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Abstract

It is usually assumed in standard relic density calculations that Dark Matter
(DM) is in thermal equilibrium during chemical decoupling [1]. However, this is
not always the case. Following [2], a new and more generalized approach to relic
density calculations is implemented here, where the assumptions about the DM
phase space during freeze-out have been weakened. Computing the relic density
by means of solving a coupled system of differential equations, we discuss the
implications of this improved analysis in terms of how the relic density changes
and how this affects the parameter space of the particle physics models describing
DM in different scenarios.

Relic density calculations have been implemented within the general frame-
work of DarkSUSY, a Fortran package for DM-related calculations. The improved
approach to relic density calculations is extensively tested on the so called ”scalar
singlet” model, after which a particular emphasis is given to Self-Interacting Dark
Matter (SIDM) models.

In order to study the phenomenology of such models it has recently been
added a module to the DarkSUSY package that allows to numerically compute
the main properties of SIDM candidates. The most important aspects imple-
mented here are the DM self-interaction cross section, mediated by a new type of
light bosonic particle, as well as the genesis of DM in the early universe. In these
models, similar to the case of more standard DM candidates, the DM particles
are thermally produced in the early universe. At high temperatures, chemical
equilibrium with the heat bath is maintained via annihilation and creation pro-
cesses. The point at which these processes stop, known as chemical decoupling
or freeze-out, then typically sets the relic density of DM as measured today. Due
to the presence of the light mediators, however, the annihilation rate is strongly
enhanced for small DM velocities by the Sommerfeld effect. For part of the pa-
rameter space this implies that there will be a second period of DM annihilations,
at much later times, which significantly lowers the DM abundance compared to
what is expected from the standard calculation.
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Chapter 1

Introduction

There is firm evidence that DM is about five times as prevalent as ordinary mat-
ter. This is inferred in various independent ways, such as rotational velocity
curves in galaxies, gravitational lensing, velocity distribution of galaxies within
galaxy clusters or, most importantly, the Cosmic Microwave Background (CMB).
While most likely a new elementary particle, the nature of DM is still a matter
of debate: no direct or indirect detection experiment has yet reported any un-
controversial DM signal beyond the purely gravitational evidence.

The FORTRAN package DarkSUSY has been developed to numerically cal-
culate properties of supersymmetric DM, historically the most popular DM can-
didate, as well as to make detailed predictions for various experiments. These
can then be compared with real particle and astrophysical measurements in order
to test the model. A new modular version of DarkSUSY, not limited anymore to
supersymmetric theories, has recently been released [3].

Recently, considerable attention has turned to a class of alternative models
where DM experiences a significant amount of self-interaction. This is motivated
both by direct though controversial observational support (namely unexpected
DM density profiles around galaxy cores and DM distributions which are spatially
offset from the luminous mass distribution of their galaxy), and more indirectly
by the fact that such models would alleviate the most pressing discrepancies
between observations and predictions of the cosmological concordance model [4].

The standard reference for relic density calculations is the Gondolo-Gelmini
paper [1], where DM is assumed to be in local thermal equilibrium with Stan-
dard Model (SM) particles in the period when annihilation processes with SM
particles take place. Following [2], we implemented a treatment of the Boltz-
mann equation which generalizes the standard calculations to a situation where
the assumption that DM is in thermal equilibrium with SM during freeze-out
is not necessarily true. As shown in section (6.1), weakening the assumptions
used in the implementation of the Boltzmann equation in this way results in a
significantly different relic density in certain regions of the parameter space for
different particle physics modules.
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This improved approach to relic density calculations has been applied to dif-
ferent particle physics models, with a particular emphasis for a Self-Interacting
Dark Matter model where DM particles interact through the exchange of a new
type of light bosonic particle. In a similar fashion to most DM candidates [1],
these particles are thermally produced in the early Universe, when the annihi-
lation and creation processes yx > ¢¢ ceased to be effective, hence setting the
DM relic density. However, the presence of the light mediators enhances the
annihilation rate at small DM velocities and in certain regions of the parameter
space (via Sommerfeld enhancement). For these regions of the parameter space
this implies that there will be a new period of DM annihilation, at much later
times, which lowers the DM abundance by more than two orders of magnitude
compared to what is expected from the standard calculation [5]. This happens
after kinetic decoupling, when the DM particles have kinetically decoupled from
the mediator (or other standard model particles) and therefore start to cool down
even faster as the universe expands.



Chapter 2

What is Dark Matter?

2.1 Motivation and Evidence

If we assume that there is no additional matter component in the Universe other
than visible matter then standard cosmology fails to explain several astrophysical
measurements on a very large range of scales. Here we list the main discrepancies
between predictions and astrophysical measurements, ranging from local mass
density fluctuations, i.e. density measurements which are averaged over a few
parsecs, which is currently the smallest scale we can probe, to the structure
formation of the largest known structures in the Universe.

e Velocity dispersion in galaxy clusters:

This is historically the first hint suggesting the presence of a significant
yet not detected contribution to the mass of the Universe [6]. Applying
the virial theorem to the velocity distribution of galaxies in a galaxy clus-
ter, the bare luminous mass is not sufficient to explain how is the cluster
gravitationally bound. This can be explained by requiring an additional
non-luminous mass component present within the galaxies.

e Gravitational lensing;:

Large amounts of mass are able to bend the light emitted from sources in the
background in a significant way. A statistical analysis on the deformation
of the image of galaxies and other sources in the background can provide
detailed information about the distribution of mass in the Universe. This
has been compared with the distribution of luminous matter, resulting in
strong indications for large amounts of non luminous matter [7].

e Rotational curves:

By simply applying the classical (Newtonian) law of gravity to the orbit of
stars within rotating galaxies we can infer the distribution of the sources of
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gravitational potential and compare it to the luminous mass distribution. In
a galaxy where most of the mass is concentrated in the center, the velocity
of stars orbiting the center decreases with the square root of the distance
from the center, a behavior which takes the name of ”Keplerian decline”.
However, in most cases the observed velocity of stars remains constant out
to very large radii [7]. The mass distributions inferred from the rotational
curves of most galaxies present a noticeable mismatch with the distribution
of luminous matter both in the total amount and in the distribution as a
function of the distance from the center of the galaxy. To explain the data,
galaxies must have enormous dark halos made of unknown DM, making up
about 95 % of the mass of galaxies.

Cosmic Microwave Background (CMB):

CMB consists in the residual electromagnetic radiation from an early stage
of the Universe. The photons underwent oscillations that froze in just before
decoupling from the baryonic matter, which took place roughly 380’000
years after the Big Bang [8].

The feature of CMB which makes it such a powerful probe of several cos-
mological data is constituted by its variation in temperature depending on
the angular position. These anisotropies are understood to have originated
from early perturbations in the gravitational potential, which were domi-
nated by the DM component [9]. Detailed analyses strongly point toward
a DM contribution to the total which is about five times larger than the
baryonic one [10].

Structure formation:

In order to study the evolution of the Universe from a uniform and feature-
less stage in early times to the richness in structures present at current stage
intense computer simulations of large structures structure have been used.
Such simulations have proven to be very accurate when a DM component
was included, provided it was made of non-relativistic particles.

DM plays a crucial role in structure formation because it only feels gravi-
tational interaction, without any other force opposing it, such as radiation
pressure. As a result, DM begins to collapse into a complex network of DM
halos well before ordinary matter, which is impeded by pressure forces.
Without DM, the formation of galactic structures would not have taken
place yet at the current age of the Universe [11].

Let’s now consider Einstein’s field equations, which describe how the presence of
matter and energy influences the structure of space-time:

TG

1
R#V - §ng, + Agwj = —8?71“/, (2].)
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where R, is the Ricci curvature tensor, R the scalar curvature, g,, the metric
tensor, A the cosmological constant, G Newton’s gravitational constant, ¢ the
speed of light in vacuum and 7}, the stress-energy tensor.

All the attempts to explain the previously mentioned discrepancies can be
divided into two groups: trying to modify the left-hand side of the equation, i.e.
modified gravity theories or adding a new, non visible source of curvature in the
stress-energy tensor in the right-hand term, i.e. DM.

Although some alternative theories of gravity have managed to explain a few
of the observations previously listed, none of them has yet proven to successfully
take in account the large variety of local and global effects mentioned above.
Conversely, the simple assumption of a new, massive constituent which interacts
only weakly with SM can explain all of these observations.

2.2 A Brief History of Dark Matter

As a recent article has pointed out [6], the first attempt of a dynamical estimate
of the non-luminous gravitational contribution to the total mass of a galaxy -
namely, the Milky Way - has been done by Lord Kelvin in the late 19th century,
who treated the stars in our galaxy as a gas of particles and inferred the presence
of a missing mass contribution from their velocity dispersion. Elaborating on this
research, Poincaré first explicitly mentioned DM (although the original French
"matiére obscure” would have been better translated as ”murky matter”) in 1906
[6].

However, the Swiss-American astronomer Fritz Zwicky is arguably the most
famous and widely cited pioneer in the field of DM. By means of Doppler shifts he
was able to infer the dispersion of the velocity distribution of galaxies in galaxy
cluster; he then used the virial theorem to determine the mass of galaxy clusters
already in 1933. Most notable were the results relative to the Coma cluster, for
which the estimated mass would have to be about 400 times bigger than the
value derived from luminous matter. Zwicky himself proposed a "Dark Matter”
component as an explanation [12, 13].

Another important evidence in support of DM was discovered by Vera Rubin
and Kent Ford [14] who were able to measure and analyze the rotational curve of
the Andromeda Galaxy to an unprecedented precision, showing that a significant
amount of non-luminous matter was required to explain such rotational curves.

As for the former, of particular interest is the Bullet Cluster, consisting of two
clusters which have collided, described by a group of astronomers in 2006 [15].
Here, the mass distribution inferred from gravitational lensing does not trace the
plasma distribution, which is the dominant contribution to baryonic matter, as
inferred from X-ray data. Instead, it approximately traces the distribution of
galaxies. This has been interpreted as a detection of the two corresponding DM
clusters of halos which, due to the lesser degree of self-interaction compared to
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plasma, simply passed through each other, while the distribution of plasma was
slowed and distorted by a drag force, similar to air resistance.
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Figure 2.1: The contour plot is relative to the mass distribution as inferred
from gravitational lensing, while the background is the distribution of luminous
mass as inferred from visible radiation (left) and X-rays (right) [16]

More recent studies have brought in other independent measurements, such
as gravitational lensing due to galaxy clusters and the CMB [17, 18].

2.3 Dark Matter Candidates

In order to satisfy the constraints coming from astronomical observations and
comparison with numerical simulations, a valid DM candidate must fulfill three
main conditions: it must have a close-to-zero coupling to photons and gluons, it
must be non-relativistic and stable (relatively to cosmological scales).

Neutrinos were initially the main candidates for DM as they are the only
particles within the Standard Model to be stable and not interacting via electro-
magnetism or strong interaction.

However, in the 1980’s numerical simulations of the evolution of large struc-
tures of different DM candidates in the expanding Universe entered the picture,
bringing in new light. It soon became clear that the primary characteristic of the
DM in determining its behaviour in structure formation simulations is whether
it is relativistic (Hot DM) or not (Cold DM, often abbreviated in CDM). Any
hot DM candidate, including neutrinos, was ruled out as main contributions to
DM due to unrealistic results in structure formation simulations.

As early as the 1970’s physicists began to look for candidates beyond the
Standard Model, namely within the framework of Supersymmetry, which pre-
dicts the existence of many new particles, including electrically neutral and/or
non-strongly interacting ones. If stable and sufficiently abundant, such particles
could entail a strong candidate for DM. The condition on stability can be en-
sured by selecting the lightest supersymmetric particle, as there are no lighter
supersymmetric particles it can decay into. However, constraints from LHC data
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have strongly restricted the mass range for supersymmetric particles (at least

according to the minimal supersymmetric standard model MSSM), so a broad

variety of other candidates for DM have been taken in account more recently.
Some of the other candidates are:

e Primordial Black Holes:

A non-particle candidate for DM consists in Primordial Black Holes (PBH)
formed in the early Universe, which are too small to be detected with
gravitational lensing [19, 20]. However, most of the theoretically possible

mass range for PBH dark matter has been ruled out by various observations
[21].

e Axions:

The pseudo-Goldstone bosons relative to a broken global symmetry intro-
duced to tackle the strong-CP problem in QCD provides a valid candidate,
being expected to be light and feebly interacting, and have become one of
the most popular candidates for DM [22].

e Kaluza-Klein excitations from universal extra dimensions:

As the only specific DM candidate to emerge from theories with extra
dimensions [23], the lightest Kaluza-Klein state is a viable candidate for
DM, with promising indications about the predicted relic density [24].

e Sterile neutrinos:

While Standard Model neutrinos have been ruled out by numeric simula-
tions (at least as the main constituent of particle DM), this argument does
not hold for sterile neutrinos, i.e. neutrinos with right-handed chirality.
These hypothetical particles could be produced with a wide range of tem-
peratures depending on their mass (warm DM with m, ~ keV and cold
DM with m, > keV)[6, 25].

Even if the question of the nature of DM remains unsolved, several consid-
erations can be done regardless of its particle physics description. For example,
a broad range of electroweak-scale DM candidates, including any stable particle
with masses in the MeV-TeV range and interactions mediated by the exchange
of electroweak-scale particles, would have a relic abundance (i.e. the amount of
mass of a certain species present in the Universe at the current stage, see (4) for a
more detailed discussion of the topic) that is roughly equal to the measured den-
sity of DM (the so called ”WIMP miracle”) [26]. This observation has elevated
weakly interacting massive particles (WIMPs) to the leading class of candidates
for DM 1.

L Although the term WIMP was originally intended to include all particle DM candidates,
including axions, gravitinos, etc., the definition of this term has since evolved to more often
denote only those particles that interact through weak scale force [6].
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Cosmology background

3.1 Friedmann-Robertson-Walker Cosmology

The current understanding of the evolution of the Universe is based on the
Friedmann-Robertson-Walker (FRW) cosmological model, which has proven to
be so successful to become known as standard cosmology. Its validity is supported
by several independent tests, the earliest of which, primordial nucleosynthesis,
took place about 1072 sec after the Big Bang [27]. In this section the FRW metric
will be derived from general principles.

The observable Universe appears to be homogeneous and isotropic on large
scales. This claim has been supported by several observations, including the
isotropy of the X-ray background radiation [28], and the distribution of faint
radio sources [29]. However, the clearest indication consists in the measurements
of the CMB, whose deviations from regularity are of the order of 10~° relatively to
the averaged value [10]. Tautologically, there cannot be any available information
regarding the homogeneity of regions of the Universe lying outside the observable
region. An eventual inhomogeneity of these regions might affect in the future
our observable Universe but due to causality we can at least assume that the
observable region will remain homogeneous and isotropic for a time comparable
to that needed by light to cross it, i.e. of the order of 10% yrs [27].

Homogeneity and isotropy do not imply that the Universe is stationary too;
in fact, the space-time structure of the Universe does evolve in time. A gen-
eral metric for a homogeneous, isotropic and time-dependent spacetime is the
Friedmann—Lemaitre—Robertson—Walker metric:

2

1 —kr?

ds® = —dt* + a*(t) [ + rdeQ} , (3.1)

with a(t) being the scale factor, r the radial coordinate, €2 the solid angle. The
time coordinate ¢ is the proper time measured by an observer at rest in the
comoving frame, i.e. the inertial frame in which the observer is instantaneously at

9
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rest. In dimensionless comoving coordinates the parameter k can be set to either
-1, 0, +1, respectively describing negative, zero or positive spatial curvature.

It has been established by astronomical observations [30] that the observable
Universe is consistent with a flat metric (k=0), so we recover a modified version
of the usual flat space of special relativity which is expanding according to the
scale factor a(t).

3.1.1 The Friedmann Equations

The next conceptual step is to derive the evolution of the scale factor a(t) by
adding an explicit form of the stress-energy tensor to Einstein’s equations .
Due to the requirements of isotropy and homogeneity the standard approach
is to model the energy and matter content of the universe as a perfect fluid,
i.e. a medium which is locally isotropic in comoving coordinates. Such a fluid is

characterized by the energy-momentum tensor

0O 0 O
T —

1%

p
0
0 9ijP
0

where p is the pressure.
Or, with one raised index,

T} = diag(—p,p,p,p)- (3.3)

Before moving on to Einstein’s equations it is worth to consider the zeroth com-
ponent of the energy-momentum conservation condition:

a
0=V,T=—00p — 35(/) +p). (3.4)

Assuming a generic equation of state of the form p = wp with w being some
constant, eq.(3.4) becomes
p a
- =-3(14+w)— 3.5
b= 34w, (35)

which can be integrated into
p ox a3+, (3.6)

We now consider some physically relevant cases:

o Matter:

It consists of any kind of non-relativistic particles. We can describe matter

as a component characterized by zero pressure: py; = 0 and py; o a=2.

!The calculations presented here follow closely follow [31].
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The dependency of the number density on the scale factor a can be easily
understood as it simply results from the dilution due to the expansion of
the Universe.

e Radiation:

In its broadest definition radiation consists in all particles moving at rela-
tivistic velocity, as photons do. The equation of state is pr = % PR, iIMplying
pr < a~* . We notice that its energy density decreases more quickly com-
pared to matter. This is because on top of the usual decrease in number
density due to dilution the energy density is also decreased by the energy
loss due to redshift every photon experiences.

e Cosmological constant:

It is defined by the equation of state py = —pa, resulting in a constant
energy density. As the other two components have an energy density which
is decreasing with time, the vacuum energy must prevail at some point.
The Universe is currently that stage.

Taking the trace of Einstein’s equations we find the relation R = —8nGT.
Using this relation we can rewrite Einstein’s equations as

1
R, =8rG (TM,, — §gWT). (3.7)

Once we insert the energy-momentum tensor we see that due to isotropy only two
out of sixteen equations are actually independent, namely the one corresponding
to pv = 00 and the one resulting from pur = ij. After a little cleaning up they

become:
N
a G K
- =—0p—-—= 3.8
<a> 3 a? (3:8)
a 47G
2 3 3.9
" 5 (p+3p), (3.9)
respectively.

Together these are known as the Friedmann equations.

It is now useful to introduce the Hubble rate as the ratio between the time
derivative of the scale factor a and a itself at a given time: H(t) = % Recalling
the role of the scale factor a in the FRW metric, we see that the Hubble rate
describes how fast the University is expanding.

We can also define the critical density p..; as the required value for the total

density in order to have a flat Universe:

3H?

crit — 5~ 1
Perit e (3.10)
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Rewriting (3.8) in terms of the ratio between the density and the critical density

Q= pp =, which takes the name of density parameter, we have
K

It is now straight-forward to see that €2 > 1 implies a positive curvature, while
2 < 1 implies a negative curvature. By definition {2 = 1 implies a flat Universe.

Another interesting way of rewriting (3.8) is the following: we can rewrite the
curvature term as a fictitious energy density by defining

3K

=——r. 3.12
pe G a? ( )
With this definition, (3.8) takes a very compact way:
&G
H? = WT pi. (3.13)

]

This expression can be further simplified by dividing it by H? and rewriting
all the contributions to energy density as the corresponding density parameters

Qi: Pi

Perit

1=) . (3.14)

Now, keeping in mind (3.6), and setting xk = 0, we see that depending on the
value of the scale parameter a the dominant contribution to the Hubble parameter
comes from radiation, matter or cosmological constant according to:

H? o [Q 4 Qp + Q4] (3.15)

recalling that Q, oc a™* , ©,,, o< a2 and Q, does not depend on a.

The dynamics of the early Universe were set by radiation, as the density
parameter coming from radiation, €2, dominated over the others due to the very
low value of the scale parameter a. During radiation domination, a #3 as can
be seen by approximating the whole energy density p with the dominant radiation
component p, and solving (3.8) with this substitution.

At later times, as the value of a decreased, the Universe started to be domi-
nated by the matter contribution, resulting in a o t5. The age of the Universe at
which matter and radiation had equal energy density (matter-radiation equality)
was about 47’000 years [32].

At the current stage, the contribution to the total energy density coming from
the cosmological constant is the dominant one, even if matter still constitutes a
relevant part in the total energy balance. The age of the Universe at which matter
and the cosmological constant had equal energy density (often called matter-dark
energy equality) was 9.8 4 1.0 billion years [32].
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3.2 Thermodynamics in the Expanding Universe

Proceeding with the analysis of the equilibrium thermodynamics, we consider the
number density of a single species, which is defined as:

(2%3 / f(p)d’p, (3.16)

where ¢ is the number of internal degrees of freedom and f(p) the phase-space
distribution function.

Approximating quantum statistics to the classical Maxwell-Boltzmann distri-
bution we can define:

g 1 s g s gm*TEy(F)
my_%{/wﬂE@»ildeZﬁ/ameE@»dp———Eg—f
(3.17)
where K; stands for the modified Bessel function of the second kind of the ¢-th
order.

Let us now turn our attention to entropy. In the earliest part of the thermal
history of the Universe, its constituents were maintained in local thermal equilib-
rium, hence the entropy per comoving volume was conserved. The expression for
the entropy density can be derived as follows?: starting from the second principle
of thermodynamics we have,

TdS =dU + W =d(pV) + pdV =d[(p + p)V] — Vdp. (3.18)
From the condition
0?8 0?8 p+p
= dp = —=dT 3.19
orov _ovor ~ YT T 5 (3.19)
it follows that
_1 dar _ [(p+p)V
s = pllp + V1~ Vg =d| OV e
which defines S up to an additive constant.
Comparing (3.20) with energy conservation
v
0=dl(p+p)V] - Vdp = d[(p + p)V] - v#w —d [%] —0, (3.21)

we see that in thermal equilibrium the total entropy is conserved.
We can then define the entropy density s as

S p+p

V T

2The calculations presented here follow closely follow [27].

(3.22)
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Now, the entropy density is dominated by the contribution of relativistic particles,
so we need to compute the right-hand side of the equation in that case.

Given the phase space distribution function f(p) the following expression for
the energy density follows automatically

p= # / E(p)f(p)d’p, (3.23)

where f(p) is the phase space probability density function which, in the relativis-
tic limit (7> m) becomes

(3.24)

7 w2

{g—; gT* for bosons
p =
830

gT* for fermions.

where ¢ is the number of internal degrees of freedom.

Recalling the state equation for photons or relativistic particles p = %p and
(3.22) we have the final expression for the entropy density

27?2
== g T°, 3.25
S 15 g ( )

where instead of g we have used the total number of effective massless degrees of
freedom g¢,,, which only takes in account species having m < T

Gos = Y gz-(%)irg 3 gi<%>3, (3.26)

bosons fermions

and which is a good approximation for this quantity. This is motivated by the fact
that the entropy density of a non-relativistic species is exponentially suppressed

compared to that of a relativistic one3.

The values for the degrees of freedom g, used in the numerical implementa-
tion described in the following sections are those by Drees at al. [33]. Here is
a comparison of the mentioned results for g.s (marked by ”This Result”), with
some other results from the literature. Notice the different notation as here h is
used instead of g,s.

3Tt can be shown that in the non-relativistic limit the number density can be approximated

mT3/2
by n ~ g2t / exp[—m/T] [27].
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Figure 3.1: Effective numbers of degrees of freedom from [33]

Recalling that in thermal equilibrium the entropy per comoving volume is
conserved, i.e. the entropy density scales as the comoving volume s o< a=3, we
can define a dimensionless number density Y as ¥ = =, which is proportional to
the number of some species in a comoving volume when in thermal equilibrium.

The number density of species in thermal equilibrium per comoving volume

can be found using egs. (3.17) and (3.25):

oM A5gmPKs(F)
“ s 4g,s T4

(3.27)

This result is of crucial importance for the thermal history of DM.






Chapter 4

Thermal history of dark matter

4.1 Standard Treatment

According to standard cosmology, the different constituents of the Universe were
in thermal equilibrium during most of their thermal history, due to the extremely
high density and temperature of the plasma. In the thermal produced DM sce-
nario, the same happened for DM, for which elastic scatterings with standard
matter particles as xS — xS ensured kinetic equilibrium while annihilation pro-
cesses xX — SS and SS — xx kept DM particles in chemical equilibrium (we
use a notation where x stands for a DM particle and S for a SM particle). As
the Universe expanded and cooled down, such processes became ineffective as in-
teractions with other particles became less frequent, until they were completely
negligible. The process of departure from thermal equilibrium takes the name of
thermal decoupling and can be separated into kinetic decoupling (i.e. when the
velocity distribution of DM particles starts to differ from that of the plasma of
standard matter particles) and chemical decoupling (i.e. when the annihilation
processes between DM particles and standard matter particles stop to be effec-
tive). It is usually assumed that (local) thermal equilibrium was still maintained
during chemical freeze-out, however this assumption is not always satisfied, as
will be discussed in the following sections.

A simple rule of thumb helping to determine when thermal decoupling took
place is that reactions maintaining DM in thermal equilibrium with SM particles
are sufficiently effective as long as

n{ov) 2 H, (4.1)

where n is the number density, o the cross section and v the relative velocity
between particles [27]. This can be understood as follows: defining the inter-
action rate per particle as I' = n(ov), we have that the number of interactions

17
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experienced by a species from time ¢ onward is

Nips = /OO INCAL (4.2)

Having made the common assumption that the Universe is radiation-dominated
in this stage (looking up to the Friedmann equation (3.8) we see that in a
radiation-dominated Universe we have a(t) o t2) and that the interaction rate
scales as I' o« T, we have

: (4.3)

n—2’

==

Nint =

so for n > 2 a particle interacts less than O(1) times at later times than the time
when I' ~ H [27]. This thumb rule will be recovered later in this section.

Assumptions

Before embarking on the calculation, it is important to stress a significant source
of uncertainty in the following sections: the determination of DM relic density
relies on assumptions about the history of the Universe which date back to a
period before the Big Bang Nucleosynthesis (BBN), an epoch from which we
have no information whatsoever.

The main assumptions in the standard treatment are the following:

e DM particles are thermally produced by interactions with Standard Model
particles in the plasma - other production mechanisms have been studied
[34] but none of them has reached the popularity of thermal production
within the scientific community.

e The entropy of matter and radiation were conserved at the time of the
processes considered here - this assumption has been used in the previous
chapter to derive an expression for the entropy density (3.25).

e Kinetic equilibrium is maintained during chemical decoupling - this key
assumption will prove to be incorrect in some regions of the parameter
space [2].

e The decoupling process took place during the radiation-dominated era -
this assumption is needed in the derivation of the expression for the entropy
density, where the contribution for photons is assumed to be dominant, as
well as to motivate the thumb rule (4.1). It will be mentioned in chapter
(6.1) that in some cases a second period of annihilation can actually cross
over to the matter domination era.
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e The SM particles interacting with DM ones are in equilibrium with the
thermal bath of photons [35] - it might be that not all SM particles inter-
acted with DM before freeze-out, however, the SM particles which actually
interacted with DM are assumed to be in thermal equilibrium with the rest
of the thermal bath.

e Only one species of DM particle is taken into account - this is motivated by
need for simplification as well as the statistical consideration that if more
than one DM constituent contribute to its total amount, it is very unlikely
that their relic densities are of similar magnitude, therefore considering only
the dominant one is a justified simplification.

For an analytic solution it is indispensable to apply the Boltzmann transport
equation, also known as Boltzmann equation, which reads, in its most general
formulation®:

L[f] = C[f], (4.4)
where the left hand term is the Liouville operator and the right hand term is
the collision operator, which accounts for all interactions between DM and SM
particles, including scattering and annihilation processes, as well as eventual DM
self interactions.

The general covariant formulation of the Liouville operator is:

. 0 0
L — L _ T By 2
[f] p axa ﬁ'yp p aa )
which in the case of an expanding FRW Universe (and hence FRW metric) be-
comes [36]:

(4.5)

E(0, — Hy - V) fy, (4.6)

so the Boltzmann equation becomes
E(0, — H, - Vp)fx = C[fx], (4.7)

where H is the Hubble parameter and E the 0-th component of the four-momentum.
The leading contributions to the collision operator are two-body annihilation

processes and elastic scattering, so C[ fx] can be split into two contributions and

approximated as: C[fy] =~ Camn[fx] + Calfy] where these two terms are [2]:

) B 1 dgﬁ d3k dglg
Cann[fx] - E/ (27T)32E/<27T)32W/(27T)32(ZJ

x 2m)*%W(Hp+p—k—k)
X [IME 5r9(@)g(@) = IME 57 F(B) A (B)],

!The calculations presented here follow [27, 2]. Links to the references will be added for the
key statements or when other sources have been used.

(4.8)
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and

SV N s A
Cel[fx] = E/ (27r)32E/(27T)32W/(27T)32@

x (2m) W (p+k—p— k)M

xfexs
< [(LF g5)(W)g* (@) f(B) — (w @, p ¢ D)),

where the notation w <> w, p <+ p means that the same expression is repeated
with the substitutions w <+ @ and p <> p.

Having assumed DM to be nonrelativistic, the Bose enhancement /Pauli block-
ing factors of 1 £ f, have been neglected for annihilation processes. Due to
momentum conservation, these factors can also be neglected for SM particles.

To further simplify the expressions, we assume CP invariance and kinetic
equilibrium. Therefore, C,,,, can be simplified to 1]

(4.9)

R d3p - -
Com = 08 [ Gty el D)o B) = LEVL(B]. (410)
where v is the Mgller velocity vpa = (EE)™![(p - p) — m2]Y/2

C., has proved to be more difficult to manipulate. However, analytic ex-

pressions have been found in the case of highly non-relativistic regimes [37, 38,
2]
A E

E P
~o S— 2 JE— —
C, 5 v(T) [{l Eap + <p + 27— +1 )ap + 3} , (4.11)

where the momentum exchange rate v(T') is defined as

) = fory s 2 [k F g M, 1)
with
1 0
(IMP), = g e dt(—t)|M|* = 16mm’or, (4.13)

and with o7 being the standard transfer cross section o = [ d2(1—cosf)do/dS2.
However, the term describing elastic scattering processes C,; can be for now
neglected, as it vanishes in the standard treatment of the Boltzmann equation.
The following step is to integrate by parts over momentum space, resulting in:
dnx d3p A
W + 3HTLX = gx—(Zﬂ_)gEszn[fx]‘ (414)
As anticipated, C. disappears from the equation as it does not affect the evolu-
tion of the number density.
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In order to proceed with the calculations, a crucial assumption is needed:
DM is at kinetic equilibrium with SM particles during chemical decoupling, so
the following ansatz for the DM distribution can be made:

fx = A(:u)fx,eq = &7 (4'15)

Ty eq

with A(T) a factor depending on the temperature. This ansatz has the fol-
lowing meaning: the phase space distribution of DM f, has the same velocity
distribution of the plasma of SM particles, but is scaled proportionally to its
number density.

Furthermore, the equilibrium distribution is approximated as

frea(E) = exp(—E/T), (4.16)

where the quantum statistics has been approximated to the classical one.
These approximations allow us to rewrite the Boltzmann equation in a more

readable form:
dn

2 2
d_xx +3Hn, = (ov)(ny ., — 1y, (4.17)
with the equilibrium number density defined as
m
Mixeq = gXMiTKQ (2T7§2> ; (4.18)

and the thermal averaged cross-section as

2 3 3 ~
n2x / (2m)3 (27T)3U”waffx,eq(p)fx,eq(p) =

X,€q
/00 o 2y v/F — 1K (2
S0 FrUlab m P
T S

{ov) =
(4.19)

where K; are the modified Bessel functions of order ¢ and the Mandelstam variable
s is redefined in a dimensionless way as § = ;.

Here the Maxwell-Boltzmann distribution is baked in the fractional factor
while the cross section to be averaged over is ov,;,, where the lab velocity v, is

defined as

s(s —4m?)
ab = ; 4.20
Vlab G _ 2m>2< ( )

and coincides with the previously mentioned Mgller velocity vpe = (EE) ™ [(p -
p) — m}]"? in the laboratory reference frame (e.g. where one of the two DM
particles is at rest) and in all reference frames obtained via a boost along the
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direction of the momentum of the particle moving in the laboratory frame, as
shown in appendix Appendix C 2.

The physical meaning of (4.17) is the following: the term proportional to the
Hubble rate describes the dilution due to the expansion of the Universe, while
the two terms in the brackets take in account the annihilation of DM particles
into SM particles and the inverse process.

It is now convenient to introduce the dimensionless quantities

x:%i (4.22)
y = (4.23)
S

allowing us to rewrite the Boltzmann equation in a remarkably simple and rela-
tively easily integrable form:

Y sY Y2
— = — -1 4.24
v = mlon(32-1), (424
PR _ (202\ .S 73 f7 _ _H ) o
where the entropy density is defined as s = (5 ) g2,/ 17, H = ot with g =
S
%gsLdZeTff and Y’ is primed to denote derivation over x.
off

As the Universe expanded, the temperature of the plasma fell below m, and
the DM number density n, started to be exponentially suppressed when at equi-
librium: n, o e™/T as only the tail of the Maxwell-Boltzmann distribution
contributes to n,.

To fully understand the physical meaning of eq. (4.17) we can distinguish two
different regimes, according to the thumb rule introduced before:

e 1 phase: the Hubble rate H is negligible compared to (ov)n., = eq. (4.17)
becomes ‘Zl—tx = (ow)(n? ., —n%), which simply forces n, to follow the equi-
librium distribution n, 4. In this regime, the leading process in determining
the evolution of the DM number density n, are the annihilation processes
with SM particles. The same happens for the dimensionless number density

Y:Y =Y,

e 2 phase: the Hubble rate H is of the order of (cv)n., or more = the full
differential equation ceases to maintain the number density equal to its

2Tt is important to stress that v;q is not the velocity used in the frequently used expansion

2
(ov) = a+ 22, the latter being instead voars = 24/1 — 4%. In the numerical implementation

it is necessary to rewrite vy, as a function of voprs according to the relation

vcMms
m2
2 —4"x
S

Vigh = (4.21)



Section 4.1 Standard Treatment 23

equilibrium value and n, # n, .. At this point, the only physical effect
in action is the standard dilution of the DM number density n, due to
the expansion of the Universe and encoded by the term 3Hn, in (4.17).
However, in the formulation (4.24) the dimensionless number density Y is
used instead of the standard number density n,. Being defined as the stan-
dard number density n divided over the entropy density s, the dimensionless
number density Y remains constant when the dilution due to the expansion
of the Universe is the only effect reducing the DM number density.

The following picture illustrates what typically happens during freeze-out:
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Figure 4.1: The evolution of the dimensionless number density Y as a func-
tion of x in the early Universe: the solid line represents the equilibrium dis-
tribution, while the dashed line represent the actual evolution of Y for three
different values of (ov) (from [39])
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In the picture above, we see the evolution of the dimensionless number density
Y as a function of z. The two regimes described before are clearly visible: Y
closely follows the equilibrium density Y., at first, but then it decouples, assuming
a constant value.

We also notice a couple of typical features of chemical decoupling:

e The relic density decreases as (ov) increases (more precisely, the relic den-
sity is inversely proportional to the annihilation cross section [27]). This
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is because a bigger thermal averaged cross section (ov) means that the
processes keeping DM in chemical equilibrium with SM particles are more
effective and will hence continue to be sufficiently strong to maintain DM
in chemical equilibrium for a longer time.

e Chemical decoupling of WIMPS typically takes place in a relatively short
time around x.q ~ 20 — 28 [40, 5]

These two features will be of central importance in the following chapters as
the former is a key concept in the analysis of the outcome of the numerical results
presented in (6.1) while the latter does not hold in some regions of the parameter
space relative to some particle physics modules.

As kinetic decoupling is usually assumed to have taken place at a much later
time than chemical decoupling (£:¢ ~ 10 — 4000 [40, 5]), the two processes can
be treated separately.

After chemical decouling, DM particled can still be in thermal equilibrium
via sufficiently frequent scattering processes. As long as this process is acting,
the DM temperature, defined in a non-relativistic regime as 3

9x d’p p? 9x / d’p
T\, = p) ~ p°f(p 4.25
X 3n, ) @2r)PE (p) 3myn, J (2m)3 (). (4.25)

is equal to the plasma temperature.

After thermal decoupling, the DM temperature will simply decrease according
to the usual scaling for non-relativistic particles: T\ o< a=?. Thermal decoupling
can be defined as the transition between these two regimes.

However, as this phenomenon is not expected to affect chemical decoupling
there’s typically no need to include it in the relic density calculations in the
standard treatment.

4.2 A Different Approach

4.2.1 Motivation

Despite the success of ACDM cosmology, some observations pose a number of
problems to the paradigm, namely:

e "Missing satellites” problem:

According to numerical simulations based on standard cosmology, a galaxy
of the size of the Milky way (or, more precisely, the DM halo around it)
is expected to have a relevant number of dwarf-sized DM satellite subhalos
around it. These DM subhalos are central regions of halos that survived

3The second, approximated expression is valid in a non-relativistic regime, where E ~ m.
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strong gravitational tidal forces and dynamical friction during the hierar-
chical sequence of merging and accretion via which the CDM halos form.
However, comparisons with observations revealed that there is a strong
discrepancy between abundance of subhalos and luminous satellites of the
Milky Way as a function of their circular velocity or bound mass within a
fixed aperture: about 50 such subhalos having circular velocity greater than
20 km /s and mass greater than 3 x 108 M, within a 570 kpc radius are ex-
pected from simulations, compared to the dozen which have been observed
around the Milky Way [41]. The difference is even larger if we consider
the abundance of satellites in simulated galaxy groups similar to the Local
Group [42]. This large discrepancy became known as the ”substructure” or
the "missing satellites” problem.

e "Cusp vs core” problem:

Concerning the density structure of galaxies, simulations in a collisionless
DM scenario predict centrally concentrated cuspy DM halos. However, such
predictions contrast with the round, roughly constant density cored halos
found in high-quality observations of low surface brightness galaxies and
dwarf satellites. In order to reconcile these data with galaxy formation in
the context of ACDM, processes that alter the shape and density structure
of the inner halo are required [43, 44].

e ”"Too big to fail” problem:

Recently, it was realized that the most massive subhalos in ACDM sim-
ulations of MW-size halos have an internal density structure that is too
concentrated in comparison to the observed brightest MW satellites: the
simulated circular velocity profiles increase more steeply and reach their
maximum circular velocity at smaller radii than any of the observed ones
[45]. No ACDM-based model of the satellite population of the Milky Way
explains this result [46]. The problem lies in the satellites’ densities: it is
straightforward to match the observed Milky Way luminosity function, but
doing so requires the dwarf spheroidals to have DM halos that are a factor
of ~ 5 more massive than is observed.

On the other hand, those simulated subhalos should be ”too big to fail”
in forming stars according to our understanding of galaxy formation [4].
Thus, it is extremely surprising why there is no observed analogue to those
objects.

Several attempts to tackle these problems have been tried. For example, the
"missing satellites” problem can be tackled suppressing the formation of galaxies
within existing dwarf halos or suppressing the star formation in dwarf galaxies.
Galaxy formation can be held back by increasing the gas entropy before collapse
[47, 48, 49]. The "cusp vs core” problem may be addressed by large velocity
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anisotropies or reduced central DM densities [50]. The "too big to fail” problem
might be solved by either an increased stochasticity of galaxy formation on these
scales or a total MW mass 8 x 10" M, [51, 52].

However, most astrophysical and DM solutions to these problems have short-
comings, or can explain at most two of them, which makes them less attractive
on the basis of Occam’s razor. A different approach to the problem consists in
modifying the CDM paradigm itself by introducing Self Interacting Dark Matter
(SIDM) [53].

To solve the ”cusp vs core” problem, Spergel & Steinhardt [54] first adopted
a SIDM model, in which DM has a large self interaction cross section. It was
expected that if DM scatters in the cores of galaxies, then this might result in a
flatter central density profile. However, this early attempt fell out of favour due to
a mismatch in the shape of the predicted DM halo core compared to observations
from gravitational lensing [55] and other incorrect predictions. Recently, it was
realized that a new force carrier ¢ (scalar or vector) might naturally mediate a
long-range interaction on the scale of the de Broglie wavelength of the WIMPs,
leading to a self-interaction cross section for scattering that is much greater than
for WIMP annihilation. The studied forces have a variety of scales in them,
from the screening scale set by the mass of the carrier particle m, to the non-
perturbative scale set by its coupling a [56]. More specifically, as pointed out by
Bringmann, van den Aarssen & Pfommer [4], a simple class of SIDM models may
offer a viable solution to all of these problems simultaneously. Such models are
characterized by a self-interaction among DM particles described by a Yukawa-
like interaction, hence having its characteristic velocity dependence of the transfer
cross section [57, 58]. This interaction is mediated by a light messenger.

N-body simulations for a Milky Way-like DM halo have shown that such
Yukawa-like interaction result in a small core (=~ 1 kpc) followed by a density
profile identical to that of the standard cold dark matter scenario outside of that
radius, matching the observed velocity profiles of massive MW satellites [59].
Their key phenomenological properties are velocity-dependent self-interactions
mediated by a light vector messenger and different time scales for chemical and
kinetical decoupling compared to the standard case [4]. Therefore, the general-
ized approach to relic density calculations where the assumptions about thermal
equilibrium during chemical decoupling have been weakened needs to be applied.

4.2.2 Coupled Boltzmann Equations

Now, in order to obtain a more general formulation of the Boltzmann equation we
need to reconsider the assumptions we made in the previous section, namely the
ansatz (4.15). Here we assumed that local thermal equilibrium with the thermal
bath is maintained during chemical freeze out. If this assumption were not to be
valid, another strategy is needed to solve the problem.
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The brute force approach would consist in solving the original Boltzmann
equation for the full phase space distribution function f,. However, as pointed
out in [5] only taking in account the second statistical moment of the Boltzmann
equation, in addition to the 0-th moment (i.e. the one relative to the number
density, already accounted for in the standard treatment) has proven to be suf-
ficiently accurate to to capture the main contribution to the deviation from the
standard Gondolo-Gelmini results. The second statistical moment of the DM
phase space distribution is defined as:
my <p2> _omy gy [ dp p?

E N = X — 4.2
3523\ F 3s2/3 (27?)3EfX(p)7 (4.26)

and is related to the DM temperature T, defined as

y:

T = 2 / (dgpgpzf (p). (4.27)

B 3myny, 27)
More precisely, we notice that y is related to the temperature of DM particles
according to:
§2/3
T, =y—, 4.28
UL (4.28)
therefore in the following the term "DM temperature parameter” will often be
mentioned when discussing the behaviour of y. It needs to be stressed that y
is just proportional to 7} and even the latter cannot be properly defined as a
temperature as the velocity distribution of DM is unknown when not in ther-
mal equilibrium with the thermal bath of SM particles so supposing it to be a
Maxwellian distribution is just a well-educated guess.
Integrating (4.7) over g,d*p/(2m)*/E and ¢3p/(2m)*p*/E* we finally obtain
the two coupled differential equations we were looking for, respectively:

—=—XC, (4.29)

L = XC -t =" 4.30
Yy  zH Y xH 3T} ( )

where the two moments of the collision terms are defined as:

. By -
mannCo = g, | GECIA (431)
P2\ . d3 2
mxnx<E>C2 = gx/%%%C[fx]. (4.32)

Now, inserting these analytic expressions we finally obtain the coupled system
of equations describing the evolution of the number density of DM and of its
temperature parameter y:
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y_/ — ij) [@ — 11 + i [<0'U>neq - <0'U>2,neq:|
Y xH [y rH

where (ov), is defined as:

2 3,935 002
g d°pd°p p .
{ov)s = Tn;< / (27)6 3_Eavix—>fffx,eq(17)fx,eq(p> =
X-€q

/°° e 45(25 — 1)953
SOy  FtUlgp——————
) xx—ffVlab 3K22(x)

> - . 1 Vée, —/(GE-1)( - 1)
de ., e2V3zer [e (5—1)(e2 —1)+ 1og( * + ,
/1 i +\/ * 25 \Vae, +/G—1)( — 1)
(4.35)
and has to be interpreted as the thermal average of a slightly different quantity
compared to (ov), the difference arising from the different definitions of Cy and
C,.
The modified Hubble parameter is defined as

(4.36)

It is important to stress here that eqs. (4.29) and (4.30) need more information
about higher moments of f, than the two already accounted for by Y and y.
Therefore, eqs. (4.33) and (4.34) contain quantities which have to be somehow
determined, namely (00)neq, (0V)2.neq and (g—t) Following [2], these quantities
have been derived from a DM phase-space distribution of the form

(2o

4.37
T , (437)

2
Ty=ys3 /my

obtained assuming that DM particles have a Maxwellian velocity distribution
with a different temperature compared to the heath bath (which would be ex-
pected in the presence of a significant DM self-scattering [60, 61]).

The resulting ansatzes for the quantities entering eqs. (4.34) and (4.33) are

[2]:



Section 4.2 A Different Approach 29

(0V) peq = (0v>|T:ys%/mX 4.38)
(0V)2neq = <av>2|T:y8%/mX (4.39)
4 6
p Ix p- _E
— )= |—7F"= [ dp—= . 4.40
() = ey [ ! rysh o

It is important to stress that even though these anzatzes have been derived
from the DM phase-space distribution (4.37), they are not strongly dependent
on the specific phase-space distribution, as any form of f, results in very similar
numerical values and hence similar behaviours for Y (x) and y(x) [2].

As a final comment on eqgs. (4.33) and (4.34), it is easy to recover the standard
Gondolo-Gelmini single equation (4.17) by forcing the condition y = y., (i.e.
kinetic equilibrium with the heat bath), which implies (ov)pe, = (ov). The
latter turns eq. (4.33) back to the usual form (4.17) as the presence of (o).,
instead of (ov) is the only point where the departure of y from y., enters the
equation describing the evolution of the number density Y.






Chapter 5

Numerical integration

5.1 DarkSUSY

The need for dedicated codes for precise relic density computation is motivated by
the high number of processes involved in e.g. cohannihilations (i.e. annihilation
processes in the context of a model where a whole family of DM particles x; is
present). In MSSM, up to 3000 processes can contribute to the relic density when
coannihilations are taken into account.

A rather exhaustive list of public DM tools consists in:

e Neutdriver (1995 - not maintained) [62]

DarkSUSY (2000 - to date) [63]

micrOMEGAs (2001 - to date) [64]

IsaRed, IraRes (2002 - to date) [65]

SuperISORelic (2009 - to date) [66]
o MadDM (2013 - to date) [67]

This analysis will be exclusively carried with DarkSUSY. However, extensive
comparisons between different codes have shown that results are generally in good
agreement - within a few percent - apart from mass regions close to resonances,
where discrepancies are bigger (near the Higgs resonance they can reach 25%
[68]).

An advantage DarkSUSY has gained with its latest version (DarkSUSY 6.0)
compared to similar numeric tools is that the particle physics module parts of the
code has been split from the rest, so the user can simply decide which particle
physics module to include at a late stage, i.e. when making the main program

31
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L. Therefore, despite its name DarkSUSY allows for a wide variety of particle
physics modules to be implemented, and is not limited to supersymmetric models.
Another improvement introduced in DarkSUSY 6.0 is the possibility to use
replaceable functions, i.e allowing users to replace any function in DarkSUSY
with a user-supplied version.
These features are highlighted in the scheme below, showing the general struc-
ture of DarkSUSY.

Linking to main library/user

Main program replaceable
User-supplied, e.g. = Linking to chosen module
JAMaadantansise examples/dsmain_wimp.F —— ¥ Calling sequence
Er::lraceables : e :4«:-': native calling sequence

*Functions = (if linked)

replaced 5 -
zand modified = Particle physics modules
e src_models/
Module mssm |User i
DarkSUSY core library ™ libds_mssm.a raplacantiss. |
4 i !
fgcé Interface functions :;Dﬂ‘a,.;z%iﬁed 1
IDCS_Core.a Internal routines ibyuser |
Observables (rates, relic Module silveira_zee [,----"""""""
density etc) libds_silveira_zee.a | replaceaties |
1 Functions
Interface functions |k
Internal routines by user
lPUser ‘ Halo profiles
| replaceables | | dsdmsdriver with Module ... T
| Functions | | different halo ) User
1 replaced ' | profiles. ! replaceables
| and modified 3
| by user |

Figure 5.1: The main structure of DarkSUSY is schematized here (from [3])

5.2 Implementation

The goal of this project is to implement the coupled system of equations (4.34)
within the framework of DarkSUSY and to validate it against different particle
modules.

The implementation has presented a series of additional challenges compared
to the already present Boltzmann solver with a single equation, from a much
larger number of operations to an increased instability in the evolution of the
number density. Eq. (4.17) is already a stiff equation, i.e. numerical solutions
are unstable unless the integration step is extremely small. This issue is even
more serious in the case of the coupled system of equations.

Here are listed a series of measures taken to tackle these issues:

1See the manual [63] for reference.
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e A very accurate computation of the two thermal averages (ov) and (ov),
((4.19) and (4.35)) resulted to be the most time consuming part of the code.
Therefore, instead of evaluating them every time their value is needed, an
interpolation from a table produced before the numerical integration of the
equations has been used. As the thermal averages are smooth functions
of the parameter x, 1000 tabulated points have proven to be more than
sufficient for an accurate interpolation.

o At very early values of = the prefactor ==, as well as all the similar factors
containing the Hubble parameter H at the denominator, are very large,
hence enforcing thermal equilibrium (more specifically Y = Y., and y =
Yeq). However, this can be a problem in a numerical implementation as even
a small deviation from the equilibrium value for Y or y, possibly coming
from round-off errors can result in a very big derivative due to the large
prefactor. While this is still manageable for a single equation, this issue has
shown to be even more serious with the coupled system of equations. In
order to tackle this problem, the equilibrium condition has been forced to
hold by simply setting Y = Y., and y = y,, for = below a certain threshold,
usually between x = 16 and z = 18, actually solving the coupled system of
equations only after that.

e Given that the region of interest, for which the coupled system of equations

p_
is actually applied, is highly non-relativistic, the last term, % <E§;,"eq, has
X

been neglected in the implementation. As shown in section (6.1), given
the good agreement with the literature this assumption has proven to be
correct.

e For the scalar singlet model the double integral appearing in the definition

of (ov)y
2 3,135 12
' d’pd°p p 5
0002 = s~ | G 357 e ir a0 ) =

/1 N dio, ffulabélé(g%;(;))w?’
/100 de, eVt [e+\/(§ —1)(e - 1)+ 21 : (@q TS 1))]’

Vi \Veer + /G- D& - 1)
(5.1)

can be written in a different way by using the analytic solution for part of
the integral, following the numerical calculations done in [2]:
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with the advantage of reducing the number of operations in the most time-
consuming part of the calculations.

However, at the very high values of x used in the SIDM model, a numeric
issue arises as the integral in € and the partial analytical result become
extremely similar in absolute value but opposite in sign, to the point where
these two quantities differ only on the sixth digit. Then the value of the
whole thermal average becomes extremely sensitive to roundoff errors or
approximations in the computation of the integral in e. To prevent this
issue the original formulation of (ov), has been used instead, which is less
sensitive to such issues even at high x.

At even higher values of z (z > 10°) the issue with the difference between
two large numbers reappears as the two terms e;(/(5—1)(e2 — 1) and

L (ﬁe+— G-1)(Z 1)
2v5 Vaer+4/G-1)(€2 -1)
site in sign and as the quantity to be integrated is their sum, an extremely
precise evaluation of these quantities is needed, which is not supported any-
more by the code, so the result of the integral becomes a random number
assuming positive or negative values at different evaluations. This prob-
lem might have been mitigated by using higher precision number formats
but a more radical approach has been preferred to tackle this issue: the
expression (5.1) has been expanded in power series in § and €, in order to
find the leading order deviation in the two similar quantities and therefore
the main contribution to the integral. This approach provided excellent
precision results, as discussed in Appendix D.

) are extremely close in absolute value but oppo-

In order to find the correct thermal averaged cross section for the scalar
singlet model, the evolution of the DM number density has been computed
several times varying the cross section (or the coupling constant, which then
affects the cross section itself). The correct value is found in DarkSUSY via
a binary search which stops when the computed relic density is sufficiently
close to the result from Planck: Q,h* = 0.1193 & 0.0014 [30]. However,
while in the standard DarkSUSY code the initial guess for the coupling
constant A relative to the scalar singlet model is fixed, in the numerical
implementation used here it has been preferred to start from the value
which resulted in the correct relic density in the standard Gondolo-Gelmini
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treatment as the initial guess, with the effect of drastically reducing the
number of attempts before finding the final value. As the coupled system
of equations requires many more operations and is therefore more time-
consuming than the standard Gondolo-Gelmini calculations, this procedure
has been useful to reduce the total elapsed time. This has been implemented
by interpolating a table of values of the coupling constant A for different
DM masses found by the standard DarkSUSY routine.

e In order to solve the coupled differential equations numerically, an ODE
solver by Shampine and Gordon [69] has been used. This ODE solver
is a FORTRANO90 library which solves a system of ordinary differential
equations, with a modified Adams linear multistep method.

The results of the code relative to the "generic WIMP” and ”scalar singlet”
modules (introduced in (6.1)) have been compared to the standard DarkSUSY
results or to results from the literature. More specifically, in the case of the
scalar singlet model, the results have been compared with the Mathematica code
implementing the coupled system of equations used to produce the plots in [2].
While the agreement in the actual results will be discussed in the next section,
it can be already mentioned that thanks to the efficiency of the FORTRAN
language and the careful implementation of the coupled equations the elapsed
time has been reduced by a factor of ~ 103.
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Results

In this section three different particle physics modules will be considered, each
one of them describing a different candidate for particle DM. Given the modular
structure of DarkSUSY 6.0, it is possible to simply link in the modified Boltzmann
solver to each physics particle module to analyze the difference.

The first one, the so called generic WIMP module, only serves the purpose
to test the proper functioning of the modified version of the Boltzmann solver in
a situation where no effect deriving from the improved approach in relic density
calculations is expected. Similar analyses can be found in the literature [33].

The second model, which takes the name of scalar singlet, shows the effects of
the improved treatment of relic density calculations in an clear way. The results
here can be compared with the analysis done in [2].

The third and last particle module, where Self-Interacting DM is analyzed
shows how a second period of DM annihilation at late times is only visible thanks
to the improved treatment of relic density calculations.

6.1 Validation

6.1.1 Generic Wimp Model

The purpose of this comparison is to check the precision of the new Boltzmann
equation solver in a simple particle physics scenario. The standard Boltzmann
solver used in DarkSUSY is meant to be substituted with one which allows for the
integration of two coupled differential equations in two different quantities, the
number density and the second moment of the phase space distribution function
of DM. However, in this preliminary test, the standard Gondolo-Gelmini single
equation (4.24) is implemented, so no deviations from the results of the standard
DarkSUSY code are expected.

37
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Theoretical background

The module generic wimp is the simplest example of a particle physics library that
the DarkSUSY core library can link to. Rather than being based on an actual
particle physics model, it mostly serves to provide an illustration of how the
functionalities of DarkSUSY can be used in phenomenological studies of vanilla
WIMP DM, when only providing the absolute minimum of input parameters. [3]

For the purposes of relic density calculations, a generic WIMP model in Dark-
SUSY is fully defined by the mass m, of the DM particle, a flag stating whether
the DM particle is its own anti-particle or not and a constant annihilation rate
ov, along with the dominant annihilation channel into SM particles.

A simple result which can be obtained by this model is the annihilation rate

ov required to obtain a DM relic abundance matching the results from Planck,
Q,h? = 0.1193 & 0.0014 [30].

Numerical results
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Standard DarkSUSY

4.x107%6

3.5x107%6

ov[ecm® s
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2.5x 10726 \
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Figure 6.1: Generic WIMP model: the two lines are perfectly overlapping

Being a rather featureless particle physics model, no relevant features are visible
in the plot, apart from the effect of the change of the number of degrees of freedom
with the temperature, which can be understood as follows. due to the definition
xr = %, at lower values of the WIMP mass m, the chemical decoupling, which
always takes place at similar values of x, happens at lower values of T. Now,
comparing this plot (6.1) with the one showing how the degrees of freedom vary

with the temperature (3.1) and keeping in mind the definition of the entropy
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density (3.25), where the number of effective degrees of freedom is present at the
numerator, we see that the number of effective degrees of freedom and hence the
entropy density s and the whole prefactor in front of (ov) is smaller at low T,
so this needs to be compensated with a larger value of (ov) in order to get the
correct relic density.

The main point of this comparison, however, is to validate the precision of the
part of the code integrating the Boltzmann equation. This has been confirmed
by the good agreement with the standard DarkSUSY results.

6.1.2 Scalar Singlet Model

With this physics particle module we can actually test the effect of the improved
way of computing the relic density implemented in DarkSUSY comparing results
with the analysis carried in [2] where the coupled system of equations (4.33),
(4.34) has been implemented in Mathematica.

Theoretical background

A more interesting example of a non-supersymmetric DM candidate which can
be tested in DarkSUSY 6.0 is the Silveira-Zee scalar singlet model [70]. This
DM candidate (originally named scalar phantom and also known as singlet Higgs
DM) is described by a Lagrangian where a gauge-singlet real scalar field S is
added to the standard model:

1 1 1
Lsz = Lsn + §8H58“S — 5/11252 - §>\S2HTH, (61)

where H is the standard Model Higgs doublet.
After electroweak symmetry breaking, the S boson acquires a tree-level mass

1
mg = \/pu?+ 5)\1)3, (6.2)

where vy = (V2GF) 2 = 246.2 GeV.
The annihilation cross section of pairs of DM particles to SM ones (apart
from hh final states) is given by [71]

22202

Tvens = | Dn ()]’ Thosar(Vs), (6.3)

where the propagator I',_,sa7(1/s) is the partial decay width of a SM Higgs boson

of mass /s
1

(s —mp)? +mply

| Di(s)[* =

(6.4)
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where the total width I'j, above includes the contribution from h — SS processes
for m, < 7. On the other hand, SS — hh processes, which take place at
m, > my, lie outside our kinematic region of interest.

As for the elastic scattering processes, DM scattering with all SM fermions
are taken into account. The scattering process is only mediated by a Higgs boson

in the t-channel, so its squared amplitude is

NyAN*m7 4mG —t
PR

Msyossl® = (6.5)

where the subscript f marks quantities related to the SM fermion, Ny is the color
factor, set to 3 for quarks and to 1 for leptons.
Averaging over the transferring momentum according to:

1 0
(i) =g [ an-oimp, (6.6)
t —4k4

cm

we find

NN?m2 [2k2 ) — 2m3% + m3
<|M|2>tzz f8k4 f[ > .-

/{52
(mi—Qm?)log(l—i-él c’r;z):|, (6.7)
f

2
m
h my,

1+ e
where the center of mass momentum k., is defined as k2, = (s — (m, —my)?)(s—
(my +my)?)/(4s), with s = —(p} + p3).

In an analogous fashion to what done with the generic WIMP module, we
can study the behavior of the required coupling constant A to have a correct relic
density as a function of the DM mass m,.

Doing so, we see a sharp decrease in the required value of A around m, ~ =,
corresponding to the resonance for the process xx — h.

The GAMBIT collaboration has recently presented a comprehensive study
[72] of the scalar singlet model where experimental constraints from direct, indi-
rect and accelerator searches for DM are taken into account. Interestingly, the
region in parameter space which emerged to be the most promising for a DM
candidate is characterized by a DM particle m, which is about half of the Higgs
boson mass and where the process setting the current relic DM density is set by
the resonant annihilation of two DM particles through an almost on-shell Higgs
boson.

This very region is also of particular importance for relic abundance calcula-
tions as here the scattering processes are much less effective than usual, due to
the lower coupling constant A, therefore kinetic decoupling takes place earlier,
almost coinciding with chemical decoupling. This region will hence be studied
with particular care in the following section.
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Numerical results

Analogously to (6.1) it is interesting to plot the required value for the coupling
constant A in order to get the correct relic density as a function of m,.
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Figure 6.2: Here is a plot of the needed value for the coupling constant A\ as
a function of the DM mass m,, (compare with fig. 5 in [3]) according to the
standard Gondolo-Gelmini relic density calculations and as computed in the
improved treatment.

Compared to fig. (6.1), the behaviour of the coupling constant A as a func-
tion of the WIMP mass m,, is much richer in features, the most noticeable one
being the central dip, corresponding to m, ~ . Here the required coupling
constant A is reduced by about two orders of magnitude compared to most of
the DM mass range due to a resonance with the annihilation process yx — H,
which strongly enhances DM annihilation processes, hence reducing the required
coupling constant A to obtain the correct relic density.

We also notice a significant discrepancy between the results computed ac-
cording to the two different approaches only in the region close to the Higgs
resonance.

As mentioned before, this is the most interesting region of the parameter
space to see the effect of the improved approach of computing relic density cal-
culations, so in the following plot a comparison between the results from the
standard Gondolo-Gelmini calculations as implemented in the standard version
of DarkSUSY against the results from the improved treatment is shown in the
region close to the Higgs resonance.
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Figure 6.3: Here is a zoom on the region in the mass range for which there
is a noticeable departure of the needed value for the coupling constant A com-
pared to the standard Gondolo-Gelmini relic density calculations. It has been
preferred to plot the single points rather than an interpolation as done in the
previous plots, due to the discontinuity present here.

As shown in the plot, the difference between the required coupling constant A
in the standard Gondolo-Gelmini calculations and in this improved way of com-
puting the relic density is very noticeable, the ratio between the two quantities
reaching a factor of ~ 2 at x ~ 58.

Qualitative arguments can help to understand why this discrepancy appears
close to the Higgs resonance relative to the process yx — H: here, DM anni-
hilation processes are strongly enhanced, hence a much lower coupling constant
A is needed to obtain the correct relic density. The decrease in the value of A,
however, makes heat exchange via scattering processes less efficient, to the point
when kinetic decoupling is not maintained anymore during chemical freeze-out.
Here is when the standard Gondolo-Gelmini treatment fails to describe the de-
coupling process correctly and therefore fails to track the correct behaviour of the
coupling constant A as a function of the DM mass m,. In equations (4.33) and
(4.34) the reduced efficiency of heat exchange processes is marked by a smaller
value of the momentum transfer cross section .

A more detailed analysis can be done by plotting the evolution of the number
density Y and the second statistical moment of the DM phase space distribution

y (defined in (4.26) and related to the DM ”temperature”) at different values of
.
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Figure 6.6: m, = 60.5 GeV
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Starting with fig.(6.4) (m, = 45 GeV), we see that this parameter point is
sufficiently distant from the Higgs resonance, so the evolution of Y(x) resulting
from the coupled equations is in very good agreement with the standard Gondolo
Gelmini calculations. Here kinetic decoupling (marked by a deviation of the DM
temperature parameter y from the equilibrium value, which is the value if y DM
would have if still in thermal equilibrium the heat bath) takes place after x ~ 100,
i.e. well after chemical decoupling (marked by a deviation of the number density
from the equilibrium value).

Moving on to (6.5) (m, = 58 GeV), we see that it is here particularly evident
how the assumption of thermal equilibrium during chemical freeze-out cannot
be assumed, resulting in the standard procedure failing to predict the correct
evolution of the number density. The sudden decrease in y is a symptom of a
different phase space distribution in the momentum space. This results in an
earlier decoupling for Y and in a higher value for the relic density. This regime
has described as ”sub-resonant” in [2]. In contrast to what happens at m, = 45
GeV, here kinetic and chemical decoupling take place at the same time.

The plots (6.6) (m, = 60.5 GeV) show features which are similar to the ones
showed in the previous couple of graphs, but now in a more attenuated way.
More specifically, the DM temperature parameter y deviates from its equilibrium
value at slightly later times compared to the previous paremeter point, resulting
in a smaller deviation of the number density from its usual value.

At m, =62 GeV (fig. (6.7)) the evolution of the DM temperature parameter
y is opposite compared to the parameter point m, = 58 GeV, as it grows above its
equilibrium value after decoupling. This regime has been described as "resonant”
in [2].

The parameter point m, = 62.5 (fig. (6.8)) is extremely close to the Higgs
resonance, where yy — H annihilations are extremely enhanced and a much
lower coupling constant A is needed to obtain the correct relic density. Here the
final relic density is not affected as much as in the previous parameter point by
the simplistic assumption that thermal equilibrium is maintained during chemical
freeze out, however the intermediate number density is noticeably affected, as the
DM temperature parameter y deviates from its equilibrium value as quickly as
in the previous cases.

Finally, the last plots (6.9), relative to m, = 63 GeV show a similar behaviour
to m, = 45 GeV as these parameter points are sufficiently distant from the Higgs
resonance, that the evolution of Y(x) resulting from the coupled equations are in
very good agreement with the standard Gondolo Gelmini calculations. Again,
kinetic decoupling takes place well after chemical decoupling.

To investigate better the difference between the ”subresonant” and ”resonant”
regimes, here is plotted the ratio between the two thermal averages <<::>>2 for
m, = 58 GeV and m, = 62 GeV.
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Figure 6.10: 2% for my = 58 GeV and m, = 62 GeV.

(ov)2

Looking to fig. (6.10a) we see that here (ov) < (ov), during the whole freeze
- out process, which makes y decrease after the decoupling (see fig. (6.5)) as the

term % (0V)neq — (OV)2neq| In (4.34) becomes negative and large in absolute

value.

On the other hand, looking to (6.10b) we see that here (ov) > (ov), in the
first part of the chemical decoupling but (ov) > (ov)y in a region where the
number density of DM is still changing !.

This results in y increasing above the equilibrium value immediately after
kinetic decoupling, but decreasing below its equilibrium value afterwards x (see
fig. (6.7)).

In conclusion, the effect of the generalized approach to relic density calcu-
lations implemented here in clearly visible. The analysis here can be compared
with [2], where a similar analysis is conducted with identical results.

6.2 Self-Interacting Dark Matter

Here the improved way of computing relic density calculations is applied to a par-
ticle physics model where DM experiences a significant amount of self-interaction.
As described in subsection 4.2.1, this class of models alleviate the most pressing
discrepancies between observations and predictions of standard cosmology.

'Even if most of the change in Y happens before 2 ~ 90, which is when (ov) = (ov)s, the
quantities (00)neq and (ov)2 neq are computed at later x than the canonical thermal averages

when y # yeq.
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6.2.1 Theoretical background

Following [53], we describe non relativistic DM scattering with a Yukawa potential

—TMmed
Vir)="“—r (6.8)

r
arising from the interaction Lagrangian

Lint = gGyXXO- (6.9)

Although the Schrédinger equation cannot be solved analytically for the

Yukawa potential in the non-perturbative regime, a useful proxy is provided by
the Hultéhn potential [53]:

ade 0"

1—e 0’
where the Hultéhn screening mass 9 is defined as 0 = km,,,.q where k is a numeri-
cal constant of order unity. We notice that the Yukawa and the Hulthéhn poten-
tials behave similarly, scaling as 1/r at short distances and becoming screened
for large distances [53].

The annihilation cross section at tree-level is [53]

V(r) =+ (6.10)

3 wa? m3
ov = —%UQ ——i’, (6.11)
4 ms ms
which can be rewritten as
4 2 2
9y v Mg
X X

2
with a = Z—fr, in analogy with the standard fine structure constant for electro-
magnetic interactions.

In DarkSUSY,, it has been preferred to use the following correction to (6.12)

instead:

4 6 4,02 4 6 2
I 3g4p (=2mf + 10mgm; — 17mgmy + 9mS) - myg (6.13)
X 6mm, (m7 — 2m?2)* m2’ '

Sommerfeld-enhanced DM annihilation

The most important feature of this particle physics module for our purposes is
that being DM annihilation to scalar mediators a p-wave process [53], certain
combinations of mediators mass M,eq, DM mass m, and coupling constant o
lead to Sommerfeld enhancements for DM annihilation ? [73, 74].

2For a more detailed discussion of the Sommerfeld effect, see Appendix A
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In other words, if M.y < m, the exchange of light mediators generates
a potential that modifies the wave function of the DM particles, leading to an
enhancement of the DM annihilation cross section at small velocities 3 which can
be parametrized as follows:

ov = S(v)(ov)o. (6.14)

The Sommerfeld factor has been calculated analytically by means of approxi-
mation (6.9) for the potential, obtaining the following result for the Sommerfeld
factor [75]:

omasinh (22 )

g_ TMmed : (6.15)

6 9m2 2 6
v| — cos2my/ X% X + cosh | =2
T“Mmed M cd TMmed

In the limit of small velocities, one finds that the denominator becomes very
small if

6
T (6.16)

Moped = ———
e w2n2’
for some integer n [75].

We can define how close is a parameter point (defined by a triplet of values
for myed, M, and ) to a resonance by defining the parameter

I () 2,2
o= | Mmed Momed| _ |y L7 Mimed (6.17)
m,", 6m,

If 6 <« % , i.e. when a parameter point is sufficiently close to a resonance, the
Sommerfeld factor can be approximated as follows for low velocities (v < —5-):

402

n2v? + 26?2’

S(v) = (6.18)

i.e. the Sommerfeld factor grows as v% until v < vgyr = <, after which S saturates
at S~ 5 [75] 4.

3The Sommerfeld enhancement only affects annihilation processes and not the scattering
ones as it is originated by DM self-interaction potential facilitating and enforcing the interaction
between two DM particles. This SIDM model doesn’t include any DM-SM potential.
4Actually, this simplistic approach to compute the Sommerfeld factor can make it so large
to have a annihilation cross section violating unitarity for very small velocities. Following [76]
4

do 352 with v, =

4o’ a
n2(v+v.)2+a

a modified Sommerfeld factor can be defined as follows: S(v) = Iz
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Figure 6.11: Sommerfeld enhancement factor S plotted against my,.q for
fixed values of m,, o and v. S shows a very large enhancement when the
condition (6.16). The inset shows a zoom of the resonance marked by n=2
where S is plotted against § (defined as (6.17)) [75]

It can be shown [5] that a power dependency for ov as ov = ggv®™ results in
a thermal average scaling as

(0V)eqg >~ ooz ™. (6.19)
A similar dependence holds for (ov)s, according to
(ov)g n
= —. 6.20
o) 3 (6.20)

Before kinetic decoupling, 7T}, follows the heath bath temperature, therefore y =

Yeg- This results in two different relations between v and x before and after

kinetic decoupling; v o 272 before kinetic decoupling and v o< 7! afterwards.

As a consequence, we expect the thermal averaged cross section to behave as:
(ov) o< x~™ where the exponent 7 is

- {n for x < wpq (6.21)

2n for x 2 Tpq.

To understand how this affects DM relic density, we can as a first approach con-
sider the single equation describing the 0-th moment of the Boltzmann equation

2
Z:_ 1_{91_8 M 1_£ ) (6.22)
Y 3 gy Hzx Y2

In a simplistic picture where xyq > . , around and after kinetic decoupling we

have Y > Y,,, therefore the solution to (6.22) is

x /
Y(z) ™ =Y (x,) ! +/ (1 - §§*2>—3<2’;’>d;¢, (6.23)
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for Ti > Ted-
Using the relation (ov,¢) oc 27" we find

A (1 — L _\forq#£-1
Y(z)™ = Y(z;)" AL T (* *) or 1L # (6.24)

In() for n = -1.

A noticeable change in Y for x > x; is only possible for n < —1. For the standard
scenario, this condition is impossible to satisfy, as n = 0 for s-wave annihilation
and 7 = 1 for the p-wave. However, a Sommerfeld-like enhancement of s-wave °
annihilations is characterized by (ov,q) o< v72, i.e. n = —2 [5] .
Assuming again ov,e o v?" for the coupled system of differential equations
instead, we find
/ !/ ~ /
y nY _aYy (6.25)
y 3Y 6Y

For n < 0, a decreasing Y will increase y even after kinetic decoupling.

6.2.2 QOutcome

As there are three independent input parameters in this model, the DM particle
mass m,, the mediator mass m,,.q and the coupling constant «, a more compli-
cated search must be performed to obtain triplets of parameters such that the
relic density is correct compared to the scalar singlet model. This is already im-
plemented in DarkSUSY, where a search on the value of « is performed for each
fixed couple of values for m, and m,eq, then the mediator mass is changed and
the search for the value of o procedure is repeated. Once covered a large range
of values of meq, m, is changed too and the whole procedure is repeated again.

In order to observe a second period of annihilation, the condition (6.16) has to
be fulfilled. Therefore a list of parameter points (i.e. triplets of values m,, Myeq
and «) provided by the standard DarkSUSY SIDM routines such that the relic
density is correct has been ordered according to how close the quantity n is to an
integer number, according to relation (6.16). In order to maximize the resonant
effect, the closest parameter point to the resonance marked by n = 1 has been
chosen as this is the reonance with the biggest Sommerfeld enhancement factor
S (see fig. (6.11)). The plots presented below are relative to the parameter point
defined by m, = 18.66 GeV, my,eq = 0.03141 GeV, o = 0.002768, for which the
condition (6.16) is fulfilled with n = 1.

Before diving into the final results, the behaviour of the two thermal averages
(ov) and (ov)s has been studied, hoping to verify the relations (6.19), (6.20).

5See Appendix B for a more detailed discussion of p-waves and s-waves

6The relation {(ov) oc v=2 only holds in the vicinities of a resonance; the behaviour of (ov)

is generally (ov) oc v71,
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The plot below shows the quantities (ov)/x and (ov)s/x, expecting a flat
line at very low velocities (i.e. at very late times) if the thermal averages grow
according to (ov) o< x, (ov)e ox x after x ~ 107.
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Figure 6.12: Here are plotted (ov)/x and (ov)2/x as functions of x. The
linear dependency of the thermal averages on x after z ~ 107 is well visible.

It is clear now how the thermal averages grow linearly in z after z ~ 107,

according to (6.19) with n = —1, which is equivalent to (ov) oc v™2, (ov) ox V2.
In order to verify (6.20), the ratio % has been plotted for a wide range of

x, expecting to obtain a value of %
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Figure 6.13: Ratio between (ov)s and (ov) as function of x. The expected
value of % is marked with an horizontal solid line.

A plot of the ratio of these two quantities shows that (6.20) is correct between
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2 ~ 107 and x ~ 10", also indicating that n = —1 in this regime.

We can now move on to the final results. Similarly to what done for the scalar
singlet model, the evolution of the dimensionless number density Y and the DM
temperature parameter y has been plotted, the former in comparison with its
evolution according to the standard Gondolo-Gelmini calculations and the latter
in comparison with its equilibrium value y.,.

10710 ‘
— coupled equations
Gondolo & Gelmini
10-ME ]
> 10712 4
10-131 4
107

L L L L
107 10° 10" 103
X

Figure 6.14: Evolution of the DM number density. A second period of anni-
hilation where the umber density decreases by about two orders of magnitude
is clearly visible.
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Figure 6.15: Evolution of the DM temperature parameter y

In particular, Fig. (6.14) shows a striking difference with respect to the
uncoupled Boltzmann equations after = ~ 107, after which the WIMP annihi-
lations decrease the relic density by more than two orders of magnitude until
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the Sommerfeld enhancement saturates around z ~ 10'3. It can be noticed that
this second period of annihilation takes place so late to continue after matter-
radiation equality, which happens at about x =~ 2 x 10'? [5]. Taking this in
account in the calculations (which includes redefining the Hubble rate H to also
take in account the matter contribution, while in its current implementation it
only includes the radiation term) might slightly improve the results, but not in a
relevant way, as only a tiny fraction of the annihilation processes takes place after
matter-radiation equality. Both plots show a behavior similar to that shown in
fig. 4 in [5]. We cannot expect the plots to be exactly identical due to the de-
pendency of Sommerfeld enhancement on the distance from the resonance (6.16)
and the slightly different particle physics models.

As expected, the DM temperature parameter y departs from its equilibrium
value roughly after x ~ 107, i.e. when the two thermal averages (ov) and (ov),
fully enter the regime defined by (6.12) and when their ratio follows the relation

(ov)9

{ov)

— 14 g (6.26)

(see fig. (6.13)).

We can understand how the Sommerfeld enhancement enters the coupled
equations (4.33), (4.34) as follows: the two thermal averages (ov) and (ov)y grow
linearly well after the usual chemical and thermal decouplings. At around = ~ 107
the prefactor % in front of yf — 1 in eq. (4.34) becames vanishingly small, so
the DM temperature parameter y stops being equal to y., and becomes constant.
This corresponds to T, o« a2 [5], i.e. the usual scaling for non relativistic
particles. The DM temperature parameter y enters eq. (4.33) only via the non
equilibrium thermal average (00}, which is defined as the usual thermal average
(ov), evaluated at T = ysg/mx instead of the usual 7' = =x. When y = ¥,
(0V) neq 1s evaluated at the usual temperature T' = =X therefore (0v)peq = (00).
Here, however y < y., (see fig. (6.15)), hence (0v),e, is evaluated at a lower
temperature than usual(i.e. an higher # due to the definition z = %X). As already
mentioned, (ov) grows linearly in x in this regime, so we have (ov)ne, > (ov).
Looking up to (4.33) we see that this has the effect of making the right-hand side

of the differential equation negative, hence reducing the number density Y.






Chapter 7

Discussion

A remarkable feature of the improved way of computing the relic density of DM
presented here is the fact that it results in a noticeable difference in the relic
density in very different scenarios. The difference in the relic density reaches one
order of magnitude in the scalar singlet model around z = 58 GeV (6.5) and
exceeds two orders of magnitude in the SIDM model (6.14).

In both cases, the maximum effect is present in a peculiar situation. In
the scalar singlet model a noticeable discrepancy appears in the vicinity of a
resonance with the Higgs boson, when the process yx — H is strongly enhanced
and a very low coupling constant A is needed to get the correct relic density.
Such a small coupling constant results in a small momentum transfer rate v which
makes the heat exchange processes less effective. As a result, thermal equilibrium
is not maintained during freeze-out and the standard way of calculating the relic
density fails as its value results to be about 10 times bigger than what resulting
from standard calculations. Hence, in order to obtain the correct relic density, a
bigger coupling constant A by more than a factor of two is needed. The results
are in good agreement with [2], where a similar analysis has been done.

In the SIDM model instead, due to Sommerfeld enhancement annihilation
processes between DM and SM particles are strongly enhanced at low velocities,
i.e. at late times. This phenomenon makes annihilation processes sufficiently
strong for DM to enter a new era of annihilation. More specifically, the DM
temperature parameter y stops following its equilibrium value y., around 107,
and becomes constant. Due to the modified approach to relic density calculations
and due to Sommerfeld enhancement, which makes the thermal averages scale
as (ov) o< v72 {(ov)y < v2 at low velocities, this affects the evolution of the
dimensionless number density Y, which decreases in the interval 108 < z < 10%.
During this period, the DM number density is reduced by more than two orders
of magnitude.

In both cases the code has proven to be fast (a factor of 10° faster than
the analogous Mathematica script used for [2]) and reliable. A modified and
optimized version of this code may be implemented in future versions of DS.
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Conclusion

This implementation of the improved way of computing the relic density accord-
ing to [2] has proven to successfully capture a deviation from the results from
standard calculations both in the scalar singlet and in the self interacting DM
particle modules. For the former, the results can be compared with [2], where
a similar analysis has been done on the same particle model, with very similar
results. Moreover, the current implementation within DarkSUSY (and therefore
written in Fortran) has proven to be about three orders of magnitude faster than
the Mathematica script used for the mentioned article, hence allowing for more
complex scans in a relatively short time in the future. The latter, instead has
little literature background, so we can only stress how noticeable this effect (as
the relic density is reduced by more than two orders of magnitude during the
second period of annihilation experienced by DM) and mention that more exten-
sive scans on the parameter space are planned for the future. This is because the
parameter point for this theory is defined by a triplet of values m,, Myeqd, @, SO
the impact of the calculations on the correct values in order to obtain the correct
relic density is less direct and requires a more complex analysis than the scalar
singlet model.

As pointed out by [5], a second period of DM annihilations well after kinetic
decoupling has an impact on structure formation as the DM velocity dispersion
is affected at a time when structure formation is starting to take place. More
specifically, the DM velocity dispersion can be related to a small-scale cutoff in
the power spectrum of matter density fluctuations corresponding to the mass
of the smallest gravitationally bound objects m, [77]. A detailed analysis of
this effect is beyond the scope of this thesis but a function returning me,; as a
function of the temperature after kinetic decoupling already exists in DarkSUSY,
so it is sufficient to use the asymptotic value of the DM temperature parameter
y as computed in the improved treatment for relic density calculations computed
here to obtain corrected values for m.,;.

We emphasize that the newest version of DarkSUSY allows the user to easily
link in different particle physics modules, so this improved Boltzmann solver could

o7
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be used for different particle physics models in the future and more extensive
and systematic scans of the parameter space for the SIDM model could also be
carried. Once a part of the standard DarkSUSY core libraries, this package could
allow an external user to easily link it to any particle physics module (including
external-supplied ones, see fig. (5.1) and the DarkSUSY manual for reference
[63]). Any particle physics model with a low scattering rate in certain regions
of its parameter space or with a velocity-dependent scattering annihilation rate
might be a good candidate to provide different results compared to standard
Gondolo-Gelmini relic density calculations.



Appendix A

Sommerfeld effect

First introduced by Sommerfeld in 1931 [78], the Sommerfeld effect is an ele-
mentary effect in non relativistic quantum mechanics which describes how an
interaction cross section is affected by the presence of a potential acting on the
particles involved in the process. More specifically, this phenomenon takes the
name of Sommerfeld enhancement.

Following [79], we make the following assumptions to describe the situation:

e The incident particle is a non relativistic free particle (without the added
potential), therefore we can describe the incident particle with the wave-
function

V(x) = et (A1)
if the particle moves along the z-axis.

e [f the interaction is pointlike and takes place only in the origin, the interac-
tion cross section is proportional to the squared wavefunction in the origin
as the latter can be interpreted as the probability that a particle is located
there. As in our case we want to include a potential and hence a non-
pointlike but still spatially limited interaction (extending up to a radius rg
with 0 < g < 1), we can easily extend this result.

e The added potential has central symmetry, i.e. its magnitude only depends
on the distance from the origin. Therefore we have that the scattering of a
central potential results in outgoing spherical waves of the form

) eikr
b 4 1)

as r — oo. (A.2)

The Sommerfeld enhancement factor S is defined as
o = 005, (A.3)

29



60 Sommerfeld effect Chapter A

and is the case of a pointlike interaction equal to

= |1 (0)], (A.4)

while in the case of a not pointlike but still spatially limited interaction it
can be approximated to:

)P
S () 2dr’

(A.5)

so we need to solve the Schrodinger equation to find the wavefunction v (0).

Generally, axially symmetric solutions of the Schrodinger equation for the wave-
function (A.2) are of the form

Y =Y AP(cos()) Ria(r), (A.6)

where A; is a parameter to be determined, P,((6)) are the associated Legendre
functions and Ry, (r) is the radial part of the wavefunction. As we assumed a cen-
tral potential, the angle-dependent parameter A; is independent of the potential
and takes the standard form MT%H)

The interaction modelling DM self-interaction is the Yukawa potential, which
generalizes the Coulomb potential in the case of massive force carriers. There is
no analytical solution to the Schrodinger equation with this kind of interaction.
However, several numeric implementations of this problem are available in the
literature [80, 81], thanks to a renewed interest in the subject due to its relevance
in DM theories.
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Figure A.1: The Sommerfeld enhancement factor S as a function of the
mass of the scattering particles (here already assumed to be a DM particle)
for different values of the velocity (expressed as a fraction of the speed of light
c), from 107 10~1. This figure, taken from [81], is relative to a boson mass
equal to 90 GeV and a gauge coupling a = %, values corresponding to an
exchange of Z bosons

We notice that for very low velocities the Sommerfeld enhancement factor S
can reach extremely high values close to the resonances, of the order of 10°.






Appendix B

Partial wave analysis

The Schrédinger equation for a spherically symmetrical potential V(r) admits
the separable solutions

P(r,0,0) = R(r)Y,"(0,¢), (B.1)
where Y;™ is a spherical harmonic, and u(r) = rR(r) satisfies the equation:

h? d*u 2 I(1+1)
_nr e 14 N
2m dr? V) + 2m  r?

u = Eu. (B.2)

At very large r the potential tends to zero, hence ‘577; ~ —k?u, whose solution is
of the form

u(r) = Ce™ + De™*r, (B.3)

with the first term corresponding to an incoming wave. However, a more sensible
approximation valid for an intermediate region located between the "radiation
zone” and the close vicinities of the actual scattering region consists in neglecting
V but not the centrifugal term.

In this case the radial equation becomes

d*u 11 +1)

dr? r2

u = —ku, (B.4)
and the general solution is a linear combination of spherical Bessel functions:
u(r) = Arji(kr) + Brng(kr). (B.5)

However, in order to attribute a physical meaning to different components of the
wave it is necessary to rewrite the previous expression as a sum of the so called
Hankel spherical harmonics:

(@) = Gi(x) +in(e) I (2) = Gi(x) — i), (B.6)
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At large r, the Hankel function of the first kind scales as e?*" /r, whereas the
Hankel function of the second kind scales as e=*" /r. For outgoing waves, then
we need spherical Hankel functions of the first kind.

Outside the scattering region and where V=0 the wave function becomes

0(r,0,0) = A"+ 37 Gl (k) Y"(6,0) }. (B.7)
Im

The first term describes the incident plane wave and the sum represents the
scattered wave.

The term corresponding to the value 1=0 is conventionally designated with
the letter s while the term with 1=1 corresponds to the letter p !.

1See [82] for a more detailed analysis.



Appendix C

Mogller velocity and laboratory
velocity

The so called ”Mgller velocity” v,,q, defined as[83]:

VUmol = \/(Ul + U2>2 — (1)1 X U2>2, (Cl)

or alternatively as [2]

Vrnog = \/(]91 “p2)? — mim3

mo El E2 Y

is not actually a velocity in the physical sense, as it does not transform ac-
cording to the Lorentz transformations and only serves the purpose of simplifying
the notation in the thermal average [83]. As pointed out in [83], the velocity ap-
pearing in the definition of thermal average (ov) is actually the Mgller velocity:

(C.2)

B [ dp d®poe B/ e B/ T oy,

<UU> B fd3p1d3p2€_E1/T6_E2/T <C'3>
This expression was shown to be equal to the single integral (4.19):
2 3 3
g d’p d°p _
{ov) = n2x / (2m)3 (2%)3UUXX—}ffqu(p)fX’eq(p) B
e (C4)

/00 o 2y v/F — 1K (2
S04 FrUlab My P
L e TR )

in the Gondolo-Gelmini paper [1], where the velocity v, is present instead.
However, it can be shown that in the laboratory frame (i.e. where one of the
DM particles is at rest) the two velocities v,,, and v, are equal.
4

. 2_
Starting from the definition vy, = % and recalling that in the lab

frame we have p, - p, = my/m? + p? and FE1Ey = my/m? + p?
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 my/m? 5522 —

p
VMgl = = . (C5)
’ my/m? + p? vVm? 4 p?
s(s—4m?2 .
As for v,;, defined as v, = 3(7222 X), we evaluate the Mandelstam variable
X

s in the lab frame as s = (p; + py)? = 2(m? + my/m? + p?), so

\/(2m\/m2 + p? + 2m?)(2my/m? + p? — 2m?)
Viab = =

2m+/m? + p? (C.6)

4m*(m? + p®) —4m*

p
2m+/m?2 + p? /m2+p?

where m = m,, p1 = 0 and py = p.

Therefore, vyrs; = viqp in the laboratory reference frame. It is possible to
show that this equality holds in all reference frames which are equivalent to
applying a Lorentz boost to the pair of particles along the direction of the non
zero momentum (py in our notation).




Appendix D

Power series expansion of
expression in (ov)9o

As mentioned in chapter (5), the expression for (ov)s (4.35) includes a factor,
namely the term between square brackets in the integrand function in e, which is
constituted by the sum of two quantities which are opposite in sign and very close
in absolute value, therefore an extremely high precision in the numerical compu-
tation of these quantities is required. For x 2 10%, the most significant range in §
and e, is so close to 1 that the two quantities mentioned before have to be eval-
uated correctly at least to the 8th digit, a degree of precision which is not guar-
anteed in our case. Therefore, it has been necessary to expand the two addends

- = - ViEer—+/(5-1)(e2 1) \ .
_ - 2 _ + +
fileq,8) = 6+\/(S 1)(e1 —1) and fo(es,5) = 2fl g(\/g€++\/(§_1)(62+_1)> in
power series around § = 1 and e, = 1. To clearify the notation, we can define
the distance from the center of the expansion as r = \/(e; — 1)2 + (5 — 1)2.

At zeroth order we have:

fi(es,3) =0+ 0(r) (D.1)
fales,8) =0+ O(r). (D-2)

Proceeding with the first order expansion,

fa( e+, =25 —1)(ey — 1)+ O(1?) .
fales,3) = —/2(5 — 1)(e — 1) + O(r?). (D.4)

S

As expected, the lowest non-zero term is the same, but with an opposite sign for
the two functions.

The next order expansion, however, allows us to capture the dominating con-
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tribution to the sum of the two terms:

(e0,5) = /205 ) (1 + Z(e+ _ 1)) L0 (D)
2, 8) = —/2(3 —1) (1 —(5—-1)— Z(e+ - 1)) +0(r*), (D.6)

therefore, the quantity we were looking for is

Aess) + fulesr9) = VEG = D6~ D) (2er = D+ (= 1))+ 06). (01

Here are some plots which help illustrating the situation. For all of them, only
a region close to the central point of the expansion (namely, the region e, C
{1,1.01}, § € {1,1.01}) is considered as in front of the term fi(e;,5)+ fa(ey, $) a
factor of exp{—2\/§xe+} is present in the integral, which suppresses the integrand
function for higher values of €, and s.

LA
B

1.000

Figure D.1: fi(e+,$) and fa(ey, §) are both equal toO at e =1, §=1 and
show a similar behaviour elsewhere, apart from the opposite sign
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Figure D.2: To highlight how close fi(et,5) and fao(ey, S) are in absolute
value, fi(e4, ) and — fa(€ey, §) have been plotted here. The difference between

the two is only noticeable at the lower right corner of the picture, corresponding
to e = 1.01 and § = 1.01.
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Figure D.3: Here is a comparison between fi(e4,S) + fa(€e4,5), i.e. the
actual function to be integrated, and the second-order approximation of the
same quantity. The approximation follows the original function very well as
the discrepancy between the two is not visually noticeable.
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