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Abstract

This master thesis will demonstrate how to price perpetual American
options with linear programming. American options are used both for
hedging and speculation, and being able to price derivatives, without cre-
ating arbitrage opportunities, are of importance. First we introduce a de-
terministic security market model and exploit the mathematical structure.
Then European and American put and call options are presented. With
dynamic programming we show how to price American options. Dynamic
programming is based on an idea that an investor would act optimally at
all trading dates and the objective is yielding the maximum profit, de-
spite the risk of not knowing the true future value of the option. With
this technique, we investigate perpetual American options on a ternary
Markov chain model. Perpetual options are without an expiration date.
Markov chain models are only dependent of the current state when deter-
mining the future value, thus simplifying the computations. The solution,
based on dynamic programming, is the smallest payoff that is greater than
the discounted expected value of the option at the next trading date. The
value and the payoff must not be confused, as an investor may be willing
to pay more than the payoff today, if the value of the option might rise
in the future. The solution is obtained by formulating the problem as an
optimization problem and then using linear programming theory.
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1 Introduction

1 Introduction

In this thesis, we will price perpetual American options based on a ternary
Markov chain model. In chapter 1, we introduce a general security market
model, and focus on its mathematical structure. We will discuss topics such as
martingales, viability and arbitrage.

In chapter 2 we introduce European and American put and call options.
Our main concern is to find their fair prices. These options will be a natural
part of the models introduced in chapter 1. Then, in chapter 3, we present
the binomial model, and in chapter 4 the Markov models with the Markov
chain property. These chapters shows that models with different properties
have different outcomes when computing fair prices of options.

In chapter 5 we introduce theory on linear programming as this will be
needed to solve the perpetual American options introduced in chapter 6. Chap-
ter 5 include the strong and the weak duality theorems and the complementary
slackness conditions.

First, in chapter 6, we present the result of Vanderbei & Pınar [7] when
pricing perpetual American options based on a random walk model. We then
proceed with a ternary Markov chain model. This part is the main result in this
master thesis and is carefully demonstrated.

In chapter 7 there is a small discussion with suggestions for further studies
and about what is not included in this master thesis.

1.1 Creating a Security Market Model

A financial market is a broad term describing a market in which people trade
financial securities and commodities. They can be found in nearly every nation
in the world, some are smaller and some trade billions of dollars daily.

Our security market models will be used to determine a fair price of plain
vanilla options in discrete time. Once we have the necessary machinery, we’ll
look at the well-known binomial and Markov models.

The models we make in our text will not look much like the real world
financial markets as many details are not included. Different borrowing and
lending rates, transaction cost, transaction time, brokerage, and many other
details are important and should be included when making a trading strategy
in the real world. We will ignore these details in our models.

Even though we ignore certain details found in the real world, we want to
identify the mathematical structure in the best possible way. This is especially
noted when we talk about viable markets and arbitrage opportunities in later
chapters.
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1.2 One-period Single-stock Binary Model

1.2 One-period Single-stock Binary Model

Perhaps the simplest security market model is the one-period single-stock binary
model. As the name indicates, it consist only of one risky security S and two
moments in time. The risky security has a known value «today», mathematically
written as S0, and an unknown value S1 «tomorrow». The name binary tells us
that there are two possible scenarios ω for the development of the risky security,
denoted u and d. We think of scenario u as when the value of the risky security
goes up at time 1, and d as the scenario where the value goes down. But this
does not need to be the case. Both S1(u) and S1(d) may be greater (or less)
than S0. Remark, St(ω) should be read as ”the price of the risky security S
at time t, given scenario ω”. We will later see that some requirements on the
relationship between the elements in the model are necessary in order to make
sence with a real market model. There is also a risk-free asset B involved. It has
an initial price B0 and a fixed interest rate r ∈ R, resulting in B1 = (1 + r)B0

for all ω.

Example 1.1 (One-period single-stock binary model). Let the risk-free asset B
be a bond with initial value of $1000 and 6% interest rate. Further, let the risky
security S be a stock with initial price of $15 and terminal value of $20 or $10,
depending on which of the scenarios u and d which turns out to be the real state
of the world, respectively. This can be illustrated with a tree-representation, see
Figure 1.1. Note that we have included a real-world probability P. We will
describe this in chapter 1.3.

S1(u) = 20

S0 = 15

p

33

1−p
++
S1(d) = 10

B0 = 1000 // B1 = 1060

Figure 1.1: One-period single-stock binary model.

Although simple, the one-period single-stock binary model contains many
desired properties that remain in more complex models. To avoid being lengthy,
we skip these simple models and move straight to multi-period models. The
theory developed for the multi-period models works perfectly with single period
models.
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1.3 Multi-period Security Models

1.3 Multi-period Security Models

The following multi-period models of securities markets are discrete. They are
more realistic than the previous single period models and a step closer to a
generalization to continuous time models. Based on the work of Pliska [5] and
Cutland & Roux [3], the following elements are basic assumptions for the multi-
period models:

• A fixed finite set of trading dates t = 0, 1, . . . , T .

• A fixed finite sample space Ω = {ω1, . . . , ωK}. Each ω represent a possible
scenario for the evolution of stock and bond prices, from time 0 to time
T .

• A probability measure P on Ω with P(ω) > 0 for all ω ∈ Ω. This is the
so-called real-world probability.

• A bank account process B = {Bt}Tt=0, where B is a stochastic process
with B0 = 1. The value Bt(ω) should be thought of as the time t value
of a bond when one unit of the current medium of exchange is invested at
time 0, in the case of scenario ω.

• A finite number N of risky security processes Sn = {Snt (ω) : ω ∈ Ω, t is a
trading date} for n = 1, . . . , N . We think of Snt (ω) as the value of the
risky security n at time t in scenario ω.

• A trading strategy process φ = {φt : t = 1, . . . , T}. For any time intervall
(t−1, t] we have a trading strategy φt = {H0

t , H
1
t , . . . ,H

N
t } that describes

the investors portfolio as carried forward from time t− 1 to time t. Here
H0 denotes the holding in the bank account process, and {Hn}Nn=1 denotes
the holdings in the N risky securities.

• A filtration F = {Ft : t = 0, 1, . . . , T}, which is a submodel describing
how the information about the prices of the risky securities are revealed
for the investors as time progresses.

Remarks The probability measure P is not directly needed in the theory
that follows, except we will need it for the modelling at the end. Nevertheless,
the assumed property is an important one. It states that the probability of any
scenario in Ω, P(ω), is always greater than zero, together with∑

ω∈Ω

P(ω) = 1.

This implies that all the impossible scenarios (zero-probability scenarios) are
excluded from Ω, together with Ω including all possible scenarios.

The term stochastic process was used about the bank account process. This
is a term we will use frequently, and as in Cutland & Roux [3, p. 142], we think
of it as “a family of random variables indexed by time”.

3



1.3 Multi-period Security Models

Different assumptions about the bank account process can be made in a
multi-period model. Consider B representing a savings account, you may expect
to always have positive interest rate, i.e. B0 = 1 and Bt(ω) > Bt−1(ω) for
all ω ∈ Ω and for all t = 1, . . . , T . An investment in bonds may return a
higher yield, but you can also end up with loosing some of your investment, i.e.
Bt(ω) ≥ 0. To simplify the examples that follows we assume the bank account
process to be fixed.1

The trading strategy φ looks limited, it only contains B and S. Later we
introduce derivatives that will be an additional element in the portfolio.

The final basic assumption for the multi-period model, a filtration F, needs
a deeper explanation. The motivation is that an investor initially do not know
which scenario ω ∈ Ω will turn out to be the real state of the world at the final
time T . The investor may want to adjust the trading strategy as time progresses
and certain scenarios may not be available. At time t, only the market trend
from time 0 and up to time t will be known. This idea, as stated by Cutland &
Roux [3, p. 136], is “captured mathematically by means of the collection Ft of
subsets of Ω for which membership depends only on the scenario ω up to time
t”.

Definition 1.2 (Filtration, [5, p. 73]). For any t, let Ft be the collection of all
sets A ⊆ Ω with the property that, if ω ∈ A and there is another ω′ ∈ Ω such
that the scenario ω′ up to time t is equal to the scenario ω, then also ω′ ∈ A.
The family (Ft)

T
t=0 is called a filtration and is denoted F.

From Definition 1.2 several properties, which are in line with what we expect
to be reality, follows. The chosen theorem below is a desired property that shows
that a filtration is a nested sequence in the way that as more time passes, more
information is known to the investor.

Theorem 1.3 (Nested property, [3, p. 138]). A filtration F satisfies the property
Ft ⊆ Fs whenever t ≤ s.

The proof of Theorem 1.3 is given by Springer [3, p. 138], and the following
is a modified version.

Proof. Fix any A ∈ Ft and ω ∈ A, and assume t ≤ s. If the scenario ω up
to time s is equal to another scenario ω′ up to time s for some ω′ ∈ Ω, then
ω and ω′ equals up to time t. By Definition 1.2 it follows that ω′ ∈ A. Thus
A ∈ Fs.

Value and gain processes What we need next is to be able to convey the
information the models provides. The assumed trading strategy φ gives rise to
a value process V = {Vt : t = 0, 1, . . . , T}, defined as in both the work of Pliska
[5, p. 81] and Cutland & Roux [3, p. 98],

1Being fixed in this case does not mean that it can’t change value over time, but that it
uses the same value for all scenarios at each time step.
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1.3 Multi-period Security Models

Vt =


H0

1B0 +
N∑
n=1

Hn
1 S

n
0 , t = 0,

H0
t Bt +

N∑
n=1

Hn
t S

n
t , t = 1, . . . , T.

(1.1)

The effect of different scenarios ω in (1.1) is not included, but clearly they
matter in an actual calculation as can be seen in Example 1.5. Since the risky
securities are random variables at each time step {(t− 1, t] : t = 1, . . . , T}, the
value process V is a stochastic process.

Sometimes when we mention trading strategies, we want to add that they
should be self-financing. This is to prevent meaningless counterarguments when
developing the theory. For a trading strategy φ to be self-financing, it simply
means that the value of φ before and after an adjustment, at time t, must be
equal. Formally, as given by Cutland & Roux [3, p. 99], we write that φ is
self-financing if and only if

V φt+ = V φt , (1.2)

where we define

V φt+ ≡ Ht+1Bt +

N∑
n=1

Hn
t+1S

n
t .

The next concept is a gain process G. Let

Gs→t ≡
t∑

u=s

H0
u∆Bu +

N∑
n=1

t∑
u=s

Hn
u∆Snu , 1 ≤ s < t. (1.3)

Then Gs→t defines the cumulative gain from time s up to time t of a chosen
portfolio.2 The notation ∆Snt is defined as Snt −Snt−1, and similar for ∆Bt. We
will later learn about adapted processes and G = {G(t−1)→t : t = 1, . . . , T} is
in fact such a process. A more concise way of expressing the gain is seen in
equation (1.3). It is similar without the discount as shown by Pliska [5, p. 82].

Discounting the effect of inflation and interest rates elucidates the return
on risk and is commonly used in mathematical finance. For us, the movement
of the security prices relative to each other are of interest, so it is convenient
to normalize the prices in such a way that the bank account becomes the nu-
meraire3. In fact, the security prices absolute value are of no interest, only their

2This is an example of a so-called discrete time stochastic integral [5, p. 81].
3A common example of a numeraire is setting oil prices in U.S. Dollars, allowing different

countries to compare the value of oil prices in its own currency. Norway, a country that is
a net exporter of oil, will for instance earn more (in local currency terms) than it did in the
past, if its currency is weakening against the U.S. dollar.

5



1.3 Multi-period Security Models

relative behavior, and especially in relation to the bank account process. Why
take risk if you can be without!

Definition 1.4 (Discounted price process, [5, p. 83]). The discounted price
process S̄n = {S̄nt : t = 0, 1, . . . , T} is defined by

S̄nt ≡ Snt /Bt.

From Definition 1.4 both a discounted value process and a discounted gain
process can be defined:

• The discounted value process: V̄ = {V̄t : t = 0, 1, . . . , T}, as in Pliska [5,
p. 83], where

V̄t ≡ Vt/Bt. (1.4)

• The discounted gain process from time s up to time t is

Ḡs→t ≡
N∑
n=1

t∑
u=s

Hn
u∆S̄nu ,

where ∆S̄nu := S̄nu − S̄nu−1. Additionally, we let

Ḡs→t := V̄t − V̄s. (1.5)

Equation (1.5) is an important result which is not necessarily true, but we
define it to be so. Then any trading strategy is self-financing. To see this, recall
(1.1), (1.3) and (1.4), and let

Ḡs→t = V̄t − V̄s

Ḡs→t+1 − Ḡs→t = V̄t+1 − V̄t

V̄t = V̄t+1 + Ḡs→t − Ḡs→t+1

V̄t = H0
t+1 +

N∑
n=1

Hn
t+1S̄

n
t+1 +

N∑
n=1

t∑
u=s

Hn
u∆S̄nu −

N∑
n=1

t+1∑
u=s

Hn
u∆S̄nu

V̄t = H0
t+1 +

N∑
n=1

Hn
t+1S̄

n
t+1 −

N∑
n=1

Hn
t+1∆S̄nt+1

V̄t = H0
t+1 +

N∑
n=1

Hn
t+1S̄

n
t .

Multiplying both sides of the last equation with Bt gives (1.2), the desired
property of a self-financing trading strategy. We finalize this section with an
example.
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1.3 Multi-period Security Models

Example 1.5 (Multi-period multi-stock model). Figure 1.2 is an example of a
multi-period security market model. It consists of N = 2 risky securities, in this
case two stocks, a fixed interest rate r of 4%, T = 2 time steps, and |Ω| = 9, nine
different possible scenarios. A key observation is that no real world probability
measure P is mentioned. We will later see that this is not needed in our finite
and deterministic models.

Table 1.3 lists the discounted price processes, which we will make use of
later. A table is another way of representing a security market model, serving
the same purpose as the tree-representation. Notice that at time 1, the scenario
u is equivalent with either scenario ω1, ω2 or ω3 being the true state of the
world, and similar for scenario m and d.

7



1.3 Multi-period Security Models

S1
2(ω1)=18.2

S2
2(ω1)=40.6

S1
1(u)=14

S2
1(u)=33.6

55

**

// S
1
2(ω2)=14

S2
2(ω2)=32.2

S1
2(ω3)=9.8

S2
2(ω3)=30.8

S1
2(ω4)=11.2

S2
2(ω4)=32.2

S1
0=14

S2
0=25.2

//

AA

��

S1
1(m)=12.6

S2
1(m)=26.6

55

**

// S
1
2(ω5)=15.6

S2
2(ω5)=30

S1
2(ω6)=9.2

S2
2(ω6)=23.2

S1
2(ω7)=14

S2
2(ω7)=35

S1
1(d)=16.8

S2
1(d)=23.8

55

**

// S
1
2(ω8)=10.6

S2
2(ω8)=15.8

S1
2(ω9)=21

S2
2(ω9)=28

B0 = 1 // B1 = 1.04 // B2 = 1.0816

Figure 1.2: Two-step ternary branching model with two stocks.
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1.4 Arbitrage Opportunities

ω S̄1
0 S̄2

0 S̄1
1(ω) S̄2

1(ω) S̄1
2(ω) S̄2

2(ω)

ω1 14 25.2 175
13

420
13

875
52

25375
676

ω2 14 25.2 175
13

420
13

4375
338

20125
676

ω3 14 25.2 175
13

420
13

6125
676

9625
338

ω4 14 25.2 315
26

665
26

1750
169

20125
676

ω5 14 25.2 315
26

665
26

375
26

9375
338

ω6 14 25.2 315
26

665
26

2875
338

3625
169

ω7 14 25.2 210
13

595
26

4375
338

21875
676

ω8 14 25.2 210
13

595
26

6625
676

9875
676

ω9 14 25.2 210
13

595
26

13125
676

4375
169

Table 1.3: Discounted price processes of Example 1.2.

1.4 Arbitrage Opportunities

Our security market model aims to represent the mathematical structure of a
real world market model. An arbitrage opportunity is a risk free way of making
money and should therefore not be allowed. Definition 1.6 is a modified version
of what given by Pliska [5, p. 92]. Note the importance of discounting. We are
not thinking of money in the bank as a risk free way of gaining profit.4

Definition 1.6 (Arbitrage opportunity, [5, p. 92]). An arbitrage opportunity
in a multi-period security market model is a self-financing trading strategy φ
such that:

1. V̄ φ0 = 0,

2. V̄ φT (ω) ≥ 0 for all ω ∈ Ω,

3. V̄ φT (ω) > 0 for at least one ω ∈ Ω.

Directly from Definition 1.6, the following can be said about arbitrage op-
portunities:

Theorem 1.7. The existence of an arbitrage opportunity implies that an in-
vestor can create a portfolio which guarantees either a zero or a positive dis-
counted gain.

Proof. The proof given by Pliska [5, p. 9] is only for single-period models, but
because of (1.5) Pliska show in [5, p. 92] that it’s also true for multi-period
models. Again, showing the importance of self-financing portfolios.

4Definition 1.6 without discounting would be that any investment in the bank account is
an arbitrage opportunity.
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1.5 Martingales

Arbitrage opportunities do exist in real world security markets.5 Once they
are founded, the balance between supply and demand are changed, as most
investors would not let go of a free lunch6. Therefore, they are short-lived and
will not be included in our models. It is worth mentioning that if you are
lucky to find an arbitrage opportunity, friction will make it harder to exploit
the opportunity as the margins often are relative small for private investors.

Example 1.8 (Example 1.5 continued). Looking at Figure 1.2, it is not easy
to spot an arbitrage opportunity - if it even exists. And how to prove arbitrage
opportunities are non-existent? Assume for now that the value of S1

0 is changed
to µ ≥ max{S1

1(ω) : ω ∈ Ω}. Then the portfolio φ1 = (−x, 0, xµ), for some
constant x, has initial value 0, and time 1 value

V φ1

1 =


−xS1

1(u) + xµ ·B1 > 0, ω = ω1, ω2 or ω3,

−xS1
1(m) + xµ ·B1 > 0, ω = ω4, ω5 or ω6,

−xS1
1(d) + xµ ·B1 ≥ 0, ω = ω7, ω8 or ω9.

(1.6)

Liquidating this portfolio at time 1, and then investing all in the bank ac-
count process until time 2 is clearly an arbitrage opportunity.

The negative holding, −x, in portfolio φ1 is understood as short selling x
units of the risky security S1. We say that a model is viable when no arbitrage
opportunities exist. The model in Example 1.8 is therefore not viable. To be
able to classify and create viable market models are obviously of interest, and
we will look into this in the next chapter.

1.5 Martingales

Martingales are important in several ways in multi-period security market mod-
els. The final result in this chapter shows that the existence of an equivalent
martingale measure excludes the existence of an arbitrage opportunity. Later
we will see that martingales are an important tool when pricing derivatives.

Before the main theorem for this chapter, we must extend the foundation
we are working with. The first definition below associate a random variable X
with the filtration F generated by the risky securities in the model.

Definition 1.9 (Measurability, [3, p. 140]). For any trading date t, a random
variable X is said to be measurable with respect to Ft if {X ≤ x} := {ω ∈
Ω|X(ω) ≤ x} ∈ Ft for every x ∈ R. In short we say X is Ft-measurable.

The next definition extend the concept of dependency on available infor-
mation from single random variables to stochastic processes. This will ensure
an investor the full knowledge about the past and present prices. The investor

5Topics that will not be discussed here: does there really exist completely risk-free invest-
ments? What is the limit between a risk-free and a risky investment?

6Investment slang term referring to arbitrage opportunities.
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1.5 Martingales

know at time t that the true state ω is contained in some subset A ∈ Ft. From
the definition of measurability the price of the risky security at time t, St, will be
constant on this subset. In addition, since the filtration F consists of a nested
sequence of subsets, the investor can at time t infer the observed subsets in
earlier subsets Fs, s < t, and thereby deduce the earlier security prices.

Definition 1.10 (Adaptedness, [3, p. 142]). A stochastic process X = {Xt}Tt=0

is said to be adapted to the filtration F if the random variable Xt is Ft-
measurable for every t.

Definition 1.11 tell us that since we have assumed that the real-world prob-
ability P is greater than zero for all ω ∈ Ω, it follows that Q is equivalent to P
if and only if Q(ω) > 0, for all ω ∈ Ω.

Definition 1.11 (Equivalent probability measures, [3, p. 143]). Two probability
measures Q and Q′ on Ω are called equivalent if, for any A ⊆ Ω, we have
Q(A) = 0 if and only if Q′(A) = 0.

We are ready to define a martingale process. Conditional expectation is then
a key notation. For Definition 1.12 the conditional expectation under Q is such
that for any time t scenario ω, the probability of qω ∈ Q is the probability that
a process (e.g. a risky security) reaches scenario ω at time t, conditional on the
fact that it has reached an associated scenario of ω at an earlier time s.

Definition 1.12 (Martingale, [3, p. 152]). A process M is a martingale with
respect to Q if it is adapted and EQ(Mt|Fs) = Ms for every s ≤ t.

We accumulates the different definitions above to define an equivalent mar-
tingale measure which we will need for the main theorem in this section7.

Definition 1.13 (Equivalent martingale measure, [3, p. 154]). A probability
measure Q on the set Ω is called an equivalent martingale measure if it is
equivalent to the real-world probability P and the discounted stock price process
S̄ is a martingale under Q.

Theorem 1.14 (Fundamental theorem of asset pricing). A multi-period security
model with a finite number of trading dates, scenarios and risky securities is
viable if and only if it admits an equivalent martingale measure.

Proof. See Cutland & Roux [3, p. 159] for a proof.

The theorem above is powerful as it provides a tool to show the existence (or
non-existence) of arbitrage opportunities. Now we make use of another result
that appear in the work of Cutland & Roux [3, p. 147]. It simply states that
Q can be constructed by first calculating the conditional probabilities at each
time steps at each scenarios. Then, the equivalent martingale measure is given
for each scenario by multiplying all the conditional probabilities that belong to
the same scenario, for all time steps. This provides a tool for calculating an
equivalent martingale measure Q on Ω. Lets see this in an example:

7This theorem is sometimes called the fundamental theorem of asset pricing.
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1.5 Martingales

Example 1.15 (Example 1.5 continued). We use Definition 1.13 together with
Definition 1.12, and get that Q should satisfy EQ[S̄1|F0] = S̄0 at time 0. That
is, we need the conditional probabilities qu, qm and qd to satisfy the system

quS̄
1
1(u) + qmS̄

1
1(m) + qdS̄

1
1(d) = S̄1

0 ,

quS̄
2
1(u) + qmS̄

2
1(m) + qdS̄

2
1(d) = S̄2

0 ,

qu + qm + qd = 1.

(1.7)

Using Table 1.3 we get

175

13
qu +

315

26
qm +

210

13
qd = 14,

420

13
qu +

665

26
qm +

595

26
qd = 25.2,

qu + qm + qd = 1.

This is routine to solve, and the solution is

(qu, qm, qd) ≈ (0.1154, 0.4564, 0.4282).

At the next trading date, t = 1, Q should satisfy EQ[S̄2|F1] = S̄1. There are
three separated scenarios, and we must solve for each one of them. For scenario
u, we need a solution (ω1, ω2, ω3) to the system

qω1 S̄
1
2(ω1) + qω2 S̄

1
2(ω2) + qω3 S̄

1
2(ω3) = S̄1

1(u),

qω1
S̄2

2(ω1) + qω2
S̄2

2(ω2) + qω3
S̄2

2(ω3) = S̄2
1(u),

qω1 + qω2 + qω3 = 1.

We get similar systems for scenarios m and d. Solving these yields

(qω1
, qω2

, qω3
) ≈ (0.3653, 0.4027, 0.2320),

(qω4
, qω5

, qω6
) ≈ (0.0460, 0.5956, 0.3584),

(qω7 , qω8 , qω9) ≈ (0.0575, 0.3005, 0.6420).

Finally, we can use the conditional probabilities above to create an equivalent
martingale measure Q:

12



2 Introducing Derivatives

Q(ω1) = quqω1 ≈ 0.0422,

Q(ω2) = quqω2 ≈ 0.0464,

Q(ω3) = quqω3 ≈ 0.0268,

Q(ω4) = qmqω4 ≈ 0.0210,

Q(ω5) = qmqω5 ≈ 0.2718,

Q(ω6) = qmqω6 ≈ 0.1636,

Q(ω7) = qdqω7 ≈ 0.0246,

Q(ω8) = qdqω8 ≈ 0.1287,

Q(ω9) = qdqω9 ≈ 0.2749.

(1.8)

From Theorem 1.14 above, since our model admits an equivalent martingale
measure, no arbitrage opportunities exists. Lets do (1.7) again, but now for
Example 1.8, which we remember contains arbitrage opportunities:

175

13
qu +

315

26
qm +

210

13
qd = µ,

420

13
qu +

665

26
qm +

595

26
qd = 25.2,

qu + qm + qd = 1.

Solving this system yields

(qu, qm, qd) ≈ (0.0874µ− 1.1082,−0.3059µ+ 4.7388, 0.2185µ− 2.6306).

Clearly, there does not exists any value of µ such that both Q(ω) > 0 and
µ ≥ max{S1

1(ω) : ω ∈ Ω}, for all ω ∈ Ω. Again, showing that the modified
model in Example 1.8 contains arbitrage opportunities.

2 Introducing Derivatives

We are ready to introduce another element to our multi-period security market
model - derivative securities. The theory already developed is consistent with
this new financial asset, given that it may be included in any trading strategy
φ. A derivative is a random variable that can be taken to be a function of one
or more underlying security prices8 [5, p. 112]. Derivatives describe a broad

8From an investors point of view a derivative is a contract between two parties. One party
is the seller (or issuer) of the derivative, which promise to pay the other party, the buyer (or
holder) of the derivative the amount X when the derivative is exercised.

13



2 Introducing Derivatives

range of securities and include options, futures, swaps, and forward contracts
[5]. An option gives the holder the right, but not the obligation, to exercise the
derivative9.

The so-called vanilla options that we will look into have always non-negative
payoff. The fundamental question to be addressed is: what is the appropriate
value for this agreement? That is, if the buyer acquires this asset at time t,
and is expecting a payoff X ≥ 0 at a later time T , then the investor would be
expecting to pay something at time t. The first derivatives we will investigate
is the simple European call and put options. As explained by Cutland & Roux
[3, p. 21], a European call option CE on a security S takes form of a binding
agreement that entitles its owner to buy 1 unit of S at a fixed strike price K at
a fixed time T in the future. The holder is not obliged to exercise the option.
Thus,

• if K > ST the investor will buy the security in the market rather than
exercise the derivative.

• If K < ST it makes sense to exercise the option as selling the acquired
security will yield a net profit of ST −K > 0.

• If K = ST it doesn’t matter if the investor exercise or not. In a real world
market it would depend on which alternative that have less friction, in
order to acquire the security.10

Summarizing, a European call option has payoff

(ST −K)+ ≡ max{ST −K, 0},

which at time t < T is well defined, but unknown. A European put option
PE is similar to the call option, except it gives the right to sell and not to buy
one unit of the underlying asset. Thus it has payoff

(K − ST )+ ≡ max{K − ST , 0}.

We assume our markets to be viable, so that none combinations of the risk
free and the risky securities can create an arbitrage opportunity. However, the
challenge of derivatives is that we, in one way, must decide the price. The chief
topic of the rest of the theory presented in this text is to find what we call a fair
price of a given derivative. A price is called fair if it guarantees that neither
the buyer nor the seller can gain an arbitrage opportunity, even though the
future is unknown. A price is called unfair if it creates arbitrage opportunities.
The remarkable theory of derivative pricing shows that in many situations there
exists prices for large classes of derivatives that are fair [3, p. 3].

9To be clear, an option is a derivative, but a derivative is not necessary an option.
10Friction, as in transaction cost, transaction time, etc.
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2.1 Fair Pricing of European Options

2.1 Fair Pricing of European Options

When we are to find fair prices of European options, there are two types to
consider: the Europen call option and the European put option. Although
these two options are defined in two different ways, our results will apply to
both, plus a wide range of other options, see Definition 3.2. But, the derivatives
we will look at afterwards, American options, need a new mindset.

Theorem 2.1 (Fair pricing of European options, [3, p. 168]). Let D be any
European option in a viable multi-period model. Then FD = {EQ(D̄) : Q is an
equivalent martingale measure} is a non-empty interval of fair prices of D.

Proof. Suppose that π = EQ(D̄) is a price for D at time 0. Take the pricing
structure (πt)

T
t=0 for D given by πt = (1 + r)t−TEQ[D|Ft] for all t. Clearly,

from the just given definition of π, we have π0 = π and πT = D. If we regard
D as an additional asset in the model, then Q is an equivalent martingale
measure for this extended model, so that it is viable. Thus, there can be no
arbitrage opportunity involving (π)Tt=0, and so π is a fair price for D at time 0.
For the converse, suppose that π is a fair price for D. Thus there exists some
pricing structure (π)Tt=0 with π0 = π for which there is no arbitrage opportunity.
Thus the extended model with the new asset D with pricing structure (π)Tt=0 is
viable, and admits an equivalent martingale measure Q. The discounted stock
and bond price processes are martingales with respect to Q, so it is also an
equivalent martingale measure for the basic model without the derivative D.
At the same time we have EQ[D̄] = EQ[π̄T ] = π̄0 = π0 = π, which concludes
the proof of the first part of the theorem. A similar version of whats written
above is done by Cutland & Roux [3, p. 168].

For the second part, assume both Q1 and Q2 belong to the set of all equiv-
alent martingales measures. Then λQ1(ω) + (1 − λ)Q2(ω) > 0 for all ω ∈ Ω,
and

λ
∑
ω∈Ω

Q1(ω) + (1− λ)
∑
ω∈Ω

Q2(ω) = 1.

Also, for any scenario ω at every trading date t < T we have

EλQ1+(1−λ)Q2
[S̄t+1|Ft] = EλQ1

[S̄t+1|Ft] + E(1−λ)Q2
[S̄t+1|Ft]

= λEQ1
[S̄t+1|Ft] + (1− λ)EQ2

[S̄t+1|Ft]

= λS̄t + (1− λ)S̄t

= S̄t.

Thus showing that the set of all equivalent martingale measures is convex
and the expectation EQ depends linearly on Q. We conclude that FD is a convex
set of R, and must be an interval.
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2.1 Fair Pricing of European Options

Let’s see how this result works out in an example.

Example 2.2 (European put option). Consider an European put option PE

with exercise date T = 2 and strike price K = 12 in the model in Example 1.5,
with S1 as the underlying asset. Its payoff PE2 = (K − S1

2)+ satisfies

PE2 (ω1) = PE2 (ω2) = PE2 (ω5) = PE2 (ω7) = PE2 (ω9) = 0,

PE2 (ω3) = 2.2,

PE2 (ω4) = 0.8,

PE2 (ω6) = 2.8,

PE2 (ω8) = 1.4.

For the unique equivalent martingale measure Q found in (1.8) we have

EQ[PE2 ] = 1
1.0816

(
2.2Q(ω3) + 0.8Q(ω4) + 2.8Q(ω6) + 1.4Q(ω8)

)
≈ 1

1.0816

(
2.2 · 0.0268 + 0.8 · 0.0210 + 2.8 · 0.1636 + 1.4 · 0.1287

)
≈ 0.6602.

The fair price to pay for PE is ≈ 0.6602 at time 0. To find the fair price
of PE at time 1 is similar as the computation above, only now we solve the
expectation conditioned that the history up to time 1 is known:

EQ[PE2 |F1] =


PE2 (ω3)q(ω3) ≈ 0.5104, ω = u,

PE2 (ω4)q(ω4) + PE2 (ω6)q(ω6) ≈ 1.0403, ω = m,

PE2 (ω8)q(ω8) ≈ 0.4207, ω = d.

Any other prices will give an arbitrage opportunity. We can see this with an
example. Suppose the price of PE at time 1 and scenario m is decreased from
1.0403 to 0.7. Then in case of scenario m, buying 3 derivatives and 1 unit of
security S1 together with shorting ≈ 27.5962 units of B1, all in time 1, yields a
portfolio with initial value 0 and final value

V2 ≈


3 · PE2 (ω4) + S1

2 − 27.5962B2 > 0, ω = ω4,

S1
2 − 27.5962B2 > 0, ω = ω5,

3 · PE2 (ω6) + S1
2 − 27.5962B2 > 0, ω = ω6.

This is clearly an arbitrage opportunity. Therefore, 0.7 is not a fair price at
time 1 in case of scenario m for the derivative PE .
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2.2 Fair Pricing of American Options

American options, studied in this chapter, are like the European options except
the owner is allowed to exercise11 at any time up to and included the fixed expiry
time T . Thus, the payoff Y may depend not only on the scenario ω ∈ Ω, but also
on the exercise time t ≤ T . As in Cutland & Roux [3, p. 211], we can represent
this with a non-negative adapted stochastic process Y = {Yt : t = 0, 1, . . . , T}.
The payoff is non-negative as the holder of the option can always choose to
never exercise the option, yielding a zero payoff. It is assumed to be adapted
because when deciding whether or not to exercise the option, in scenario ω, at
a given time t, the payoff is assumed to be known for the investor. But, we do
not assume it is possible to know the true future payoff after time t. Therefor,
Yt depend only on the history of scenario ω up to time t.

The payoff function Y may fail to represent the value Z of the American
option. If the expected future time τ discounted payoff where higher than the
payoff today,

E[Ȳτ ] > Yt,

then you may be willing to pay more than the actual payoff today, Yt. We
will define the value process Z = {Zt : t = 0, 1, . . . , T} for the American option,
but first some definitions are needed.

Definition 2.3 (Supermartingales, [5, p. 127]). An adapted stochastic process
X = {Xt : t = 0, 1, . . . , T} is said to be a supermartingale if E[Xt|Ft] ≤ Xs, for
0 ≤ s ≤ t ≤ T .

Obviously, all martingales are supermartingales, but not vice versa. We
know from Theorem 2.1 that the discounted value of an European option is a
martingale under a risk neutral probability measure. Theorem 2.5 states that
the discounted value process Z of an American option is a supermartingale
under the same measure.

Definition 2.4 (Stopping times, [5, p. 127]). A stopping time is a random
variable τ taking values in the set {0, 1, . . . , T,∞} such that {τ = t} ∈ Ft, for
all t = 0, 1, . . . , T . If an event never occurs, stopping times are allowed to take
the value ∞.

Stopping times can be hard to grasp, but think of them as random variables
whose value is interpreted as the time at which a given stochastic process ex-
hibits a certain behavior of interest. Taking the example of Pliska [5, p. 127],
for a risky security with S0 = 10, τ1 ≡ min{t : St ≥ 20} is a stopping time,
because you learn the event {τ1 = t} by time t. However, the random vari-
able τ2 ≡ max{t : St ≥ 20} is not a stopping time, because you may not learn
whether {τ2 = t} until time T . There are many stopping times associated with

11That is, to take the payoff.
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2.2 Fair Pricing of American Options

our security model’s filtration. Let the set of random variables which are stop-
ping times taking finite values in the closed interval [s, t], to be denoted by the
set ζ(s, t).

Theorem 2.5 (Value process for America options, [5, p. 127]). The value pro-
cess Z for the American option Y is given by

Zt = max
τ∈ζ[t,T ]

EQ[YτBt/Bτ |Ft]. (2.1)

Also, the discounted process Z/B is the smallest supermartingale under a
risk neutral probability measure satisfying Zt ≥ Yt, for all t, ω. Moreover, the
optimal stopping time that maximizes (2.1) is τ(t) ≡ {s ≥ t : Zs = Ys} for
t = 0, 1, . . . , T .

Proof. See Pliska [5, pp. 127–131] for a proof.

With Theorem 2.5 we are able to define a fair price of the American option,
but we don’t have any methods to compute it. Springer [3, pp. 258, 263] shows
that in a viable multi-period model, for the American option X,

FX = {sup
τ
EQ(X̄τ ) : Q is an equivalent martingale measure} (2.2)

is a non-empty interval of fair prices of X. Later we will look at options without
an expiration date in models with an infinite number of trading dates. Then
(2.2) will no longer work. We therefore introduce dynamic programming, a
topic of importance in its own right. At first we will use it to compute the value
process Z of the American options presented above.

The idea, as explained in Pliska [5, p.128], is to work backwards in time,
and we will justify our choices on the way. Clearly at time T , ZT = YT . If the
option is not exercised, it expires and have value 0. We remember that YT ≥ 0
and in order to act optimally we set ZT = YT .

At time T − 1 we do the first iteration:

ZT−1 ≡ max{YT−1,EQ[ZTBT−1/BT |FT−1]}. (2.3)

That is, our choice depends on which value is greater: exercising now, or the
expected value of the option at the next trading time. Since we have already
calculated ZT and assumed that there exists an equivalent martingale measure
Q, this equation is well defined.

We continue these iterations until time 0. Then we will know the value
process Z for the American option at all times and scenarios. There is also a
bonus. Let τ = t at each time Zt = Yt. This gives the optimal stopping time
in Theorem 2.5. Of course, we must take into account the different possible
scenarios. Lets see this in an example.
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3 Binomial Model

Example 2.6 (Pricing American options with dynammic programming). Con-
sider the American call option CA with exercise date T = 2, strike priceK = 18,
and underlying security S1 in the model in Example 1.5. This options has payoff
Yt = (S1

t (ω)−K)+, for t = 0, 1, 2 and for all ω ∈ Ω.

We want to determine what an investor should expect to pay for this option.
That is, to determine the value process Z for CA. As explained above, at time
T = 2 we set

Z2 = Y2 =


0.2, ω1,

0, ω2, ω3, ω4, ω5, ω6, ω7, ω8,

3, ω9.

The value at time 2 is now known, and at time 1 we compute

Z1 = max
{
Y1,EQ[Z2B1/B2|F1]

}

=


max{0, ω1

qωu
· B1

B2
· Z2(ω1)} ≈ 0.1022, ω = u,

max{0, 0} = 0, ω = m,

max
{

0, ω9

qωd
· B1

B2
· Z2(ω9)

}
≈ 1.7764, ω = d.

Similar, at time 0 we compute

Z0 = max{Y0,EQ[Z1B0/B1|F0]}

= max

{
0, quZ1(u) · 1

B1
+ qd · Z1(d) · 1

B1

}
≈ 0.7427.

We have computed the fair prices of CA. An investor should, given the
principles of dynamic programming, only exercise the option at time 1 if scenario
m occurs. At any other scenarios, the investor should treat the asset as an
European option.12

3 Binomial Model

In the next two chapters we will look at two models with some special features.
The first one is the binomial model, which we recognize as a model that handles
frequent (discrete) attempts with a fixed probability. The binomial model is of
interest as it allows a simplified calculation of pricing and replication of a large

12Of course, exercising at time 1 in case of scenario m yields zero payoff, so it does not
matter if the investor exercise or not.
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S2 = S0uu

77

&&S1 = S0u

55

))
S0

77

''

S2 = S0ud = S0du

88

&&S1 = S0d

55

))
S2 = S0dd

88

''

B0 = 1 // B1 = (1 + r) // B2 = (1 + r)2 //

Figure 3.1: Showing the three first steps of a generalization of the binomial
model.

class of derivatives that are path-independent. As we can see from Definition
3.2, given by Cutland & Roux [3, p. 184], the European call and put options
are examples of derivatives that are path-independent.

Definition 3.2 (Path-independent derivative). A derivative D is called path-
independent if there exists a payoff function D̂ such that

D = D̂(ST ).

The binomial model, as in Pliska [5, pp. 100–106], is a multi-period binary
model with one risky security and one risk-free security. It is binary since
the stock price evolution of the risky security is completely determined of two
parameters, say u and d. These are fixed and known at time 0, with 0 < d < u.
At each period, either the risky security moves with a factor of u or with a
factor of d, where we assume S0 > 0. We will for simplicity also assume B0 = 1
and that the risk-free security has a fixed and known interest rate r > 0 ∈ R.
See Figure 3.1 for a general example.

The binomial model is, for our purposes so far, completely determined by
the parameters T , r, S0, u and d. There is also a real world probability p for
the probability of the risky security to move «up» with a factor of u, and the
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3 Binomial Model

probability 1− p for a «down»-move with a factor of d. These are constant on
all periods.

From Figure 3.1 we see that at time t there will be t2, for t > 1, different
possible scenarios and t − 1 different possible values of the risky security. The
number of scenarios with the same final risky security price is given, as in Pliska
[5, p. 102], by the so-called binomial coefficient

(
T

t

)
:=

t!

n!(t− n)!
.

This follows from the fact that the order of the «ups» and «downs» is not
important, only the total number of «ups» (or «downs»). With this, Pliska [5,
p. 104] shows that the binomial model has the following probability distribution
of St under an equivalent martingale measure Q:

Q(St = S0u
ndt−n) =

(
t

n

)
qn(1− q)t−n, n = 0, 1, . . . , t. (3.1)

We want our model to be viable, which we know is the case if it admits an
equivalent martingale measure Q. The following theorem by Cutland & Roux
[3, p. 108] tells us that this is the case if and only if each single-step submodel
is viable.

Theorem 3.3. A finite multi-period model is viable if and only if each single-
step submodel is viable.

Proof. The result and the underlying idea is easy to grasp, but the detailed
proof is somewhat lenghty. The proof connects the definitions of arbitrage and
viability. For a detailed proof see Cutland & Roux [3, p. 108].

Since each single-step submodel looks the same, we only need to solve the
first one to see the whole picture. The result is simply a restriction on the
parameters u and d.

Theorem 3.4 (Viable binomial model, [3, p. 181]). A finite multi-period bi-
nomial model with parameters T , r, S0, u and d, is viable if and only if d <
(r + 1) < u.

Proof. This is one of several results we could get from investigating the single-
period single-stock model we introduced at the very beginning. The results
depend on the assumption S0 > 0. See Cutland & Roux [3, p. 181] for a
proof.

We now have a method to check that any given binomial model is viable.
We want to find an equivalent martingale measure. In the work of Pliska [5,
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3 Binomial Model

p. 103] a detailed presentation of this is found. First he shows that any one-
step equivalent martingale measure, normally called a risk-neutral probability
measure in single-period models, must satisfy

q
u− 1− r

1 + r
+ (1− q)d− 1− r

1 + r
= 0,

where q is the conditional probability that the next move is «up». Solving
for q yields q = r+1−d

u−d . From this we deduce that d < (r + 1) < u, in order for
q to satisfy the conditions of being a risk neutral probability measure. This is
the result we saw in Theorem 3.4.

We have a risk-neutral probability measure for all the single-period sub-
models. But what about the complete model? This is given by the following
result.

Theorem 3.5. In a viable binomial model, if ST (ω) = S0u
sdT−s for some

s ≤ T and ω ∈ Ω, then it admits a unique equivalent martingale measure Q
given by Q(ω) = qs(1− q)T−s, where s represent the number of «up» moves.

Proof. See Cutland & Roux [3, p. 182] for a proof.

The last result we need before we can begin pricing path-independent deriva-
tives is the probability distribution of St under an equivalent martingale mea-
sure.

Notice that the martingale Q depends only on ST (ω) and not the full price
history. This is one of several properties of the binomial model. From Theorem
2.1 we deduce that a fair price at time 0 of a path-independent derivative D
with exercise date T in a viable binomial model is given by

D0 = (1 + r)−TEQ[D]

= (1 + r)t−TEQ[D̂(ST )]

= (1 + r)−T
∑
ω∈Ω

Q(ω)D̂(ST (ω)).

(3.2)

Knowing that ST must take one of the values S0d
T , S0d

T−1u, . . . , S0u
T , to-

gether with (3.1), Cutland & Roux [3, p. 185] shows that this can be rewritten
as

D0 = (1 + r)−T
T∑
s=0

(
T

s

)
qs(1− q)T−sD̂(S0u

sdT−s). (3.3)
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4 Markov Models

They recognize this as the general Cox-Ross-Rubinstein formula13 for the
fair price of a path-independent derivative at time 0. While equation (3.2)
contains 2T terms, as we noticed from Figure 3.1, equation (3.3) contains T + 1
terms, which is significantly less for models with more trading times.

4 Markov Models

We will here introduce the Markov chain, as in Pliska [5, p. 106], which is
a simple Markov model where the system state is fully observable and au-
tonomous. It consists of a filtration F = {Ft}Tt=0 generated by a stochastic
process X = {Xt}Tt=0. This process takes values in a finite state space E. If
Xt = j ∈ E, we think of this as the process X beeing in state j at time t. As
before, there is a sample space Ω and a probability measure P .

For a stochastic process X to be a Markov chain it need to satisfy the so-
called Markov property:

P{Xt+1 = j|Ft} = P{Xt+1 = j|Xt}

Stated in words: Given the history of the process, only the current state is
of importance to determine the future value.

Further, we assume the Markov chain to be stationary if the probability
P{Xt+1 = j|Ft} is independent of the time t. Thus the binomial model is a
stationary Markov chain.

These properties simplify computations and yet the models lead to realistic
representations of true prices [5, p. 106]. In the coming parts we will use models
with the Markov property. But, first a demonstration of the strength of Markov
chains when computing conditional probability distributions. The computation
that follows is a generalization of an example given by Pliska [5, p. 110]. Assume
t < T and j ∈ E. Then

13The binomial model was first introduced by Cox, Ross and Rubinstein in 1979 for valua-
tion of options, and therefor many authors use the name Cox-Ross-Rubinstein model instead
of Binomial model [1].
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P{XT = j|Ft} = P{XT = j|Xt = i}

=

T−t+1∑
i=1

∑
ki∈E

P{XT = j,XT−1 = k1, . . . , Xt+1 = kT−t+1|Xt = i}

=

T−t+1∑
i=1

∑
ki∈E

P{XT = j|XT−1 = k1, . . . , Xt = i}

· P{XT−1 = k1|XT−2 = k2, . . . , Xt = i}

· . . .

· P{Xt+1 = kT−t+1|Xt = i}

=

T−t+1∑
i=1

∑
ki∈E

P{XT = j|XT−1 = k1}

· P{XT−1 = k1|XT−2 = k2}

· . . .

· P{Xt+1 = kT−t+1|Xt = i}

Both in the second top and in the second bottom equation we make use of
the strong Markov property. If the Markov chain is stationary this simplifies
further to

=
T−t+1∑
i=1

∑
ki∈E

P{X = j|X = k1}P{X = k1|X = k2} · . . . · P{X = kT−t+1|X = i}.

5 Linear Programming

This chapter will be about constrained linear optimization, one of the basic
pillars of mathematical optimization. For instance, in the work of Pliska [5],
Alex & Cutland [3] and many more, we see how strong linear programming is as
a proof technique. First, some basic vocabulary is needed, and then an example
of a linear programming problem (LP) will be introduced. Further, we show
how we can solve a LP with dual theory. The strong complimentary property
will also be given attention, as we will need it for the work in the next section.

The following is a summary of Vanderbei [6] to accommodate some notation.
A LP comes in many forms, but what we recognize is that it is some function
we want to maximize (or minimize). This is called the objective function. More
precise, its the variables of the objective function we want to decide, called the
decision variables. The objective function comes with a set of constraints, which
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the solution need to satisfy. A solution is said to be feasible with respect to the
LP if it satisfy all the given constraints. The set of all feasible solutions is called
the feasible region. A feasible solution is optimal if its objective function value
is maximized (or minimized) with respect to the feasible region. Of course, the
problem may be unbounded, that is, the decision variables can be increased (or
decreased) indefinitely, and still satisfy the set of constraints. Then no optimal
solution will exists.

Associated with every LP is another called its dual. The dual of this dual
linear program is the original LP, therefor referred to as the primal linear pro-
gram. Many textbooks will restrict maximization problems to always be defined
as the primal problem, while minimization problems are always defined as the
dual problem. Which of the two cohesive LP problems that are defined as dual
and primal does not matter and the theorems below is valid regardless of the
choice. For simplicity we assume that the primal LP is defined as

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n.

The associated dual LP is then

minimize
m∑
i=1

biyi

subject to
m∑
i=1

yiaij ≥ cj , j = 1, 2, . . . , n,

yi ≥ 0, i = 1, 2, . . . ,m.

Above, xj and yi are decision variables, and bi, cj and aij are constants.
The definitions above may seem to limit the set of allowed LP’s to work with.
But, a constraint can often in some way be converted to fit the definition:

a1x1 + a2x2 + . . .+ anxn = b

⇐⇒

a1x1 + a2x2 + . . .+ anxn ≤ b
a1x1 + a2x2 + . . .+ anxn ≥ b

⇐⇒

a1x1 + a2x2 + . . .+ anxn ≤ b
b− a1x1 − a2x2 − . . .− anxn ≤ 0.
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Working with non-negative variables in optimization problems is a common
situation, but not a necessary criterion. Transportation, production, traveling
and cost reduction are some topics which encounters non-negative variables.
We will not adjust the results to suit negative variables, but mention that it
is fully possible to solve such optimization problems. The most important re-
sults we encounters are the so-called weak and strong duality theorems and the
complementary slackness conditions.

Theorem 5.1 (Weak duality, [7, p. 58]). For any feasible solution for the primal
(dual) problem, the value of the objective function provides a lower (upper) bound
on the optimal value to the dual (primal) problem .

Theorem 5.2 (Strong duality, [7, p. 60]). The existence of an optimal solution
is mutual for the primal/dual pair. If it exists, then the optimal value of the
dual objective function equals the optimal value of the primal objective function.

The strong duality theorem is important as it provides a confirmation of
whether the suggested solution is actually the right answer. The weak duality
theorem tells us that given two feasible solutions, one for the primal and one for
the dual, there will be a gap between the values of the two objective functions.
There will be an upper bound u for the maximization problem, and a lower
bound l for the minimization problem, with u ≤ l, see Figure 5.3. What the
strong duality theorem states is that any solutions satisfying u = l are optimal.
That is, no gap.

Primal Values //
Gap

Dual Valuesoo

Figure 5.3: Primal objective values are all less than the dual objective values.

Theorem 5.4 (The complementary slackness conditions, [7, p. 67]). Let x be a
feasible solution for the primal, and y be a feasible solution for the dual. They
are optimal solutions of their respective LP’s if and only if the complementary
slackness conditions holds:

yi(bi −
n∑
j=1

aijxj) = 0, 1 ≤ i ≤ m,

xj(

m∑
i=1

aijyi − cj) = 0, 1 ≤ j ≤ n.

Proof. See [6, pp. 58–67] for a proof of the weak and strong duality theorems
and the complementary slackness conditions.

Theorem 5.4 is a very strong property as it allows us to choose the simplest
model to address (from an algorithmic point of view). Either way you will get
the results of the associated equivalence model (may it be the primal or dual
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problem). If you know the optimal solution of the primal, then you can find the
solution of the dual problem (and vice versa) by solving a system of equations
formed by the decision variables and the set of constraints [2].

Example 5.5 (A linear programming problem). There are loads of intuitive
and well formulated examples of LP problems, but we will simply make up a
typical example (not completely random, as we will see later). Let the function

ζ =

3∑
i=1

yi,

be the objective function we want to minimize. Each decision variable yi is
greater than or equal to a non-negative constant fi, for i = 1, 2, 3. Additionally,
c1yi−1 + c2yi + c3yi+1 ≥ 0, for i = 2, 3, where each cj is a constant. Below is
the problem reformulated:

minimize
3∑
i=1

yi

subject to yi ≥ fi, i = 1, 2, 3

c1yi−1 + c2yi + c3yi+1 ≥ 0, i = 2, 3

y1, y2, y3 ≥ 0

(5.1)

The non-negativity of the decision variables of the ζ-function follows from
the fact that each fi is non-negative. We have not said anything about y4,
that appears at i = 3. This is not of importance in this example, so we simply
assume y4 = 0 (without removing it from the constraints).

Until now we have only stated that there always exists an associated LP.
Lets see this by following the logic of Vanderbei [6, pp. 55–56] and examining
(5.1) closer. Obviously, any feasible solution gives an upper bound. But how
good is it? How close is it to the optimal value? What we need is a lower bound.
We start by multiplying the constraints with non-negative numbers x (thus the
inequalities are preserved):

xiyi ≥xifi, i = 1, 2, 3,

xj(c1yi−1 + c2yi + c3yi+1) ≥0, i = 2, 3, j = i+ 2.

Adding the constraints yields

y1(x1 + c1x4) + y2(x2 + c2x4 + c1x5)

+y3(x3 + c3x4 + c2x5) + y4(c3x5) ≥ x1f1 + x2f2 + x3f3.
(5.2)

We stipulate that each of the coefficients of the yi’s in (5.2) to be at least
smaller or equal to the corresponding coefficient in the objective function:
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x1 + c1x4 ≤ 1,

x2 + c2x4 + c1x5 ≤ 1,

x3 + c3x4 + c2x5 ≤ 1,

c3x5 ≤ 0.

(5.3)

Next we compare the inequalities in (5.3) with the objective function:

ζ =

3∑
i=1

yi ≥ y1(x1 + c1x4) + y2(x2 + c2x4 + c1x5) + y3(x3 + c3x4 + c2x5) + y4(c3x5)

≥ x1f1 + x2f2 + x3f3.

We now have a lower bound, x1f1 +x2f2 +x3f3, which we should maximize
in order to obtain the best possible lower bound. Finally, we are led to the dual
problem of (5.1):

maximize
3∑
i=1

xifi

subject to x1 + c1x4 ≤ 1,

x2 + c2x4 + c1x5 ≤ 1,

x3 + c3x4 + c2x5 ≤ 1,

c3x5 ≤ 0,

xi ≥ 0, i = 1, 2, 3, 4.

(5.4)
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6 American Perpetual Options

6 American Perpetual Options

6.1 Introduction

A perpetual option is an option that does not have an expiration date. An
American perpetual option is similar to the American options in chapter 2.2,
except that they are perpetual. Again, the problem is to determine a fair price
for both the writer and the holder. We will work out the solution by writing the
problem as a linear problem, and then make use of linear programming duality.

Before we can derive the solution we need a model to work with. The choice
of model will have important effects on the solution. First, we present a short
summary of the work of Vanderbei & Pınar [7], assuming the risky security
price behaves as a random walk. After, we will in more detail look at a similar
Markov chain model, but with three possible outcomes at each trading step.

6.2 Random Walk

Let S = {St : t = 0, 1, . . . } be a stochastic process, where each St denotes the
price of the risky security at time t, as before. Let us assume S is a random walk
with absorption at 0 on the state space E = {j∆x : j = 0, 1, . . . }, where ∆x
is a fixed positive number. The solution to pricing perpetual American options
based on this model is given by Vanderbei & Pınar [7, pp. 768–781].

With absorption at 0; once the risky security equals 0, it has to stay in
that state. Thus it is not possible to take negative values,14 or to reach zero
value and then have a positive gain. With a random walk we mean that if the
current price is x ∈ E, then the price at the next period will be x ± ∆x with
probabilities p for an increase in value, and probability 1 − p for a decrease in
value, 0 < p < 1. Thus, the random walk possess the desired Markov property
shown in chapter 4.

The goal is to price perpetual American options based on the risky security
above. We need to figure out the expected value, in today’s dollars. That is,
Ex[ατYτ ], for some future time τ .

The payoff function, Yτ , is similar to the one introduced in chapter 2.1
and 2.2. The discount factor ατ represents the value today of one dollar15 at
time τ . Since future dollars (normally) are worth less than present dollars, we
assume ατ < 1. We could stick to the earlier bank account process, B, but for
simplicity we express this with the number α. The expectation is under the
given probabilities p and 1− p.

It is natural to assume that the holder of the option will follow an optimal
exercising strategy. The value function v(x) below tells us to exercise at time τ
when the expected payoff is at its greatest:

14Given the assumption S0 > 0.
15Or, one unit of the current medium of exchange.
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6.2 Random Walk

v(x) = max
τ

Ex[ατY τ ].

The holder of the option can always exercise the option or choose to keep it
for one more period. Therefore, v(x) satisfy the principles of dynamic program-
ming. That is, in order to act optimally, v(x) must satisfy

v(x) ≥ Y (x), x ∈ E,
v(x) ≥ α(pv(x+ ∆x) + (1− p)v(x−∆x), x ∈ E\{0}.

Following Vanderbeid & Pınar [7], recalling the discreteness of the model’s
state space, an infinite-dimensional linear programming problem is formulated

minimize
∞∑
j=0

vj

subject to vj ≥ Yj , j = 0, 1, . . . ,

vj ≥ α(pvj+1 + (1− p)vj−1, j = 1, 2, . . . ,

(6.1)

where vj = v(j∆x) and Yj = Y (j∆x).

Under some assumptions, the solution to the LP (6.1) can be shown to be:

vj =


0, j = 0,

Yj∗
ζj+−ζ

j
−

ζj
∗

+ −ζ
j∗
−
, 0 < j < j∗,

Yj , j∗ ≤ j,

where

j∗ := max

{
k : Yk

ζk−1
+ − ζk−1

−
ζk+ − ζk−

> Yk−1

}
.

This solution implies that the price of the perpetual American option should
be Y ∗j = (j∗∆x−K)+ for a call option, where K is the exercise price. Unfortu-
nately, it’s not enough to let Y ∗j = (K−j∗∆x)+ for a put option. We must take
into account different boundary conditions as well. Of course, as time changes,
so will the development of the underlying risky security change, and thus so will
the price of the perpetual American option. We mentioned there were some as-
sumptions needed, and we have not shown how Vanderbei & Pınar reached the
results. This will not be given for the random walk model, but detailed calcu-
lations and necessary assumptions will be given for the similar ternary Markov
chain model. We will also make a remark for the boundary conditions for the
put option.
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6.3 Markov Chain

6.3 Markov Chain

Again, a Markov chain model with absorption at zero is used, but now the risky
security will at all trading periods have three ways to develop. As with the
random walk, at each step the risky security moves up by ∆x with probability
p, or moves down by ∆x with probability q. In addition, the risky security does
not move with probability s = 1− (p+ q), implying p+ q < 1.

Let S = {St : t = 0, 1, 2, . . . } be a Markov chain, where each St denotes the
price of the risky security at time t. The state space is similar to the random
walk model, E = {j∆x : j = 0, 1, 2, . . . }, where ∆x is a fixed small positive
number.

The problem is to price perpetual American options based on the risky
security model above. We want to find the exercise time τ that maximizes the
expected payoff, with the discount factor α taken into account:

max
τ

Ex[ατYτ ].

We recognize this expression as the value process given by (2.1). We saw in
(2.3), by the principles of dynamic programming, that the price of the option,
say v(x), must satisfy

v(x) = max{Y (x), α(pv(x+ ∆x) + qv(x−∆x) + sv(x)}, (6.2)

for all x ∈ E\{0}. With Y (x) we mean the payoff when the price of the
underlying risky security is x.16 Because of the absorption at 0, we get the
boundary condition v(0) = 0. The value function in (6.2) follows the principle
of dynamic programming: If the payoff today is greater than the expected dis-
counted value tomorrow, we exercise the option or sell it short if that is possible.
If the opposite is the case, then we hold the option for one more period, or buy
the option. This is also explained by Vanderbei & Pınar and is similar to what
we used in the random walk model [7, p. 768].17

Next, We decompose the value function v(x). Since it is equal to the optimal
choice between exercising the option and the discounted expected value for the
next period, we get the inequalities

v(x) ≥ Y (x), x ∈ E,
v(x) ≥ α(pv(x+ ∆x) + qv(x−∆x) + sv(x)), x ∈ E\{0}.

16The difference now from the finite time options is that we are expressing the value func-
tions based on the stock price x, instead of the time t.

17One of the crucial assumptions for the logic behind the dynamic programming to work,
is that you can trade the option at all trading dates t, as many times needed.
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Assume W (x) is another value function satisfying

W (x) ≥ Y (x),

W (x) ≥ max{Y (x), α(pv(x+ ∆x) + qv(x−∆x) + sv(x))}.

Then for all optimal exercising times τ ,

W (x) ≥ Y (x) = v(x).

In particular, for non-optimal exercising times t,

W (x) ≥ α(pv(x+ ∆x) + qv(x−∆x) + sv(x)) = v(x).

Therefore, v(x) is the smallest function, in the L1 sense [7, p. 769], satisfying
(6.2), for 0 < t < τ . Combining this with the discreteness of our model’s state
space, we formulate an infinite-dimensional linear programming problem, which
we from now will refer to as the dual problem,

minimize
∞∑
j=0

vj

subject to vj ≥ Yj , j = 0, 1, . . . ,

vj ≥ α(pvj+1 + qvj−1 + svj), j = 1, 2, . . . ,

(6.3)

where xj = j∆x, vj = v(xj), and Yj = Y (xj). We don’t mention the non-
negativity of the decision variables, vj ≥ 0, since this follows naturally from the
fact that Yj ≥ 0, as explained in chapter 2.1 and 2.2. The idea is that no matter
the values of the different constants α, p, q, s and K, as the value of the risky
security increases, for some value x we will have

Yj > α(pvj+1 + qvj−1 + svj).

That exercise point, say j∗, is basically all we need to know, as will be shown
later. Thus, the sum don’t need to run to infinity. Since vj is minimized for
all j ≥ 0, and because of the constraints making sure (6.2) is satisfied, the dual
problem solves our value function v(x).

Next, we notice that the dual problem is similar to the finite-dimensional
problem demonstrated in Example 5.5. Adjust the indices, replace yi with vj ,
c1 with −αq, c2 with 1−αs, c3 with −αp, and then generalise the problem to be
infinite-dimensional. The first two constraints need some extra attention. For
the next constraints, those defined for j ≥ 2, a fixed system follows. Thus, the
associated LP is
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6.3 Markov Chain

maximize
∞∑
j=0

Yjyj

subject to y0 − αqz1 ≤ 1,

y1 + (1− αs)z1 − αqz2 ≤ 1,

yj + (1− αs)zj − αqzj+1 − αpzj−1 ≤ 1, j ≥ 2,

yj ≥ 0, j ≥ 0,

zj ≥ 0, j ≥ 1.

We immediately note that the zj ’s don’t contribute to the objective function.
This, together with maximizing over all the yj ’s, gives a LP, from now referred
to as the primal problem, with a more strict set of constraints.18

maximize
∞∑
j=0

Yjyj

subject to y0 − αqz1 = 1,

y1 + (1− αs)z1 − αqz2 = 1,

yj + (1− αs)zj − αqzj+1 − αpzj−1 = 1, j ≥ 2,

yj ≥ 0, j ≥ 0,

zj ≥ 0, j ≥ 1.

(6.4)

Statement of claim Let vj denote the optimal dual solution and yj , zj the
optimal primal solution.19 Assume that there exists an optimal exercise point
j∗ such that the following holds:

α(pvj+1 + qvj−1 + svj) > Yj , 0 < j < j∗, (6.5)
α(pvj+1 + qvj−1 + svj) < Yj , j ≥ j∗. (6.6)

Before we move on, what does it really mean to assume that there exists an
optimal exercise point j∗? There is a one-to-one connection between j and the
risky security price, and they both grow linearly. In addition, there is no upper
boundary on either of them. We conclude that assuming there exists an optimal
exercise point is similar as assuming that the exercise price is finite. An option
with an infinite exercise price is not very interesting in a financial setting, as no
investor with an interest in making money would invest in such an option. Still,
it is important, and interesting, in a mathematical point of view.

Back to the statement of claim, we remember to include the absorption at
0. Thus

18Rearranging the constraints we realize that there is no reason for yj to be smaller than
1− (1− αs)zj + αqzj+1 + αpzj−1, when equality is a possibility.

19The usual «stars» denoting optimality is left out.
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v0 = 0, (6.7)
vj = α(pvj+1 + qvj−1 + svj), for 0 < j < j∗, (6.8)
vj = Yj , for j∗ ≤ j. (6.9)

With put options we have v0 = K, where K is the exercise price. The
following computations would be similar with this boundary condition, but to
avoid being too lengthy we focus on call options.

Invoke complementary The complimentary slackness conditions intro-
duced in Theorem 5.4, in our particular case, states that any optimal solution
vj to the dual problem (6.3), and any optimal solutions yj , zj to the primal
problem (6.4) satisfies

yj(Yj − vj) = 0, j ≥ 0, (6.10)
zj(αpvj+1 + αqvj−1 − (1− αs)vj) = 0, j ≥ 1. (6.11)

To see where (6.11) comes from, it is easier to investigate (5.4) from chapter
5, linear programming. The confusion may be the fact that the x-variables
are divided into y’s and z’s in (6.4) and that we are now working with the
challenging mathematical concept of infinity. The fact that the z’s is not seen
in the objective function need be nothing but their coefficients equaling 0. (This
is x4 and x5 in the particular case of (5.4).)

Equation (6.10) is true for j∗ ≤ j, by (6.9). For j < j∗ we know from (6.8)
that vj = α(pvj+1 + qvj−1 + svj). Combining this with (6.5) yields

yj = 0, 0 < j < j∗. (6.12)

Similarly, (6.11) is true for j < j∗ by (6.8). For j∗ ≤ j we know from (6.9)
that vj = Yj . Combining this with (6.6) yields

zj = 0, j ≥ j∗. (6.13)

Using (6.13) combined with (6.4) we obtain

yj∗ − αpzj∗−1 = 1,

yj = 1, j > j∗.
(6.14)

Similarly, using (6.12) combined with (6.4) we obtain
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(1− αs)z1 − αqz2 = 1,

−αpzj−1 + (1− αs)zj − αqzj+1 = 1, 1 < j < j∗.
(6.15)

Difference equations We can now formulate a pair of second-order dif-
ference equations. The difference equation for the primal problem is given by
(6.7), (6.8) and (6.9):

(1− αs)vj − αpvj+1 − αqvj−1 = 0, 0 < j < j∗,

v0 = 0,

vj∗ = Yj∗ .

(6.16)

The difference equation for the dual problem is given by (6.15) and (6.13):

(1− αs)zj − αqzj+1 − αpzj−1 = 1, 0 < j < j∗,

z0 = 0,

zj∗ = 0.

(6.17)

Note that in (6.17) we added a new variable, z0, which is fixed to be zero.
Thus we don’t need to include both equations in (6.15). We do this to consoli-
date the difference equations.20

Solving the difference equationsWe refer to Knut Mørken’s compendium
[4] for necessary background information about how to solve difference equa-
tions. First we rearrange the difference equation in (6.16):

vj+1 +
αs− 1

αp
vj +

q

p
vj−1 = 0.

We set up the characteristic equation:

r2 +
αs− 1

αp
r +

q

p
= 0 ⇒

r =
(1− αs)±

√
(αs− 1)2 − 4α2pq

2αp
.

There are two distinct roots, thus for constants C1 and C2 the general solu-
tion is

vj = C1r
j
+ + C2r

j
−.

20When we solve a difference equation for an unknown function, say u, and the value of u
is given on the boundary conditions, then we say we have Dirichlet boundary conditions.
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The next step is solving for the boundary conditions. From (6.16), the first
one is v0 = 0. Inserting into the general solution yields

C1r
0
+ + C2r

0
− = 0⇒ C1 = −C2,

⇒ vj = C1r
j
+ − C1r

j
−.

The second boundary condition is vj∗ = Yj∗ ,

C1r
j∗

+ − C1r
j∗

− = Yj∗ ⇒ C1 =
Yj∗

rj
∗

+ − r
j∗

−
.

Inserting for the constant C1, we finally have the exact solution

vj = Yj∗
rj+ − r

j
−

rj
∗

+ − r
j∗

−
, 0 < j < j∗. (6.18)

Now we solve the difference Equation (6.17). Again we start by rearranging:

zj+1 +
αs− 1

αq
zj +

p

q
zj−1 = − 1

αq
. (6.19)

First we solve the homogeneous version of (6.19). It has characteristic equa-
tion

r2 +
αs− 1

αq
r +

p

q
= 0 ⇒

r =
(1− αs)±

√
(αs− 1)2 − 4α2pg

2αq
.

There are two distinct roots, thus for constants C1 and C2 the general ho-
mogeneous solution is

zhj = C1r
j
+ + C2r

j
−.

For the particular solution we guess zpj ≡ c, where c is a constant. Inserting
this solution into (6.19) yields

c+
αs− 1

αq
c+

p

q
c = − 1

αq

⇒ αc(p+ q + s)− c = −1

⇒ c =
1

1− α
.
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We see that it is possible to choose c such that (6.19) is satisfied. Thus, our
guess was correct. By the superposition principle21 the general solution can be
found as follows

zj = zhj + zpj = C1r
j
+ + C2r

j
− +

1

1− α
. (6.20)

Solving for the boundary conditions, starting with z0 = 0, gives

C1 + C2 +
1

1− α
= 0

⇒ C1 =
1

α− 1
− C2.

Next, we insert for C1 in the general solution (6.20)

zj =
( 1

α− 1
− C2

)
rj+ + C2r

j
− +

1

1− α
.

The final boundary condition is zj∗ = 0:

( 1

α− 1
− C2

)
rj
∗

+ + C2r
j∗

− +
1

1− α
= 0

⇒ C2 =
1− rj

∗

+

(α− 1)(rj
∗

− − r
j∗

+ )
.

Inserting for C2 in the general solution, and after some computations, the
exact solution is

zj =
rj+(rj

∗

− − 1) + rj−(1− rj
∗

+ )− rj
∗

− + rj
∗

+

(α− 1)(rj
∗

− − r
j∗

+ )
, 0 < j < j∗.

Summarizing our results we have

vj =


0, j = 0,

Yj∗
rj+−r

j
−

rj
∗

+ −r
j∗
−
, 0 < j < j∗,

Yj , j∗ ≤ j,

21The term superposition is not seen in the compendium [4], but it’s commonly used in
science. It refers in this case to the fact that the solution of an inhomogeneous difference equa-
tion is the linear combination of the associated particular- and the associated homogeneous
solutions.
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6.3 Markov Chain

zj =


rj+(rj

∗
− −1)+rj−(1−rj

∗
+ )−rj

∗
− +rj

∗
+

(α−1)(rj
∗
− −r

j∗
+ )

, 0 < j < j∗,

0, j∗ ≤ j,

yj =


1 + αqz1, j = 0,

0, 0 < j < j∗,

1 + αpzj∗−1, j = j∗,

1, j∗ < j,

with

r =
(1− αs)±

√
(αs− 1)2 − 4α2pq

2αp

in the case of vj , and

r =
(1− αs)±

√
(αs− 1)2 − 4α2pq

2αq

in the case of zj .

We now have the necessary equations to be able to find the optimal value
of our primal problem. We can verify that our solution is in fact optimal by
solving the equations for the dual problem and making sure that it is no gap.
But, in advance not knowing the value of j∗ aggravates the problem.
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Figure 6.2: Plot of optimal values of y and z corresponding to the case where
α = 0.999, p = q = s = 1/3, ∆x = 0.1, K = 9, j∗ = 108 and xj∗ = 10.8. Note,
the values for y at 0 and at j∗ are enlarged to be more visible.

Check the inequalities Verifying that the various inequalities from the
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6.3 Markov Chain

dual problem (6.3) and the primal problem (6.4) are satisfied is both a necessity,
and gives a formula for finding the optimal exercise point.

yj ≥ 0, j ≥ 0, (6.21)
zj ≥ 0, j ≥ 0, (6.22)
vj ≥ Yj , j ≥ 0, (6.23)
vj ≥ α(pvj+1 + qvj−1 + svj), j ≥ 1. (6.24)

Inequality (6.22) verifies trivially for j ≥ j∗ by (6.13). For j < j∗ we follow
the reasoning of Vanderbei & Pınar [7], assuming there exists a k at which zk
is negative. We know that z0 = 0 by (6.17) and that zj = 0 for j ≥ j∗.

There are two possibilities. Either zk is a local minimum or it’s not. If zk is
not a local minimum, either zk−1 < zk or zk+1 < zk. In the first case we must
have either zk−1 being a local minimum or zk−2 < zk−1. If zk−1 is not a local
minimum we continue in the same fashion. We are then bounded to encounter
a local minimum either at z1 < 0 (since z0 = 0) or earlier. In the second case
the reasoning is identical and yields a local minimum either at zj∗ < 0 (since
zj∗ = 0) or earlier.

Now, let zk be negative and a local minimum. Then

zk ≤ zk−1 and zk ≤ zk+1. (6.25)

Combining (6.25) with (6.17) yield

(1− αs)zk = 1 + αqzk+1 + αpzk−1 ≥ 1 + αqzk + αpzk.

Rearranging we get

zk ≥ 1 + αzk(p+ q + s)

≥ 1 + αzk,

which implies zk ≥ 1
1−α > 0. We recall the assumption of future money

being worth less than todays money, thus α < 1. This implies zk being positive
and we have a contradiction.

Verifying inequality (6.21) is a simple matter as we now can combine the
fact that zj ≥ 0 and the formula for yj :

yj =


1 + αqz1, j = 0,

0, 0 < j < j∗,

1 + αpzj∗−1, j = j∗,

1, j∗ < j,
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6.3 Markov Chain

For inequality (6.24) we see from (6.8) that it holds for j < j∗. For j ≥ j∗

we know that vj = Yj by (6.9). Let j = j∗ + k, for k = 1, 2, . . ., i.e., the j’s we
want to examine, except for the missing j = j∗. We will deal with this later.
Recall the notation xj = j∆x and Yj = Y (xj) together with vt+1 = v(x+ ∆x)
if and only if vt = v(x). We are ready to do some computations:

α(pvj+1 + qvj−1 + svj)= α(pvj∗+k+1 + qvj∗+k−1 + svj∗+k)

= α(pYj∗+k+1 + qYj∗+k−1 + sYj∗+k)

= α
(
p(Yj∗ + (k + 1)∆x) + q(Yj∗ + (k − 1)∆x) + s(Yj∗ + k∆x)

)
= α

(
Yj∗(p+ q + s) + k∆x(p+ q + s) + ∆x(p− q)

)
= α(Yj∗ + k∆x+ ∆x(p− q)

= α(Yj∗+k + ∆x(p− q)).

We want the last expression to be less than or equal to vj = vj∗+k = Yj∗+k.
There are more than one way to make this work, for instance assuming q ≥ p.
Following Vanderbei & Pınar [7] we assume

1/3 ≥


αq,

αp,

αs.

Then

α(pvj+1 + qvj−1 + svj) ≤
1

3
(vj+1 + vj−1 + vj)

=
1

3
(vj∗+k+1 + vj∗+k−1 + vj∗+k)

=
1

3
(3Yj∗+k)

= vj .

Inequality (6.23) follows trivially for j ≥ j∗ by (6.9). For j < j∗ we have

vj = Yj∗
rj+ − r

j
−

r
j∗
+ − r

j∗

−

by (6.18), while we want vj ≥ Yj . Thus we need j∗ to be such that

Yj∗
rj+ − r

j
−

rj
∗

+ − r
j∗

−
≥ Yj , j < j∗. (6.26)
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6.3 Markov Chain

Recall that vj∗ = Yj∗ and by (6.26) we have vj∗−1 ≥ Yj∗−1. Following the
idea of Vanderbeid & Pınar [7], we assume that vj′ < Yj′ for some j′ < j∗. Then
the sequence uj := vj − Yj must have a local maximum point, say k, strictly
between j′ and j∗. Even better, we can assume k to have strict inequalities on at
least one side. That is, uk < uk+1 or uk < uk−1. This is a natural consequence
of uj′ < 0, uj∗−1 ≥ 0 and uj∗ = 0. Optionally, see the explanation for the local
minimum for inequalities (6.22). Computing uk yields

uk = vk − Yk

= α(pvk+1 + qvj−1 + svj)−
1

3
(Yk+1 + Yk−1 + Yk)

≤ 1

3
(vk+1 + vk−1 + vk)− 1

3
(Yk+1 + Yk−1 + Yk)

=
1

3
(uk+1 + uk−1 + uk)

< uk.

This is a contradiction. Thus, it’s not possible to have vj < Yj for any
j < j∗, and the inequality is verified. The splitting of Yk follows from

Yk = xk − S

=
1

3

(
3(xk − S + ∆x−∆x)

)
=

1

3
(Yk+1 + Yk−1 + Yk).

We are only left with inequalities (6.24), in the case of j = j∗. Some ground-
work is needed in order to be able to verify this equation.

We are looking for the optimal exercising point j∗. By (6.26) we need

j∗ ∈ K :=
{
k : Yk

rj+ − r
j
−

rk+ − rk−
≥ Yj

}
, j < j∗.

Since we are only dealing with j’s less than j∗, we can assume

j∗ ∈ K :=
{
k : Yk

rj+ − r
j
−

rk+ − rk−
> Yj

}
, j < j∗.

This follows from the assumption of j∗, see equation (6.5) and (6.8). Clearly,
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6.3 Markov Chain

we must assume K to be non-empty. In addition,

Yj∗
rj
∗−1

+ − rj
∗−1
−

rj
∗

+ − r
j∗

−
> Yj∗−1

⇔
rj
∗−1

+ − rj
∗−1
−

rj
∗

+ − r
j∗

−
>
Yj∗−1

Yj∗

⇔
rj
∗−1

+ − rj
∗−1
−

rj
∗−1

+ r+ − rj
∗

−
>
Yj∗−1

Yj∗

(6.27)

As j∗ inreases, the right hand side of the last equation of (6.27) is getting
closer to 1,

lim
j∗→∞

{Yj∗−1

Yj∗

}
= 1.

For the left hand side we will need the following results on r− and r+, see
section A.1 in the appendix.

0 < rj− < 1, for all j > 0,

rj+ > 1, for all j > 0.

Then

lim
j∗→∞

{ rj∗−1
+ − rj

∗−1
−

rj
∗−1

+ r+ − rj
∗

−

}
= lim
j∗→∞

{ rj
∗−1

+

rj
∗−1

+ r+

}
=

1

r+
.

Since r+ > 1 it follows that 1
r+

is a fixed number smaller than 1. Thus, the
value of j∗ must be bounded above in order for (6.27) to hold. In addition, we
must assume that j∗ + 1 /∈ K, making K bounded above as well. To see why,
we follow Vanderbei’s & Pınar’s idea [7], letting wj denote the solution to the
difference equation

wj − α(pwj+1 + qwj−1 + swj) = 0, 0 < j,

w0 = 0,

wj∗ = Y ∗j .

(6.28)

This is similar to the difference equation for the primal problem (6.16), but
extended to all j. Solving (6.28) will yield

wj =


0, j = 0,

Yj∗
rj+−r

j
−

rj
∗

+ −r
j∗
−
, 0 < j < j∗ and j∗ < j,

Yj∗ , j = j∗.
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6.3 Markov Chain

Clearly, vj∗ = wj∗ and vj∗−1 = wj∗−1. Since wj solves the difference equa-
tion from the primal problem (6.3) we have

wj∗ ≥ α(pwj∗+1 + qwj∗−1 + swj∗).

Inserting for vj we get

vj∗ ≥ α(pwj+1 + qvj−1 + svj∗).

For inequality (6.24) to be true, in the case of j = j∗, we need to assume
that vj∗+1 ≤ wj∗+1. Then

Yj∗+1 = vj∗+1 ≤ wj∗+1 = Yj∗
rj
∗+1

+ − rj
∗+1
−

rj
∗

+ − r
j∗

−
.

Rearranging, we get

Yj∗+1
rj
∗

+ − r
j∗

−

rj
∗+1

+ − rj∗+1
−

≤ Yj∗ .

That is, j∗ + 1 /∈ K. This implies

j∗ := max

{
k : Yk

rj+ − r
j
−

rk+ − rk−
> Yj

}
, j < j∗.

In addition, both Yk
rj+−r

j
−

rk+−rk
and Yj are increasing functions, where Yj becomes

the greater one for j ≥ j∗. See section A.2 in the appendix. That is, if

Yk
rk
′

+ − rk
′

−
rk+ − rk−

> Yk′ ,

with k′ < j∗ − 1, then

Yk
rk
′+1

+ − rk
′+1
−

rk+ − rk−
> Yk′+1.

Thus, we only need to check for j = k − 1:

j∗ := max

{
k : Yk

rk−1
+ − rk−1

−
rk+ − rk−

> Yk−1

}
.
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7 For Further Study

We have verified all the inequalities, and we have a formula for the optimal
exercise point j∗. In Figure 6.2 the fair price of a perpetual American call
option is computed. With p = q = s = 1/3, ∆x = 0.1, α = 0.999 and K = 9
the optimal exercise j∗ is 108. That is, when the risky security price is 10.8.
Thus, the fair price of the option will be 1.8.
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Figure 6.2: Plot of v∗(x) and Y (x) corresponding to the case where we have a
perpetual American call option with α = 0.999, p = q = s = 1/3, ∆x = 0.1,
K = 9. In this case, j∗ = 108 and xj∗ = 10.8.

Comparing Lets compare the results from the random Walk model by
Vanderbei & Pınar [7], with the ternary Markov chain model. Letting s = 0 in
the last case yields

r =
1±

√
1− 4α2pg

2αp
,

in the case of vj . Now, with this choice of s, the solution in the Markov chain
model is identical to the random walk solution [7, p. 770]. For instance, solving
the example in Vanderbei & Pınar [7] with the Matlab code (see section A.3 in
the appendix) adapted for the Markov chain model, yields the same solution.
We conclude that the Markov chain model is a similar, but extended, model. It
allows a richer and larger set of possible scenarios.

7 For Further Study

There are lots of topics not mentioned in this work, that may be considered
as normal to include when talking about pricing derivatives. Attainability and
complete markets are two topics of interest. The theory presented for the Eu-
ropean and American options has managed to include both attainable and non-
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7.1 Pricing perpetual American Options With a Risk Neutral Probability
Measure

attainable derivatives, and apply to both complete and incomplete market mod-
els. This was to avoid the master thesis being to lengthy. A discussion about
the existence of several fair prices for a single derivative is of importance if this
was something to practice in a real world market.

It would also be interesting to look at other models, for instance, Vanderbei
& Pınar has done a similar job with a geometric random walk model [8]. One
could, in a similar way as in this thesis, modify the model to include more
different type of scenarios.

We mentioned in the early beginning that certain details as transaction cost,
lending rates and so forth was ignored.22 Both Pliska [5] and Cutland & Roux
[3] show how some of this can be implemented in the models, and it is only a
matter of adding extra details, not actually changing any of the mathematical
structure.

At equation (6.7) we made a decision and left out the put options. We could
include them if it had brought new theory or new methods to arrive at the
result, but the outcome would only been minor differences in the computation.
Nevertheless, the put options are just as interesting and important as the call
options.

7.1 Pricing perpetual American Options With a Risk Neu-
tral Probability Measure

What was so great about pricing derivatives with an equivalent martingale mea-
sure, was that we found a fair price, without including any real world probability.
That is, with one less factor to assume in the model.23 The problem of finding
an equivalent martingale measure in a perpetual model is that the number of
scenarios is increasing as time progresses. Therefore, the number of scenarios
would be infinite while the probability of each scenario would be zero,

|Ω| =∞ =⇒ qω = 0, q ∈ Q, ω ∈ Ω.

Obviously, we are able to price American options in a finite model, as we
saw in chapter 2.2. An approach to pricing perpetual American options is to
first classify them into two groups:

• Those who will be exercised at some time t <∞.

• Those who will never be exercised.

We are only interested in the options in the first group. Then, with whatever
model we want to use, assume the number of trading dates to be T1, where T1

22Assumptions known as friction in mathematical finance.
23No one knows the true probabilities of the different movements of the risky securities in

the real world.
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Measure

is finite and positive. Next, price the American option in this finite model. The
following step is crucial:

• If the solution, for any scenario, is to exercise at the final time T1, start
over again, but now let T1 be greater. E.g. T2 := T1 + 1.

• If the solution, for all scenarios, is to exercise before time 1T , we are done.

We already know that the option will be exercise for some time t < ∞. As T
increases, we will at some point be done. The model might be to complex to
compute for large values of T , but it will be without any assumptions of a real
world probability measure.
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A Appendix

A Appendix

A.1 The Roots r+ and r−

We recall the assumption

1/3 ≥


αq,

αp,

αs,

together with

p+ q + s = 1 and α < 1,

implies it’s impossible to have αp = αq = αs = 1/3 at the same time. That
is,

αp+ αq + αs < 1.

Next, the greatest possible value of 4α2pq is 4/9. Then, from the observation
above, αs < 1/3, implying

(αs− 1)2 > 4/9.

If

4α2pq < 4/9 ⇒ (αs− 1)2 ≥ 4/9 > 4α2pq.

We conclude that

(αs− 1)2 − 4α2pg > 0.

.

Starting with r+ we compute
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A.1 The Roots r+ and r−

r+ =
(1− αs) +

√
(αs− 1)2 − 4α2pq

2αp

=
1− αs

2αp
+

√
(αs− 1)2 − 4α2pq

2αp

≥ 1− 1/3

2/3
+

√
(αs− 1)2 − 4α2pq

2αp

= 1 +

√
(αs− 1)2 − 4α2pq

2αp

> 1.

Working with r−, we see that

(1− αs) >
√

(αs− 1)2 − 4α2pg. (A.1)

Obivously, (A.1) is true if and only if both p and q are non-zero. But,
assuming p = q = 0 is equivalent to assume that the risky security moving
neither up or down, which is a situation we are not interested in in this work.
Thus

r− =
(1− αs)−

√
(αs− 1)2 − 4α2pq

2αp
> 0.

In addition, plotting r− and manually test for different values of p, q, s and α
shows that r− < 1. See figure A.2. This is not a valid proof, but an indication,
which we will use as a valid result.

Figure A.2: A plot of r− for some specific values of p, q, s and α, showing that
r− is less than 1.
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A.2 The Increasing Value Function

Changing p with q in the computations above would have made no difference
on the results. We conclude that

0 < rj− < 1, for all j > 0,

rj+ > 1, for all j > 0.

This is valid for both

r =
(1− αs)±

√
(αs− 1)2 − 4α2pq

2αp
,

and

r =
(1− αs)±

√
(αs− 1)2 − 4α2pq

2αq
.

Comments One could try to verify that r− < 1 by assuming different
restrictions on the variables, e.g. (1−αs) < 2αp, (1−αs) = 2αp and (1−αs) >
2αp. The first two cases are easy to verify. For the last, one could assume even
more restrictions. But, even with this strategy it eventually stops, without a
complete verification. One solution could be to make more assumptions about
the variables p, q, s and α. Instead of further restricting possible values of the
variables in the model, it was decided to go for the plotting in Figure A.2.

A.2 The Increasing Value Function

For j < j∗ we have

vj = Yj∗
rj+ − r

j
−

rj
∗

+ − r
j∗

−
.

Note that both Yj∗ and rj
∗

+ − rj
∗

− are constants greater than zero. Let
f(x) = rx+ − rx−, for x > 0. Then

f ′(x) = rx+ ln(r+)− rx− ln(r−).

Since f ′(x) > 0 for all x > 0, we conclude that vj is increasing for all j < j∗.
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A.3 Script Used To Compute Examples

A.3 Script Used To Compute Examples

a=0.999;
%The discount factor.

p=0.5;
%The probability of an «up» move of the risky security.

q=0.5;
%The probability of a «down» move of the risky security.

s=0;
%The probability of no change in value of the risky security.

K=9;
%The exercise price of the option.

dx=0.1;
%The change of value of the risky security in case of p or q.

rp=(1-a*s+sqrt((a*s-1)2 − 4 ∗ a2 ∗ p ∗ q))/(2 ∗ a ∗ p);
%Roots from the solution of the difference equation (pluss).

rm=(1-a*s-sqrt((a*s-1)2 − 4 ∗ a2 ∗ p ∗ q))/(2 ∗ a ∗ p);
%Roots from the solution of the difference equation (minus).

xans = fzero(@(x) ((x*dx-K)*(rp(x−1) − rm(x−1))/(rpx − rmx)− x ∗
dx+K + dx), [1 K/(a ∗ dx)]);
%Numerical solution of the optimal exercise point. The given prob-
lem was an inequality. To solve this, we switch the inequality with
an equality sign, and find the zeroes. Choose lower boundary at 1,
and upper boundary such that the function values at the interval
endpoints differ in sign. The fzero function finds a zero in the given
interval, and @(x) assigns the variable x with the written function.
Without @(x), x would be classified as ’undefined’.

joptimal = floor(xans)
%The exact solution xans is probably not always an integer. Since
the term we are solving is decreasing for non-negative values of x, we
use the floor function (and not the ceil or round functions) to get an
integer solution.
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