Faculty of Mathematics and Natural Sciences
University of Oslo

THESIS

S the digee of
MASTER OF SCIENCE

72

THEORETICAL PHYSICS

ON THE PROSPECTS FOR
MICROLENSING WIMPY HALOS

%

AvucusT GEELMUYDEN

MAy, 2018



Abstract

The kinetic decoupling of thermal dark matter candidates sets a model dependent
mass scale below which structure formation is heavily suppressed. Probing the
population of dark sub-halos therefore provides invaluable information about the
particle nature of dark matter. Due to their elusive nature, however, the abun-
dance of small-scale dark halos remains unknown to this day. We investigate the
prospects for their detection using gravitational microlensing, a technique utilizing
the temporary, apparent increase in the brightness of a distant star arising from
the passage of a massive intermediate object. It is found that while one can put
strong bounds on highly concentrated NFW-profiled halos, there is a minimal con-
centration needed for NFW-halos to produce observable microlensing effects. This
minimal concentration is related to an exponential shrinkage of the Einstein ring in
lensing geometries only sensitive to the inner 1/r profile of the halo. We conclude
that WIMPy halos nearby are likely never to be constrained by microlensing. At
cosmological scales, microlensing of WIMPy halos could produce observable effects.
Strong constraints from cosmological microlensing of WIMPy halos is doubted, but
remains a possibility and should be investigated further.
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Motivation

The present abundance of small-scale dark matter halos is dependent on the particle
properties. Detecting such halos can shed light on the expected cut-off in the halo
mass function, and therefore, constrain particle dark matter candidates in a way
that is complementary to other searches. The population of small-scale dark matter
halos, being both transparent and diffuse, remains one of the open questions in the
dark matter campaign.

Gravitational microlensing, which utilizes the temporarily increased brightness
of a star due to the passage of an intervening massive object, has, during the last 30
years, provided stringent bounds on the multitude of compact astrophysical objects.
Recently, there have been claims that also Axion miniclusters, modeled as highly
concentrated NFW-profiled objects, can be constrained by gravitational microlens-
ing [1]. This raises the question: can the less concentrated, small-scale dark matter
halos predicted by cold, thermal relics also be constrained by existing microlensing
data? If not, then what would it take to construct such a survey? We will attempt to
answer these questions in a general way. That is, we will determine the requirements
on NFW profile parameters needed to produce observable microlensing effects.

A Readers Manual

Before embarking on the actual thesis, let us prepare ourselves for what is to come.
The text consist of four main parts. In the first, we introduce the dark matter
problem from a historical point of view and provide a minimal introduction to Cos-
mology and structure formation. In the latter, we will briefly explain the crucial role
dark matter has in explaining the formation of structures in the Universe, use some
simple models to motivate the WIMP-candidate, and see how the particle properties
of thermal relics are expected to affect the abundance of halos. The first part aims
to provide the minimal background needed to see why knowing the population of
small-scale dark matter halos could provide unique insight into the nature of dark
matter. The reader is asked to condone the shortcomings resulting from the attempt
at completeness and brevity.

In the second part, we first introduce the physics of gravitational lensing from
first principles. We will then look at the history of gravitational lensing, and discuss
the unlikeliness of microlensing events. Towards the end of the second part, we
will introduce the formalism for constraining the amount of point-like objects with
microlensing. We then discuss aspects of a numerical computation, while bench-
marking with existing limits on the population of Primordial Black Holes. After the
second part, we will have seen how the absence of microlensing events can be turned
into constraints on the abundance of objects, and how these constraints depend on
the lens-properties of the object.



In the third part, we study the microlensing of extended, NFW-profiled halo
objects. Here, we will find analytic expressions for the lens properties and discuss
complications with the numerical implementation when considering microlensing by
extended objects. At the end, we present the number of expected microlensing
events for an idealized survey of the Andromeda galaxy for a large portion of the
NFW parameter space. This is followed by a discussion of the main features of these
results, paying special attention to why WIMPy halos are expected to produce no
microlensing events.

In the fourth, and last part, we discuss additional complications that may arise,
and ask ourselves what the requirements are for the microlensing of WIMPy halos
to produce observable effects. Finally, we recite some alternative techniques for
constraining the abundance of halos.

As for conventions, we choose the signature of the metric to be so that the
spacetime interval is positive for space-like events. We will mostly work in natural
units, where ¢ = h = kg = 1. Sometimes, however, these fundamental constants
will be written explicitly to simplify conversion into historical units.
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Chapter 1

What is the Matter?

During the last century, astrophysical measurements of the total mass of astronom-
ical bodies have consistently been larger than the combined mass of the objects
believed to constitute the bodies. This problem can be handled in two ways, one
can either attempt to construct a modified theory of gravity or one can postulate
the presence of new forms of matter — referred to as Dark Matter. This chapter
aims to briefly argue for the presence of dark matter, recite the main constraints
and mention some compelling candidates.

1.1 Historical Prelude

Already in 1904, Lord Kelvin attempted to estimate the amount of non-luminous
matter in our Galaxy [2]. His conclusion that perhaps a great majority of the stars
may be dark bodies was, however, opposed already two years later by Henri Poincaré
who is considered the first to use the term Dark Matter (or Matiére Obscure) [3]. In
1915 Ernst Opik concluded that dark matter is not needed to explain the dynamics
of the nearby stars. A statement that would be confirmed by Jacobus C. Kapteyn
seven years later [4]. In 1932 Jan Oort estimated the total dynamical mass near
the sun to be 0.092M,/pc?® and compared it to the density due to stars, which he
took to be about 0.038M,/pc? [5]. When taking faint stars into consideration he
concluded that the density of non-luminous matter must be less, and probably much
less, than 0.05M,/pc3. He was right, according to present knowledge the density
of dark matter is indeed much less. A recent (2012) estimate of the local dark
matter density states 0.008My /pc® 4+ 37% [6] which is about 5.37 x 1072°g/cm?.
For comparison, this would correspond roughly to a density of only one Hydrogen
atom every third cubic centimeter. Whatever this matter is, it surely does not seem
like a big problem. In fact, Oort explicitly refers to it as nebulous and meteoric
matter. As we shall see shortly, this is no longer a likely option.

Dark matter as a serious problem would first appear from estimates of the grav-
itating mass of whole galaxies and systems of galaxies. In 1933, Fritz Zwicky used
measurements of redshifts in the Coma cluster, published by Edvin Hubble and



Section 1.1 Historical Prelude 3

Milton Humason two years earlier [7], to conclude that the amount of dark matter
in the Coma system vastly outnumbers the luminous matter [8, 9]. His idea was
simple: Using that the Coma cluster has radius R ~ 10°ly and contains 800 galaxies,
each having a mass of about M = 10°M,,, he estimated the average gravitational

potential using
3 M?
V) =—G— 1.1
v) =26 (L)
and found (V) /M =~ —64 x 102cm?s2. Assuming the cluster to be virialized he

could then relate kinetic K and potential energy V through 2 (K) = — (V). When

1
writing the average kinetic energy in terms of the velocity dispersion (v?)2 he then

found
1 K M
(V)7 o~ \/2% ~ \/gGT ~ 80km/s. (1.2)

This being one order of magnitude less than the measured value of about 1000km/s,
Zwicky concluded that “ ...the average density in the Coma system would have to be
at least 400 times larger than that derived on the grounds of observations of luminous
matter”.

Today we know that Zwicky’s estimate exaggerates the amount of dark matter
by about one order of magnitude due to the usage of a Hubble constant about 8.3
times larger than the present value (67.7440.46)km/s/Mpc [10]. Nevertheless, the
evidence still points towards the existence of a non-luminous, dominating matter
component in the Coma cluster.

At the time, Zwicky’s findings were considered peripheral and uninteresting [4],
which might be the reason that it was first in 1959 that the next breakthrough
was made, now by F. D. Kahn and L. Woltjer [11]. They argued that since the
Andromeda galaxy (M31), contrary to most other galaxies, appears blue-shifted, it
must be moving towards us. Being the closest galaxy, this makes sense if the Milky
Way (MW) and M31 form a gravitationally bound system. When calculating the
total mass of this system, Kahn and Woltjer found a total mass about six times larger
than the reduced mass of the two galaxies combined. This points to an enormous
amount of non-luminous matter which the authors suggested to be hot, intergalactic
gas with a temperature of about 5 x 10°K.

The evidence that came to tilt the community, however, appeared through the
study of galactic rotation curves. Rotation curves had been studied earlier, but ad-
vances in technology during the 60s allowed measurements of the rotational velocity
at increasingly large radii [12]. The problem was that according to Newtonian grav-
ity the rotational velocity v, assuming for simplicity a spherically symmetric mass
distribution and purely radial velocities, must be related to the contained mass M (r)

within a radius v by
M
v=1/8 Tm. (1.3)

This means that one would expect the rotational velocity to experience a so-called
Keplerian velocity decrease v o< 1/4/7 in the outer regions. During the 70s, however,
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it started to become clear that most galactic rotation curves do not exhibit such
a fall-off [13-21]. The rotational velocity seemed to remain constant in the outer
regions which, according to Einasto [4], could only be explained by assuming addi-
tional, non-luminous mass content in the outer regions. The mass content of these
outer regions was estimated to outnumber luminous matter at least tenfold. Around
the same time, measurements of the mass of hot X-ray emitting gas seemed not to
be sufficient to hold clusters together[4] (see e.g. Gursky et al, 1972 [22]).

Towards the end of the seventies, the astrophysical community started to take
the dark matter problem seriously, but it came with some troubling issues [3, 4].
If most of the matter in galaxies is neither gaseous nor stellar, then what is it?
Perhaps more intriguing was the problem of Big Bang nucleosynthesis (BBN) — the
production of atomic nuclei in the Early Universe. BBN suggests an underdense
Universe with an energy density of about (2 = 0.04 in units of the critical energy
density pcrit. If the amount of dark matter outnumbers the baryonic matter by a
factor of about ten to one then, at least locally, one would expect densities closer
to Q = 0.2 —0.3. This, as we shall see in the next section, would mean that the
Universe was less curved. If not curvature, then what makes the Hubble flow so
smooth? More generally, how does the presence of dark matter affect the evolution
of the Universe?

1.2 The Formation of Structures

In this section we briefly introduce the basics of cosmology and how structures in
the Universe are thought to have formed, paying special attention to the role, and
evolution, of Dark Matter. For completeness, let us start by reminding ourselves
about some of the basic relations and terminology of general relativity and the
evolution of a homogeneous Universe.

1.2.1 General Relativity and The Beginning of Time

The theory of general relativity is a generalization of the special theory of relativity
taking gravitation into account — here as a purely geometric phenomenon arising
from the intrinsic curvature of spacetime. The central assumption is the Equiva-
lence principle stating that it is impossible to distinguish gravity from acceleration
locally. This means that only freely falling reference frames are inertial. Therefore,
inertial reference frames are linearly related only locally and the trajectory of in-
ertial objects are no longer straight lines, but geodesics. Geodesics are curves that
parallel transport their own tangent vector, which means that their parametrized
coordinates x*(A) are given by
dxY _ dx*  d*x*

- o xPxO =
N Vy i e + T oxPx7 =0, (1.4)

where 'Y, . are the Christoffel symbols. In fact, if A is an affine parameter of the

eigentime, then this is the extremal of the spacetime interval, or equivalently the
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generalization of zero acceleration to curved spacetime.

The theory treats spacetime as a Riemannian manifold whose tangent spaces can
be brought to a Minkowskian form, and whose metric g, extremizes the Hilbert
action

R—2A .
S = Lm | vV—gd'x. 1.5

J<16WG+M> gex (15)
Here —g is the absolute value of the determinant of the metric, Ly = \/—gﬁM is
the Lagrangian density for the matter content and R is the Ricci scalar. For the
metric g, to extremize the Hilbert action S, it must satisfy the Einstein Equations

1
Ruv — §gwR + Aguy = 8nGT,y (1.6)

where G is the gravitational constant, R+ is the Ricci tensor, /A is the cosmological
constant and T is the stress-energy tensor containing all the necessary information
about the energy content of the Universe.

Solving Einstein’s equations analytically is notoriously difficult. Actually, there
are only a few known solutions, all corresponding to different symmetry situations.
One of these solutions is the Friedmann-Lemaitre-Robertson- Walker (FRW) metrics
describing universes that are path-connected and isotropic in every point. That the
Universe as a whole can be approximated as isotropic in every point, called the
Cosmological principle, can be argued for by combining the observational fact that
the Universe on large scales is very isotropic with the so-called Copernican prin-
ciple, stating that we are not privileged observers of the Universe. This translates
into demanding a space-time that foliates into 3-dimensional, maximally symmetric,
space-like sheets. Using spherical coordinates for the space-part, the metric can be

written

dr?

guvdxtdxY = —dt® + a*(t) [ + erQ] (1.7)

1 —«kr?
where a(t) is the scale factor, dQ = d0? + sin® 0d$? is the standard metric on the
2-sphere and k the spatial curvature when a = 1, which, unless otherwise stated,
we take to be today. Note that we will refer to the vectors (t,x) as comoving
coordinates and (t, a(t)x) as physical coordinates. If one further assumes the matter
and radiation content to behave as a perfect fluid then, in the rest frame of the fluid,
the Einstein equation can be summarized by the two Friedmann equations™

K
Q:1+¥ (1.8)
a 4nG
a__ 1.
q 3 (p+3p) (1.9)

where we have introduced the density parameter 3 = p/p. which is written in
terms of the critical energy density p. = 3H?/(8mG) where H = a/a is the Hubble

*Since the cosmological constant behaves as a perfect fluid with density pao = A/(8nG) and
equation of state po = —pa, it has been absorbed into p and p
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parameter. The Hubble parameter has the nice interpretation that two objects at
rest separated by a small distance r will have a relative velocity v = Hr. This
velocity is referred to as the Hubble velocity or Hubble flow. For sufficiently distant
objects, the Hubble velocity will equal the speed of light. This distance, T = H™,
which is referred to as the Hubble horizon, is an estimate of how distant objects one
can possibly affect with events here and now. Bear in mind, however, that since H
changes with time, 1 = H™! is not an actual horizon, but rather an estimate of the
radius r = [ da/a of the light cone.

Since physical wavelengths change with the scale factor a, light from distant
objects will generally reach an observer with a different color than what was emitted.
Due to this effect, it is customary to speak of the redshift z = dnow/Athen —
1, sometimes referring to the time the Universe had the scale factor aipen, and
sometimes to the comoving radial distance traversed by light during the growth
from Qihen tO Anow.

From conservation of the stress-energy tensor (V,T", = 0) for each energy
component, one can find that

pi
Pi

= 3(14 w;) —. (1.10)

elea

where p; is the energy density of component i and w; = pi/p; its equation of state
where p; is the pressure. Assuming a constant equation of state, this is solved by
p; oc a2+ Inserting this into equation (1.8) then, for a Universe with negligible
curvature, one finds a differential equation for a whose solution is

alt) o 59T for w # —1. (1.11)

This means that for matter, which has negligible pressure pm ~ 0, the energy
density dilutes as the inverse volume pyp o< a2, Moreover, the size of a purely
matter-dominated Universe would evolve according to a o< t2/3. Since pr = 1/3pr
for radiation one finds pr o< a=* which corresponds to the energy density both
redshifting and diluting *. Moreover, a radiation-dominated Universe would expand
according to a tz, i.e. slower than a matter-dominated Universe. The energy
density pa corresponding to the cosmological constant, which by definition satisfies
PA = —Pn, is independent of the scale parameter a(t). This means that the energy
enclosed in a volume remains proportional to the volume as it expands. For this
reason, one often refers to pa as the energy density of space itself, or the vacuum
energy. In a vacuum-dominated Universe, p is constant, so that for a flat Universe,
equation (1.8) requires H = a/a to be constant. Therefore, the scale factor in a
vacuum-dominated Universe evolves exponentially in time a oc exp(Ht).

Looking backward in time, this means that at sufficiently early times the Universe
was radiation-dominated (RD). After radiation-domination, the Universe entered an

* That the radiation-pressure is just the energy density distributed equally along the spatial
directions can be seen by realizing that p = <'p2/(3E)> n= % (B)n = %p where p is the momentum,
E is the energy and n is the number density.
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epoch of matter-domination (MD), which is followed by the seemingly unstoppable
epoch an exponential growth known as vacuum-domination (VD)*.

For much of its early history, the constituents of the Universe were in thermal
equilibrium making it well approximated by equilibrium thermodynamics. Since
the total energy density p at early times is dominated by the contribution from
relativistic species, it is well approximated by

7.[2

p= %Qeff(T)T4, (1-12)

where gere(T) counts the relativistic (my < T) number of degrees of freedom

Jerr = ) gi(%):g > g (%)4 (1.13)

i€bosons j Efermions

Here we have taken into account that a particle species 1 can have a thermal dis-
tribution with temperature T; different from the photon temperature T. Combining
the first Friedmann equation (1.8) for a flat, radiation-dominated Universe with the
equilibrium relation (1.12), and using that in this case H = 1/(2t), one can relate
the age t of the Universe to its temperture T by

t= ) — T2~ —/—ET7T 1.14
163G Iett ( ) geff(T) ’ ( )

where my; = 1/ VG is the Planck mass. More generally, since radiation dominates
the entropy density, one has

272

s~ T3 1.15

15 err,s(T) ( )
where gerr,s is defined as (1.13), but with the temperature ratios to the third power.
From conservation of entropy (a®s) it follows that during periods of constant gess,s,
the temperature T of the Universe in any epoch evolves according to

Tocgufea (1.16)

For this reason, we think of the early, dense Universe as being extremely hot. In fact,
at sufficiently early times the Universe would be so hot that one expects charged
particles to be too energetic to combine into neutral particles. This means that the
early Universe was an opaque plasma, referred to as the primordial plasma. As the
Universe expands, the temperature cools, and at some point, the temperature is
sufficiently low for electrons and protons to stick together and combine into electri-
cally neutral atoms. The result is that photons thermally decouple from the other

*Strictly speaking, it is possible for exotic cosmologies to change the order of these epochs. For
instance, if the Universe started out in MD, and at some point, the massive particles annihilated
into radiative species, then MD could be followed by a period of RD. Note also that in a contracting
Universe, the order would be reversed.
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species, making the Universe transparent. Although this is the first time electrons
and protons combine into neutral atoms, this event commonly goes under the rather
unfortunate name of recombination. The photons freed from the primordial plasma
during recombination can be detected today, although redshifted into the microwave
band due to the expansion of the Universe. The spectrum, which is called the Cos-
mic Microwave Background (CMB) radiation, provides a unique window to the early
Universe. It is a perfect black-body with temperature (2.72548 40.00057)K [23] and
anisotropic temperature fluctuations of about 8T/T ~ 8 x 107> [24]. Measurements
of the CMB anisotropies have played a crucial role in arriving at the standard model
for cosmology — the ACDM-model. The ACDM model claims a flat, 13.8 billion year
old Universe, with Hubble constant Hy = (67.74 + 0.46)km/s/Mpc, matter content
(today) of 30.9%, 4.9% baryons and 26.0% Cold Dark Matter, and 69.1% vacuum
energy [10] *. We will soon see what exactly is meant by Cold Dark Matter, but first,
we should briefly explain why Dark Matter is a crucial ingredient in the cosmological
energy budget.

1.2.2 The Need for a Decoupled Species

In this section we aim to state some of the key aspects of linear cosmological structure
formation, and why it serves as a strong argument for the presence of dark matter.
For more detailed reviews, the reader is invited to consult dedicated texts like [26—
28].

Since the anisotropic temperature fluctuations in the CMB is of the order 6T/T ~
O(107°) then, according to the Stefan-Boltzmann law, we therefore expect the en-
ergy density p of the species in equilibrium with the black-body to have anisotropies
5p of roughly the same order’. Let us now look at how these early, small density
variations will evolve on small scales. On scales much smaller than the Hubble
horizon H™!, the cosmological fluid has non-relativistic velocities, which means it
should be well described by Newtonian fluid equations. In fact, the first order effect
for perturbations in velocity v, density p, pressure p, and gravitational potential @
using the Euler equation, Poisson equation and continuity equation, expressed in
comoving coordinates (x = r/a), can be combined into one equation

21,2 1.2
C(Sl];] {k— . 1} 5 = 0. (1.17)

Oy + 2Hdy + 5
k]

Here &y is the Fourier mode of the density contrast 6(x) = 6p(x)/p with wavenum-
ber k, ¢c; = /6p/dp is the speed of sound and k; = /4nGpa?/c, is the Jeans

*The value for the Hubble constant is purely from measurements of the CMB. There is a tension
between this estimate and the local Hubble constant Hg = (73.24+1.74)km/s/Mpc from distance
ladder measurements [25].

tMore precisely, one would have 6p/p = 48T/T ~ 107°. Note, however, that the light received
from CMB has traveled for a long time. The temperature fluctuations will therefore also depend
on the velocity redshift and frequency variations due to the light escaping peaks and valleys in the
gravitational potential.
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wavenumber. Note that for wavenumbers k 2 Ky, the equation takes the form of an
harmonic oscillator with frequency

W ~ %S,/W—k% (1.18)

that is damped by the expansion term 2H&y. In other words, there will be no growth
in density variations smaller than the Jeans scale

VAnGpa?

Ay = 271t/ky for ky = .

(1.19)

Physically, the Jeans scale can be understood as the scale where the fluid pressure
starts to counteract gravitational collapse.

On scales larger than the Jeans scale (k < k), where the pressure is negligible,
one has

Sy + 2Hb = 4tGpdy . (1.20)

In a matter-dominated, flat Universe a(t) oc t/3, H = 2 and p = p. = 3H?/(8nG),
so that in the case of negligible pressure the density contrast evolves according to

; 4 . 9

Ok + §5k = ﬁék. (1.21)
This equation is solved by a decaying mode &, o< t~! and a growing mode &, o
t2/3 o a(t). Since our Universe, after recombination, is well described as matter-
dominated and flat, we can now calculate what the density contrast would be today
if it was of the order & ~ 1075 at the time of CMB. Since the Universe was about
1100 times smaller at recombination [10], the density contrast would have evolved
to

5(today) ~ 1100 - 107> ~ 10~ 2. (1.22)

This is still in the linear perturbation level (8 < 1), which means that the Uni-
verse would not have had time to form astrophysical objects by today. That is,
if most of the matter was coupled to the primordial plasma at recombination, the
Universe would still be homogeneous with density variations of the order of one
to one hundred. In other words, to explain the formation of structures one needs
a stable and abundant species that was unaffected by the photon pressure of the
primordial plasma. Density perturbations in such a species would be able to grow
inside the primordial plasma, and thus provide potential wells for the baryonic par-
ticles to fall into once they are released from the plasma. Note that in order for
this to work, the perturbations of the Dark Matter component must have been at
least 8§gm ~ 1/1100 ~ 10~2 at recombination to explain the formation of structures
within today. This conclusion, which remains roughly the same in more devoted
calculations, should be taken as a strong argument for the presence of Dark Matter
and its exotic nature.



10 What is the Matter? Chapter 1

In fact, the growth is even slower in a radiation dominated Universe. Equation
(1.17) can be naturally extended to the case of multiple fluid components with
densities {p;} and density contrasts {0;} as follows:

. . c2
8 + 2HS; + | =

k2
(7::2 61—Z4ﬂGpj6j =0. (123)
j

Consider now the evolution of density variations 6 in a matter-fluid during radiation

domination (H = 5:). If the radiation component is smooth (5, = 0), then the

Jeans unstable perturbations (k < kj) will follow the equation 5 + 8/t = 0, which
is solved by &(t) = 6(to)[1 + Cln(t/ty)] where t is some reference time. That is, if
the density mode is large enough not to be a damped oscillator (k < k;) then it will
grow logarithmically with time. Actually, if the initial growth is negligible (5 ~ ()
then C ~ 0, meaning that the density contrast will stagnate. The scenario seems
to be as follows: While density perturbations in the baryonic fluid are damped
by the photon pressure of the primordial plasma, variations in the dark matter
component grows logarithmically until the time of matter-radiation equality, where
growth becomes more efficient. After recombination, when protons and electrons
combine into neutral particles, the baryonic component “falls” into the potential
wells formed by overdensities in the Dark Matter component.

For modes larger than the Hubble horizon H™!, the picture is more complicated
due to the density contrast & = 6p/p being gauge dependent in the full relativistic
treatment. It turns out, however, that the evolution of scalar, adiabatic super-
horizon sized modes can be summarized by the gauge-invariant quantity dp/(p +p)
being constant [26].

As the Hubble horizon H™! o< t grows, it will catch up with physical perturbation
wavelengths A that were once outside the horizon. For this reason, it is customary to
refer to the time where the perturbation size equals the horizon as horizon crossing.

Before moving on, there is something that cannot remain uncommented — the
density perturbations specified at any given time will generally depend on the initial
spectrum! There is a wide range of reasons for postulating an epoch, referred to as
inflation, of exponential growth prior to radiation-domination. Most simple models
of inflation predict the initial scalar perturbation modes 0y to be a Gaussian random
field that is uncorrelated (see e.g. [29])

(5d) = -8 (k —k')P(k) , (1.24)

where P(k) is referred to as the power spectrum. Moreover, it is both a prediction
of simple inflation models and consistent with data that the power spectrum, when
specified at the time tyogr of horizon crossing, to be given by a feature-less power
law [30]
1—ng
Py, 0 X K (1.25)

where ng is referred to as the spectral index. Using the Planck data, the estimated
value for the spectral index has been found to be ng = 0.9667 = 0.0040 [24], which
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is well approximated by the so-called Harrison-Zel’dovich spectrum with ng = 1
[31-33]. Note that since perturbations are assumed to be Gaussian, some (rare)
modes are expected to enter horizon crossing with very large overdensities dy. If the
overdensity is roughly of order unity, 6y ~ 1, then it will collapse into a black hole
[34, 35]. Such black holes are referred to as Primordial Black Holes (PBHs) and
may, unlike black holes of stellar origin, have masses well below the Chandrasekhar
limit of 1.4Mg,.

1.2.3 The Collapse of Overdensities

At some point, growing overdensities dp will become sufficiently large for the gravi-
tational force to counteract the dilution due to the expansion of the Universe. This
results in collapse into objects that are, in a sense, decoupled from the expansion of
the Universe. In this section, we present a simple analytical model, referred to as
the Spherical Collapse model, for estimating the density contrast needed for collapse,
and the asymptotic size of the resulting object.

From the first Friedmann equation (1.8), we expect a spherical, homogeneous
overdensity 6p in an otherwise flat, homogeneous, matter-dominated Universe to
behave locally as a closed Universe®. The evolution of the scale factor a(t) in a
closed Universe can be stated in parametric form as

QmO
2(Qm0 - 1)
— Qmo
© 2H(Qmo — 1)372

a(e) = (1 —cosB) (1.26)

t(0) (6 — sin ) (1.27)

where Q.9 > 1 is the density parameter of the overdense region at some early time
(Qmo—1 < 1), Hy is its Hubble parameter and 0 € (0, 27t). Note that at sufficiently
early times (0 < 1) then, to leading order, a(t) oc t¥/3. That is, to first order, the
overdensity evolves with the flat, outside Universe. The size of the overdense region
will, however, reach a maximal value at 8 = 71, which is followed by a collapse into
a =0 at 8 = 2m. At the maximum, one therefore has

QmO WQmO

Qmax = and tmax

Qmo—1 T 2Ho(Quo — 132

(1.28)

Assuming matter domination both in the spherical overdensity and in the back-
ground Universe, we find p/py = Qmo(a/ap) > where py, is the density of the back-
ground and ay,(t) = (3Hyt/2)%/? its scale factor. This means that the overdensity
will acchieve its maximal size when its density is a factor

-3
Pmax - QmOaqu o 97T

Pov B ags(tmax) 16

2

~ 5.55 (1.29)

*This argument can be formally motivated in a rigorous manner by considering a manifold
consisting of tho different FRW manifolds stitched together [26, 36].
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larger than the background. If the matter fluid is perfectly collisionless, then the
overdensity will collapse into zero size (aco11 = 0) at 0.o11 = 27. Physically, this
scenario would correspond to collapse into a black hole. Most overdensities, however,
are not perfectly spherical and homogeneous, which makes the collapse much more
complicated than it appears in the spherical collapse model. The result of this
process, known as wiolent relaxation, is a collapsed, virialized object whose time
averaged kinetic energy (T) equals —1 (V), where V is the gravitational potential
energy. Using that (T) = 0 at t;qx then energy conservation implies Ry ax = 2Ryir-
In other words, the virialized object will be a factor 2® = 8 denser than at tax. If
we take teou = t(271) to be the virialization time, then the background density has

grown by a factor
2
vir tvir
Povir _ ( ) — 4. (1.30)

pb,max tmax

This means that in an otherwise flat, matter dominated Universe (pp = pcrit), the
density of the virialized object is given by

Pvir = 5.55-8-4- Perit & 178pcrit (1'31)

where pcri¢ is the critical density of the Universe at the time of virialization. This
means that perturbations form gravitationally bound structures when its density is
roughly 178 times larger than the mean density of the Universe. Recall that in this
highly simplified model for the collapse of overdensities, we assume a flat, matter-
dominated Universe, with a single, perfectly spherical, homegeneous overdensity.
We should, therefore, not take the value 178p. i+ as anything more than a rough
estimate. In fact, to avoid the misconception that 178p.,it is accurate to three
leading digits, we will use

Pvir = 200pcrit ) (132)

as is customary, throughout this thesis. This being said, we know from cosmological
N-body simulations that the spherical collapse model captures the general picture
of the collapse up to a factor of order unity, see e.g. [37].

Since a(0) and t(0) expanded to leading order yield the evolution of the back-
ground spacetime, the next-to-leading expansion should correspond to the evolution
of overdensities in the linear regime. Using that

a(®) 1o (1 - 9—2> (1.33)

Qmax 4 12
t(0) 03 02

~ —(1—— 1.34
tmax 67t( 20 (1.34)

one can, after some algebra, reach the expression

alt) 1 t \Y® 1 t \Y®
~ - (6 1—— (6 1.35
Amax 4 < 7Tt'mmc) 20 7-[t'max ( )
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for the linear evolution of a(t), where the first factor is the evolution of the back-
ground with density perit. Now, using that p oc a=2 during matter-domination and
P = pcrit(1 + 0), we can identify

i 1 t 2/3
1+908) 7" =1—— 1.
( ) 20 (6T[tm ax) (1.36)

and since (1+8)~Y3 ~ 1 —§/3 in the linear regime (§ < 1), we see that the linear
theory would have predicted a density contrast of

3
Buin ~ o (12m)%3 ~ 1.686 (1.37)

at the time of collapse t = tco11.

1.2.4 The Smallest Clumps

We have now seen that overdensities of wavelength smaller than the Hubble horizon
H™! and, in the case of baryons, larger than the Jeans scale Ay (1.19) will grow.
Furthermore, the density contrast 6 = dp/p of a matter component inside the Hubble
horizon grows proportional to the scale factor a(t) during matter domination and
logarithmically in time during radiation domination.

Small perturbations in the Dark Matter component will also be subject to a
damping effect. Since the Dark Matter fluid is collision-less, the perfect fluid as-
sumption will at some sufficiently small scale break down. This scale, which we will
refer to as the free streaming scale A¢s, corresponds roughly to the distance freely
traveled by the particles in the medium prior to the matter-domination epoch of
efficient growth. For all initial power spectra that decrease with increasing length
scales (see (1.24) and (1.25)), it turns out that the free streaming scale sets the scale
on which the first structures form (see e.g. [26]).

Now, let us try to obtain a rough estimate of the free streaming scale A¢s. In doing
so, we will assume the Dark Matter to have previously been in thermal equilibrium
with the primordial plasma. We therefore restrict ourselves to the class of dark
matter candidates referred to as thermal Dark Matter.

The free streaming scale can be thought of as the comoving distance traveled
by individual dark matter particles from the time of kinetic decoupling tyq to the
time they start to feel the presence of gravitational potentials. Since efficient growth
starts at matter-radiation equality tgg, let us assume that this is the time where
gravitational potentials become significant. If the time tyg the particle becomes
non-relativistic is well before tgg, then the velocity of the particle will typically
be so redshifted that the free streaming after teg will anyway be negligible. If we
further take kinetic decoupling to be early, i.e. txq = 0, the free streaming scale can
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be approximated by *

YQ y(t)dt  ["NR cdt Y y(t)dt  tnr { (tEQ)]
Afs ™~ ~ — 4 J ~ 24+ In| — . 1.38
s=) e =], e e a0 T ang DT e )]

Note that in the limiting case of the particle becoming non-relativistic at equality,
ie. tnr = teq, the free streaming scale will be very large. In this case the first
objects to form will have mass much larger than galaxies [26] and structure formation
will proceed in a “top-down” manner where large objects form first, and later break
up into smaller objects. In this scenario, which is referred to as Hot Dark Matter,
there would be no objects with Milky-Way size [26]. This, amongst multiple other
reasons, is why we think the Dark Matter is not hot. Neutrinos are the only particles
in the Standard Model that are are stable and feebly interacting enough to, at least in
principle, serve as viable Dark Matter candidates. Since a thermal species ¥ becomes
non-relativistic when T, < m,/3 T, however, the small neutrino mass means they
become non-relativistic at late times and thus act as hot dark matter. For this
reason, the Standard Model neutrinos can be excluded as a Dark Matter candidate
(see e.g. [38] for the Lyman-o constraints). Additionally, being fermions, the number
N, of neutrinos in an object of size R is limited by the available phase space, i.e.
N, < p3R3. If neutrinos were the dominating matter component in galaxies, then
Pauli blocking would prevent them from being sufficiently slow moving in the halo.
The case where Dark Matter becomes non-relativistic long before it kinetically
decouples from the plasma (txq > tng) is referred to as Cold Dark Matter (CDM)
— this is the CDM in the ACDM model. For CDM, the damping will, in addition
to free streaming, also be set by a remaining viscous coupling to the primordial
plasma. Crucially, this damping scale is determined by the decoupling temperature
Tia, the thermally averaged scattering cross section, and the mass m, of the Dark
Matter particle. To determine the decoupling temperature properly T4, however,
one needs to trace the evolution of the phase space distribution function f of the
Dark Matter particle. This is exactly what the Boltzmann equation L[f] = C[f], L
being the Liouville operator and C the collision operator, is made for. For brevity,
we will not solve the Boltzmann equation here and instead recite the result of one
such calculation’: For Dark Matter particles X interacting with the weak force, the
characteristic mass My that is damped by free streaming can be estimated as

l+In (92? 50&iv> /19.1

(moesv)”” gett (soniw)

M ~ 2.9 x 107°Mg (1.39)

*Using that a(t) o< v/t during radiation domination the first term can be written as 2tngr/ang
and since non-relativistic velocities simply redshift v(t) oc a=!(t) with time, the final expression
follows.

"This relation follows naturally from identifying the thermal energy %kBT with the kinetic
energy %mv2 of the particles involved.

For a proper discussion, the reader is invited to consult texts such as [39].
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where m, is the mass of the Dark Matter particle [40]. Since gefs =~ 10.75 at Tyq =~
30MeV, a dark matter particle with mass m, ~ 100GeV that decouples at Tyq =~
30MeV has a characteristic free-streaming mass of roughly Mg ~ 5 x 107"Mg, *
In other words, in a Universe with a weakly interacting Dark Matter particle with
mass m, ~ 100GeV that thermally decouples at T4 ~ 30MeV, the first objects to
form are expected to have mass roughly like that of the Earth (~ 107°M). Note,
however, that the cut-off scale may vary by many orders of magnitude depending
on the particle mass and the scattering cross section, see e.g. [40, 41].

1.2.5 The Miraculous WIMP and its Contenders

Assuming a thermal species that started off in chemical equilibrium with the Stan-
dard Model particles, its departure from equilibrium will determine the present
abundance of that species. When integrating out the momentum dependence of
the Boltzmann equation for a flat NF'W spacetime, one can recognize the number
density n to bring the equation into the following form

0+ 3Hn = (ov) (n2, —n?) (1.40)
where nq is the equilibrium number density and (ov) is the thermally averaged total
annihilation cross section o times the Mgller velocity v. To be precise, in arriving
at this result one must assume the Dark Matter particles x to be stable, that there
is no asymmetry in the number density of x and its anti-particle X, and that the
dominating annihilation process is of the form xx — YY, where Y generically denotes
the species x can annihilate into. Note also that the species Y are assumed to have
thermal equilibrium distributions with zero chemical potential and that all particles
are assumed to obey Maxwell-Boltzmann statistics.

Note that before departure from chemical equilibrium, when the annihilation and
production rate I' = n¢q (0Vv) is larger than the Hubble rate H, the number density
will converge to its equilibrium value n = neq. If, on the other hand, I' > H, the
number density dilutes with the expansion, i.e. n oc a™3.

If we assume thermal equilibrium during decoupling, we may invoke entropy
conservation 9¢a®s = 0 so that the left hand side of equation (1.40) can be written
in the form

dn+3Hn =a30(a*n)=a? [a?’sat%] . (1.41)

Therefore, by introducing the variable Y = n/s, the integrated Boltzmann equation
takes the form

Y =—s(ov) (Y2 =YZ,) . (1.42)

Taking advantage of the relation between time and temperature (1.14), we can

*At temperatures around 30MeV, the only particles coupled to the primordial plasma are
photons (g, = 2), electrons (ge- = 2 and ge+ = 2) and the three generations of neutrinos
(3 x gy =3 x 2=06). From the definition (1.13) is then follows that gess ~ 10.75.



16 What is the Matter? Chapter 1

introduce the variable x = m, /T by

0.301my, %2

t~ — (1.43)
9t M
so that the equation takes the form [42]
dy S(OV) 1 o o
— == (Y"=Y2,) . 1.44
Here H=H/(1 + g), where H is the Hubble parameter and
.1 T dgefrs
_1 S 1.45
=3 Jerr,s dT (1.45)

The asymptotic value for Y is easily found for hot Dark Matter, for which chem-
ical decoupling happens at x¢ < 3. In that case the equilibrium value Ygq will
stay roughly constant leading to a present abundance of roughly n = soYeq(x¢) ~
800gers.y/gers(xr)ecm ™3 quite insensitive to the details of decoupling. Here gesry =
gy if X is a boson, and gesry = (3/4)gy if it is a fermion, g, being the internal
degrees of freedom for x (see e.g. [26]). For cold Dark Matter, on the other hand,
the asymptotic abundance depends strongly on the details of chemical decoupling.
If one parametrizes (ov) = ogx™ ™ and pretends that g = 0, the asymptotic value
for the density parameter can be stated as (see [20])

0, ~ 743 x 100 TV g (pb (1.46)
X Jerf,sS Og '

Now, at energies much lower than the mass of the W boson (my, ~ 80.4GeV), a
typical annihilation cross section with weak interactions behaves as [28]

2

0 ~ m;«?/my, ~ 107*’pb <§T§/) : (1.47)
This means that a massive m, ~ GeV Dark Matter particle that is weakly interacting
and chemically decouples with x¢ ~ O(10) naturally produces relic densities of order
unity. In other words, a stable and massive particle that is weakly interacting and
decouples around T¢ ~ O(GeV) can naturally produce the correct relic density of
Dark Matter (Qgm =~ 0.26).

This should, however, be considered as a rough estimate. For example, including
the effects of a varying number of degrees of freedom actually changes the result quite
a lot. See e.g. Figure 3 of [43] for the thermally averaged cross section needed to
produce the correct relic density.

The viability of these Weakly Interacting Massive Particles, or WIMPs, as Dark
Matter candidates is sometimes referred to as the WIMP miracle. The miracle be-
longs to the fact that particle physicists, in trying to address the shortcomings of the
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Standard Model, has independently predicted stable WIMPs. Examples of WIMP
candidates include the Lightest Supersymmetric Particle (LSP) and the Lightest-
Kaluza-Klein particle (LKP). There are multiple large, international search pro-
grammes looking for the elusive WIMP, and consequences of the theories that predict
them. These include probing the production mechanism through collider searches
(see e.g. [44]), the scattering with standard model particles (direct detection) [45],
and the annihilation channels (indirect detection) [46].

There are, of course, a wide range of viable and well-motivated non-WIMPYy can-
didates. One of the most popular is the Axion, which are the pseudo-Nambu—Goldstone
bosons spawned from the spontaneous breaking of a U(1) symmetry (Peccei-Quinn),
invented to solve the so-called strong CP problem. The Axions were never in thermal
equilibrium as they attain their mass at the QCD phase transition, and thus have a
very different production mechanism than the WIMPs.

Later, we will mention the Massive Astrophysical Compact Halo Objects, or
MACHOs, as a Dark Matter candidate. These are compact objects consisting of
baryonic matter, and therefore strongly disfavored by structure formation which
needs a species that were initially decoupled from the primordial plasma. As we
shall see, the MACHO Dark Matter model is essentially ruled out, but bear in mind
that this does not mean that the existence of MACHOs is ruled out. One certainly
expect some MACHOs to be around, although not with the abundance required to
solve the Dark Matter problem.

One non-particle candidate that has received a lot of attention lately is the
Primordial Black Hole Dark Matter (PBH DM). Although, as we will see later,
the model with a monochromatic mass spectrum of Primordial Black Holes are
essentially ruled out by gravitational lensing, a wide mass distribution has been
argued to both evade the current constraints, solve many of the problems of Dark
Matter, and fit well in with the LIGO observations of gravitational waves from black
hole mergers [47].

1.2.6 The Structure and Abundance of Halos

We have finally reached the section where we can discuss the present day abundance
and structure of the collapsed and virialized Dark Matter overdensities, referred to
as halos. Let us start by briefly reciting what is known about their structure.

From N-body simulations of structure formation with cold Dark Matter, halos
have been found to be well fitted by the mass density [48]

Ps
R R 2
R, (1 —|—R—S)

referred to as the Navarro-Frenk-White (NFW) profile. Here the scale radius R
is the radius that separates the inner p(R) ~ 1/R profile from the outer p ~ 1/R3?
profile. Note that there are no free shape parameters of the halo profiles. That is,
according to Navarro, Frenk and White [48], all cold Dark Matter halos are well

pnrw (R) = (1.48)
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approximated by an inner, cuspy, profile of 1/R and an outer profile of 1/R3. Of
course, the NF'W profile cannot be exactly true seeing that the density diverges at
the center and that the contained mass logarithmically diverges with R. Actually,
this profile only makes sense so long as the average density

— MCTLC(R)
R)= —f—— 1.49
is less than the virial density pyir =~ 200pcrit, Where
Rs +R R
Mene(R) = J47IR2p(R)dR = 4mp R? [m ( R, > TR R] (1.50)

is the mass enclosed in a sphere of radius R. By defining the virial radius R, to be
the radius at which p(Ryir) = pvir we can therefore write

pviTC3 C
= f f =1 1 - 1.51
Ps = 3f(C) or (C)— Il( —I—C) 1 C ( 5 )

where C = R,i:/R; is the concentration parameter. If we also introduce the wirial
mass Myir = Menc(Ryir) we may express the scale radius as

1 3Mvir %
R, = — : 1.52
C (47Tpvir) ( )

As pointed out in the original paper [48], the virial mass M,, and the concentration
C are highly correlated for WIMPs (see e.g. [49]). This means that the density profile
of WIMP halos are effectively determined by their virial mass M,;..

The NFW profile was, however, determined from N-body simulations containing
Dark Matter only. Measurements of the rotation curves of low-surface-brightness
(LSB) galaxies suggest the inner density to be more like a core p ~ const (see e.g.
[50]). This mismatch between the inner, cuspy 1/R profile predicted by pure Dark
Matter simulations and the cored p ~ const profiles suggested by rotation curves is
called the cusp-core problem. 1t has been shown that feedback from star formation
in the baryonic component can transform a cuspy profile into a cored one [51, 52].
Alternatively, it has been shown that cored profiles may also form if one allows
Dark Matter to be slightly self-interacting [53]. Moreover, explaining the core-cusp
problem with baryonic feedback has proven difficult for Dwarf galaxies (~ 10¥My),
for which simulations predict very diverse rotation curves [54]. In fact, it has also
been argued that cusps may appear more like cores for halos that are not spherically
symmetric [55]. In any case, the inner density of Dark Matter halos that are too
small to house star formation remains unclear.

Another problem that refers to the mismatch of simulations and observation is
the so-called Missing satellites problem. This refers to the problem that Cold Dark
Matter simulations tend to predict many more satellite galaxies than observed. As
argued by [56], the missing satellites problem can, by extrapolating the number
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of observed Ultra-Faint Dwarf Galaxies (UFDGs) to the whole galaxy, be resolved
by correcting for detection efficiency. In other words, there is no missing satellites
problem, but rather a faintness problem [47]. That is, what prevents star formation
in satellite galaxies from being effective? Also, the faintness problem has a possible
solution, namely: maybe the satellite dark matter halos get stripped of their baryonic
content via interactions with the host galaxy? This, however, introduces yet another
problem — the too big to fail problem. Some of the satellite galaxies predicted by
simulations are simply too big to lose their baryonic content in this way (see e.g.
57)).

Numerous formalisms for predicting the abundance of halos analytically has been
developed. One of the more popular is the Press-Schechter formalism (see [58])
which assumes the fraction of Dark Matter F(> M, t) contained in halos larger than
M at time t to equal twice the probability P(dm (t) > dcrit) that an overdensity o
with contained mass M is larger than the critical value for collapse, i.e. equation
(1.37) *.

The point of these formalisms is to reach an expression for the so-called Halo mass
function dlgﬁ, which is the number density of Dark Matter halos per logarithmic
interval of M. In the case of cold dark matter, one expects that for small masses,
the number density scales roughly as dlgﬁ ox M*~1 for some small «, which is
determined by the mass variance at the scale of interest. This would, however, mean
that the total mass

“] e (1.53)

M
mas dn M
Mo, = M—" dlogM = |
tot JMW dlog M %8 [oc

Mimin

contained in halos would diverge as Muin — 0 and « — 0. This is fixed by
recalling that the damping scale of the early Dark Matter perturbations leads to an
exponential cut-off in the power spectrum, and thus also in the halo mass function
[59]. In other words, locating the cut-off in the halo mass function could determine
the damping scale and thus provide valuable insight into the nature of Dark Matter.
For example, the cut-off predicted by the Super Symmetry (SUSY) neutralino Dark
Matter is roughly between 107*My and 107! depending on the neutralino mass
[40].

What makes measurements of the small-scale halo mass function hard is the lack
of luminous mass trapped in these halos. This means that there are essentially two
ways of detecting these clumps: either by detection of particles that result from
Dark Matter interactions or by observing their gravitational effects. This thesis is
devoted to the latter, taking advantage of the deflection of light in a gravitational
field.

*The need for the factor of two in the assumption F(> M,t) = 2P(dm (t) > dcrit) belongs to
the fact that half the overdensities are expected to be underdense, i.e. dpm(t) < 0.



Chapter 2

Gravity as Deflector of Light

2.1 Gravitational Lensing

Assuming the validity of General relativity, the trajectory of light can be described
as following null geodesics g,vdx*dx” = 0 of the spacetime metric g,. For most as-
trophysically relevant scenarios, however, the effects predicted by General relativity
can be translated into classical optics in a formalism referred to as the Gravitational
Lensing Formalism. This section seeks to introduce the basics of this formalism, for
a more complete introduction, see e.g. [60].

2.1.1 Light Propagating in a Gravitational Potential

The curving of space-time due to the presence of massive objects reduces the co-
ordinate speed of light. This gives rise to so-called Shapiro delay where, to first
order, light that passes through a gravitational potential @ will exhibit a time-delay
dt = 2@ /c3dl for every differential length d{ it traverses. More importantly, this
means that a gravitational potential configures a varying index of refraction which,
due to its geometric origin, produces lens effects absent of chromatic aberrations'.
In most astrophysically relevant scenarios, the space-time curvature is sufficiently
weak to be considered as a perturbation of the Minkowskian space-time. Assuming
static sources and matter to behave as a perfect fluid, the perturbed Minkowski
spacetime (expressed in transverse gauge) takes the form

20 20
guvdxHdx¥ = — (1 + §> c2dt? + (1 — ?) dx? (2.1)

where dx? should be understood as the Euclidean line element dx? 4+ dy? + dz? and
@ is the Newtonian gravitational potential. Using that light travels along null-

fThe absence of chromatic aberrations in gravitational lenses can be understood as a conse-
quence of the null-geodesics really being deformations in space time and not ”proper” deflections.

20
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geodesics, it follows that the index of refraction is given by

1—2d/c?
n=,/——1" =1
1420 /c?

(2.2)

By invoking Fermat’s principle (see appendix A) one finds the deflection angle |e|
of light passing outside a spherically symmetric mass M to be

_AGM L, (MY ENT

where & is the impact parameter of the
ray with respect to the mass (see figure
2.1), and G and c are the gravitational
constant and the speed of light respec-
tively. Note that this approximates the
deflection to happen in one point, which
is only reasonable provided that the de-
flection angle is small and the massive
object is much smaller than the length
of the trajectory. Objects that satisfy
these criteria are referred to as geometri-
cally thin lenses, and the approximation
as the thin lens approximation.

As demonstrated at the end of ap-
pendix A, equation (2.3) actually holds
for masses that are axially symmetric
with respect to the direction of propa-
gation. For light passing through the
object, one then has to substitute the
mass M by the enclosed projected mass

& 00
M, (&) EJ 27'txde dzp (x,z)

0 —o00
(2.4)
where p(x,z) is the mass density of the
object and z is the direction of propa-

Observer

Figure 2.1: Setup for deflection of light
by intervening massive objects assuming
small deflection angles.

gation. That the projected mass enters the expression should be understood as a
consequence of the thin lens approximation which effectively treats the deflecting

object as a flat sheet of matter.

2.1.2 The Lens Equation

Imagine a ray of light being gravitationally deflected by a geometrically thin massive
object on its way from a point-like source to an observer. Denote the distance to
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the lens and the source from the observer by Dy and Dy respectively. We refer to
the planes orthogonal to the line of sight towards the lens with distances D, and
Dy as the lens plane and source plane respectively. From elementary geometry, it
follows that

D
N+ Distane = —§ (2.5)
Dy

where D5 is the distance between the lens and the source, n is the position of
the source in the source plane, & is the distance of the deflection point in the lens
plane and o is the deflection angle of the ray. Here, tan & refers to the vector
with components tan o, & being the components of «. Introducing the actual and
apparent angular position of the source, B and 0, with respect to the observer, we
may observe that for small deflection anglesm = DgtanP ~ B and & = D, tan0 ~
D10. The result is the so-called Lens equation

Dls
Ds

B=06-— o (2.6)

Although not generally true in curved space-times, we will in the following assume
that D[S = DS - Dl-
For axially symmetric lenses, the deflection angle is given by

_ 4GM, (&)

|| 3

(2.7)

where & = [§]. Note that in this case, by symmetry of the lens, the deflection angle
must be directed radially in the lens plane. To see this more clearly, imagine a ray
received at some non-zero 0. Although the axial symmetry of the geometry is broken,
flips around the the line defined by 0 and the origin remains a symmetry. Therefore,
if we trace the ray backwards, it cannot have been deflected in a direction other than
that defined by 0, i.e. & o< 0. If it did, it would violate the “flip-symmetry” of the
scenario. It then follows from the lens equation (2.6) that &, © and B lies on the same
radial line, meaning that it suffices to treat the lens equation as one-dimensional.
Inserting for o then yields

=0 (1 — 6%(6)) for 0% (0) = ocGDlS = 1M, (6) D, (2.8)

02 D; c? DDy’

where M,,(0) denotes the projected mass contained within a radius D0 in the lens
plane, see equation (2.4). If the function 0g(0) is independent of 0, then according
to equation 2.8, O is the apparent angular position of the source when its actual
position is precisely behind the lens (f = 0). By the rotational symmetry of this
scenario, the source will then appear to the observer as a ring of angular radius 0.
We refer to the ring as the Einstein ring and its radius Og as the Einstein radius.
More generally, at perfect alignment one must have 0 = 0g(0), meaning that the
Einstein radius is exactly a fixed point of 8. We will, however, refer the function
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O (0) as the Einstein radius. Note that we will sometimes use the same name for
the physical Einstein radius

Re(R) = D16 = \/4GMP(R) DD, (2.9)

c? D, ’

which is the length in the lens plane needed to subtend an angle 8¢ as a function of
the distance R from the center of the lens to the deflection point of the considered
ray. Curiously, the functional form of 8¢ (0) opens the mathematical possibility for
an exotic mass distribution to give rise to multiple Einstein rings.

For point-like lenses, the projected mass, and thus also the Einstein radius, is
independent of 0. This makes the lens equation a quadratic equation, whose solution
is

6 1(pB B\°
6 =3 Ei (@) 14, (2.10)

Hence, in the point-like case, the source will be visible to the observer in two different
directions, whose angular separation is

B 2
AO = 0 (e_> +4, (2.11)
E

which is never smaller than twice the Einstein radius. In fact, the two images will
always appear on each side of the Einstein ring — one inside and one outside*.

2.1.3 Apparent Magnification of the Source

Assuming absence of emission and absorption of photons along the way, it fol-
lows from Liouville’s theorem that gravitational lensing conserves surface brightness.
Therefore, any apparent light magnification of the source must be caused by a mag-
nification of the angular size of the source. We can thus express the magnification p
as the ratio of deflected angular size per unit of un-deflected angular size. Although
this can be easily computed in the case of an axially symmetric lens, let us use this
as an opportunity to introduce some new terminology.

A gravitational lensing scenario can be thought of as a mapping 0 — B from
the apparent position 0 to the actual position B of the source. Since a ray of light
received from a direction @ must have taken a unique path from the source, the
mapping 0 — B must always be well defined ". The lens equation 2.6 then enables
an easy way of studying the mapping ® — B, hereby referred to as the lens mapping,

*This is of course with the exception of 3 = 0, where the Einstein ring appears.

tNote that the inverse mapping B — 0 is not generally well defined. The reason resides in the
possibility that light emitted from the same source position B, but in different directions, may hit
the observer from different directions 0.
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through calculation of its local linearization

_ 0B [1—x—1 —Y2
_ae_< S ) (2.12)

Here we have introduced the convergence x and the shear y = vy, + iys which
quantifies the isotropic and anisotropic deformation of the source respectively. This
can be understood by confirming that its orthogonal eigenvectors have eigenvalues
1—«k=%|y|. A sufficiently small spherical source will therefore appear to the observer
as an ellipse of eccentricity 2y|/(1 — k + |yl).

Note that if the determinant of the Jacobian (2.12) is nowhere vanishing, then
the lensing scenario can form one image only. Since A must asymptotically equal
the identity mapping then, by continuity, there will only be produced one image if,
and only if, det A > 0 at all points. Conversely, det A < 0 in at least one point is
a necessary and sufficient condition for multiple images to form. This, of course,
only holds true for point-like sources being lensed by isolated and transparent lenses.
In fact, under these assumptions any smooth mass distribution for which M, (&)/¢
remains bounded as & — oo produces an odd number of images [61]. Note, however,
that this is not valid for source positions that correspond to critical lines, where
det A = 0.

In points where the inverse Jacobian matrix exists, its determinant quantifies
the local change in apparent angular size compared to the actual angular size of
the source. This, as we have seen, is exactly the magnification of an individual
image. For this reason, the inverse linearized lens mapping is often referred to as
the magnification matrix M = A~!. The magnification of an image of a point-like
source produced by a geometrically thin, isolated and transparent lens is therefore
given by
1 1
CdetA (1—k)2— 2

n (2.13)

Since, for an axially symmetric lens, the three vectors o, ® and P lie on the same
radial line, the magnification is more easily obtained by realizing that in this case
the ratio of angular sizes equals the ratio of differential changes in the angular radii
squared”. One then obtains

pdp1 " 02 02 0pdoe\] '
a [e de] o)\ T e )]

which agrees with the expression we would have found when determining (2.13)
while assuming the validity of (2.8). Since

dée 1 6 dM,
e  2M, do

*Alternatively you can realize that infinitesimal angular sizes are given by [0d¢ x dO| and

Bdd x dB|
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we can further write the magnification as

02 02 02 1 dM,\] '
= [(1-=)(1+E-—FE__="» . 2.14
(-5) (- e10

For future convenience, let’s also state this in terms of the physical Einstein radius
Re = D0 and the projected mass density

1(&) = Jplens (\/ £2 4 z2> dz. (2.15)

In terms of these variables, the magnification for an axially symmetric lens is given

by
R2 R2 TR\
w= {(1—]2—‘;) <1+R—‘§—2nR%_ M, )} : (2.16)

where R = D10. Sometimes, it can be convenient to define the critical surface
density Lor = My, /(TRE), to remind ourselves that this is independent of the image
position R. From the above discussion, we see that if there are points such that
2(R) > Z.,, then there are points for which p(R) attains negative values. Therefore,
if the projected mass density is larger than the critical mass density at some image
positions, then some lens positions will constitute multiple images.

Note that for a point-like lens, for which X(R) = 0, the magnification takes the
particularly simple form

u= [1 - (%)] . (27)

By virtue of equation 2.10, the magnification can be found more easily by direct

calculation:
2
Y )(u:% y2+4):1i Y2 g

0do 1
S T _J Te
" Bap 4( ViE T 2t 5T

where y = 3/0¢. This means that if 3 = 0 then u = 1/243+/5/10 which evaluates
to uy ~ 1.17 for the larger image and p_ ~ —0.17 for the smaller image, where the
negative sign signals that the smaller image will appear inverted. It follows that the
total magnification for the two images combined is

w= o= Y2
A=y T

which for B = 0¢ gives n~ 1.34.

Before moving on, there is one thing that should not remain uncommented:
Our expression for the magnification diverges at the Einstein ring! This nonsensical
result is caused by our non-physical assumption that the sources are point-like. Real
sources will always subtend some, although typically vanishingly small, space angle
in the sky. One should, therefore, average the magnification over all points B on the

(2.19)
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source, which results in a finite expression for the magnification. A point-like source
at position B, whose images are at positions {0;}, will have a total magnification
given by

Meoto(B) =D I1(6:)]. (2:20)

Treating an extended source as a collection of point-like sources, we can express its
total magnification as
(I(B)ptot0(B))

et ey

where I(B) is the surface brightness of the point B on the source, and the average
is taken over the collection of points constituting the source.

(2.21)

2.2 Gravitational Microlensing

2.2.1 Types of Gravitational Lensing

It is customary to divide the realm of gravitational lensing into three main branches:
Strong Lensing, Weak Lensing and Microlensing. A strong lensing scenario is one
that forms multiple images, which typically have an observable separation. This
means that quantities such as the flux ratio and angular separation of individual
images are accessible. For image separations to be resolvable, the lenses need to
be both distant and heavy. Therefore, strong lensing is the study of galaxy- and
cluster-sized lenses at cosmological distances.

In weak gravitational lensing, scenarios that are too weak to form multiple images
are studied. This often amounts to estimating the mass density through determina-
tion of the deformation field (see equation (2.12)). In absence of knowledge about
the true shape of the sources, weak lensing is typically combined with a statistical
machinery to determine the local correlation of source ellipticity as due to an inter-
mediate, deflecting density field. For further information on weak lensing see e.g.
[60], or the famous weak lensing result from the Bullet Cluster (1E 0657-558) [62].

Lastly, gravitational microlensing is, like strong lensing, the study of lensing
scenarios constituting multiple images*. The difference between the two is that
microlensing is concerned with lenses that are too small for the images to be resolved.
This, however, leaves only one measurable quantity, namely the apparent source
brightness. Unfortunately, without knowledge of the unlensed flux, this value seems
to be of little use. The key insight is that the observer, lens, and source will generally
have a relative velocity that makes the lensing geometry time dependent. For small
and nearby sources, these timescales will be accessible.

Consider, for example, a point-like lens passing the line of sight towards a solar
source with an angular impact parameter (3¢ and velocity v, perpendicular to the

* Conceptually, gravitational microlensing could also probe weak lensing scenarios, but this
would require magnification sensitivities far beyond those of today.
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line of sight. The total magnification would then be given by equation (2.19) where

_ Bo\’ vi(t—1to))’
y(t) = \/(Q) + (W) : (2.22)
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This means that,

AtE =

(2.23)

defines a timescale for the microlensing event. If one considers a source in the Large
Magellanic Cloud (LMC) with roughly D¢ ~ 50kpc, then the time-scale for a solar
mass lens passing at a distance of 2kpc with perpendicular velocity v, = 220km/s,
which is roughly the rotational velocity of the solar system around the center of the
galaxy, then Atg ~ 9 weeks. If instead, the lens had Earth-mass M ~ 107°M,,
then the time scale would be roughly one and a half day.

Gravitational lensing is, however, not the only cause of change in apparent source
brightness. In addition to absorption and eclipsing effects, many stars exhibit intrin-
sic brightness variations. Therefore, filtering out all the impostors is a complicated
process. Leaving this aside, there are also some theoretical problems related to the
information contained in a microlensing event. At best, one could obtain a fit of the
expected magnification (2.22) which would determine the time ty of the event, the
impact parameter yo = [39/0¢ and its duration Atg. Since the time t; is only a con-
vention, and the impact parameter Yy, depends on the random position of the lens,
the only quantity that contains physical information is the time scale Atg. Sadly,
the information contained in Atg is a degenerate combination of the lens mass M,
the perpendicular velocity v, and the distance both to the source Dy and the lens
D, as seen from the observer. It is often possible to determine D4 by other means,
which leaves Dy, v, and M as free variables. Although it is, in principle, possible to
lift the degeneracy further by utilizing perturbing effects such as finite source size
or the wobbling of the line of sight as the earth rotates around the sun — known as
the parallaz effect — one would still be left with a severe degeneracy between the
lens mass M and the perpendicular lens velocity v .

Regardless of the degeneracy issue, one can obtain stringent bounds on the abun-
dance of microlenses based solely on the number of events detected.

2.2.2 The History and Status of Gravitational Lensing

The idea of gravity as deflector of light can be traced back to Newton himself
where he in Query I of Opticks 1704 [63] asks ” Do not Bodies act upon Light at a
distance, and by their action bend its rays, and is not this action strongest at the
least distance?”. After the completion of the theory of General relativity in 1915,
Einstein proposed a deflection angle twice that of the Newtonian prediction [64]
(see equation (2.3)). The total eclipse of May 29, 1919, allowed measurement of
the astrometric deviation of a star close to the sun [65]. The result, which favored
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Einstein’s theory [66], also marked the first observation of a gravitational lensing
phenomenon.

In the coming years, the theoretical possibility for multiple images to form due to
gravitational lensing was discussed (see Chwolson 1924 [67] and Einstein 1936 [68])
[60]. Observing this phenomenon, however, was regarded as extremely unlikely.
That view was not shared by Fritz Zwicky, who in 1937 claimed that extragalactic
nebulae, now called galaxies, offered a much greater chance of observing lens effects
[69]. The only problem was that there were no known objects that could act as
sources at these distances. Then, in 1963, the first quasi-stellar object (quasar) was
discovered [70], which was both luminous and distant enough to be lensed by other
galaxies. The first observation would, however, have to wait until 1979 when Walsh
et al. published the discovery of two quasars (QSO 0957+561), separated by only six
seconds of arc, which were measured to lie at the same distance and have identical
spectra [71, 72]. Already the next year, a triple-imaged quasar (PG1115+080) was
discovered [73]. A few years later giant luminous arcs were discovered and identified
as heavily distorted images of distant galaxies [74, 75]. Then, finally, in 1988 the
first observation of an Einstein ring was reported found in the radio source MG
113140456 [76]. Up to this point, only strong gravitational lensing phenomena had
been observed. The idea that individual stars might cause flux variations in the
images of QSO 09574561 was, however, much discussed during the eighties [77-79].
The first claimed detection of such a microlensing effect was, however, found in the
quadruple-imaged quasar QSO 223740305 by Mike Irvin (1989)[80, 81].

During the early nineties, multiple dedicated telescopes were built with the intent
of addressing a question posed by Bohdan Paczynski in his 1986 article [60, 82].
Paczynski had realized that if the dark matter in the galactic halo is made of compact
objects more massive than the moon (~ 107®Mg,), then the probability for any star
to be microlensed at a given time must be about 1075. If one were to monitor
the brightness of a few million stars in the Magellanic Clouds, one would therefore
be able to determine the amount of dark matter that is in the form of massive
astrophysical compact halo objects (MACHOs).

First, three different collaborations were formed: OGLE (Optical Gravitational
Lensing Experiment), EROS (Expérience pour la Recherche d’Objets Sombres) and
MACHO. In 1993 the first detection of galactic microlensing events was announced
by Aubourg et al. (EROS) [83] and Alcock et al. (MACHO) [84], both maintaining
the view that MACHOs remains a viable candidate. At the end of the MACHO sur-
vey around year 2000, having monitored 11.7 million stars in the Large Magellanic
Cloud (LMC) for 5.7 years, they reported to have found a total of 13— 17 candidate
microlensing events [85] — about one order of magnitude fewer than Paczyriski’s pre-
diction. This was in agreement with the preliminary results of EROS for the Small
Magellanic Cloud (SMC) at the time [86]. On the other hand, the OGLE survey,
which monitored stars in the galactic bulge, had reported an optical depth of about
(3.3 £1.2) x 107° already in 1994 [87]. Since this was larger than expected, the
matter was investigated further. In the end (2003) a survey by EROS-2 suggested
(0.9440.29) x 107°[88] — a number that fits well with models assuming no MACHO
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population. When the dust settled, the microlensing surveys had strongly disfavored
the MACHO Dark Matter model for masses from 10~"M, to about 10M,. To probe
even lower masses, however, the Magellanic clouds was of little use. The reason is
that when one considers smaller masses, the angular size scale of microlensing — the
Einstein radius — decreases. For masses lower than 107"Mg), the Einstein radius
starts to become smaller than the source size, which leads to the magnification peak
being heavily suppressed. The solution to this problem had already been proposed
in 1992 by Arlin Crotts [89]. Crotts suggested searching for microlensing of stars in
the Andromeda Galaxy (M31) which, being about 15 times more distant than the
Magellanic clouds, would make it possible to probe masses at least down to about
1071°M,. In addition, the tilted disc of M31 would make it possible to statistically
distinguish between lenses in M31 and the Milky Way. This did, however, come
with some serious problems attached. One would, for instance, need to increase the
time resolution even though the sources, being more distant, were much fainter than
for LMC. A more severe problem was that of angular resolution. Since no telescope
would be able to resolve individual stars in M31, each pixel could only monitor the
combined flux of from multiple stars. This would lead to a much larger background
flux which meant larger magnification were required in order to observe a microlens-
ing event. This, of course, also means that it is possible to monitor many more
sources at the same time. The method proposed by Crotts is frequently referred to
by the somewhat unfortunate name of pizel microlensing or pizel-lensing. Although
multiple pixel-lensing surveys such as AGAPE (Andromeda Galaxy Amplified Pix-
els Experiment), MEGA (Microlensing Exploration of the Galaxy and Andromeda)
and WeCAPP (Wendelstein Calar Alto Pixellensing Project) were conducted early
on, we will, for the sake of brevity, only discuss one the most recent ones here. The
Subaru Hyper Suprime-Cam (HSC) monitored about 108 stars throughout the entire
M31 galaxy for 7 hours with a 2 minute sampling rate [90]. This resulted in strong
limits on the population of dark compact objects with masses between 10714M
and 107°M. The details of these bounds will be discussed extensively throughout
the rest of this thesis.

2.2.3 The Unlikeliness of a Microlensing Event

This section aims to introduce some vocabulary for microlensing while discussing
what exactly a microlensing event is and how we can estimate its unlikeliness. When
discussing the latter, we will follow Paczynski [82], Nemiroff [91] and Griest [92]
closely.

Consider a point-like lens drifting between an observer and a single point-like
source. Let the lens be in the origin and denote the angular position of the source
by B. The smaller the value of |B], the larger the total magnification w(f) becomes.
At some point, the magnification will become large enough for the observer to dis-
tinguish it from the noise of the detector. This magnification, which we will refer
to as the threshold magnification wy, defines an upper bound on |B| needed for the
microlensing effect to be observable. We will denote the physical length of this upper
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bound as it appears in the lens plane by {y. For a given lens, each distance D will
fix &1 and hence define a tube around the line of sight towards the source, called
the microlensing tube. For this reason, we will refer to {1 as the tube radius. The
microlensing tube will play a vital role in what follows as its interior defines the lens
positions that would constitute observable microlensing effects. Note that the tube
radius will typically be given by some constant ut times the Einstein radius Rg,
where ut depends on pr only.

Consider a lens that has tube radius £+ and a constant velocity v with respect
to the rest frame of the microlensing tube. Denote the magnitude of the component
of v perpendicular to the line of sight by v, and its angle with respect to center-line
of the tube by 0. The observable microlensing effect, referred to as the microlensing
event, will then last for a time

te = 2 cos 0. (2.24)
Vi
We will call this time the event duration, not to be confused with the time of
diametrical crossing t = 20r/v . In fact, when averaged over uniformly distributed
impact parameters b = {1 sin 0 on the interval [—{t, {1] we have

(te) = 7 () (2.25)

If one would be able to resolve the images in a microlensing event, its geometry
would look something like figure 2.2. The top figure, which is computed with a ray-
tracing algorithm assuming the validity of the lens equation (2.6), shows snapshots
of a spherical source being lensed by a pointlike object. The red circles display
the contour of the actual positions of the source, while the black areas depict the
images corresponding to each source position. Note how the Einstein radius (dotted
black line) defines the scale of the event, and that no image ever crosses the line.
The lower image depicts the magnification (black solid line) together with what the
magnification would have been if the source was point-like (black dotted line). This
former is found by computing the deformed black areas in units of the area of the
undeflected source, while the latter is the magnification in equation (2.19). The
red line marks the threshold magnification which we have set to uy = 1.34. For
point-like lenses, this corresponds to setting the tube radius (red dotted lines) equal
to the Einstein radius.

It is customary to state the likelihood for microlensing via determination of the
number of lenses inside a single microlensing tube — a quantity referred to as the
microlensing optical depth T. Assuming constant number density n of lenses and a
factoring &1 = urRg of the tube radius, the optical depth is given by

_ 4GMD27tu2T o

T c? * 6

(2.26)

If all dark matter were to be the form of point-like objects of solar mass, then,
assuming a constant dark matter density of p = Mn ~ 0.008M,/pc? all the way to
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Figure 2.2: The geometry of a microlensing event by a point-like lens is shown in
the top figure. The red circle displays the actual position and size of the source,
while the black patches correspond to how they appear to the observer. Thin gray
lines are drawn to illustrate show which images correspond to each other. Note
that there are always two images, one inside the Einstein ring (dotted black line)
and one outside. The bottom figure displays the magnification for the event both
for a point-like source (dotted black) and for an extended source (black line). This
is compared to the threshold magnification value pur = 1.34 (red line) defining the
boundary of the microlensing tube (dotted red).
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the large Magellanic cloud (Dg ~ 50kpc) one would obtain roughly T = 2 x 107°.
This means that one would have to look at about half a million stars in the LMC
in order to expect to witness one that is microlensed.

Generally, the optical depth associated with a spherically symmetric thin lens is
given by

T= Jﬂﬂ%n(Dl)le. (2.27)

Assuming ¢+ = utRg, we can write this as

4G 5 o [
T:Fm‘DSuT p(x)x(1 —x)dx (2.28)
0

where x = D1/Dy, f is the fraction of dark matter in the form of point-like objects
and p(x) is the dark matter density along the line of sight.

2.2.4 The Number of Expected Microlensing Events

For a microlensing event to be detected, one needs to witness the whole, or at least
a large portion, of its passage across the microlensing tube. More relevant than
the optical depth is, therefore, the microlensing event rate, which quantifies the flux
of lenses through the microlensing tube. In the following, we derive an expression
for the expected differential event rate per event duration. We start by following
the procedure of Griest [92] and consider the differential flux of lenses through the
lensing tube of a single point-like source

dl'= (v, - dS)n(T)f(v)ﬂd?’vdM (2.29)

dM
where v | is the velocity of the lens perpendicular to the line of sight, dS is a surface
element of the microlensing tube pointing normally out of the tube, n(r) is the
number density of lenses in position r, f(v) is the velocity distribution of the lenses,
g—}\\l/l is the mass distribution for the lenses and d®v is an infinitesimal volume element
in velocity space. For simplicity, we will assume a monochromatic mass distribution,

meaning that dN/dM = (M — m). This allows us to write
dl' = v, cos On(r)f(v)d*vdS (2.30)

where 0 is the angle between v, and dS. In the host halo regions, we may assume
an isotropic Maxwellian velocity distribution[90]:

(V_Vt)2:|

2
Ve

1
f(v) = W exp {—

where vy = (1 —x)v o +xv_ s is the transversal velocity of the lensing tube, v, o
and v, s being the transversal velocity of the observer and the source respectively
and x = D{/Ds. The width of the distribution is chosen to be the local circular

(2.31)
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velocity of the sun v, &~ 220km/s [92, 93]*. When considering halos bound to other
galaxies than the Milky Way (MW), v, generally takes a different value. We will
later need the velocity curve for the Andromeda galaxy (M31), which flattens at
about 226km/s[94]. Since setting v, = 220km/s for both MW and M31 allows us
to estimate the combined, differential event rate dI' for both galaxies in a single
calculation, this will be done throughout the thesis.

Now, choose polar coordinates (£,«) in the lensing plane such that dS = ¢rdadD,
and cylindrical coordinates (v, ,0,v)) in velocity space so that d3v=v,d0dv, dvy.
Since v is orthogonal to v, the v|-dependence can be easily integrated out, leaving
us with

dr — n(r)v? cos 04t {_ (v —v)?

Vv v
In the end, Griest reaches an expression for the event rate per event duration given
by

] ded\)ldVHdOCle. (2.32)
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Here y = cos? 0 and Ij is the modified Bessel function of the first kind.

Since this expression is rather inconvenient, we deviate from Griest and follow
the method appearing in appendix A of Alcock et al [95]. The idea is to instead use
the duration of diametrical crossing

[\]

br

t -
Vi

(2.35)

whose relation to the actual event duration t. is given by te = tcos . Substituting
dv, = 201/t%dt and integrating out the 0-dependence, leaves the expression

ar 3204 v 20\’
— =n(r)=te e QI (2 —t) dDq for Q = (A ) 2.36
i M )t4v§ ’ \/avc R (2:36)
which, in the case of negligible tube velocities (v¢ ~ 0) simplifies to
dr 3204
— =n(r)=—*te D, 2.37
a ™ )t4vg ' (2:57)

knowing that Iy(x) ~ 1 for x < 1. Finally, assuming the number density of lenses
to be proportional to the mass density pnost of the host galaxy we find

Phost (T)
M

*Using v, as a constant assumes a flattened velocity curve throughout. An alternative would
be to set vZ = GMposi(< T)/T.

n(r) = f (2.38)
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where f is the fraction of the total amount dark matter contained in such lens objects
and M is the mass of the lens. Note that by allowing a mass dependence for f, we
can, in principle, handle extended mass distributions. Note also that this rather
crucial assumption that the number density is proportional to the mass density
amounts to saying that the Dark Matter objects are not clustered. There have been
recent claims that the microlensing limits on Primordial Black Hole Dark Matter
(PBH DM) has been overestimated because of this [47].

Although the time scale accessible to the telescope is determined by t., and
not t, we will treat them on equal footing. This can be justified, at least up to a
factor of order unity, by equation (2.25). Assuming the detection efficiency € of the
telescope depends on the event duration t only, the predicted number of events can

be expressed by

ar
Newy = E J aie(d) (2.39)

where E is the number of stars monitored times the amount of monitoring time.

2.3 Constraints on Point-like Objects

2.3.1 Bound Objects between us and M31

This section seeks to reproduce the exclusion curves for the fraction of the galac-
tic halo that can be in the form of point-like objects using the results from the
microlensing survey by Hyper-Suprime-Cam (HSC) Subaru Telescope towards the
Andromeda galaxy (M31). We will refer to the point-like objects as PBHs, knowing
that other, sufficiently compact, objects would be subject to the same constraints.
The method closely mimics the one used by Fairbairn et al. [1] and, as they do, we
will compare the final results to those obtained by Niikura et al. [90].

To start, we approximate the density profiles of the host galaxies as NF'W profiles
(see eq (1.48)) with parameters Ry = 21.5kpc and ps = 4.88 x 105M,/kpc? for the
Milky Way (MW), and Ry = 25.0kpc and ps = 4.96 x 10°M, /kpc® for M31 [96].
We use, as Fairbairn et al. [1], galactic coordinates (1,b) = (121.2°, —21.6°) for M31
setting Dy = 770kpc. In terms of these coordinates the distance to the MW center
of mass from the line of sight can be written

Tmw (X) = v/Rg — 2D xR cos(1) cos(b) + x2D?2 (2.40)

for x = D/Ds. Since the HSC survey monitored stars in the galactic disc, bulge
and halo regions [90], we approximate the distance to the center of M31 from the
line of sight as

Tma1(x) = Dg(1 —x). (2.41)

Considering lenses bound to both M31 and MW thus amounts to using the parametrized
host mass density

Prost (X) = pmw (Tmw (X)) + pma1 (Tms(x)). (2.42)
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The main goal of this section will therefore be to evaluate the following integral

© ' Dgprost(x) 32utRe (x)* 2urRe ()| -
Ne,(p:fF_J0 dt‘[0 dx M vz exp —(T) e(t) (2.43)

where we have factored the tube radius €1(x) = urRg(x). We will set ur = 1 which
corresponds to a magnification threshold of ur ~ 1.34. Note that equation (2.43)
only holds for point-like lenses assumed to have a monochromatic mass-spectrum
and be bound to one of the host galaxies with Maxwellian velocity distribution
normalized to flattened rotation curves at 220km/s [92-94].

First, let us examine the telescope-independent part of the integrand

Al DyPhost(x) 32Re (x)* (2uTRE (x) ) ?
— = = exp |— | ———
dtdx M th2 tve

(2.44)

where, for simplicity, we have set f = 1. This can be interpreted as the number of
microlensing events produced by a single star whose duration of diametrical crossing
is in the interval [t, t+ dt] and distance to lens is in the interval [x, x + dx] measured
in units of the source distance.

The functional form of equation (2.44) for the lens mass M = 10"¥Mg, is shown
in figure 2.3. The white region at low t marks event rates smaller than 1075 /yr?
which are artificially removed to make the contributing domain more visible. The
plot suggests that we should take care while integrating due to the narrow peaks at
the boundary of the x domain. Physically, this means that we expect most of the
microlensing events to be due to lenses either very close to the solar system (x ~ 0)
or very close to the source (x ~ 1). In fact, looking at how equation (2.44) scales,

we find )
ar 1 [Mx(1—x) Mx(1—x)
S M [{—2} exp (—const X {{—2 . (2.45)

This means that for a fixed duration of diametrical crossing, lenses at the boundary
will become increasingly important when one considers larger lens masses. Similarly,
for a fixed lens distance x, the time of diametrical crossing t must increase roughly
as the square root of the lens mass. Therefore, for some mass larger than the one
depicted in figure 2.3, the contribution from all lenses that are not on the boundary
of x will be exponentially suppressed due to a duration of diametrical crossing that
is larger than the monitoring time. From figure 2.3 we can estimate at which mass
this happens. The lower t suppression becomes important at about one order of
magnitude less than the maximal value of t, which means that for masses two orders
of magnitude larger than the one depicted, namely M ~ 107°M, the integral will
be completely dominated by the narrowing boundary contribution. Note also that
for sufficiently low masses the number of expected events should scale roughly as
the lens mass.

To take the peaky domain dependence into account, an importance sampling,
Monte-Carlo (MC) integration scheme is constructed. To pay special attention to
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Figure 2.3: The logarithm of the differential event rate dI' per time of diametrical
crossing t per distance x = D/D; (see equation (2.44)), is shown for a survey of
M31 assuming all Dark Matter to be in the form of point-like objects with mass
M = 10®M. The white region contains all event rates smaller than the chosen
value 1072 /yr?.
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the boundaries of x we sample from the probability distribution

1
P(x) = ———
7/ x(1 — %)
which is chosen to mimic the x dependence of the inverse Einstein radius. A set
of points distributed according to (2.46) are thus found by mapping uniformly dis-
tributed values on the interval [0, 1] with the inverse cumulative density function

(2.46)

icdf(x) = sin? (%) : (2.47)

Sampling from this distribution should, however, be done with caution as the prob-
ability mass is shifted so much to the boundaries that some samples may be rounded
to x = 1, for which the integrand is undefined. This is solved naively by resampling
until no round-off enters, thus possibly imposing a sampling bias.

As the domain does not exhibit as narrow peaks along t, it should suffice to
sample from a simple exponential distribution. To do this, a scale parameter tgcqre
needs to be chosen. Since t = 2utRe /v, we choose

GM
teeate = 502 % 9.48
! 220km/s ( )

to avoid an x dependence, where the factor 50 is found by trial and error.

Let us now estimate the HSC telescope efficiency €(t), which defines to what
degree the telescope is sensitive to different event durations. As pointed out by
Niikura et al. [90], the functional form of the efficiency will generally depend on the
magnitude of the source. To avoid a too involved analysis we pretend, as Fairbairn
et al. [1], t is the event duration and estimate the efficiency of the HSC survey as
a step function with value 0.5 whenever 2min < t < 7hr. For comparison we also
perform the calculation with an efficiency found by taking the green curve in fig 19.
of Niikura et al [90], which corresponds to a star with absolute magnitude of 24mag,
and performing a least-squares fit with a double sigmoid function

B C C
T 14 e Alt—t)) ] 4 e Blt—ta)

esit(t) (2.49)
The resulting fit, as seen in figure 2.4, agrees well for parameters A = 106 + 11%,
t; = 0.0575 £ 2%, B = 1.83 £ 11%, ty = 4.11 £ 2% and C = 0.598 + 1% when t is
measured in units of hours.

Now, all that remains is to estimate the efficiency E, which is the amount of
monitoring time for all the sources combined. Since HSC monitored roughly 108
stars for a period of seven hours, we choose E to be 108 x 7Thr ~ 79909yr. Assuming
all dark matter is in the form of PBHs (f = 1) the resulting prediction for the
number of expected microlensing events is as shown in figure 2.5.

As can be anticipated from our discussion of figure 2.3, the number of ex-
pected microlensing events peaks at a lens mass around 10~ M, which corresponds
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Figure 2.4: The event duration efficiency (green curve in fig 19. of Niikura et al
[90] v1) compared to the step-function approximation (dashed), being constantly
0.5 for 2min < t < 7hr. The solid red line shows the best fit of a double sigmoidal
function (2.49), having parameters A = 106+11%, t; = 0.0575+2%, B = 1.83£11%,
to =4.11 £ 2% and C = 0.598 & 1% for t measured in hours.
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Figure 2.5: The number of expected microlensing events from PBHs bound to the
galactic halo for a survey of M31 using equation 2.43. The results are compared to
the those of Fairbairn et al. [1] (black dots). The computation is performed using
four different techniques: A uniform MC integrator on a step-function efficiency
(dashed blue), an importance sampling (IS) MC scheme on a step-function efficiency
(solid red), an IS MC using the double sigmoidal efficiency fit in figure 2.4 (dot-dash
purple) and a uniform MC integrator which disregards all lenses closer than 5kpc
from either the source or the solar system. All integrators use 10° sampling points
and have an estimated MC error of roughly 0.5 — 10% depending on the method
and lens mass.
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roughly to reducing the duration of diametrical crossing by one order of magnitude.
The three methods yield consistent results, with the exception of the method using
a double sigmoidal efficiency (dot-dash purple) predicting slightly fewer events for
the “ideal” lens mass. They are also in good agreement with the result of Fairbairn
et al, except for the absence of the cut-off slightly above 107°M,,.

In our treatment, the absence of a cut-off at high masses can be understood
by realizing that even though microlensing at intermediate distances will become
increasingly suppressed as the lens mass increases, there will always be lenses close
enough to the boundary for the suppression to be ineffective. Since, in addition, the
host density favors lenses at the boundary, this means no sharp cut-off should appear.
Discarding all lenses that are too close to either the source or the solar system could
reproduce such a cut-off, but for it to happen for masses around 107°My would
mean that all lenses closer than about 5kpc should be disregarded. This is way too
large for it to make physical sense, and even if it were, its functional form would
not fit that of Fairbairn et al. For comparison, this curve is included in figure 2.3
(dotted green). After communication with the authors, it has turned out that the
cut-off in [1] is indeed a numerical error on their side, arising from the narrowing of
peaks in the x dependence of equation (2.44) as the lens mass M increases.

Next, we treat the number of expected events N, as a function of the lens mass
M and the fraction of dark matter f = Qpgn/Qpm that is in the form of PBHs.
For each mass, we then compare our prediction Nexp (M, f) with the number Ngps
of microlensing events observed by the HSC survey. Assuming microlensing events
are Poisson distributed, we have

NNobs
P(Nobs|Nexp) = ——F eiNeXp (250)
Nobs!
whose 95% confidence limits (CL) are found by
Nobs
D P(N[Nexp) < 0.05. (2.51)
N=0

The HSC survey found only one candidate event that passed all the tests [90]. Taking
the optimist view that this is an actual microlensing event by a PBH, we are left with
the 95% CL upper limit of Ney, = 4.74. Using that Nexp (M, f) = fNexp (M, 1) the
95% CL upper limit on the amount of dark matter in the form of PBHs is therefore
given by
4.74

Nexp(M, 1)
The computed bounds are shown in comparison to those of Fairbairn et al and
Niikura et al. in figure 2.6.

The results agree very well, with the exception of the Niikura et al bound being
slightly stronger for small lens masses and slightly weaker for large masses. This
effect is thought to arise from a collection of simplifications from our side. For ex-
ample, Niikura et al integrates over a proper source-magnitude dependent efficiency

f(M) < (2.52)
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Figure 2.6: The 95% C.L upper bound on the fraction f of dark matter in the form
of PBHs for the optimistic view that the microlensing candidate seen by HSC is
a PBH. The three methods using a uniform MC integrator (blue dashed), more
involved importance sampling integration method (red solid) and the importance
sampling method with the fitted double sigmoidal function for efficiency (purple
dash-dot) is compared with the results of Fairbairn et al. (black dots) and Niikura
et al (green dotted line). All integrators use 106 MC points.
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and uses the actual event duration t. instead of the time of diametrical crossing t.
The effect may also be affected by our assumption that the rotational velocity v,
is flattened throughout the line of sight. Niikura et al computes Ny, for lenses in
MW and M31 separately and instead estimates v. by

ve(r) = \/M (2.53)

where they use Mposi(< T) as the enclosed dark matter host mass inside r. This
means that they predict lower velocities for intermediate lenses, leading to a larger
number of expected events where short event durations start to suppress the inte-
grand. Since too short event durations occur for low masses, we expect Niikura et
al to claim better exclusion limits in this regime.

To avoid having to calculate Neyp for lenses in MW and M31 separately, we will
stick with our method throughout the thesis, knowing that it only slightly alters the
exclusion limits.



Chapter 3

Microlensing of Halo Objects

We now turn to what is the main focus of this thesis, namely the prospects for
microlensing extended NF'W-profiled lenses.

3.1 Lensing by NFW-profiled Objects

In their paper, Fairbairn et al (2017) [1] claim to constrain the number of axion
miniclusters, modeled as NFW profiled halos, using results from microlensing sur-
veys such as HSC. This suggests that NF'W profiled lenses should, at least for some
parameter choices, make observable microlensing effects. In this section, we will try
to determine for which NF'W parameters the microlensing effect is observable.

3.1.1 The Profile and its Projected Mass

To determine the lensing properties of a NFW-profiled object, we must first de-
termine the functional form of the projected mass density X(&) and the enclosed
projected mass M, (&). Assuming the object to follow a NFW profile (see equation
(1.48)) without an outer cut-off actually makes the integral

L(E) = J PNFW (\/ &2 + Z2> dz (3.1)

exactly solvable. Factoring out the parameters by defining X (R) = 27mtpRsZ(R/R;),
the result can be stated as

(0.¢]

2L_1 [1 - \/1277arctanh ;—’;} for x <1

r=¢2 for x =1 (3.2)

% |:1 — \/x+7—1 arctan :—_’__} for x > 1

in agreement with Wright and Brainerd [97]. Since the mass contained inside a
sphere of radius R, which is given by

X
x+1’

Menc(R) = 47mp R3f <RE> for f(x) =In(x+1) — (3.3)

S

43
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is logarithmically divergent, it is unphysical to consider NF'W-profiled objects with-
out an outer cut-off. We therefore introduce a cut-off radius R, . and define
XM = Rmax/Rs. Since dark matter halos are described well by an NFW profile only
out to the virial radius, it is natural to choose Riax = Ryir. Assuming p o< 1/13 at
x 2 xpm then allows us to estimate by how much we have overestimated the outer
projected mass density, namely

~ & 2 x \?
62:2J pdz=— |1 1—(—) . (3.4)

XM XM

Taking this into account, we are left with the expression

.
Xil [1 — marctanh T forx <1

~ 2 f — 1

Sx) =43 orx (3.5)
X22_1 [1 — \/Xz—i arctan , /= +1 —8Z(x) forx>1
0 for x > xm

for the projected mass density. The enclosed projected mass can then be found in
a similar fashion. First, we introduce the dimensionless enclosed projected mass by
M, (R) = psRimp(R/ Rs) and integrate the projected mass density over a circular
sheet of radius R = xRg centered at the origin. The resulting expression is

X

27 [21[1 + Farctanh H—X} for x <1

Mp(X)Z 271[21n +\/7arctan,/x+}—%%—%% forxpm =2x>1

M“’t for X > Xm

(3.6)
Knowing the functional form of M, (R) means we have an analytic expression for
the Einstein radius using equation (2.9). We therefore have all we need to perform
the lens mapping.

Figure 3.1 displays the images corresponding to four different source-lens sepa-
rations when deflected by an NF'W object. To obtain these images, a ray-tracing
algorithm has been implemented to compute the inverse lens mapping. The NFW
lens is chosen to have a very high concentration C = 2 x 107 and low virial mass
M,ir = 107°M,. While the high concentration is chosen to better visualize the
deformation properties, the low lens mass is chosen to make the Einstein ring (red
solid and gray dotted) comparable to the size of the source, which is taken to be
sun-sized. The source is taken to be in M31 (Dg = 770kpc) and the lens position
in MW with Dy = 0.01D;s. Note that for sufficiently large source-lens separations
(top left figure), there will only be one image. This is very different from point-like
lenses, where there will always be two images.
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Figure 3.1: The geometry of the image constituted by an NFW-profiled object
deflecting light from an extended source. The blue circle indicates the actual position
and size of the source, while the black area shows how it would appear to the
observer. The gray radial lines demonstrate the angular extent of the image as seen
from the lens, located at the intersection of the lines. The red and gray dotted
circles mark the Einstein ring (0%) centered at the lens and source respectively.
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3.1.2 Estimating the Tube Radius

When predicting the number of expected microlensing events by NF'W profiled ob-
jects, we may recycle most of the formalism introduced in the previous chapter. In
fact, the only thing that prevents us from simply calculating Ny, as it appears
in (2.43) is that we do not know the functional form of the tube radius {r. The
central problem is therefore to determine the tube radius £t as a function of the lens
distance x = Dy/Dg, the virial mass M,,;; and the concentration C.

For a given magnification threshold pr, the tube radius {7 is exactly the distance
D1t for which the total magnification piot(B1) is tr. It should, therefore, at least
in principle, be easy to find {y: Find an expression for the total magnification
WUiot(P) and demand piot (1) = wr. The problem is that the total magnification
Wiot(PB) is given as a sum of the absolute value of the magnification of each image

Mot(B) = ) lu(Di8)], (3.7)

O€lF1({BMI

where F: 0 — B is the lens mapping and p(R) is defined in equation (2.16). Sadly,
determining the fiber F~1({B}) of a source position  is both analytically nontrivial
and computationally expensive.

A brute force method for computing the total magnification would be to utilize
a ray-tracing algorithm. By virtue of the lens mapping F, a set grid of points {0} in
the lens plane can be mapped to their corresponding source positions in the source
plane by F({0}) ={B}. For a certain angular source position B¢ with angular radius
0P, the corresponding image positions can be found using

Images(Bo, 5Bs) = {B][[F(8) — Boll < 6B} - (3.8)
This means that the total magnification is given by

2
fImages(Bo,éﬁs) d0

(5f)?

This will, however, become increasingly difficult to evaluate when the source size
0fs becomes much smaller than the Einstein radius.

Another method, which we will refer to as semianalytic, would be to numerically
find all solutions 0 of F(8) = By and then compute (3.9) analytically.

In figure 3.2 the total magnification for an NFW deflector with virial mass
M,ir = 107°M, concentration C = 2 x 107 and distance x = 0.01 with respect
to M31 (Ds = 770kpc) is portrayed. The four ray-tracing estimates (gradient blue
solid lines) are computed with 1400 x 1400 gridpoints assuming source sizes Ry,
Ro/2, Ry /4 and Ry /8 respectively. We also compute the total magnification due to
a point-like object with similar Einstein radius 0F and the magnification one would
have obtained if the image-positions were the same as for a point-like lens. The lat-
ter has, for obvious reasons, been dubbed semiaccurate. Note that the semianalytic
method for estimating the total magnification agrees very well with the ray-tracing

Heot(Po) = (3.9)
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results. Therefore the numerical estimate of the tube radius is computed using this
method. It should not be taken as a surprise that the NF'W magnification is larger
than the magnification of a point-like lens whose Einstein radius equals the Einstein
fixed point radius 0% of the NFW halo. After all, slightly outside ©f one expects
Oe(0) > 0% since B¢ (0) scales as the square root of the enclosed projected mass. A
point-like lens of the same mass as the NFW halo, however, will generally have much
larger magnifications except, of course, in cases where 0% is larger than the angular
extent of the halo (0f 2 Ryi;/Dy). In that case, the halo would be indistinguishable
from a PBH.

Such devoted estimates of the total magnification are needed to determine the
tube radius accurately. Sadly, the estimation methods outlined above are not easily
generalized to point-like sources and a wide range of halo parameters. Moreover,
due to the sensitivity of the lensing integral, we will need a lot of integration points
in the x-domain. Since the tube radius is dependent on x, we need a much faster
estimate of the tube radius. For this reason, we follow Fairbairn et al and pretend
an NFW deflector has two images and that their images have the same positions
and magnification ratio as for point-like objects. This means that for a threshold
magnification of ut = 1.34, we need only to determine the maximal 0 for which
w(D10) = 1.17. Let us denote this value for D0 by Ry. Since, in this case, one has
= B¢ for a point-like lens, it follows from equation (2.10) that 3 = 6/1.618. That
is, we estimate the tube radius {1 by

0t ~ max {xDSLg—18|u(Dle) = 1.17} : (3.10)
This estimate appears as a black dashed line in figure 3.2. Although it does not
perfectly match the more precise semianalytic estimate, it suffices as a rough es-
timate. In fact, we will later see that the halo parameters M,;, = 107°M,, and
C = 2 x 107 portrayed in figure 3.2 correspond to a limiting case and that the other
halos for which estimating a tube radius makes sense, are even better approximated
as point-like.

To reduce the x-dependence of £+ we introduce the factorization Rt = RRg (M,ir).
Unfortunately, Rg (M, i) does not absorb all the x-dependence of {1. Especially for
low-concentration halos, R will exhibit some x-dependence at the boundaries. This
x-dependence of R is shown in figure 3.3 for solar-mass lenses with 100 log-spaced
concentrations between 10* and 10'°. As the rounded box-shape of the R will be-
come clearer later, we postpone the discussion and simply note that as C decreases,
the span of the non-zero values of R becomes more narrow in the x-domain.

Since the tube radius will only enter in the lens integral, and since R mainly
exhibits variations close to the boundaries of x, we will solve for the tube radius
on a set of lens positions x more densely packed close to the boundary. To achieve
this, we use the inverse cumulative density function in equation (2.47) to map a
linearly spaced set of x-values. The resulting distribution is shown as black dots in
figure 3.3. By linear interpolation over this set, we obtain the estimated values for



48 Microlensing of Halo Objects Chapter 3

I i E \ I
40 I | Voo
| | | I
| | | AR
| ! | "l AN
¢ . . Y
35 i | | A
¢! [ i Y
7~ L Numerical estimate | BRI (BN
- :— Estimate | R Il'l : \
Py i) |
ary [ i) |
s | n Amanma |
325 — R/ ;i !
| f i E I |
— R./8 r,.,l 1 \\\ i
- + Semiaccurate r : iy I
20 - ... PBH (] = }\\ |
| 3 , rd : : N I
Semianalytic 4 : L B
| ” p :
15 e Wy, .
_____ ! .'_,,;.,—'*'-i';"r"‘ Moo Lo
".‘-'—"'rl' ‘I"'“-‘:
LI T S U PO PSS .o A N S s L. LY YIS SO0 GRS P | -
i A L
-8 -6 -4 -2 0 2 4 6 8
Jeflirs

Figure 3.2: Various estimates of the total magnification due to an NFW-profiled
deflector. The gradient blue solid lines are obtained by ray-tracing with a finite
source-size of Ry, Rn/2, Ry/4 and Ry /8 respectively. The dashed purple line as-
sumes a point-like lens to obtain the image positions and uses the analytic expression
(2.16) for the magnification, while the cyan line computes the image positions nu-
merically and is, therefore, the most exact estimate of the magnification due to a
point-like source. These curves are compared to the magnification from a point-like
lens whose Einstein radius agrees with the NFW Einstein radius fixed point 0 (red
dotted line). The black dotted line marks the magnification threshold pur = 1.34,
the cyan dashed line displays the numerically estimated solution for piot(p) = 1.34
while the black dashed lines are the estimate used throughout this thesis.
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Figure 3.3: The estimated value for the distance Ry, from the center of mass of the
lens, the outer image has when the image is magnified by a factor 1.17. This, which
is taken to be an estimate of the tube radius, is displayed in units of Rg(M,i,) as a
function of x = Dy/Dg. The different lines correspond to 100 different NF'W lenses
with log-spaced concentrations between 10* and 10'° where every tenth is colored
strongly. All the lenses have the same mass, M,i; = Mg, and the source is taken
to be in M31.

the tube radius {1 as a function of x which should replace utRg(x) in the lensing
integral (2.43).

3.2 Can WIMPy Halos be Microlensed?

3.2.1 Which Halos are Observable?

To study which halos are in principle observable, we first imagine an idealized version
of the HSC survey which monitors for infinitely long with an infinitely short sampling
rate. In other words, we set e(t) = 1 for all t. Although unphysical, this will serve as
the maximal number of events one can expect from a survey of M31 whose threshold
magnification is pr = 1.34.

Since a general, NFW profiled lens is determined by its virial mass M,;, and
concentration C, we consider a grid of points in the (C, M4, )-plane. We can then
think of each point therein as the scenario that all dark matter is in the form of
halos with NFW parameters C, M, that is gravitationally bound to one of the
galaxies. Computing the tube radius {t and evaluating the lens integral

exp [* i [ 5. DsPhos : ’
M:J dtJ dx DsProst ) 326 [— (%T)] (3.11)

E 0 0 M a2 tv,

then yields the number of expected events per monitored star per year of monitoring
time. The result of this computation on a log-spaced 200 x 200 grid (C, M,i,) €
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(1,101 x [107"M, 10*M] is shown in figure 3.4, which hereby will be referred
to as the prospect plane. In the figure a gray band has been added, signaling the
concentration-mass relation for WIMPy halos as stated by Sanchez-Conde et al [49].
The width of the band corresponds to one standard deviation.

Now, each point in the colored region corresponds to a certain number of expected
microlensing events per monitored star per year of monitoring time. For example,
the yellow region refers to the halos that would produce observable microlensing
events for about one in a million stars during a year of monitoring time. In other
words, one would have to monitor about one million stars over a year in order to
expect one single microlensing event due to these halos. On the other hand, the
dark green area corresponds to halos that, for each monitored star, are expected to
produce one observable microlensing event per year. This is, of course, a way too
optimistic number for realistic telescopes. Since the green area corresponds to very
small halos, their event durations will typically be much smaller than the exposure
time of the telescope, meaning that most events will not be seen. Likewise, the red
area, which corresponds to one event per year per hundred billion stars, should also
be treated as an unrealistic limiting case as these halos are of about the same mass
as the host galaxies.

The points where there is no color (white area) corresponds to the case where
no value for the tube radius {1 was found. Therefore, the white area corresponds to
the halos whose passage in front of any star would not be observable by a telescope
of magnification threshold put = 1.34. That is, the prospect plane seems to suggest
that even for an ideal efficiency, a microlensing survey of M31 with magnification
threshold pur = 1.34 would never be able to constrain the number of galactic WIMPy
halos bound to the galaxy. WIMPy halos are simply not compact enough! The rest
of this chapter will, therefore, be devoted to understanding this result, and discussing
the hope of resolving this issue by, for example, considering different source-positions
and magnification thresholds. Before embarking on that discussion, however, let us
point out that the prospect plane does not suggest that all Dark Matter halos evade
such microlensing constraints. For instance, the Axion miniclusters discussed by
Fairbairn et al [1] are expected to have a much larger concentration than the WIMP
halos, and therefore be subject to constraints.

3.2.2 The Reasonable Behavior of the Prospect Plane

The prospect plane as depicted in figure 3.4 exhibits two obvious features. For suffi-
ciently large concentrations the number of expected events becomes approximately
independent of concentration, and for any given virial mass M,,;;-, there seems to be
a minimal concentration C needed for microlensing events to be detectable.

That concentration becomes irrelevant at sufficiently high values should not be
taken as a surprise. After all, high concentration means more matter accumulates
in the center of the halo, making it gradually better described as a point-like lens.
Actually, since the microlensing effect is only sensitive to the projected mass density
2 (R) and the enclosed projected mass M, (R), we can, by virtue of equations (3.5)
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Figure 3.4: The number N, of expected microlensing events per star monitored
per year of monitoring time estimated for a 200 x 200 grid of log-spaced NFW
lens profile parameters (C, M,i,) € [1,10%] x [107"M4, 10?M]. The number of
expected events Ny, is found by solving equation (3.11) with the approach discussed
in previous sections. Added to the figure is also a black line, corresponding to the
concentration-mass relation for WIMPy halos as stated by Sanchez-Conde et al [19],
and its =10 band. Two estimates, Rg(M,ir) =~ Rs and Ccyut_off, of the cut-off scale,
is shown as a blue dashed line and a black dotted line respectively.
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and (3.6), compute this limit. Since the scale radius Ry is inversely proportional to
the concentration C, large C means small Rs. First, let us consider the projected
mass density X(R) = 2mpsRsZ(R/R;). Since the enclosed mass can be written

f(R/Rs)
_ 3 S — —
Menc(R) = 47p R o) for f) =1 +x) = —— (3.12)
and, by definition, M,i; = Menc(Ryir) we find that
pvirC3 C3
.= ~ Pyir—— for C > 1. 3.13
Ps = 3¢8C) " n(g) M- (3:13)

This means that £(R) ~ C2%£(R/R;)/In(C) which, since £(R/Rs) ~ 1/C2 for C > 1
(and R < Ryiy), gives L(R) ~ 1/1In(C). Hence the projected mass density will vanish
logarithmically with C, making it increasingly similar to a point-like lens. By the
same reasoning the enclosed projected mass must, for large concentrations, tend
towards M,i, according to My, (R) >~ My, In(RC/Ryi;)/ In(C).

We do, in other words, expect the NF'W profiled lenses to behave as black holes
with mass M., for sufficiently high concentrations. Note, however, that the con-
vergence towards point-like behavior is very slow when increasing C.

Let us now consider the cut-off that appears for sufficiently low concentrations.
Numerically, this cut-off arises when no solution for w(R) = wt is found. That is,
when the maximal magnification is below the threshold magnification. When this
happens, the numerical solver returns, as it should, ¢+ = 0 which automatically
yields zero expected microlensing events. According to equation (2.16), the mag-
nification is formally divergent at fixed points Rf = Rg(RE) of the Einstein radius
Re. Therefore, the absence of a solution to the equation u(R) = put suggest the
disappearance of all non-trivial fixed points Rf. That is, since p(R) — 1 for R — oo
then if u(R) diverges at Rf continuity of p leads to the existence of a solution to
i(R) = pr for some R > RE. Note, however, that one would expect sufficiently large
magnifications to occur even in the absence of an Einstein ring provided that there
exist points for which Rg(R)/R is sufficiently close to unity*. To determine how the
low concentration cut-off arises, we should therefore first discuss the existence of an
Einstein ring for NF'W profiled lenses.

3.2.3 Disappearance of the Einstein Ring

To determine the radius of the Einstein ring for an NFW profiled lens with parame-
ters C and M,ir, we need to locate the fixed point Rf = Rg(R§), where Re depends
on C, M, as well as the positions of the source and the lens. First, note that the

* Since there are other divergent points of (R), Rg(R)/R being close to unity is a sufficient,
but not necessary, condition
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enclosed projected mass scales as

27tpsRsR? In 2R+ for R < Ry
M, (R) ~ 471psR3 In % for R> R, and R < Ry, (3.14)
Mvir for R > Rvir

Since Rg(R) o< /M, (R) it follows that Rg(R) scales roughly according to

Ry/psRsIn % for R < R,
Re(R)~ 4\ /psReIn & for R>> Ry and R < Ryiy (3.15)

const for R > Ry;ir

This means that if the Einstein ring Rt is inside the scale radius Ry, then it will be

roughly be given by
—const
RE ~ R exp ( ) 3.16
T AVeGR, (8.16)

and since psRy ~ C?/1In(C), the fixed point Rf must be exponentially decreasing
by Rf ~ Rsexp(—+/In(C)/C) for C > 1. The geometry of this effect is depicted in
figure 3.5.

Since Rf does not become much smaller than Rg(M,i,) when Rf > Ry, we can
approximate the scale where the rapid shrinking of Rf starts by Rg(Myir) >~ Rs.
This corresponds to the scenario where the red and yellow line in figure 3.5 would
be on top of each other. This scale is shown in the prospect plane (figure 3.4) as a

blue dashed line. Note that since Rg o MI/S/C and Rg(M,ir) < vVM,ir, the slope
1

vir

of this line must be given by Ceui—orr M5 In fact, we can do even better than

this. For C > 1 solving for Rg(Rs) = Ry gives

2
4G 4 vir 3 1
Cewt—ort(Myir) = [?( P ) D.x(1—x)In g] M. (3.17)

S

3

This estimate appears as a dotted black line in the prospect plane 3.4. Note that this
scale agrees perfectly with where the lines of equal number of expected microlensing
events Ny, bends strongly towards lower masses.

To visualize more clearly what is going on, the magnification w(R) of individual
images for a halo of solar mass and x = 0.1 is portrayed as a function of the image
position R and the concentration C in figure 3.6. Here, the dark purple contour
corresponds to solutions of w(R) = 1.17 and the weak gray contour lines to log-
spaced curves of equal source position. The points of equal concentration C along a
line of equal source position correspond to (the absolute value of) the image positions
of that configuration. Note that, in accordance with Burke’s odd-number theorem
[61], there are always either one or three images. Moreover, the innermost image
will typically have a negligible magnification compared to the others.
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Figure 3.5: The Einstein radius function 0¢(0) (black filled) plotted together with
the identity function (black dashed) for NFW profiled lenses with concentrations 107
(left) and 10° (right) and the same mass M = 1072M, and relative lens position
x = 0.01 with respect to Dy = 770kpc. If an intersection point 0 (black dot) exists
it indicates the angular radius of an Einstein ring. The yellow line is the asymptotic
value of 0¢(0) and the red line is the scale radius.
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Figure 3.6: The magnification [i(R)| for an NFW lens with M, i, = Mg plotted
as a function of the image position R and the concentration C. The region with
vertical hatches shows where the image appears inverted (1(R) < 0), the solid dark
purple contour line displays the solutions to u(R) = 1.17, and the white dashed line
indicates the estimated cut-off concentration C.y¢_off. The white dotted line shows
the asymptotic value Rg(M,i,) for the Einstein radius. The weak, gray contour
lines show curves of equal source position f3.
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The vertically hatched area corresponds to negative magnifications, meaning
that the image will appear inverted. Therefore, the boundary of this area must
correspond to scenarios of divergent total magnification. Here, the outer divergence
is exactly the Einstein radius fixed point Rf (red dotted line). The disappearance
of an Einstein ring can thus be seen as the exponential drop of R (red dotted line)
for concentrations smaller than the cut-off Ceytofr (white dashed line). Note how
the position at magnification threshold p(R) = 1.17 drops together with Rf. As the
w(R) = 1.17 line exponentially decreases with decreasing concentrations, then so
does the source position corresponding to that image. That is, with the vanishing
of the Einstein ring, the tube radius {1 = Dsf(t = wt) also vanishes. This is a
nice time to recall the box-like x-dependence of R in figure 3.3. Since the Einstein
radius scales as Rg(R) ~ \/ x(1 —x)M,(R), it will attain smaller values closer to
the boundaries of x. This effect, however, will be mathematically indistinguishable
from lowering the virial mass M,,. Since the cut-off of halos with lower mass
occurs at higher concentrations, the tube radius will first vanish at the boundaries
of x, i.e. close to either the source or the observer. Therefore, as one considers less
concentrated halos, the cut-off will appear at increasingly large values of x(1 — x).

When the tube radius {y vanishes, then so does the chance for observing a
microlensing event. What happens is that as C < C.yt—ors We are effectively probing
a p(R) oc 1/R profile. In this case the projected mass scales roughly as the square
of the image position M, (R) ~ R?, which results in a deflection angle that scales
with the angular image position & o< 8. In other words, the lens mapping becomes
simply 3 o< ® which results in a constant magnification p(R) for images sufficiently
far inside the halo. Therefore, the maximal magnification is set by the geometry
and the lens profile and, crucially, scenarios closer to perfect alignment (f — 0) do
not make the lensing effects stronger!

Actually, since we are studying the projected mass M,,, the above argument is
not perfectly valid as one would have an additional factor of In(Rs/R) in the scaling
of M,, i.e M,(R) ~ R?In(R;/R). This means that approaching perfect alignment
will enhance the lensing effects, but only logarithmically at that.

We have now found that the hope for observing the microlensing of stars in M31
by WIMPy halos is feeble. The reason is that WIMPy halos have a relatively low
concentration (C < 10%) which leads to Einstein radii much less than the scale radius.
Due to the weak lensing effects of a 1/r profile, the magnification never reaches the
magnification threshold making events, if they do occur, pass unnoticed.




Chapter 4

Remedies and the Future

Up to this point, we have discussed the fundamental limits to the microlensing of
WIMPy halos. In this chapter, we discuss the general prospects for constraining the
abundance of WIMPy halos with microlensing when adopting more technically real-
istic assumptions. We will attempt to determine what is needed for the microlensing
of WIMPs to produce observable effects, and recite some alternative techniques for
probing the dark matter sub-structure.

4.1 Unspoken Complications

Before discussing whether WIMPy halos can ever be constrained using the technique
developed in the previous chapters, we should spend some words on the complica-
tions that arise when adopting more realistic assumptions.

Let us start by recalling that not all halo parameters appearing in the prospect
plane 3.4 are realistic. As previously pointed out, the most massive halos corre-
spond to the unreasonable limiting case where halos of the same mass as the host
galaxy pass the line of sight with a velocity normalized to v, ~ 200km/s. In fact,
these halos are also so large that many lens positions would violate the thin lens
assumption.

Moreover, the halos with both very high concentration and very high mass are
automatically ruled out by general relativity as the Schwarzschild radius 2GMen./c?
for the enclosed mass Mg within the scale radius Ry become smaller than the scale
radius. After all, that would mean the object is not well described as having an NF'W
density profile. Additionally, this might end up violating our initial assumption
that spacetime can be treated as a perturbed Minkowskian spacetime, see equation
(2.1). For NFW-profiled halos 2GMen./c? ~ Ry occurs at Cg, =~ 2 x 108 for
M,ir = 102M, and scales roughly as Cg,, ~ M:fr/ Tt therefore only concerns
masses in the range 10°Mg — 10'2M, with concentrations larger than 2 x 108,

Up to this point, we have silently ignored the possibility for the finite size of
sources to affect microlensing by halo objects. In fact, it has been argued that for
stars in the Large Magellanic Clouds, the effect of finite source size on microlensing

o7
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by point-like objects may be significant and non-trivial (see e.g. [98]). Roughly
speaking, the effect of finite source size can be understood as follows. The finite
size of a star will subtend some, often vanishingly small, angle 6, on the sky. If
this angle is comparable to the radius of the Einstein ring 0%, then the star, even at
perfect alignment, will just appear slightly deformed and magnified. For 6, 2 0% all
the strong lensing effects will simply deform the position of the star isophotes and
therefore lead to negligible magnification effects. Therefore, one must have 0% = 0,
to avoid finite source effects from suppressing the magnification. Now, a star with
radius R, at a distance Dy will subtend an angle

R o (R 770kpc
0, ~ —~6"0x1077 (= ) 4.1
. =600 () (57 &

Comparing this to the Einstein radius
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suggests that even for point-like lenses with mass of the order M, ~ 107*M, finite
source size becomes important. In fact, the importance of finite source size increases
when considering lenses closer to M31. This means that point-like lenses with M <
1078M, that are bound to M31 are likely not to be seen. Since MW and M31 hosts
roughly the same amount of candidate microlenses, the expected number of events
in figure 3.4 should be reduced by a factor of roughly 2 for the halos of lowest mass.
Actually, since HSC monitored only the very brightest stars in M31 [90], many
of the stars considered are expected to have much larger radius and thus further
increasing the scale at which finite source size becomes important. Note also that
for less concentrated halos, the projected enclosed mass M, (Rg) decreases. This
means that finite source size will become increasingly important when lowering the
concentration.

We saw in the last chapter that halos with a concentration below the concen-
tration cut-off C.yt—orf Will have an exponentially decreasing Einstein radius 0%.
A consequence of this is that for concentrations C < Ceyt_off, the suppression of
the magnification due to finite source size will rapidly increase with decreasing C.
In other words, if there would have been a finite number of expected microlensing
events for WIMPy halos in figure 3.4, they would most likely have to be disre-
garded when taking into account the finite source effects. Note, however, that it
makes little sense to imagine a scenario in which there is both a finite number of
WIMPy microlensing events and an exponentially decreasing Einstein radius below
Ceut—off- The only possible way for this to happen is to consider a telescope with
unrealistically low magnification threshold. As we shall see shortly, this is not a
viable option.

When computing the number of expected microlensing events in the previous
chapter, we set €(t) = 1 for all t, without discussing the physical implication of such a
choice. Realistic telescopes will have a non-zero exposure time 6t. Roughly speaking,
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this means that microlensing events with duration smaller than the exposure time
te < 0t can occur without being detected by the telescope. Similarly, any survey
monitors for a finite amount of time At, which lead events with durations t. = At to
not be fully captured and thus effectively pass unnoticed. These limits are, of course,
only estimates of the order of magnitude. As photons will be detected during the
exposure time, an excess can be detected even for t. lower than the exposure time.
The dead time between exposures will, however, set an absolute minimal observable
event duration t.. Likewise, event durations longer than the monitoring time can,
at least in principle, be detected as slow inclinations in the magnitude of a star.

Actually, the middle part of figure 2.5, where Neyp, ~ M~1/2 correspond to
those event durations that fall safely between the exposure time (2 minutes) and
the total monitoring time (7 hours). This means that the effect of introducing an
efficiency like that of HSC would heavily suppress the number of expected events in
the prospect plane for all masses except those that are in vicinity of the region from
107%Mg to 107°Mg. As concentrations decrease, however, this band is expected
to drift towards higher masses as t. decreases with {y ~ 0%. If we manage to remedy
the lensing of WIMPy halos, we may, in other words, end up needing a telescope
with technically unrealistic exposure time.

4.2 Increased Distance and the Sparsity of Pho-
tons

In the previous chapter we saw that even for a telescope with ideal efficiency ¢ = 1,
WIMPy halos would have a concentration multiple orders of magnitude too small for
their microlensing of stars in M31 to be observable with a magnification threshold
of ur = 1.34. Therefore, a natural attempt at fixing the problem would be to
construct a telescope with a much smaller magnification threshold. To see if this is
possible, one would have to study the statistics and image analysis in detail. The
magnification threshold will generally depend on the statistics of photons from the
background compared to that of the source, as well as instrumental noise and the
technique of background subtraction. Due to the disappearance of the Einstein ring,
however, a reduced magnification threshold is likely to have little effect. In the best
of cases, a reduced magnification threshold could open the possibility for detecting
halos only slightly below the concentration cut-off (see e.g. figure 3.6). As discussed
in the previous section this would quickly lead to serious difficulties due to both
finite source size and the need for unrealistically short exposure time.

Recall that the exponential decrease of fixed points Rg (Rf) = Rf was found to be
related to the Einstein radius becoming smaller than the scale radius Rs. Moreover,
the halo parameters that resulted in a vanishing number of expected events was
estimated to be those with concentration lower than Ceyt—orf(Myir) (3.17). Since
Ceut—off is proportional to v/Dg when keeping the relative lens position x fixed, a
natural remedy is therefore to consider more distant sources.

Looking at the prospect plane depicted in figure 3.4, one would at least need the
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cut-off to occur for concentrations two orders of magnitude lower in order to detect
dwarf-galaxy-sized (~ 108M,) halos. Since Ceut_ofs ¢ v/ Dy, this means that one
would have to consider sources four orders of magnitude further away, i.e 7.7Gpc.
That is half the radius of the observable Universe! This is clearly not an option,
but let us entertain the absurdity while introducing an important concept. Since
the gravitational lensing formalism introduced in chapter 2 only considered a static,
perturbed, Minkowskian spacetime, the interpretation of distances at cosmological
scales is not clear. Actually, when we introduced the Einstein radius, we treated the
distances Dy, D and D as the angular diameter distances of a flat FRW spacetime.
The problem is that in the ACDM cosmology, angular diameter distances cannot
get larger than roughly 1.8Gpc*. When we substituted for x = D;/Ds and wrote
Dy = (1—x) Dy, however, we treated the distances as if they were comoving. It turns
out that if we treat distances as comoving, then x(1 — x)Dg should be replaced by
(142z1)x(1—x)Dys, where z; is the redshift of the lens (see [60] for a full discussion).
In keeping the relative lens position fixed, this means that we should instead have
used the scaling relation Ccut_off & 1/ (1 + 21)Ds, which in the ACDM cosmology
results in a minimal comoving distance of about Dy ~ 3Gpc or, equivalently, a
redshift of about zy ~ 0.8. A serious problem with considering microlensing of
sources at zg =~ 0.8 is, of course, that there are few of them (see e.g. [99]) and,
more importantly, that they are far to faint. Let us try to be quantitative about
the faintness. In a static and flat spacetime, an observer at a distance D from a
black-body with temperature T and radius R, will receive a total number of

R2 27t (kT\’ [ x2dx (TN (RN’ Dy \7°
Vopee (n) et (2) (/) (mise) 09
photons. Here x = hv/kT, T, = 5800K and R, = 696000km. This means that a
sun-like star would provide only ~ 1600 photons in total for the 8.2m wide aperture
of the HSC telescope every second minute. To claim an excess of 8N = N(ut — 1)
photons, with more than 30 certainty, from a Poisson distribution with an average of
N photon counts requires that (pr — 1)N > 3v/N. That is, in the complete absence

of background photons even a perfect telescope with no detector uncertainties that
is able to detect every single photon no matter the frequency, one would need a

baseline of at least )
3
N = ~ 78 4.4
(HT — 1) (44)

photons from that star in order to claim an excess with 30 certainty with a magnifi-
cation threshold at puy = 1.34. This means that if one were to consider sources only
a factor 10 further away then, since the number count decreases as the square of the
distance, the photon statistics would simply be too bad for the HSC telescope to be
able to claim a pr magnification of a sun-like star. Since short exposure times are
required for detection of low-mass halos, the only possibility that remains is to build

*This value, and others like it, is computed using the cosmological parameters given in chapter
1.2.1 and would generally change in other cosmologies.
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a ridiculously much larger telescope (recall the required factor of ~ 10* increase in
Ds).

In fact, the HSC was unable to see sun-like stars in M31 even with a magnification
threshold of ut = 1.34. The HSC survey could only monitor stars with absolute
magnitudes roughly from —2.4mag down to 1.5mag [90]. Note that 1.5mag barely
reaches the most luminous stars in the main sequence. The point is that even for
an ideal telescope being able to detect light at all frequencies, increasing the source
distance would completely ruin the photon statistics. For each decrease in the
concentration cut-off Ceyi—ofr (3.17) by a factor 10 when considering more distant
stars, the photon count would drop by a factor of 10*. One could, of course, consider
only the most luminous of stars, but recall that a large number of stars monitored
is crucial for observing the unlikely microlensing events.

In any way, the possibility of microlensing by WIMPy halos when considering
sources at cosmological distances works only when keeping the relative lens position
x = Dy/Dy fixed. For this to work, one would have to give up hope for detecting
halos hosted by MW and instead start searching for distant host galaxies that are
well aligned with a large population of very distant sources.

If one wants to remedy the situation by considering more distant sources, stars
seem to be out of the picture. Quasars (QSOs), on the other hand, being both
very distant and very luminous, would be ideal sources in this case. See e.g. [100]
for the QSO number distribution as a function of redshift estimated from the 10k
catalog. In fact, there are claims that dark matter sub-structure has been gravi-
tationally detected at cosmological scales, see e.g. [101]. Note, however, that in
this analysis halos are given a different density profile than the NFW. Additionally,
there have been claims that the flux ratio anomalies in multiply imaged QSOs can
be explained by including the perturbing effects of dwarf-galaxy-sized Cold Dark
Matter substructure [102—105]. The lens systems discussed here are B1422+4-231 and
PG1115+4080 for which the lens and source distances are zg ~ 3.36, z; ~ 0.34 and
zs ~ 1.7, z >~ 0.3 respectively. This is well above what is required for the concen-
tration cut-off to be lower than the concentration of WIMP halos, and therefore in
good agreement with our results. That is, microlensing by WIMPy halos at those
scales should produce observable magnification effects.

As pointed out by [105], the flux anomalies of B1422+231 can, however, also
be explained by effects such as stellar microlensing, absorption and scattering with
the interstellar medium. To determine if such perturbing effects of strong-lensed
systems can be used to produce satisfactory bounds on the abundance of WIMPy
halos a detailed analysis is needed. One would, for instance, need to distinguish
perturbations due to Dark Matter halos from those of stellar microlensing. Moreover,
one would have to determine the number of perturbing halos needed to explain
the observation. At cosmological scales, microlensing event durations may increase
significantly, which further complicates the determination of the number of lenses.

We conclude that the detection of individual microlensing events due to small-
scale WIMPy halos only is possible at cosmological scales. The reason for this
is related to the disappearance of an Einstein ring, the limited photon statistics,
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the effects of finite source size and the need for an exponential decrease in the
magnification threshold. In other words, the prospects for constraining the number
of WIMPy halos by detection of individual microlensing events are feeble. Note,
however, that gravitational lensing remains an important toolbox in general, and
that individual microlensing events by halos more concentrated than those predicted
by the WIMP may certainly be detected.

4.3 The Future of Halo Constraints from Lensing

We have now seen that there is little chance for constraining the number of small-
scale WIMPy halos by detection of individual microlensing events. This does, how-
ever, only hold for WIMPy halos assumed to have low concentrations with an inner
density slope of p oc 1/1 *. Recall that the motivation for this thesis was the strong
constraints on the abundance of NFW-profiled Axion miniclusters from the HSC
survey [1].

As the prospect plane 3.4 suggests, microlensing may pose strong constraints on
models that predict halos with high concentration. For example, in addition to the
Axion miniclusters, it is likely that one can obtain stringent bounds on the pop-
ulation of so-called Ultracompact Minihalos (UCMHs). These are objects formed
from the collapse of overdensities too small to form PBHs, but still large enough
(6 2 1073) for the collapse to occur very early (z = 1000) [106]. As argued by
Aslanyan et al. [107] constraining the abundance of UCMHs would both provide
information about the nature of dark matter, and the preferred parameter region
for models of inflation. Much of the machinery introduced in the previous chapters,
however, is tailored for NFW-profiled objects, and not for the expected p oc r79/4
profile of UCMHs (see e.g. [108]). While this prevents us from immediately esti-
mating for the number of expected microlensing events from UCMHs in the HSC
survey, we can say that UCMHs, unlike the WIMPy halos, will not suffer from the
disappearance on an Einstein ring. It is, in other words, considered likely that one
can put strong bounds on the population of UCMHs using existing microlensing
data.

There are many techniques related to gravitational microlensing that may have
even more promising prospects. For completeness, we will conclude this text by
reciting some of the alternative approaches for constraining dark matter substructure
that has been proposed during the last years.

First of all, using the perturbative effects dark matter substructure has on the
flux ratios in strongly lensed systems as discussed by [102-105], can maybe be used
to constrain the abundance of WIMPy halos. At present, however, these studies
offer little more than a hint of the existence of dark matter substructure and it
remains to be determined whether utilizing this effect can ever pose actual limits on
the halo mass function.

*From the analysis in the previous chapter, we actually expect this to hold for halos with
p o 1/r™ where n > 1.
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A somewhat related class of methods for constraining halos are those based on
Pulsar Timing Arrays (PTAs). One possibility is to consider the expected Shapiro
time delay associated with halos passing the line of sight (see e.g. [109]). This has
already been used to constrain the abundance of Ultracompact Minihalos (UCMHs)
[110]. With increased time sensitivity, this technique may possibly also be used
to constrain the abundance of WIMPy halos. It has also been claimed that the
expected impulsive acceleration from the passage of CDM halos close to the pulsars
or the solar system may be used to constrain the halo abundance, see e.g. [111].



Chapter 5

Conclusion

The deflection of light in gravitational potentials make distant stars appear deformed
in the presence of intermediate massive objects. Such deformations tend to magnify
the apparent size of the star, and thus also its apparent brightness. The passage of a
massive object in front of the star will, in sufficiently well aligned cases, temporarily
increase the apparent brightness of the star. A large population of stars in both the
Magellanic Clouds (MACHO) and the Andromeda Galaxy (HSC) has been moni-
tored, and the observed scarcity of such microlensing events has been used to place
strong constraints on the abundance of Massive Astrophysical Compact Halo Ob-
jects (MACHOs) and Primordial Black Holes (PBHs). Recently, it has been claimed
that highly concentrated halos predicted by the Axion dark matter scenario can be
constrained by existing microlensing data.

In this thesis, we have discussed prospects for constraining general NFW-profiled
halos in a model independent way, while at the same time focusing on the possibility
for microlensing WIMPy halos. Such constraints can, generally, shed light on the
cut-off in the halo mass function, and thus provide unique insight into the particle
nature of dark matter.

We have discovered that while it is possible to pose strong constraints on highly
concentrated NF'W-profiled halos, the low concentration of WIMPy halos make them
evade the existing constraints. This results from the exponential decline of the
radius of the Einstein ring as it becomes smaller than the scale radius of the NF'W
profile. The halo parameters subject to this suppression are shown to be those with
Re(Myir) S Rs. That is, the cut-off is closely related to the lensing scenario only
being sensitive to a p oc 1/r profile. To observe the microlensing of halos with
concentration only slightly less than the concentration cut-off, a greatly decreased
magnification threshold is needed.

We argue that one is likely never to obtain constraints on the abundance of intra-
galactic WIMPy halos from microlensing. While it is certainly possible for lenses
and sources at cosmological distances to produce observable microlensing effects, it
is unclear whether one can find a sufficiently large amount of sources well aligned
with a population of sub-halos. In addition, the expected event durations may end
up not being accessible.
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In conclusion, the future may have a lot to offer, but probably not the detection
of a microlensing event due to a nearby WIMPy halo.



Appendix A
The Deflection Angle

One of the great triumphs of General relativity is the ability to derive the trajectory
of light in the vicinity of massive objects. When small deviations from a linear path
is expected, it suffices to consider a perturbation of the Minkowskian spacetime.
Assuming static sources and matter to behave as a perfect fluid, the perturbed
Minkowski spacetime (expressed in transverse gauge) takes the form

guvdxtdxY = —(1 +20)dt* + (1 — 20)dx> (A1)

where @ is the Newtonian gravitational potential. This means that the coordinate
speed of a null ray (g, dx"*dx¥ =0) is given by

dfx| [1+20
= . A2
dt 1—20 (4.2)
The index of refraction created by the presence of a Newtonian potential is therefore

given by
[1—20 9
n= 1+2(D_1—2CD—|—O(® ). (A.3)

By invoking Fermat’s principle it follows that possible trajectories of the light is
constrained by

5 (® !
&J nlxJdx = 0. (A.4)
A

When changing variables to an affine parameter A, the corresponding Euler-Lagrange
equations take the form

d 0 0 dx
ﬁa_dimdl = aXiTL|d| where d = Fi% (A.5)

Choosing A to normalize d (|d| = 1), the tangential change in the direction of the
ray can be conveniently written as

d 1
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Since ® <« 1 it follows that Inn = In(1 — 2®) ~ —2® to first order. In this case,
the net deflection angle takes the form

AB
oc:—J'd?\VLlnn:2j dAV  O. (A7)

AA

To first order, lets start by considering the Newtonian potential for a point-like lens
®(r) = —GM/r of an undeflected path purely along the z-axis so that r = /b? + z2

where b = v/x? + y? is the impact parameter of the ray. This means that

GM
V.0 = ?T 1 (AS)
which yields the deflection angle
© dz _ 4GMr,

oc:2GMrLJ

w (224027 b b )

By definition, |r | = b so || = 4GM /b with direction pointing towards the lens. A
nice feature of this result is that it is linear in the mass. Assuming the deflection to
happen instantaneously at the closest point to the lens, The deflection angle for an
extended lens with projected density profile

5(E) = jp (,2) dz (A.10)

is therefore given by

E—x
ol :4GJd2xe = A1l
) O (A1)
For an axially symmetric lens (X£(x) = Z(x)), we may choose polar coordinates
&—x=(&§—xcosB,—xsin0) so that
27 o 2
Ex —x“cos O
=4G do | dxX A.12
(Xl Jo Jo *=(x) £2 4+ x2 —2&xcos 0’ ( )
27t 00 2 &
x* sin 0
=—4 0 > . Al
= G L d L dxE(x) &2 +x? —2&x cos O (A.13)
While o = 0 due to antisymmetry of the integrand, we find
27t N2 2 f <
J 0 Ex —x*cos0 _ nix/&  for x < & (A14)
0 £2 +x2 —2&xcosO 0 for x > &
resulting in the expression
4GM &
(&) = GTM where M,, (&) = 27'[J X (x)xdx (A.15)
0

is the enclosed projected mass. That is, an axially symmetric lens deflects the ray
as if it was point-like of mass M, (&).
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