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Abstract

Sequencing projects are using paired-end reads to compensate for the rel-
atively short length of the reads obtained by some sequencing technologies
such as Illumina. To take advantage of the resulting paired-end reads, we
need software that can handle paired-end reads by merging their overlap-
ping parts. There is an ever-growing plethora of these software tools, all
trying to be a little better in their respective fields to improve the result.
However, none of these tools employ parallelisation on Graphical Processing
Units(GPUs) to speed up the merging of the paired-end reads. What we
aim to achieve in this project is a respectable speedup compared to existing
solutions when it comes to merging of paired-end reads. The speedup might
also give an opportunity to make better calculations of the score to achieve
a better result.

For this, I have developed a GPU implementation of a paired-end read
merger based on FLASH, which employs parallelization on the GPU. This
implementation was tested against FLASH in both speed and accuracy. Al-
though the GPU implementation cannot quite catch up to FLASH, simple
optimizations would allow it to easily compete with it, and shows great
potential for paired-end read merging on GPUs.
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1 Introduction

1.1 Motivation

Sequencing projects are using paired-end reads to compensate for the rel-
atively short length of the reads obtained by some sequencing technologies
such as Illumina. To take advantage of the resulting paired-end reads, we
need software that can handle paired-end reads by merging their overlap-
ping parts. There is an ever-growing plethora of these software tools, all
trying to be a little better in their respective fields to improve the result.
However, none of these tools employ parallelisation on Graphical Processing
Units(GPUs) to speed up the merging of the paired-end reads. What we
aim to achieve in this project is a respectable speedup compared to existing
solutions when it comes to merging of paired-end reads. The speedup might
also give an opportunity to make better calculations of the score to achieve
a better result.

1.2 Problem Definition

1.2.1 Merging and Scoring

Finding the optimal score for each of the paired-end reads is the final goal
here. This is done by aligning the two overlapping regions in the reads
together by calculating the score of each base. The highest of these scores
is thus the best alignment of the overlap and that is the one we keep. If the
score is lower than a set threshold however, the reads are not to be merged.

1.2.2 Speed

Obviously, the more reads we have, the longer the merging will take. Most of
the time is spent on trying each combination of the overlaps and calculating
the score for each of them. Many of the current algorithms uses a simplified
scoring algorithm to improve speed, sacrificing correctness of the overlaps
in the merging.
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1.2.3 Goal

To achieve the goal I will try to use parallelisation on GPUs.
The goal also includes:

• Implement and optimize a tool for merging paired-end reads on an
NVIDIA Quadro P6000 GPU.

• Study whether a GPU is effective for doing parallelisation of merging
of paired-end reads.

• Determine whether the finished tool is able to compete with other
already existing tools of the same nature.
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2 Background

2.1 DNA Sequencing

The DNA consists of bases of A(adenine), T(thymine), C(cytosine) and
G(guanine).
With sequencing one can read these sequences of bases, and by studying
them one can find its functions. To read these bases we use DNA sequenc-
ing. Sequencing is carried out by sequencing platforms such as Illumina.
In Illumina sequencing we have three steps: amplifying, sequencing, and
analyzing. We start with purified DNA and fragment it into smaller pieces,
these fragments are then given adapters that act as reference points during
the amplification, sequencing and analysis. The DNA is then loaded onto a
special chip called a flow cell where the amplification and sequencing takes
place. Anchored along the bottom of this chip we find hundreds of thou-
sands of oligonucleotides. Oligonucleotides are short, synthetic fragments
of DNA which can attach to complementary sequences. Once the fragments
have attached to the oligonucleotides, the cluster generation phase begins.
The cluster generation phase duplicates the DNA fragments, making thou-
sands of copies. After this, primers and nucleotides enter the chip. The
primers add one nucleotide at a time with fluorescent tags, and a camera
takes a picture of the chip after each round of synthesis. Software then
determines what base the color of each fluorescent tag on the chip corre-
sponds to. What we then get out of the sequencing machine is millions or
billions of reads of different parts of a genome. Later we will have to use
software assisted tools to find which of these reads belong together and if
they contain errors. The assembled DNA string we get out of this should
be very similar to the actual DNA put into the machine(Illumina 2017a).
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2.1.1 DNA Sequencing Errors

When doing sequencing, the process will always produce some errors in the
resulting reads. In Illumina sequencing we have three possible sequencing
errors: substitutions, insertions, and deletions. Of these three, substitutions
are the most common.

1. Substitutions happen when one nucleotide is switched with another,
i.e. an A becomes a T.

2. Deletions is when the read output is missing a nucleotide, i.e. the se-
quence AGGCT is input, and the resulting sequencing shows AGGT,
missing a C.

3. Insertions is when an extra nucleotide is added to a sequence, i.e.
GCCT is input, and the output shows GCCAT, where A is inserted.

2.2 Single-read Sequencing

Single-read sequencing is the simplest method of doing read sequencing.
When doing single-read sequencing, the read is only sequenced from one
end. This type of sequencing is usually both the simplest and the cheapest
method(Illumina 2018). However, the resulting reads have a tendency to
decrease in quality the further the read is sequenced. The quality drop is
due to substitutions, deletions and insertions which become more frequent
at the ends.

50 bp

read 1 - 50 bp

Figure 1: Representation of a single-end read
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2.3 Paired-end Sequencing

Paired-end sequencing is a method of sequencing, so that you can achieve
better results. It allows for longer reads and higher quality of the bases.
It is achieved by the sequencer by reading a fragment from both directions
where there is an overlap in the middle. Software then finds where these
two pairs overlap best and combines the two into one sequence. This pro-
cess is called merging. Paired-end sequencing can improve the quality by
detecting substitutions, insertions or deletions in the overlapping regions.
If there are differences in the overlapping regions, the nucleotide with the
highest quality score can be chosen as the nucleotide in the final sequence.
Normally you would have paired-end reads that overlap, but it is also possi-
ble to have paired-end reads which do not overlap. Non-overlapping paired-
end reads allow for longer fragments, but no coverage between the two pairs,
the distance between the two pairs are however known.

180 bp

read 1 - 100 bp
read 2 - 100 bp

Figure 2: Representation of a paired-end read

2.4 Input Format

The input containing the sequences is given in a FASTQ file. FASTQ is
a format that emerged from the simpler FASTA format. In addition to
storing each nucleotide in a sequence, the FASTQ file format also stores
the quality score for each of the nucleotides. Since there is no standard
as to how sequences should be stored, several formats have appeared. As
for FASTQ, it started with the original Sanger format, and later Solexa,
Illumina and several others developed their own format(Cock et al. 2009).
In this thesis we will focus on the Illumina FASTQ format.

13



Table 1: Elements in the sequence identifier
Element Requirements Description
@ @ Each sequence identifier line starts with @

<instrument> Characters allowed:
a-z, A-Z, 0-9 and underscore Instrument ID

<run number> Numerical Run number on instrument

<flowcell ID> Characters allowed:
a-z, A-Z, 0-9

<lane> Numerical Lane number
<tile> Numerical Tile number
<x_pos> Numerical X coordinate of cluster
<y_pos> Numerical Y coordinate of cluster

<read> Numerical Read number.
1 can be single read or read 2 of paired-end

<is filtered> Y or N Y if the read is filtered, N otherwise

<control number> Numerical 0 when none of the control bits are on,
otherwise it is an even number.

<index sequence> ACTG Index sequence

Each entry in a FASTQ file consists of four lines(Illumina 2017(b)):

1. Sequence identifier

2. Sequence

3. Quality score identifier line

4. Quality score

The sequence identifier needs to be in the following format:
@<instrument>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos>

<read>:<is filtered>:<control number>:<index sequence>.

The elements are described in Table 1 above.
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An Illumina FASTQ file can look as follows:

@EAS139:136:FC706VJ:2:5:1000:12850 1:Y:18:ATCACG

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

+

BBBBCCCC?<A?BC?7@@???????DBBA@@@@A@@

When merging paired-end reads, we need two FASTQ files, one file for the
forward reads, and one file for the reverse reads.

Figure 3: How the scoring and merging for paired-end reads is deter-
mined(Robert C. et al. 2015)
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2.5 Scoring

Illumina gives a quality score for all of its bases in a sequence. This is called
the Phred score, Phred score is an integer value representing the estimated
probability of an error in a given base. The Phred score can however only
say something about substitution errors as indels is not possible to detect
at this stage. For any base call at position i, the estimated error probability
is given by Qi = −10 log10 pi, where Q is the Phred score of that base, and
p is the error rate. To get the correct result, both the p and the resulting
Phred score’s ASCII value must be subtracted by 33. Today, typical base
call error rates range from 0.1 to 10%(Robert C. et al. 2015). A quality
score for a read as a whole is also needed, and is given by the sum of error
probabilities:

E =
∑
i

pi =
∑
i

10−Qi/10

During the merging of the two fragments in paired-end sequencing, a score
needs to be calculated for the newly merged read based on matches and mis-
matches from the forward and reverse reads. We also need a score threshold,
if the quality score for the sequence is below the threshold, the reads will
not be merged.

2.5.1 Merging

When two reads overlap, the score for each new base must be calculated.
As Edgar et al. shows in their paper, if two reads agree on a base call the
quality score increases per the following equation:

(pxpy/3)/(1− px − py + 4pxpy/3)

Here x and y is the base call for the forward and the reverse read respec-
tively.

If there is a mismatch, the base call with the highest quality is chosen, and

16



the new quality score is reduced per the following equation:

px(1− py/3)/(px + py − 4pxpy/3)

This scoring scheme is shown in figure 3 above.

In this thesis we will use the FLASH(Magoc et al. 2011) algorithm, but we
will change the scoring to the formulas given above, hopefully providing a
more accurate score in the outputs. FLASH uses a simple scoring algorithm
which calculates the score for an overlap as the ratio between the number
of mismatches and the overlap length. FLASH does ungapped alignment,
taking advantage of Illumina’s low rate of gaps in the resulting reads.

2.6 General Algorithm in FLASH

The algorithm needed for the merging is stated in the paper about the
FLASH algorithm(Magoc et al. 2011). To find the correct overlap it con-
siders every possible legal overlap between the paired-end reads. A legal
overlap is defined as an ungapped alignment between the reads where at
least min-olap bases overlap. The algorithm goes as follows:

1. Align the pair of reads so that they overlap completely; e.g. by the
full length of the shorter read.

2. Repeat while the overlap is longer than min-olap:

(a) Calculate the overlap length. If an ’N’ occurs in the overlapping
region, it is not counted towards the overlap length.

(b) Calculate the score for the overlap as the ratio between the num-
ber of mismatches and the overlap length, ignoring N’s.

(c) If the score of the overlap is smaller than the score of the best
overlap, save it as the new best overlap.

(d) If the score is equal to the best previous score:

i. Calculate the average quality value of all mismatches in the
overlap.
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ii. If the average quality value is smaller than the average qual-
ity value of the mismatches in the best overlap, save the
current overlap as the best overlap.

(e) Slide the reads apart by one base, reducing the overlap by one.

3. Compare the score of the best overlap to the mismatch threshold. If
the score is bigger than the mismatch threshold, report that no good
overlap was found, otherwise, return the best overlap.

We also have a maximum number of overlaps given by Omax = R−m, where
R is the read length and m is the minimum overlap. Due to Illuminas
increasing error rate towards the 3’-end of reads, the scoring scheme will
prefer longer overlaps while this will not always be correct. To counter this
and determine whether a long overlap is better than a shorter one, we define
max-olap to be the maximum length of the overlap expected in 90% of read
pairs for a given read length and fragment size. For the fragments that
then exceeds the max-olap, we calculate their score as the ratio between the
number of mismatches and max-olap rather than the overlap length. We
also need a way to distinguish between low-quality overlapping reads and
non-overlapping reads. For this we use mr, the maximum proportion of
mismatches that we allow in the overlapping region. Usually, mr is set to
0.25. If the overlap found has a mismatch ratio less than or equal to mr,
the reads are merged.
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2.7 Graphical Processing Unit

Graphical Processing Units(GPUs) are used for manipulating computer
graphics and image processing. They take use of highly parallel structures
to make them more efficient than a CPU at algorithms which process large
blocks of data in parallel.
We also have GPUs for high-performance computing such as the NVIDIA
Tesla and Quadro products. These products are aimed towards scientific
computing applications, such as Biomedical Informatics and Artificial In-
telligence.
For this thesis we will be using an NVIDIA Quadro P6000 GPU(NVIDIA
2016), which is based on the GP102GL architecture. The GP102GL ar-
chitecture features 30 streaming multiprocessors(SMs), with 3840 CUDA
cores divided between them. Each of the streaming processors is massively
threaded. The GP102GL architecture is shown below in Figure 4.

2.7.1 CUDA

CUDA is the parallel computing platform that allows a developer to easily
use all the features of a CUDA-enabled GPU. Prior to CUDA one would
have to be quite skilled in graphics programming in either Direct3D or
OpenGL to make use of the computational powers of the GPUs. CUDA
bypasses this by being a software layer that enables the use of C/C++ or
Fortran to program the GPU, thus no knowledge in graphical programming
necessary. When programming in CUDA, we have to look at it as a system
which consists of a host(the CPU) and one or more devices(the GPUs).
Since the host and the device is two different components data must be
explicitly copied from the host to the device and back. On the device we
have global memory, this memory tends to have long access latencies and
finite bandwidth. That is why we also have on-chip memories: registers
and shared memory per SM block, these have limited capacity, but are
much faster. Registers are private for individual threads while the shared
memory is accessible for all threads within a thread block.
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Figure 4: Pascal GP102GL Fill chip block diagram

2.7.2 Streaming Multiprocessors

The streaming multiprocessors or SMs are the fundamental part of a NVIDIA
GPU. These SMs have the ability to execute hundreds of threads con-
currently, and to handle and keep track of everything the SIMT(Single-
Instruction, Multiple-Thread)(NVIDIA 2012) architecture is used. This
architecture is built around hardware-multithreading instead of instruction-
level parallelism.
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The architecture of the multiprocessors are different on many of the NVIDIA
GPUs, the Streaming Multiprocessors in the Pascal cards are shown in
Figure 5.

Figure 5: Pascal Streaming Multiprocessor

In the Streaming Multiprocessor we find the warp scheduler. The warp
scheduler creates, manages, schedules and executes parallel threads in warps.
Each of the warps consists of 32 threads. When the warp is executed, the
threads start out at the same program address, but they are free to branch
and execute independently. When the warp scheduler receives one or more
thread blocks to execute, these are partitioned into different warps. This is
shown in Figure 6 below.
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Grid

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Figure 6: How the warp scheduler partitions the warps

Warps execute one instruction at a time, so maximum efficiency is only
achieved when all threads go down the same branch. If the threads diverge
on different branch paths, the scheduler will pause and run all branches
taken serially. Only after all paths are run serially will the threads converge
to the same execution path and continue in parallel. There is however only
branch divergence within each warp, all warps run independently of each
other regardless of path taken.

2.7.3 CUDA Cores

CUDA Cores are contained in each SM, how many CUDA Cores reside in
an SM depends on the type of architecture. These CUDA Cores are used for
integer and floating-point arithmetic operations. The contents of a CUDA
Core are shown below in Figure 7.
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Figure 7: The insides of a CUDA Core

2.7.4 Programming GPUs with CUDA

CUDA utilizes kernel functions which consists of the computational tasks to
be performed on the GPU. An application can consist of one or more kernels,
and is written in either C/C++ or Fortran. Once a kernel is compiled, it
makes use of many threads that execute the same code block in parallel.
Multiple threads are grouped into thread blocks where all threads in a thread
block run on a single SM. Within each thread block, threads cooperate and
share memory. Each thread block is also divided into warps of 32 threads,
where the warps are the fundamental units of dispatch within an SM.
An example of a CUDA program can be as follows:

1 // Kernel t h a t e x ecu t e s on the CUDA dev i c e
2 __global__ void square_array ( f loat ∗a , int N) {
3 // 1D thread b l o c k s and 1D thread array i n s i d e each

b l o c k
4 // N i s the l e n g t h o f the data array a , s t o r ed in

dev i c e memory
5
6 int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
7 i f ( idx<N) a [ idx ] = a [ idx ] ∗ a [ idx ] ;
8 }

sample_kernel.c
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3 Methods

In this section I will talk about the different methods and algorithms needed
to implement the paired-end merger. I will also discuss how this can be
optimized for parallelisation on GPUs.

3.1 Hardware

For development and testing a machine issued by UiO named samsida was
used. Its specifications are as follows:

• CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (8 cores)

• GPU: Nvidia Quadro P6000 24 GB x4

• RAM: 125 GB

The Nvidia Quadro P6000 uses the GP102GL architecture, features 3840
CUDA Cores, and has a theoretical memory bandwidth of up to 432 GB/s.

3.2 Software

Samsida runs on a desktop version of Red Hat Enterprise Linux Server
release 7.5 (Maipo) with a kernel version of 3.10.0-862.el7.x86_64. The
system uses Nvidia Driver Version 390.48. For compiling CUDA code nvcc
version 9.0.176 is used, the rest of the code is handled by gcc version 4.8.5.
Profiling tools such as gprof version 2.27-28.base.el7_5.1, NVIDIA Visual
Profiler and nvprof were used. The Visual Profiler and nvprof are tools
which are included in the CUDA Toolkit. For comparing speed and cor-
rectness of the new algorithm FLASH v1.2.11 was used.
To generate Illumina reads for testing purposes a read simulator called ART
Version 2.5.8 was used. This read simulator uses an existing genome as in-
put to generate new reads. The read simulator can be downloaded from the
link below:
https://www.niehs.nih.gov/research/resources/software/biostatistics/

art/index.cfm
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3.3 Data

Apart from the aforementioned generated reads made by ART, two addi-
tional read sets were used to compare speed and correctness. Both read sets
were provided by GAGE-B, one set assembled from HiSeq Illumina reads,
and another from MiSeq Illumina reads.
The genome assembled from HiSeq Illumina reads were Bacillus cereus VD
118, and from MiSeq Illumina reads Bacillus cereus ATCC 10987. The
MiSeq genome contains 1040000 long read-pairs of about 251bp, while the
HiSeq genome contains 6500000 short read-pairs of about 101bp.
The reads can be downloaded from
https://ccb.jhu.edu/gage_b/datasets/index.html

3.4 Optimization

A sequential solution to this problem would merge one pair then move on
to the next, doing one merge at a time. Parallelisation is done on a code
level in the software, which allows for different processes to simultaneously
work on different reads. This is done to speed up the whole process of
aligning reads and hopefully allow to make more precise calculations to get
alignments that are true. Parallelisation is usually done on cores in CPUs,
where each core get one or more tasks. The more cores the CPU has, the
more tasks it can do at once. Parallelisation can also be done on GPUs,
e.g. NVIDIA Tesla GPUs feature CUDA cores, these cores can also do cal-
culations individually at the same time increasing speed.

When merging paired-end reads, the reads need to be kept in memory. The
more reads you want to process at once, the more memory is needed. This
also affects the speed of the program as these reads need to be transferred
between the host and the device. When doing parallel programming on
GPUs you need to take into account the amount of transfers done as this is
one of the most time consuming operations. To achieve an optimized pro-
gram the transfers must be at a minimum, allocating the necessary memory
on GPUs first then transferring over the reads in batches before merging.
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GPU parallelization is good for specific problems, e.g. matrix multiplica-
tion. In FLASH, the part which somewhat fits the nature of GPU paral-
lelization is the find_mismatches function. This function finds the number
of mismatches in a given alignment, which is then used to find where the
two reads overlap.

The loop in find_mismatches which may benefit from GPU parallelization.

1 for ( int i = 0 ; i < over lap_len ; i++) {
2 i f ( seq1 [ i ] != seq2 [ i ] ) {
3 num_mismatches++;
4 total_mismatch_qual += min ( qual1 [ i ] , qual2 [ i ] ) ;
5 }
6 }

find_mismatch.c

This loop can either be run with different reads by different processes, find-
ing multiple num_mismatches at once, or several processes can split the
work on two reads. The first option is most likely to give the most speedup
as the loop is relatively short, which gives quick runs by each process, al-
lowing for more processes at once. If we were to split the processes for each
two reads, we would need to tally up the results from each of the processes
before we get the result needed, leading to more time spent.

3.4.1 Storing of the reads

How we store data is important to ensure that we get the speeds we want
when doing the merging. In the initial software I stored reads in structs, one
struct for forward-reads, and one for reverse-reads. This did not prove to be
very effective as the GPU had to jump back and forth between a forward and
reverse read which were not contiguous in memory. To solve this problem I
chose to store both the forward and the accompanying reverse read in one
struct so that they would be contiguous in memory. I also added the final
merged read in the same struct for simplicity.
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3.4.2 First iteration of the GPU code

In the first working parallel code I went with the approach of different reads
for different processes to fully utilize the number of threads per SM. As the
NVIDIA Quadro P6000 has 1024 threads per SM, 1024 seems a good num-
ber to divide the number of reads into. This ensures that 1024 threads
work on a block of reads at once, hopefully maximizing the utilization of
the GPU. In the code seen below we first prefetch the overlap_starts and
the data contained in reads_gpu. When prefetching we tell the program to
move the data to the GPU after it is initialized. This eliminates the need
for the program to check whether the data is located on the CPU or the
GPU, and then transfer it over. By doing this all the data is moved at
once and we remove unnecessary page faults which only adds to time spent.
After the prefetching is done, the kernel is called, and the reads_gpu and
overlap_starts is sent to the GPU. Here multiple threads each work on a
respective chunk of the overlap_starts array to fill it in.

1 // p r e f e t c h ove r l ap_s ta r t s to GPU
2 int dev i ce = −1;
3 cudaGetDevice(&dev i ce ) ;
4 cudaMemPrefetchAsync ( over lap_start s ,

R_CHUNK∗ s izeof ( int ) , device , NULL) ;
5
6 // Pre f e t ch ing data in reads_gpu
7 cudaMemPrefetchAsync ( reads_gpu−>read_arr ,

R_CHUNK∗ s izeof ( read ) , device , NULL) ;
8
9 int b l o ckS i z e = 1024 ;
10 int numBlocks = (R_CHUNK + blockS i z e − 1) /

b l o ckS i z e ;
11
12 combine_reads<<<numBlocks ,

b lockS ize >>>(reads_gpu , ove r l ap_sta r t s ) ;
13
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14 cudaDeviceSynchronize ( ) ;

first_iter.c

3.4.3 Output of NVIDIA Visual Profiler

On the left side of the profiler we see the different categories which the pro-
gram is divided into, in this case the main process, and the GPU.
In the main process we see the main thread which consists of the Runtime
API and the Driver API, and the Profiling Overhead. The Runtime API
consists of different API calls in the CUDA library, such as cudaMallocMan-
aged(), and cudaMemPrefetchAsync(). The Profiling Overhead consists of
the time the profiler spends on starting and stopping the profiling.
The Unified Memory category consists of CPU page faults, this is page
faults happening on the CPU due to moving the data between the CPU
and the GPU. The CPU is usually very quick to handle a CPU page fault
so these are not of great concern.
The Quadro P6000 category is the main focus in the profiler. This cate-
gory helps explain how much time is spent on data migration from host to
device(HtoD) and device to host(DtoH), as well as GPU page faults. Gen-
erally when programming in CUDA we want to minimize the number of
data migrations as well as page faults on the GPU as these are much slower
to resolve than page faults on the CPU.
The Context 1 category shows how much time each kernel spends on calcu-
lation for each stream. In this program only one stream is utilized.
In the main window of the profiler we see the timeline. The bars we see
here shows how much time is spent in each category, the longer the bar the
longer the time spent.
On the bottom of the profiler we find the analysis tab which aids the pro-
grammer in finding what parts of the code or the kernel is not properly
optimized or could be further optimized.
The bottom right is the Properties pane which tells details such as time
spent in the selected category.
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When running the first iteration of the code through the NVIDIA Visual
Profiler we get the result shown in figure 8.

Figure 8: Result of first iteration in the NVIDIA Visual Profiler

Here we see Data migration between host and device, and Page Faults take
most of the time. The kernel compute time is only a fraction compared to
the rest. In this iteration the data is transferred over to the GPU in small
batches one at the time, with many transfers between host and device. This
in turn gives many kernel launches on small amounts of data, which is not
optimal. This shows that either the storing or migration of data needs to
be optimized if possible.
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3.4.4 Second iteration of the GPU code

The first approach still causes many page faults and slow migration between
device and host. To reduce migration time and page faults I decided to store
the reads differently. A hopefully more efficient way would be to store every
read in a contiguous array, and keep the index where each read start in
a separate array. This means that only two arrays for the whole batch of
forward and reverse reads, along with two index arrays will be transferred
over to the device instead of one struct per read.

A string in C is stored as a char array, where each char takes 1 byte. If we
store N reads in each array and each read is b chars long, we end up with a
char array taking (N∗b)

1000000
MB. Doing this we need two arrays for the forward

and reverse reads and two arrays for the forward and reverse scores. We
also need an additional array to keep track of where in the array each read
starts, for this we need an integer array for the forward and reverse reads
which is N long.

After the change in the code, we see in the visual profiler(Figure 9) that the
data migration time has been reduced significantly. Now most of the time
is taken by the CPU page faults at the start of the program, and the kernel.
The CPU page faults happen when the data first needs to be accessed by
the GPU, The gap in the picture is when the program is finished with the
current sequences and reads new sequences from the file.
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Figure 9: Result of second iteration in the NVIDIA Visual Profiler

With a small dataset of 200 MB the previous code used about 17 seconds
to finish, with the current optimized storing and transferring of reads this
takes about 9 seconds. In comparison the FLASH program takes about
1,7 seconds on the same dataset. With such a small dataset this program
shows no improvement in terms of time, but with bigger datasets this will
hopefully change. When it comes to correctness, the results show the same
as FLASH, it merges the same amount of reads with the same overlap,
and it gives the same non-merged reads. When it comes to scoring, there
is obviously some difference since these are calculated differently than in
FLASH.
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Table 2: Snippet of precomputed scoring table
... A B C D E ...

...
A 65.0 66.0 67.0 68.0 69.0
B 66.0 67.0 68.0 70.0 71.0
C 67.0 68.0 70.0 71.0 73.0
D 68.0 70.0 71.0 73.0 73.0
E 69.0 71.0 73.0 73.0 73.0
...

3.4.5 Speeding up merging

When doing the merging we are calculating the scores in accordance to the
formulas given by Robert C. et al. 2015 as shown previously. Calculating
these scores for every base can be quite time consuming. The formulas
always gives the same output for two given scores. Knowing this, we can
precompute all the possible outcomes.
Since there are 41 possible scores with each their own symbol, a matrix
of 412 is necessary. Two of these matrices are needed since there are two
different formulas, one formula for when the two bases are the same, and one
for when the two bases are different. After these two tables are computed,
we only need to do an array lookup with the two scores to find the new
score.
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The way the score was calculated previously:

1 double px = qual_to_p ( ( int )∗read_1_qual ) ;
2 double py = qual_to_p ( ( int )∗read_2_qual ) ;
3
4 double p = px ∗ py / 3 .0 / ( 1 . 0 − px − py + 4 .0 ∗ px

∗ py / 3 . 0 ) ;
5 double merge_qual_same = opt_fastq_asc i i +

min ( round (−10.0∗ l og10 (p) ) , opt_fastq_qmaxout ) ;

old_score.c

Now replaced by a single line:

1 double merge_qual_same =
same_qual [ ( int )∗ scores_f −33 ] [ ( int )∗ scores_r −33] ;

new_score.c

After implementing the precomputed table, the time spent on the 200 MB
dataset reduces to about 3 seconds. It is still not as fast as FLASH, but
shows a considerable improvement over the previous iteration by more than
halving the time. Implementing this table lookup causes no change in cor-
rectness of the merged reads, and merges the same amount of reads.
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3.5 Implementation

What follows is detailed explanations of the finished implementation of the
paired-end read merger.

3.5.1 Workload

When doing GPU programming we want most of the work to be done on the
GPU, this however, proved difficult as this algorithm does not quite fit the
nature of parallel programming on GPUs. I still transferred as much work
as possible over to the GPU, while some parts of the implementation are left
to the CPU. The process of finding the overlap between the two read-pairs
had the possibility of gaining most from the GPU as this contains simple
calculations which can be spread over multiple threads. The merging of
the pairs on the other hand, best fit the CPU as this process contains no
calculations, but instead only does table lookups and pointer copies. The
overall process then becomes as follows:

1. CPU reads forward and reverse reads from file

2. CPU copies reads over to GPU

3. GPU finds the best overlap for each read-pair

4. CPU merges the read-pairs by the overlap returned by GPU

5. CPU writes final merged sequences to file
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Read from file
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Figure 10: Flowchart of overall process

0 1 2 3 4 5 6 7 8 9 . . . 152 153 154 155 156 . . .

forward_reads[.] : A T G G C A C C A A ... G A C G G . . .

0 1 2 3 . . .

read_index_forward[.] : 0 152 302 453 . . .

Figure 11: How the index references the reads in memory
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3.5.2 Storing of reads

Before storing the reads, the program goes through the input file once to
find the maximum length of the reads. The reason for this is so we know how
much memory to allocate on the GPU before making the data accessible.
Since Unified Memory is used in this implementation, it is unnecessary to
do two allocations, one for the CPU and one for the GPU. Once the data is
allocated with Unified Memory, anything copied to the allocated memory
space will immediately be available to both the CPU and the GPU.
The file is read in chunks, and after each line it is copied to its respective
allocated array, making it available on the GPU. When the reverse read is
read it is reverse complimented along with its score before it is copied to
the GPU. When the whole chunk is read and the Unified Memory arrays
filled, the paired-end merger moves on to the next step, which is to find the
overlap of the read-pairs on the GPU. The reads are represented as shown
in Figure 11.

3.5.3 Kernel

1 __global__
2 void combine_reads ( struct reads ∗reads_gpu , int

∗ ove r l ap_sta r t s ) {
3
4 int index = blockIdx . x ∗ blockDim . x +

threadIdx . x ;
5 int s t r i d e = blockDim . x ∗ gridDim . x ;
6
7 int num_reads = R_CHUNK;
8
9 // i n i t i a l i z e data on GPU
10 for ( int i = index ; i < num_reads ; i += s t r i d e ) {
11 ove r l ap_sta r t s [ i ] = −1;
12 }
13
14 for ( int i = index ; i < num_reads ; i += s t r i d e ) {
15
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16 int read_len_f =
reads_gpu−>read_len_forward [ i ] ;

17 int read_len_r =
reads_gpu−>read_len_reverse [ i ] ;

18
19 // a l i g n the pa i r s to f i nd the where the

ove r l ap s t a r t s
20 ove r l ap_sta r t s [ i ] =

a l i gn_pa i r ( reads_gpu−>reads_forward +
i ∗ read_len_f , reads_gpu−>reads_reverse +
i ∗ read_len_r , reads_gpu−>scores_forward +
i ∗ read_len_f , reads_gpu−>sco r e s_reve r s e +
i ∗ read_len_r , read_len_f , read_len_r ) ;

21 }
22 }

kernel.c

The kernel shown above is run once for every chunk of reads. It first ini-
tializes the data in the overlap_starts array. Doing this, we eliminate any
possible GPU page faults, since we first access it on the GPU. We then
start the main loop which splits the calculation of overlaps on the different
threads. How many threads per overlap depends on the size of the chunk
of reads, and the length of the reads.
I decided to have a blockSize of 512 which is half of the max number of
threads the Quadro P6000 supports in one threadblock. The reason for the
big blockSize is to try to make up for the branching code in the align_pair
function. Furthermore, of all the sizes tested, 512 seemed to be the best
with a small margin.
The number of blocks is calculated as (arr_len_f+blockSize−1)/blockSize,
where arr_len_f is the total length of the array containing the chunk of
reads. This seems to give an even distribution of the threadblocks, giving a
good result.
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3.5.4 Finding overlaps

When it comes to finding overlaps on the GPU, the code is the same as in
the serial implementation, apart from some __syncthreads() functions to
avoid race conditions between the threads in each warp. It is very similar
to FLASH apart from the SIMD instructions which is absent in this imple-
mentation. The reason for not changing much here is because there were
no easy ways to convert it to GPU code. If I were to run the kernel once
per read I could utilize shared memory, as I could fit the read-pairs as well
as their scores there. Doing this the kernel in itself would most likely be
very fast, but since the process of finding the overlap is not very demanding
the overhead for starting all the kernels would take longer than finding the
overlaps. Furthermore, adding shared memory to the implementation as it
is now would not be possible since it would need to store the whole batch
of reads in shared memory, far surpassing the size of the GPU’s shared
memory capacity.

3.6 Differences from FLASH

Overall this implementation of read merging is quite similar to FLASH.
FLASH however stores each read in a struct, and sends smaller batches to
combining. Looking more closely at FLASH’s inner workings, we see that it
employs one reader thread, one writer thread, as well as several combining
threads to minimize the amount of calculation downtime. In addition to
using threads to speed up the process, it also utilizes SIMD instructions,
more specifically SSE2 intrinsics. SSE2 makes use of the CPU’s ability
to do multiple calculations at once without threads, but instead placing
data in registers, called vectors. FLASH uses SSE2 on the inner loop that
counts the number of mismatches and calculates mismatch quality. This
adds another level of parallelization to the task, and gives a speedup of
about 2x according to the makers of FLASH.
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4 Results and Discussion

4.1 Simulated datasets

In this section we look at the results from the generated read sets made by
ART. ART needs a real genome to generate the reads, and the genome used
here is the E.coli-genome (strain K-12 MG1655) with accession U00096.3.
When running the GPU implementation and FLASH, the default parame-
ters where used for both. The programs were run with a max_overlap of
65, min_overlap of 10, and max_mismatch_density of 0.25.

4.1.1 Runtime

17.0s1st iter

9.0s2nd iter

3.0s2nd w/ lookup

1.6sFLASH

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s
Seconds elapsed

Figure 12: Runtime differences between the different implementations and
FLASH on a generated 200 MB dataset

Comparing the three iterations shown in Figure 12 on the 200MB dataset,
we see it gradually gets faster. From the first to the second iteration it is
sped up by 47%. This is mainly caused by the change in the storing of the
reads, allowing more efficient access of data by the GPU and transferring a
bigger amount of reads at once. This in turn gives the kernel more to work
on, reducing the amount of overhead from starting many kernels in a short
time span.

By adding the score lookup in the serial part of the code, we see a 66%
speed up. The cause of this is eliminating all the expensive mathematical
operations done per base of each read when merging. Instead of doing these
expensive calculations, it calls the lookup function and finds the score in
the precomputed table.
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Comparing the final iteration with FLASH however, shows that FLASH is
about 53% faster. This might be due to the small file sizes as GPUs spend
some time on overhead when initializing the Driver APIs and allocating the
memory beforehand. This means that the FLASH algorithm will have a
big head start before the GPU implementation has even started. This will
hopefully get solved with bigger file sizes, as this overhead is constant no
matter the file size.

2.84s150 bp
1.89s

2.48s125 bp
2.20s

2.52s100 bp
2.74s

2.21s75 bp
2.73s GPU

FLASH

0s 0.5s 1s 1.5s 2s 2.5s 3s 3.5s 4s
Seconds elapsed

Figure 13: Runtime difference between final GPU implementation and
FLASH with different read lengths

On this small dataset of varying read lengths we see that there are small dif-
ferences between the GPU implementation and FLASH(Figure 13). While
FLASH has a shorter runtime for the 150 bp and 125 bp, the GPU imple-
mentation is slightly faster at the two smaller read lengths. The reason for
the slightly faster runtime on the GPU implementation on the shorter read
lengths could be smaller amounts of branching in the GPU code. Another
reason could be the extra output files and results FLASH produces com-
pared to the GPU implementations which would increase time after all the
read-pairs are merged.
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4.1.2 Accuracy

The reads to measure the accuracy of the program is generated by ART,
here I chose to have a fragment length of 350, coverage of 10, and 20 as
standard deviation. I generated 3 read sets with a read length of 150, 200
and 250 bp. With these parameters, the 150 bp reads are supposed to
have very few overlapping pairs whereas almost all of the 250 bp read-pairs
should be merged.

99.86%250 bp
99.86%

97.97%200 bp
97.97%

0.56%150 bp
0.56% GPU

FLASH

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of read-pairs combined

Figure 14: Percentage of combined reads in FLASH and the GPU imple-
mentation

Here we see that the two implementations merge exactly the same amount of
reads regardless of read length. This shows that the correctness of the GPU
implementation is on par with FLASH regarding simulated read-sets. There
might be edge-cases not tested which produce different results. This would
however most likely be a fault in the programming as FLASH’s algorithm
and the GPU implementation is the same and should produce the same
result.
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@U00096.3-139068
ATGGTGACAAAAGCCTGAAGCGCTACGCTTATCAAGCCTACAGATTCTCGCGCC
ACTCGTAGGCCGGATAAGGCGTTCACGCCGCATCCGGCAGTGGTGACAAATGCC
TGATGCGCTACGCTTATCAGGCCTACAGATTCTTGCGCCATTCGTAGGCCGGAT
AAGGCGTTCACGCTGCATCCGGAATGAACAATTAGGTCATACGCGGTAACGTTC
+
GF#DEGGG39G#EFG#CG#FGG+EGFEGGGGGGG#FG8FGGGDGDFGGFGFGGF
D@F?GGGEGGDCGGGGCGGGGF#GGGGGGGGFGGGGGGF,CGGGG#GGGGGGFG
GGGGG<GGGGGGFGCGGGGGGGGGGGGGGGGGEGGGGGGGGF7G8GGCGG,>:+
GG*GGGF,F@+GG*GGG7;6#F#*G9GGG0##9+0C)G,#06CF#9G.#ABCG+

@U00096.3-139068
ATGGTGACAAAAGCCTGAAGCGCTACGCTTATCAAGCCTACAGATTCTCGCGCC
ACTCGTAGGCCGGATAAGGCGTTCACGCCGCATCCGGCAGTGGTGACAAATGCC
TGATGCGCTACGCTTATCAGGCCTACAGATTCTTGCGCCATTCGTAGGCCGGAT
AAGGCGTTCACGCTGCATCCGGAATGAACAATTAGGTCATACGCGGTAACGTTC
+
GF#DEGGG39G#EFG#CG#FGG+EGFEGGGGGGG#FG8FGGGDGDFGGFGFGGF
D@F?GGGEGGDCIIIGCIIGGIGIIIIIIIIFGIGIIIIGFIIIIGIIIIIIFI
IIIIIAIIIGGIFIFIIGGIIIIIIIIIIGIGIIGIIIIGGI7G8GGCGG,>:+
GG*GGGF,F@+GG*GGG7;6#F#*G9GGG0##9+0C)G,#06CF#9G.#ABCG+

Figure 15: Example of combined pairs from 150 bp run on FLASH and
GPU implementation respectively

Figure 15 above shows two combined read-pairs, one from FLASH and one
from the GPU implementation. We see here that the two read sequences
produced are exactly the same, meaning that both implementations found
the overlap at the same place. The score however, is slightly different where
the two pairs overlap. The cause of this is the difference in how the two
implementations calculate the score of bases which overlap.
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4.2 Real datasets

The datasets used in this section are the read-sets from GAGE-B, one 1.5
GB dataset with long reads of 251 bp, and one 3.5 GB dataset with short
reads of 101 bp.
Both programs were again run with default parameters as stated above in
Section 4.1.

4.2.1 Runtime

16.54sGPU

13.0sFLASH

0s 5s 10s 15s 20s
Seconds elapsed

Figure 16: Runtime difference between FLASH and final implementation
on a 1.5 GB dataset of long reads

As shown in Figure 16, we see the GPU implementation taking a bit longer
than FLASH. The reason for this is most likely the nature of the algorithm
used to find the overlaps, as this consists of big nested loops with several
branches. The branches here are the main problem; each time a thread
reaches the end of a branch it has to wait for all the other threads. This
causes idling in many of the threads and an increase in time since fewer
threads are working on the calculations.
The speed of the GPU implementation is however suspiciously close to
FLASH when comparing it to other runtime results.
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76.0sGPU

37.0sFLASH

0s 10s 20s 30s 40s 50s 60s 70s 80s 90s
Seconds elapsed

Figure 17: Runtime difference between FLASH and final implementation
on a 3.5 GB dataset

On the 3.5 GB dataset we see that FLASH is much faster than the GPU
implementation. This dataset produces less branching due to shorter reads
than the previous dataset, but the GPU implementation still takes signif-
icantly longer. The branching and the time spent in the kernel is still a
significant portion of the time spent, but time also adds up during transfer-
ring data between host and device. Since FLASH does not need to transfer
data between host and device, it saves some time compared to the GPU
implementation. The result is shown in Figure 17.
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4.2.2 Combine time

In this section, I will look at how long the program spends in the different
parts of the program, splitting up the combining/merging and other parts
considered as overhead. To get these results, I timed the different methods
in the GPU implementations with the C library function clock_t clock(void)
and added them together. This however, again creates some overhead which
may increase the total runtime, but should still give us a clear view of what
parts in the program takes most of the time. The timing was was done on
the 3.5 GB HiSeq dataset.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

3.28

3.28

16.22

53.66

Runtime

Read Merge Write Overhead

Figure 18: Runtime in seconds of the different parts in the GPU implemen-
tation

Figure 18 above shows how much time each of the parts in the implementa-
tion spends on the 3.5 GB dataset. Here, we see reading from the file takes
most of the time, with 70.2%. Finding the overlap and merging only takes
about 21.2% of the time. The overhead shown in the figure is the time spent
on initializing CUDA, and allocating some data-structures at the beginning
of the program. To try and find the cause of why the read function is taking
so much time, we can try to split up the runtime in chunks, and time each
chunk independently.
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Figure 19: Plot showing how much time is spent in each of the parts of the
implementation per read-chunk

The plot in Figure 19 gives us a clear view of what takes time in the GPU
implementation, and what needs to be optimized. Both the merging and
the writing to file takes about the same time per chunk. The parts all have
a slight dip in the last chunk since this chunk contains less reads than the
previous ones. We see here that the function which reads from file increases
in time for each chunk. This is because the reading from file is poorly
optimized, and this was harder to spot on the smaller filesizes. The reason
for the increase in time per chunk is a pointer which is used to keep track
of where we left off in the previous chunk. When a chunk is finished and
before a new one can be processed, this pointer must first process through
the file to find the last position. This means that the file is read multiple
times, whereas it should only be read once. An option for optimizing this
will be discussed in Section 6, Future work.
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4.2.3 Accuracy

5.61%GPU

21.11%FLASH

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of read-pairs combined

Figure 20: Percentage of combined reads in FLASH and the GPU imple-
mentation on the 1.5 GB GAGE-B read-set

As shown in Figure 20, the GPU implementation only combines about 6%
of all the read-pairs whereas FLASH combines about 21%. From this we
see that there definitely is an error in the GPU implementation. Further
analysis done by inspecting the output files shows that the GPU implemen-
tation also incorrectly combines read-pairs that should not be combined,
leading to a very different result compared to FLASH. The reason for the
difference in the two implementations is hard to determine. Looking at
both the code and the results shows no obvious errors, but this error also
seems to affect the speed of the run. As shown in Figure 16, the actual
runtime is close between the two, giving an outlier compared to the other
runs with different datasets. This might indicate that the implementation
for some reason skips part of the code or read-sets altogether, as skipping
a big portion of the reads definitely will give shorter runtimes. The reason
for the skips might be due to a combination of long reads with the addition
of N s.
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52.94%GPU

52.94%FLASH

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of read-pairs combined

Figure 21: Percentage of combined reads in FLASH and the GPU imple-
mentation on the 3.5 GB GAGE-B read-set

Figure 21 above, shows that FLASH and the GPU implementation combines
the same amount of read-pairs when it comes to the 3.5 GB dataset of short
reads. Since this data-set has shorter reads and at the same time contains
N s, it further adds to the suspicion that the error produced by the 1.5 GB
dataset might be due to a combination of N s and the read-length. Also, the
250 bp run on the simulated read-sets combined the same amount of read-
pairs as FLASH, but this read-set did not contain N s. This shows that the
implementation can handle long reads and reads with N s separately, but
maybe not both at the same time.

Figure 22 under shows an example of two reads from the 3.5 GB run of
short reads. We see that the result from the combining produced an equal
overlap, giving identical combined reads, but a slightly different score in the
overlap which is to be expected.
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@SRR497464.23 23
AGCTATAGCAATGAATTTAAGAAAGTTATCCACAAAATCAATACCTTGTG
GAATAAACTTGTCCACAATACGATATACTGTGTAAAAGTAAAAAAAGAGT
TTGTGGATACAAAAAAGAGAAAATATATTTATCCACA
+
@@<DDD>D?AFD?:?,22AE>DEGBHF<CHEFFFFDAGFIF@?FDDCCBC
CC@BBDAB?BD?CCEFFFF>FFC3@=.EHEGHDJIHGDGGIHF<IEFBDC
9F@F?C:C:AABHAHC<:<GEA2EDHFF8DD3BB8?:

@SRR497464.23 23
AGCTATAGCAATGAATTTAAGAAAGTTATCCACAAAATCAATACCTTGTG
GAATAAACTTGTCCACAATACGATATACTGTGTAAAAGTAAAAAAAGAGT
TTGTGGATACAAAAAAGAGAAAATATATTTATCCACA
+
@@<DDD>D?AFD?:?,22AE>DEGBHF<CHEFFFFDAIIIFAAFFICCBC
CCABBDABABDACCEFFHFAFFCAAAAEHEGHDIIHGDGGIHFAIEFBDC
AF@F?C:C:AABHAHC<:<GEA2EDHFF8DD3BB8?:

Figure 22: Example of combined pairs from 3.5 GB run on FLASH and
GPU implementation respectively
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4.3 Runtime analysis

Looking at both the simulated datasets and the real datasets, the speed of
the GPU implementation is a bit behind when it comes to relevant read
lengths. As shown in Section 4.2.2 however, it should at least be possible
to get the runtime much closer to FLASH on bigger files by changing how
the program reads from file. With further optimization methods this could
potentially be even faster than FLASH.

4.4 Accuracy analysis

Apart from the wrong result on the long-read 1.5 GB dataset, all the other
tests showed that the accuracy of the GPU implementation was the exact
same as the others. This however, is mainly due to the very few changes in
the FLASH algorithm which finds the overlaps. If this method was to be
further optimized and rewritten, it might have led to different results.
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5 Future work

During the coding and writing of the thesis, I discovered several possible
methods that could be used to optimize the GPU merger. Some options
where already mentioned in the previous section which will be further ex-
plained along with other methods. The GPU implementation developed
during this master thesis is more of a prototype, and to reach a fully func-
tional and usable program at least some of the options mentioned in this
section would need to be implemented. Some of the methods explained in
this section, like the memory mapped files and CPU threads should not
prove a problem to implement, but due to time restraints this was not pos-
sible.

5.1 General improvements

Although this master thesis is focused on GPUs there are still improve-
ments that can be done on the serial parts of the implementation, both
regarding speed and functions. The general improvements mentioned here
contains improvements that could increase the speed of the program as well
as improvements that would make the program more complete.

5.1.1 Memory mapped files

As stated in Section 4.2.2 the current method to read from file in batches is
poorly optimized. The method currently uses the C library function FILE

*fopen(const char *filename, const char *mode) to open files, and
the C library function ssize_t getline(char **lineptr, size_t *n,

FILE *stream) to read one line at a time. These methods are not suited
for bigger files which is very common when doing read merging. Memory
mapped files could be used instead, as this can greatly increase speed when
working with big files. mmap() is a system call that can create a virtual map
for a whole file, instead of copying the file to RAM. We then get a mapped
array that can instantly access whatever part we need in the file, eliminating
having to search through the file line by line and increasing speed.
Doing this, it can be imagined that the speed of reading from file and copy-
ing to unified memory per batch can be reduced to a constant time of about
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0.3 seconds as shown in the first batch in Figure 19. This could then po-
tentially reduce the total time of reading from file on the 3.5 GB read-set
from 53.66 seconds to about 10 seconds. The total runtime for the GPU
implementation would then be reduced to about 33 seconds, slightly faster
than FLASH.

5.1.2 Independent reader, combiner and writer threads

Due to time constraints, I did not have time to implement independent
threads to handle concurrent reading, combining, and writing. This could
give a great speed-up to the program as it would allow the GPU to contin-
uously do work after the first batch is read, eliminating some of the need
to wait both for the GPU and CPU. Adding this feature would also give
a more "correct" analysis when comparing the GPU implementation and
FLASH, as FLASH has this feature.

5.1.3 Allow for outies

A feature which FLASH supports is the merging of "outies". These are
read-pairs that does not overlap in the middle, but toward the edges, an
example of this is shown under in Figure 23. This is a feature which is
not enabled by default, but must be enabled manually when running the
program. If this feature is enabled, the program tries to find the best overlap
in the "outie" region after the normal overlapping region, potentially almost
doubling the runtime of the program since the overlap must be found twice.

180 bp

read 1 - 100 bp
read 2 - 100 bp

Figure 23: Representation of how outie reads are overlapped
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5.1.4 Command line arguments

Currently the implementation only supports the input FASTQ files as ar-
guments. Ideally, the implementation should support the important ar-
guments such as max_overlap, min_overlap and max_mismatch_density.
These variables must now be changed in the code to be modified. This is
however a very easy feature to add, which I could not add again due to time
constraints. Furthermore, the implementation could support the other ar-
guments FLASH also supports, such as changing the phred offset to support
different sequencing platforms, and setting the read- and fragment-length.

5.1.5 Read input

FLASH allows for interleaved input files. This means that it can accept
both forward and reverse reads in one file, where the reads are interleaved.
To implement this, the function which reads from file needs to be rewritten,
or a new method needs to be added. Currently, the GPU implementation
only supports standard FASTQ files with forward reads in one file, reverse
reads in another, and a phred offset of 33.

5.1.6 Fixing accuracy errors

As shown Section 4.2.3, the implementation does not always produce the
correct result. It seems that this is a flaw in the programming and most
likely a simple mistake. It is however a necessary part to fix if this is to
be a fully functionally program. With more time, I am certain that this is
fixable, and would not be a deciding factor for whether paired-end merging
could be done on GPUs.
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5.2 GPU improvements

There is almost always room for optimization when it comes to paralleliza-
tion, whether it is on CPUs or GPUs. The difficulty of optimizing however,
gets gradually more difficult with each speed-up. There are definitely po-
tential methods of speeding up this GPU implementation, some of them are
listed in this section, but there are most likely many more.

5.2.1 Smaller kernel

One potential method of reducing time in the algorithm is to only run the
inner loop which counts number of mismatches in a kernel and optimizing
this for CUDA. To optimize this we can let each threadIdx.x handle one
comparison between the bases and one min() operation and store the results
in two arrays. After this we need to do reduction to add up all the results,
doing reduction can be heavily optimized and sped up on GPUs.
However, with this approach, the kernel needs to run once per possible
overlap for every read-pair. Looking at the kernel in a closed system it
could be quite fast, but most of the time would be spent on overhead to
start all the kernels, making this method unsuited for this task.

5.2.2 Concurrent kernels with streams

NVIDIA graphics processors with Compute Capability 2.0+ has the ability
to employ concurrent kernels with the help of streams. According to Rennich
2012, a stream is defined as "A sequence of operations that execute in issue-
order on the GPU". This means that each stream is a serial operation
which can contain thread parallelization in the kernel, and these streams
can run in parallel. In the current implementation the transferring of data
to device, kernel-run, and transfer of data back to host is done serially,
with parallelization only within the kernel. With streams it is possible to
split up all three parts and run the different parts concurrently as shown in
Figure 24 under. In this figure the yellow bar is the copying from host to
device, the green bar the kernel, and the blue bar the copying from device to
host. With 4-way concurrency it is possible to achieve a 3x+ performance
improvement.
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Figure 24: How 2-way concurrency looks

5.2.3 Rewrite of algorithm to find overlap

In this implementation not much is changed in comparison to FLASH in
the algorithm to find overlaps. The algorithm in itself is not complex, but
it does not quite suite the parallel nature of GPUs without a total rewrite
due to the many branches. This rewrite however, would be quite extensive
and time consuming to accomplish. This rewrite could theoretically utilize
shared memory and possibly CUDA intrinsics to get better efficiency per
kernel which could again lead to a speed-up.

5.2.4 Configuration of the GPU

At the moment, the batches which is read and copied to the GPU is a
constant value of 200000. This value is selected as it fits the NVIDIA
Quadro P6000 and the RAM on the samsida workstation, but if a different
card or workstation were to be used, this value might cause the program
to slow down, or even outright not work at all. Therefore, this chunk value
would need to be calculated based on the specifications of the graphics card
in the computer.
In addition, the number of threads per thread-block might also need to be
changed if different graphics cards is used. Older graphics cards might not
have the power to support 512 threads per block, and they might need to
settle with 256 or 128 threads per thread-block to function.
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5.2.5 Multiple GPUs

The samsida workstation provided by UiO has 4 of the NVIDIA Quadro
P6000 graphics cards. It is possible to write the code such that the work
is spread over all the 4 GPUs, but this would require heavy restructuring
of the code and would become complex. Although it is four cards, it might
not reach 4x performance when using all four compared to just one card,
but it could still get a respectable speed-up.
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6 Conclusion

This GPU implementation has proved that it is possible to use GPUs to
do paired-end read merging on sequences produced by Illumina sequencers.
The implementation has been optimized throughout the master thesis through
several steps and has inched closer to competing tools. Although this imple-
mentation currently cannot quite compete with other existing tools such as
FLASH, some of the easier further optimization methods mentioned could
potentially make it faster than FLASH.

Through the results and discussion, I can say that even though paired-
end read merging does not quite fit the nature of GPU parallelization, it is
still fully possible to utilize parallelization on some parts of the algorithm.
By dividing the work of finding the overlap on the GPU, the CPU can do
the remaining tasks such as reading from and writing to file, and merging
the reads which cannot be done on a GPU.

The mathematical formulas which replaced FLASH’s score calculation also
fit well in the implementation after being optimized. It did not clash with
the GPU’s more demanding work and neither hogged CPU time, stalling
the rest of the program.

From this, I can conclude that merging of paired-end reads on GPUs defi-
nitely is a promising approach if optimized properly. With future graphical
processors only increasing in performance, the time spent on merging will
decrease if the sizes of read lengths or genomes does not increase. But with
proper optimizing, longer read lengths and genomes might not even be a
problem.
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