

unsigned int * last_ address pointer =(unsigned int %) OxFFFF00C3;
int reg_cnt = 0;
do
{
if (start _address_pointer == (unsigned int %)0xFFFF0000 || OxFFFFe5cc)
{
goto skip;
}

if (raw_data) {
add _to_buffer (start_ address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

skip:
start _address_pointer--;
reg_ cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

reg_data_Rti()

unsigned int % start_address_pointer =(unsigned int x) OxFFFFFCO00;

unsigned int % last_ address_pointer =(unsigned int x) OxFFFFFCBF;
int reg_cnt = 0;
do

if (raw_data) {
add _to_ buffer (start address pointer ,xstart address pointer, CONTINUE,
Message_ TMS_REG) ;
} else
printf("\r\n %x ,%x",start_address_pointer ,xstart_address_pointer);

start _address _pointer-+-+;
reg_cnt++;

while (start _address pointer <= last_address_pointer);

return reg cnt;

reg data_Stc()

unsigned int % start address pointer =(unsigned int %) OxFFFFE600;
unsigned int x last_ address_pointer =(unsigned int *) OxFFFFE63F;
int reg_cnt = 0;

do

{

if (raw_data) {
add_to_buffer (start_address_pointer ,xstart_ address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

start _address_pointer--+;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

return reg_cnt;

reg_data_Sys ()

172

173 B.2 Drivers and Functionality

{
unsigned int x start_ address pointer =(unsigned int %) OxFFFFFF00;
unsigned int x last_ address_pointer =(unsigned int %) OxFFFFFFFB;
do
{
if (raw_data) {
add_to_buffer (start address pointer ,xstart address pointer, CONTINUE,
Message TMS REG) ;
} else {
printf("\r\n %x ,%x",start_address_pointer ,*start_ address_pointer);
start _address_pointer++;
while (start _address pointer <= last_ address_pointer);
return O0;
}

int reg data_ Sys2()

unsigned int % start address_ pointer =(unsigned int *) OxFFFFE100;

unsigned int * last_ address_ pointer =(unsigned int %) OxFFFFEIFF;
do

{
if (raw_data) {
add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);
start _address_pointer+-+;

while (start address pointer <= last address pointer);

return O0;

}

int reg data Vim()

{
unsigned int x start_address_pointer =(unsigned int *) OxFFFFFEO00;
unsigned int x last_ address_pointer =(unsigned int x) Oxfffffedc;
int reg_cnt = 0;
do
{

if (raw_data) {
add_to_buffer (start_address pointer ,xstart_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address pointer ,xstart address_pointer);

start _address_pointer+-;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

£ return reg_cnt;
3578 }

3580 int reg_data_VimPar ()

3582 unsigned int x start_address_pointer =(unsigned int %) OxFFFFFDEC;

3583 unsigned int x last_ address_pointer =(unsigned int %) OxFFFFFDFF;

3584 int reg_cnt = 0;

3585 do

3586 {

3587

3588 if (raw_data) {

3589 add_to_buffer (start address pointer ,xstart address pointer, CONTINUE,
Message TMS REG) ;

3590 } else {

printf("\r\n %x ,%x",start_address_pointer ,*start_ address_pointer);

start _address_pointer++;

173

m-NLP System Firmware 174

3595 reg_cnt++;

3596

3597

3598 while (start address pointer <= last_ address pointer);
3599

return reg cnt;

}

int reg_ data Pom()

{

7/

s

unsigned int % start_address_pointer =(unsigned int x) OxFFA04000;
unsigned int % last_address_pointer =(unsigned int x) OxFFAO4FFF;

int reg_cnt = 0;
do
{
if (start _address pointer == (unsigned int =%)0xFFF7A518 || 0xFFFT7A514)

goto skip;

}
if (raw_data) {
add_to_buffer (start address pointer ,xstart address pointer , CONTINUE,
Message TMS_REG) ;

3619 } else {
3620 printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);
skip:
3 start _address pointer+-+;
362° reg_cnt++;
3626
3627
3628 while (start _address pointer <= last_address_pointer);
3629
3630 return reg_cnt;
1

}
int reg data_ Emif()

unsigned int * start address_pointer =(unsigned int %) OxFCFFES800;

unsigned int * last_ address pointer =(unsigned int *) OxFCFFESDC;
int reg_cnt = 0;

do

{

if (raw_data) {
add _to_buffer (start_address_pointer ,*start address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {

printf("\r\n %x ,%x",start address_pointer ,xstart address_pointer);

start _address_pointer-+;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg _cnt;

}

int reg_data_Pecr()

{

3657 unsigned int % start_address_pointer =(unsigned int x) OxFFFFEO000;

3658 //last is OxffffeOac

3659 unsigned int % last_address_pointer =(unsigned int x) OxFFFFEOAC;

3660 int reg_cnt = 0;

3661 do

3662 {

3663

3664 if (raw_data) {

3665 add _to_buffer (start address_pointer ,*start address_pointer , CONTINUE,
Message TMS_REG) ;

} else {
printf("\r\n %x ,%x",start address pointer ,xstart address pointer);

start _address _pointer+-+;
reg_cnt++;

while (start _address_pointer <= last_address_pointer);

174

175 B.2 Drivers and Functionality

return reg cnt;

}
3679 int reg_data_RamWrapper Even ()
3680
3681 unsigned int % start address_ pointer =(unsigned int %) OxFFFFF800;
3682 unsigned int % last address pointer =(unsigned int %) OxFFFFF84B;
3683 int reg_cnt = 0;
3684 do
3685 {
if (start _address_pointer = (unsigned int x)0xFFFFF814 || OxFFFFF810)
{
goto skip;

if (raw_data) {
add _to_buffer (start_ address pointer ,xstart address pointer , CONTINUE,
Message_ TMS_REG) ;
3694 } else {
: printf("\r\n %x ,%x",start address pointer ,xstart address_pointer);

3696 }
3697 skip :
3698 start _address _pointer+-;
3699 reg_cnt++;
3700
3701
3702 while (start _address_pointer <= last_address_pointer);
3703 return reg_cnt;
3704 }
3705
3706 int reg_data_RamWrapper_Odd ()
3707
3708 unsigned int x start_address_pointer =(unsigned int %) OxFFFFF900;
3709 unsigned int x last_ address_pointer =(unsigned int %) OxFFFFF94B;
3710 int reg_cnt = 0;
3711 do
3712
3713 if (start _address pointer = (unsigned int x)0xFFFFF914 || OxFFFFF910)
3714
3715 goto skip;
3716
3717
3718 if (raw_data) {
3719 add_to_buffer (start_address_pointer ,*start_address_pointer , CONTINUE,
Message_ TMS_REG) ;
} else {
printf("\r\n %x ,%x",start_address_pointer ,xstart address_pointer);
skip:
start _address_pointer++;
reg_cnt++;

while (start address pointer <= last address pointer);

return reg cnt;

E #define TSIZE1l 140000

3738 #pragma RETAIN(Control_array)
3739 #pragma location = 0x08001600
3740 uint8 Control _array [TSIZE1];
3741 uint8 Control _Value =0x48;

3742

3743 void RAMtest _init ()

3744

3745 memset(& Control _array , Control_Value,sizeof (Control _array));

3746

3747

3748 int RAM data_read()

3749 - -

3750 unsigned int * start address pointer =(unsigned int %) &Control array[0];

3751 unsigned int x last_address_pointer =(unsigned int x) &Control_array[TSIZEl—1];
3752 add_to_buffer (0,0, NEW_RUN, Message TMS_REG) ;

: : int reg_cnt = 0;

3754 //unsigned int % test address pointer =(unsigned int %) 0x08000000 ;

3755 //add_to_buffer (test_ address_pointer ,xtest address_pointer , CONTINUE,Message TMS_REG) ;

175

m-NLP System Firmware 176

}

3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821

//add_to_buffer (ESMO_monitor() ,ESM1_monitor (), CONTINUE, Message TMS_REG) ;
do

{

if (raw_data) {
if (reg_cnt == 0)

add_to_buffer (start_address_pointer ,*start_address_pointer , NEW_RUN,
Message_ TMS_REG) ;

add_to_buffer (reg_cnt,ESMO_monitor(), CONTINUE, Message TMS_REG) ;

reg_cnt++;

else if(reg_cnt = 28)

add_to_buffer (start_ address pointer ,xstart_ address_pointer , CONTINUE,
Message_ TMS_REG) ;

add_to_buffer (reg_cnt,ESMO_monitor (), RUN_COMPLETE, Message_ TMS_REG) ;

reg_cnt =0;

else {
add_to_buffer (start address_ pointer ,xstart address_ pointer , CONTINUE,
Message TMS_REG) ;
add_to_buffer (reg_ cnt,ESMO_monitor (), CONTINUE, Message TMS_ REG) ;
reg_cnt++;

} else {

printf("\r\n %x ,%x",start_address_pointer ,*start_address_pointer);
start _address pointer+-+;
while (start _address _pointer <= last_address_pointer);

add _to_buffer (0,0, RUN_COMPLETE, Message TMS_ REG) ;
return reg_cnt;

void reg data cmd()

int reg8 read_cnt = 0;

reg8 read_cnt +=reg_data_MibAdc2() ;
reg8 read cnt +=reg data MibAdcl () ;
reg8 read cnt +=reg data Dcan3();
reg8 read_cnt +f=reg_data_Dcan2();
reg8 read_cnt +=reg_data_Dcanl () ;
reg8 read_cnt +=reg_data_ePWNI1();
reg8 read_cnt +=reg_data_ePWN2();
reg8 read_cnt +=reg_data_ePWN3();
reg8 read_cnt +=reg_data_ePWN4();
reg8 read_cnt +=reg_data_ePWN5 () ;
reg8 read_cnt +=reg_data_ePWNG6 () ;
reg8 read_cnt +=reg_data_ePWN7();
reg8 read_cnt +=reg_data_eCAP1();
reg8 read_cnt +=reg_data_eCAP2();
reg8 read cnt +=reg data_eCAP3();
reg8 read cnt +=reg data_eCAP4();
reg8 read_cnt +f=reg_data_eCAPS5();
reg8 read_cnt +=reg_data_eCAP6 () ;
reg8 read cnt +=reg data_ eQEPI1();
reg8 read cnt +=reg data eQEP2();
reg8 read_cnt +f=reg_data_Gio();
reg8 read_cnt +=reg_data_GioA ();
reg8 read_cnt +=reg_data_GioB () ;
reg8 read_cnt +=reg_data_ I2C();
reg8 read_cnt +=reg_data_ NHET1() ;
reg8 read_cnt +=reg_data_ NHET2() ;
reg8 read_cnt +=reg_data_HTU1();
reg8 read_cnt +=reg_data_HTU2();
reg8 read_cnt +=reg_data_ IOMM () ;
reg8 read_cnt +=reg_data_MibSpil () ;
reg8 read_cnt +=reg data_Spi2();
reg8 read_cnt +=reg_data_MibSpi3 () ;
reg8 read cnt +=reg data_Spi4();
reg8 read cnt +=reg_ data_MibSpip5 () ;
reg8 read_cnt +=reg_data_Lin2();
reg8 read_cnt +=reg_data_Linl();
reg8 read cnt +=reg data CcmR4();
reg8 read_cnt +=reg_data_Crc();
reg8 read_cnt f=reg_data_Dccl () ;
reg8 read_cnt +=reg_data_Dcc2();
reg8 read_cnt +=reg_data_Dma() ;
reg8 read_cnt +=reg_data_Esm() ;

176

177 B.2 Drivers and Functionality

3836 reg8 read_cnt f=reg_data_flashWrapper () ;
3837 reg8 read_cnt f=reg_data_Pbist () ;

3838 reg8 read_cnt +=reg_data PMM() ;

3839 reg8 read cnt 4=reg data_ Rti();

3840 reg8 read cnt +=reg data_Stc();

3?«-11 reg8 read cnt +=reg data_Sys() ;

reg8 read cnt +=reg data_ Sys2();

reg8 read cnt +=reg data_ Vim() ;

reg8 read cnt +=reg data VimPar();

reg8 read_cnt f=reg_data_Pom() ;

reg8 read_cnt f=reg_data_Emif();

reg8 read_cnt {=reg_data_Pecr();

//reg8 read cnt +=reg data RamWrapper Even|() ;
//reg8 read cnt += reg data RamWrapper _0dd () ;

cmd AD7768 GET _AllConfigs () ;

cmd _1tc3887 read config() ;

add _to_buffer (0,0, RUN_COMPLETE, Message_ TMS_REG) ;
,pllntf(”\l\l’l Numbcr regs %d \r\n", reg8 read cnt);
/*total number of register that are printed 4580
* those varies in size from 8 to 32 bitsx*/
//obc_debug("Number regs %d", reg8 read_cnt);

}

void raw_board_status()

{

IVmeasurements () ;

add _to_buffer (MON_I_V.P5V0_V,MON_I V.P5V0_I, NEW_RUN, MESSAGE_ CONFIRM_BOARD_STATUS) ;

add _to_buffer (MON_I_V.P3V3_V,MON_I V.P3V3 I, CONTINUE,MESSAGE CONFIRM_BOARD_STATUS) ;
add_to_buffer (MON_I_V.P12V_V,MON_I_V.P12V_I, CONTINUE,MESSAGE_CONFIRM_BOARD_STATUS) ;
add_to_buffer (MON_I_V.N12V_V,MON_I_V.N12V_I, CONTINUE,MESSAGE_CONFIRM_BOARD_STATUS) ;
add_to_buffer (MON_I V.P1V2_I,MON_I V.EGUN_I, CONTINUE,MESSAGE CONFIRM_BOARD_STATUS) ;
add_to_buffer (MON_I V.P1V2 I,MON I V.EGUN_I, CONTINUE,MESSAGE CONFIRM_BOARD_STATUS) ;
add_to_buffer (MON T V.P1V2 I,MON I V.EGUN I, RUN COMPLETE,MESSAGE CONFIRM BOARD STATUS) ;
//cmd_AD7768 print_Data() ;

I

void dac_status ()

DAC_GAIN SET STATUS() ;

cmd_1tc3887 Read output voltage (0,0) ;

cmd_1tc3887 Read internal Temperature(O 0);

cmd _1tc3887 output current (0, 0);

add _to_buffer (BIAS_MON_V.DAC_BIAS_ CHI1,BIAS MON_V.DAC_BIAS CH2, NEW_RUN,
MESSAGE CONFIRM_DAC) ;

3883 add to buffer (BIAS MON_V.DAC_BIAS_CH3,BIAS_ MON_V.DAC_BIAS_CH4,CONTINUE ,
MESSAGE CONFIRM DAC) 8
3884 add_to_buffer (ltc_m_values.ltc_current ,ltc_m_values.ltc_temperature , RUN_COMPLETE,
MESSAGE_CONFIRM_DAC);
3885 }
3886
3887 int esml_read()
3888 {
3889 unsigned int temp=0;
3890 unsigned int % ESM _address_pointer =(unsigned int) OxFFFFF518;
3891 wait (2) ;
38 if (+* ESM _address_pointer != 0)
{
unsigned int temp = *ESM_address_pointer;
*ESM _address_pointer =temp;
}
return temp;
}
int esm2_read ()
{
unsigned int temp=0;
3905 unsigned int x ESM_address_pointer =(unsigned int x) Oxfffff51lc;
3906 wait (2);
3907 if (+*xESM _address_pointer != 0)
{
unsigned int temp = *ESM _address_pointer;
*ESM _address pointer =temp;
}

return temp;

177

m-NLP System Firmware

178

3916
3917
3918
3919
3920
3921
3922

void ecc_data_test ()

checkRAMECC () ;

B.3 System Main

/** @file sys_main.c
@Qbrief Application main file
@date 05—Oct—2016
@version 04.06.00

This file contains an empty main function ,
which can be used for the application.

* K K X X X ¥

~

*

Copyright (C) 2009—2016 Texas Instruments Incorporated — www. ti.com

Redistribution and use in source and binary forms, with or without
modification , are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright

documentation and/or other materials provided with the
distribution .

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

KK K K K K K K K K K K K K K K K ¥ K K ¥ K ¥ K ¥ K ¥ K ¥ X ¥ ¥~

~

/% USER CODE BEGIN (0) x/
#include "sys common.h"
#include "system.h"
#include "reg system.h"
#include "stdio.h"
#include "sci.h"
#include "reg _sci.h"
#include "string.h"
#include "Commandline.h"
#include "SysBoard.h"
#include "htu.h"

/* USER CODE END x/

/% Include Files */
#include "sys_common.h"
/* USER CODE BEGIN (1) =/

// Received char
char c¢; //stores revceived char from sci receive

/+ USER CODE END x/

178

notice, this list of conditions and the following disclaimer in the

Neither the name of Texas Instruments Incorporated nor the names of
its contributors may be used to endorse or promote products derived

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

179 B.3 System Main

70

71 /x*x @fn void main(void)

72 % @brief Application main function
73 * @note This function is empty by default.
74 x

75 % This function is called after startup.
76k The user can use this function to implement the application.
T %/

78

79 /x USER CODE BEGIN (2) =x/

80

81

82 /x USER CODE END x/

83

84 int main(void)

85 {

86 /+ USER CODE BEGIN (3) x/

87 init ();

88 //Ant_RLS_1_ On;

89 //Ant_ RLS_ 2 On;

90 //Ant_RLS_ 3 On;

91 //Ant_RLS_ 4 On;

92 a -

93

94 while (1)

95

96 Parsing () ;

97 }

98 /x USER CODE END x/

99

100

101

102 /x USER CODE BEGIN (4) x/

103

104 /#% @fn void sciNotification (sciBASE_t #*sci, unsigned flags)
105 * @brief standard function for SCI RX interrupt

106 @param [in] scilinREG is base address for modul
107 @param [in] SCI_RX_INT value
108

@Qreturn none

this module has to be initiated for compiler to initial inturrupt for SCI.
this functions reformates the received char from terminal and stores them
in char array called PromptChar[].

-
=
o

* K K K K K X X X

115 x/
116 void sciNotification (sciBASE_t xsci, unsigned flags)
117 {

120 /*Wait for the Tx buffer to emptyx*/
121 if (SCI_TX INT == (flags & SCI_TX_INT))
122 {

124 Led1Toggle;
125 /+*send new characterssx*/
126 sciReceive (sci,1,(unsigned char *)&c);

129 }

131 /*Wait for the Rx buffer to emptysx*/
132 else if (SCI_RX_INT == (flags & SCI_RX_INT))
133 {

134

135 putChar(c) ;

136

137 }

138

139 }

140

141 /* Interrupt =x/

142 void esmGrouplNotification(int bit)
143 {

144 return ;

145 }

146

147 void esmGroup2Notification(int bit)
148 {

149 return ;

150

151

152

179

m-NLP System Firmware

180

CUA W

N o

SIS o NS IS U G

Ol ot Ot Ot Ot Ot Ot

/* USER CODE END x/
L]

B.4 Firmware offset and Bootloader
The modification of firmware location
/
/* sys_link.cmd
/*
/*
* Copyright (C) 2009—2016 Texas Instruments Incorporated — www. ti.com
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution .
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
./
/*
/
/* USER CODE BEGIN (0) =/
/* USER CODE END x/
/
/% Linker Settings
——retain="x(.intvecs)"
/= USER CODE BEGIN (1) =x/
/* USER CODE END x/
/* Memory Map
MEMORY
{

VECTORS (X) origin=0x00020000 length=0x00000020

FLASHO (RX) origin=0x00020020 length=0x0013FFEO

STACKS (RW) origin=0x08000000 length=0x00001500

RAM (RW) origin=0x08001500 length=0x0002EBO00

AJSM (RX) origin=0xF0000000 length=0x00000010
/* USER CODE BEGIN (2) =/
/* USER CODE END x/
}
/+ USER CODE BEGIN (3) =x/
/* USER CODE END x/
/
/% Section Configuration

180

* %
~

181

B.5 CRC16 packing and uart message

SECTIONS
{
.intvecs {} > VECTORS
.text {} > FLASHO
.const {} > FLASHO
.cinit : {} > FLASHO
.pinit : {} > FLASHO
. bss : {} > RAM
.data : {} > RAM
.sysmem : {} > RAM
.ajsm {} > AJSM
/+* USER CODE BEGIN (4) x/
/+* USER CODE END x/
}
/+ USER CODE BEGIN (5) */
/* USER CODE END =x/
/ */
/* Misc * /
/* USER CODE BEGIN (6) */
/+* USER CODE END x/
/ */

B.5 CRC16

packing and uart message

This not developed by me but rather custimized and integrated. The source of

CRC16 and OBC hex commands are from the electronic lab.

DU W N =

O © 0w

/*x @file obc communication.c

* @brief communication protocol

* @date 10—mai—2018

* @Author: Erlend baardsen ELAB

*

* This file contains an empty main function ,
* which can be used for the application.
Ny

#include "system.h"

#include "reg_ system.h"

#include "stdio.h"

#include "sci.h"

#include
#include
#include

"reg sci.h"
"string .h"

"obc communication.h"

static uintl6_t calculate crcl6 (uint8 t xbuf, size t size) {
uintl6_t crc = 0;
int i
while (size ——) {
CrEe = E@¥E *buf++ << 8;
for (i=0; i<8; i++) {
if (crc & 0x8000) {
crc = (crc << 1) =~ 0x1021;
} else {
crc = crc << 1;
}
}
}
return crc;
}
static int message send uart (struct message s * message) {

int
uint

i
16 _t crc;

181

m-NLP System Firmware

182

44 /* Copy payload_lenght to end of active pay—load

45 * in order to simplify CRC calculation

46 */

47 if (message—>payload length < MESSAGE PAYLOAD LENGHT MAX)

48 message—>payload [message—>payload length] = message—>payload_ length;
49

50 crc = calculate crcl6 (&(message—>all[1l]), (message—>payload length + 2));
51

52 /* Check that message is within the maximum x/

o

if (message—>payload _
return EXIT_ FAILURE;

ot
S U W

ot

ut

57
58 sciSendByte (scilinREG , message—>id);
59
60 for (i=0; i < message—>payload length; i++)
61 sciSendByte (scilinREG , message—>payload[i]) ;
62
63 sciSendByte (scilinREG , message—>payload length);
64
65 sciSendByte (scilinREG , (uint8 t)(crc >> 8));
66 sciSendByte (scilinREG , (uint8 t)(crc >> 0));
67
68 sciSendByte (scilinREG , MESSAGE END) ;
69
70 return EXIT_ SUCCESS;
71}
72
73 int obc_debug (char * format,) 4
74
75 struct message_ s debug_message;
76
77 va_list args;
78 va_start (args, format);
79 vsnprintf ((char x)&debug message.payload , MESSAGE PAYLOAD LENGHT MAX, format ,
80 va_end (args);
81 debug_message.id = MESSAGE_INDICATE DEBUG_TEXT;
82 debug message.payload length = strlen ((const char*)&debug message.payload) ;
83 message _send_uart (&debug_ message);
84
85 return EXIT_SUCCESS;
86 }
87
88 int obc_raw_bytes (uint8 t xbuffer , size_ t size ,uint8 message id) {
89
90 struct message_ s debug_message;
91 int ij;
92
93 debug_message.id = message_id;
94 debug_message.payload _length = size;
95
96 for (i=0; ((i < size) && (i < MESSAGE PAYLOAD LENGHT MAX)); i-++)
97 debug_message.payload[i] = buffer[i];
98
99 message send uart (&debug message) ;
100
101 return EXIT_SUCCESS;
102 }
1 #ifndef OBC_COMMUNICATION H
2 #define OBC_COMMUNICATION H
3
4 #include <stdint.h>
5 #include <stdarg.h>
6 #include <stdlib.h>
7
8 int obc_debug (char x format, ...);
9 int obc_raw_bytes (uint8 t x buffer, size_ t size, uint8 message_id);
10
11 /* Communication model:
12 % | |
13 * SERVICE USER | SERVICE | SERVICE USER
14 x | PROVIDER |
15 = \ \
16 * Request | | Indication
17 % @ ——————— > | |
18 * | |
19 x Confirmation | |
20+ <——— | [—
21 * | |
22 *
23 * Confirmation is the acknowledgment of the reception

length > MESSAGE_PAYLOAD_ LENGHT MAX)

sciSendByte (scilinREG , MESSAGE_START) ;

182

args) ;

24
25

26

183 B.5 CRC16 packing and uart message

of a request.

Response is the acknowledgment of the reception
of an indication.

¥ K ¥ X X %

/

enum buffer state e {NEW_RUN, CONTINUE, RUN_ COMPLETE} ;

/* Indications for test usage x/
#define MESSAGE_INDICATE_ DEBUG_TEXT (0x3E)
#define Message TMS_REG (0x3F)
#define MESSAGE_CONFIRM_BOARD_STATUS (0x22)
#define MESSAGE_ CONFIRM_ADC (0x39)
#define MESSAGE CONFIRM_DAC (0x33)
#define MESSAGE_START (0Oxaf)
#define MESSAGE_END (0x5f)
#define MESSAGE ALL LENGHT MAX (0 xff)
#define MESSAGE NON_PAYLOAD LENGHT (6)
#define MESSAGE PAYTCOAD LENGHT MAX (MESSAGE_ALL_LENGHT MAX —
MESSAGE _NON_PAYLOAD_ LENGHT)
#define INCOMING BUFFER_LENGHT (MESSAGE_ALL_LENGHT MAX x 2)
/* CRC calculation include: id, pay—load and payload lenght
* start and end byte is not included in the calculation
*
* Polynomial is 0x1021 and initial value is 0
* (XMODEM/YMODEM CRC16)
*
*/
struct message_s {
union {
struct {
uint8 _t start;
uint8 _t id;
uint8 t payload [MESSAGE PAYLOAD LENGHT MAX];
uint8 t payload_length;
uint8 t crc_msb;
uint8 t crc_lsb;
uint8 t end;
};
uint8 t all [MESSAGE ALL_ LENGHT MAX];
b
+s

#endif /* OBC_COMMUNICATION H s/

183

m-NLP System Firmware 184

184

C Radiation Testing

C.1 Power supply

Power supply events overview

Tw 1m &m YTD 1y | all

Data gaps | L I B .

Mo respons | I |

Firmware

Rezet | I I

Bootloader I | |

cccon I —

ECC of 1 I
eeor [S

May 23 May 25 May 27 May 29 May 31 Jun 2 Jun 4 Jun B
2018

Timeline

Figure C.1: Event that effect the Power supply data collection

185

Radiation Testing 186

C.2 m-NLP events

TMS570 events overview

Tw 1m 6m YTD 1y | all

Datagaps [NNINIIINAN H mimn n i |
Firmware | I |
Reser | | T
Bootloader | | - | |
No respons | | [|
cccon I Ly
1
May 23 May 25 May 27 May 29 May 31 Jun 2 Jun 4 Jun 6
2018
Timeline

Figure C.2: TMS570 relevent events that affected data collection

186

Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

Chris-martin, “Van Allen radiation belts,” Jul. 2018. [Online|. Avail-
able: https://en.wikipedia.org/wiki/Van Allen radiation belt# /media/
File:Van Allen radiation belt.svg

“Spenvis: Trapped particle radiation models.” [Online|. Available: https:
/ /www.spenvis.oma.be/help /background /traprad /traprad.html# APAE

J. Barth, C. Dyer, and E. Stassinopoulos, “Space, atmospheric,
and terrestrial radiation environments,” [EEE Transactions on Nuclear
Science, vol. 50, no. 3, pp. 466-482, Jun. 2003. [Online|. Available:
http://ieeexplore.ieee.org/document /1208571 /

R. Secondo, R. Alia, P. Peronnard, M. Brugger, A. Masi, S. Danzeca,
A.-S. Merlenghi, L. Dusseau, and J.-R. Vaille, “Analysis of SEL
on Commercial SRAM Memories and Mixed-Field Characterization of
a Latchup Detection Circuit For LEO Space Applications,” I[IEEFE
Transactions on Nuclear Science, pp. 1-1, 2017. [Online|. Available:
http://ieeexplore.ieee.org/document /7892958 /

Joseph Magill, “Nucleonica web portal for nuclear data,” Mar. 2011.
[Online|. Available: https://www.nucleonica.com

R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, mo. 3, pp. 305-316, Sep. 2005. [Online|. Available: http:
/ /ieeexplore.ieee.org/document /1545891 /

F. Faccio, “COTS for the LHC radiation environment: the rules of the
game,” p. 16. [Online|. Available: http://lhc-electronics-workshop.web.cern.
ch/LHC-electronics-workshop/2000/plenary /faccio plenary.pdf

M. Nicolaidis, Ed., Soft errors in modern electronic systems, ser. Frontiers in
electronic testing. New York: Springer, 2011, no. 41, oCLC: 0cn699778302.

187

https://en.wikipedia.org/wiki/Van_Allen_radiation_belt#/media/File:Van_Allen_radiation_belt.svg
https://en.wikipedia.org/wiki/Van_Allen_radiation_belt#/media/File:Van_Allen_radiation_belt.svg
https://www.spenvis.oma.be/help/background/traprad/traprad.html#APAE
https://www.spenvis.oma.be/help/background/traprad/traprad.html#APAE
http://ieeexplore.ieee.org/document/1208571/
http://ieeexplore.ieee.org/document/7892958/
https://www.nucleonica.com
http://ieeexplore.ieee.org/document/1545891/
http://ieeexplore.ieee.org/document/1545891/
http://lhc-electronics-workshop.web.cern.ch/LHC-electronics-workshop/2000/plenary/faccio_plenary.pdf
http://lhc-electronics-workshop.web.cern.ch/LHC-electronics-workshop/2000/plenary/faccio_plenary.pdf

BIBLIOGRAPHY 188

19]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

18]

A. Schlésser, D. Nedospasov, J. Kramer, S. Orlic, and J.-P. Seifert,
“Simple photonic emission analysis of AES)” Journal of Cryptographic
Engineering, vol. 3, no. 1, pp. 3-15, Apr. 2013. [Online]. Available:
http://link.springer.com/10.1007 /s13389-013-0053-7

TMS570LS12x/11x, “TMS570 technical reference manual TMS5701s12x,”
Apr. 2015.

J. Mekki, M. Brugger, R. G. Alia, A. Thornton, N. C. D. S.
Mota, and S. Danzeca, “CHARM: A Mixed Field Facility at CERN
for Radiation Tests in Ground, Atmospheric, Space and Accelerator
Representative Environments,” IEEE Transactions on Nuclear Science,
vol. 63, no. 4, pp. 2106-2114, Aug. 2016. [Online|. Available: http:
/ /ieeexplore.ieee.org/document /7508970 /

G. F. Knoll, Radiation detection and measurement, 4th ed. Hoboken, N.J:
John Wiley, 2010.

Yaqi Jin, “Characterization of GPS Scintillations in the Polar Ionosphere,”
Phd, University of Oslo, pp. 1-3, May 2016.

T. A. Bekkeng, “Protype Development of a Multi-Needle Langmuir Probe
System.” [Online|. Available: https://www.duo.uio.no/bitstream/handle/
10852/11230/bekkeng.pdf?sequence=1

K. S. Jacobsen, A. Pedersen, J. I. Moen, and T. A. Bekkeng, “A new
Langmuir probe concept for rapid sampling of space plasma electron
density,” http://iopscience.iop.org, vol. 21, no. 8, p. 9, Jul. 2010.
[Online|. Available: http://iopscience.iop.org/article/10.1088/0957-0233/
21/8/085902/meta# citations

K. A. LaBel and M. J. Sampson, “Thoughts on Commercial Off the
Shelf (COTS) Electronics for Space,” the NASA Electronic Parts and
Packaging Program (NEPP) Electronics Technology Workshop. [Online].
Available: https://nepp.nasa.gov/workshops/etw2013/talks/Tue Junell
2013/1030 LaBel Sampson Thoughts%200n%20COTS%20Electronics%
20for%20Space.pdf

Space product assurance : Technique for radiation effects mitigation in
ASICs and FPGAs handbook. ECSS Secretariat ESA-ESTEC, Nov. 2016.

M. Bagatin, S. Gerardin, and K. Iniewski, Eds., Ionizing radiation effects in
electronics: from memories to imagers, ser. Devices, circuits, and systems.

188

http://link.springer.com/10.1007/s13389-013-0053-7
http://ieeexplore.ieee.org/document/7508970/
http://ieeexplore.ieee.org/document/7508970/
https://www.duo.uio.no/bitstream/handle/10852/11230/bekkeng.pdf?sequence=1
https://www.duo.uio.no/bitstream/handle/10852/11230/bekkeng.pdf?sequence=1
http://iopscience.iop.org/article/10.1088/0957-0233/21/8/085902/meta#citations
http://iopscience.iop.org/article/10.1088/0957-0233/21/8/085902/meta#citations
https://nepp.nasa.gov/workshops/etw2013/talks/Tue_June11_2013/1030_LaBel_Sampson_Thoughts%20on%20COTS%20Electronics%20for%20Space.pdf
https://nepp.nasa.gov/workshops/etw2013/talks/Tue_June11_2013/1030_LaBel_Sampson_Thoughts%20on%20COTS%20Electronics%20for%20Space.pdf
https://nepp.nasa.gov/workshops/etw2013/talks/Tue_June11_2013/1030_LaBel_Sampson_Thoughts%20on%20COTS%20Electronics%20for%20Space.pdf

189 BIBLIOGRAPHY

Boca Raton ; London ; New York: CRC Press : Taylor & Francis Group,
2016, oCLC: 0cn908375937.

[19] Rubén GARCIA ALIA, “Radiation Fields in High Energy Accelerators and
their impact on Single Event Effects,” Ph.D. dissertation, UNIVERSITE
MONTPELLIER 2, Dec. 2014. [Online|. Available: https://cds.cern.ch/
record /20123607 In—=en

[20] R. Secondo, R. G. Alia, P. Peronnard, M. Brugger, A. Masi, S. Danzeca,
A. Merlenghi, E. Chesta, J. R. Vaille, M. Bernard, and L. Dusseau, “System
Level Radiation Characterization of a 1u CubeSat Based on CERN Radiation
Monitoring Technology,” IEEE Transactions on Nuclear Science, pp. 1-1,
2018. [Online]. Available: http://ieeexplore.ieee.org/document /8268561 /

[21] “NORSAT 1 - Orbit.” [Online]. Available: https:
/ /www.heavens-above.com /satinfo.aspx?satid=42826&lat=0&Ing=0&
loc=Unspecified&alt=0&tz=UCT

[22] J. Fraden, Handbook of modern sensors: physics, designs, and applications,
5th ed. Cham Heidelberg New York Dordrecht London: Springer, 2016,
oCLC: 930757614.

[23] H. H. K. Tang, “Nuclear physics of cosmic ray interaction with semiconductor
materials: Particle-induced soft errors from a physicist’s perspective,” IBM
Journal of Research and Development, vol. 40, no. 1, pp. 91-108, Jan. 1996.
[Online|. Available: http://ieeexplore.icee.org/document /5389442 /

[24] H. H. Tang and K. P. Rodbell, “Single-Event Upsets in Microelectronics:
Fundamental Physics and Issues,” MRS Bulletin, vol. 28, no. 02, pp.
111-116, Feb. 2003. [Online|. Available: http://www.journals.cambridge.
org/abstract S0883769400017504

[25] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-cell upset
probabilities of 45nm high-k + metal gate SRAM devices in terrestrial
and space environments,” in 2008 IEEE International Reliability Physics
Symposium. TEEE, Apr. 2008, pp. 181-186. |[Online|. Available: http:
/ /ieeexplore.ieee.org/document /4558882 /

[26] C. C. Foster, “Total Ionizing Dose and Displacement-Damage Effects
in Microelectronics,” MRS Bulletin, vol. 28, no. 02, pp. 136-140, Feb.
2003. [Online|. Available: http://www.journals.cambridge.org/abstract
S0883769400017553

189

https://cds.cern.ch/record/2012360?ln=en
https://cds.cern.ch/record/2012360?ln=en
http://ieeexplore.ieee.org/document/8268561/
https://www.heavens-above.com/satinfo.aspx?satid=42826&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
https://www.heavens-above.com/satinfo.aspx?satid=42826&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
https://www.heavens-above.com/satinfo.aspx?satid=42826&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
http://ieeexplore.ieee.org/document/5389442/
http://www.journals.cambridge.org/abstract_S0883769400017504
http://www.journals.cambridge.org/abstract_S0883769400017504
http://ieeexplore.ieee.org/document/4558882/
http://ieeexplore.ieee.org/document/4558882/
http://www.journals.cambridge.org/abstract_S0883769400017553
http://www.journals.cambridge.org/abstract_S0883769400017553

BIBLIOGRAPHY 190

27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

135]

M. A. Clemens, B. D. Sierawski, K. M. Warren, M. H. Mendenhall, N. A.
Dodds, R. A. Weller, R. A. Reed, P. E. Dodd, M. R. Shaneyfelt, J. R.
Schwank, S. A. Wender, and R. C. Baumann, “The Effects of Neutron Energy
and High-Z Materials on Single Event Upsets and Multiple Cell Upsets,”
IEEE Transactions on Nuclear Science, vol. 58, no. 6, pp. 2591-2598, Dec.
2011. [Online]. Available: http://iceexplore.iece.org/document /6068268 /

R. G. Alia, M. Brugger, M. Cecchetto, F. Cerutti, S. Danzeca,
M. Delrieux, M. Kastriotou, M. Tali, and S. Uznanski, “RSEE
testing in the 24 GeV proton beam at the CHARM facility,” IEEFE
Transactions on Nuclear Science, pp. 1-1, 2018. [Online|. Available:
https://ieeexplore.ieee.org/document /8347062 /

J. Schwank, M. Shaneyfelt, J. Baggio, P. Dodd, J. Felix, V. Ferlet-Cavrois,
P. Paillet, D. Lambert, F. Sexton, G. Hash, and E. Blackmore, “Effects of
particle energy on proton-induced single-event latchup,” IEEE Transactions
on Nuclear Science, vol. 52, no. 6, pp. 2622-2629, Dec. 2005. [Online].
Available: http://ieeexplore.ieee.org/document /1589248 /

P. Dodd, M. Shaneyfelt, J. Schwank, and G. Hash, “Neutron-induced
latchup in SRAMs at ground level.” IEEE, 2003, pp. 51-55. |Online].
Available: http://ieeexplore.ieee.org/document/1197720/

K. LaBel and M. Gates, “Single-event-effect mitigation from a system
perspective,” IEEE Transactions on Nuclear Science, vol. 43, mno. 2,
pp. 654-660, Apr. 1996. |[Online|. Available: http://ieeexplore.ieee.org/
document /490908 /

TMS570LS12x, “Safety Manual for TMS570ls12x and 11x Hercules™
ARM®-Based Safety Critical Microcontrollers,” Dec. 2015.

W. J. Greig, Integrated circuit packaging, assembly, and interconnections.
New York: Springer, 2006, oCLC: ocm62132603.

“Texas Instruments Quality & reliability: Materials data base,” Aug. 2018.
[Online|. Available: http://www.ti.com/materialcontent /en/report?pcid=
249877&opn=TMS5701227CPGEQQ1

M. J. Lefevre, F. Beauquis, J. Yang, M. Obein, P. Gounet, and S. Barberan,
“New method for decapsulation of copper wire devices using LASER and
sub-ambient temperature chemical etch.” IEEE, Dec. 2011, pp. 769-773.
[Online|. Available: http://ieeexplore.ieee.org/document /6184523 /

190

http://ieeexplore.ieee.org/document/6068268/
https://ieeexplore.ieee.org/document/8347062/
http://ieeexplore.ieee.org/document/1589248/
http://ieeexplore.ieee.org/document/1197720/
http://ieeexplore.ieee.org/document/490908/
http://ieeexplore.ieee.org/document/490908/
http://www.ti.com/materialcontent/en/report?pcid=249877&opn=TMS5701227CPGEQQ1
http://www.ti.com/materialcontent/en/report?pcid=249877&opn=TMS5701227CPGEQQ1
http://ieeexplore.ieee.org/document/6184523/

191 BIBLIOGRAPHY

[36] H. Wu, Y. Liang, W. Du, S. He, Y. Wang, and D. Lei, “Study of silver alloy
wire decapsulation methods for failure analysis.” IEEE, Jul. 2017, pp. 1-4.
[Online|. Available: http://ieeexplore.ieee.org/document /8060206 /

[37] “Health and Safety and the Environment For staff and stu-
dents.” [Online|. Available: https://www.mn.uio.no/kjemi/om/hms/
hse-manual-department-of-chemistry-2018-01.pdf

[38] Dmitry Nedospasov, “SECURITY OF THE IC BACKSIDE,” Thesis,
Universitdt Berlin, Germany, 2014. [Online|. Available: http://users.sec.
t-labs.tu-berlin.de/ “nedos/Nedospasov_Thesis.pdf

[39] “Technical datasheet AD7768.”

[40] “Technical datasheet LTC3887.” |Online|. Available: http://www.analog.
com/media/en/technical-documentation/data-sheets/3887fd.pdf

[41] T. instruments, “DAC104s085-xx 10-Bit Micro Power QUAD Digital-to-
Analog Converter With Rail-to-Rail Output,” May 2016. [Online|. Available:
http://www.ti.com/lit /ds/symlink /dac104s085.pdf

[42] TMS570LS1224, “TMS5701s1224 16- and 32-Bit RISC Flash Microcontroller
overview,” Feb. 2015.

[43] Jano Gebelein, “FPGA Fault Tolerance in Radiation Environments,”
Phd thesis, JohannWolfgang Goethe University, Frankfurt Germany,
2016. [Online|. Available: https://indico.gsi.de/event/5339/contribution/2/
material /0/0.pdf

[44] G. Tsiligiannis, S. Danzeca, R. Garcia-Alia, A. Infantino, A. Lesea,
M. Brugger, A. Masi, S. Gilardoni, and F. Saigne, “Radiation
Effects on Deep Submicrometer SRAM-Based FPGAs Under the CERN
Mixed-Field Radiation Environment,” I[IEEE Transactions on Nuclear
Science, vol. 65, no. 8 pp. 1511-1518, Aug. 2018. [Online|. Available:
https://ieeexplore.ieee.org/document /8292957 /

[45] R&S®), “R&S®HMC804x Power Supply SCPI Programmers Manual,” Apr.
2016. [Online|. Available: https://www.rohde-schwarz.com/us/manual/

r-s-hmc804x-power-supply-scpi-programmers-manual-manuals-gb1
78701-172161.html

[46] PyVISA Authors, “PyVISA Documentation,” Aug. 2018. [Online|. Available:
https://media.readthedocs.org/pdf/pyvisa/latest /pyvisa.pdf

191

http://ieeexplore.ieee.org/document/8060206/
https://www.mn.uio.no/kjemi/om/hms/hse-manual-department-of-chemistry-2018-01.pdf
https://www.mn.uio.no/kjemi/om/hms/hse-manual-department-of-chemistry-2018-01.pdf
http://users.sec.t-labs.tu-berlin.de/~nedos/Nedospasov_Thesis.pdf
http://users.sec.t-labs.tu-berlin.de/~nedos/Nedospasov_Thesis.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/3887fd.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/3887fd.pdf
http://www.ti.com/lit/ds/symlink/dac104s085.pdf
https://indico.gsi.de/event/5339/contribution/2/material/0/0.pdf
https://indico.gsi.de/event/5339/contribution/2/material/0/0.pdf
https://ieeexplore.ieee.org/document/8292957/
https://www.rohde-schwarz.com/us/manual/r-s-hmc804x-power-supply-scpi-programmers-manual-manuals-gb1_78701-172161.html
https://www.rohde-schwarz.com/us/manual/r-s-hmc804x-power-supply-scpi-programmers-manual-manuals-gb1_78701-172161.html
https://www.rohde-schwarz.com/us/manual/r-s-hmc804x-power-supply-scpi-programmers-manual-manuals-gb1_78701-172161.html
https://media.readthedocs.org/pdf/pyvisa/latest/pyvisa.pdf

BIBLIOGRAPHY 192

147]

48]

[49]

[50]

[51]

[52]

K. McCarty, J. Coss, D. Nichols, G. Swift, and K. LaBel, “Single event
effects testing of the Crystal CS5327 16-bit ADC,” in Workshop Record. 199/
IEEFE Radiation Effects Data Workshop. Tucson, AZ, USA: IEEE, 1994, pp.
86-96. [Online|. Available: http://ieeexplore.ieee.org/document /633040 /

D. Hiemstra, S. Yu, and M. Pop, “Single event upset characterization
of a personal computer micro-controller system-on-a-chip using proton
irradiation,” in 2003 IEEE Radiation Effects Data Workshop. Monterey,
CA, USA: IEEE, 2003, pp. 108-112. [Online|. Available: http:
/ /ieeexplore.ieee.org/document /1281358 /

P. O’Neill, G. Badhwar, and W. Culpepper, “Internuclear cascade-
evaporation model for LET spectra of 200 MeV protons used for parts
testing,” IEEE Transactions on Nuclear Science, vol. 45, mno. 6, pp.
2467-2474, Dec. 1998. |[Online|. Available: http://ieeexplore.ieee.org/
document /736487 /

P. Dodd, M. Shaneyfelt, J. Schwank, and G. Hash, “Neutron-
induced soft errors, latchup, and comparison of SER test methods
for SRAM technologies.” IEEE, 2002, pp. 333-336. [Online|. Available:
http://ieeexplore.ieee.org/document /1175846 /

H. Quinn, T. Fairbanks, J. L. Tripp, G. Duran, and B. Lopez, “Single-Event
Effects in Low-Cost, Low-Power Microprocessors,” in 201/ IEEE Radiation
FEffects Data Workshop (REDW). Paris, France: IEEE, Jul. 2014, pp. 1-9.
[Online|. Available: http://ieeexplore.icee.org/document,/7004596 /

Karl Greb and Dev Pradhan, “Hercules™ Microcontrollers: Real-time
MCUs for safety-critical products white paper,” Sep. 2011. [Online].
Available: http://www.ti.com/lit/wp/spryl178/spryl78.pdf

192

http://ieeexplore.ieee.org/document/633040/
http://ieeexplore.ieee.org/document/1281358/
http://ieeexplore.ieee.org/document/1281358/
http://ieeexplore.ieee.org/document/736487/
http://ieeexplore.ieee.org/document/736487/
http://ieeexplore.ieee.org/document/1175846/
http://ieeexplore.ieee.org/document/7004596/
http://www.ti.com/lit/wp/spry178/spry178.pdf

	List of Figures
	List of Tables
	Introduction
	4DSpace
	Motivation
	Goals

	Outline

	Theoretical Framework
	Radiation Environment
	Space Radiation Environment
	CHARM

	Radiation Interaction
	Units
	Stopping Power
	Linear Energy Transfer
	CMOS technology

	Cumulative Effects
	Single Event Effects
	Soft Errors
	6T Static Random-Access Memory (SRAM)
	Mixed-signal integrated devices

	Single Event Latchup (SEL)
	Mitigation
	Cross section
	Test SEU memory

	Future Trends
	Conclusion

	Decapping
	Motivation and Goal
	Background information
	Environment, Health and Safety (EHS)
	Requirements

	Method
	3D Xray
	Mechanical CNC execution
	Wet Etch

	Results
	TMS570 Decapping
	AD7768 decapping

	Discussion
	Future Work
	Regions Mapping of a Die

	Conclusion

	m-NLP System Firmware
	Motivation and Goal
	Background Information
	ADC-AD7768
	DC/DC digital power controller-LTC3887
	Bias DAC
	Power Rails Monitoring and Control
	Error Signaling Module (ESM)
	Requirements

	Method
	Results
	Command Line Interface
	UART Speed and Reliability
	SRAM Pattern
	Reading Registers
	Communication with LTC3887
	Communication with AD7768
	Board Status
	Boot-loader

	Discussion
	Future Work

	Conclusion

	Radiation Testing of m-NLP System at CHARM Facility
	Motivation and Goal
	Background Information
	Requirements

	Method
	Data collection
	Data Processing

	Results
	Current and Voltage measured
	Board status
	SRAM
	TMS570 registers
	LTC3887 registers and board status
	AD7768 registers

	Discussion
	Future Work

	Conclusion

	Conclusion
	Appendicies
	SPENVIS Spacecraft Trajectory
	m-NLP System Firmware
	Command Line Interface
	Drivers and Functionality
	System Main
	Firmware offset and Bootloader
	CRC16 packing and uart message

	Radiation Testing
	Power supply
	m-NLP events

	Bibliography

