
Quantum Safe Cryptography
Based on Hash Functions: A
Survey

Mateusz Zych
Master’s Thesis Autumn 2018

Abstract

The use of public key cryptosystems range from securely encrypting emails and files
to creating digital signatures for non-repudiation. The security of public key cryp-
tosystems is based on computationally "unsolvable" complex mathematical problems.
This tends to change with the introduction of quantum computers that undoubtedly
pose a threat to the current schemes. In response to that extensive research has been
conducted that resulted in several cryptosystems that are believed to be quantum
resistant. This thesis presents a concise overview of multiple hash-based signature
schemes and provides a comparative description and analysis of them. The compar-
isons are based on different signature scheme properties, such as key sizes, signature
sizes and security level provided. The proposed quantum resistant schemes are also
compared to the standard schemes used today, such as RSA and ECDSA.

Acknowledgements

I would like to thank my supervisor, Leif Nilsen, for the help I got from him during
the thesis. I have been fortunate to make many new friends during my time at the
University of Oslo. There are too many to mention, you know who you are, and
you people are great. Additionally, I would like to thank my family for believing
in me during the tough time of writing this thesis. Finally, I would like to express
a special appreciation to my Mom, who always encouraged me through the process
and supported me with great conversations when there was nobody to respond to
my queries.

Contents

List of Figures 6

List of Tables 7

I Introduction and Background 8

1 Introduction 9
1.1 Motivation . 9
1.2 Description of the problem . 10
1.3 Methodology . 11
1.4 Structure . 11

2 Theoretical background 12
2.1 Security Concepts . 12

2.1.1 Confidentiality . 13
2.1.2 Integrity . 13
2.1.3 Availability . 13
2.1.4 Accountability . 13
2.1.5 Non-Repudiation . 14
2.1.6 Identity and Access Management 14

2.2 Conventional cryptography . 15
2.2.1 Cryptographic Notions . 15
2.2.2 Symmetric cryptography . 16
2.2.3 Asymmetric cryptography . 19
2.2.4 Hash functions . 26
2.2.5 Attacks on Hash Functions . 28

2.3 Digital signatures in current protocols 32

2

2.3.1 PKI . 32
2.3.2 TLS . 34
2.3.3 IPsec . 34
2.3.4 DNSSEC . 36
2.3.5 S/MIME . 38

3 The Impact of Quantum Computing 39
3.1 Quantum Computing . 39

3.1.1 Quantum Phenomena . 39
3.1.2 Shor’s Algorithm . 40
3.1.3 Grover’s Algorithm . 41
3.1.4 Quantum Computing . 42
3.1.5 Challenges in Quantum Computing 43

3.2 Consequences of quantum computing 44
3.2.1 Symmetric cryptography . 45
3.2.2 Asymmetric cryptography . 46
3.2.3 Hash functions . 47

II Survey of Hash Based Signatures 48

4 One-Time Signatures 49
4.1 Lamport Signature . 49

4.1.1 Parameters and Key Generation 50
4.1.2 Signing . 50
4.1.3 Verifying . 51
4.1.4 Security of L-OTS . 51
4.1.5 Reducing the Private Key Size 52

4.2 Merkle One-Time Signature . 53
4.2.1 Parameters . 53
4.2.2 Signing . 53
4.2.3 Verifying . 54
4.2.4 Security . 54
4.2.5 Improvement of Merkle OTS 55

4.3 Winternitz signature . 57
4.3.1 Winternitz parameter . 57
4.3.2 Key generation . 58
4.3.3 Signing . 59
4.3.4 Verifying . 61

3

4.3.5 Security of W-OTS . 62
4.4 Variants of Winternitz Signature Scheme 63

4.4.1 W-OTSPRF . 63
4.4.2 W-OTS+ . 66
4.4.3 WOTS-T . 69
4.4.4 LM-OTS . 71
4.4.5 WSS-N W-OTS Using Nonadjacent Forms 73

5 Few Time Signatures 75
5.1 Bins and Balls . 75

5.1.1 Key Generation . 76
5.1.2 Signing . 77
5.1.3 Verifying . 77
5.1.4 Security . 78

5.2 Hash to Obtain Random Subset . 81
5.2.1 Key Generation . 81
5.2.2 Signing . 81
5.2.3 Verifying . 82
5.2.4 Security . 82

III Many Times Signatures 84

6 Stateful Signature Schemes 85
6.1 Merkle Signature Scheme . 85

6.1.1 Reducing the Public Key Size 85
6.1.2 Structure . 86
6.1.3 Key Generation . 86
6.1.4 Signing . 88
6.1.5 Verifying . 89
6.1.6 Security . 91

6.2 Making MSS More Practical . 91
6.2.1 Traversal algorithm . 91
6.2.2 CMSS . 92
6.2.3 GMSS . 93
6.2.4 Merkle Tree Traversal Revisited 94
6.2.5 Reducing Security Assumptions in Merkle Trees 94

6.3 XMSS Family . 95
6.3.1 XMSS . 95

4

6.3.2 XMSS+ . 96
6.3.3 XMSSMT . 98
6.3.4 XMSS-T . 99

7 Stateless Signature Schemes 101
7.1 SPHINCS . 101
7.2 SPHINCS+ . 103

7.2.1 FORS . 103
7.3 Gravity-SPHINCS . 104

7.3.1 PORS . 105

8 Analysis and Discussion 107
8.1 Standardization of hash based signatures 107
8.2 Stateful versus Stateless . 107
8.3 Comparison of Hash-based Signatures 108

IV Summary 112

9 Conclusion and Further Work 113
9.1 Conclusion . 113
9.2 Further Work . 114

Bibliography 115

Appendix A 126

5

List of Figures

2.1 Example of classical symmetric cryptography [114]. 17
2.2 Presents AES Encryption in different modes [106]. 20
2.3 An overview of asymmetric cryptography [107]. 21
2.4 Presents 3 versions of X.509 certificate structure [109]. 32
2.5 The flow of getting an X.509 certificate in Public Key Infrastructure

[108]. 33
2.6 TLS handshake protocol [103]. 35
2.7 AH and ESP presented in both transport and tunnel mode [14]. . . . 36
2.8 Presents a DNSSEC query to www.example.com 37

4.1 Calculation of checksum in W-OTS, where w = 3 and bi’s are parts of
the message digest to sign. 61

5.1 The probability of finding a signature when having x SEALs [88]. . . 79

6.1 Binary tree from Merkle signature scheme with height h = 3. 87
6.2 Authentication path and verification of signature from index i = 5

with tree height h = 3. 90
6.3 Structure of XMSSMT many-time signature scheme [55]. 99

7.1 Structure of SPHINCS stateless many-time signature scheme [9]. . . . 102
7.2 Structure of FORS few-time signature scheme [8]. 104
7.3 Comparison of the structures of HORS and PORS few-time signature

scheme [2]. 106

6

List of Tables

2.1 This table shows generic security for hash function in classical cryp-
tography. 29

3.1 Result of x raised to the powers of the 4-qubit register values and
second results are remainders of dividing these numbers by 15. 41

3.2 Generic security for hash function in both classical and quantum world
[59]. 47

4.1 Dependence between w, private key elements and evaluations of F
when n = 256 . 59

5.1 Security parameters of BiBa signature scheme when t=1024 [88]. . . . 76

8.1 Comparison of hash-based signature schemes with current standards.
The sizes are provided in bytes. 110

8.2 Instances of SPHINCS+ providing 128-bit quantum security [8]. Pro-
vided values are the number of CPU cycles. 111

8.3 CPU cycles for Gravity-SPHINCS sub algorithms [2]. 111
8.4 Instances of XMSSMT signature scheme. Size in bytes and times in

hash function iteration [51]. 111

7

Part I

Introduction and Background

8

Chapter 1

Introduction

1.1 Motivation

The advancements in technology and particularly in digital communications is one
of the technological foundations of the modern society. Confidentiality, integrity, au-
thenticity, and non-repudiation in data transmission and data storage are properties
that have made cryptography an essential discipline within information technology.

In recent years, quantum computing has become attractive as a research topic due
to the acceleration of technology. This development has led to the increased ex-
posure of quantum computers, which make use of quantum physical phenomena to
perform calculations. Two types of quantum computers exist are universal and non-
universal. Their difference is that universal quantum computers are developed to
perform any given task, whereas non-universal quantum computers are limited to a
specific purpose.

Quantum computers pose a significant risk to both present public key algorithms
(such as RSA, Diffie-Hellman, and DSA) and symmetric key algorithms (like 3DES,
AES). Each year it seems that we are getting closer to create a fully operational
universal quantum computer that can utilize strong quantum algorithms, such as
Shor’s and Grover’s. In conventional cryptography the public key algorithms are
used for key exchange and digital signatures. The consequence of the technological
advancement is the absolute collapse of the present public key algorithms that are
considered secure (e.g, RSA and Elliptic Curve Cryptosystems). Consequently, all
protocols using either key exchange or digital signatures will be broken resulting to

9

insecure network communications.

In August 2016, the National Institute of Standards and Technology (NIST) pub-
lished the following information [24]: "The advent of practical quantum computing
will break all commonly used public key cryptographic algorithms. In response, NIST
is researching cryptographic algorithms for the public key - based key agreement and
digital signatures that are not susceptible to cryptanalysis by quantum algorithms."

The goal of post-quantum cryptography (also known as quantum-resistant cryptog-
raphy) is to develop cryptographic systems that are secure against both conventional
and quantum computers and can inter-operate with existing communication proto-
cols [26]. Many post-quantum public key candidates have been actively investigated
during the last few years that are believed to be resistant to quantum-based at-
tacks. There are several ways to perform post-quantum secure cryptography, such
as lattice-based, multivariate, hash-based, code-based, super-singular elliptic curve
isogeny cryptography and symmetric key quantum resistance [23]. Not all of the
aforementioned provide key encapsulation mechanisms and digital signatures. How-
ever, if a given algorithm covers at least one of these two properties, it would be
valuable for post-quantum cryptography. This thesis will focus on hash-based digital
signature schemes.

1.2 Description of the problem

Hash-based signatures have been investigated and researched since the late 70s. In-
formation about hash-based signatures is scattered around the world. This makes
it difficult to find a reasonable source with a good overview of this field. The last
overview of this topic has been provided in 2009 by ETSI which covered only the ba-
sic of post-quantum cryptography, including hash-based signatures. There has been
a lot of changes since ETSI’s overview of the Post Quantum Cryptography (PQC)
field. Over time, new algorithms have been introduced, and existing algorithms have
been modified and improved.

This thesis will investigate and address the following question:

1. What kind of hash-based post-quantum digital signatures schemes do exist?

This thesis can also be considered an up-to-date concise "encyclopedia" of post-
quantum hash-based algorithms for digital signatures.

10

1.3 Methodology

This thesis intends to describe hash-based signatures schemes and provide a compar-
ative description and analysis of some of the proposed schemes. The description will
be based on the aspect of the signature schemes such as key sizes, signature size and
security level. The proposed schemes will also be compared to the standard schemes
used today, such as RSA and DSA. Also, by describing and comparing hash-based
signatures. The thesis aims to make hash-based signatures a bit more accessible, as
a lot of the information on this topic is not aggregated and the history of hash-based
signatures stretches back to 1978.

The work in this master thesis has also resulted in a publication in the International
Journal of Advanced Computer Science and Applications (IJACSA) in March 2018.
The paper entitled "The impact of quantum computing in present cryptography" is
attached as an appendix at the end of this thesis.

1.4 Structure

The thesis will first, chapter 2, describe basic security concept, conventional cryp-
tography and the usage of digital signatures in standardized protocols. Chapter 3
covers information about quantum computing and its impact on conventional cryp-
tography. Chapter 4 will then present the first appearance of One-time hash-based
signatures and its evolution. Chapter 5 describe some of the most important Few-
time hash-based signatures. Chapter 6 describes stateful Many-Time hash-based
signatures. Chapter 7 describes stateless Many-Times hash-based signatures which
are proposed for the standardization process. All chapters 4, 5, 6 and 7 describe
hash-based signatures by first presenting the protocols of key generation, signing
and verifying process, then describes the security of the system. Chapter 8 discus
the difference between stateful and stateless signature schemes. Chapter 9 concludes
the thesis with a summary and possible ideas for future work in this field. At the
end of this thesis, there is an appendix to find with the published paper derived from
this work.

11

Chapter 2

Theoretical background

This chapter is meant to be a comprehensive collection of information which should
provide the reader with the basic definitions needed to understand the second part
of the thesis. Definitions which seem relevant to security, conventional cryptography,
quantum computing, and protocols will be described in their entirety in this chapter.

2.1 Security Concepts

Security is a wide field of study with many concepts, principles, services, and mecha-
nisms. However, the term itself has no single definition. In computer science, security
strongly depends on security objectives and in which degree the security services with
the help of security mechanism can fulfill them. For instance, a system might provide
or need secure communication, which would be an objective. The latter is dependent
on services like TLS that encrypts, which is a mechanism, the communication. How
secure a system is, strongly depends on proper security requirements and the security
measures that fulfill these under all proper circumstances.

The CIA (Confidentiality - Integrity - Availability) principle is often used when de-
scribing the system security. However, it does not cover the whole specter of security.
Thus, more concepts like accountability, authentications and other are added to pro-
vide better security. Subsections below presents these security concepts.

12

2.1.1 Confidentiality

Confidentiality (privacy, secrecy) says that the information should be secure and
only accessed by the authorized parties. Privacy refers to protection of personal
data, whereas secrecy refers to protection of data belonging to an organization. Ad-
ditionally, confidentiality possesses properties such as unlinkability and anonymity.
Here, the former means that two or more items of interest cannot sufficiently be dis-
tinguished whether they are related or not. The latter term ensures that a subject
cannot be identified within a set of subjects [46, 34-35].

2.1.2 Integrity

Integrity is to prevent unauthorized modifications or destruction of data. In other
words, to secure that the data has not been tampered with. Two types of integrity
exist data and system integrity. Data integrity refer to the integrity of all digi-
tal information. Whereas, system integrity refers to a state of a system where it
is performing its intended functions without being degraded by disruptions in its
environments [46].

2.1.3 Availability

Availability ensures that resources, services or data are accessible and usable upon
demand by authorized entities. The importance of availability is illustrated by for
instance in a DoS (Denial of Service) attack, which hinders legitimate users from
using a system [90].

2.1.4 Accountability

Accountability ensures that the actions of an entity can be traced uniquely to that
entity. In other words, all actions affecting security are traceable back to the respon-
sible party. Accountability depends on identification, authentication, and auditing
of a user [46].

13

2.1.5 Non-Repudiation

The security term non-repudiation is strongly related to accountability. Non-
repudiation provide undeniable evidence that an action has occurred. This term
is usually divided in non-repudiation of [46]:

• origin - an entity cannot deny to having send a message,

• delivery - an entity cannot deny to have received a message.

2.1.6 Identity and Access Management

Identity and access management (IAM) is a framework which denotes the security
technologies that enables the intended authorized individuals to access the right
resources at the right times for the right reasons. This framework consists of three
phases: configuration-, operation- and termination- phase [61].

Configuration phase contains:

1. Registration: Creation of an identity and new account.

2. Provision: Issuing credentials and unique name.

3. Authorization: Granting of rights by the authority.

Operation phase contains:

1. Identification: Identification is an assertion of who or what something is. This
information is used to recognize an individual user. In computer systems, where
log in appears, the username corresponds to the identity, where it claims to be
a known entity. D.Gollman in his book [46, 60], says that identification is a
1 : n comparison that tries to identify the user from a database of n person.

2. Authentication: The entity has to prove that the claims about the identity are
correct by providing some credential to the system. The system has then to
compare the credential with the information stored in the database for that
specific entity. This process is called verification and is an 1 : 1 comparison
[46, 60]. The entity is authenticated only when the passwords for that entity
matches.

3. Access control: Grating access by the system. Access control determines poli-
cies for which information and computing services can be accessed, by whom,

14

under which conditions and which actions they are allowed to perform [46,
66-68].

Termination phase contains:

1. Authorization revocation: Removing of rights by the authority.

2. Credentials deactivation: Disabling the possibility of getting the resources by
providing the credentials.

3. Account deactivation: The account deactivated and not deleted to maintain
the user information.

2.2 Conventional cryptography

Cryptography is the science of providing information security. It can be referred
as the process of securing data in transit or stored, against third-party adversaries.
Cryptography is etymologically derived from Greek words "kryptós" and "graphein"
which means hidden and writing respectively. Cryptography possesses of two impor-
tant properties; encryption and decryption. Where encryption is a transformation
of any plaintext to ciphertext. Whereas, decryption is the opposite process. Both
encryption and decryption have to be performed under control of a key. Cryptog-
raphy has been known and used for thousands of years for securing a message from
illegitimate third parties. Nowadays, cryptography has become a fundamental part
of modern security systems. In this section, we are going to explain cryptographic
primitives like symmetric and asymmetric cryptography as well as hash functions
since they are crucial for topic considered in this thesis.

2.2.1 Cryptographic Notions

Cryptographic notations are important to be familiar with since these are crucial
for the full understanding of the meaning in particular descriptions. Therefore, it is
necessary to emphasize which notations will be consistently used from now of and to
the end of this thesis.

15

Algorithmic Notations

Following are frequently used in this thesis, this important to be familiar with:

• m - message of arbitrary length in form of a bit string {0, 1}∗,
• i - index,
• sk - secret/private key containing all ski’s,

• ski - part of secret/private key sk at index i,

• pk - public key containing all pki’s,

• pki - part of public key pk at index i,

• σ - signature containing all σi’s,

• σi - part of signature σ at index i,

• H - hash function with collision resistance H : {0, 1}∗ −→ {0, 1}n,
• F - pseudo random function F : {0, 1}n −→ {0, 1}n,
• Fk - pseudo random function from functions family with key k, F :
{0, 1}nx{0, 1}k −→ {0, 1}n,
• d - message digest, result of d = H(m).

• n - security level in bit, meaning that it is necessary with 2n operations to
break the security.

• log n - log2 n

These notations are common for most of algorithms described in this work. Algo-
rithm specific notation will be additionally described in particular subsections.

2.2.2 Symmetric cryptography

In symmetric cryptography, when to parties want to securely communicate with each
other they have to share a secret key. That secret key will be used for both encryption
and decryption. So, the sender can encrypt a plaintext message using the shared
secret key and the receiver can decrypt the message by using the same cryptographic
algorithm the sender used and the same shared secret key. The secret key should only
be known by the two parties that are communicating with each other. Therefore, an

16

efficient way for exchanging secret keys over public networks was demanded. These
are described in Subsection 2.2.3 below. Furthermore, symmetric cryptography is
divided into two groups; stream ciphers and block ciphers. These are covered in this
Subsection.

Figure 2.1: Example of classical symmetric cryptography [114].

Stream Cipher

A stream cipher is an encryption method where plaintext message is encrypted bit-
wise with a random or pseudo random key stream, normally by an XOR operation.
An example of stream cipher is One-Time Pad, and it is known to be theoretically se-
cure. This means that even source of unlimited computing power is not able to break
this encryption. Particularly, "theoretical secure" is known to be crypt-analytically
unbreakable [98]. However, One-Time Pad does not guarantee integrity and gets
insecure if secret keys are reused.

The advantage of stream ciphers is that both encryption and decryption are the
same operations which are easy and fast to compute. However, there are some
disadvantages as well. Since each bit from plaintext consumes one bit from key
stream, it turns out that key streams have to be at least as long as the plaintext.
Additionally, the key should also be truly random, this is complex and expensive in
large quantities. A stream cipher is Pseudo Random Number Generator (PRNG)
which takes a short truly random secrete seed and expand it into a long sequence
which looks random. Moreover, key communication is another obstacle. The secret
key can be very big, and it has to be transmitted securely [62].

17

Block Cipher

Block cipher is an alternative to the stream cipher. In a block cipher, the encryption
happens on a bigger bulk of data, typically on 128-bit blocks. The procedure of
secure communication looks similar to stream ciphers. However, the secret key size
is much smaller, so the biggest disadvantages of stream ciphers are eliminated.

In a usual case, where the sender wants to send an encrypted message to the receiver
with a block cipher. The sender first has to choose a cryptographic secure algorithm
and then establish a secret key shared with the receiver only. Then, the sender
may encrypt the message with this cryptographic algorithm by providing both the
plaintext message and the secret key to it. The chosen algorithm will slice the
message into blocks and encrypt it with the secret key. This procedure happens
automatically and creates a secure ciphertext. Now, the ciphertext can be safely
sent to the receiver over an insecure channel. The receiver, knowing the secret key
can decrypt the ciphertext using the same cryptographic algorithm that the sender
used to encrypt the message.

There are mainly two ways for an attacker to decrypt the ciphertext. Namely, have
the knowledge of the secret key or break the encryption algorithm, so that one is
able to revert the encryption. However, breaking the current standardized symmetric
algorithms is still infeasible. Therefore, an attacker willing to steal the information
that is encrypted is trying to get the knowledge of the secret key to be able to decrypt
it. In block ciphers, the size of keys determinates the security level of the encryption.

Nowadays, in symmetric cryptography, standardized block ciphers are 3DES and
AES. Data Encryption Standard (DES) is an older standard from 1977 [43]. DES
encrypts plaintext blocks of 64-bit with 56-bit keys. This gives the security level of 56-
bit which nowadays is considerate as insecure. In 1978, a more secure variant of DES
called 3DES, pronounced triple DES, or TDEA (Triple Data Encryption Algorithm,
was introduced. 3DES use 56 ∗ 3 = 168-bit keys, providing higher security level than
original DES. However, the security level of 3DES is not 168-bit as one may think.
This is due to Meet-in-the-middle attack, which decreases the security level of 3DES
to 112-bit.

More recently, in 2001, NIST standardized another block cipher called AES [40].
Advanced Encryption Standard has the advantages that it fast in both hardware and
software. This makes the algorithm speed up in different applications. Additionally,
AES is even more secure than 3DES. This algorithm comes in three different key sizes:
128, 192 and 256 bit, which is adequate to their security level. The recommendation

18

from NIST is that AES-128 is good enough for daily use. However, for top secret
information AES-256 should be used [87].

Recently published paper from 2016 [10] shows the insecurity of 3DES. This is done
by performing extended versions of meet-in-the-middle attack, which decrease the
security level of 3DES from 112-bit to only 90-bit.

The threshold of what is considered as secure is increasing from year to year. In
the last years, a security level of 80-bit is considered as the minimum for being
secure enough to use. Consequently, both standardized block ciphers 3DES and
AES are considered secure. In November 2017, NIST published an update with a
recommendation of 3DES usage [41], where they among other says that 3DES "may
be used by federal organizations to protect sensitive unclassified data".

Although, block cipher in its standard ECB (Electronic Codebook) mode is not
secure for nowadays purposes. It is recommended to uses block ciphers in other
modes like:

• CBC (Cipher Block Chaining),

• CFB (Cipher Feedback),

• OFB (Output Feedback),

• CTR (Counter),

• GCM (Galois/Counter Mode).

Figure 2.2 illustrate the tremendous difference in encrypting a picture with a block
cipher in ECB mode versus block cipher in any other modes listed above. The
difference comes from the fact that ECB modes encrypt block by block independently
with the same key. Whereas, other modes provide some additional data into the next
block when encrypted. This emphasizes the importance of choosing the proper mode
when using block ciphers. Nowadays, the most commonly used mode is the GCM
(Galois Counter Mode) mode which provides both integrity and confidentiality [84].
This mode is most often used in combination with AES.

2.2.3 Asymmetric cryptography

Asymmetric cryptography or Public Key Cryptography (PKC) is a form of encryp-
tion where the keys come in pairs. This pair consists of a private key and a public
key which are mathematically connected. The private key should be kept secret, and

19

Figure 2.2: Presents AES Encryption in different modes [106].

public key may be exposed to the public. Each party should have its own private
and public key. Asymmetric cryptography can be used for encryption, key exchange,
and digital signatures.

Security Assumptions

RSA, Diffie-Hellman (DH) and Elliptic Curve Cryptography (ECC) are asymmetric
cryptography algorithms that are primarily used today. Their security relies on
mathematical problems, which are considered hard for conventional computers to
solve. In current conventional standardized algorithms, discrete logarithmic problem
and factorization problem are used. Such kind of algorithms are called one-way
functions because they are easy to compute in one direction, but the inversion is
difficult [39].

Asymmetric cryptographic algorithms such as Diffie-Hellman (DH), ElGamal encryp-
tion and Digital Signature Algorithm (DSA) are based on the Discrete logarithmic
problem (DLP). The difficulty of breaking these cryptosystems is based on the diffi-
culty in determining the integer r such that gr = x mod p. The integer r is called
the discrete logarithm problem of x to the base g, and it can written as r = logg x
mod p. The calculations in DLP are executed in algebraic groups. This problem
is known to be very hard solved especially if the parameters are large enough since
there are no logarithmic operations in algebraic groups. Recently, in 2017, keys equal
or larger than 2048 bits are recommended for secure key exchange [87].

Elliptic Curve cryptosystem (ECC) uses a generalization of the discrete logarithm
problem [23]. ECC uses a pair (x, y) that fits into the equation y2 = x3 + ax + b
mod p together with an imaginary point Σ (sigma) at infinity, where a, b ∈ Zp and

20

4a3 + 27b2 6= 0 mod p. ECC needs a cyclic Group G and the primitive elements to
be of order G [87].

Factorization problem relies on the hardness of big integers factorization. Given
one 2000-bit product of two primes, there are computationally infeasible to find the
origin two primes of this product. There are many algorithms that use the hardness
of factorization problem, the most known is RSA [87, 169].

Encryption

Figure 2.3: An overview of asymmetric cryptography [107].

RSA is a standardized algorithm for asymmetric cryptography that among other
provides encryption. As mentioned before and shown in Figure 2.3 on Page 21 two
different keys are used for encryption and decryption of a message. Since the keys
have a mathematical connection between them, it means that decryption is possible
to perform with receivers private key only if the message was encrypted with the
receivers corresponding public key.

For instance, if the sender wants to encrypt a message to the receiver. The sender
would ask the receiver about his public key or get the public key from the receiver’s
public repository. Then, the sender would use his public key to encrypt the message.
Next, the sender would transmit the encrypted message to the receiver who is able
to decrypt the message with his private key.

21

RSA was invented in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adleman [93].
This algorithm became one of the most important public-key schemes. Its security
is based on the difficulty of factorizing product of two primes, and the scheme goes
as follows.

Before any encrypted message sending may happen, the receiver has to compute a
public key (n, e) and a private key (d). To do so the receiver has to:

1. Choose two large primes p and q, nowadays they should be at least of 1024-
bit each. These should also be tested with primality test for example Miller -
Rabin [1].

2. Compute n = p · q, which usually is bigger than 2048 bits.

3. Use Euler’s Phi function: ϕ(n) = (p − 1) · (q − 1) to select a public exponent
e ∈ {1, 2, ..., ϕ(n)− 1} such that gcd(e, ϕ(n)) = 1.

4. Compute the private key d by d · e = 1·(mod ϕ(n)) which can be computed
with the Extended Euclidean Algorithm.

After these steps the encryption can be perform using public key with following
equation

y = xe (mod n). (2.1)

Whereas, the message can be decrypted with equation

x = yd (mod n). (2.2)

Where x is a plaintext message and y is the ciphertext. However, these calculations
are computationally costly.

Key Exchange

According to Paar and Pelzl [87], RSA and asymmetric algorithms, in general, are
not meant to replace symmetric algorithms since they are computationally costly.
Therefore, RSA is mainly used for secure key exchange between two parties and
often used together with symmetric algorithms such as AES, where the symmetric
algorithm does the actual data encryption and decryption. Another widely used
standardized algorithm in asymmetric cryptography is the Diffie-Hellman key ex-
change. With Both mentioned scheme, the sender and the receiver are able to agree
on a secret key although the long distance between them. In addition, another family

22

of public key algorithms known as Elliptic Curve Cryptography is extensively used.
ECC provides the same level of security as RSA and DLP systems with shorter key
operands which makes it convenient to be used in systems with low computational
resources [87].

The Diffie-Hellman algorithm was developed particularly for the purpose of key ex-
change. Here, the sender and the receiver can agree on a common secret without a
leak of information and without the need of meeting each other. Some parts of this
scheme were already described above in the paragraph about Security Assumptions.
However, the full algorithm will be presented for better understanding. In Diffie-
Hellman, there are two public parameters called domain parameters. They are p and
α, where p is a big prime and α is a generator in the multiplicative group modulo
p. Then, each party has to generate a secret number such that only the generated
parties have the knowledge of it. Let’s assume that the sender generates number a
and the receiver generates number b. Next, they both take the generator g and raise
it to their generated number and send it to each other. Particularly, the sender cal-
culates gamodp = KeyA and the receiver calculates gbmodp = KeyB. Then, KeyA is
send over to the receiver, and KeyB is sent over to the sender, both over the insecure
public network. Last, the sender raises the value received from the receiver with her
generated number and the receiver does the same with the value received from the
sender. So that they both come to the same answer which will become their secret
key. Mathematically it look like this, the sender calculate KeyaB = Secret key and
the receiver calculate KeybA = Secret key [34]. A potential adversary will only get
the values of g, p,KeyA, KeyB. However, from this information, the adversary is not
able to obtain the shared secret key of the sender and the receiver.

A small example with real numbers will give a better understanding.

Domain parameters : p = 23 (prime) and g = 11(generator) (2.3)

sender: generates a = 6
calculates−−−−−→ ga mod p = 116 mod 23 = 9 (2.4)

receiver: generates b = 5
calculates−−−−−→ gb mod p = 115 mod 23 = 5 (2.5)

Eve’s knowledge : g = 11, p = 23, ga mod p = 9 and gb mod p = 5 (2.6)

sender
ga mod p=9−−−−−−−→ receiver, receiver

gb mod p=5−−−−−−−→ sender (2.7)
sender: 56 mod 23 = 8, receiver: 95 mod 23 = 8 (2.8)

These generated numbers a and b are private keys of sender and receiver respectively.
Whereas,

gab mod p = gba mod p (2.9)

23

is their shared secret key, which can be used as key in for example AES encryption.

Digital Signature

Digital signatures may be compared to handwritten signatures. However, they are
more secure. Digital signatures provide authentication, non-repudiation, and in-
tegrity. For instance, the sender can sign a document digitally by hashing the docu-
ment and encrypt it with her private key. Then, to verify the signature, the receiver
has to decrypt the received document with the sender’s public key (authentication
and non-repudiation) and hash the original document. Whenever these two hash
values match (integrity), then the signature is to trust. Current Digital Signature
Standard (DSS) is Digital Signature Algorithm (DSA) which was standardized by
NIST in 1993 adopted from FIPS 186 [44]. DSA is a variant of El-Gamal signature
scheme [42]. The last update on DSA was provided by NIST in 2013 [66].

Structurally, a digital signature scheme is divided into tree sub algorithms: key
generation Kg, signing Sign and verification V rfy - algorithm.

1. Kg: takes as input a security parameter n and generates both secret key and
public key (sk, pk).

2. Sign: provided with a private key and a message (sk,m) generates a signature
σ of given message.

3. Vrfy: Takes a signature, message and public key (σ, m, pk) as input and
returns "accept"/"reject" or 1/0 in boolean value. A valid signature need to
hold the following equation:

Vrfy(pk, Sign(sk,m),m) = 1 (2.10)

Security of Digital Signatures

In 1988, Goldwasser et al. [45] provided with a hierarchy of attack models against
digital signature schemes. The authors, describes two kinds of attacks, whereas the
second consist of four variants.

• Key-only attacks: where the adversary knows only the public key of a signature
scheme.

24

• Message attacks: where the adversary possesses a signature of a known or
chosen message.

– Known-message attack: the adversary possess the information of a set of
messages along whit their signatures. However, the messages were not
chosen by the adversary.

– Generic chosen-message attack: is an attack which does not depend on
the public key of the signature scheme. The adversary may choose a
fixed number of messages to be signed by the signature scheme. However,
the adversary will not be able to change any message after he sees the
signatures.

– Directed chosen-message attack: the adversary has knowledge of the pub-
lic key of the signature scheme and can decide a list of messages to be
signed. A message cannot be changed after seeing the first signature.

– Adaptive chosen-message attack: the adversary knows the public key of
the signature scheme, he also has the possibility to ask for the signature
of any messages and can adapt the messages to already seeing signatures.
This is the strongest attack an adversary can mount to a signature scheme.

The authors of [45], have also provided the definitions of breaking a signature scheme.
They said that a signature scheme is broken when the adversary is able to perform
one of the following attacks in a non-negligible probability

• A total break : the adversary learns the secret trap-door of the scheme. (Ex.
in RSA it would be the information about the primes p and q.)

• Universal forgery : when the adversary finds functionally similar signing algo-
rithm with the same trap-door and is able to forge a signature.

• Selective forgery : when the adversary can forge a signature of the message
decided by him.

• Existential forgery : when the adversary is able to forge a signature of at least
one message. The message is not known to the adversary, and it may be a
random string.

The strongest security property of these above for a signature scheme is the last
one. It is desired to a signature scheme to be immune for existential forgery of an
adversary. Then, the signature scheme is Existential Unforgeable (EU).

25

However, combining the notions of both "breaking the system" and known attacks
listen above. The desired security of a digital signature scheme is to be Existen-
tially Unforgeable under Chosen-Message Attacks (EU-CMA) in the standard model.
Where the security in the standard model is based on the fact that the adversary is
limited by the computational power and the amount of time.

When a signature scheme is proven to be secure using only complexity assump-
tions (like for example preimage-resistance, second preimage-resistance or collision-
resistance), then the scheme is secure in the standard model. Nevertheless, there is
difficult to prove the security in the standard model. Therefore an idealized version
is used, where the cryptographic function is replaced with a random function. When
such a changed scheme is proved secure, then it is said that the scheme is secure in
the random oracle model. The random oracle model was first described in 1993 by
Beralle et al. [6].

In addition, a property of a good signature scheme is to be forward secure [5]. This
means, that when such a scheme gets compromised, for example by leaking the
private key, the signatures that already was signed with this key remains secure. To
fulfill this criterion, the signature scheme should be a key evolving scheme. This
means that the private key of that signature scheme should change after a period of
time.

2.2.4 Hash functions

Hash functions are one of most important cryptographic primitives. Hash functions
are divided into two main branches, keyed and unkeyed. These have many appli-
cations in real wold usage. For instance, one of most popular keyed hash functions
applications is MAC or Message Authentications Code. This provides a crypto-
graphic checksum based on secret symmetric keys, as well as authentication and
integrity of the message. On the other hand, the unkeyed hash functions are used as
MDC or Manipulation Detection Codes.

Hash functions which possess these six properties provide a good standard and se-
curity [87].

1. A hash function compress a message of arbitrary length to a fixed length bit
string. In practice, it brakes the message into blocks with padding in the last
block if needed, and then hash these blocks with the concatenation of previous
hashed block. The result of such hash function can be seen as the fingerprint

26

or a digest of the given message. The output of a hash function may also be
called a hash value or a checksum.

2. Hash functions have to be easy to compute. However, this property should
not be applied to all hash functions. Hash functions used for password storing
should be a bit slower so that brute force attack would not become practical.

3. Fixed length output, hashing a message m with a hash function h then a hash
value z = h(m) need to have a specific length.

4. Preimage resistance also known as one-wayness. It has to be computationally
infeasible to find x when z = h(x) and z is the output of a hash function when
hashing message x.

5. Second preimage resistance or weak collision resistance. This requirement says
that given h(m1) it should be computationally infeasible to find another mes-
sage m2 which maps to the same hash value. Thereby it should be computa-
tionally infeasible to find message m2 which maps to the same hash value as
the given message m1.

6. Collision resistance means that there are computationally infeasible to find two
different messages that maps to the same hash value. This property is more
difficult to achieve than the previous one, since the attacker has access to both
variables which can be modified.

These are the most important requirements. When all of them are satisfied, then
the security of a hash algorithm depends on its output length. Where longer output
yields better security level.

In 1989, both Ralph Merkle and Ivan Damgård proved that whenever a one-way
compression function is collision resistant, then the whole hash function will be col-
lision resistance as well. This led to a well known and widely used construction of
hash functions called Merkle-Damgård construction [80]. In more detail, to be able
to compress messages of any length, the hash function has to slice the messages in
fixed length blocks. Then, for each iteration a function f is taking two inputs, an
initialization vector (IV) and a block from the message. In the first round, the IV is
given, then in the following round the functions f takes the output of the previous
iteration of f as an IV in the current round. In the last round of f iterations, when
the sliced message is computed, the padding is added. The padding starts with an 1
follows with the necessary amount of 0’s and ends with the length of the origin mes-
sage. The result of all these internal f function iterations is fed into the finalization
function that may compress the internal, bigger, state to expected smaller output.

27

For instance, compressing 1024-bit internal state into 256-bit output. All hash func-
tions from MD family and hash functions from SHA family up to SHA-2 including,
are based on Merkle-Damgård construction. Nevertheless, this is not the only cryp-
tographically secure construction. The last standardized hash function SHA-3 from
2015 does not use the construction of Merkle-Damgård. SHA-3, originally Keccack,
is using a sponge construction [69].

There are many applications where hash functions are useful, one of them are digital
signature schemes. When using hash functions in hash-based digital signatures,
there is a need for two more properties as pseudorandomness and undetectability
[59]. Undetectability gives the property where an attacker cannot detect whenever a
bit is an output from a hash function itself or if it is just a random value. Whereas,
pseudorandomness gives a property that random oracles posses. The requester gets
a value from a black box based on an input value and an initialization bit. The black
box generate a output g(x) from an input x and an initialization bit b. When the bit
b is equal to 1, then the black box choose a value from the hash function. Otherwise,
it generates a random value (for instance from lazy sampling). The black box needs
to remember the previous answers such that it is consistent.

In 2006, Halevi and Krawczyk [49] presented a method to "Strengthening Digital
Signatures via Randomized Hashing". The authors, says that by performing bitwise
exclusive OR operation on the message with salt before hashing, will free practical
digital signature from relying on strong collision resistance. Consequently, yielding
better security on lower (second pre-image resistance) security assumption. The
same year, the authors had a short presentation of this topic in NIST hash workshop
[48]. Three years later, NIST published a recommendation for using randomized
hashing in digital signatures [33]. In 2012, NIST published an updated version with
recommendations for using randomized hash in different applications [32].

The current standard in the hash function is SHA-3, which was announced in August
2015 [69]. SHA-3 offers arbitrary output length in order to fit to any applications
needs. However, SHA-2 family is not outdated and is still secure for use, especially
these variants with longer outputs. Both SHA-2 and SHA-3 family provide good and
lasting security.

2.2.5 Attacks on Hash Functions

Important to emphasize is to be aware of different attacks on a hash function, espe-
cially when using these in security applications. In this subsection, some of the most

28

common attacks on hash functions are briefly described.

Generic Security

The security of hash functions, is often analyzed as a black box testing. It is because
in black box testing there is no need to look at the internals, such that many different
hash functions may be tested. The results are often expressed in query complexity,
namely the number of queries that was needed to break a specific property. The
Table 2.1 shows the generic security for hash functions in classical cryptography
[59]. As well as, the number of queries needed to break a certain property of a hash
function, where n represents the output length of given function.

One wayness Second Image
Resistnace

Collision
Resistance Untraceability Pseudo Random

Function
Classical O(2n) O(2n) O(2n/2) O(2n) O(2n)

Table 2.1: This table shows generic security for hash function in classical cryptogra-
phy.

A hash function that does not meet the generic security is considered as insecure and
should not be used in security applications.

Brute Force

Brute force attack is one of the oldest existing attacks. It can be seen more like an
exhaustive search in a database. With brute force attack, an attacker tries all possi-
bilities inputs until he gets expected output. This kind of attack is very unpractical
and time-consuming due to the enormous amount of possibilities [87]. Taking into
consideration a hash function with an output of 256-bit and the task to break a sec-
ond pre-image resistance. It will take 2256 + 1 tries to do so. To set the number into
a perspective and give it more meaning, it has to be said that the known observable
universe consists of 1080 ≈ 2268 particles.

Birthday (Collision) Attack

Birthday problem or birthday paradox is often explained with a riddle which goes
as follows: How many people need to be in a room so that at least two people have

29

birthday exactly on the same day? Of course, since it is 365 (or 366) days in a
year, the safe answer to this question will be 367 people. This gives 100% chance
that at least two people have the birthday on the same day. However, taking into
consideration the probability theory from math, every answer that has the probability
above 50% is correct. Since then it is more likely that given answer is accurate than
the opposite case. Consequently, following this logic and probability calculations,
leads to the answer of 23 people. This yield the probability of 50.7% of being true.
In other words, given 23 people in a room, it is more likely that there are two of
those who share their birthday than there is no one that is sharing a birthday with
any other in the room. As it can be observed the answer is roughly above the square
root of days in a year

√
365 = 19.1 −→ 1.17 ∗

√
365 ≈ 23 [87, 301]. Moreover, slightly

increasing the number of people to 30 or 50, rises the probability to 70.6% and 97.0%
respectively.

Birthday paradox is also used in the cryptographic attack called the birthday attack,
which is a real threat to hash functions. Birthday attack reduces the complexity of
finding a collision in a cryptographic hash function by a square root. Meaning that a
cryptographic hash function with b-bit output length, have the security level of only
b/2-bit. Since the security drops by a square root. So with a hash function having
80-bit output, there is need of only 240 tries for a collision to occur [87, 293-314].

Having in mind that digital signatures make use of hash functions with collision
resistance, this attack may cause a forgery of a signature.

Chosen Prefix Collisions Attack

Collisions attacks are divided into two kinds of attack. First is a plain finding of
collision by applying birthday paradox as described above. Second is to find prefixes
for two different messages such that they map to the same hash value. In other
words, find p1 and p2 for messages m1 and m2 so that p1||m1 maps to the same hash
value as p2||m2.

This attack was used by Stevens et al. [100] to find a collision in SHA-1. SHA-1 was
standardized by NIST in 1993 and has been widely used since then. Unfortunately,
in many years it has been known that SHA-1 has some weaknesses. In 2011, NIST
has officially announced that SHA-1 should not be used anymore due to theoretical
attacks. However, SHA-1 is still widely used and creates a threat, since the collisions
are now practical. The authors was able to find a prefix to colliding messages in such
way that makes a user have two arbitrarily chosen distinct visual contents. They

30

concluded that this attack was 100 000 times faster than a brute force attack.

Any applications relying on collision resistance hash functions are threatened by this
attack. However, applications that requires second-preimage resistance will not suffer
from this attack.

Length extension attack

In this attack, an attacker is trying to determinate the hash value of the concatenation
of two messages H(m1||m2) [105]. By having the knowledge of both the hash value
H(m1) and length |m1| of the first message and having control over the second
concatenated message m2. The attacker may be able to extend the origin message
m1 and compute a new hash value yielding a valid signature. Important to emphasize
is that the attacker does not have the knowledge of the actual content of the origin
message m1.

In practice, this attack utilizes the way Merkle-Damgård construction [80] is build
up. The attack works in following way. When Merkle-Damgård construction is used
to hash a secret concatenated with a message H(secret||message). The secret will
appear in the first block(s) of a sliced message. Therefore, the internal state after the
final iteration of function f will yield a valid signature of given message. However,
having the internal state of the Merkle-Damgård construction after the last iteration
of function f . Then, adding a second message to the construction and making it
iterate through the second as well, will also yield a valid signature. Consequently, as
aforementioned, an attacker having knowledge of the length of a message, its hash
value, and having control over the second concatenated message is able to create a
valid signature.

All hash functions based on Merkle-Damgård constructions like MD0-MD5 and SHA-
0-SHA-2 algorithms are exposed to this attack. Nevertheless, both SHA-3 and
HMAC are immune to length extension attack, since they do not use the construction
of H(secret||message). One of the prevention technique for this attack is to flip the
order of these messages to H(message||secret) [38].

31

2.3 Digital signatures in current protocols

In the time of internet expanse, the use of current standardized protocols as well as
creating new protocols grows continuously. Most of the protocols need to be secure
and may have to provide a sort of authentication. Nowadays, digital signatures are
used to fulfill such security requirements. In a post-quantum world, all of the digital
signatures need to be replaced, since they will be directly or indirectly affected by a
quantum computer. Therefore it is important to have an overview of what role does
a digital signature have in these protocols as well as in which way the signatures
are used. In this section, some of most commonly used internet protocols that are
containing a digital signature are presented.

2.3.1 PKI

PKI is a framework used to distribute, administrate and use public keys over a
network. PKI issues X.509 certificates to authenticate the relationship between a
public key and an entity on a network.

Figure 2.4: Presents 3 versions of X.509
certificate structure [109].

To trust an entity over a network, it is
necessary to verify its certificate, by ver-
ifying the certification path. The certifi-
cation path starts with the end entity’s
certificate and proceeds through some
intermediate CAs up to a trust anchor or
root CA (certificate authority). A trust
anchor is a part which trust is assumed
and not derived from other sources. The
trust anchor is a root CA or a CA which
can derive its trust to an underlying in-
termediate (subordinate) CA or end en-
tity (subscriber) [73].

A variation of this structure exists,
where there are several root CAs, in a
trust list. In this structure, a subscriber
can be verified by any of these root CAs.
This structure is used in web browsers,

32

where they are initialized with hundreds
of root CAs from the beginning.

Figure 2.4, presents a X.509 certificate
and data fields it consist of in different
versions [63]. There are 3 versions of
X.509 certificate available, where version
3 is the last version of the standard which provides the most information about the
end entity and the purpose of the certificate.

Figure 2.5: The flow of getting an X.509 certificate in Public Key Infrastructure
[108].

To get a certificate, the end entity has generated a Certificate Signing Request (CSR)
containing information about the end entity, signed by entity’s private key. There-
after the CA will validate the request by verifying the signature and will generate a
new X.509 certificate for the end entity if validation was succeeded [74].

A PKI structure also consists of a Certificate Revocation List (CRL). CRL is a signed
data structure which continuously keeps control over invalid certificates. Each CA

33

posses a CRL list which keeps track of issued certificates that are revoked. This is
an append-only list and is available to the public [28]. However, due to the problem
of big CRL list, the OCSP was taken to use. OCSP is an Online Certificate Status
Protocol which returns one line digitally signed response instead of CRL list. OCSP
creates less overhead on the network while checking the certificate, and have the
advantage of requesting the status of a single certificate [96].

A good example of public key infrastructure in Norway is BankID, Buypass, and
ID-porten.

2.3.2 TLS

TLS is a widely used protocol to secure data traffic through the internet. A good
example of TLS usage is HTTPS protocol used by web browsers. HTTPS protocol
is a secure version of HTTP, namely by securing the communication by TLS. The
TLS protocol encrypts all traffic between a server and the client with a symmetric
cipher due to the performance.

To provide the security, TLS always starts with a handshake between the client and
the server. The handshake protocol consists of four alternating messages between the
parties, where the client start the conversation. Among other information, a certifi-
cation exchange message, containing X.509 certificates, is sent. The purpose of this
message is to authenticate both parties so that they can trust each other. However,
most of TLS implementations often use server authentication only, called one-way
authentication. Furthermore, the secret key is established through a key agreement
exchange. When both parties share the secret key, then the TLS handshake protocol
is completed, and both parties may freely and securely send the application data
between them.

Figure 2.6 present entirely handshake protocol of TLS, where fields labeled with * are
not required [104]. However, then no authentication is provided and an anonymous
session is established.

2.3.3 IPsec

IPsec is a network protocol suite that provides with authentication of an entity,
key management, and confidentiality. This protocol uses IKE to perform mutual

34

Figure 2.6: TLS handshake protocol [103].

authentication, establishment and maintaining of Security Associations (SA) to use
it with Authentication Header (AH) or Encapsulation Security Payload (ESP) [22].

IKE was originally built on three old protocols namely SKEME(1996), OAK-
LEY(1998) and ISAKMP(1998). SKEME is a simple and compact protocol which
provide key exchange mechanism. SKEME have some flexible tradeoffs between secu-
rity and performance without increasing complexity of the protocol. As key exchange
mechanism, it uses Diffie-Hellmann with fast and frequent key refreshment [68].

OAKLEY protocol is also a key agreement protocol that use Diffie-Hellmann key
exchange algorithm to exchange keys across an insecure network connection securely.
This protocol supports Perfect Forward Secrecy, key updates and is compatible with
ISAKMP [86].

ISAKMP is a protocol for establishing SA and cryptographic keys on a network but
does not define the actual key exchange technique [29].

IKE protocol has been updated over time to be more simple and reliable and in 2014
IKEv2 became an internet standard. To establish SA, there is a need for four IKE
initial exchanges messages [22].

In IKE_SA_INIT messages, a Diffie-Hellman exchange is performed for establishing

35

the common secret key. This key is used to derive all further keys for IKE SA.
Then IKE_AUTH messages ensures that messages are authentication and encrypted
expect the headers. It will also authenticate the previous message that was sent.
When IKE is done with establishing the SA, IPsec can be executed in AH or ESP
mode.

Figure 2.7: AH and ESP presented in both transport and tunnel mode [14].

IPsec in AH mode provides message authentication of payload and immutable header
fields by extending IP header [64]. While IPSEC in ESP mode provide encryption
and optionally authentication of the payload by extending header and trailer of the
originally IP [65]. Both AH and ESP mode can be used in transport or tunnel mode.
The tunnel mode adds extra protection of the origin IP header datagram by adding
a new IP header in front of the datagram.

2.3.4 DNSSEC

DNSSEC provides a security extension to DNS queries on an IP network. However,
DNSSEC is not an internet standard and can be added to servers as an additional
security layer. DNSSEC has been invented in 2005 but first in 2014 was allowed to
use in .no domains. DNSSEC provides origin authentication and data integrity but

36

does not provide confidentiality or availability. The security in DNSSEC based on
public key cryptography and chain of trust.

Chain of trust makes it easier to use an unknown server based on the fact that the
server trusts another server which again trusts the root server. Since everybody
trusts the root server, then the unknown server can now, based on this fact, be
trusted by validation chain. DNS root server is the starting point of the chain and
is also known as the trust anchor. This is identical to the PKI infrastructure. First
in 15. july 2010 the root anchor was created by ICANN and its "DNSSEC Root
Signing Ceremony" [60, 101].

Figure 2.8: Presents a DNSSEC query to www.example.com

When an end user sends a DNSSEC request to a web page with URL
www.example.com (step 1). The query goes to ISP recursive resolver which has to
find out the A or AAAA record/IP address for given URL. ISP sends then a request
to DNS root name sever and ask about the IP address of TLD of the URL which
is the .com name server (step 2). Since, DNSSEC flags in on, the DNS root name
server answers with a bigger data pack that to regular DNS query. The response
contains five parts (step 3):

37

1. Non secure referral to .com name server.

2. RRset of DNSKEYs: DNS root ZSKpub and KSKpub keys.

3. RRsig of RRset from 2., which is digitally signed by roots KSKpvt.

4. DS record for the .com name server, which is a digest of .com KSKpub key.

5. RRsig of DS from 4., signed by roots ZSKpvt key.

The ISP recursive resolver can now access the .com name server and validate its
authentication. For validation it have to verify the root zones records and the root
zone it self (step 4).

1. Record verifying

(a) Root zones KSKpub is used to verify the signature of DNSKEY RRset.

(b) Root zones ZSKpub is used to verify root zones DS record for .com zone.

2. Zone verifying

(a) ISP recursive resolver has already a copy of DNS root zones KSKpub key
from another source that the DNS root name server itself. Now the root
zone can be verified by comparing the local copy of KSKpub key with the
KSKpub key send by DNS root zone.

Once again, it can be mentioned that digital signatures are essential for secure usage
of a public network.

2.3.5 S/MIME

S/MIME standing for Secure/Multipurpose Internet Mail Extension is an important
protocol for signing and encrypting data from MIME protocol. This protocol is able
to transmit different types of data between two distinct systems which uses different
formats. Formats like: text, audio, images, videos, applications and many others are
supported by S/MIME [50].

S/MIME provides with authentication, message integrity and non-repudiation of
origin by using digital signatures. As well as, privacy and data security by using
encryption. In S/MIME, the certificates are required to protect the authenticity and
integrity of public key, thus protecting against man in the middle attack.

38

Chapter 3

The Impact of Quantum Computing

3.1 Quantum Computing

Quantum computing theory firstly introduced as a concept in 1982 by Richard Feyn-
man. Bone and Castro [12] stated that a quantum computer is completely different
in design than a classical computer that uses the traditional transistors and diodes.
Researchers have experimented with many different designs such as quantum dots
which are basically electrons being in a superposition state, and computing liquids.
Besides, they remarked that quantum computers could show their superiority over
the classical computers only when used with algorithms that exploit the power of
quantum parallelism. For example, a quantum computer would not be any faster
than a traditional computer in multiplication. It can be concluded that a quantum
computer is a computer that uses the effects of quantum mechanics to its advantage.

3.1.1 Quantum Phenomena

Quantum mechanics is related to microscopic physical phenomena and their specific
behavior. In a traditional computer, the fundamental blocks are called bits and can
be observed only in two states; 0 and 1. Quantum computers instead use quantum
bits also usually referred as qubits. In a sentence, qubits are particles that can exist
not only in the 0 and 1 state but both simultaneously, known as superposition. A
particle collapses into one of these states when it is measured. Quantum computers
take advantage of this property mentioned to solve complex problems. An operation

39

on a qubit in superposition acts on both values at the same time. Another physi-
cal phenomenon used in quantum computing is quantum entanglement. When two
qubits are entangled, their quantum state can no longer be described independently
of each other, but as a single object with four different states. In addition, if one
of the two qubits states changes the entangled qubit will change too regardless of
the distance between them. This leads to true parallel processing power. The com-
bination of the phenomena mentioned above results in an exponential increase in
the number of values that can be processed in one operation when the number of
entanglement qubits increases. Therefore, a n-qubit quantum computer can process
2n operations in parallel [75].

3.1.2 Shor’s Algorithm

In 1994, the mathematician Peter Shor in his paper “Algorithms for Quantum Com-
putation: Discrete Logarithms and Factoring” [99], proved that the complexity of
factoring large integers would be changed fundamentally with a quantum computer.

The following example will provide a better understanding of how Shor’s algorithm
factorizes large numbers. In this example, the prime origin factor of number 15 will
be found by Shor’s algorithm. To do so, there is in need a 4-qubit register. A 4-
qubit register can be visualized as a normal 4-bit register of a traditional computer.
Number 15 can be represented as 1111 in binary, therefore a 4-qubit register is enough
to calculate the prime factor of this number.

According to Bone and Castro [12], a calculation performed on the register can be
thought as computations done in parallel for every possible value that the register
can take values between 0 and 15. This is also the only step needed to be performed
on a quantum computer.

The algorithm does the following:

• n = 15, is the number we want to factorize

• x is a random number such as 1 < x < n− 1

• x is raised to the power contained in the register (every possible state) and then
divided by n. The remainder of this operation is stored in a second 4-qubit
register. The second register now contains the superposition results. Let’s
assume that x = 2 which is larger than 1 and smaller than 14.

40

• Table 3.1 on Page 41 shows the following remainders when x is raise to the
powers of 4-qubit register which is a maximum of 15 and divide by 15.

Register 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Register 2 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Table 3.1: Result of x raised to the powers of the 4-qubit register values and second
results are remainders of dividing these numbers by 15.

In the result, a repeating sequence will appear. In this case, it can be observed
that there is a repeating sequence of 4 numbers (1,2,4,8). Therefore, it can
confidently stated that the period of this repeating sequence is f = 4 when
x = 2 and n = 15. The value f can be used to calculate a possible factor with
the following equation: P = GCD(xf/2 − 1, n)

In a case where the result of the factor is not a prime number, then the calculation
needs to be repeated with different x values.

Shor’s algorithm can be used additionally for computing discrete logarithm problems.
Vazirani [110] explored in detail the methodology of Shor’s algorithm and showed
that by starting from a random superposition state of two integers, and by performing
a series of Fourier transformations, a new superposition could be set-up to give, with
high probability, two integers that satisfy an equation. By using this equation, it
can calculate the value r which is the unknown exponent in the DLP.

3.1.3 Grover’s Algorithm

Lov Grover created an algorithm that uses quantum computers to search unsorted
databases [47]. The algorithm can find a specific entry in an unsorted database of
N entries in

√
N searches. In comparison, a conventional computer would need N/2

searches to find the same entry. The algorithm goes as follows.

1. Initialize the system of each N state to be the distribution of equal amplitude
of 1/

√
N . This can be obtained in O(log N) steps.

2. Following operations should be performed
√
N times.

(a) The system may be in any state S. If the check of that state gives 1, then
rotate the phase by π radians. Otherwise, leave the system unaltered.

41

(b) Apply diffusion transformation D defined as matrix: Dij = 2/N if i 6= j
& Dii = −1 + 2/N . This can be written as D = WRW . Where, R is the
rotation matrix defined as:

Rij = 0 if i 6= j; (3.1)
Rii = 1 if i = 0 and (3.2)
Rii = −1 if i 6= 0 (3.3)

Whereas, W is the Walsh-Hadamard Transformation matrix defined as
follow:

Wij = 2−n/2(−1)i·j (3.4)

Here, i · j denotes bitwise product of binary representation of i and j.

3. This algorithm, like many other quantum algorithms, is probabilistic. Such
that the answer is correct with the probability of at least 1/2.

In this manner a quadratic speed up over an unsorted database can be achieved when
a appropriately large quantum computer is available.

3.1.4 Quantum Computing

A company named D-wave works on quantum computers since 1999. In the past
several years, D-wave has successfully implemented non-universal quantum comput-
ers each year, and for each time they were able to increase its power. Additionally,
in 2016, they have successfully implemented a factorization algorithm on their non-
universal quantum computer. It was possible by turning the factorization problem
into an optimization problem [37]. In 2017, this algorithm was able to factorize factor
of two primes up to 200 000, without prior knowledge. Later in this year, D-wave
managed to develop a quantum annealing processor with over 2000 qubits, making
it the state of the art of non-universal quantum computers [113]. Big companies
like NSA, Google, NASA and other, cooperate with D-wave and have got their non-
universal quantum computer for research purposes. This kind of quantum computers
as D-Wave has made, can be used for purposes like optimization, machine learning,
pattern recognition, anomaly detection, financial analysis and many more.

Nevertheless, universal quantum computers come with more benefits due to greater
computational power. Universal quantum computers are able to use the full potential

42

of quantum physical phenomena. Combining this with the ability to perform any
given task, it provides the potential of being exponentially faster than a traditional
computer. This aspect will be used for a number of applications in science and busi-
nesses, in fields such as secure computing, machine learning, cryptography, quantum
chemistry, material science, optimization problems, sampling, quantum dynamics
searching and more.

Meaning that any information that has been, or will, be transmitted on public chan-
nels are vulnerable to eavesdropping. Even if the data is encrypted and is safe against
current attacks, it can be stored for later decryption, once a practical universal quan-
tum computer becomes available [23].

Many companies are currently working on a solution to be able to make a universal
quantum computer. IBM is one of the companies that succeeded in this venture.
In March 2017, IBM announced their 17 qubits universal quantum computer with
proper error correction [111], which is currently the state of the art of universal
quantum computers. They claim to build a universal quantum computer with 50
quantum bits in few years [70]. This number may look small, however such quantum
computer with this amount of quantum bits will be more powerful than any existing
conventional supercomputers [36].

Both D-Wave and IBM have their quantum computers accessible online for research
purposes. It provides the public with the opportunity to participate in the develop-
ment of quantum algorithms. This has shown to be an efficient way to get insights
of quantum computing development.

3.1.5 Challenges in Quantum Computing

Quantum computers come not only with tremendous computing power but also with
a lot of difficult technical challenges. Many researchers are working on these problem
trying to solve them.

• Quantum algorithms are mainly probabilistic. This means that in one opera-
tion a quantum computer returns many solutions where only one is the correct.
This trial and error for measuring and verifying the correct answer weaken the
advantage of quantum computing speed [67].

• Qubits are susceptible to errors. They can be affected by heat, noise in the
environment, as well as stray electromagnetic couplings. Classical computers
are susceptible to bit flips where zero can become one or the opposite. Qubits

43

suffer from bit-flips as well as phase errors. Direct inspection for errors should
be avoided as it will cause the value to collapse, leaving its superposition state
[21].

• Another challenge is the difficulty of coherence. Qubits can retain their quan-
tum state for a short period of time. Researchers at the University of New
South Wales in Australia have created two different types of qubits (Phospho-
rous atom and an Artificial atom) and by putting them into tiny silicon (silicon
28) they were able to eliminate the magnetic noise that makes them prone to
errors. Additionally, they stated that the Phosphorous atom has 99.99% accu-
racy which accounts for 1 error every 10,000 quantum operations [82]. Their
qubits can remain in superposition for a total of 35 seconds which is considered
a world record [30]. Moreover, to achieve long coherence qubits need not only
to be isolated from the external world but to be kept in temperatures reaching
the absolute zero. However, this isolation makes it difficult to control them
without contributing additional noise [67].

IBM in 2017, introduced the definition of Quantum Volume. Quantum volume is a
metric to measure how powerful a quantum computer is based on how many qubits it
has, how good is the error correction on these qubits, and the number of operations
that can be done in parallel. Increase in the number of qubits does not improve a
quantum computer if the error rate is high. However, improving the error rate would
result in a more powerful quantum computer even on the same amount of qubits
[11].

3.2 Consequences of quantum computing

Quantum computing theory has been researched extensively and is considered the
destructor of the present state of modern asymmetric cryptography. Quantum com-
puters threaten the main goal of every secure and authentic communication because
they are able to do computations that classical (conventional) computers cannot.
The power of quantum computing will allow an eavesdropper to intercept the com-
munication channel between authentic parties. This task is considered to be com-
putational infeasible by a conventional computer [15]. In addition, it is a fact that
symmetric cryptography can also be affected by specific quantum algorithms. Fur-
thermore, algorithms that can break the present asymmetric crypto schemes whose
security is based on the difficulty of factorizing large prime numbers and the discrete

44

logarithm problem have been introduced. It appears that even elliptic curve cryp-
tography which is considered presently the most secure and efficient scheme is weak
against quantum computers. The goal of post-quantum cryptography (also known
as quantum-resistant cryptography) is to develop cryptographic systems that are se-
cure against both quantum and conventional computers and can inter-operate with
existing communication protocols and networks [26]. NSA has already announced
plans to migrate their cryptographic standards to post-quantum cryptography [97].
Many post-quantum public key candidates are actively investigated the last years
since it is believed that they are resistant to quantum-based attacks. There is no
doubt that quantum computers will provide a lot of good invention. However, there
is a need to be aware of the consequences it will bring along.

3.2.1 Symmetric cryptography

Quantum computing is considered a minor threat for symmetric cryptography. The
main consequence come along with Grover’s algorithms. This algorithm is able to
perform a search on an unsorted database in

√
N steps, where N is the length of

the database. Therefore, brute force on a 128-bit AES key, which have 2128 different
possibilities, can be obtain in

√
2128 = 264 steps. Unfortunately, this leads to lower

security on all existing symmetric cryptographic algorithms by half.

As mentioned in 2.2.2 the security level of 80-bit is considered secure. Therefore,
to prevent weak ciphers, there is a need of doubling the key length to compensate
for the square root in Grover’s algorithm, to maintain the same security level of
symmetric ciphers. Nevertheless, AES originally comes with larger keys support like
192-bit and 256-bit keys. This makes AES with bigger keys have the security level big
enough even in a post-quantum era [23]. NSA allows AES cipher to protect classified
information for security levels, SECRET, and TOP SECRET, but only with key
sizes of 192 and 256 bits respectively [83]. Which can also be an indicator of AES
being secure in the post-quantum era. In a more recent paper from 2016, NIST
report [26] remarks that if the key sizes are sufficient (doubled), then symmetric
cryptographic schemes (specifically the Advanced Encryption Standard-AES) are
resistant to quantum computers.

On the other hand, Bone and Castro [12] remarks that a possible application of
Grover’s algorithm may crack DES, which relies its security on a 56-bit key, with
only 185 searches to find the key. Taking into consideration 3DES, its security is
enough against conventional attacks. However, this algorithm needs to be modified

45

to be manageable in a quantum world. Since the security level of 3DES will decrease
from 112-bit to 56-bit security level due to Grover’s algorithm.

Buchmann et al. [7] stated that Grover’s algorithm has some applications to sym-
metric cryptosystems, but it is not that fast as Shor’s algorithm.

3.2.2 Asymmetric cryptography

As aforementioned in Subsection 2.2.3, security of modern information systems is
fundamentally based on public key cryptographic mechanisms that rely on the diffi-
culties of factoring large integers like RSA or computing discrete logarithms in cyclic
groups as in DH or DSA. Recent algorithms based on elliptic curves (such as ECDSA)
use a modification of the discrete logarithm. When the parameters are properly cho-
sen, these problems are assumed to be computationally infeasible to solve. There
is no known algorithm that may be able to solve these problems on conventional
computers.

However, this tends to change due to the quantum computer with enormous com-
puting power with specific algorithm exploiting quantum physics to its advantages.
Shor’s algorithm, described in Subsection 3.1.2, can make modern asymmetric cryp-
tography collapse since is it known that this algorithm is able to solve factorization
problem as well as the discrete logarithm problem in polynomial time.

For many years it has been known that elliptic curve algorithm can achieve the same
security level as widely used RSA algorithm, but uses less bits to achieve the same
outcome. This means that ECC has smaller memory usage and thus faster than RSA.
For instance, to ensure 128-bit security, in RSA there is a need for 3072-bit keys,
while ECC only needs 256-bit keys [85]. This tends to change with the introduction
of quantum computers. Thus, Shor’s algorithm poses a critical threat to asymmetric
public key algorithms. A universal quantum computer with enough quantum bits
cooperating together and required memory will be able to reveal the secret of both
those algorithms. Despite that ECC is considered more secure than RSA, it is easier
for a quantum computer to break ECC, since it uses smaller amount of bits. Proos
and Zalka [89] explained that 160-bit elliptic curves could be broken by a 1000-
qubit quantum computer, while factorizing 1024-bit RSA would require a 2000-qubit
quantum computer. The number of qubits needed to break a cryptosystem is relative
to the algorithm proposed. In addition, the Authors show in some detail how to use
Shor’s algorithm to break ECC over GF(p).

46

This will lead to lack of security, since to all asymmetric keys may be decrypted by
this algorithm. Key exchange algorithm will no longer provide the intended security,
which means that no symmetric key will be securely established over an insecure
network. Along with that, digital signatures will no longer provide any verification
of entity. An attacker will be able to generate another public key corresponding to the
signature or private key, which will give a valid verification. Therefore, conventional
asymmetric cryptography will be not secure anymore when a fully universal quantum
computer becomes practical.

3.2.3 Hash functions

The family of hash functions suffers from a similar problem as symmetric ciphers
since their security depends on a fixed output length. Grover’s algorithm can be uti-
lized to find a collision in a hash function in square root steps of its original length.
In addition, it has been proved that it is possible to combine Grover’s algorithm with
the birthday paradox (Described in 2.2.5). Brassard et al. [13] described a quantum
birthday attack. By creating a table of size 3

√
N and utilizing Grover’s algorithm to

find a collision, this attack is said to work effectively. By this to provide a b−bit secu-
rity level against Grover’s quantum algorithm a hash function must provide at least a
3b−bit output. Due to Grover’s algorithm, the generic security of hash functions has
changed as well. Table 3.2 fulfill the Table 2.1 from Subsection 2.2.5 by the quantum
information for generic security of hash functions. As a result, some of the present
hash functions are disqualified for use in the post-quantum era. Nevertheless, both
SHA-2 and SHA-3 family, with 224-bit variants and longer, remains post quantum
secure. Taking into consideration hash-based digital signatures, the hash function
called BLAKE by Aumasson et al. [3] is also qualified to use. BLAKE is a finalist
of the SHA-3 competition organized by NIST [25] and it meets the requirements of
generic security for secure hash functions. Subsequently, BLAKE has been optimized
and updated to BLAKE2 which is faster than SHA hash function families.

One wayness Second Image
Resistnace

Collision
Resistance Untraceability Pseudo Random

Function
Classical O(2n) O(2n) O(2n/2) O(2n) O(2n)

Quantum O(2n/2) O(2n/2) O(2n/3) O(2n/2) O(2n/2)

Table 3.2: Generic security for hash function in both classical and quantum world
[59].

47

Part II

Survey of Hash Based Signatures

48

Chapter 4

One-Time Signatures

One-Time Signatures or OTS for short are used for signing and verifying a message
across the internet. Signatures like this must never be used more than once due to
the security. For each message to sign, the signer should generate a new set of both
private and public keys in order to maintain security level.

The most significant difference between currently standardized digital signature
schemes and hash-based signatures is that their construction does not include the
use of asymmetric cryptography, or more specific Hidden Subgroup Problem (HSP),
to ensure security. Instead, hash-based signatures rely on the security of the hash
function itself to achieve the same functionality and security.

In this chapter, we are presenting some one-time signatures with a different approach
of using hash functions.

4.1 Lamport Signature

In 1975, W. Diffie wanted to solve the problem to construct a digital signature.
Lamport came immediately with a solution, though no optimal one. However, it was
taken into consideration and was mentioned in paper [112] by W. Diffie and M. Hell-
man in 1976. Two years later, a more practical way of generating digital signatures
was published [91] by M. Rabin, but still with some utility drawbacks. Lamport
has eliminated those drawbacks and created Lamport One-Time Signature (L-OTS)
in 1979 [72]. This One-Time signature is also interchangeably called Lamport-Diffie

49

signature (LD-OTS) and is considered as the first hash-based signature scheme.

4.1.1 Parameters and Key Generation

In L-OTS the private key is generated by a Pseudo Random Number Generator
(PRNG), and then the public key is obtained by applying a one-way function F on
each private key element. Assuming a security level of n-bit. The private key sk will
consist of 2n pairs of elements generated by PRNG, where each of elements has a
length of 2n-bit. This generation will result in private key sk of size equal to 4n2-bit.

sk = (sk(1,0), sk(1,1), ..., sk(2n,0), sk(2n,1)) (4.1)

The elements, sk(i,0) and sk(i,1) represents the i’th pair of generated random numbers
from the private key.

Furthermore, the public key is generated by applying one-way function F on each
element from the private key. The one-way function F need to provide with the
output size of 2n-bit. This will result in 2 ∗ 2n = 4n new values. All these values
together create the corresponding public key. This gives 4n2-bit as the size of the
public key.

pk = (F (sk(1,0)), F (sk(1,1)), ..., F (sk(2n,0)), F (sk(2n,1))) (4.2)

This will result with:

pk = (pk(1,0), pk(1,1), ..., pk(2n,0), pk(2n,1)) (4.3)

The public key should be publish, so that everyone could be able to verify the sig-
nature of a message.

4.1.2 Signing

To be able to sign a message of arbitrary length, we need a secure compression
function H with collision-resistant. This hash function need to produce an output
of 2n bit, to provide n-bit security level. Usually, a standardized cryptographic
collision-resistant hash function is used. Output of such hash function H on input
message m results in a message digest d = H(m). Thereafter, d can then be used
bitwise to create the signature. Whenever the bit from d on index i, going from
left to right, is 0 then sk(i,0) element from the private key is used for the signature.

50

Otherwise, when the bit di = 1, then sk(i,1) is used. Consequently, the signature will
contain of 2n elements, with total size of 2n2-bit. Since, only one of the pair elements
from the private key is used to sign each individuality bit from the message digest.

σi =

{
sk(i,0), if di = 0

sk(i,1), otherwise
(4.4)

σ = (σ1, ..., σ2n) (4.5)

The sequence of random numbers from the private key creates the signature for a
message digest. This signature can be now send to the receiver along with the original
message, to be verified. The unused elements from the private key can be deleted to
free the memory.

4.1.3 Verifying

On the receiver side, we have got both the signature σ and the message m from the
sender. Then to verify the signature, we first have to hash the message with the hash
function H to obtain the message digest d.

d = H(m) (4.6)

Subsequently, by going through the message digest, we can choose the proper corre-
sponding public key elements for verification. This is the same process as in signing
procedure of the messages. Thereafter, apply the one-way function F on each ele-
ment from the signature, independently. Lastly, compare values produces by F with
chosen elements of the public key.

∀σi ∈ σ : F (σi)
?
= pk(i,di) (4.7)

If all of these numbers are equal, then the signature is valid. Otherwise the signature
is invalid and should be rejected.

4.1.4 Security of L-OTS

In L-OTS, the same private key must never be used again to generate another sig-
nature. In a scenario where the signature is sent over an unsecured channel, an

51

adversary has the opportunity to obtain half of the corresponding private key from
the signature. Despite, the signature is still secure since the adversary does not know
other elements from the corresponding private key. The only way to get knowledge
of other private key elements would be to use the public key values and invert the
one-way function, which is assumed to be computationally infeasible to perform.
Therefore, the signature is secure if the underlying functions are secure and the pri-
vate key is used only once. Then, having 2n non-repeatable random generated pairs
in private key gives n-bit security level due to collisions attacks.

However, if a second signature is generated from the same private key, then the
adversary may obtain more elements from the private key and will be able to forge a
new valid signature. The more signatures are generated from the same private key,
the easier it gets for an adversary to generate a new valid signature.

A cryptographic hash function that compresses the message adds a layer of security
to the signature scheme. Since it makes it difficult for the adversary to manipulate
the actual message, or in this case a message digest, being signed. Since hash function
provides pseudo-randomness, a new signature produces with the same key pair will
reduce the security level by half. Since in average the adversary may learn about
50% of the private key elements that are not overlapping with the previous signature.

However, if no hash function is used on the message, two messages bitwise com-
plement of each other, are enough for a complete break of L-OTS. Since then the
adversary will obtain all of the private key elements.

4.1.5 Reducing the Private Key Size

In order to sign several messages with Lamport signature scheme, one need to gen-
erate several instances of key pairs. Unfortunately, this means many key pairs to
store. The public key is generated from the secret key, therefore storing it may be
omitted. However, the secret key alone is 2n2-bit, and having many instances of it
will be expensive due to the memory consumption. To avoid this flaw, one may use
a deterministic pseudorandom function. Consequently, the signer instead of storing
all the secret keys, will be able to reduce it to only one short secret seed and then
generate the secret key when needed. This method reduce the memory requirement
and is very efficient. A method of reducing the public key memory requirement will
be described later in this thesis in Chapter 6.1.1.

52

4.2 Merkle One-Time Signature

In 1979, Ralph C. Merkle proposed an improved version of L-OTS [79]. This version
of L-OTS reduces both key and signature sizes, by slightly changing the approach
of message signings. This variant of L-OTS has later on also been called for Merkle
OTS.

4.2.1 Parameters

In Merkle OTS, the key generation phase is equal to L-OTS key generation. However,
with fewer elements. For the security level n, the private key consist of n elements
generated by PRNG, where each element are of size n-bit:

sk = (sk1, ..., skn) (4.8)

The public key is then obtained by applying the one-way function F on each element
from the private key:

pk = pk1, ..., pkn = F (sk1), ..., F (skn) (4.9)

Both private and public key has the length of n2 bit.

4.2.2 Signing

In Merkle OTS, the signer need only to sign the ones from the message digest.
Consequently, there is no need for as much private and public key elements as in
original L-OTS. Thus, optimizing both signing and verification process.

To sign a message with Merkle OTS, the signer needs to hash the message m with
the hash function H to obtain the message digest d = H(m). Thereafter, whenever
the bit on index i in the message digest d is equal to 1, the corresponding element
from the private key is placed into the signature. Whereas, when the bit on index i in
the message digest d is equal to 0, then the bit gets ignored and the signer proceeds
to the next bit. This procedure will result in a signature with the size of n/2 ∗ n-bit
in average or more precisely the number of ones in message digest d times n. Assume
d contains t ones in the positions j1, ..., jt then,

σ = (σ1, ..., σt) where σi = skji for i = 1, ..., t (4.10)

53

4.2.3 Verifying

The verification of the signature is similar to the signing process. The receiver needs
to compute the message digest d by hashing the message m with the function H.

d = H(m) (4.11)

Then, by looking after ones in the message digest, the receiver can pick the right
elements from signer public key. The receiver, stores these elements in a variable
pk_ver for later comparison, this variable will become a verification key for the
message.

pk_ver :

{
pki, if di = 1

nothing otherwise
(4.12)

Thereafter, the receiver needs to apply the one-way function F to all signature el-
ements separately. Lastly, the receiver needs to compare these elements with the
elements from the public key.

∀σi ∈ σ : F (σi)
?
= pk_veri (4.13)

If every elements of that comparison match, only then the signature is valid.

Verification of Merkle OTS consist of one iteration of H to produce message digest
and several iteration of F . The number of iteration is equal to the number of ones
from the message digest. In average it will be n/2 iterations of one-way function F .

4.2.4 Security

Merkle OTS has one major drawback. Namely, the signature is insecure. An ad-
versary is capable of forging a new valid signature without knowing senders private
key. This can be done by simply flipping one bit in the message digest, from 1 to
0 and pretend as it is the original message digest. This is more difficult in practice
but still doable. Since a hash function is used on the message. The adversary needs
to find a message digest which contains lower number of ones. However, every ones
need to be at the same index as in the original signature. Then, the adversary will
successfully create a valid signature. Thus, according to signing procedure of Merkle
OTS, when a bit in d on index i is 0, then the signer does not have to include its
private key from that index. Therefore, the receiver does not have to check it either.
Thus, it is a valid signature.

54

4.2.5 Improvement of Merkle OTS

To overcome the security issues described in the section above, Merkle in his Ph.D.
thesis [79] has adjusted the signature. Consequently, the signing process was changed
to at first sign all 1’s from the message digest, then signs all 1’s from the complement
of the message digest, which initially was the 0’s in the original message digest. This
change prevents the forgery of a signature. Since, when one bit in the original message
digest flips from 1 to 0, the corresponding bit in the complement message digest will
automatically change from 0 to 1. Then, the adversary would need to know sender’s
private key to be able to sign the flipped bit. The alternative way to forge the
signature is to break one-ways of a cryptographic function, which is assumed to be
computationally infeasible to perform. Thus the signature is no longer exposed to
forgery.

Unfortunately, the improvement in security has also resulted in doubling both the
key and signature size. This makes both keys and signature sizes equal to L-OTS
sizes. However, the sizes can be optimized, and both keys and signature reduce
almost to the same sizes as before in the original Merkle OTS.

The improved version of the algorithm uses both message digest and the complement
of message digest to sign a document. This makes the signature scheme inefficient.
However, the complement of the message digest can be considered as a checksum of
the original message digest with a very bad performance. Nevertheless, the checksum
can be constructed more efficiently. Merkle has proposed a checksum which adds
only 1 + log n bit to the original signature. Consequently both private and public
key gets smaller by almost two-fold, whereas the security remains the same. The
new checksum is a count of 0’s from the original message digest. The number is
represented in binary and added at the end of the message digest to be signed with
the message. The new checksum adds only 1 + log n bits to the signature since there
is only need for 1 + log n additional bits to represent a number between 0 and n.

Key Generation

The number of elements in both private and public key.

l = n+ 1 + log n (4.14)

The private key is generated by a PRNG, where each element have size of n-bit.

sk = (sk1, ..., skl) (4.15)

55

The public key is obtained by applying one-way function F on all private key elements
separately.

pk = (pk1, ..., pkl) = (F (sk1), ..., F (skl)) (4.16)

Signing

Furthermore, to create the signature, the sender needs to calculate the message digest
d along with the checksum c for the message digest.

d = H(m) (4.17)

c =
n∑
i=1

d̄i (4.18)

The variable s represents concatenation of messages digest and the checksum.

s = d || c (4.19)

The following creates the signature with t elements of size n, where t is the number
of ones in s.

σ = (σ1, ..., σt) where σi =

{
ski, if si = 1

nothing otherwise
(4.20)

Verifying

To verify the signature, the receiver need perform similar calculations as when signing
the message. First, calculate message digest and the checksum and concatenate them.

d = H(m) (4.21)

c =
n∑
i=1

d̄i (4.22)

s = d || c (4.23)

Then, by iterating through s, the receiver can pick right verification elements from
senders public key. The receiver picks only the public key elements from index i
where si = 1. Thereafter, apply function F on every element from the signature

56

σ. Lastly, compare all chosen elements from senders public key with the signature
elements iterated with function F .

∀σi ∈ σ : F (σi)
?
= pki (4.24)

Only when all of these elements are equal, the signature is valid. Otherwise, it need
to be rejected.

4.3 Winternitz signature

Few months after L. Lamport published L-OTS, R. Winternitz from Stanford Mathe-
matics Department has proposed another One-Time signature. Winternitz presented
the solution to R. Merkle who published it in his paper [79] as Winternitz One-Time
Signature (W-OTS). This algorithm improves the signature by decreasing its length
by a factor between four and eighth. The main difference between L-OTS and W-
OTS is that the second is able to sign several bits simultaneously achieving the
same security level. However, the W-OTS scheme suffered from the same problem
as L-OTS, particularly the signature forgery due to bit flip. Nevertheless, R. Merkle
proposed the same solution to this problem as he did for the L-OTS, namely adding
the checksum to the signature. Where the checksum is the number of 0’s in the
original message digest.

Merkle in his paper [79] provided only an overview of Winternitz’s idea and a small
example. The first time W-OTS was fully described by Dods et al. [35] in 2005.

W-OTS introduces new notation F i(x) which is used to describe i times repeatedly
use of F on an input x, particularly F 3(x) = F (F (F (x))) and F 0(x) = x.

4.3.1 Winternitz parameter

The key generation phase is somehow similar to L-OTS. The private key should be
generated by a PRNG, and then the public key will be obtained from the private
key. R. Winternitz introduced Winternitz parameter w, which can be freely chosen
and describes the number of bits, bigger than 1, to be signed simultaneously.

Winternitz parameter w is a trade-off between the size of the signature and the
running time of the scheme. Choosing a high value for w means to sign a greater
number of bits simultaneously. This influences the signature scheme in such way

57

that both keys and the signature sizes decrease, but the key generation, signing, and
verification run slower because of the computational effort. On the other hand when
w is smaller then the private key, public key, and the signature are longer, but the
key generation, signing, and verification are faster.

Since the w parameter is crucial for the whole scheme, it has to be properly chosen
depending on available resources. This is also one of the first steps in this signa-
ture scheme, before the key generation phase. According to G. Becker [4], when the
signing process is fast, w can be increased to reduce the signature size. Worthy to
mention is that when w increases, the signature generation time increases exponen-
tially. Whereas, when w decreases, the signature size increases linearly. Therefore
choosing a too big value for w is not recommended. Nevertheless, the scheme will be
secure no matter what value of w is chosen. According to Dods et al. [35], W-OTS
is most efficient with Winternitz parameter w = 3. However, it is recommended to
use W-OTS with w = 4, since it is very fast, easy to implement and provides short
signatures.

4.3.2 Key generation

When an appropriate value of w for the application is chosen, then l can be calculated.
The variable l represents the number of elements in private key and has the following
formula.

l1 =

⌈ |H(m)|
w

⌉
, l2 =

⌈blog2 l1c+ 1 + w

w

⌉
, l = l1 + l2 (4.25)

Where, l1 represent the number of private key elements needed for signing the mes-
sage digest, when signing w-bit simultaneously. Whereas, l2 represent the number of
private key elements to sign the checksum of the message digest.

All elements of the private key are generated from a PRNG and consist of n-bit each.

sk = (sk0, ..., skl−1) (4.26)

The public key is generated by applying F to each element from private key 2w − 1
times. The public key should be available to the public along with the parameter w
and functions F and H.

pki = F 2w−1(ski) for i = 0, ..., l − 1 (4.27)

pk = (pk0, ..., pkl−1) (4.28)
Table 4.1 on Page 59 presents correlation in numbers of how key elements decrease
and evaluations of F increase while w grows.

58

Table 4.1: Dependence between w, private key elements and evaluations of F when
n = 256

w 2 3 4 5 6 7 8
Keys and signature (l)
elements 133 90 67 55 45 39 34

Evaluations of F to
produce public key 399 630 1005 1705 2835 4953 8670

Signature size in KB 4,3 2,9 2,1 1,8 1,4 1,2 1,1

4.3.3 Signing

To sign a message the sender has to choose the parameter w and generate l private
and public keys. Thereafter, hash the message m with function H to produce a
message digest H(m). Next, the sender needs to slice the message in pieces where
each piece consists of w bit. If the message digest is not dividable by w, the sender
should append additional zero’s in the most left position. Resulting in

d = (d0, ..., dl1−1), (4.29)

which is in base 2w notation. After that, the checksum C of d can be calculated.
To do so, the sender has to calculate the sum of all differences between 2w = 810

and each of the di from the sliced message digest. This is done with the following
formula:

C =

l1−1∑
i=0

2w − di (4.30)

The calculated checksum C also has to be sliced in pieces with w bit each, and as
well add zero’s in the most left position if the division does not go up.

C = (c0, ..., cl2−1) (4.31)

Then, the sender needs to concatenate both the message digest and the checksum
to a new variable B. The slicing remains, therefore, more precisely B consist of l
elements in 2w notation.

B = (b0, ..., bl−1) (4.32)

The new variable B is the actual thing to sign. In other words, W-OTS sings both
the message digest and the checksum of the message digest. Furthermore, to generate

59

the signature, the sender needs to apply bi many times the function F on input sk
from index i.

σi = F bi(ski) for i = 0, ..., l − 1 (4.33)
σ = (σ0, ..., σl−1) (4.34)

Thereby, the signature σ consist of l elements each of n-bit length. Which yields the
signature size of ln-bit.

For example, let us assume that the sender has chosen Winternitz parameter to be
w = 3, and a small message digest H(m) = 16-bit.

H(m) = 10011110101000110 (4.35)

Then, the parameter l calculates to be 8, so that both the private and the public key
will consist of 8 elements each. Next, the sender slice the message digest 3 by 3 and
append additional 0’s most left of the message digest if needed.

d = (d0, ..., d5) = 010 011 110 101 000 1102 (4.36)

Thereafter the checksum C of message digest d can be calculated. Then, the sender
has to calculate the sum of all differences between 2w = 810 and each of the di from
the message digest. This can be done with the following formula:

C =

l1−1∑
i=0

23 − di (4.37)

Figure 4.1 on Page 61 show calculation of the checksum for this particular example,
when H(m) = 16 and w = 3.
The checksum C need to be converted to binary, sliced 3 by 3 bit and extended

with additional zero’s from the most left position if needed.

B = 2610 = 110102 = 011 0102 (4.38)

Thereafter, concatenating both message digest and checksum to create B consisting
of t = 8 elements.

B = d||C (4.39)
Then, using formula from (Equation 4.33) gives following signature.

σ = sig(B) = F 2(sk0), F
3(sk1), F

6(sk2), F
5(sk3), sk4, F

6(sk5)||F 3(sk6), F
2(sk7)

(4.40)
In this particular example the signature size is tn = 8 ∗ 16 = 128 bit, since F is a
length preserving function.

60

Figure 4.1: Calculation of checksum in W-OTS, where w = 3 and bi’s are parts of
the message digest to sign.

4.3.4 Verifying

To verify the signature (σ,m, pk), the receiver has to perform similar calculations as
the sender while signing. Knowing both function F and H along with the parameter
w, the receiver obtain all necessary information for signature verification. First, hash
the message m to obtain message digest H(m), and then append 0’s in the most left
position if needed. Next, calculate the checksum C and append 0’s to the most left
if needed as well.

C =

l1−1∑
i=0

2w − di (4.41)

Them, the receiver concatenates the message digest H(m) with checksum C to create
B containing l elements:

B = (b1, ..., bl) = d||C (4.42)

Integer values from bi in 2w notation contain information about how many times a
specific part of the signature has the function F been applied on. During the key
generation phase, the sender has applied function F on private key elements 2w − 1
times to obtain the public key (Equation 4.27). Combination of these information
implies that the receiver has to apply the function F on the parts of the signature
2w−1−bi times to reconstruct the sender’s public key. Thereby, verify the signature.

σ = (σ0, ..., σl−1) (4.43)

For all : F 2w−1−bi(σi)
?
= pki (4.44)

If the calculated value matches the sender’s public key, then the signature is valid.
Otherwise, the signature is rejected.

61

Considering the example from signing subsection above. Calculate message digest
H(m), slice it up and interpret it as integer values in 2w notation. Appending one
zero in the most left position to make H(m) divisible by w.

H(m) = 010 011 110 101 000 1102 (4.45)

Then, calculate the checksum C as shown in Equation 4.30 and Figure 4.1 on Page
61. Convert it to binary and split in base 2w notation. Appending one zero in the
most left position to make C be divisible by w.

C = 2610 = 110102 = 011 0102 (4.46)

Then, concatenate the message digest H(m) with the checksum C to create B con-
taining l elements:

B = H(m)||C = 010 011 110 101 000 110 011 0102 (4.47)

Thereafter, interpret these values as integers, which gives.

B = (2, 3, 6, 5, 0, 6, 3, 2)10 (4.48)

Since parameter w = 3 then the sender needed to apply function F to all private
key elements 23 − 1 = 7 times to generate the public key. Therefore, we can use the
formula from Equation 4.44 to reconstruct the sender’s public key.

F 5(σ0), F
4(σ1), F

1(σ2), F
2(σ3), F

7(σ), F 1(σ5), F
4(σ6), F

5(σ7) (4.49)

Finally, we can compare all reconstructed public key elements from the signature
with the sender’s original public key. Only when each of these elements matches,
then the signature is valid. Otherwise, reject the signature.

4.3.5 Security of W-OTS

The security of W-OTS relies mostly on hash functions and the checksum. Since
the security of a hash function is know, if a cryptographic hash function is used,
therefore there is a need to take a closer look at the W-OTS checksum. Forasmuch,
the adversary having the intention of forging a new valid signature, may change
something in the message, the checksum or the signature it self for his own profit.
When the sender sign, for example, four bits simultaneously, then the sender takes
the value bi of these bits in base 10 and hash these four bits bi times. If these

62

bits were 10012 = 910, then the sender would hash these bits 9 times to sign them.
However, the adversary can take advantage of it and apply function F once more on
part of the signature. Then claim that this was the original message (digest) on this
place, namely 10102 = 1010 instead of 10012 = 910. This action was allowed in the
original proposal by Winternitz. However, Merkle improved the scheme by adding
the checksum of the message. The checksum is a count of how many times a hash
function has to be applied to the message to reconstruct the public key of the sender.
Consequently, when the adversary changes the number of a hash function applied,
then the signature will not be valid anymore. To compensate this disproportion
the adversary has to reverse one iteration of a hash function on another part of the
message. In other words, the adversary need to break the preimage resistant of a
hash function. However, this is a computationally infeasible task to perform, and
therefore the signature scheme remains secure against signature forgery.

Taking into consideration the security level of the W-OTS scheme. Since a collision
resistant hash function is used to instantiate the scheme. To provide a security level
of b-bit, a collision resistant hash function with an output of n = 2b should be used.
This is due to the birthday attack on collision resistance.

4.4 Variants of Winternitz Signature Scheme

4.4.1 W-OTSPRF

One variant of W-OTS is called W-OTS$ and was presented by Buchmann et al.
[20] in 2011. Authors have shown that W-OTS$ can be used with pseudorandom
functions. A function F is pseudorandom when no efficient algorithm is able to
determinate if the output is generated from the function F or if it is just a random
bit string. This will lead to smaller output and therefore smaller signature while
the security level remains the same. This scheme looks similar to its original, but
it has some small changes especially when creating the public key and the signature
of the message (digest). The authors have also proven that W-OTS$ is Existential
Unforgeable under Chosen Message Attack (EU-CMA) in the standard model.

63

Differences between W-OTS and W-OTSPRF

In this version of W-OTS, the authors have focused only on the core function of
the algorithm. Therefore, signing a fixed length message of length m. However,
the authors emphasize that an arbitrarily sized message can by signed bu utilizing
a collision resistant hash function. Thereby, the authors do not consider the hash
function H as part of the W-OTSPRF signature scheme. Nevertheless, we are using
H(m) below to be consistent with previous algorithm descriptions.

The main difference between W-OTSPRF and the original W-OTS is that W-OTSPRF
is using the output of Fk as the function key for the next iteration. The function
applied to the same input x each time. While the original W-OTS uses the output
of the function as input for the next iteration and the function key, remain fixed.
For this purpose, the notation F i

k(x) is used to describe that function Fk is iterated i
times on input x using function key k. Where the private key element is the function
key k in the first iteration of function Fk. Thereafter, the output of the function Fk
itself serves as the function key k for the next iteration of Fk.

F i
F i−1
k (x)

(x), where F 0
ski

(x) = x (4.50)

Furthermore, notation changes have been made. The Winternitz parameter w = 2e

describes the compression level of the message, where e defines the number of bits
signing simultaneously. This change yields some small differences in the formula for
calculating the parameter l. However, the calculations give the same result, but at
the same time, simplifies notations further in the algorithm.

Key Generation

Key generation algorithm kg(1n) generates both private key sk and public key pk
given a security level n. To do so, first, the sender needs to choose an appropriate
value of parameter w to fit the application W-OTS$ will be used within. Then,
parameters l, l1 and l2 can be calculated by following formula.

l1 =

⌈ |H(m)|
log2(w)

⌉
, l2 =

⌊
log2 (l1(w − 1))

log2(w)

⌋
+ 1 (4.51)

t = l1 + l2 (4.52)

Additionally, the sender has to generate a random bit string x of length n. The
random string x will be used to generate the public key as well as the signature of

64

the message digest. Thereafter, the sender has to generate l private keys, where each
private key element ski has the length of n-bit.

sk = (sk1, ..., skl) (4.53)

To generate public key pk, the sender has to use function Fk and iterate it w − 1
times on input x with ski as the function key k in the first iteration. Then, using
the output of the previous iteration of the function Fk as function key k for the next
iteration of Fk. The sender has to publish the random bit string x along with the
whole public key. The random bit string x is added as a part of the public key pk
on index 0.

pk = (pk0, pk1, ..., pkl) = (x, Fw−1
sk1

(x), ..., Fw−1
skl

(x)) (4.54)

Signing

Aside from the function Fk the signature generation phase is identical to the original
W-OTS algorithm. The sender prepares a message m and hashes it with the function
H to obtain message digest H(m) of n-bit length. Then, slicing the message digest
H(m) into l parts called di, each of di have the length of e-bit which may contain
values between 0 and w − 1. In other words, the bit string from message digest is
written in base w notation. Next, calculate checksum C of message digest H(m)
using di. Both message digest and checksum should be padded with 0’s in the
most left position if needed. To calculate the checksum C, the sender sums all the
differences between w− 1 and di’s with the lower and upper limit equals to 1 and l1
respectively.

C =

l1∑
i=1

(w − 1− di) (4.55)

When all padding is added properly, then the message digest should be of length l1e
and the checksum of length l2e. Wherefore, the concatenated message digest and
checksum should consist of l parts each with the size of e-bit, lets B represent these
parts.

B = (b1, ..., bl) = H(m) || C (4.56)

Integer values of bi is the number of iteration of Fk on x with the private key from
the i-th place ski as function key k for the first iteration of the function Fk. The
output of function Fk becomes the function key k of the next iteration on function
Fk. Proceeding like this for all l parts of B, the sender will produce a signature for

65

this specific message digest and checksum.

σ = sig(B) = (F b1
sk1

(x), ..., F bl
skl

(x)) (4.57)

Verifying

Verification process in also almost identical to the original version of W-OTS, apart
from how the verifier applies the nest iteration of function Fk. The receiver has to
perform similar calculations as the sender under signing. First, recreate the con-
catenation of both padded message digest and padded checksum in base w notation,
the variable B = (b1, ..., bl), using Equation 4.55. Then iterate w − 1− bi times the
function Fk on input pk0 with signature element ski as function key k for the first
iteration. Then, the output of function Fk as the function key k for next iteration of
function Fk.

σ = (σ1, ..., σl) (4.58)

(Fw−1−b1
σ1

(pk0), ..., F
w−1−bl
σl

(pk0))
?
= (pk1, ..., pkl) (4.59)

Thereafter, the receiver has to compare the result of his iterations of Fk with sender’s
public key. If every element matches, the signature is valid, otherwise the signature
should be rejected.

4.4.2 W-OTS+

The second variant of W-OTS from 2013 is called W-OTS+ and was presented by
A. Hülsing in [52].

Differences from previous versions

W-OTS+ has changed the chaining function c and added randomization elements r
to the scheme. Now, for every iteration i of the chaining functions c, the function
key k remains the same. Whereas, the output from the last iteration of the chaining
function is xor’ed with a randomization element ri and is used as input for the
next iteration of the chaining function. The function itself has been changed to
non-compressing cryptographic hash function family.

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri) (4.60)

66

The original W-OTS scheme relies on collision resistant hash function which is threat-
ened to collisions attack. Therefore, there is a need for bigger functions output to
provides the same security level. Thus, slower the whole scheme, since in general
hash functions get slower when output size increases.

In [16], the authors provided a construction to create a function family by using two
iterations of cryptographic hash function. Such a function family is used to instan-
tiate W-OTSPRF , which yields doubled runtime compared with W-OTS+. However,
when the function family is constructed of a block cipher, the run times are the
same for both schemes. Considering the security, W-OTSPRF contains parameter w
as negative linear term on the security level (n − w − q − 2 log (lw)). Which cre-
ates a limitation in choosing of parameters, when a fixed security lever is requested.
Whereas, W-OTS+ looses only logw on security level when parameter w increases.
Therefore, W-OTS+ provides better security compared to its predecessors, with se-
curity level equals to n− log (w2l + w).

However, W-OTS+ consist of slightly bigger public key due to the additional ran-
domization elements.

Key Generation

In this variant, choosing the security parameter n, Winternitz parameter w and
calculating l is the same procedure as in previous W-OTS versions, as well as private
key sk generation. The private key sk consist of l random generated bit strings.

sk = (sk1, ..., skl) (4.61)

Additionally, the sender should also generate an additional w − 1 n-bit random
strings. These will be used as randomization elements while producing public key
pk, generating a signature σ and in the verification process. The notation for these
random strings is r = (r1, ..., rw−1). Furthermore, the sender has to generate one
more n-bit random string k which will be used as the function key for all iterations
of the chaining function cik.

Then, to generate the public key pk, the sender needs to apply the chaining function
ck on his private key sk elements w− 1 times. Previously generated functions key k
is used for every iteration i of chaining function ck. At the first iteration of chaining
function ck, private key elements oxr’ed with randomization element r1 are used as
input. In the followings iterations of chaining function ck, the output of previous
iterations oxr’ed with randomization element ri is used as input. Both r and k are

67

included in the sender’s public key on index 0 as first public key element pk0. This
gives the following public key.

pk = (pk0, pk1, ..., pkl) = ((r, k), cw−1k (sk1, r), ..., cw−1k (skl, r)) (4.62)

Signing

The procedure of signature creation is very similar to the previous versions of W-
OTS. The sender has still to divide the message digest H(m) in l1 parts each of
length e-bit, represented by d = (d1, ..., dl1). Then calculate the checksum C in the
same manner as previously and divide it in l2 parts, each of e-bit length, represented
by C = (c1, ..., cl2). The sender should add padding in both d and C in most left
position if needed, such that both are dividable by e without rest. Thereafter, the
sender need to concatenate d and C to create B = d || C, then slice B in l parts in
base w notation, represented by Bw = (b1, ..., bl). Base w representation means that
each element bi consist of e-bit and can hold a value between 0 and w − 1. After
this, the sender can produce the signature in the following way:

σ = (cb1k (sk1, r), ..., cblk (skl, r)) (4.63)

By applying bi times the chaining function ck with function key k on bitwise xor of
private key element and corresponding randomization element ri from r as input.

Verification

To verify the signature, the receiver has to recompute B = (b1, ..., bl) and iterate
w− 1− bi more times the chaining function ck with function key k on bitwise xor’ed
input between signature elements and corresponding randomization element ri. The
notation ra,b represents the subset of randomization elements between ra and rb. In
case where a is bigger than b then ra,g is assumed to be a empty string.

pk
?
= ((r, k), cw−1−b1k (σ1, rb1+1,w−1), ..., c

w−1−bl
k (σl, rbl+1,w−1)) (4.64)

If the compression of the sender’s original public and the recomputed public key from
the signature are equals, then the signature is valid. Otherwise, the signature is not
valid and should not be trusted.

68

4.4.3 WOTS-T

In 2016, Hülsing et al. presented WOTS-T [58] an improved version of W-OTS+. It
turned out that, previous W-OTS versions were vulnerable to multi-target attacks.
Meaning that when an adversary wants to break the scheme which is using a second-
preimage resistant function with n-bit output. The complexity of breaking such
function is O(2n). However, this is true when the adversary has only one try of
requesting the function. Whereas in signature schemes as WOTS, the adversary will
learn several hash function outputs. Thus, if the number of learned outputs is d,
then the complexity of breaking the function reduces to O(2n/d). To compensate
for the loss of security, the scheme needs to use longer functions output, which again
leads to an increase in signature size and slows down the whole scheme. Therefore,
the authors have changed the construction of the scheme to improve its security and
mitigate the multi-target attack.

The most significant difference between W-OTS+ and WOTS-T is the second uses
new keys and bitmasks for each call to a hash function. Thereby, the chaining
function has changed to be:

ci,j(x, ac, SEED) = F (ki,j, c
i−1,j(x, ac, SEED)⊕ ri,j) (4.65)

Where ac is the chain address bit string. Zero iteration of the chaining function
returns the input itself, c0,j(x, ac, SEED) = x.

In order to adapt to the changes, the authors have introduced an addressing scheme
for hash function calls. They suggest using a recursive addressing scheme that num-
bers sub-structures inside a structure. A function GenAddr aci takes as input address
of the structure and the index of the substructure and generates a unique bit string
address for the substructure. The GenAddr function is used to generate both function
key ki,j and bitmask ri,j.

ki,j = Fn(SEED,GenAddr(ac, 2(j + i))) (4.66)

This function creates the function key ki,j of length n-bit, used in the i’th iteration
of chaining function ci,j. Whereas, the following creates n-bit length bitmask to use
in the i’th iteration of chaining function ci,j.

ri,j = Fn(SEED,GenAddr(ac, 2(j + i) + 1)) (4.67)

The authors have proven that WOTS-T is Existential Unforgeable under Chosen
Message Attack (EU-CMA) in the standard model.

69

Key Generation

In order to create WOTS-T keys, one needs to generate three variables.

• S - secret seed of n-bit length for private key generation,

• aOTS - a unique address bit string,

• SEED - random n-bit string

Next, calculate variables l = l1 + l2 by choosing Winternitz compression level param-
eter w, (Equation 4.51). Then, the private key sk can be generated as follow.

ski = Fn(S,GenAddr(aOTS, i)) (4.68)

Giving l private key element each of length n-bit.

sk = (sk1, ..., skl) (4.69)

Next, the public key is obtained by applying w−1 times the chaining function ci,j on
input consisting of the private key element, a unique address, and the public seed.

pk = (pk1, ..., pkl) = (cw−1,0(sk1, ac1 , SEED), ..., cw−1,0(skl, acl , SEED)) (4.70)

Where aci = GenAddr(aOTS, i). The public key has the same size as the private key.
However, the secret seed S requires less storage than private key sk. Therefore, both
private and public keys are generated on the fly when needed. Consequently, the
private key sk consist of the secret seed S of length n-bit.

Signing

The signing process is the same as in W-OTS+, however now signing of the message is
performed with the changed chaining function ci,j. Therefore, we skip the description
and refer the reader to subsection above for the details. In short, calculate B =
(b1, ..., bl) by concatenating both message digest H(m) and its checksum C and
interpret it as bases w notation. Since, only secret seed S is stored as private key,
the private key elements need to be recalculated by the same formula as in key
generation phase, ski = Fn(S,GenAddr(aOTS, i)). Then, the signer generates the
signature by the following formula.

σ = (σ1, ..., σl) = (cb1,0(sk1, aci , SEED), ..., cbl,0(skl, acl , SEED) (4.71)

Where, aci = GenAddr(aOTS, i) gives an unique bit string address for index i. The
chaining function ci,j is applied bi times starting from 0.

70

Verification

To verify the signature the receiver need message m, signature σ, unique address
aOTS and the public seed SEED. Next, calculate B = (b1, ..., bl) and apply w− 1− bi
many times the chaining function ci,j starting at index j = bi on input consisting of
the signature element σi, an unique bit string address aci and the public seed SEED.
Where, aci = GenAddr(aOTS, i).

pk = (pk1, ..., pkl) = (cw−1−bi,bi(σ1, ac1 , SEED), ..., cw−1−bl,bl(skl, acl , SEED) (4.72)

4.4.4 LM-OTS

Leighton-Micali One-Time Signature (LM-OTS) is yet another Winternitz based sig-
nature scheme. This one-time signature scheme was proposed along with Leighton-
Micali Scheme (LMS) a many-time signature scheme, and the US patented by
Leighton and Micali in [71] in 1995. Their work was inspired by Lamport, Diffie,
Merkle, and Winternitz. LM-OTS, LMS and its Hierarchical version (HSS) were
proposed for standardization in an IETF draft [77] in 2013. In this subsection, we
describe LM-OTS.

Parameters and Variables

The parameters are similar to other W-OTS versions. Parameter w is the compres-
sion level, l1 and l2 represent number of elements when both message digest h(m)
and the checksum C are represented in base w + 1 notation respectively.

w = 2e − 1 (4.73)

l1 =
n

e
, l2 =

⌈blog (l1w) + 1c
w

⌉
(4.74)

l = l1 + l2 (4.75)

The checksum is calculated from a hashed value of the message digest concatenated
with other parameters. This hash value will be called h and in base w + 1 notation
will be described as h = (h1, ..., hl1. However, one can calculate the checksum with
the same formula as previously.

C =

l1∑
i=1

(w − hi) (4.76)

71

In addition, one should also have the following:

• I - a string identifying the owner of the public key,

• Q - an indication of which instance of the scheme is being used,

• i - the number of times H has been applied.

All these parameters create variable s.

s = I || Q || i (4.77)

The authors defines their chaining function Fs with function key s as repetitive
iterations of hash function H. For 0 ≤ b ≤ f ≤ w

Fs(s; b, f) =

{
x if b = f

Fs = H(x || s || b || 00); b+ 1, f if b ≤ f
(4.78)

Key Generation

Given (n,w, I,Q), a sender can generate both private and public key. The private
key sk consist of l elements each of n-bit length, chosen uniformly at random.

sk = (sk1, ..., skl) (4.79)

Additionally, creating variable s = I||Q||i, where i is an index starting at 1 and going
up l. Next, the sender may compute the public key by following formula:

pki = Fs(sk
0
i ; 0, w) (4.80)

Where the first value in function Fs is the private key element at index i, whereas
the second and third values are from and to values respectively. Then, the public
key pk consist of the single hashed value of concatenation of public key elements pki,
parameter I, parameter Q and starting index 01.

pk = H(pk1 || ... || pkl || I || Q || 01) (4.81)

Signing

To sign a message the signer need first to create a random string r of length n-
bit, chosen uniformly at random and include it to the signature at index 0. Next,

72

compute h = H(M || r || I || Q || 02), and the checksum C. Then concatenate h
with the checksum C to obtain variable B and interpret it in base w notation.

B = (b1, ..., bl) = h || C (4.82)

Then to sing the message, the sender needs to apply bi many times the function Fs
with function key s on private key element ski.

σi = Fs(sk
0
i ; 0, bi) (4.83)

σ = (r, σ1, ..., σl) (4.84)

Verification

To verify the signature, the receiver has to reconstruct the variable B by first recom-
puting h, then calculate the checksum C and concatenate the both h and C together.
Then, the receiver has to apply w− bi many times, the function F with function key
s on signature element σi.

pki = Fs(σi; bi, w) (4.85)

Next, concatenate all public key element together with identification I, indicator Q
and 01 and the end. Then, hash all these values and compare the result with the
sender’s original public key. If the comparison holds, the signature is valid, otherwise,
reject the signature.

4.4.5 WSS-N W-OTS Using Nonadjacent Forms

In June 2018, Dongyoung et al. [94] presented a new method of using W-OTS+

with nonadjacent forms (NAF), which they call WSS-N. This method uses a biased
distribution of 0,1 and -1, while W-OTS+ is using a uniform distribution of binary
representation.

This has further implications in signature creations. The authors show that WSS-N
needs fewer hash functions call than Winternitz Signature Scheme based on Binary
representation (WSS-B). For specific parameter and 256-bit classical security level,
WSS-N managed to create the signature 8% faster than WSS-B with same parame-
ters. However, with the cost of longer both key generation and signature verification
time. The authors emphasize that the signature generation time is not the big bot-
tleneck of OTS but the key generation time. Nevertheless, in devices like fire- and

73

seismic -sensors, the keys can be generated in advance, whereas the signature needs
to be generated fast.

The authors have also proved that WSS-N scheme is existentially unforgettable under
adaptive chosen message attack (EU-CMA) in the standard model.

74

Chapter 5

Few Time Signatures

Few time signatures are signatures that can be used more than once. This is an
improvement to be able to sign a few messages with only one key generation phase.
However, the usage of these signatures is not unlimited. Forasmuch, after each uses
the security level of such signature scheme decrease to some degree. Supposing
that one use few-time signature scheme too many times, the private key will be
compromised, and the scheme will be insecure. Hence the name, a signature scheme
that can be used only a few times due to its security.

5.1 Bins and Balls

Bins and Balls (BiBa) is a few-time signature scheme introduced by Adrian Perrig
in 2001 [88]. BiBa signature scheme was further extended to design a new protocol
for broadcast authentication. In this section, only BiBa signature scheme will be
taken into consideration. BiBa exploits the birthday paradox to achieve efficiency
and security. This leads to very short signature and fast verification process.

An allegory to the name of this signature scheme is that the sender has many balls
to throw (SEALs - private key elements) into few bins (output of Gh). Whenever
two balls land in the same bin, a signature is generated.

75

5.1.1 Key Generation

The functions used in BiBa signature scheme are:

• F = {0, 1}m2x{0, 1}m1 −→ {0, 1}m2 - a pseudo random function family.

• H - a hash function in the random oracle model.

• Gh = {0, 1}m2 −→ [0, n− 1] - an instance of hash function family with function
key h.

Where n describes the range of output values ([0, n− 1]) of the hash function Gh, in
where the collisions need to happen in order to create the signature. This number
strongly depends on variables k and Ps. The parameter k describes the number
of collisions that need to occur in Gh in order to generate a signature for a specific
message. The parameter k determines the length of the signature. Whereas, variable
Ps describes the probability of generating the signature in one trial. The expected
number of tries that the sender should perform to find a signature is 1/Ps. Where Ps
is often set to 0.5, this means that the sender should be able to generate a signature
no later than in the second trial (1/0.5 = 2). To increase the probability of finding
the signature, the sender has to increase the number of private key elements t.

Proper values of n for requested security level Pf can be found in Table 5.1 on Page
76. Functions F,H and G, as well as parameters k and n, are publicly known.

k n Pf k n Pf
2 762460 2−19,5403 13 192 2−91,0196

3 15616 2−27,8615 14 168 2−69,1001

4 3742 2−35,6088 15 151 2−101,3377

5 1690 2−42,8912 16 136 2−106,3119

6 994 2−49,7855 17 123 2−115,7250

7 672 2−56,3539 18 112 2−115,7250

8 494 2−62,6386 19 104 2−120,6079

9 384 2−68,6797 20 96 2−125,1143

10 310 2−74,4851 21 89 2−129,5147

11 260 2−80,2237 22 83 2−133,8758

12 222 2−85,7386 23 78 2−138,2788

Table 5.1: Security parameters of BiBa signature scheme when t=1024 [88].

Further, the private key elements ski are called SEALs which stands for SElf Au-

76

thenticate vaLues. The amount of SEALs is described with parameter t and can vary
each time. The parameter t has a direct influence on both private and public key
length. Therefore, it should be chosen carefully. Often used value for parameter t is
1024, which yields both the private and public keys of 1024 elements. The private
key elements ski, have to be generated at random, each of length m2.

sk = (sk1, ..., skt) = the SEALs (5.1)

To obtain the public key, the sender has to apply function F on input 0 and the
private key element ski as functions key. The calculations will result in t public key
elements, each of length m2.

pk = (pk1, ..., pkt) = (Fsk1(0), ..., Fskt(0)) (5.2)

5.1.2 Signing

To sign a message with BiBa signature scheme the sender needs first to concatenate
a message m with a counter c, which initially contains the value of 0. Next, hash the
concatenated parts with the function H so that h = H(m||c). Then, calculate hash
values of all private key elements ski separately with the function G with h as the
function key.

Gh(ski) for i = 1, ..., t (5.3)

The results produces t values in range [0, n − 1]. Then, the sender needs to look
after k private key elements which map to the same hash value. In other words, the
sender is searching for k collisions to occur in Gh. If the sender is successful, then
the signature consists of the private key elements which made the collisions happen
along with the counter c.

σ = (σ1, ..., σk, c) = (ski1 , ..., skik , c) (5.4)

However, in the case where the sender is not able to find k collisions in Gh. Then,
the sender increases the counter c and repeat the calculations of Gh(ski). The whole
procedure of finding signature (collisions) is repeated until success. When an appro-
priate number of collisions k is found, then the signature is created.

5.1.3 Verifying

BiBa signature scheme had the most efficient verification process at the time when
published. Since the signature size is small, there is no need for much computation.

77

The verification process goes as follows. The receiver has already the knowledge of
functions H,G, F , parameters k, n and public key pk since the sender has published
them.

So to verify the signature σ = (σ1, ..., σk, c), the receiver has to first apply the function
F with signature element σi as function key on input value 0. Thereafter, compare
these values with sender’s public key elements.

for each : Fσi(0)
?
= pki (5.5)

When all recomputed values matches, then the receiver may continue the verification.
Next step is to check that all signature element σi, are different from each other.

σ1 6= ... 6= σk (5.6)

Thereafter, recompute h by applying function H on concatenation of the message m
and counter c to obtain h. Then, apply the function G with function key h on all
signature elements σi and verify that all resulting values are equal. Thus, creating a
k-way collision.

Gh(σ1) = ... = Gh(σk) (5.7)

5.1.4 Security

The security level Pf of BiBa signature scheme is defined by the number of hash
function operations that an adversary has to perform to forge a signature, knowing
at most r = k elements from the private key sk. The minimum number of hash
function operations to forge a signature is 2/Pf .

However, the security level of BiBa signature scheme can be improved in a few ways.
One of the possibilities is to increase parameters t and n which are the number of the
private key elements and the range of output values of Gh respectively. The second
way is to find multiple two-ways collisions and letting all these two-ways collisions
be the signature for given message. This will increase the security. However, fewer
signatures can sign since more private key elements are revealed with each signature.
The last but not least way to improve security is to find one k-ways collisions, where
k > 2.

Figure 5.1 on Page 79 shows a good example of the security of the signature as well
as the probability of finding and forging one. In the figure, there are taken into
consideration the probability of finding: one two-way, six two-ways and one 12-way

78

Figure 5.1: The probability of finding a signature when having x SEALs [88].

collision in BiBa signature scheme given x private key elements. As it can be observed
in the figure, the signer as well as an adversary, need to know a big amount of private
key elements in order to generate/forge a signature.

In one two-way collision the probability of finding a signature start to grow sooner
than six two-ways and one 12-ways collision. This method provides a lower security
level since it is easier for an adversary to forge a signature faster, with a lower amount
of known private key elements.

Six two-ways and one 12-way collision can be seen appropriately. There is a small
difference in the number of known private key elements from not being able to find
a signature to have a high probability to find one. This is a good attribute of this
scheme since even when an attacker has collected larger amount of revealed private
key elements from the signature, he will still be unable to find a collision to forge a
signature. Therefore, one 12-way signature with n = 222 gives better security level

79

than six two-ways signature with n = 2366050.

As mentioned at the beginning of this section, BiBa exploits the birthday paradox
to achieve efficiency and security. Birthday paradox was described in greater detail
in Subsection 2.2.5 on Page 28. BiBa is leveraging the birthday paradox in such a
way that it makes collisions more likely to happen. There is known that collisions
are rare in hash functions, but there is no doubt that they exist.

The probability to find at least one collision in BiBa signature scheme can be calcu-
lated from the following equation:

Pc ≈ 1− e t(t+1)
2n . (5.8)

Here, t equals to the number of elements in private key and n is output range of Gh.
Going back to the allegory of the original author of this scheme, t is the number of
balls a signer have, and n is the number of bins that the signer throws these balls
into. Then, this equation shows the probability of that at least two balls will land
in the same bin.

Whereas the probability for an adversary to forge the signature after one trial is
equal to:

Pf =

(
r
k

)
(n− 1)r−k

nr−1
. (5.9)

Here, r is the number of the private key element known to the adversary, k is the
number of private key elements used for signatures, and n is the output range of Gh.

Important to emphasize is that BiBa signature scheme is assumed secure when the
sender does not disclose more than γ = 10% of private key elements. This means
that when the sender has parameters t = 1024 and k = 11, then he is able to sign
ten different messages with the same private key. After that, the security of this
signature scheme decreases to an unsafe level.

In conclusion, BiBa signature scheme is very adjustable. So that anyone can make it
suitable to its preferred use, by simply changing the parameters. However, this may
affect the size of both keys and signatures, computational time and or the security
level of the whole signature scheme.

80

5.2 Hash to Obtain Random Subset

Hash to Obtain Random Subset (HORS) is a signature scheme presented in April
2002, by Leonid and Natan Reyzin in [92]. HORS is deeply based on BiBa protocol
and can be seen as its direct improvement. The Authors says that HORS main-
tains all the advantages of BiBa and removes its main disadvantage. Thus, keeping
signatures small and fast verification and improves the time required for signing.
Moreover, They were able to decrease the size of both private and public keys and
signature, at the same time maintaining the same security level.

5.2.1 Key Generation

HORS signature scheme produces both private and public keys on parameter input
n, k, t. Where the parameter n describes the security level of the scheme. The
parameter k describes the number of elements a message is divided into in the signing
process. This parameter also determinates the size of signature and its verification
time. Whereas the parameter t describes the number of elements in both private and
public key. HORS used two functions F and H. Where F is a length preserving the
one-way function of length n, and H is a hash function taking arbitrary length input
producing k log (t) - bit output. The parameters and functions are publicly known.

The private key sk consist of t random generated n-bit string.

sk = (sk1, ..., skt) (5.10)

To obtain the public key pk, the sender has to hash every private key element ski
separately.

pk = (pk1, ..., pkt) = (F (sk1), ..., F (skt)) (5.11)

Consequently, the size of each private and public key is equal to tn-bit.

5.2.2 Signing

To create a signature with HORS, the sender needs to hash the message m with the
function H to obtain the message digest d = H(m). Then, divide d in k parts and
interpret them in base t notation holding values between 0 and t− 1.

d = (d1, ..., dk)t (5.12)

81

Integer values di determinate which elements from the private key should be used to
sign the message. Then, to generate the signature, collect these private key elements.

σ = (σ1, ..., σk), where σi = skdi for i = 1, ..., k (5.13)

No matter the parameters, the signature generation phase requires only one evalua-
tion of the hash function H. The size of the signature is tk-bit.

5.2.3 Verifying

To verify the signature, the receiver has to hash the message m with function H to
obtain the message digest d = H(m). Then, slice the message digest d into k chunks,
each with a length of log t. Subsequently, he has to interpret these chunks as integer
values in base t notation.

d = (d1, ..., dk)t (5.14)

This will allow the receiver to pick the right elements from the sender’s public key
pk. Furthermore, the receiver has to apply the function F on all signature elements
σi received from the sender. Thereby, by comparing all chosen elements from the
sender’s public key with the signature elements iterated through the function F ,
the receiver is able to determinate whether the signature is valid. Supposing, that
at least one element is wrong, then the whole signature is not valid and should be
rejected.

F (σi)
?
= pkdi for i = 1, ..., k (5.15)

The verification process is very fast just like the Authors mentioned it in the paper
[92]. To verify the validation of the signature, the verifier need only k evaluations of
the function F and only one evaluation of hash function H.

5.2.4 Security

HORS signature scheme can be used r times, just like BiBa signature scheme. The
parameter r denotes the number of messages that can be signed with one key pair
before the scheme became insecure. The value is dependent on the choice of both
parameters t and k. Nevertheless, the parameter r need to be a small number, since
the security level of the scheme decreases as the value of the parameter r increases, in
both algorithms. Furthermore, Authors emphasize that the security of HORS relies

82

only on complexity-theoretic assumptions. Whereas, BiBa relies on the assumption
that H is a random oracle, to provide sufficient security.

The authors proved that HORS is Existentially Unforgeable against r-time Chosen
Message Attack (EU-CMA) if underlying hash function H is r-subset-resilient and
the function F is a one-way function. Furthermore, the security level of HORS can
be described by k(log t− log k− log r). Moreover, the paper [92] shows that HORS is
both faster and yields better security level than BiBa, despite the same parameters.

For the hash function H used in signing, the authors propose SHA-1 and RIPMED-
160, wherein 2017, SHA-1 is broken and is not recommended for use. There exist
a collision attack on RIPMED, nevertheless it does not apply to RIPMED-160 [78].
Even that, the SHA-1 was broken, the HORS scheme does not need a collision
resistance hash function. However, a better security level will be achieved with
SHA-2, BLAKE, BLAKE 2, or SHA-3.

The reason for lettingH be a cryptographic hash function is that it should provide the
complexity to make it infeasible to find messages number r+1 such that H(mr+1) ⊆
H(m1) ∪ ... ∪H(mr), while providing r signatures.

Furthermore, to improve the security significantly, the parameters k and t should be
increased. Especially the parameter t if the meaning is to provide more than one
signature. Unluckily, it has to be taken into account that it will make the signature
scheme slower and the keys will become larger.

83

Part III

Many Times Signatures

84

Chapter 6

Stateful Signature Schemes

This chapter gives an overview of hash-based signatures, which are more practical
than all signatures schemes described so far. Signature schemes described in this
chapter are stateful many-times hash-based signatures schemes, where the signer
may sign several or many messages with one key pair without decreasing the security
of the signature. However, due to the statefulness, the signer must keep track of the
number of signatures already generated.

6.1 Merkle Signature Scheme

In 1979, when public key cryptography along with hash-based one-time signatures
was created. Ralph C. Merkle came up with an idea of how to make one-time
signature more practical [79]. This survey ended with a signature scheme which is
able to create many signatures by using binary trees as the basic structure combined
with one-time signatures.

6.1.1 Reducing the Public Key Size

Earlier in this thesis, in Chapter 4.1.5, we described a method to reduce the memory
requirements for storing the private key. Unfortunately, the same method can not be
applied to public keys, since they cannot be generated on the fly. However, in 1979,
Ralph Merkle patented a structure to fix that problem in [79]. The Merkle tree is

85

a binary tree where a node is a hash value of concatenation of its child nodes. The
idea was to use One-Time signatures still to sign the message, then hash their public
key and let them be leaf nodes of the Merkle tree. By successfully concatenating
sibling nodes and then hashing them, one will generate the whole Merkle tree. The
top node of the tree called the root node may now be used as the public key for all
One-Time signatures used to generate the tree. Thereby, reducing the public key
size to a single hash value.

6.1.2 Structure

Merkle tree is a binary tree used to authenticate multiple One-Time public keys.
Thus, give the possibility to verify multiple signatures using only one overall public
key. The number of messages to sign is decided by the number of leaf nodes, which
again is decided by the height of the tree. The binary tree used in hash-based
signatures have to be a perfect binary tree. This means that every leaf nodes need to
be on the same level and all nodes except leaf nodes, need to have two child nodes.
The signer can freely choose the one-time signature he wants to use. Thereafter,
the leaf nodes of the Merkle tree consist of the hashed value of the chosen one-time
signature’s public key. Then, siblings leaf nodes are concatenated and hashed, where
the hashed value is the value of the parent node. This procedure propagates and
generates the whole tree. At the top of the tree, we have the root node, which
authenticates the entire Merkle tree. The root node is placed at level h of the tree,
whereas the leaf nodes are at level 0. On each level, the nodes are indexed from 0
starting from the leftmost node.

The authentication path Auth is a list of sibling nodes from each level of the tree.
This list contains h nodes from level 0 up to level h−1. The list is sent as a part of the
signature so that the receiver will be able to reconstruct the root node, which is the
public key of the signature scheme. The notation Authi indicates the authentication
path for the i’th leaf node, counted from left.

6.1.3 Key Generation

To generate a Merkle tree, the signer must provide the key generation algorithm with
two parameters h and n. Both parameters need to be positive integers, where the
first parameter tells us the height of the tree as well as how many signatures the
scheme will be able to create and verify. Given parameter h, the Merkle signature

86

Figure 6.1: Binary tree from Merkle signature scheme with height h = 3.

scheme will be able to sign 2h messages. The second parameter n represents the
desired security level in bit.

The private key of Merkle signature scheme, consisting of a series of one-time signa-
tures key pairs. The one-time signature keys in leaf nodes can be freely chosen by
the sender, before generating the tree. The sender needs to generate 2h One-Time
key pairs, and store them securely as the private key.

The public key of this signature scheme is the root node of Merkle’s tree. The root
node consists of a hash value of length n. To be able to compute the public key, the
signer needs first to generate the whole tree.

87

6.1.4 Signing

The signer needs to keep track of how many signatures has been generated already
from this scheme. For simplicity, the signatures are generated from the leaf nodes
in chronological order. Therefore, the only variable to store is the index variable i,
which indicates the index of the leaf node to use to generate the next signature.

To create a signature with Merkle signature scheme, the sender has first to calculate
the message digest d = H(m). Secondly, use chosen one-time private key from leaf
node at index i to sign the message digest. The index i, the one-time signature σOTS
as well as the one-time public key pkOTS are parts of the signature σ of the Merkle
signature scheme. Next, to complete the signature, the authenticate path Authi need
to be added as the last part in the signature.

The following rule calculates the authentication path:

aj =

{
n(j,bi/2jc−1) if bi/2jc mod 2 = 1

n(j,bi/2jc+1) otherwise
(6.1)

Where, i is the index of chosen leaf node and j goes from 0 to h− 1. The authenti-
cation node from level aj is the left sibling node whenever the result of bi/2jc is odd,
and right sibling node when the result is even.

The complete signature of the Merkle signature scheme consists of following parts:

σ = (i, σOTS, pkOTS, a0, ..., ah−1) (6.2)

We provide with a concrete example of calculation of the authentication path for
better understanding. In this example, we have a Merkle tree of height h = 3, which
gives us the possibility to generate up to 8 signatures. Then, assume that we use
the leaf node on index i = 5 so that we need to calculate Auth5. We are using the
formula from Equation (6.1) calculate the authentication path. Since the height of
the tree is h = 3, therefore Auth5 will consist of 3 elements. One authentication
node from each level excluding the top level with the root node. Figure 6.1 on Page
88 shows the calculated authentication path on a Merkle tree.

a0 = n(0,5−1) = n(0,4) |
⌊
5/20

⌋
= 5 (6.3)

a1 = n(1,2+1) = n(1,3) |
⌊
5/21

⌋
= 2 (6.4)

a2 = n(2,1−1) = n(2,0) |
⌊
5/22

⌋
= 1 (6.5)

Auth5 = (a0, a1, a2) = n(0,4), n(1,3), n(2,0) (6.6)
σ = (5, σOTS, pkOTS, Auth5) (6.7)

88

6.1.5 Verifying

Given the signature, message and public key of the signature scheme (σ,m, pk), the
verification goes as follows. First, verify the message with the one-time signature.

vrfy(m, i, σOTS, pkOTS)
?
= 1 (6.8)

Then, only if the one-time signature is accepted, the receiver may proceed to step
two. Further, verify the public key by, reconstructing the root node and then compare
it with the public key. If the comparison hold, the signature is accepted. Otherwise,
the signature is rejected.

To reconstruct the root node (public key), there is a need for sibling nodes, to be able
to recompute the parent node. For this purpose, the receiver uses the authentication
path from the signature sent by the signer. However, there is a big difference if the
node is the left or right child of the parent node. Therefore, the index is a part of
the signature to be able to calculate it. The reconstructing process is performed by
verification path using nodes from the authentication path. The verification path
consists of h+ 1 nodes, where the first node is set to be the hashed one-time public
key.

v0 = H(pkOTS) (6.9)

Consequently, the last element of the verification path vh should be equal to the root
node of the Merkle tree. The following formula is used to reconstruct the root node:

vj =

{
H(aj−1||vj−1) if bi/2j−1c mod 2 = 1

H(vj−1||aj−1) otherwise
(6.10)

Thereafter, the last step of the verification process is to compare the last node of the
verification path vh with the actual public key of the Merkle signature scheme.

vh
?
= pk (6.11)

If the last comparison holds, then the signature can be trusted. Otherwise, the
signature should be rejected.

For better understanding, we provide with a small example, showing the reconstruc-
tion of the root node. For this purpose, we use the authentication path from the
previous example as well as the same tree. So that, we are going to reconstruct the

89

Figure 6.2: Authentication path and verification of signature from index i = 5 with
tree height h = 3.

public key of the Merkle tree with height h = 3 and index i = 5. Thus, verifying the
signature from that index.

(5, σOTS, pkOTS, a0, a1, a2) (6.12)

Assuming that the one-time signature verification has been accepted, the receiver
can now proceed to the verification path. By hashing the one-time public key, the
receiver will obtain one of the leaf nodes of the Merkle tree, which is set to be the
first verification path node.

v0 = n(0,5) = H(pkOTS) (6.13)

Further calculations are performed due to the formula from Equation 6.10.

v1 = H(a0 || v0) |
⌊
5/20

⌋
= 5 (6.14)

90

v2 = H(v1 || a1) |
⌊
5/21

⌋
= 2 (6.15)

v3 = H(a2 || v2) |
⌊
5/22

⌋
= 1 (6.16)

The verification path node v3 is the last node of verification of Merkle tree with
height h = 3. Thus, if the authentication path was not altered in transit, then the
v3 node should now be equal to the root node of the Merkle tree.

v3
?
= pk (6.17)

To emphasize, only when both the one-time signature and the recomputed root node
are verified and holds, the signature can be accepted and trusted.

6.1.6 Security

The security of the Merkle signature scheme is based on the security of hash functions
as well as the security of the one-time signature used. Therefore, as long as the
underlying one-time signature is secure, the whole scheme depends on the security
of hash function used in the scheme.

6.2 Making MSS More Practical

The time required for signature generation rely mostly on time spend on the computa-
tion of the authentication path. Therefore, it is crucial to have efficient tree traversal
algorithm so that signature schemes based on Merkle tree might compete with the
signature time of RSA or ECDSA. Secondly, the number of signatures should be
increased for different applications, without consuming too much of memory. Below,
a summary of work regarding these aspects is presented.

6.2.1 Traversal algorithm

In 2004, M. Szydlo described a traversal algorithm for Merkle trees making it more
practical to use [102]. The method presented has improved the efficiency due to time
and space cost, compared to the original paper of Merkle [79].

Particularly, the algorithm produces an authentication path for a binary tree with
height h in time 2h and space less than 3h. Where, time is interpreted as hash
function evaluations, whereas space is the number of node values stored.

91

This paper shows an improvement over all previous results, which measured cost by
multiplying space and time. Moreover, Szydlo proved that the complexity of the
algorithm is optimal.

6.2.2 CMSS

A preliminary version CMSS first appeared in L.C.Cornado Ph.D. thesis [27] under
the supervision of J. Buchmann. Then, the paper by Buchmann et al. [19] presents
the full version of the algorithm as well as a test result of implementation.

CMSS is an improved version of the Merkle Signature Scheme with traversal im-
provements from Szydlo [102] and ideas from L.C.Cornado Ph.D. thesis [27].

CMSS is very similar to MSS but uses a slightly different principle. Instead of using
one big binary tree, where the root is the public key, and the leaves contain WOTS
to sign messages. The CMSS signature schemes use tree chaining, which use many
instances of MSS trees. On the higher layers, leaves of the main MSS tree are used to
sign roots of lower layers MSS trees with WOTS. Whereas, the leaves of MSS trees
on lower layers are used to sign the messages also with WOTS. CMSS uses the same
parameters of WOTS on each layer.

Both the main tree and subtrees have the same height h. This change has made it
possible to increase the signature capacity from 220 to 240. CMSS can sign n = 22h

messages for any h. However, when n goes over 240, the key pair generation time is
no longer practical.

Furthermore, CMSS reduces the private key by storing only the seeds for the PRNG,
and then the private keys are generated when needed. This makes the key generation
dynamic and reduced its time of generation. The private key is updated after every
signature generation, to keep the private key small and to make CMSS forward
secure.

The public key of CMSS is the root node value of the main MSS tree.

In addition, CMSS uses Szydlo’s algorithm from [102] to reduces signature generation
time.

92

6.2.3 GMSS

In 2007, a generation Merkle Signature Scheme was introduced by J. Buchmann et
al. in [17]. GMSS is an improved version of CMSS which allows great flexibility.
The user may choose the signature capacity and possibility to adjust the signature
generation and verification time, as well as the signature size. GMSS is able to pro-
vide with cryptographically unlimited (280) number of signatures while maintaining
the efficiency.

GMSS reduces the signature size as well as the signature generation cost. A more
efficient generation of trees during the signing process was achieved by storing some
seeds as a part of the private key. At the same time, GMSS reduces the signing
time by distributing the cost for one signature generation across several previous
signatures and the key generation. The authors have also improved the worst case
scenario of Szydlo’s traversal algorithm from [102] by using a scheduling strategy to
pre-compute upcoming signatures.

The structure of the scheme has changed. GMSS use multi-layer of MSS instances
where each of them may have different heights. In the leaves, a Witernitz one-time
signature [79] is used, which may have a different parameter for memory and time
trade-off in each MSS instance.

The paper introduces a parameter set P which the GMSS algorithm is initialized
with.

Ph = (T, (h1, ..., hT), (w1, ..., wT)) (6.18)

Where, T is the number of layers of MSS instances, hi is the height of the MSS tree on
layer i, wi is the WOTS parameter for signing the root of the MSS subtree, whereas
wT is used to sign the messages on the lowest layer of MSS tree. All hi together is
the height h of the whole GMSS multi-layer tree. The parameter set Ph allows up to
2h signatures. Szydlo’s algorithm is used to compute the optimal parameter sets. By
begin able to adjust the parameter set P for each layer of MSS trees, the signature
size in GMSS is reduced by more than 26% compared to its predecessors. CMSS can
be seen as a special case of GMSS with parameter set Ph = (2, (h1, h1), (w,w)).

The GMSS signature consists of several parts. At first, the index of the used leave
node. Then, the one-time signature of the message. Furthermore, the one-time
signature of all intermediate MSS trees as well as the authentication path for all
used trees from the signing leaf node to the root of the MSS tree at the highest
layer. The parameter set P has to be shared with the receiver to be able to verify

93

a signature. Beside that, the verification process is similar to the previous Merkle
based signature schemes.

6.2.4 Merkle Tree Traversal Revisited

In 2008, J. Buchmann et al. [18] presents a Merkle tree traversal algorithm that
improved the traversal algorithm of Szydlo [102] by reducing the signing time even
more. Until this time, Szydlo’s algorithm was the fastest tree traversal algorithm.
However, Szydlo’s algorithm had a disadvantage of having a big difference in time be-
tween its average and worst case. This makes the computation of the authentication
path uncertain with respect to runtime.

The authors in [18] improved both the worst and average case runtime of the algo-
rithm, as well as they, reduced the distance in runtime, of these two cases, closer to
each other.

The idea of this algorithm was to distinguish leaves nodes from the inner node and
then to try to reduce the number of leave nodes since they are extremely more
expensive to calculate. In practice, the average case of the algorithm computes
(h − 1)/2 leaves and (h − 3)/2 internal nodes. While the worst case computes h/2
leaves and 3/2(h− 3) + 1 internal nodes.

In MSS trees of height h = 20, this algorithm was able to reduce the hash function
evaluation by 15% compared to Szydlo’s algorithm. When it comes to the memory
requirement, the computations need 3.5H − 4 nodes of memory.

6.2.5 Reducing Security Assumptions in Merkle Trees

In 2008, E.Dahmen et al. [31] published a paper where they relaxed the security
requirements of the hash function used in Merkle’s authentication tree. They proved
that by slightly changing the construction of MSS, they succeeded to get even supe-
rior security using second preimage resistant hash functions of equal n-bit output.

The main difference was made in the authentication tree construction. Where the
authors apply an XOR bit masks on the child nodes before they get concatenated
and hashed to obtain the parent node. Additionally, the leave nodes are not the
hashed values of OTS public keys but the OTS public key bit strings themselves.
These constructional changes were enough to relax the security requirement from

94

collision resistant to second-preimage resistance hash functions. Consequently, the
new proposed scheme is no longer prone to birthday and collisions attack.

Unfortunately, the public key of the new proposed scheme got bigger since it needs
additionally to contain all the bit masks and the key for the hash function as well.
However, the signature size got significantly shorter. Even though for example in
certificates the public key is a part of the signature as well, the size of the signature
is still significantly shorter than the original scheme.

6.3 XMSS Family

The first XMSS scheme was introduced in 2011 by Buchmann et al. [16]. During
the years several updates with improvements and versions of the scheme for specific
application has been proposed. In 2015, Merkle hash-based signature was proposed
for standardization by McGrew and Curcio [76]. Following with updates from Hülsing
et al. [54] improving the internet draft. The standardization process, as in 2018, is
still ongoing and the draft is updated periodically. In June 2018, the 12’th version
of XMSS was published as RFC8391 [51].

6.3.1 XMSS

In 2011, Buchman et al. [16] proposed new multiple time signature called eXten-
det Merkle Signature Scheme (XMSS). This was the first practical forward-secure
signature scheme with minimal security requirements. XMSS is based on the ideas
of MSS and GMSS, both described in Section 6.1 and Subsection 6.2.3 respectively.
The scheme was created to sign a fixed length message. However, Target Collision
Resistant (TRC) can be used in order to sign longer messages. Since it is proven that
a TRC function can be created from a one-way function [95], therefore the scheme
still holds the minimal security assumptions.

The Authors in [17] have emphasized that it is impractical to make big Merkle trees.
Therefore, to hold the efficiency, the authors of XMSS have created the eXtendet
Merkle Signature Scheme to have the height of h = 20, which can sign up to 220

messages.

The structure of XMSS is similar to MSS-SPR [31] (described above in Subsection
6.2.5), which was the most efficient stateful Merkle based signature scheme at this

95

time. Both schemes utilize bitmask in node creations. However, XMSS differ from
previous schemes in leaves creation. The one-time public key elements are stored
in another XMSS tree. These trees holding one-time public keys are called L-trees.
Since the one-time public key elements might not necessarily be a power of 2. There-
fore, when a leave node in an L-tree does not has a right sibling, then the node is
lifted to a higher level until it becomes the right siblings of another node. To fit all
l one-time public key elements, the L-trees consist of height dlog le. Therefore, in
total there is need for h+ dlog le bitmasks to cover all layers.

The one-time signature used in XMSS is W-OTSPRF [20] described in Subsection
4.4.1 on Page 63 in this thesis. W-OTSPRF utilizes only pseudorandom functions,
whereas XMSS utilizes a hash function family H with second preimage resistant and
a function family F with the pseudorandom property. This makes the scheme hold
the minimum security assumption. The function H is used to construct the nodes,
whereas the function F is used to make the XMSS a key evolving scheme. Given
a seed to the function F it will produce two values. The first value is a seed to
generate a one-time key pair, and the second value is the seed for the function F
in the next signature generation. Thus XMSS is a forward-secure signature scheme.
Moreover, the authors have proven that XMSS is Existentially Unforgeable under
adaptive Chosen Message Attack (EU-CMA) in the standard model.

The XMSS signature size is 1/4 of the signature size of MSS-SPR signature size and
have the signing and verifying speed competitive to RSA and DSA.

6.3.2 XMSS+

In 2012, XMSS+ was proposed by Hülsing et al. [53] XMSS+ was specially opti-
mized for use on constrained devices like for example smart cards. The XMSS+ uses
tree chaining idea from Subsection 6.2.2, the distributed signature generation from
Subsection 6.2.3 and it utilize the W-OTSPRF One-Time Signature.

Particularly, XMSS+ uses two layers of XMSS trees. The lower layer of XMSS trees
signs the messages with a One-Time signature from the leaves. Whereas the top level
XMSS tree signs with One-Time signature the roots of lower layer XMSS trees. The
root node of the top XMSS tree is the overall public key for all signatures made with
this instance of the scheme. Every instance of XMSS tree uses the same bitmasks.
Therefore the public key size is reduced since it contains fewer bitmasks.

The height of XMSS+ remains the same as in original XMSS scheme. However, the

96

XMSS tree is divided into two layers, where each layer contains XMSS trees of height
hj = 10. The overall height of XMSS+ scheme is (h = h1 + h2 = 10 + 10 = 20) the
sum of one XMSS tree from each layer.

This structural change was crucial for the increase in performance of the new scheme.
Since the change made it possible to only generate the top level XMSS tree and
the most left XMSS tree on the lower layer. Since when first lower layer XMSS
tree runs out of leaves to sign the messages, the second XMSS tree on the lower
layer is created and signed by the second leave of the XMSS tree on the higher
layer. Causing the reduces in key generation time for 2h signatures from O(2h) to
O(
√

2h/2). Additionally, this makes it practical to generate keys on small devices like
smart cards with was never achieved before when it comes to hash-based signatures.
Moreover, the XMSS+ preserves the strong security guarantees of XMSS scheme.

The second improvement made in XMSS+ was to use the unused updated in BDS
algorithm to compute the signatures of the next XMSS root on the lower layer.
This reduces the worst case signing time for the scheme. Thus making the scheme
competitive to RSA and ECDSA.

The XMSS+ is a forward secure signature scheme and EU-CMA secure since it holds
the same security assumptions as XMSS.

XMSS and XMSS+ with W-OTS+

In 2013, Hülsing alone published a paper [52] presenting a new One-Time Signature
called W-OTS+ (fully described in Subsection 4.4.2 on Page 66). In the paper, the
author provided a comparison of both XMSS and XMSS+ schemes using W-OTS
and W-OTS+ as underlying One-Time Signatures.

In both W-OTS and W-OTS+ increasing the parameter, w gives shorter signatures.
However, in W-OTS the increasing in the parameter w yielded lower security level,
making some of the parameters set impractical to use.

Switching the underlying one-time signature in both XMSS and XMSS+ to W-OTS+

remains the same timing and size of the scheme but providing significantly higher
security level of the scheme.

To match the same security level in XMSS+ with W-OTS and XMSS+ with W-OTS+.
For some parameters, the second yields signatures more than 50% smaller than the

97

previous signature scheme. Considering that signature sizes is the main drawback of
hash-based signatures, this is enormous progress.

6.3.3 XMSSMT

In 2013, Hülsing et al. [55] published new version of XMSS signature scheme called
XMSSMT . The new scheme applies the tree chaining idea (first mentioned in [19]
described in 6.2.2) to XMSS scheme, combined with the improvements of BDS algo-
rithm from XMSS+ publication [53].

The main structural change of the scheme is that XMSSMT is a multi layer version of
XMSS. In contrast to XMSS which is only one layer with one XMSS tree, and XMSS+

which has two layers with XMSS tree instances. This makes it possible to generate
virtually unlimited number (280) of signatures. XMSSMT may contain different
height XMSS tree on each layer. Each XMSS tree contains one-time signatures in
the leave nodes to sign. The XMSS trees in the lowest layer are used to sign a
message, whereas the XMSS tree on higher layers are used to sign the root of lower
layer XMSS trees. The XMSSMT scheme utilize W-OTSPRF underlying one-time
signature.

The signature of XMSSMT scheme contains the index of the leave node used to sign
the message as well as the signature and authentication path for the XMSS tree from
all d layers.

Σ = (i, σ0,Auth0, σ1,Auth1, ..., σd,Authd) (6.19)

XMSSMT comes with several trade-offs [55].

• The BDS parameter ki: trade-off between signature time and private key size.

• Winternitz parameter wi: trade-off between runtimes and signature size.

• Layers d: trade-off between both key generation and signature time and signa-
ture size.

• XMSS tree height hi: influence the security of the scheme as well as the per-
formance.

For these trade-offs the Authors have presented an linear optimization model which
gives the best parameters for maximum benefits. This leads faster key and signature
generation times compared to previous schemes.

98

The XMSSMT scheme highly adjustable by the parameters and can meet the re-
quirements of any case for digital signatures, as well as it is forward and EU-CMA
secure.

6.3.4 XMSS-T

Figure 6.3: Structure of XMSSMT

many-time signature scheme [55].

In 2016, Hülsing et al. [57] introduced new
both many-time signature XMSS-T as well
as the underlying one-time signature WOST-
T. The second was described in Section 4.4.3
on Page 69.

The primary goal of this paper was to mit-
igate the multi-target attack on hash-based
signatures. Since, as mentioned in Subsec-
tion 4.4.3 about WOST-T, the multi-target
attack downgrades the complexity of break-
ing a hash function, reducing the security
level of all hash-based signature schemes.
XMSS-T was created to tighten the security
of XMSS based schemes.

The new signature scheme XMSS-T is
based on XMSSMT with some constructional
changes. Therefore XMSS-T is also a hyper-
tree consisting of d layers, where each layer
is of equal height. The Winternitz param-
eter w in the underlying one-time signature
WOTS-T control the space-time trade-off.

The most significant difference in the struc-
ture was the introduction of addressing
scheme. Such scheme, given a structure
and an index of a substructure create a
unique address for the substructure within
an XMSS-T key pair. The unique addresses
use them to generate functions keys and bit-
masks. The addressing scheme is light in

99

calculations, and it uses only the informa-
tion that is known when a hash function is
called. The addressing scheme is publicly
known and can be reused in all XMSS-T key pairs.

Moreover, the Authors changed the node construction in the tree. In XMSS-T the
node calculation is done by concatenating the child values, then XOR the result with
a bitmask, subsequently, hash the result with a keyed hash function. Both functions
keys and bitmasks are different for every hash function call, due to the addressing
scheme.

Additionally, the private key consists of two secret values. The first, as before, is a
secret seed for OTS key generation. Whereas, the second value is used to generate a
randomization element to randomize the message digest of a message while signing.
The randomized element is set as part of the signature.

All these together mitigate the multi-target attack on the XMSS-T signature scheme.
However, the tightened security comes with a drawback in increased runtimes of the
scheme of a factor less than 3.

The scheme has been proven to be EU-CMA in the standard model. Moreover, the
XMSS-T scheme replaced the XMSS scheme in the standardization draft and later
on was published as RFC8391 [51].

100

Chapter 7

Stateless Signature Schemes

All digital signature schemes described so far have the drawback of being stateful
and therefore force the signer to keep a record of the exact number of previously
signed messages. Moreover, any error in this record will result in the insecurity of
the whole scheme. Furthermore, the stateful signature schemes can only produce a
limited number of signatures. The number of signatures can be increased, even to
the point of being effectively unlimited. However, this also increases the signature
size. In this chapter, we go one step further and describe the stateless signature
schemes.

7.1 SPHINCS

In 2015, Bernstein et al. [9] presented SPHINCS, a post-quantum stateless hash-
based digital signature scheme. Setting enormous progress in making hash-based
signatures more practical. Unlike all previous hash-based signature schemes de-
scribed so far, SPHINCS is stateless allowing it to be a drop-in replacement for
current signature schemes.

Structurally, the SPHINCS signature scheme is very similar to the XMSSMT stateful
signature schemes described in the previous chapter. However, the crucial change,
changing the scheme from stateful to stateless, happens in the lowest layer of the
structure. The One-Time signature W-OTS+ is used no more at the lowest layer
to sign the randomized message digest. Instead, the Authors exchanged it with an
improved version of Few-Time signature HORS, namely HORST. The Few-Time

101

signature HORST adds a Merkle tree to the old HORS scheme. Thereby, reducing
HORS’s public key size from tn-bit to only n-bit in HORST.

Figure 7.1: Structure of SPHINCS
stateless many-time signature scheme
[9].

Similarly to both XMSS tree and L-tree,
HORST uses unique bitmasks on each level
of the tree while calculating the nodes.
Nevertheless, HORST needs to include the
authentication path for every secret key
used in the HORST signature in the over-
all SPHINCS signature. So that the
HORST public key can be computed from
the HORST signature. These changes
give significant improvements in the over-
all SPHINCS signature size. However, the
signature size of SPHINCS is still signifi-
cantly bigger than the signature size of state-
ful schemes.

By the fact that SPHINCS is stateless, there
are no updates on the private key after key
generation phase, and no index stored indi-
cating which leaves was already used. Since
HORST is a Few-Time signature, the same
key pair can be used to sign several messages.
SPHINCS is relying on HORST as the sig-
nature scheme to sign the message, having
one instance of HORST in each leave node.
While signing, the choice of the signing leave
node is performed pseudo-randomly. The
threshold for using the same HORST to sign
a message is r-times. For a secure instance of
SPHINCS giving the possibility of securely
signing 250, messages are r = 8. Such in-
stance of SPHINCS contains 260 HORST key
pairs. SPHINCS base its security on the fact
that the probability of using one HORST key
pair more than 8 times during 250 signature generations is less than 2−128. Yielding
strong long-term security. The Authors have proven that SPHINCS is EU-CMA in
the standard model.

102

In 2016, Hülsing et al. [56] have successfully implemented SPHINCS on a microcon-
troller. Proving that it was feasible both in term of performance and memory usage.
The Authors have as well implemented the stateful XMSSMT signature scheme for
comparison, to emphasize the implication of removing the state from a signature
scheme. Concluding that the verification if fast in both schemes, however, SPHINCS
is 30 times slower on signature generation. Making SPHINCS not the best candidate
for an application (on a microprocessor) where the need to generate signatures is
frequent.

7.2 SPHINCS+

In 2017, SPHINCS+ was published by Bernstein et al. [8]. SPHINCS+ is an im-
proved version of the original SPHINCS, and in high level view they might look the
same. However, the scheme got improved in terms of performance, signature size
and security. Moreover, the whole subroutine of few-time signature was changed
from using HORST to the new few-time signature FORS.

SPHINCS+ includes the multi-target attack protection presented by Hülsing el al. in
[58]. Namely, generation of new function keys and bitmask for every hash function
call. To get an abstraction, the Authors introduced the notion of tweakable hash
functions. A such function in addition to input value takes a public seed and an
address.

The second structural change is the compression of one-time W-OTS+ public keys.
Instead of using L-trees as in previous schemes, the one-time public keys are com-
pressed using the tweakable hash function. On input of public seed, the address of
one-time signature and the last iterations of W-OTS+ chain, the tweakable hash func-
tion creates a short n-bit one-time public key. Consequently, shorter the signature
size.

7.2.1 FORS

Forest Of Random Subset (FORS) is an improved version of few-time signature
HORST. FORS differ from HORST in a structurally manner. HORST was based
on a single tree, whereas FORS consist of k trees of height log (t). Then to obtain
the public key, the tweakable hash function is used on input of a public seed, the
address of the structure within SPHINCS key pair and the concatenation of k root

103

nodes of trees. The leaves of the trees contains the hashed value of t random secret
key values.

Figure 7.2: Structure of FORS few-time signature scheme [8].

While signing only one internal tree of FORS is used to sign a message. Which one to
choose id decided by the pseudorandom value, public seed and the message together.
Iterating these values through the tweakable hash function produces the randomized
message digest. In addition, the last bits are used as the index indicating which
tree within FORS to use. Thus, the index can be omitted from the signature, again
reducing its size. The public seed is a part of the public key and the pseudorandom
value is included to the signature. Consequently, a message gets linked to a concrete
FORS instance and will not work for any other FORS instances. The last provides
multi-target attack resilience of the scheme.

This new structure of FORS improved the security of the the scheme, therefore the
parameters can be choose differently resulting in shorter and faster signatures.

7.3 Gravity-SPHINCS

Gravity-SPHINCS was published by Aumasson and Endignoux [2] in 2017. This
signature scheme is an improved version of the stateless signature scheme SPHINCS.
Both SPHINCS+ [8] and Gravity-SPHINCS was published at the same time.

The Authors of Gravity-SPHINCS have implemented several changes to the scheme
to shorten the signature size while maintaining the desired security level. Gravity-
SPHINCS optimize the original scheme by the following:

104

• New few-time signature scheme PORS exchanged HORS. A more complex
scheme, however more secure.

• Octopus: optimized multi-authentication in Merkle trees, eliminates redundan-
cies from the authentication path.

• The secret key caching: the Authors changed the height of the top level Merkle
tree to make it bigger and caching part of it in the private key. This change
result in shorter signatures and slightly increased private key.

• Non-masked hashing: the XOR calculation with bitmasks when generating
nodes is taken away to simplify the signature scheme. However, then the sig-
nature scheme again relies on collision-resistant hash function.

• Batch signing: the possibility of signing several messages at once. Thus, re-
ducing both signature time and size.

The overall signature scheme has the public key consisting of 32-bytes and the private
key consisting of 64-bytes.

7.3.1 PORS

The few-time signature scheme got exchanged from HORS to PORS. Gravity-
SPHINCS used PRNG to Obtain a Random Subset (PORS) to increase the security
level significantly. This is a more complex scheme than HORS. However, the com-
putational overhead is minimal.

PORS uses the message and a salt to generate a random seed for PRNG to generate k
distinct values, as well as the index of the Gravity-SPHINCS leaf. Thus, keeping both
the verifier and attacker to the specific instance of PORS, eliminating multi-target
attacks.

Gravity-SPHINCS used the same optimization of reducing the public key as HORS
by utilizing a hyper-tree creating PORST. In additions, PORST uses the octopus
algorithm optimization when calculating the authentication path.

105

Figure 7.3: Comparison of the structures of HORS and PORS few-time signature
scheme [2].

106

Chapter 8

Analysis and Discussion

8.1 Standardization of hash based signatures

In 2016 NIST called for proposal of algorithm which are believed to be quantum
resilient with a deadline one year later in November 2017. In January 2018, NIST
have published the result of the first round. There were 82 algorithms proposed, for
encryption, key exchange and digital signatures. Where 23 of them was signature
schemes and only four of them was hash based signature schemes (but only two
of them was published). In April 2018, it has been arranged a workshop where
submitter presented their solutions. This will be followed by a three to five year
phase of analysis with report about findings. Then, two years later, between 2023
and 2025 a standardization draft for post quantum cryptography will we ready [81].
NIST emphasizes that this is not a competition and that several candidates can be
approved for a single purpose/application.

The stateful signature scheme XMSS is also on its standardization way. Current
version of this internet draft is updated to an RFC8391 [51].

8.2 Stateful versus Stateless

Both stateful and stateless signature scheme have their advantages and disadvan-
tages.

107

The main drawback with stateful signature schemes is that they need to keep an
internal state which needs to be updated each time a signature is created. Addition-
ally, it requires extra overhead in terms of memory. The next problem with stateful
schemes is system restore. It is possible for a stateful scheme to restore itself to
an earlier internal state, meaning that a one-time signature from the leave might
be used twice, destroying the security of the whole scheme. In other words, signa-
ture forgery becomes easier. A similar scenario may happen with backups when key
synchronization takes place.

Due to optimization of stateful schemes, it is impractical to generate several signa-
tures in parallel. This is a considerable disadvantage. For example, in a scenario
where a stateful scheme is used for server authentication, where the same key might
be used for signing of several connections in parallel.

It does not mean that one should avoid using stateful schemes. However, the user
needs to be aware of this risk and carefully manage the state to prevent forgery. On
the positive site, stateful signature schemes are usually faster with shorter signature
sizes. Such an advantage will undoubtedly find its applications to fit.

When it comes to stateless signature schemes none of the aforementioned problems
exist. With a stateless scheme one can freely sign messages without compromising in
security. In a stateless hash-based scheme, one leaf node can sign several messages.
However, this comes with a cost in performance. Stateless schemes are usually slower
than stateful schemes and consist of larger signature sizes.

Taking into consideration hash-based schemes, in both stateful and stateless schemes
the number of signatures is fixed. However, both the schemes described in this thesis
have raised that number to be virtually unlimited.

8.3 Comparison of Hash-based Signatures

Over the last 40 years, we have seen an enormous improvement in hash-based
schemes. As the technology evolves and the universal quantum computers become
more practical. The development of new structures and hash-based algorithms got
significantly more attention. In the call for algorithms by NIST, two stateless hash-
based digital signatures were published. In addition, two stateful hash-based signa-
ture schemes are on theirs standardization way as well.

The security assumption behind hash-base schemes is well understood even in quan-

108

tum cases. This gives a little advantage over other proposed schemes which are more
complicated. Thus, more challenging to understand and implement.

Hash-based digital signatures have been proven to be practical in different scenarios.
Back in 2002, Perring [88] proposed a new protocol for broadcast authentication built
on BiBa a hash-based signature scheme. Next, in 2006, Buchmann et al. [19] showed
that hash-based signature schemes could be effectively implemented for email signing
or X.509 certificates generation with competitive times to RSA and ECDSA. Then
in 2007, Buchmann et al. [17] presented an efficient implementation of SSL/TLS
using GMSS, begin resilient to DoS attacks and minimize the latency of signature
exchange. Moreover, yet another milestone was achieved in 2012 by Hülsing [53]. An
efficient implementation of forward secure hash-based signatures on a smart card.
Along with on-card key generation.

However, despite the progress of these schemes, the main drawback still appears.
Particularly, the trade-off between speed and signature size. When signatures size
shrinks, the speed of the signature decreases and vice versa. In stateless signature
schemes, the drawback is even more noticeable. However, as long as the applica-
tion using hash-based signatures can tolerate at least one of the two, then efficient
solutions exist.

Table 8.1 on Page 110 presents a comparison of hash-based digital signature schemes
with signature schemes used nowadays. The presented schemes are:

• two stateless signature schemes (SPHINCS+-256 and Gravity-SPHINCS),

• one stateful signature scheme (XMSS which also includes a multi-version of
itself, the XMSSMT),

• and two currently used standard signature schemes (RSA-3072 and ECDSA(P-
256)).

109

Public key Secret key Signature Classical
security

Quantum
security

Signature
capacity

SPHINCS+-256 64 128 29 792 /
49 216 256 128 264

Gravity-SPHINCS 32 64 22 304 /
35 168 128 128 264

XMSS (XMSSMT) 64 132 4 964 256 128 260

RSA-3072 384 1 728 384 256 0 Unlimited
ECDSA (P-256) 64 96 64 256 0 Unlimited

Table 8.1: Comparison of hash-based signature schemes with current standards. The
sizes are provided in bytes.

110

Instance of SPHINCS+ Key generation Signature generation Verification
SHAKE256-256s 1 210 939 356 13 842 403 104 20 889 204
SHAKE256-256f 75 031 996 1 664 510 764 41 469 276
SHA-256-256s 1 095 050 628 12 893 347 756 19 141 296
SHA-256-256f 68 819 608 1 558 148 364 41 469 276

Table 8.2: Instances of SPHINCS+ providing 128-bit quantum security [8]. Provided
values are the number of CPU cycles.

Gravity-SPHINCS Key generation Signature generation Verification
small 781 646 000 9 548 000 79 333
fast 24 229 712 000 14 748 000 238 000
NIST-fast 11 789 080 000 16 905 333 337 333

Table 8.3: CPU cycles for Gravity-SPHINCS sub algorithms [2].

XMSSMT Signature size Key generation Signature generation Verification Signature capacity
SHA2_20/2_256 4 963 2 476 032 7 227 2 298 220

SHA2_20/4_256 9 251 154 752 4 170 4 576 220

SHA2_40/2_256 5 605 2, 535 ∗ 106 12 417 2 318 240

SHA2_40/4_256 9 893 4 952 064 7 227 4 596 240

SHA2_40/8_256 18 469 309 504 4 170 9 152 240

SHA2_60/3_256 8 392 3, 803 ∗ 106 13 417 3 477 260

SHA2_60/3_256 14 824 7 428 096 7 227 6 894 260

SHA2_60/12_256 27 688 464 256 4 170 13 728 260

Table 8.4: Instances of XMSSMT signature scheme. Size in bytes and times in hash
function iteration [51].

111

Part IV

Summary

112

Chapter 9

Conclusion and Further Work

9.1 Conclusion

The thesis has taken the reader through the basics of modern security concepts
as well as emphasized the difference between conventional and quantum comput-
ers. Furthermore, explained the threat brought by Shor’s and Grover’s algorithms
when performed on a large quantum computer. Continuing with an exploration
of One-Time, Few-Time and Many-Time signature schemes. Wherein key genera-
tion, signature generation, signature verification and security aspects of the signature
schemes was described. However, we will like to point the reader to the original pa-
per of each described algorithm for more specific mathematically security reduction.
Furthermore, we explained the difference between stateful and stateless signature
scheme.

Hash-based signatures are highly adjustable to adapt to variously environment and
applications. Although future applications will not have only one stand-alone solu-
tion for the digital signature. Still, hash-based signatures will be a good fit for many
of them. As it is for 2018, there is no significantly difference in efficiency and signa-
ture sizes when it comes to SPHINCS family stateless schemes. On the other hand,
from stateful schemes the LMS scheme provides with shorter signatures compared
to XMSS. It has been proven that it is practical to implement both stateful and
stateless signature scheme on constrained devices like a smart card or IoT devices.

113

9.2 Further Work

Hash-based signatures schemes have gotten a lot of attention in the last years. Es-
pecially most recently when they are included in the NIST "call for algorithms".
However, there are still topics to be covered in more extend for example:

• Examine the physical aspect of implementation attacks on hash-based signature
schemes.

• More performance testing on hash-based signature schemes proposed for stan-
dardization.

• Further research for shorter signature sizes and faster both signing and verifi-
cation process.

114

Bibliography

[1] François Arnault. Rabin-miller primality test: composite numbers which pass
it. Mathematics of Computation, 64(209):355–361, 1995.

[2] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless
hash-based signatures. Technical report, Cryptology ePrint Archive, Report
2017/933, https://eprint. iacr. org/2017/933. 40, 2017.

[3] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan.
Sha-3 proposal blake. Submission to NIST, 2008.

[4] Georg Becker. Merkle signature schemes, merkle trees and their cryptanalysis.
Ruhr-University Bochum, Tech. Rep, 2008.

[5] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
431–448, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993.

[7] Daniel Bernstein, Erik Dahmen, and Buch. Introduction to Post-Quantum
Cryptography. Springer-Verlag Berlin Heidelberg, 2010.

[8] Daniel J Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M Lauridsen, et al. Sphincs. 2017.

[9] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,

115

and Zooko Wilcox-O’Hearn. Sphincs: practical stateless hash-based signa-
tures. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 368–397. Springer, 2015.

[10] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) security of
64-bit block ciphers: Collision attacks on http over tls and openvpn. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 456–467. ACM, 2016.

[11] Lev S. Bishop, Sergey Bravyi, Andrew Cross, Jay M. Gambetta, and John
Smolin. Quantum Volume. Technical report, IBM, March 2017. https://
www.research.ibm.com/ibm-q/resources/quantum-volume.pdf.

[12] Simon Bone and Matias Castro. A brief history of quantum computing. Impe-
rial College in London, http://www. doc. ic. ac. uk/˜ nd/surprise_97/journa
l/vol4/spb3, 1997.

[13] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum Cryptanalysis of Hash
and Claw-Free Functions, pages 163–169. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998.

[14] briolidz. Ipsec modes. https://briolidz.files.wordpress.com/2012/01/esp.png?w=625.

[15] William Buchanan and Alan Woodward. Will Quantum Computers be the End
of Public Key Encryption? Journal of Cyber Security Technology, 1(1):1–22,
2016.

[16] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a practi-
cal forward secure signature scheme based on minimal security assumptions.
In International Workshop on Post-Quantum Cryptography, pages 117–129.
Springer, 2011.

[17] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and
Camille Vuillaume. Merkle signatures with virtually unlimited signature ca-
pacity. In Jonathan Katz and Moti Yung, editors, Applied Cryptography and
Network Security, pages 31–45, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

[18] Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree traver-
sal revisited. In International Workshop on Post-Quantum Cryptography, pages
63–78. Springer, 2008.

116

https://www.research.ibm.com/ibm-q/resources/quantum-volume.pdf
https://www.research.ibm.com/ibm-q/resources/quantum-volume.pdf

[19] Johannes Buchmann, Luis Carlos Coronado García, Erik Dahmen, Mar-
tin Döring, and Elena Klintsevich. Cmss – an improved merkle signature
scheme. In Rana Barua and Tanja Lange, editors, Progress in Cryptology -
INDOCRYPT 2006, pages 349–363, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[20] Johannes A Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the winternitz one-time signature scheme.
Africacrypt, 11:363–378, 2011.

[21] Ciara Byrne. The Golden Age Of Quantum Computing Is Upon Us (Once
We Solve These Tiny Problems). https://www.fastcompany.com/3045708/
big-tiny-problems-for-quantum-computing, 2015.

[22] Y. Nir P. Eronen T. Kivinen C. Kaufman, P. Hoffman. Internet key exchange
protocol version 2 (ikev2). Technical report, The Internet Engineering Task
Force (IETF), 10.17487/RFC7296, October 2014.

[23] Matthew Campagna, Lidong Chen, Özgür Dagdelen, Jintai Ding, Jennifer K.
Fernick, Nicolas Gisin, Donald Hayford, Thomas Jennewein, Norbert Lütken-
haus, Michele Mosca, Brian Neill, Mark Pecen, Ray Perlner, Grégoire Ribordy,
John M. Schanck, Douglas Stebila, Nino Walenta, William Whyte, and Zhenfei
Zhang. Quantum safe cryptography and security. Technical report, ETSI (Eu-
ropean Telecommunications Standards Institute), June 2015. An introduction,
benefits, enablers and challenges.

[24] Computer Security Resource Center. Post-quantum crypto project, 2016. On-
line; accessed 28 mars 2017.

[25] Shu-jen Chang, Ray Perlner, William E Burr, Meltem Sönmez Turan, John M
Kelsey, Souradyuti Paul, and Lawrence E Bassham. Third-round report of the
sha-3 cryptographic hash algorithm competition. NIST Interagency Report,
7896, 2012.

[26] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perl-
ner, and Daniel Smith-Tone. NIST: Report on Post-Quantum Cryptography.
Technical report, NIST, 2016.

[27] Luis Carlos Coronado García. Provably secure and practical signature schemes.
PhD thesis, Technische Universität, 2006.

117

https://www.fastcompany.com/3045708/big-tiny-problems-for-quantum-computing
https://www.fastcompany.com/3045708/big-tiny-problems-for-quantum-computing
10.17487/RFC7296

[28] S. Farrell S. Boeyen R. Housley W. Polk D. Cooper, S. Santesson. Internet
x.509 public key infrastructure certificate and certificate revocation list (crl)
profile. Technical report, NIST, Microsoft, Trinity College Dublin, Entrust,
Vigil Security, "https://tools.ietf.org/html/rfc5280", May 2008.

[29] M. Schneider J. Turner D. Maughan, M. Schertler. Internet security asso-
ciation and key management protocol (isakmp). Technical report, National
Security Agency (NSA), Securify Inc., RABA Technologies Inc., "https:
//tools.ietf.org/html/rfc2408", November 1998.

[30] D-Wave. Quantum Computing: How D-Wave Systems Work. http://www.
dwavesys.com/our-company/meet-d-wave.

[31] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Dig-
ital signatures out of second-preimage resistant hash functions. In Johannes
Buchmann and Jintai Ding, editors, Post-Quantum Cryptography, pages 109–
123, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[32] Quynh Dang. Recommendation for applications using approved hash algo-
rithms. US Department of Commerce, National Institute of Standards and
Technology, 2008.

[33] Quynh H Dang. Randomized hashing for digital signatures. Special Publication
(NIST SP)-800-106, 2009.

[34] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, Nov 1976.

[35] Chris Dods, Nigel P Smart, and Martijn Stam. Hash based digital signature
schemes. Lecture notes in computer science, 3796:96, 2005.

[36] Jack Dongarra. Report on the sunway taihulight system. Technical report, Uni-
versity of Tennessee - Oak Ridge National Laboratory, "http://www.netlib.
org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf", 2016.

[37] Raouf Dridi and Hedayat Alghassi. Prime factorization using quantum anneal-
ing and computational algebraic geometry. Scientific Reports, 7:43048, 2017.

[38] Thai Duong and Juliano Rizzo. Flickr’s api signature forgery vulnerability.
Tech. Rep., 2009.

118

"https://tools.ietf.org/html/rfc5280"
"https://tools.ietf.org/html/rfc2408"
"https://tools.ietf.org/html/rfc2408"
http://www.dwavesys.com/our-company/meet-d-wave
http://www.dwavesys.com/our-company/meet-d-wave
"http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf"
"http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf"

[39] Miloslav Dusek, Norbert Lutkenhaus, and Martin Hendrych. "Chapter 5 -
Quantum Cryptography". In E. Wolf, editor, Progress in Optics, volume 49 of
Progress in Optics, pages 381 – 454. Elsevier, 2006.

[40] Morris J Dworkin, Elaine B Barker, James R Nechvatal, James Foti,
Lawrence E Bassham, E Roback, and James F Dray Jr. Advanced encryp-
tion standard (aes). Federal Inf. Process. Stds.(NIST FIPS)-197, 2001.

[41] Nicky Mouha Elaine Barker. Sp 800-67 rev. 2. recommendation for the triple
data encryption algorithm (tdea) block cipher. NIST Special Publication, 2017.

[42] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985.

[43] PUB FIPS. 46-3: Data encryption standard (des). National Institute of Stan-
dards and Technology, 25(10):1–22, 1999.

[44] PUB Fips. 186-2. digital signature standard (dss). National Institute of Stan-
dards and Technology (NIST), 20:13, 2000.

[45] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[46] Dieter Gollman. Computer Securuty. John Wiley & Sons, 2001.

[47] Lov Grover. A Fast Quantum Mechanical Algorithm For Database Search.
Technical report, Bell Labs, New Jersey, 1996.

[48] Shai Halevi and Hugo Krawczyk. The rmx transform and digital signatures.
In 2nd NIST Hash Workshop, volume 21, 2006.

[49] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via random-
ized hashing. In Crypto, volume 4117, pages 41–59. Springer, 2006.

[50] R Housley. Rfc 2630: Cryptographic message syntax cms, 1999.

[51] A Huelsing, D Butin, S Gazdag, J Rijneveld, and A Mohaisen. Xmss: extended
merkle signature scheme. Technical report, 2018.

[52] Andreas Hülsing. W-ots+-shorter signatures for hash-based signature schemes.
Africacrypt, 7918:173–188, 2013.

119

[53] Andreas Hülsing, Christoph Busold, and Johannes Buchmann. Forward secure
signatures on smart cards. In International Conference on Selected Areas in
Cryptography, pages 66–80. Springer, 2012.

[54] Andreas Hülsing, Denis Butin, Stefan Gazdag, and Aziz Mohaisen. Xmss:
Extended hash-based signatures. In Crypto Forum Research Group Internet-
Draft.(2015). draft-irtf-cfrg-xmss-hash-based-signatures-01, 2015.

[55] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parameters
for xmss mt. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar
Weippl, and Lida Xu, editors, Security Engineering and Intelligence Informat-
ics, pages 194–208, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[56] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. Armed sphincs. In
Public-Key Cryptography–PKC 2016, pages 446–470. Springer, 2016.

[57] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. IACR Cryptology ePrint Archive, 2015:1256,
2015.

[58] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target at-
tacks in hash-based signatures. In Public-Key Cryptography–PKC 2016, pages
387–416. Springer, 2016.

[59] Andreas Hülsing. Hash-based signatures. Technical report, Post-Quantum
Cryptography, 2017.

[60] IANA. Dnssec information. Accessed online; july 2017.

[61] Audun Jøsang. A consistent definition of authorization. In International Work-
shop on Security and Trust Management, pages 134–144. Springer, 2017.

[62] EJ Jung. Stream cipher. "http://www.cs.usfca.edu/~ejung/courses/686/
lectures/03stream.pdf", January 2010. Online; accessed 4 june 2016.

[63] S. Kent. Privacy enhancement for internet electronic mail: Part ii: Certificate-
based key management. Technical report, BBN, IAB IRTF PSRG, IETF PEM,
"https://tools.ietf.org/html/rfc1422", February 1993.

[64] S. Kent. Ip authentication header. Technical report, BBN Technologies,
"https://tools.ietf.org/html/rfc4302", December 2005.

120

"http://www.cs.usfca.edu/~ejung/courses/686/lectures/03stream.pdf"
"http://www.cs.usfca.edu/~ejung/courses/686/lectures/03stream.pdf"
"https://tools.ietf.org/html/rfc1422"
"https://tools.ietf.org/html/rfc4302"

[65] S. Kent. Ip encapsulating security payload (esp). Technical report, BBN Tech-
nologies, "https://tools.ietf.org/html/rfc4303", December 2005.

[66] Cameron F. Kerry, Acting Secretary, and Charles Romine Director. Fips pub
186-4 federal information processing standards publication digital signature
standard (dss), 2013.

[67] Zach Kirsch. Quantum Computing: The Risk to Existing Encryption Methods.
PhD thesis, Tufts University, Massachusetts, 2015. http://www.cs.tufts.
edu/comp/116/archive/fall2015/zkirsch.pdf.

[68] H. Krawczyk. Skeme: a versatile secure key exchange mechanism for internet.
In Network and Distributed System Security, "10.1109/NDSS.1996.492418",
1996. IBM, IEEE.

[69] Information Technology Laboratory. Sha-3 standard: Permutation-based hash
and extendable-output functions. Technical report, National Institute of Stan-
dards and Technology, "http://www.nist.gov/customcf/get_pdf.cfm?pub_
id=919061", 2015. Online; accessed 12 june 2016.

[70] Chis Lee. How ibm’s new five-qubit universal quantum computer works. Tech-
nical report, D-Wave, "https://www.youtube.com/watch?v=UV_RlCAc5Zs",
2016. Online; accessed 4 mai 2016.

[71] Frank T Leighton and Silvio Micali. Large provably fast and secure digital
signature schemes based on secure hash functions, July 11 1995. US Patent
5,432,852.

[72] Prof. Leslie. Leslie lamport home page, 2017. Online; accessed 1 mars 2017
http://lamport.azurewebsites.net/pubs/pubs.html.

[73] P. Hesse S. Joseph R. Nicholas M. Cooper, Y. Dzambasow. Internet x.509 pub-
lic key infrastructure: Certification path building. Technical report, Orion Se-
curity Solutions, A&N Associates, Gemini Security Solutions, Van Dyke Tech-
nologies, BAE Systems, "https://tools.ietf.org/html/rfc4158", Septem-
ber 2005.

[74] B. Kaliski M. Nystrom. Pkcs #10: Certification request syntax specifica-
tion version 1.7. Technical report, RSA Security, "https://tools.ietf.org/
html/rfc2986", November 2000.

121

"https://tools.ietf.org/html/rfc4303"
http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf
http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf
"10.1109/NDSS.1996.492418"
"http://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061"
"http://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061"
"https://www.youtube.com/watch?v=UV_RlCAc5Zs"
http://lamport.azurewebsites.net/pubs/pubs.html
"https://tools.ietf.org/html/rfc4158"
"https://tools.ietf.org/html/rfc2986"
"https://tools.ietf.org/html/rfc2986"

[75] Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, and Audun Jøsang. The
Impact of Quantum Computing on Present Cryptography. International Jour-
nal of Advanced Computer Science and Applications (IJACSA), 9(3):405–414,
2018.

[76] David McGrew and Michael Curcio. Hash-based signatures. 2015.

[77] Dr. David A. McGrew, Michael Curcio, and Scott Fluhrer. Hash-Based Sig-
natures. Internet-Draft draft-mcgrew-hash-sigs-11, Internet Engineering Task
Force, April 2018. Work in Progress.

[78] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Ri-
jmen. On the collision resistance of ripemd-160. Information Security, pages
101–116, 2006.

[79] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 218–238, New
York, NY, 1990. Springer New York.

[80] Ralph Charles Merkle, Ralph Charles, et al. Secrecy, authentication, and public
key systems. none, 1979.

[81] Dustin Moody. The ship has sailed: The nist post-quantum crypto “competi-
tion”.

[82] Juha Muhonen and T Dehollain. Storing Quantum Information For 30 Seconds
In a Nanoelectronic Device. Nature Nanotechnology, 9:986–991, 2014.

[83] National Security Agency. National Policy on the Use of the Advanced En-
cryption Standard (AES) to Protect National Security Systems and National
Security Information. Technical report, NSA, 2003. http://csrc.nist.gov/
groups/STM/cmvp/documents/CNSS15FS.pdf.

[84] NIST. Block cipher modes. Technical report, NIST, "http://csrc.nist.gov/
groups/ST/toolkit/BCM/index.html", 2001. Online; accessed 5 june 2016.

[85] NSA. The case for elliptic curve cryptography, 2009. Online; accessed 28. mars
2017.

[86] H. Orman. The oakley key determination protocol. Technical report, Depart-
ment of Computer Science University of Arizona, "https://tools.ietf.org/
html/rfc2412", November 1998.

122

http://csrc.nist.gov/groups/STM/cmvp/documents/CNSS15FS.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/CNSS15FS.pdf
"http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html"
"http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html"
"https://tools.ietf.org/html/rfc2412"
"https://tools.ietf.org/html/rfc2412"

[87] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for
Students and Practitioners. Springer Publishing Company, Incorporated, 1st
edition, 2009.

[88] Adrian Perrig. The biba one-time signature and broadcast authentication pro-
tocol. In Proceedings of the 8th ACM conference on Computer and Communi-
cations Security, pages 28–37. ACM, 2001.

[89] John Proos and Christof Zalka. Shor’s Discrete Logarithm Quantum Algorithm
for Elliptic Curves. Quantum Info. Comput., 3(4):317–344, 2003.

[90] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul Mahajan. Trusted
computer system evaluation criteria. In National Computer Security Center.
Citeseer, 1985.

[91] M.0. Rabin. Digitalized signatures. Technical report, Hebrew University
of Jerusalem, Massachusetts Institute of Technology, https://smartech.
gatech.edu/bitstream/handle/1853/40598/g-36-619_142482.pdf, De-
cember 1978.

[92] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time signatures
with fast signing and verifying. In Australasian Conference on Information
Security and Privacy, pages 144–153. Springer, 2002.

[93] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[94] Dongyoung Roh, Sangim Jung, and Daesung Kwon. Winternitz signature
scheme using nonadjacent forms. Security and Communication Networks, 2018,
2018.

[95] John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 387–394. ACM, 1990.

[96] A. Malpani S. Galperin C. Adams R. Ankney S. Santesson, M. Myers. X.509
internet public key infrastructure online certificate status protocol - ocsp. Tech-
nical report, 3xA Security, TraceRoute Security, CA Technologies, A9, Univer-
sity of Ottawa, "https://tools.ietf.org/html/rfc6960", June 2013.

[97] Bruce Schneier. NSA Plans for a Post-Quantum World, 2015.

123

https://smartech.gatech.edu/bitstream/handle/1853/40598/g-36-619_142482.pdf
https://smartech.gatech.edu/bitstream/handle/1853/40598/g-36-619_142482.pdf
"https://tools.ietf.org/html/rfc6960"

[98] Claude E Shannon. Communication theory of secrecy systems. Bell Labs
Technical Journal, 28(4):656–715, 1949.

[99] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, SFCS ’94, pages 124–134, Washington, DC, USA, 1994.
IEEE Computer Society.

[100] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full sha-1. IACR Cryptology ePrint Archive,
2017:190, 2017.

[101] M. StJohns. Automated updates of dns security (dnssec) trust anchors.
Technical report, Independent, "https://tools.ietf.org/html/rfc5011",
September 2007.

[102] Michael Szydlo. Merkle tree traversal in log space and time. In Christian Cachin
and Jan L. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
pages 541–554, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[103] E. Rescorla T. Dierks Independent. Message flow for a full handshake. Figure
1 in [104], August 2008.

[104] E. Rescorla T. Dierks Independent. The transport layer security (tls) protocol
version 1.2. Technical report, RTFM Inc., "https://tools.ietf.org/html/
rfc5246", August 2008.

[105] Gene Tsudik. Message authentication with one-way hash functions. In IN-
FOCOM’92. Eleventh Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE, pages 2055–2059. IEEE, 1992.

[106] Unknown. Aes encryption mode. "http://i.stack.imgur.com/bXAUL.png",
2016. Online; accessed 4 june 2016.

[107] Unknown. Asymmetric cryptography. "https://i\
discretionary{-}{}{}msdn.sec.s-msft.com/dynimg/IC21919.gif",
2016. Online; accessed 8 mai 2016.

[108] Unknown. Pki structure. "http://1.bp.blogspot.com/_ZbCE6_nPONI/S_
CUvF8mazI/AAAAAAAAABw/QE0i8YoD4_c/s1600/3.jpg", 2018. Online; ac-
cessed 10 mars 2018.

124

"https://tools.ietf.org/html/rfc5011"
"https://tools.ietf.org/html/rfc5246"
"https://tools.ietf.org/html/rfc5246"
"http://i.stack.imgur.com/bXAUL.png"
"https://i\discretionary {-}{}{}msdn.sec.s-msft.com/dynimg/IC21919.gif"
"https://i\discretionary {-}{}{}msdn.sec.s-msft.com/dynimg/IC21919.gif"
"http://1.bp.blogspot.com/_ZbCE6_nPONI/S_CUvF8mazI/AAAAAAAAABw/QE0i8YoD4_c/s1600/3.jpg"
"http://1.bp.blogspot.com/_ZbCE6_nPONI/S_CUvF8mazI/AAAAAAAAABw/QE0i8YoD4_c/s1600/3.jpg"

[109] Unknown. X.509 certificate. "", 2018. Online; accessed 10 mars 2018.

[110] Umesh Vazirani. On The Power of Quantum Computation. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 356(1743):1759–1768, 1998.

[111] C. Vu and M. Fey. IBM Builds Its Most Powerful Universal Quantum Com-
puting Processors. Technical report, IBM, May 2017. https://www-03.ibm.
com/press/us/en/pressrelease/52403.wss.

[112] M.E. Hellman. W. Diffie. New directions in cryptography. Technical report,
IEEE Transactions on Information Theory, https://www-ee.stanford.edu/
~hellman/publications/24.pdf, November 1976.

[113] T.F. Walter. Is Quantum Computing for Real? An Interview with Catherine
McGeoch of D-Wave Systems. Ubiquity, 2017:2:1–2:20, July 2017.

[114] www.joshuthomas.com. Symmetric cryptography. "http:
//www.joshuthomas.com/wp-content/uploads/2014/07/
keymanagement-in-symmetric-systems.jpg", 2016. Online; accessed 8
mai 2016.

125

""
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss
https://www-ee.stanford.edu/~hellman/publications/24.pdf
https://www-ee.stanford.edu/~hellman/publications/24.pdf
"http://www.joshuthomas.com/wp-content/uploads/2014/07/keymanagement-in-symmetric-systems.jpg"
"http://www.joshuthomas.com/wp-content/uploads/2014/07/keymanagement-in-symmetric-systems.jpg"
"http://www.joshuthomas.com/wp-content/uploads/2014/07/keymanagement-in-symmetric-systems.jpg"

Appendix A

126

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

The Impact of Quantum Computing on Present
Cryptography

Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, Audun Jøsang
Department of Informatics, University of Oslo, Norway

Email(s): {vasileim, kamerv, mateusdz, josang}@ifi.uio.no

Abstract—The aim of this paper is to elucidate the impli-
cations of quantum computing in present cryptography and
to introduce the reader to basic post-quantum algorithms. In
particular the reader can delve into the following subjects: present
cryptographic schemes (symmetric and asymmetric), differences
between quantum and classical computing, challenges in quantum
computing, quantum algorithms (Shor’s and Grover’s), public key
encryption schemes affected, symmetric schemes affected, the im-
pact on hash functions, and post quantum cryptography. Specif-
ically, the section of Post-Quantum Cryptography deals with
different quantum key distribution methods and mathematical-
based solutions, such as the BB84 protocol, lattice-based cryptog-
raphy, multivariate-based cryptography, hash-based signatures
and code-based cryptography.

Keywords—quantum computers; post-quantum cryptography;
Shor’s algorithm; Grover’s algorithm; asymmetric cryptography;
symmetric cryptography

I. INTRODUCTION

There is no doubt that advancements in technology and
particularly electronic communications have become one of
the main technological pillars of the modern age. The need
for confidentiality, integrity, authenticity, and non-repudiation
in data transmission and data storage makes the science of
cryptography one of the most important disciplines in infor-
mation technology. Cryptography, etymologically derived from
the Greek words hidden and writing, is the process of securing
data in transit or stored by third party adversaries. There are
two kinds of cryptosystems; symmetric and asymmetric.

Quantum computing theory firstly introduced as a concept
in 1982 by Richard Feynman, has been researched extensively
and is considered the destructor of the present modern asym-
metric cryptography. In addition, it is a fact that symmetric
cryptography can also be affected by specific quantum algo-
rithms; however, its security can be increased with the use
of larger key spaces. Furthermore, algorithms that can break
the present asymmetric cryptoschemes whose security is based
on the difficulty of factorizing large prime numbers and the
discrete logarithm problem have been introduced. It appears
that even elliptic curve cryptography which is considered
presently the most secure and efficient scheme is weak against
quantum computers. Consequently, a need for cryptographic
algorithms robust to quantum computations arose.

The rest of the paper deals initially with the analysis of
symmetric cryptography, asymmetric cryptography and hash
functions. Specifically, an emphasis is given on algorithms
that take advantage of the difficulty to factorize large prime
numbers, as well as the discrete logarithm problem. We move
on by giving an introduction to quantum mechanics and the

challenge of building a true quantum computer. Furthermore,
we introduce two important quantum algorithms that can
have a huge impact in asymmetric cryptography and less in
symmetric, namely Shor’s algorithm and Grover’s algorithm
respectively. Finally, post-quantum cryptography is presented.
Particularly, an emphasis is given on the analysis of quantum
key distribution and some mathematical based solutions such
as lattice-based cryptography, multivariate-based cryptography,
hash-based signatures, and code-based cryptography.

II. PRESENT CRYPTOGRAPHY

In this chapter we explain briefly the role of symmetric
algorithms, asymmetric algorithms and hash functions in mod-
ern cryptography. We analyze the difficulty of factorizing large
numbers, as well as the discrete logarithm problem which is
the basis of strong asymmetric ciphers.

A. Symmetric Cryptography

In symmetric cryptography, the sender and the receiver use
the same secret key and the same cryptographic algorithm to
encrypt and decrypt data. For example, Alice can encrypt a
plaintext message using her shared secret key and Bob can
decrypt the message using the same cryptographic algorithm
Alice used and the same shared secret key. The key needs to
be kept secret, meaning that only Alice and Bob should know
it; therefore, an efficient way for exchanging secret keys over
public networks is demanded. Asymmetric cryptography was
introduced to solve the problem of key distribution in sym-
metric cryptography. Popular symmetric algorithms include the
advanced encryption standard (AES) and the data encryption
standard (3DES).

B. Asymmetric Cryptography

Asymmetric cryptography or public key cryptography
(PKC) is a form of encryption where the keys come in pairs.
Each party should have its own private and public key. For
instance, if Bob wants to encrypt a message, Alice would
send her public key to Bob and then Bob can encrypt the
message with Alice’s public key. Next, Bob would transmit
the encrypted message to Alice who is able to decrypt the
message with her private key. Thus, we encrypt the message
with a public key and only the person who owns the private
key can decrypt the message.

Asymmetric cryptography additionally is used for digital
signatures. For example, Alice can sign a document digitally
with her private key and Bob can verify the signature with
Alice’s known public key. The security of PKC rests on

www.ijacsa.thesai.org 1 | P a g e

ar
X

iv
:1

80
4.

00
20

0v
1

 [
cs

.C
R

]
 3

1
M

ar
 2

01
8

127

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

computational problems such as the difficulty of factorizing
large prime numbers and the discrete logarithm problem. Such
kind of algorithms are called one-way functions because they
are easy to compute in one direction but the inversion is
difficult [1].

1) Factorization Problem - RSA Cryptosystem: One of
the most important public-key schemes is RSA invented by
Ronald Rivest, Adi Shamir, and Leonard Adleman in 1977.
RSA exploits the difficulty of factorizing bi-prime numbers.
According to Paar and Pelzl [2], RSA and in general asymmet-
ric algorithms are not meant to replace symmetric algorithms
because they are computationally costly. RSA is mainly used
for secure key exchange between end nodes and often used
together with symmetric algorithms such as AES, where the
symmetric algorithm does the actual data encryption and de-
cryption. Kirsch [3] stated that RSA is theoretically vulnerable
if a fast factorizing algorithm is introduced or huge increase
in computation power can exist. The latter can be achieved
with the use of quantum mechanics on computers, known as
quantum-computers.

2) Discrete Logarithm Problem (DLP): Asymmetric cryp-
tographic systems such as Diffie-Hellman (DH) and Elliptic
Curve Cryptography (ECC) are based on DLP. The difficulty
of breaking these cryptosystems is based on the difficulty
in determining the integer r such that gr = x mod p. The
integer r is called the discrete logarithm problem of x to the
base g, and we can write it as r = logg x mod p. The discrete
logarithm problem is a very hard problem to compute if the
parameters are large enough.

Diffie-Hellman is an asymmetric cipher that uses the afore-
mentioned property to transmit keys securely over a public
network. Recently, keys larger or equal to 2048 bits are
recommended for secure key exchange. In addition, another
family of public key algorithms known as Elliptic Curve
Cryptography is extensively used. ECC provides the same
level of security as RSA and DLP systems with shorter key
operands which makes it convenient to be used by systems
of low computational resources. ECC uses a pair (x, y) that
fits into the equation y2 = x3 + ax + b mod p together with
an imaginary point Θ (theta) at infinity, where a, b ∈ Zp and
4a3 + 27b2 6= 0 mod p [2]. ECC needs a cyclic Group G and
the primitive elements we use, or pair elements, to be of order
G. ECC is considered the most secure and efficient asymmetric
cryptosystem, but this tends to change with the introduction of
quantum computers as it is explained in the next sections.

III. QUANTUM COMPUTING VS CLASSICAL COMPUTING

In 1982, Richard Feynman came up with the idea of
quantum computer, a computer that uses the effects of quantum
mechanics to its advantage. Quantum mechanics is related to
microscopic physical phenomena and their strange behavior.
In a traditional computer the fundamental blocks are called
bits and can be observed only in two states; 0 and 1. Quantum
computers instead use quantum bits also usually referred as
qubits [4]. In a sense, qubits are particles that can exist not only
in the 0 and 1 state but in both simultaneously, known as super-
position. A particle collapses into one of these states when it is
inspected. Quantum computers take advantage of this property
mentioned to solve complex problems. An operation on a qubit

in superposition acts on both values at the same time. Another
physical phenomenon used in quantum computing is quantum
entanglement. When two qubits are entangled their quantum
state can no longer be described independently of each other,
but as a single object with four different states. In addition,
if one of the two qubits state change the entangled qubit will
change too regardless of the distance between them. This leads
to true parallel processing power [5]. The combination of the
aforementioned phenomena result in exponential increase in
the number of values that can be processed in one operation,
when the number of entanglement qubits increase. Therefore,
a n-qubit quantum computer can process 2n operations in
parallel.

Two kinds of quantum computers exists; universal and
non-universal. The main difference between the two is that
universal quantum computers are developed to perform any
given task, whereas non-universal quantum computers are
developed for a given purpose (e.g., optimization of machine
learning algorithms). Examples are, D-Wave’s 2000+ qubits
non-universal quantum computer [6] and IBM’s 17 qubits
universal quantum computer with proper error correction.
IBM’s quantum computer is currently the state of the art
of universal quantum computers [7]. Both D-Wave and IBM
have quantum computers accessible online for research pur-
poses. Additionally, in October 2017, Intel in collaboration
with QuTech announced their 17-qubits universal quantum
computer [7].

Bone and Castro [8] stated that a quantum computer is
completely different in design than a classical computer that
uses the traditional transistors and diodes. Researchers have
experimented with many different designs such as quantum
dots which are basically electrons being in a superposition
state, and computing liquids. Besides, they remarked that
quantum computers can show their superiority over the clas-
sical computers only when used with algorithms that exploit
the power of quantum parallelism. For example, a quantum
computer would not be any faster than a traditional computer
in multiplication.

A. Challenges in Quantum Computing

There are many challenges in quantum computing that
many researchers are working on.

• Quantum algorithms are mainly probabilistic. This
means that in one operation a quantum computer
returns many solutions where only one is the correct.
This trial and error for measuring and verifying the
correct answer weakens the advantage of quantum
computing speed [3].

• Qubits are susceptible to errors. They can be affected
by heat, noise in the environment, as well as stray
electromagnetic couplings. Classical computers are
susceptible to bit-flips (a zero can become one and
vise versa). Qubits suffer from bit-flips as well as
phase errors. Direct inspection for errors should be
avoided as it will cause the value to collapse, leaving
its superposition state.

• Another challenge is the difficulty of coherence.
Qubits can retain their quantum state for a short period

www.ijacsa.thesai.org 2 | P a g e

128

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

of time. Researchers at the University of New South
Wales in Australia have created two different types
of qubits (Phosphorous atom and an Artificial atom)
and by putting them into a tiny silicon (silicon 28)
they were able to elliminate the magnetic noise that
makes them prone to errors. Additionally, they stated
that the Phosphorous atom has 99.99% accuracy which
accounts for 1 error every 10,000 quantum operations
[9]. Their qubits can remain in superposition for a
total of 35 seconds which is considered a world record
[10]. Moreover, to achieve long coherence qubits need
not only to be isolated from the external world but to
be kept in temperatures reaching the absolute zero.
However, this isolation makes it difficult to control
them without contributing additional noise [3].

IBM in 2017, introduced the definition of Quantum Volume.
Quantum volume is a metric to measure how powerful a
quantum computer is based on how many qubits it has, how
good is the error correction on these qubits, and the number of
operations that can be done in parallel. Increase in the number
of qubit does not improve a quantum computer if the error rate
is high. However, improving the error rate would result in a
more powerful quantum computer [11].

IV. CRYPTOSYSTEMS VULNERABLE TO QUANTUM
ALGORITHMS

This section discusses the impact of quantum algorithms
on present cryptography and gives an introduction to Shor’s
algorithm and Grover’s algorithm. Note that Shor’s algorithm
explained in the following subsection makes the algorithms
that rely on the difficulty of factorizing or computing discrete
logarithms vulnerable.

Cryptography plays an important role in every electronic
communication system today. For example the security of
emails, passwords, financial transactions, or even electronic
voting systems require the same security objectives such as
confidentiality and integrity [12]. Cryptography makes sure
that only parties that have exchanged keys can read the
encrypted message (also called authentic parties). Quantum
computers threaten the main goal of every secure and authentic
communication because they are able to do computations
that classical (conventional) computers cannot. Consequently,
quantum computers can break the cryptographic keys quickly
by calculating or searching exhaustively all secret keys, allow-
ing an eavesdropper to intercept the communication channel
between authentic parties (sender/receiver). This task is consid-
ered to be computational infeasible by a conventional computer
[13].

According to NIST, quantum computers will bring the end
of the current public key encryption schemes [14]. Table I
adapted from NIST shows the impact of quantum computing
on present cryptographic schemes.

A. Shor’s Algorithm in Asymmetric Cryptography

In 1994, the mathematician Peter Shor in his paper “Al-
gorithms for Quantum Computation: Discrete Logarithms and
Factoring” [15], proved that factorizing large integers would
change fundamentally with a quantum computer.

Shor’s algorithm can make modern asymmetric cryptog-
raphy collapse since is it based on large prime integer fac-
torization or the discrete logarithm problem. To understand
how Shor’s algorithm factorizes large prime numbers we use
the following example. We want to find the prime factors of
number 15. To do so, we need a 4-qubit register. We can
visualize a 4-qubit register as a normal 4-bit register of a
traditional computer. Number 15 in binary is 1111, so a 4-
qubit register is enough to accommodate (calculate) the prime
factorization of this number. According to Bone and Castro
[8], a calculation performed on the register can be thought as
computations done in parallel for every possible value that the
register can take (0-15). This is also the only step needed to
be performed on a quantum computer.

The algorithm does the following:

• n = 15, is the number we want to factorize

• x = random number such as 1 < x < n− 1

• x is raised to the power contained in the register (every
possible state) and then divided by n
The remainder from this operation is stored in a sec-
ond 4-qubit register. The second register now contains
the superposition results. Let’s assume that x = 2
which is larger than 1 and smaller than 14.

• If we raise x to the powers of the 4-qubit register
which is a maximum of 15 and divide by 15, the
remainders are shown in Table II.
What we observe in the results is a repeating sequence
of 4 numbers (1,2,4,8). We can confidently say then
that f = 4 which is the sequence when x = 2 and n =
15. The value f can be used to calculate a possible
factor with the following equation:
Possible factor: P = xf/2 − 1

In case we get a result which is not a prime number we
repeat the calculation with different f values.

Shor’s algorithm can be used additionally for computing
discrete logarithm problems. Vazirani [16] explored in detail
the methodology of Shor’s algorithm and showed that by
starting from a random superposition state of two integers,
and by performing a series of Fourier transformations, a new
superposition can be set-up to give us with high probability
two integers that satisfy an equation. By using this equation
we can calculate the value r which is the unknown ”exponent”
in the DLP.

B. Grover’s algorithm in Symmetric Cryptography

Lov Grover created an algorithm that uses quantum com-
puters to search unsorted databases [17]. The algorithm can
find a specific entry in an unsorted database of N entries in√
N searches. In comparison, a conventional computer would

need N/2 searches to find the same entry. Bone and Castro
[8] remarked the impact of a possible application of Grover’s
algorithm to crack Data Encryption Standard (DES), which
relies its security on a 56-bit key. The authors remarked that
the algorithm needs only 185 searches to find the key.

Currently, to prevent password cracking we increase the
number of key bits (larger key space); as a result, the number of

www.ijacsa.thesai.org 3 | P a g e

129

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

TABLE I. IMPACT ANALYSIS OF QUANTUM COMPUTING ON ENCRYPTION SCHEMES (ADAPTED FROM [14])

Cryptographic Algorithm Type Purpose Impact From Quantum
Computer

AES-256 Symmetric key Encryption Secure
SHA-256, SHA-3 – Hash functions Secure
RSA Public key Signatures, key establishment No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography) Public key Signatures, key exchange No longer secure
DSA (Finite Field Cryptography) Public key Signatures, key exchange No longer secure

TABLE II. 4-QUBIT REGISTERS WITH REMAINDERS

Register 1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Register 2: 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

searches needed to crack a password increases exponentially.
Buchmann et al. [18] stated that Grover’s algorithm have some
applications to symmetric cryptosystems but it is not as fast
as Shor’s algorithm.

C. Asymmetric Encryption Schemes Affected

All public key algorithms used today are based on two
mathematical problems, the aforementioned factorization of
large numbers (e.g., RSA) and the calculation of discrete
logarithms (e.g., DSA signatures and ElGamal encryption).
Both have similar mathematical structure and can be broken
with Shor’s algorithm rapidly. Recent algorithms based on
elliptic curves (such as ECDSA) use a modification of the
discrete logarithm problem that makes them equally weak
against quantum computers. Kirsch and Chow [3] mentioned
that a modified Shor’s algorithm can be used to decrypt data
encrypted with ECC. In addition, they emphasized that the
relatively small key space of ECC compared to RSA makes it
easier to be broken by quantum computers. Furthermore, Proos
and Zalka [19] explained that 160-bit elliptic curves could be
broken by a 1000-qubit quantum computer, while factorizing
1024-bit RSA would require a 2000-qubit quantum computer.
The number of qubits needed to break a cryptosystem is
relative to the algorithm proposed. In addition, they show in
some detail how to use Shor’s algorithm to break ECC over
GF(p).

On the other hand, Grover’s algorithm is a threat only to
some symmetric cryptographic schemes. NIST [14] points out
that if the key sizes are sufficient, symmetric cryptographic
schemes (specifically the Advanced Encryption Standard-AES)
are resistant to quantum computers. Another aspect to be taken
into consideration is the robustness of algorithms against quan-
tum computing attacks also known as quantum cryptanalysis.

In table III, a comparison of classical and quantum security
levels for the most used cryptographic schemes is presented.

D. Symmetric Encryption Schemes Affected

For symmetric cryptography quantum computing is con-
sidered a minor threat. The only known threat is Grover’s
algorithm that offers a square root speed-up over classical brute
force algorithms. For example, for a n-bit cipher the quantum
computer operates on (

√
2n = 2n/2). In practice, this means

that a symmetric cipher with a key length of 128-bit (e.g.,
AES-128) would provide a security level of 64-bit. We recall

here that security level of 80-bit is considered secure. The
Advanced Encryption Standard (AES) is considered to be one
of the cryptographic primitives that is resilient in quantum
computations, but only when is used with key sizes of 192
or 256 bits. Another indicator of the security of AES in the
post-quantum era is that NSA (The National Security Agency)
allows AES cipher to secure (protect) classified information
for security levels, SECRET and TOP SECRET, but only with
key sizes of 192 and 256 bits [20].

TABLE III. COMPARISON OF CLASSICAL AND QUANTUM SECURITY
LEVELS FOR THE MOST USED CRYPTOGRAPHIC SCHEMES

Effective Key Strength/Security Level (in bits)Crypto Scheme Key Size Classical Computing Quantum Computing
RSA-1024 1024 80 0
RSA-2048 2048 112 0
ECC-256 256 128 0
ECC-384 384 256 0
AES-128 128 128 64
AES-256 256 256 128

E. Hash Functions

The family of hash functions suffer from a similar problem
as symmetric ciphers since their security depends on a fixed
output length. Grover’s algorithm can be utilized to find a
collision in a hash function in square root steps of its original
length (it is like searching an unsorted database). In addition,
it has been proved that it is possible to combine Grover’s
algorithm with the birthday paradox. Brassard et al. [21]
described a quantum birthday attack. By creating a table of
size 3

√
N and utilizing Grover’s algorithm to find a collision

an attack is said to work effectively. This means that to provide
a b− bit security level against Grover’s quantum algorithm a
hash function must provide at least a 3b − bit output. As a
result, many of the present hash algorithms are disqualified
for use in the quantum era. However, both SHA-2 and SHA-3
with longer outputs, remain quantum resistant.

V. POST-QUANTUM CRYPTOGRAPHY

The goal of post-quantum cryptography (also known as
quantum-resistant cryptography) is to develop cryptographic
systems that are secure against both quantum and conventional
computers and can interoperate with existing communication
protocols and networks [14]. Many post-quantum public key
candidates are actively investigated the last years. In 2016,
NIST announced a call for proposals of algorithms that are
believed to be quantum resilient with a deadline in November

www.ijacsa.thesai.org 4 | P a g e

130

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

2017. In January 2018, NIST published the results of the first
round. In total 82 algorithms were proposed from which 59
are encryption or key exchange schemes and 23 are signature
schemes. After 3 to 5 years of analysis NIST will report the
findings and prepare a draft of standards [22]. Furthermore,
the National Security Agency (NSA) has already announced
plans to migrate their cryptographic standards to post-quantum
cryptography [23].

The cryptographic algorithms presented in this section
do not rely on the hidden subgroup problem (HSP) such
as factorizing integers or computing discrete logarithms, but
different complex mathematical problems.

A. Quantum Key Distribution

Quantum Key Distribution (QKD) addresses the challenge
of securely exchanging a cryptographic key between two par-
ties over an insecure channel. QKD relies on the fundamental
characteristics of quantum mechanics which are invulnerable
to increasing computational power, and may be performed by
using the quantum properties of light, lasers, fibre-optics as
well as free space transmission technology. QKD was first
introduced in 1984 when Charles Bennett and Gilles Brassard
developed their BB84 protocol [24, 25]. Research has led to the
development of many new QKD protocols exploiting mainly
two different properties that are described right below.

Prepare-and-measure (P&M) protocols use the Heisenberg
Uncertainty principle [26] stating that the measuring act of
a quantum state changes that state in some way. This makes
it difficult for an attacker to eavesdrop on a communication
channel without leaving any trace. In case of eavesdropping the
legitimate exchange parties are able to discard the corrupted
information as well as to calculate the amount of information
that has been intercepted [27]. This property was exploited in
BB84.

Entanglement based (EB) protocols use pairs of entangled
objects which are shared between two parties. As explained
in III, entanglement is a quantum physical phenomenon which
links two or more objects together in such a way that after-
wards they have to be considered as one object. Additionally,
measuring one of the objects would affect the other as well. In
practice when an entangled pair of objects is shared between
two legitimate exchange parties anyone intercepting either
object would alter the overall system. This would reveal the
presence of an attacker along with the amount of information
that the attacker retrieved. This property was exploited in E91
[28] protocol.

Both of the above-mentioned approaches are additionally
divided into three families; discrete variable coding, continuous
variable coding and distributed phase reference coding. The
main difference between these families is the type of detecting
system used. Both discrete variable coding and distributed
phase reference coding use photon counting and post-select
the events in which a detection has effectively taken place
[29]. Continuous variable coding uses homodyne detection
[29] which is a comparison of modulation of a single frequency
of an oscillating signal with a standard oscillation.

A concise list of QKD protocols for the aforementioned
families is presented below.

Discrete variable coding protocols:

• BB84 [24, 25] - the first QKD protocol that uses four
non-orthogonal polarized single photon states or low-
intensity light pulses. A detailed description of this
protocol is given below.

• BBM [30] - is an entanglement based version of BB84.

• E91 [28] - is based on the gedanken experiment [31]
and the generalized Bell’s theorem [32]. In addition,
it can be considered an extension of Bennett and
Brassard’s (authors of BB84) original idea.

• SARG04 [33, 34] - is similar to BB84 but instead of
using the state to code the bits, the bases are used.
SARG04 is more robust than BB84 against the photon
number splitting (PNS) attack.

• Six state protocol [35–37] - is a version of BB84
that uses a six-state polarization scheme on three
orthogonal bases.

• Six state version of the SARG04 coding [38].

• Singapore protocol [39] - is a tomographic protocol
that is more efficient than the Six state protocol.

• B92 protocol [40] - two non-orthogonal quantum
states using low-intensity coherent light pulses.

Continuous variable coding protocols:

• Gaussian protocols
◦ Continuous variable version of BB84 [41]
◦ Continuous variable using coherent states [42]
◦ Coherent state QKD protocol [43] - based on

simultaneous quadrature measurements.
◦ Coherent state QKD protocol [44] - based

on the generation and transmission of random
distributions of coherent or squeezed states.

• Discrete-modulation protocols
◦ First continuous variable protocol based on

coherent states instead of squeezed states [45].

Distributed phase reference coding protocols:

• Differential Phase Shift (DPS) Quantum Key Distri-
bution (QKD) protocol [46, 47] - uses a single photon
in superposition state of three basis kets, where the
phase difference between two sequential pulses carries
bit information.

• Coherent One Way (COW) protocol [48, 49] - the key
is obtained by a time-of-arrival measurement on the
data line (raw key). Additionally, an interferometer is
built on a monitoring line, allowing to monitor the
presence of an intruder. A prototype was presented in
2008 [50].

Discrete variable coding protocols are the most widely im-
plemented, whereas the continuous variable and distributed
phase reference coding protocols are mainly concerned with
overcoming practical limitations of experiments.

www.ijacsa.thesai.org 5 | P a g e

131

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

1) BB84 protocol: BB84 is the first quantum cryptographic
protocol (QKD scheme) which is still in use today. According
to Mayers [51] BB84 is provable secure, explaining that a
secure key sequence can be generated whenever the channel
bit error rate is less than about 7% [52]. BB84 exploits the
polarization of light for creating random sequence of qubits
(key) that are transmitted through a quantum channel.

BB84 uses two different bases, base 1 is polarized 0o

(horizontal) or 90o (vertical) with 0o equal to 0 and 90o equal
to 1. Base 2 is polarized 45o or 135o with 45o equal to 1 and
135o equal to 0. Alice begins by sending a photon in one of
the two bases having a value of 0 or 1. Both the base and
the value should be chosen randomly. Next, Bob selects the
base 1 or 2 and measures a value without knowing which base
Alice has used. The key exchange process continues until they
have generated enough bits. Furthermore, Bob tells Alice the
sequence of the bases he used but not the values he measured
and Alice informs Bob whether the chosen bases were right
or wrong. If the base is right, Alice and Bob have equal bits,
whereas if it is wrong the bits are discarded. In addition, any
bits that did not make it to the destination are discarded by
Alice. Now Alice can use the key that they just exchanged to
encode the message and send it to Bob. BB84 is illustrated
visually in Figure 1.

Worthy to mentioning is that this method of communication
was broken by Lydersen et al. in 2010 [53]. Their experiment
proved that although BB84 is provable secure the actual
hardware implemented is not. The authors managed to inspect
the secret key without the receiver noticing it by blinding the
APD-based detector (avalanche photodiode).

Yuan et al. [54] proposed improvements to mitigate blind-
ing attacks, such as monitoring the photocurrent for anoma-
lously high values. Lydersen et al. [55] after taking into
consideration the improvements of Yuan et al. [54] succeeded
again to reveal the secret key without leaving any traces.

2) Photon Number Splitting Attack: The crucial issue in
quantum key distribution is its security. In addition to noise in
the quantum channel, the equipment is impractical to produce
and detect single photons. Therefore, in practice, laser pulses
are used. Producing multiple photons opens up a new attack
known as Photon Number Splitting (PNS) attack. In PNS
attack, an attacker (Eve) deterministically splits a photon off of
the signal and stores it in a quantum memory which does not
modify the polarisation of the photons. The remaining photons
are allowed to pass and are transmitted to the receiver (Bob).
Next, Bob measures the photons and the sender (Alice) has to
reveal the encoding bases. Eve will then be able to measure
all captured photons on a correct bases. Consequently, Eve
will obtain information about the secret key from all signals
containing more than one photon without being noticed [57].

Different solutions have been proposed for mitigating PNS
attacks. The most promising solution developed by Lo et al.
[58] uses decoy states to detect PNS attacks. This is achieved
by sending randomly laser pulses with a lower average photon
number. Thereafter, Eve cannot distinguish between decoyed
signals and non-decoyed signals. This method works for both
single and multi-photon pulses [59].

B. Mathematically-based Solutions

There are many alternative mathematical problems to those
used in RSA, DH and ECDSA that have already been imple-
mented as public key cryptographic schemes, and for which
the Hidden Subgroup Problem (HSP) [60] does not apply;
therefore, they appear to be quantum resistant.

The most researched mathematical-based implementations
are the following:

• Lattice-based cryptography [61]

• Multivariate-based cryptography [62]

• Hash-based signatures [63]

• Code-based cryptography [64]

The existing alternatives and new schemes emerging from
these areas of mathematics do not all necessarily satisfy the
characteristics of an ideal scheme. In the following subsections
we are going to give an overview of these cryptographic
schemes.

1) Lattice-based Cryptography: This is a form of public-
key cryptography that avoids the weaknesses of RSA. Rather
than multiplying primes, lattice-based encryption schemes in-
volve multiplying matrices. Furthermore, lattice-based cryp-
tographic constructions are based on the presumed hardness
of lattice problems, the most basic of which is the shortest
vector problem (SVP) [61]. Here, we are given as input a
lattice represented by an arbitrary basis and our goal is to
output the shortest non-zero vector in it.

The Ajtai-Dwork (AD) [65], Goldreich-Goldwasser-Halevi
(GGH) [66] and NTRU [67] encryption schemes that are
explained below are lattice-based cryptosystems.

In 1997, Ajtai and Dwork[65] found the first connection
between the worst and the average case complexity of the
Shortest Vector Problem (SVP). They claimed that their cryp-
tosystem is provably secure, but in 1998, Nguyen and Ster
[68] refuted it. Furthermore, the AD public key is big and it
causes message expansion making it an unrealistic public key
candidate in post-quantum era.

The Goldreich-Goldwasser-Halevi (GGH) was published in
1997. GGH makes use of the Closest Vector Problem (CVP)
which is known to be NP-hard. Despite the fact that GGH is
more efficient than Ajtai-Dwork (AD), in 1999, Nguyen[69]
proved that GGH has a major flaw; partial information on
plaintexts can be recovered by solving CVP instances.

NTRU was published in 1996 by Hoffstein et al. [67].
It is used for both encryption (NTRUEncrypt) and digital
signature (NTRUSign) schemes. NTRU relies on the difficulty
of factorizing certain polynomials making it resistant against
Shor’s algorithm. To provide 128-bit post-quantum security
level NTRU demands 12881-bit keys [70]. As of today there
is not any known attack for NTRU.

In 2013, Damien Stehle and Ron Steinfeld developed a
provably secure version of NTRU (SS-NTRU) [71].

In May 2016, Bernstein et al. [72] released a new version of
NTRU called ”NTRU Prime”. NTRU Prime countermeasures

www.ijacsa.thesai.org 6 | P a g e

132

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

Fig. 1. Key exchange in the BB84 protocol implemented with polarization of photons (adapted from [56]).

the weaknesses of several lattice based cryptosystems, includ-
ing NTRU, by using different more secure ring structures.

In conclusion, among all the lattice-based candidates men-
tioned above NTRU is the most efficient and secure algorithm
making it a promising candidate for the post-quantum era.

2) Multivariate-based Cryptography: The security of this
public key scheme relies on the difficulty of solving systems
of multivariate polynomials over finite fields. Research has
shown that development of an encryption algorithm based on
multivariate equations is difficult [13]. Multivariate cryptosys-
tems can be used both for encryption and digital signatures.
Tao et al. [73] explained that there have been several attempts
to build asymmetric pubic key encryption schemes based on
multivariate polynomials; however, most of them are insecure
because of the fact that certain quadratic forms associated with
their central maps have low rank. The authors [73] proposed
a new efficient multivariate scheme, namely Simple Matrix
(ABC), based on matrix multiplication that overcomes the
aforementioned weakness. In addition, multivariate cryptosys-
tems can be used for digitals signatures. The most promis-
ing signature schemes include Unbalanced Oil and Vinegar
(multivariate quadratic equations), and Rainbow. UOV has a
large ratio between the number of variables and equations (3:1)
making the signatures three times longer than the hash values.
In addition, the public key sizes are large. On the other hand,
Rainbow is more efficient by using smaller ratios which result
in smaller digital signatures and key sizes [12].

3) Hash-based Signatures: In this subsection, we introduce
the Lamport signature scheme invented in 1979 by Leslie Lam-
port. Buchmann et al. [18] introduced concisely the scheme.
A parameter b defines the desired security level of our system.
For 128-bit b security level we need a secure hash function

that takes arbitrary length input and produces 256-bit length
output; thus, SHA-256 is considered an optimal solution that
can be fitted with our message m.

Private key: A random number generator is used to
produce 256 pairs of random numbers. Each number is 256
bits. In total our generated numbers are 2×256×256 = 16 KB.
Therefore, we can precisely say that the private key consists
of 8b2 bits.

Public key: All generated numbers (private key) are hashed
independently creating 512 different hashes (256 pairs) of 256-
bit length each. Therefore, we can precisely say that the public
key consists of 8b2 bits.

The next step is to sign the message. We have a hashed
message m and then for each bit (depending on its value 0 or
1) of the message digest we choose one number from each
pair that comprise the private key. As a result, we have a
sequence of 256 numbers (relative to the bit sequence of the
hashed message m). The sequence of numbers is the digital
signature published along with the plaintext message. It is
worth noting that the private key should never be used again
and the remaining 256 numbers from the pairs should be
destroyed (Lamport one-time signature).

The verification process is straightforward. The recipient
calculates the hash of the message and then, for each bit of
the hashed message we choose the corresponding hash from
the public key (512 in number). In addition, the recipient
hashes each number of the sender’s private key which should
correspond to the same sequence of hashed values with the
recipients correctly chosen public key values. The security of
this system derives by the decision of using the private key
only once. Consequently, an adversary can only retrieve 50
percent of the private key which makes it impossible to forge

www.ijacsa.thesai.org 7 | P a g e

133

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

a new valid signature.

Buchmann et al. [18] explained that in case we want to
sign more than one messages, chaining can be introduced. The
signer includes in the signed message a newly generated public
key that is used to verify the next message received.

Witernitz described a one time signature (WOTS) which is
more efficient than Lamport’s. Specifically, the signature size
and the keys are smaller [74]. However, OTSs are not suitable
for large-scale use because they can be used only once.

Merkle introduced a new approach that combines Witer-
nitz’s OTS with binary trees (Merkle Signature Scheme). A
binary tree is made of nodes. In our case each node represents
the hash value of the concatenation of the child nodes. Each
of the leaf nodes (lowest nodes in the tree hierarchy) contains
a Witernitz’s OTS which is used for signing. The first node
in the hierarchy of the tree known as root node is the actual
public key that can verify the OTSs contained in the leaf nodes
[74].

In 2013, A. Hulsing improved the WOTS algorithm by
making it more efficient without affecting its security level
even when hash functions without collision resistance are used
[75].

Currently two hash-based signature schemes are under
evaluation for standardization. Specifically, the eXtended
Merkle Signature Scheme (XMSS) [76] which is a stateful
signature scheme, and Stateless Practical Hash-based Incredi-
bly Nice Collision-resilient Signatures (SPHINCS) [77] which
is as the name indicates a stateless signature scheme.

4) Code-based Cryptography: Code-based cryptography
refers to cryptosystems that make use of error correcting codes.
The algorithms are based on the difficulty of decoding linear
codes and are considered robust to quantum attacks when
the key sizes are increased by the factor of 4. Furthermore,
Buchmann et al. [18] state that the best way to solve the
decoding problem is to transform it to a Low-Weight-Code-
World Problem (LWCWP) but solving a LWCWP in large
dimensions is considered infeasible. It would be easier to
comprehend the process of this scheme by using Buchmann’s
[18] concise explanation of McEliece’s original code-based
public-key encryption system. We define b as the security
of our system and it is a power of 2. n = 4b lg b, d =
lg n, and t = 0.5n/d.

For example, if b = 128 then n = 512 log2(128) which is
equal to 3584. d = 12 and t = 149. The receiver’s public key
in this system is dtn matrix K with coefficients F2. Messages
to be encrypted should have exactly t bits set to 1 and for
the encryption the message m is multiplied by K. The receiver
generates a public key with a hidden Goppa code structure
(error-correction code) that allows to decode the message with
Patterson’s algorithm, or even by faster algorithms. The code’s
generator matrix K is perturbated by two invertible matrices
which are used to decrypt the ciphertext to obtain the message
m.

As for any other class of cryptosystems, the practice of
code-based cryptography is a trade-off between efficiency and
security. McEliece’s cryptosystem encryption and decryption
process are fast with very low complexity, but it makes use of
large public keys (100 kilobytes to several megabytes).

VI. CONCLUSION

In today’s world, where information play a particularly
important role, the transmission and the storage of data must
be maximally secure. Quantum computers pose a significant
risk to both conventional public key algorithms (such as
RSA, ElGamal, ECC and DSA) and symmetric key algorithms
(3DES, AES). Year by year it seems that we are getting closer
to create a fully operational universal quantum computer that
can utilize strong quantum algorithms such as Shor’s algorithm
and Grover’s algorithm. The consequence of this technological
advancement is the absolute collapse of the present public
key algorithms that are considered secure, such as RSA and
Elliptic Curve Cryptosystems. The answer on that threat is
the introduction of cryptographic schemes resistant to quantum
computing, such as quantum key distribution methods like the
BB84 protocol, and mathematical-based solutions like lattice-
based cryptography, hash-based signatures, and code-based
cryptography.

ACKNOWLEDGMENT

This research is supported by the Research Council of Nor-
way under the Grant No.: IKTPLUSS 247648 and 248030/O70
for Oslo Analytics and SWAN projects, respectively. This
research is also part of the SecurityLab of the University of
Oslo.

REFERENCES

[1] M. Dušek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,”
Progress in Optics, vol. 49, pp. 381–454, 2006.

[2] C. Paar and J. Pelzl, “Introduction to Public-Key Cryptography,” in
Understanding Cryptography. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 149–171.

[3] Z. Kirsch, “Quantum Computing: The Risk to Existing Encryption
Methods,” Ph.D. dissertation, Tufts University, Massachusetts, 2015,
http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

[5] R. Jozsa, “Entanglement and Quantum Computation,” in Geometric
Issues in the Foundations of Science, S. Huggett, L. Mason, K. Tod,
S. Tsou, and N. Woodhouse, Eds. Oxford University Press, July 1997.

[6] W. Tichy, “Is quantum computing for real?: An interview with
catherine mcgeoch of d-wave systems,” Ubiquity, vol. 2017,
no. July, pp. 2:1–2:20, Jul. 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3084688

[7] M. Soeken, T. Häner, and M. Roetteler, “Programming quantum com-
puters using design automation,” arXiv preprint arXiv:1803.01022,
2018.

[8] S. Bone and M. Castro, “A Brief History of Quantum Computing,”
Surveys and Presentations in Information Systems Engineering (SUR-
PRISE), vol. 4, no. 3, pp. 20–45, 1997, http://www.doc.ic.ac.uk/∼nd/
surprise 97/journal/vol4/spb3/.

[9] J. Muhonen and T. Dehollain, “Storing Quantum Information For 30
Seconds In a Nanoelectronic Device,” Nature Nanotechnology, vol. 9,
pp. 986–991, 2014.

[10] D-Wave, “Quantum Computing: How D-Wave Systems Work,” http:
//www.dwavesys.com/our-company/meet-d-wave.

[11] L. S. Bishop, S. Bravyi, A. Cross, J. M. Gambetta, and J. Smolin,
“Quantum volume,” Technical report, 2017., Tech. Rep., 2017.

[12] M. Campagna and C. Xing, “Quantum Safe Cryptography and Security:
An Introduction, Benefits, Enablers and Challenges,” ETSI, Tech.
Rep. 8, 2015.

www.ijacsa.thesai.org 8 | P a g e

134

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

[13] W. Buchanan and A. Woodward, “Will Quantum Computers be the
End of Public Key Encryption?” Journal of Cyber Security Technology,
vol. 1, no. 1, pp. 1–22, 2016.

[14] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “NIST: Report on Post-Quantum Cryptography,” NIST,
Tech. Rep., 2016.

[15] P. W. Shor, “Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring,” in Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, ser. SFCS ’94. Washington, DC,
USA: IEEE Computer Society, 1994, pp. 124–134.

[16] U. Vazirani, “On The Power of Quantum Computation,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, vol. 356, no. 1743, pp. 1759–1768, 1998.

[17] L. Grover, “A Fast Quantum Mechanical Algorithm For Database
Search,” Bell Labs, New Jersey, Tech. Rep., 1996.

[18] D. Bernstein, E. Dahmen, and Buch, Introduction to Post-Quantum
Cryptography. Springer-Verlag Berlin Heidelberg, 2010.

[19] J. Proos and C. Zalka, “Shor’s Discrete Logarithm Quantum Algorithm
for Elliptic Curves,” Quantum Info. Comput., vol. 3, no. 4, pp. 317–344,
2003.

[20] National Security Agency, “National Policy on the Use of the Advanced
Encryption Standard (AES) to Protect National Security Systems and
National Security Information,” NSA, Tech. Rep., 2003.

[21] G. Brassard, P. Høyer, and A. Tapp, Quantum Cryptanalysis of Hash and
Claw-Free Functions. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 163–169.

[22] D. Moody, “The ship has sailed: The nist post-
quantum crypto competition.” [Online]. Available: https:
//csrc.nist.gov/CSRC/media//Projects/Post-Quantum-Cryptography/
documents/asiacrypt-2017-moody-pqc.pdf

[23] N. Koblitz and A. Menezes, “A riddle wrapped in an enigma,” IEEE
Security Privacy, vol. 14, no. 6, pp. 34–42, Nov 2016.

[24] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key
Distribution, and Coin-Tossing,” in Proc. 1984 IEEE International
Conference on Computers, Systems, and Signal Processing, no. 560,
1984, pp. 175–179.

[25] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin,
“Experimental Quantum Cryptography,” Journal of Cryptology, vol. 5,
no. 1, pp. 3–28, 1992.

[26] E. Panarella, “Heisenberg uncertainty principle,” in Annales de la
Fondation Louis de Broglie, vol. 12, no. 2, 1987, pp. 165–193.

[27] H. Singh, D. Gupta, and A. Singh, “Quantum key distribution protocols:
A review,” Journal of Computational Information Systems, vol. 8, pp.
2839–2849, 2012.

[28] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical
review letters, vol. 67, no. 6, p. 661, 1991.

[29] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, “The security of practical quantum key
distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.

[30] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography
without bell’s theorem,” Physical Review Letters, vol. 68, no. 5, p. 557,
1992.

[31] D. Bohm, Quantum theory. Courier Corporation, 1951.
[32] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed

experiment to test local hidden-variable theories,” Physical review
letters, vol. 23, no. 15, p. 880, 1969.

[33] V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography
protocols robust against photon number splitting attacks for weak laser
pulse implementations,” Physical review letters, vol. 92, no. 5, p.
057901, 2004.

[34] A. Acin, N. Gisin, and V. Scarani, “Coherent-pulse implementations
of quantum cryptography protocols resistant to photon-number-splitting
attacks,” Physical Review A, vol. 69, no. 1, p. 012309, 2004.

[35] C. Bennett and G. Brassard, “Quantum cryptography: Public key distri-
bution and coin tossing,” Proceedings of IEEE International Conference
on Computers, Systems and Signal Processing, pp. 175–179, 1984.

[36] D. Bruß, “Optimal eavesdropping in quantum cryptography with six
states,” Physical Review Letters, vol. 81, no. 14, p. 3018, 1998.

[37] H. Bechmann-Pasquinucci and N. Gisin, “Incoherent and coherent
eavesdropping in the six-state protocol of quantum cryptography,”
Physical Review A, vol. 59, no. 6, p. 4238, 1999.

[38] K. Tamaki and H.-K. Lo, “Unconditionally secure key distillation from
multiphotons,” Physical Review A, vol. 73, no. 1, p. 010302, 2006.

[39] B.-G. Englert, D. Kaszlikowski, H. K. Ng, W. K. Chua, J. Řeháček, and
J. Anders, “Efficient and robust quantum key distribution with minimal
state tomography,” arXiv preprint quant-ph/0412075, 2004.

[40] C. H. Bennett, “Quantum cryptography using any two nonorthogonal
states,” Physical review letters, vol. 68, no. 21, p. 3121, 1992.

[41] N. J. Cerf, M. Levy, and G. Van Assche, “Quantum distribution of
gaussian keys using squeezed states,” Physical Review A, vol. 63, no. 5,
p. 052311, 2001.

[42] F. Grosshans and P. Grangier, “Continuous variable quantum cryptog-
raphy using coherent states,” Physical review letters, vol. 88, no. 5, p.
057902, 2002.

[43] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and
P. K. Lam, “Quantum cryptography without switching,” Physical review
letters, vol. 93, no. 17, p. 170504, 2004.

[44] J. Lodewyck, M. Bloch, R. Garcı́a-Patrón, S. Fossier, E. Karpov,
E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W.
McLaughlin et al., “Quantum key distribution over 25 km with an all-
fiber continuous-variable system,” Physical Review A, vol. 76, no. 4, p.
042305, 2007.

[45] C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous
variable quantum cryptography: Beating the 3 db loss limit,” Physical
review letters, vol. 89, no. 16, p. 167901, 2002.

[46] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum
key distribution,” Physical Review Letters, vol. 89, no. 3, p. 037902,
2002.

[47] ——, “Differential-phase-shift quantum key distribution using coherent
light,” Physical Review A, vol. 68, no. 2, p. 022317, 2003.

[48] N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani,
“Towards practical and fast quantum cryptography,” arXiv preprint
quant-ph/0411022, 2004.

[49] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast
and simple one-way quantum key distribution,” Applied Physics Letters,
vol. 87, no. 19, p. 194108, 2005.

[50] D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin,
R. Thew, Y. Thoma, P. Trinkler, F. Vannel et al., “Continuous high speed
coherent one-way quantum key distribution,” Optics express, vol. 17,
no. 16, pp. 13 326–13 334, 2009.

[51] D. Mayers, “Unconditional Security in Quantum Cryptography,” Jour-
nal of the ACM, vol. 48, no. 3, pp. 351–406, 2001.

[52] C. Branciard, N. Gisin, B. Kraus, and V. Scarani, “Security of Two
Quantum Cryptography Protocols Using The Same Four Qubit States,”
Physical Review A, vol. 72, no. 3, p. 032301, sep 2005.

[53] L. Lydersen, C. Wiechers, D. E. C. Wittmann, J. Skaar, and V. Makarov,
“Hacking Commercial Quantum Cryptography Systems by Tailored
Bright Illumination,” Nature Photonics, pp. 686–689., October 2010.

[54] Z. Yuan, J. Dynes, and A. Shields, “Avoiding the Blinding Attack in
QKD,” Nature Photonics, vol. 4, pp. 800–801, December 2010.

[55] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and
V. Makarov, “Avoiding the Blinding Attack in QKD,” Nature Photonics,
vol. 4, pp. 801–801, December 2010.

[56] V. Makarov, “Quantum Cryptography and Quantum Cryptanalysis,”
Ph.D. dissertation, Norwegian University of Science and Technology
Faculty of Information Technology, NTNU, 2007, http://www.vad1.
com/publications/phd-thesis-makarov-200703.pdf.

[57] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Security
aspects of practical quantum cryptography,” in International conference
on the theory and applications of cryptographic techniques. Springer,
2000, pp. 289–299.

[58] H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,”
Physical review letters, vol. 94, no. 23, p. 230504, 2005.

[59] M. Haitjema, “A survey of the prominent quantum key distribution
protocols,” 2007.

[60] S. J. Lomonaco, J. Kauffman, and L. H, “Quantum Hidden Subgroup
Problems: A Mathematical Perspective,” Quantum, pp. 1–63., 2002.

www.ijacsa.thesai.org 9 | P a g e

135

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018

[61] D. Micciancio, “Lattice-Based Cryptography,” in Post-Quantum Cryp-
tography, 2009, no. 015848, pp. 147–192.

[62] J. Ding and B.-Y. Yang, “Multivariate Public Key Cryptography,” Post-
Quantum Cryptography, pp. 193–241, 2009.

[63] C. Dods, N. P. Smart, and M. Stam, “Hash Based Digital Signature
Schemes,” Cryptography and Coding, vol. 3796, pp. 96–115, 2005.

[64] R. Overbeck and N. Sendrier, “Code-based Cryptography,” in Post-
Quantum Cryptography. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 95–145.

[65] M. Ajtai and C. Dwork, “A Public-Key Cryptosystem With Worst-
Case/Average-Case Equivalence,” Proceedings of The 29th Annual ACM
Symposium on Theory of Computing - STOC ’97, pp. 284–293., 1997.

[66] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-Key Cryptosys-
tems from Lattice Reduction Problems,” Advances in Cryptology -
{CRYPTO} ’97, 17th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 1997, Proceedings, vol.
1294, pp. 112–131, 1997.

[67] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring-Based
Public Key Cryptosystem,” Algorithmic number theory, pp. 267–288,
1998.

[68] P. Nguyen and J. Stern, Cryptanalysis of the Ajtai-Dwork Cryptosystem.
Springer Berlin Heidelberg, 1998, pp. 223–242.

[69] P. Nguyen, “Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryp-
tosystem,” Advances in Cryptology - CRYPTO, vol. 1666, pp. 288–304,
1999.

[70] P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte,
Choosing NTRUEncrypt Parameters in Light of Combined Lattice
Reduction and MITM Approaches. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 437–455.

[71] D. Stehle and R. Steinfeld, “Making NTRUEncrypt and NTRUSign
as Secure as Standard Worst-Case Problems over Ideal Lattices,”
Cryptology ePrint Archive, Report 2013/004, 2013.

[72] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal,
“NTRU Prime,” IACR Cryptology ePrint Archive, vol. 2016, p. 461,
2016.

[73] C. Tao, A. Diene, S. Tang, and J. Ding, “Simple Matrix Scheme for En-
cryption,” in International Workshop on Post-Quantum Cryptography.
Springer, 2013, pp. 231–242.

[74] R. C. Merkle, A Certified Digital Signature. New York, NY: Springer
New York, 1990, pp. 218–238.

[75] H. Andreas, W-OTS+ –Shorter Signatures for Hash-Based Signature
Schemes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
173–188.

[76] J. Buchmann, E. Dahmen, and A. Hülsing, “XMSS-a Practical Forward
Secure Signature Scheme Based on Minimal Security Assumptions,”
Post-Quantum Cryptography, pp. 117–129, 2011.

[77] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen,
L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, SPHINCS: Practical Stateless Hash-Based Signatures.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 368–397.

www.ijacsa.thesai.org 10 | P a g e

136

	List of Figures
	List of Tables
	I Introduction and Background
	Introduction
	Motivation
	Description of the problem
	Methodology
	Structure

	Theoretical background
	Security Concepts
	Confidentiality
	Integrity
	Availability
	Accountability
	Non-Repudiation
	Identity and Access Management

	Conventional cryptography
	Cryptographic Notions
	Symmetric cryptography
	Asymmetric cryptography
	Hash functions
	Attacks on Hash Functions

	Digital signatures in current protocols
	PKI
	TLS
	IPsec
	DNSSEC
	S/MIME

	The Impact of Quantum Computing
	Quantum Computing
	Quantum Phenomena
	Shor's Algorithm
	Grover's Algorithm
	Quantum Computing
	Challenges in Quantum Computing

	Consequences of quantum computing
	Symmetric cryptography
	Asymmetric cryptography
	Hash functions

	II Survey of Hash Based Signatures
	One-Time Signatures
	Lamport Signature
	Parameters and Key Generation
	Signing
	Verifying
	Security of L-OTS
	Reducing the Private Key Size

	Merkle One-Time Signature
	Parameters
	Signing
	Verifying
	Security
	Improvement of Merkle OTS

	Winternitz signature
	Winternitz parameter
	Key generation
	Signing
	Verifying
	Security of W-OTS

	Variants of Winternitz Signature Scheme
	W-OTSPRF
	W-OTS+
	WOTS-T
	LM-OTS
	WSS-N W-OTS Using Nonadjacent Forms

	Few Time Signatures
	Bins and Balls
	Key Generation
	Signing
	Verifying
	Security

	Hash to Obtain Random Subset
	Key Generation
	Signing
	Verifying
	Security

	III Many Times Signatures
	Stateful Signature Schemes
	Merkle Signature Scheme
	Reducing the Public Key Size
	Structure
	Key Generation
	Signing
	Verifying
	Security

	Making MSS More Practical
	Traversal algorithm
	CMSS
	GMSS
	Merkle Tree Traversal Revisited
	Reducing Security Assumptions in Merkle Trees

	XMSS Family
	XMSS
	XMSS+
	XMSSMT
	XMSS-T

	Stateless Signature Schemes
	SPHINCS
	SPHINCS+
	FORS

	Gravity-SPHINCS
	PORS

	Analysis and Discussion
	Standardization of hash based signatures
	Stateful versus Stateless
	Comparison of Hash-based Signatures

	IV Summary
	Conclusion and Further Work
	Conclusion
	Further Work

	Bibliography
	Appendix A

