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Preface

This thesis is submitted for the degree of Doctor of Philosophy in mathematics at the University
of Oslo, Norway. The research described herein was conducted under the supervision of Profes-
sor Geir Olve Storvik at the Department of Mathematics between August 2014 and July 2018.
I will without doubt be looking back at these years as an enjoyable and challenging period in
my life, during which I both matured and learned a lot, scientifically and personally. In this
thesis I was working on the exciting topic of Bayesian model selection and averaging in various
regression contexts from simple linear models to very complicated and reach deep regressions.
Late in the work on deep Bayesian regression models I observed that numerous attempts to
tackle Bayesian deep learning were done in the machine learning community and the whole
NIPS 2017 session was devoted to Bayesian deep learning. The statistical and machine learn-
ing schools are still quite different and hopefully for me the developed approaches were novel
even in the context of massive research on the field in the machine learning community. Yet I
was disappointed with the lack of communication between the two schools. I hope the presented
in this thesis work could bridge some gaps in the obviously emerging field of study. And I be-
lieve it could be of interest for both mathematicians and computer scientists. In order to make
the thesis available to a broader audience, a very gentle and consistent introduction to statisti-
cal modeling and inference is given, summarizing the topics required for comfortable reading
through the papers for people with a general mathematics (computer science) background.

Oslo, July 2018
Aliaksandr Hubin
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1 Introduction

Regression models are powerful tools for answering numerous scientific questions in both nat-
ural and social sciences. These days they have also become widely appreciated in business
related applications via the data science discipline. Traditionally, scientists have been very
carefully specifying adequate models and choosing explanatory variables. The orthodox statis-
tical approach discourages both collecting data of too many variables and relying on automatic
procedures to detect the important ones (Burnham and Anderson, 2002). Instead, expert based
knowledge of the field should guide the model building process such that only a moderate
number of models are considered when answering specific research questions or hypotheses.
However, in modern data analysis the number of explanatory variables becomes often so huge
that it is almost impossible to carry preselection by hand. At the same time, development of
computational resources allows to resolve the automated model selection and model averaging
problems accurately and within a reasonable amount of time.

Statisticians traditionally dealt mainly with linear models due to their transparency and low
computational complexity. However, it is often the case that linear relations between the ex-
planatory variables and the response are not sufficient for high quality inference or predictions.
Aitkin (2011) in this context said: "It is fair to say that the frequentist paradigm is coming to the
end of its useful life; one sign of a dying paradigm is the proliferation of new “flexible” methods
untrammelled by the paradigm: regression trees, with their recipes for growing and pruning,
and the grandiose claims once made for neural networks, now made for support vector ma-
chines". Indeed, nonlinear effects and complex functional interactions between the explanatory
variables can often significantly improve both the predictive and the inferential performance of
the models. Nonlinear relations are for example handled by classification and regression trees,
fractional polynomials, random forests, logic regressions, neural networks, etc. Whilst some
efforts on model selection in classification and regression trees and logic regressions have been
already done (Kooperberg and Ruczinski, 2005; Kooperberg et al., 2007; Fritsch and Ickstadt,
2007; Fritsch, 2006; Chen and Guestrin, 2016; Lambert et al., 2007), the topic remains rather
undiscovered in the context of neural networks. Recently, particular cases of neural network
based analysis called deep learning procedures have become extremely popular and highly suc-
cessful in a variety of real world applications (Goodfellow et al., 2016). These algorithms apply
iteratively nonlinear transformations aiming at optimal prediction of response variables. Each
transformation yields another hidden layer of features, which are also called neurons. The ar-
chitecture of a deep neural network then includes the specification of the nonlinear intra-layer
transformations, the number of layers, the number of features at each layer and the connections
between the neurons. The resulting model is fitted by applying some optimization procedure
(e.g. stochastic gradient decent), in the space of parameters, with the goal of meeting a particular
objective like minimization of some loss function, or maximization of the likelihood. However,
as mentioned above, model selection across deep regression models remains an open and yet
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1. INTRODUCTION

undiscovered research area, raising exciting mathematical and computational challenges. The
traditional deep learning approach assumes that the architecture is set manually, but recently
approaches to select an optimal architecture of neural networks algorithmically have started to
appear (Zoph et al., 2017; Pham et al., 2018; Elsken et al., 2017).

All of the models have particular kinds of strength and weaknesses leading to the performance
limitation of single models. In practice, researchers and analysts are starting to actively use
model averaging and model stacking (using output of some models as inputs for others), which
often yields boosted predictive performance. At the same time, such heuristic procedures often
lead to overfitting issues and totally uninterpretable results. It is hence of a particular impor-
tance to rigorously generalize these approaches into a single and well defined statistical model,
which could allow to combine benefits and reduce weaknesses of different existing approaches.
Constructing of such a meta model will definitely make a step towards satisfying Albert Ein-
stein’s famous quote (Einstein, 1934): "It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum of experience." Furthermore, novel
efficient and theoretically sound algorithms are required to fit such a powerful and general
model.

Traditionally in statistics two major fundamental paradigms are frequentist and Bayesian statis-
tics. Both of them induce different ways to make inference. Additionally, different model
selection approaches arise within these paradigms. Model selection within them often differs
in terms of both criteria and algorithms addressed, thought some overlaps are also present.
Let us first address the paradigms as such and their development. In both philosophical liter-
ature (Zabell, 2005; Jeffrey, 1956; Reichenbach, 1935; Carnap, 1952; Ramsey, 1931; Keynes,
1921) and statistical literature (Jeffreys, 1939; Carnap, 1950) there have been a lot of discus-
sions of frequentist and Bayesian approaches. Both of them are extremely influential in modern
scientific community. They have been widely accepted by the statisticians and scientists and
have formed a solid basis for becoming statistical paradigms (namely Bayesian and frequentist
statistics) (Aitkin, 2011). Both of the approaches have also been sufficiently innovative to at-
tract numerous followers not only among pure statisticians but also among natural and social
scientists as well as industrial practitioners, which is proven by the amount of published arti-
cles or software packages, where either of them is used. One of the evolutionary developments
within the discussed statistical paradigms is regression. Both linear and nonlinear regressions
are currently targeted within Bayesian and frequentist statistics. Many, however, prefer the
Bayesian approach for these purposes. Aitkin (2011) says the following regarding the issue:
"The frequentist difficulties are familiar; for our purposes it is sufficient to point to the ma-
jor successes of MCMC in complex unbalanced crossed and nested multilevel GLMMs, and
the widespread adoption of multiple imputation, with its steady development towards a fully
Bayesian analysis with incomplete data." In particular, the advantages of Bayesian approaches,
when posterior model probabilities are used, are mainly high interpretability of the obtained
results in the sense that for model selection one is simply searching for the posterior mode in
the model space. At the same time, model averaging becomes highly interpretable from the
point of view of classical probability theory, since corresponding model averaged probabilities
of quantities of interest are simply marginalized out from the whole model space utilizing poste-
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rior model probabilities. Moreover, whilst doing this, both model and parameters’ uncertainties
are properly handled. For example, variable importance can be computed as marginal posterior
probability of this covariate to be present in the models. In order to take advantage of these
fundamentally important properties of the Bayesian approach, this thesis will be build within
the Bayesian framework and target an actual problem of variable selection within linear and
nonlinear regressions. The main goal, thus, is to evaluate posterior probabilities of the models
within the model space of interest, defined uniquely by the subsets of explanatory variables
(features), within a particular regression context.

In particular, Paper I addresses Bayesian generalized linear mixed models. The main contri-
bution of this paper is development of a mode jumping Monte Carlo Markov chain algorithm
(MJMCMC) for model selection and model averaging, which allows to efficiently sample in
the multimodal space. Paper II addresses Bayesian logic regressions. Logic regression (not
to be confused with logistic regression) was developed as a general tool to obtain predictive
models based on Boolean combinations of binary covariates (Ruczinski et al., 2003). The paper
also generalizes the algorithm developed in Paper I to the domain of logic regression models,
where the model space cannot be pre-specified in advance. This is achieved by means of a ge-
netically modified mode jumping Monte Carlo Markov chain (GMJMCMC). It has to be noted
that GMJMCMC is not a proper Metropolis-Hastings algorithm in the sense that its station-
ary distribution does not coincide with the target distribution of interest, however it guarantees
exploring the whole model space asymptotically. This is sufficient for using alternative esti-
mates of the target distribution based on the Bayes formula. Paper III introduces a class of
deep Bayesian regression models (DBRM), which combines and generalizes classes of linear
models, generalized linear models, generalized linear mixed models, classification and regres-
sion trees, multivariate adaptive regression splines, artificial neural networks, logic regressions
and fractional polynomials into a powerful and broad Bayesian framework and addresses model
selection and model averaging within the defined class of models. The GMJMCMC algorithm,
developed in Paper II, is adapted to DBRM. Furthermore, a reversible version of GMJMCMC
(RGMJMCMC), which is a proper Metropolis-Hastings algorithm, for fitting DBRM is devel-
oped in Paper III. Paper IV is an application of Bayesian model selection procedures, including
those developed in Papers I, II and III, to genome wide association studies (GWAS). Finally,
Paper V is focused on the comparison of different computational approaches to marginalizing
parameters from the likelihood function in order to obtain the marginal likelihood (MLIK).
Computing marginal likelihood is fundamentally important for the algorithms developed and
used in Papers I-IV, since using MLIKs allows to avoid model selection within the joint space
of parameters and models and rather work in the marginal space of models, which gives sig-
nificant computational benefits. To summarize, the main goal of this thesis is to suggest effi-
cient and scalable Bayesian approaches for model selection and model averaging in linear and
nonlinear Bayesian regression contexts, that can be used in numerous applications in science,
business and technology.

The remainder of this thesis is structured as follows: Chapter 2 gives a gentle introduction
to statistical modeling and discusses such important models as linear regressions, generalized
linear models, generalized linear mixed models, generalized additive models and artificial neu-
ral networks; Chapter 3 addresses statistical inference from the Bayesian and frequentist per-
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1. INTRODUCTION

spectives and discusses such popular inference methods as maximal likelihood, generalized
method of moments, generalized least squares method, minimal divergence based methods,
Monte Carlo Markov chains, variational Bayes, approximate Bayesian computing, and inte-
grated nested Laplace approximations; Chapter 4 addresses model selection and validation con-
cepts, describes the most popular model selection criteria in the Bayesian and frequentist set-
tings, algorithms for Bayesian model selection and model averaging are also addressed there;
Chapter 5 consists of summaries of each of the five articles constituting this thesis; Finally,
Chapter 6 summarizes the contribution of the thesis, gives directions of further work, and dis-
cusses a few selected topics in more detail.
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2 Statistical modeling

In this chapter statistical modeling concepts are addressed, and some of the most widely used
models in modern statistical science are discussed.

Let m(θ,D) be a general statistical model for data D = {y,X} on n realizations over p +

1 components of a random variable ξ defined on a Kolmogorov probability space (Ω,F ,P)

(Kolmogorov), for which the model likelihood p(y|X,θ) is constructed, where θ is a vector of
size k of unknown parameters and X = {x1, ...,xn} with xi, i ∈ {1, ..., n} are p dimensional
vectors, and hence X ∈ Rn×p. Without loss of generality, p(y|X,θ) will be further denoted
as p(D|θ), when considering the conditional likelihood of y. In a very broad sense, a model
m(θ,D) can be parametric, semiparametric (for both cases k > 0) or non-parametric (k = 0).
Note that some sources also consider the case, when k = ∞ as non-parametric. A model
can belong to either a Bayesian or a frequentist domain. Among the most widely addressed
statistical models, one can mention linear regression models (LM), generalized linear models
(GLM), generalized linear mixed model (GLMM), classification and regression trees (CART),
artificial neural networks (ANN), hidden Markov models (HMM), state space models (SSM),
and generalized additive models (GAM). Models overlap between each other in different ways.
For example, LM is a subclass for GLM, which is a subclass of ANN and GLMM, however
GLMM is not a subclass of ANN as well as ANN is not a subclass of GLMM. GLM is at the
same time a subclasses of GAM, whilst ANN strictly speaking is not. HMM are a subclass of
SSM and so is GLMM. In the next sections the brief description of the most relevant classes of
models for this thesis will be presented.

2.1 Linear models

The most widely known and addressed statistical model, with applications in numerous areas
of science and business, is definitely the linear regression model (Freedman, 2009; Rencher and
Christensen, 2012; Yan and Su, 2009; Seal, 1967), which is also known as Gaussian regression.
Conditional independence between observations yi, i ∈ {1, ..., n} is assumed in linear regres-
sion, letting the likelihood function factorize easily. Then the relation between the explanatory
variables and the observations is modeled via the following equations:

p(yi|µi, σ2) =N(µi, σ
2), (2.1)

µi =β0 +

p∑

j=1

βjxij. (2.2)

Here βj ∈ R, j ∈ {0, ..., p}, are the regression coefficients and σ2 is the variance of the re-
sponses, which is assumed to be common across all of the observations. Hence, for the linear

5



2. STATISTICAL MODELING

regression models θ = {β, σ2}. The model is simple and easy to estimate and interpret. How-
ever the assumptions of this model are rather strict. Generalized linear models allow to get
rid of the assumption of the Gaussian distribution of the responses, whilst generalized linear
mixed models additionally allow to relax on the assumption of conditional independence of the
observations. These models are briefly described in the following sections.

2.2 Generalized linear models

Generalized linear models (McCullagh and Nelder, 1989) broaden the class of linear regression
models by assuming various distributions from the exponential family on y. This allows to ad-
just to different data types, including among others, binomial, Poisson, gamma, or exponential
distributions of observations. The generalized linear models are of the form:

p(yi|µi, φ) =f(y|µi, φ), µi = g−1 (ηi) , (2.3)

ηi =β0 +

p∑

j=1

βjxij. (2.4)

Here, similarly to the linear regression, βj ∈ R, j ∈ {0, ..., p}, are the regression coefficients
and φ is the dispersion parameter, which is assumed to be common across all of the obser-
vations. The link function g(·) is introduced in order to link the linear predictor ηi and the
mean parameter of the corresponding distribution of interest f. Similarly to the linear regression
context, for GLMs θ = {β, φ}.
GLM hence is a very broad and powerful class of statistical models, which can be used in more
applications than linear regression. However, it is still limited by several strong assumptions.
Similarly to linear models, one of the major disadvantages of the generalized linear models is
the assumption on the independence of the observations. Secondly, the models are linear in
terms of the relations of the explanatory variables and the linear predictor. The first issue is
resolved by GLMMs, whilst the second one is typically handled by GAMs and ANNs.

2.3 Generalized linear mixed models

To relax on the assumption of conditional independence and homoscedasticity of the dispersion
of the observations, consider the following generalized linear mixed model (McCulloch and
Neuhaus, 2001):

p(yi|µi, φ) =f(y|µi, φ), µi = g−1 (ηi) , (2.5)

ηi =β0 +

p∑

j=1

βjxij + δi, (2.6)

δ =(δ1, ..., δn) ∼ Nn (0,Σδ) . (2.7)

6



2.4. Generalized additive models with extensions

Here it is assumed that f(y|µ, φ) is a density/distribution from the exponential family with the
corresponding link function g(·). βj ∈ R, j ∈ {0, ..., p}, are the regression coefficients and
φ is the dispersion parameter. The unexplained variability of the responses and the correlation
structure between them is addressed through the latent Gaussian variables δi, with a specified
parametric covariance matrix structure, defined through Σδ = Σδ (ψ) ∈ Rn×n. Here ψ are
parameters describing the correlation structure. The vector of parameters of the model is of the
form θ = {β,ψ, φ}. Even though GLMMs are very powerful and broad, they still rely upon
the linear nature of the relations between the explanatory variables and linear predictors.

2.4 Generalized additive models with extensions

Generalized additive model (GAM) (Hastie and Tibshirani, 1990) is essentially a generalized
linear model in which the linear predictor depends linearly on unknown smooth functions of
some explanatory variables. The interest focuses on inference about these smooth functions and
their parameters. GAM was specially developed to combine properties of generalized linear
models with additive models. Similarly to GLM and GLMM, the model relates a response
variable, y, and explanatory variables X. An exponential family distribution along with a link
function g are specified linking the expected value of y to the explanatory variables via various
functional structures Fj(·|ωj) with parameters ωj These functional structures can be functions
with a specified parametric form like a polynomial or regression spline of a variable. They
can also be specified non-parametrically or semi-parametrically. This flexibility on one hand
provides the potential for better fit to the data than purely parametric models, but on the other
hand often results in some loss of interpretability. A GAM model has a form:

yi|µi ∼f(y|µi, φ), i ∈ {1, ..., n}, (2.8)

g(µi) =β0 +

p∑

j=1

Fj(xij|ωj). (2.9)

The vector of parameters of GAMs is hence θ = {∪pj=1ωj , β0, φ}. GAMs can also incorporate
latent Gaussian variables extending the class to generalized additive mixed models (GAMM)
(Fahrmeir and Lang, 2001). GAMM will not be described in detail, since this generalization
is equivalent to the extension of GLM to GLMM described in the previous section. Instead,
more general additive models, allowing for Fj(·|ωj) to depend jointly on all covariates (i.e.
Fj(·|ωj) : Rp → R), will be introduced. Such models have a form:

yi|µi ∼f(y|µi, φ), i ∈ {1, ..., n}, (2.10)

g(µi) =β0 +

q∑

j=1

Fj(xi|ωj), (2.11)

with parameters θ = {∪qj=1ωj , β0, φ}. If one relaxes on the assumption of smoothness of
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2. STATISTICAL MODELING

Fj(·|ωj), then logic regressions (LR) will fall into this category. Provided that all covariates are
binary, the logic regressions, addressed in Paper II, take the functional form (2.10)-(2.11) with
a linear predictor of the form:

g(µi) =β0 +

q∑

j=1

ωjLj, (2.12)

where ωj ∈ R, j ∈ {1, ..., q}, are the regression coefficients for the corresponding Lj , which
are all possible logical expressions based on the input covariates. Logical expression are com-
binations of the binary variables xj with the logical operators ∧ (AND), ∨ (OR) and xc (NOT
x), for example L = (x1∧x2)∨xc3. The extended GAM also includes classification and regres-
sion trees (CART), artificial neural networks (if one relaxes on that f belongs to the exponential
family), and the deep Bayesian regression model (DBRM), developed in Paper III of this thesis.
In the section to follow a detailed specification of artificial neural networks is given.

2.5 Artificial neural networks

Feed forward ANN Auto-encoder ANN Convolutional ANN

Recurrent ANN Long / short term memory ANN Neural Turing machines

Figure 2.1: Here the most popular ANN architectures are presented. In the graphs each node represents
a neuron based on a weighted sum of an input vector transformed by an activation function to produce
an output. Yellow and red colored neurons are input and output nodes correspondingly. Pink colored
neurons apply weighted inputs using a predefined kernel matrix. Green neurons are fully connected
ones, where the sparsity has to be decided by the estimator of the zero values of some of the weights.
Blue neurons are recurrent and they append their values from previous pass to the input vector. Blue
neuron with circle inside a neuron corresponds to a memory cell. Red neuron with circle inside a neuron
corresponds to the output, which coincides with the corresponding input (used only in auto-encoders).
These architectures are originally presented in van Veen (2016).

In this section artificial neural networks (ANN) (Schalkoff, 1997) will be briefly described,
following the notation from Polson et al. (2017). Similarly to the previously addressed models,

8



2.5. Artificial neural networks

ANN links the observations y and explanatory variables X (note that in some ANNs X also
includes y or even coincides with y, which will be discussed further). ANNs do this via a
functional mapping of the form (2.10), but possibly with a multidimensional mean parameter
µi = µi(xi),µi ∈ Rr, i ∈ {1, ..., n}, which can be written as:

yi ∼ f (µi, φ) . (2.13)

The output yi can be continuous, discrete or mixed, one or several dimensional, and does not
necessarily belong to the exponential family. To construct the vector of mean parameters µi
of the distribution of interest, one builds a sequence of building blocks of hidden layers. Let
σ

(l)
j be univariate functions (further referred to as activation functions), where l ∈ {1, ..., L} is

the index of the layer, L is the number of layers (further referred to as depth), j ∈ {1, ..., p(l)}
is the index of a hidden variable (further referred to as a neuron) from layer l, constructed
by the corresponding activation function, and p(l) is the number of neurons in layer l (further
referred to as width of a layer), here p(1) = p and p(L) = r. Activation functions σ(l)

j are
assumed to be differentiable almost everywhere and have non-constant partial derivatives in all
l ∈ {1, ..., L − 1}. For the last layer, σ(L)

j , j ∈ {1, ..., r} are allowed to be identity functions
and, in case yi belongs to the exponential family with r = 1, take a form of GLM link functions,
described in detail in the previous sections. To construct a neuron j in layer l+1 for observation
i, denoted as z(l+1)

ij , a semi-affine transformation is used:

z
(l+1)
ij =σ

(l)
j


β(l)

0j +

p(l)∑

k=1

β
(l)
kj z

(l)
ik


 . (2.14)

Here β(l)
kj are the slope coefficients for the inputs z(l)

ik (note that z(1)
ik = xik) of the l-th layer and

intercepts, and p(l) is the number of hidden units (neurons) at layer l. The mean vector µi of
ANN yi ∼ f (µi, φ) with L layers is a composite function of the form:

µi =
(
~σ(L) ◦ . . . ◦ ~σ(1)

)
(xi) , (2.15)

where ◦ is the composition operator, i.e. f ◦ g(x) = f(g(x)) and ~σ(l)(·), l ∈ {1, ..., L} are the
vector functions consisting of the corresponding univariate activations. The vector of param-
eters of ANNs hence is of the form θ = {∪L−1

l=1 ∪p
(l+1)

j=1 ∪p
(l)

k=0β
(l)
kj , φ}. In the machine learning

community parameters β(l)
kj are referred to as weights of the neural networks. In practice, when

strictly monotonous and bounded activations are used, ANNs with at least one hidden layer and
containing a finite number of neurons satisfy the conditions of universal approximation theorem
(Hornik, 1991) and can approximate continuous functions on compact subsets of the Euclidean
space.

Depending on the structure and sparsity of the weights and activation functions, artificial neu-
ral networks can be classified as dense, convolutional, or recurrent. Dense ANN have fully
connected layers and are quite rarely addressed due to their complexity and regularization diffi-
culties. Convolutional ANN (CNN) and recurrent ANN (RNN) allow for sparse representations.
CNN are typically used for the conditionally i.i.d. observations, whilst recurrent RNN typically

9



2. STATISTICAL MODELING

have y included into X and are used for space-state modeling. Depending on the number of
layers ANN can be either deep or shallow. Recently, deep architectures have become extremely
successful in applications (LeCun et al., 2015; Goodfellow et al., 2016). The most successful
applications include image, text, sound, and video analysis, where huge amounts of data are
available. An example of the artwork created by the convolutional neural network described
in Gatys et al. (2015) is presented in Figure 2.2. Pascanu et al. (2013) and Montúfar and Mor-
ton (2015) show the advantage of representing functions with deep architectures, furthermore,
Poggio (2016) provides theoretical results on the conditions when deep learning is preferable
to shallow learning. In case y and X coincide, ANNs are called auto-encoders. Auto-encoders
are typically used to compress high-dimensional data into a set of lower-dimensional features
without significant loss of the information. In case X is a random noise of some simple struc-
ture (e.g. multivariate Gaussian), the ANNs are called generative and allow to sample from
complex distributions based on the samples of X. In particular, generative adversarial networks
(GAN) (Goodfellow et al., 2014) today form a very popular research direction in machine learn-
ing (Goodfellow, 2016). The research on ANN is developing very rapidly inducing numerous
new names for artificial neural networks having different configurations. In Figure 2.1 one can
find illustrations of several popular architectures of ANN including feed-forward architectures,
auto-encoders, convolutional, and recurrent ANNs. At the same time choice of a particular
architecture of an ANN remains a state-of-the-art technique and depends significantly upon
the application. The state-of-the-art artificial neural networks are specified by the sparsity of
weights, depth, width for each layer and activation functions (this combination is further re-
ferred to as architecture of ANN). A modern researcher has to spend a significant amount of
time to find a suitable architecture for the problem at hand.

Now consider a model of a type (2.10)-(2.11) with Fj(xi|ωj), j ∈ {1, ...q} associated to all
possible architectures of ANNs of depth up to Lmax, based on a set of available activation func-
tions and weights. If one could fit such a GAM, the state-of-the-art techniques will no longer be
required to get a powerful universal approximator for any regression or classification problem.
Yet, this represents a complicated problem inducing numerous mathematical challenges. The
deep Bayesian regression models, addressed in Paper III of this thesis, are designed to resolve
these challenges efficiently. Additional discussion to the topic is given in Section 6.1 of this
thesis.
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2.5. Artificial neural networks

Figure 2.2: A style-transferred picture, originally taken by the camera of my cellphone on my mother’s
67th birthday (January 25, 2017) from the window of room 824 (before renovation) in Niels Henrik
Abel’s house, where the major part of work on this thesis was performed. The style-transfer was done
using the design of the neural network described by Gatys et al. (2015) implemented in Morugin (2015).
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3 Statistical inference

In this chapter some differences between Bayesian and frequentist inference from a mathemat-
ical point of view will be discussed, and some popular Bayesian and frequentist approaches for
inference will be addressed. The notation in this chapter is based on an abstraction of a general
model m(θ,D) (or simply m).

3.1 The frequentist paradigm

From the frequentist point of view, one is typically interested in point estimates of a parameter
θ based on the model m and data D. The parameter belongs to a certain parameter space Θ,
i.e. θ ∈ Θ. Then based on the obtained estimates θ̂ one is trying to make inference on model
m. In particular, people are typically interested in not only the estimates themselves, but also
in getting confidence intervals and confidence distributions for the parameter of interest, and
in the predictions for the unobserved data, based on the estimated values of θ for the model
m(θ,D). Different estimators can be used to obtain estimates of θ. By an estimator here one
considers a function A(D) : R(p+1)×n → Rk. The most common estimators include the maxi-
mum likelihood estimator (MLE) (Davidson et al., 1993), the generalized method of moments
estimator (GMM) (Hall, 2005), the generalized least squared error estimator (GLSE) (David-
son et al., 1993; Maddala and Lahiri, 1992), and the minimal divergence estimator (MD) (Basu
et al., 1998). Different estimators have different fundamental properties (Hansen, 1982; Self
and Liang, 1987), which may drive the choice of them in practical applications. These proper-
ties typically include consistency, strong consistency, unbiasedness, asymptotic unbiasedness,
efficiency, asymptotic efficiency, and asymptotic normality. In particular, one can say that an
estimate θ̂ = A(D) is consistent if θ̂ Pr→ θ0; strongly consistent if θ̂ a.s.→ θ0; unbiased if
E[θ̂] = θ0,∀n ≥ 1; asymptotically unbiased if E[θ̂ − θ0] →

n→∞
0,∀n ≥ 1; asymptotically

normal if
√
n(θ̂ − θ0)

d→
n→∞

Nk(0,Σ); efficient if θ̂ is unbiased and θ̂ = argminθ∈Θ(|Σθ̃|);
asymptotically efficient if its asymptotic covariance matrix is a lower bound for all consistent
asymptotically normal estimators. Some most widely used methods for constructing estimators
are briefly described in the following sections.

Maximum likelihood estimators

The maximum likelihood (ML) (Davidson et al., 1993) method estimates the parameters by
maximizing the joint likelihood of the data given the parameters p(y|X,θ) as a function of a
parameter θ ∈ Θ, which is denoted as p(D|θ). Hence the maximum likelihood estimate, θ̂ML,
is given by

θ̂̂θ̂θML = argmaxθ∈Θp(D|θ). (3.1)
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For analytically and numerically simplicity one usually maximizes the logarithm of the likeli-
hood, which is equivalent to the problem (3.1), since the logarithm is a monotonously increasing
function. If analytical maximization is not possible one usually applies gradient descent based
numerical optimization routines like Newton’s method, Newton-Raphson method or Robbins-
Monro method (Robbins and Monro, 1951). Under some regularity conditions maximum like-
lihood estimators are consistent, asymptotically normal, asymptotically efficient, however they
might be biased. This method is by far the most popular under the frequentist paradigm and
is used in thousands of applications, including econometrics (Cramer, 1989), biology (Yang,
2007), medical imaging (Shepp and Vardi, 1982), physics (Banaszek, 1998), and even linguis-
tics (Pagel, 2000).

Generalized method of moments

The generalized method of moments (GMM) (Hall, 2005) is a general method for estimating
parameters in statistical models. Normally, it is used in the context of semi-parametric models,
where the parameter θ of interest is finite-dimensional and the full shape of the distribution
function of the data is not known. In such cases standard maximum likelihood estimation is
not applicable. The method requires a number of moment conditions to be available for the
model m(θ,D). The moment conditions are functions of the model parameters and the data.
Expectation of these functions take a zero value at the true values of the parameters. The GMM
method relies upon minimization of a norm of sample averages of these moment conditions.
The method works as follows. Suppose the first k moments of the model m(θ,D) exist and
are defined as the integrals over the whole data X , µi(θ) =

∫
X fi(x,θ)p(x|θ)dx, i ∈ {1, ..., k},

where fi(x,θ) is the appropriate link function, such that µi(θ) takes a value of zero at the
true value of the parameter θ0. Strongly consistent numerical estimates of the moments can be
constructed as µ̂i(θ,D) = 1

n

∑n
j=1 fi(dj,θ), where dj = {yj, xj1, ..., xjp}. Then one resolves

numerically (using Newton’s or Newton-Raphson methods) or analytically the system of equa-
tions µ̂i(θ,D) = µi(θ), i ∈ {1, ..., k} with respect to θ to obtain θ̂GMM . Under some extra
regularity conditions the generalized method of moments estimators are consistent, asymptot-
ically normal, and efficient in the class of all estimators that do not use any extra information
aside from those contained in the moment conditions. Applications of the generalized method
of moments include, for example, finance (Ferson et al., 1994), hydrology (Kitanidis, 1988),
and material science (Frenklach and Harris, 1987).

Minimal divergence estimators

Minimal divergence estimators (MD) (Basu et al., 1998) in general rely upon the following idea.
Let ϕ be a proper closed convex function from (−∞,+∞) to [0,+∞) with ϕ(1) = 0 and such
that its domain Ωϕ := {x ∈ R such that ϕ(x) <∞} is an interval with endpoints aϕ < 1 < bϕ
(which may be finite or infinite). For two measures Pα and Pθ, the ϕ-divergence is defined by

φ(α, θ) :=

∫

X
ϕ

(
dPα
dPθ

(x)

)
dPθ(x).
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3. STATISTICAL INFERENCE

The basic property of ϕ− divergences states that when ϕ is strictly convex on a neighborhood
of x = 1, then

φ(α, θ) = 0 if and only if α = θ.

One can refer to Liese and Vajda (2007) for a complete study of those properties. Generally
speaking, φ(α, θ) and φ(θ, α) are not equal. Hence, ϕ-divergences usually are not distances, but
rather represent some difference between two measures. One of the most important properties
of divergences between distributions of random variables is the invariance property with respect
to a common smooth change of variables, which is also the case in MLE estimators. Among the
most popular distance measures satisfying this property one can mention the Kullback-Leibler
(KL), modified Kullback-Leibler (KLm), χ2, modified χ2 (χ2

m), Hellinger (H), and L1 diver-
gences, which are respectively associated to the convex functions ϕ(x) = x log x − x + 1,
ϕ(x) = − log x + x − 1, ϕ(x) = 1

2
(x− 1)2, ϕ(x) = 1

2
(x− 1)2/x, ϕ(x) = 2(

√
x− 1)

2 and
ϕ(x) = |x− 1|. All these divergences except the L1 belong to the class of “power divergences”
(Liese and Vajda, 2007), originally defined in Rényi (1961). Different properties of an θ̂MD are
dependent on the ϕ measures addressed. For example, for the (KL) divergence the estimator
coincides with θ̂ML and hence is consistent, asymptotically normal, and asymptotically effi-
cient. Minimal divergence estimators also have a broad list of applications, including physics
(Naudts, 2004) and econometrics (Ullah, 1996).

Generalized least squared estimators

In generalized least squared estimators (Davidson et al., 1993; Maddala and Lahiri, 1992)
one minimizes some distance between an estimator A(D) and the objective parameter func-
tion τ(θ). One could think of different measures for this distance. For instance, one could
consider the probability that the estimator is close to the objective parameter function, or one
could use an average measure of closeness like the mean absolute deviation, but it is usually
mathematically more convenient to consider an average squared deviation, the mean squared
error (MSE), namely E

[
(A(D)− τ(θ))2], which can be evaluated as Ê

[
(A(D)− τ(θ))2] =

1
n

∑n
i=1 (A(di)− τ(θ))2. The estimator A(D) minimizing this quantity is called the general-

ized least squared estimator and is denoted as θ̂GLS . Properties of generalized least squared
estimators depend on τ(θ) and the distance functions. The standard least squared estimator,
coinciding with minimization of the mean squared distance between the parametric means of
the observations and the observations themselves, namely θ̂LS , is unbiased and efficient. If, in
addition, the likelihood model is Gaussian, then simple least squares estimators are also ML es-
timators, yielding additionally properties of the latter. Applications of generalized least squared
estimators include, for instance, physics (Wahba, 1965), bioinformatics (Kim et al., 2004), and
marketing (Srinivasan and Mason, 1986).

3.2 The Bayesian paradigm

From the perspective of the Bayesian paradigm, inference on the defined m(θ,D) is mainly
based upon posterior probabilities of parameters of interest θ (Box and Tiao, 2011). In order
to derive the posterior one has to define the prior believes, incorporated via a prior distribution
p(θ). From the orthodox Bayesian standpoint, the prior distribution has to be specified without
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access to the actual data by means of taking into consideration problem based domain only.
However there have been numerous debates upon this and a significant part of Bayesian statis-
ticians use informative priors for both obtaining better inference and reducing computational
complexity of obtaining posteriors of interest (Gelman, 2009). Many also use improper priors,
corresponding to prior penalties, for which there does not exist a normalizing constant (Wahba,
1978). Improper priors can also be either informative or not. In order to get to the posterior
distribution p(θ|D) of interest one applies Bayes theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (3.2)

where p(D|θ) is the likelihood under model m(θ,D), and p(D) is the normalizing constant.
Note that improper priors do not necessarily lead to improper posteriors and hence improper
priors that lead to existence of finite normalizing constant p(D) can be used alongside with the
proper priors. In order to get posterior estimates minimizing a certain loss function, the param-
eters are obtained by means of minimizing this loss under the obtained posterior distribution
of the vector of parameters θ. The most widely addressed Bayesian point estimates include
posterior mean, median, and mode. These estimates correspond to using L2, L1 and L0 loss
functions, respectively. Bayesian analogues of confidence intervals are credibility intervals,
which are build upon the posterior distribution p(θ|D) to evaluate the uncertainty of θ.

The computational effort for obtaining posterior in the form of equation (3.2) depends on the to-
tal complexity of the model m(θ,D). By using a conjugate prior p(θ) to the likelihood p(D|θ),
an explicit analytical formula can be obtained for the posterior. Unfortunately this is rarely pos-
sible in practice, hence calculation or approximations of the posterior should be done by means
of implementing numerical procedures. Computing p(D) =

∫
Θ
p(D|θ)p(θ)dθ is often infea-

sible by exact integration for models with relatively high dimension of the parameter space Θ.
Fortunately p(D) is a constant with respect to the unknown parameters of interest, and there ex-
ist methods for estimating the posterior distribution without evaluating p(D). The most popular
approaches to estimating the posterior include Markov chain Monte Carlo (MCMC) algorithms,
such as Metropolis-Hastings algorithm and Gibbs sampler, integrated nested Laplace approxi-
mations (INLA), approximate Bayesian computation (ABC), and variational Bayes (VB). These
approaches will be briefly described in the following sections.

Markov Chain Monte Carlo

The most widely addressed approaches for obtaining posterior distributions are based upon
Markov chain Monte Carlo (MCMC) methods (Robert and Casella, 2005). One typically uses
either a Gibbs sampler or a Metropolis-Hastings algorithm. It is also possible to combine them
by using a Gibbs sampler with Metropolis-Hastings steps. Let p(θ|D) be the target distribution
of interest, and θ ∈ Rk, consisting of l ≤ k non-overlapping components of different dimension
sizes, θ = (θ1, ..., θl). The Gibbs sampler iterates trough the components of θ and samples from
the corresponding full conditional distributions p(θj|θ−j,D). For each iteration, u = 1, ...,W ,
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each θ(u)
j is sampled from

p(θ
(u)
j |θ(u)

−j ,D), (3.3)

where θ(u)
−j represents the adjunction θ(u)

j to θ(u):

θ
(u)
−j = (θ

(u)
1 , ..., θ

(u)
j−1, θ

(u−1)
j+1 ..., θ

(u−1)
l ). (3.4)

The Gibbs sampler requires the availability of the posterior conditional distributions defined
in (3.3). When the full conditional distribution is not available for some components of the
parameter, a Metropolis-Hastings step can be used for sampling from them. For making a
Metropolis-Hastings step, a proposal for a new sample, θ∗(u)

j corresponding to θj is drawn from
a proposal distribution θ∗(u)

j ∼ q(θ
∗(u)
j |θ(u−1)

j ) of arbitrary form (proposals can also depend on
more than one previous state, as shown in Storvik (2011)). The proposed value θ∗(u)

j is accepted
as θ(u)

j with probability

α(θ
∗(u)
j |θ(u−1)

−j ,D) = min

(
1,

p(θ
∗(u)
j |θ(u−1)

−j ,D)q(θ
(u−1)
j |θ∗(u)

j )

p(θ
(u−1)
j |θ(u−1)

−j ,D)q(θ
∗(u)
j |θ(u−1)

j )

)
. (3.5)

Otherwise θ(u)
j = θ

(u−1)
j .

For high-dimensional problems, when the likelihood function is often non-concave, the explo-
ration of the posterior distribution can be extremely slow due to both dimensionality curse and
getting stuck at the local extrema for a long time. Numerous approaches are suggested for ad-
dressing these issues. For example, the Mode Jumping MCMC (Tjelmeland and Hegstad, 1999)
algorithm introduces a valid MCMC algorithm capable of jumping between local extrema, the
Metropolis adjusted Langevin algorithm (MALA) (Roberts and Stramer, 2002) utilizes the gra-
dient of the posterior for fast exploration, and RMALA (Girolami and Calderhead, 2011) uti-
lizes a Riemann manifold in the MALA algorithm for a dynamic selection of the step sizes of
the proposals. Multiple try MCMC methods with local optimization are described by Liu et al.
(2000), while Yeh et al. (2012) propose local annealing approaches. These methods fall into the
category of generating auxiliary states for proposals (Storvik, 2011; Chopin et al., 2013). Even
though MCMC algorithms are very general and can be applied to numerous problems, adapting
an MCMC approach to a particular high-dimensional problem often requires some advanced
techniques. Examples of such techniques are presented in Papers I and III of this thesis.

Variational Bayes

Variational Bayes (VB) (Jordan et al., 1999) is another well known approach to approximate in-
tractable posterior distributions p(θ|D). As mentioned above, traditional Markov Chain Monte
Carlo (MCMC) algorithms draw samples from a discrete-time Markov chain, whose stationary
distribution is the target distribution. They often face scalability problems for high-dimensional
data. In contrast to MCMC, variational Bayes tackles the problem from the Kullback-Leibler
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divergence KL (q(θ)||p(θ|D)) minimization standpoint, where q(θ) comes from a class of an-
alytically tractable distributions for the problem at hand, referred to as the variational family.
For the popular mean-field approximation, the vector of parameters is divided into sub vectors.
Similarly to the Gibbs sampler case, θ = (θ1, ..., θl), with l ≤ k. The variational distribu-
tion is assumed to be independent across sub-vectors, i.e. it factorizes as q(θ) =

∏l
j=1 qj(θj).

The distribution p∗(θ|D) in the variational family, which is the closest to the target distribu-
tion according to the Kullback-Leibler (KL) divergence is then used to approximate the target
distribution of interest. Hence, for the case addressed above p∗(θ|D) =

∏l
j=1 q

∗
j (θj). Let

Eq−j [log (p(D|θ)p(θ))] =
∫
θ−j∈Θ−j

log (p(θ|D)p(D))
∏

i 6=j qi(θi)dθ−j denote the expectation
with respect to all terms except θj , then

q∗j (θj) ∝ exp
(
Eq−j [log (p(θ|D)p(D))]

)
(3.6)

Thus, the optimal solution p∗(θ|D) directly depends on data D, the likelihood p(D|θ) and the
prior p(θ). In case q∗j (θ) do not have defined forms, an expectation maximization (EM) like
recursive algorithm that utilizes coordinate descent or alternating minimization techniques can
be applied for the given optimization problem. This algorithm has a guarantee of convergence
to a local extremum. However, it does not guarantee convergence to a global extremum for
an arbitrary likelihood function. Factorization here is crucial for the final results. A key role
is played by the number of factors and precise subdivision. In particular, the independence
assumption should be validated when performing factorization in order to not face underesti-
mating of variability issues, which are common for the VB approach. At the same time, one
should bear in mind the trade off between the number of factors and the computational complex-
ity. Here fewer factors lead to significantly better results in the presence of dependence between
the sub-vectors. On the other hand, such an approach is more computationally demanding when
it comes to optimization.

Variational inference has various applications in latent variable models such as mixture mod-
els (Humphreys and Titterington, 2000), hidden Markov models (MacKay, 1997), graphical
models (Attias, 2000), and, most recently, deep Bayesian neural networks (Graves, 2011). Due
to the fast convergence properties of the variational objective, variational inference algorithms
are typically orders of magnitude faster in high-dimensional problems than MCMC algorithms
(Ahmed et al., 2012). Additionally, efficient subsampling techniques are suggested (Gal, 2016),
making the application of variational Bayes feasible for large in terms of the number of ob-
servations data samples. At the same time, a general statistical theory qualifying the statistical
properties of a variational solution is not well developed yet. Recently Alquier et al. (2016) and
Yang et al. (2017) introduced a modified objective function, allowing for an inverse-temperature
parameter. They also obtained some general guarantees for the variational solution under this
modified objective function.

Approximate Bayesian computation

For the models, for which it is impossible or impractical to apply a likelihood function of data
given model parameters, Approximate Bayesian Computation (ABC) (Marin et al., 2012) can be
applied. The aim is to approximate the posterior distribution p(θ|D) without using a likelihood
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function p(D|θ). This is achieved by generating observation from the prior and comparing them
to the actual data using a distance metric. The latter is important for situations, in which the
dimension k of the vector of parameters θ is large compared to the sample size n, and when
there is for some reason no explicit form of the likelihood function. Due to this property, ABC
has recently been gaining popularity in various applications including cosmology, genetics, and
ecology (Beaumont, 2010; Beaumont et al., 2002; Weyant et al., 2013).

In the most general ABC approach, a sample from the prior p(θ) is drawn. Then new data
D′ with respect to the sampled parameters is generated from a given model. The sampled
parameter vector θ′ is accepted into the posterior if its distance metric ρ (τ(D), τ(D′)) based on
the summary statistics τ of the original data D and sampled data D′ is lower than some chosen
threshold ε > 0. The choice of ε is crucial for ABC. On one hand, for too small values of ε the
acceptance rate will be low, and a large number of runs will be required. On the other hand,
if ε is too large, then the approximated posterior will be much broader than the true posterior,
giving in the extreme case no information at all.

To reduce the computational cost of ABC, it is important to minimize the number of simulations.
Several algorithms have been suggested for accelerating the ABC approach. One of the major
suggestions is to combine ABC and standard Monte Carlo Markov chain (MCMC) algorithms
(Marin et al., 2012), sequential Monte Carlo (Sisson et al., 2007) or population Monte Carlo
(Akeret et al., 2015). These methods explore the parameter space more efficiently than the
basic ABC algorithm. At the same time, they use the available information in a limited way, as
the choice of a new point is only informed by the previous one by the Markov property of the
chains. It is often the case that every simulation sample comes at a high computational cost and
hence an efficient method would aim to utilize the whole history when accepting or rejecting
samples. To sum up, ABC becomes a reasonable approach in the cases when the tractable
form of the likelihood function p(D|θ) is not available. Otherwise other approaches are more
suitable. For more details on ABC, see Csilléry et al. (2010).

Another interesting remark on ABC is its similarity to the generalized fiducial inference (Han-
nig, 2009). The fiducial paradigm is an alternative to the Bayesian and frequentist fundamental
approaches for inference on a parameter of interest. This approach provides the fiducial dis-
tribution of parameters of interest without assuming any prior. Hence, it tries to resolve the
subjectiveness of the choice of priors in Bayesian statistics, making it similar to the objective
Bayes approaches (Berger et al., 2006). Even though fiducial inference is an active area of
research in the modern statistical science, it will not be discussed in more detail in this disser-
tation. It also has to be mentioned that both fiducial inference and ABC seem to be partially
reinvented in the machine learning community in what is called generative models (Jaakkola
and Haussler, 1999).

Integrated nested Laplace approximations

Within hierarchical models with latent Gaussian structures, integrated nested Laplace approx-
imations (INLA) for efficient inference on the posterior distribution (Rue et al., 2009) can be
used. Consider θ = (η, z), where z is the vector of all the latent Gaussian variables and η is
the vector of hyperparameters of z. In the regression settings, typically, the vector of slope co-
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efficients β is a part of z allowing to make η low-dimensional, which is important to facilitate
computations. The INLA approach is based on two steps. First the marginal posterior of the
hyperparameters is approximated by

p(η|D) ∝ p(z,η,D)

p(z|η,D)
≈ p(z,η,D)

p̃G(z|η,D)

∣∣∣
z=z∗(η)

. (3.7)

Here p̃G(z|η,D) is the Gaussian approximation of p(z|η,D), and z∗(η) is the mode of the
distribution p(z|η,D). The posterior mode of the hyperparameters is found by maximizing the
corresponding Laplace approximation by some gradient descent method (like for example the
Newton-Raphson routine). Then an area with relatively high posterior density of the hyperpa-
rameters is explored with either some grid based procedure or variational Bayes.

The second step involves the approximation of the latent variables for every set of the explored
hyperparameters. Here computation complexity of the approximation depends on the likelihood
type for the data D. If it is Gaussian, the posterior of the latent variables is Gaussian, and the
approximation is exact and fully tractable. In the case the likelihood is skewed or heavy tails
are present, a Gaussian approximation of the latent variables tends to become inaccurate and
another Laplace approximation should be used,

p̃LA(zi|η,D) ∝ p(z,η,D)

p̃GG(z−i|zi,η,D)

∣∣∣
z−i=z∗−i(zi,η)

. (3.8)

Here, p̃GG is the Gaussian approximation to p(z−i|zi,η,D) and z∗−i(zi,η) is the corresponding
posterior mode. The full Laplace approximation of the latent fields defined in equation (3.8) is
rather time consuming, hence lower order Laplace approximations are often used instead. Once
the posterior distribution of the latent variables given the hyperparameters is approximated, the
uncertainty in the hyperparameters can be marginalized out (Rue et al., 2009);

p̃(zi|D) =
∑

k

p̃LA(zi|ηk,D)p̃(ηk|D)∆k, (3.9)

where ∆k is the area weight corresponding to the grid exploration of the posterior distribution of
the hyperparameters. INLA methodology is particularly important for this thesis, since INLA
based marginal likelihoods are used in some of the examples of Papers I and III, whilst its
accuracy is discussed in Paper V.
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4 Model selection and validation

For most of applications, several models m1, ...mM ∈ Ω can be considered simultaneously,
defining a meta level consisting of a set of possible models, also called an ensemble of all pos-
sible models or a model space. Typically, either only one of them is selected or all models get
some mass in the probability distributions of different models from the defined model space.
Furthermore, the purpose of statistical modeling is to give insight through data, and it is im-
portant to give an objective scientific reasoning of whether the insight is achieved. Hence the
criteria for good models should rely upon their capability of describing well the observed data
(being as close to the "true" model as possible and/or giving high predictive power) and being
not too complex. Numerous model selection criteria have been suggested in the literature. Here
a short critical overview of the most popular of them will be given.

4.1 Model selection criteria

In a traditional statistical model selection setting, criteria take care of the trade-off between the
goodness of fit of the model and the complexity of the model. Different model selection criteria
use different fit measures and penalties for the complexities. The details on some of them are
described further.

AIC and BIC

The most popular model selection criteria are the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) (Gelman et al., 2014). AIC is based on the trade-off
between the log likelihood of the model at the point MLE estimate of the parameters and the
number of parameters in the model. Mathematically this is expressed as

AIC = −2 log p(D|θ̂ML) + 2k, (4.1)

where k is the dimensionality of the vector of parameters of the model. In linear models, where
ML estimators can be applied for parameter estimation, it works well. However, in cases beyond
linear models, k cannot simply be computed. k can then be evaluated as the effective number
of parameters, which is an approximation to the number of ‘unconstrained’ parameters, such
that a parameter is counted if it is estimated with no constraints or prior information, and is not
counted if it is fully constrained or all the information about the parameter comes from the prior.
Penalties based on the effective number of parameters are used in WAIC and DIC, described
below in this section.

The BIC criterion is also based on a penalized log-likelihood function at the ML estimate, but
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with a different penalty term. It is defined as

BIC = −2 log p(D|θ̂ML) + k log n, (4.2)

where k is again the number of parameters of the model and n is the sample size. Just like AIC,
BIC can not handle complex collections of models present in high-dimensional variable selec-
tion (or feature selection). Whilst AIC is more suitable for predictions, BIC has the property of
being consistent, meaning that it is able to capture almost surely the true model when n goes to
infinity, under the condition that linear models with fixed numbers of parameters are addressed
and that the true model is within the model space and does not coincide with the null model.

WAIC and DIC

In a fully Bayesian context the traditional model selection criteria, described above, often be-
come biased. To deal with this issue, Bayesian equivalents like the Deviance Information Cri-
terion (DIC) and the Watanabe-Akaike Information Criterion (WAIC) have been developed.
According to Gelman et al. (2014), WAIC provides a good measure for both fit of the existing
data with a proper penalty on the complexity. Unlike AIC and BIC, WAIC has the property
of averaging over the posterior distribution of the parameters rather than conditioning on point
estimate. This is especially relevant for prediction purpose, since WAIC is evaluating the pre-
dictions based on the unobserved new data in a Bayesian context. WAIC is a fully Bayesian
approach for estimating the so called out of sample expectation, giving a computationally con-
venient approximation to cross-validation. The aim is estimating the expectation of the joint log
posterior predictive density,

E[log p(D̃|D)]. (4.3)

where D and D̃ are the old and new data sets, respectively. However, expression (4.3) does not
seem computationally feasible for the cases without conditional independence in the sample
of posterior predictive observations. To resolve this, an artificial measure W [log p(D̃|D)] is
suggested to estimate the out of sample expectation of the model. This measure is simply the
sum of expectations of log point-wise posterior densities,

W [log p(D̃|D)] =
n∑

i=1

E[log p(d̃i|D)], (4.4)

where d̃i are individual observations from the new data set D̃. Note that, under conditional
independence of d̃i|D, d̃i ∈ D̃, equation (4.4) becomes equivalent to equation (4.3). One esti-
mates expression (4.4) by means of first computing the posterior marginalized log likelihood of
the data,

n∑

i=1

log p(di|D) =
n∑

i=1

log

∫

Θ

p(di|θ)p(θ|D)dθ, (4.5)

where di are observations from the old data set D. The integral in (4.5) is typically evaluated
numerically, for example by Laplace approximations or Monte Carlo simulations (comparison
of different approaches of approximating the marginal likelihood is given in Paper V of this
thesis). Then a penalty, based on the effective number of parameters, in the form of equation
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(4.6) or (4.7) is added to equation (4.5) in order to avoid overfitting. In the former choice, the
effective number of parameters is estimated as

pWAIC,1 = 2
n∑

i=1

logEθ|D[p(di|θ)]− 2Eθ|D[log p(di|θ)], (4.6)

whereas in the latter option the variance of individual terms in the log-predictive density scale
is addressed,

pWAIC,2 =
n∑

i=1

Varθ|D[log p(di|θ)]. (4.7)

Thus, WAIC is defined as

WAICi = −2 log p̂(D̃|D) + 2p̂WAIC,i, i ∈ {1, 2}. (4.8)

For Gaussian linear models with large sample sizes, known variances, and uniform prior dis-
tribution on the coefficients, pWAIC,1 and pWAIC,2 become approximately equal to the number
of parameters in the model. In general, they act as the estimates of the effective number of
parameters.

DIC appears to be the most popular predictive measure of choice in Bayesian applications
nowadays, although, unlike WAIC, it relies on a point estimate of the parameter. It can be
interpreted as the Bayesian version of AIC, since it replaces the ML estimate of the parameters
with the posterior means (PM) in the log likelihood approximations. It also uses the effective
number of parameters instead of the exact number k, resulting in a better handling of complex
models. Thus, the DIC criterion is defined as

DICi = −2 log p(D|θ̂PM) + 2p̂DIC,i, i ∈ {1, 2}, (4.9)

where θ̂PM = E[θ|D] and pDIC,i are penalties on the efficient number of parameters, defined as

pDIC,1 = 2 log p(D|θ̂PM))− 2Eθ|D[log p(D|θ))] (4.10)

and
pDIC,2 = 2Varθ|D[log p(D|θ)]. (4.11)

Here pDIC,1 and pDIC,2 both give the effective number of parameters in the limit. For linear
models with uniform prior distributions, both of these measures for effective sample size reduce
to k. pDIC,1 is more numerically stable but pDIC,2 has the advantage of always being positive

The four criteria addressed in this section are not the only model selection criteria used in
practice. In particular, in Paper IV of this thesis mAIC2 and mBIC2 model selection criteria,
capable of controlling the false discovery rate, are addressed. Among other criteria one can
mention EBIC, mAIC and mBIC (Frommlet et al., 2012).
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Cross-validation

Cross-validation investigates the predictive performance of the model by using parts of the data
for inference, and parts of the data for comparing predicted values to observations. A K-fold
cross-validation procedure divides the dataD into K sets, and iteratively uses each sets as a test
sets and the other as train (inference) sets. Ideally, different sets should be used for choosing
the model, estimating the parameters and comparing predicted values to observations. In this
thesis a 2-fold cross-validation procedure is used in three examples of Paper III.

4.2 Advances in Bayesian model selection

If one is interested in Bayes factors and posterior marginal model probabilities, models have to
be differentiated. Hence, to take this into account, the notation of a model m from Ω with the
prior probability distribution p(m) is introduced.

The marginal likelihood (MLIK) is a likelihood function in which parameters have been marginal-
ized out. In the context of Bayesian statistics, it may also be referred to as evidence or model
evidence. Thus, for a model m one aims at calculating

p(D|m) = p(y|X,m) =

∫

Θ

p(y|X,θ,m)p(θ|m)dθ,∀m ∈ Ω. (4.12)

Marginalization in equation (4.12) creates an alternative to penalties on the efficient number of
parameters, since greater dimensions of θ correspond not only to greater likelihoods, but typi-
cally also to smaller prior probabilities p(θ) in a greater dimensional setting. Note that MLIK
can be approximated by the BIC model selection criterion, namely p(m|D) ≈ exp(−BICm

2
), as

discussed in Claeskens et al. (2008).

The Bayes factor (BF) is closely related to marginal likelihoods. It is defined as the fraction of
the MLIKs of a pair of models m and m′,

BF =
p(D|m)

p(D|m′) ,∀m,m
′ ∈ Ω. (4.13)

The Bayes factor is rather sensitive to the choice of the priors on θ, since the priors are integrated
out in both numerator and denominator in (3.2). The Bayes factor should thereby be used
with caution, and preferably only in the cases, when the user has some knowledge of the prior
contributions to the marginal likelihoods.

Finally, the posterior marginal probabilities of the models p(m|D),m ∈ Ω, can be used in
a Bayesian setting for both model selection and model averaging. These posteriors can be
obtained by the Bayes formula as

p(m|D) =
p(D|m)p(m)∑

m′∈Ω p(D|m′)p(m′)
. (4.14)
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Then model selection is performed by choosing the posterior mode in the space of models,
argmaxm∈Ωp(m|D), which is known as the maximum a posteriori probability criterion (MAP).
However, if one is not interested in inference based on model selection, but would rather like
to marginalize out all models to make inference on a quantity ∆ of interest, then the posterior
marginal probabilities can be used,

p(∆|D) =
∑

m∈Ω

p(∆|D,m)p(m|D). (4.15)

This is also known as Bayesian model averaging. In this thesis this approach is used for both
inference and predictions in Papers I-IV.

There are different ways to describe the model space Ω. One can perform selection of the
response distributions or link functions, but by far the most common notion to define Ω is
induced by the context of variable or feature selection. With no loss of generality in defining
Ω, the latter notion will be further addressed in this thesis, when the term model selection is
addressed. To cover a broad class of statistical models consider an extended GAM (introduced
in Section 2.4) of the form:

yi|µi ∼f(y|µi, φ), i ∈ {1, ..., n}, (4.16)

g(µi) =β0 +

q∑

j=1

γjFj(xi|ωj), (4.17)

where now in addition to the parameters, addressed in Section 2.4, γj ∈ {0, 1}, j ∈ {1, ..., q}
are defined as the binary indicators switching the corresponding features Fj(xi|ωj) on and
off. These indicators are defining individual models, m = (γ1, ..., γq). In this setting there
are |Ω| = 2q models in the model space Ω. To complete Bayesian specification of the model,
priors on γ and the vector of parameters of the model θ = {∪qj=1ωj , β0, φ} (conditionally on
γ) should be defined. There are many ways to specify priors on γ and θ. The most standard
approach is a so called "spike and slab" prior, which assumes Bernoulli prior probabilities on
the components of γ, i.e. p(γj = 1) = π, j ∈ {1, ..., q}. This means that ωj are drawn from
the "slab" density with probability π and, with probability 1−π, ωj are equal to zero ("spike").
The slab density as well as the priors on other parameters depend a lot upon applications (hence
are not addressed in this very general introduction). Various choices of priors on both γ and
θ|γ are considered in Papers I-IV of this thesis.

In order to calculate p(m|D) in the settings (4.16)-(4.17) one has to iterate through the whole
model space Ω, which becomes computationally infeasible for large q. One can use MCMC
for evaluating these posteriors. The ordinary MCMC estimate is based on a number of MCMC
samples m(u), u = 1, ...,W :

p̃(m|D) =

∑W
u=1 I(m(u) = m)

W

d−−−−→
W→∞

p(m|D), (4.18)

where I(·) is the indicator function. An alternative, named the renormalized model (RM) esti-
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mates by Clyde et al. (2011), is

p̂(m|D) =
p(D|m)p(m)∑

m′∈V p(D|m′)p(m′)
I(m ∈ V), (4.19)

where V ⊆ Ω is the set of visited models during the search algorithm run (here the search
algorithm does not have to be a proper MCMC). Although both (4.19) and (4.18) are asymp-
totically consistent (provided irreducibility of the search algorithm in Ω), (4.19) will often be
the preferable estimator since convergence of the MCMC based approximation (4.18) is much
slower, see Clyde et al. (2011).

One aims at approximating p(m|D) by means of searching through some subspace V of Ω mak-
ing the approximation (4.19) as precise as possible. Models with high values of p(D|m)p(m)

are important to be addressed. This means that modes and near modal values of marginal like-
lihoods times the prior are particularly important for construction of reasonable V ⊆ Ω and
missing them can dramatically influence the estimates. Note that these aspects are just as im-
portant if the standard MCMC estimate (4.18) is to be used. A main difference is that while
for using (4.18) the number of times a specific model is visited is important, for (4.19) it is
enough that a model is visited at least once. In this context the denominator of (4.19), which
should be as high as possible, becomes an extremely relevant measure for the quality of the
search in terms of being able to capture whether the algorithm visits all of the modes, whilst the
size of V should be low (in practice) in order to save computational time. At the same time, in
order to guarantee that (4.19) is asymptotically unbiased, the addressed search algorithm has to
be irreducible in Ω. Another important aspect of using (4.19) is the flexibility in parallelizing
the search strategies. The process can be embarrassingly parallelized into several chains using
several computational threads. If one is mainly interested in model probabilities, then equa-
tion (4.19) can be directly applied with V being the set of unique models visited within all runs.
The posterior marginal inclusion probability p(γj = 1|D) can be then approximated by

p̂(γj = 1|D) =
∑

m′∈V
I(γj = 1)p̂(m′|D), (4.20)

giving a measure for assessing importance of the covariates or features. Other parameters of
interest can be estimated similarly.

The arguments described in this paragraph motivate the creation of efficient search algorithms
to explore the model space Ω. Existing algorithms for estimating V are described in Sec-
tion 4.3, whilst some novel algorithms for this problem are suggested Papers I-IV of this thesis.
In practice p(D|m) may not be available analytically. One then has to rely on some precise
approximations p̂(D|m). Such approximations introduce additional errors in (4.19) and (4.20),
but in some cases they can be assumed to be small enough to be ignored. Computational com-
parison of various approaches approximating the marginal likelihood is addressed in detail in
Paper V of this thesis.
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4.3 Search algorithms

Model selection algorithms in the Bayesian settings allow to either search for the optimal model
in terms of some of the mentioned above criteria or evaluate posterior model probabilities. A
short summary of the algorithms aiming at the latter will be given further. The search algorithms
with the goal of getting posterior distribution of models and other parameters of interest typi-
cally perform a search in the combined space of models and parameters and rely on MCMC.
However, a few of them work on the marginal space of models, where parameters are marginal-
ized out. Equation (4.14) can be approximated in an asymptotically unbiased way by means
of (4.19) using the search algorithms exploring Ω irreducibly. These algorithms do not even
have to be proper MCMC. This is a well known fact used in numerous articles and some of the
approaches developed in Papers I-IV of this thesis.

Among the approaches working on the marginal space of models we can mention Bové and
Held (2011), who consider an MCMC algorithm within the model space, but only allow local
moves. This might be a severe limitation in cases where multiple sparsely located modes are
present in the model space. Bivand et al. (2014) combine approximations of marginal likelihood
with Bayesian model averaging within spatial models. Clyde et al. (2011) suggest a Bayesian
adaptive sampling (BAS) algorithm as an alternative to MCMC allowing for perfect sampling
without replacement. Another approach for Bayesian model selection working on the marginal
space of models is described by Bottolo et al. (2011, 2010), who propose the moves of MCMC
between local optima through a permutation based genetic algorithm that has a pool of solutions
in a current generation suggested by parallel tempered chains. Song and Liang (2015) address
the case when there is by far more explanatory variables than observations. They suggest a split
and merge Bayesian model selection algorithm that first splits the set of covariates into a number
of subsets, then finds relevant variables from these subsets and in the second stage merges these
relevant variables and performs a new selection from the merged set. In general, this algorithm
cannot guarantee convergence to a global optimum or find the true posterior distribution of
the models. However, under some strict regularity conditions, it does so asymptotically. An
efficient mode jumping MCMC for the model space exploration is suggested in Paper I of this
thesis. Simulations show its computational competitiveness in comparison to other existing
approaches.

There are also algorithms working on the joint space of models and parameters. Some of them
are discussed in George and McCulloch (1997), who outline computational methods includ-
ing Gray Code sequencing and standard MCMC for posterior evaluation and exploration of
the space of models. They also comment on the infeasibility of exhaustive exploration of the
space of models for moderately large problems as well as the inability of standard MCMC tech-
niques to escape efficiently from local optima. Al-Awadhi et al. (2004) also work in this domain
and consider using several MCMC steps within a new model to obtain good proposals within
the combined parameter and model domain, while Yeh et al. (2012) propose local annealing
approaches. Ghosh (2015) also uses MCMC algorithms to estimate the posterior distribution
over models. She observes that the estimates of the posterior probabilities of individual models
based on MCMC output are often not reliable because the number of MCMC samples is typi-
cally considerably smaller than the size of the model space. As a consequence, she considers
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the median probability model of Barbieri et al. (2004) and shows that this algorithm can, under
some conditions, outperform standard MCMC.

All of these works address only linear or generalized linear models. However equations (4.16)-
(4.17) allow to address much broader classes of models. When these classes of models are
addressed, less techniques are available due to the complexity and size of Ω. Some approaches
are developed in the context of logic regression, described in Section 2.4. Important contribu-
tions to the development of logic regression are made by the group of Katja Ickstadt (Fritsch,
2006; Schwender and Ickstadt, 2008), which also provides a comparison of different imple-
mentations of logic regression (Fritsch and Ickstadt, 2007). Schwender and Ruczinski (2010)
give a brief introduction with various applications and potential extensions of logic regression.
Bayesian versions of logic regression combined with model exploration include Monte Carlo
logic regression (MCLR) (Kooperberg and Ruczinski, 2005) and the full Bayesian version of
logic regression (FBLR) by Fritsch (2006). Both MCLR and FBLR use Markov Chain Monte
Carlo (MCMC) algorithms for searching through the space of models and parameters. In Paper
II a novel algorithmic approach for Bayesian logic regression is developed. The developed al-
gorithm shows great performance in the simulation scenarios (compared to FBLR and MCLR).
Proper Bayesian model selection and model averaging in more sophisticated classes of models
such as ANN has never been done before (to the best knowledge of the author). Though, there
are several heuristic approaches in the non-Bayesian settings, like Lari and Abadeh (2014); Ar-
ifovic and Gencay (2001); Zoph et al. (2017). Other recent approaches for the search of an
optimal architecture of neural networks include Pham et al. (2018); Elsken et al. (2017). In
Paper III of this thesis a novel approach for targeting complicated model classes is developed.
Several applied examples show the developed approach to be prominent in both predictive and
inferential examples.
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5.1 Paper I

In the first paper, Bayesian variable selection and model averaging in generalized linear mixed
models (GLMM), discussed in Section 2.3, are addressed. The aim was to develop an efficient
search algorithm across different marginal model configurations just as described in Section 4.3.
The model configurations are here defined by various combinations of explanatory variables, in-
ducing an NP-hard search problem. In a Bayesian setting, the marginal posterior distribution
of the models, based on the observed data, can be viewed as a relevant measure for the model
evidence. This distribution consists of discrete posterior probabilities (4.14) of individual mod-
els, which are proportional to the products of the model priors and marginal likelihoods of
the corresponding models. The marginalization of the parameters simplifies the search signif-
icantly, since the algorithm does not have to explore the joint space of models and parameters
any longer. At the same time, even in this discrete setting, efficient search algorithms have to
be adapted for evaluating posterior distribution within a reasonable amount of time.

In this paper an MCMC algorithm for the search through the model space is suggested. The
algorithm deals with its multimodality through mode jumping proposals. It is called mode
jumping Markov chain Monte Carlo (MJMCMC). MJMCMC relies upon the idea of making
smart moves between the local extrema with a reasonable frequency. In particular, local MCMC
is performed in the absolute majority of the steps, while for the rest a large move in the model
space (which is likely to hit a very low probability model) is made, followed by a local op-
timization. The goal of the latter step is to reach the local extremum in the new part of the
model space. Then the proposal is randomized around this extremum and the transition to the
proposed model is either accepted or rejected. The ergodicity of the suggested Markov chain is
proven. Its limiting distribution is shown to correspond to the marginal posterior model proba-
bilities. Further extensions of the algorithm allowing for parallel computing and using mixtures
of proposals are suggested.

The performance of the suggested algorithm is compared to several existing approaches, like
Random Swap MCMC and Bayesian adaptive sampling (Clyde et al., 2011), on both simulated
and real data. The real examples include the famous U.S. crime data, a protein activity data set
and an epigenetic data set. The algorithms are evaluated based on various performance measures
of accuracy on the posterior probabilities. MJMCMC outperforms the competing approaches
in many of the cases.

5.2 Paper II

The second paper addresses a more sophisticated model selection problem in the context of
Bayesian logic regression. The logic regression model, described in Section 2.4, was initially
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suggested as a tool to construct predictors from Boolean combinations of binary covariates,
which means that the relations between the observations and the explanatory variables are not
linear, unlike in the problem from the first paper. The number of possible logical expressions
is exponential in the number of binary explanatory variables, making the search significantly
harder. In fact, it is not possible anymore to specify the model space a priori. Nevertheless, the
goal is to approximate posterior probabilities of logical expressions involved in the model by
cleverly extending the MJMCMC algorithm.

The idea is to embed MJMCMC into the iterative setting of a genetic algorithm, where the
populations are formed by different subsets of all possible logical expressions. For any fixed
subset, a well defined model space is present, allowing to run MJMCMC on it. Changes in the
population are made in a way to guarantee irreducibility of the algorithm in the model space of
all logic regression models, which is required for asymptotic unbiasedness of the estimated pos-
terior probabilities, as discussed in Section 4.2. Finally, an embarrassing parallelization strategy
is suggested to speed up the inference by using multiple cores on local machines or clusters.
The suggested algorithm is named a Genetically modified mode jumping Monte Carlo Markov
chain (GMJMCMC). The GMJMCMC algorithm though is not a proper MCMC algorithm,
since its stationary distribution does not coincide with the target distribution of interest. At the
same time, renormalized estimates of the posterior probabilities, discussed in Section 4.2, are
applicable. A novel model prior for the Bayesian logic regressions is also suggested. This prior
allows to achieve a good trade off between power and false discovery rate.

The performance of GMJMCMC is evaluated and compared with other Bayesian approaches
for logic regression, namely MCLR (Kooperberg and Ruczinski, 2005) and FBLR (Fritsch,
2006), in 6 advanced simulation scenarios. The simulation studies show great performance
of the suggested approach to recover complex logical expressions with high power and low
false discovery rate for logic regression terms of various complexity. Specifically, GMJMCMC
is shown to be able to identify three-way and even four-way interactions with relatively large
power, a level of complexity which has not been achieved by previous implementations of logic
regression. Finally, GMJMCMC is applied to analyze QTL mapping data for Recombinant
Inbred Lines in Arabidopsis thaliana and from a backcross population in Drosophila where
several interesting epistatic effects are identified.

5.3 Paper III

The third paper provides a generalization of the models and the algorithms of those suggested
in Paper II. This generalization allows to work with all types of explanatory variables. A model
that extends such classes of statistical models as GLM, GLMM, ANN, CART, MARS and
fractional polynomials into a powerful and flexible Bayesian framework is suggested. The sug-
gested model is named deep Bayesian regression model (DBRM). DBRM allows, in particular,
to construct architectures of Bayesian ANN automatically. Additionally it allows for polynoms
of neural networks or CART based on these polynoms (and other interesting mixtures of dif-
ferent known classes of models), giving a lot of flexibility in modeling nonlinearities between
the observations and explanatory variables. Under weak regularity conditions DBRM satisfies
the universal approximation theorem (Hornik, 1991). Overfitting issues are accurately handled
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by using priors, which explicitly penalize complexities of the features and individual models in
the DBRM model space. The link to Papers I and II is straightforward: the basic algorithm for
fitting DBRM is a modification of GMJMCMC, which is adapted to work in a more flexible
model space. In this paper a reversible version of GMJMCMC - RGMJMCMC is also sug-
gested, allowing for the proper MCMC based estimates of posterior probabilities of interest in
the space of deep Bayesian regression models.

In the experimental section of this paper properties of the suggested approach are tested. It is
shown how deep Bayesian regression models can be used for inference and predictions in vari-
ous applications. In particular, four examples are devoted to the former (inference) and three -
to the latter (prediction). The predictive performance of DBRM is compared with those of var-
ious other statistical and machine learning approaches for problems of breast cancer prediction
(whether the tissue is cancerous or not), asteroid classification (whether the asteroid is a poten-
tially hazardous object or not) and spam classification (whether the email is a spam letter or not).
In all of the studies DBRM performs very well, proving its high predictive ability. In three fol-
lowing examples inference on the data with known ground truth is performed. In particular, the
simulation studies include one scenario, in which complex nonlinearities are involved, where
DBRM manages to recover the truth with low FDR and high power. Then two ground physical
laws (planetary mass law and the 3rd Kepler’s law) are addressed. In both cases the laws are
recovered in a closed form with high power and low FDR. Finally, a study on epigenetic data,
where the underlying truth is not known, is performed. Some potentially interesting relations
and the optimal structure of the spacial dependence between the observations are discovered in
this example.

5.4 Paper IV

In the fourth paper Bayesian approaches to genome wide association studies (GWAS) are stud-
ied. In particular, various Bayesian algorithms (including GMJMCMC and CMJMCMC, which
stands for convolutional MJMCMC), developed to search through the class of possible regres-
sion models, are compared. GMJMCMC used in this paper coincides with the versions devel-
oped in Papers II and III. CMJMCMC is a novel algorithm, which uses a 3 staged principal.
First, a subset of all SNPs is preselected with respect to either marginal p-values or marginal
correlations with the responses. Then this subset is divided into independent non-intersecting
subsets of reasonably small cardinality and MJMCMCs are run until convergence for each of
them (second stage). Finally, the best covariates with posteriors above a predefined thresh-
old on the posterior probability are selected and MJMCMC is run until convergence on them
(third stage). After two convolutions it is expected that the final search space contains enough
good models for the high quality inference. However this greedy convolutional approach does
not guarantee asymptotic exploration of the whole model space and hence even asymptotically
does not guaranty unbiasedness of the obtained posteriors. The comparison also includes MOS-
GWA (Gola et al., 2013), an approach previously developed by some coauthors of the paper,
and a frequentist benchmark (Bonferroni corrected marginal t-tests). Smart priors on the class
of possible models, inducing mAIC2 and mBIC2 model selection criteria, are used to control
FDR and FWER. A novel Bayesian method for estimating the proportion of the trait variance
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explained by the genetic factors is also proposed. Different Bayesian approaches and a fre-
quentist benchmark are compared on three advanced simulation scenarios. All of the Bayesian
approaches significantly outperform the frequentist benchmark. This paper is a practical ex-
ample of how the approaches developed in Papers I, II, and III can be applied to real world
data with a high number (of order 104 and larger) of potential regressors. At the moment of
submission of this thesis this paper is a work in progress. Some additional work has to be done
before being able to submit it. In particular, in addition to the algorithms, described above, it
would be of interest to add MOSGWA memetic algorithm (introduced in the paper) to the sim-
ulation study. Additionally piMASS approach (Guan and Stephens, 2011) should definitely be
included in the comparison to be able to draw more sound and comprehensive conclusions. Re-
cently variational Bayes based approaches (Carbonetto et al., 2012) have been shown efficient
for Bayesian variable selection in GWAS and we should consider them as a part of the simula-
tion study too. Finally, some consistency studies, based on real data should be performed. It is
planned to address two challenging real data sets. First, the expression data from Stranger et al.
(2007) will be reanalyzed for those nine genes, for which analysis with MOSGWA reported by
Frommlet et al. (2012) gave models with at least three SNPs. This data set is extremely chal-
lenging due to the rather small sample size. As a second example STAMPEED data from the
Northern Finland Birth Cohort 1966 (Sabatti et al., 2009) will be considered.

5.5 Paper V

All the approaches used in the first four papers are based on marginal posterior probabilities.
To calculate them, one needs to first efficiently obtain the marginal likelihood or its accurate
estimate. Note that the marginal likelihood itself is a well established model selection criterion
in Bayesian statistics. In many complex models, including latent modeling approaches and
Bayesian neural networks, the marginal likelihood is not tractable and, generally speaking, very
difficult to compute. Different approximations are available. One recent promising approach for
approximating the marginal likelihood is the Integrated Nested Laplace Approximation (INLA).

In this paper the approximation of the marginal likelihood obtained with INLA is compared to
some alternative approaches (Laplace approximations, Chib’s method (Chib, 1995), Chib and
Jeliazkov’s method (Chib et al., 1998), harmonic means, etc.) on a number of examples of
different complexities. In particular, a simple linear latent model, a Bayesian linear regression
model, logistic Bayesian regression models with probit and logit links, and a Poisson longitu-
dinal generalized linear mixed model are considered. It is shown that INLA approach is fast,
accurate and robust. Chib’s and Chib and Jeliazkov’s methods also perform very well but are
significantly slower. The standard Laplace approximations are the fastest, but can sometimes be
less precise. Nevertheless they become very accurate for large enough samples. Based on the
results suggested in this paper, some of the mentioned above approximations of the marginal
likelihood can be trusted and hence their use in practice is justified. This paper is a technical
report, where important studies for justification of the methods, used in the other papers from
this thesis, were performed. However it is not planned to submit it for publication as a separate
article.
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6 Discussion

In this PhD thesis important problems of Bayesian model selection and model averaging are
addressed in various regression contexts. The approaches developed here are all based on the
idea of marginalizing out parameters from the likelihood. This allows to work on the marginal
space of models, which simplifies the search algorithms significantly. For the linear models an
efficient mode jumping Monte Carlo Markov chain algorithm was suggested. The approach per-
formed very well on simulated and real data. Further, the algorithm was extended to work with
logic regressions, where one has a feature space consisting of various complicated logical ex-
pressions, which makes enumeration of all features computationally and memory infeasible in
most of the cases. The genetically modified MJMCMC algorithm was suggested to resolve this
issue. The algorithm combines the idea of keeping and updating the populations of highly pre-
dictive logical expressions combined with MJMCMC for the efficient exploration of the model
space. Several simulation and real data studies show that logical expressions of high orders can
be recovered with large power and low false discovery rate, which was not feasible with the
existing algorithms for Bayesian logic regression. Moreover, the genetically modified MJM-
CMC approach (GMJMCMC) is adapted to estimate posterior model probabilities, perform
Bayesian model averaging and selection within the class of deep Bayesian regression models
(which, as suggested in this thesis, is an extension of various machine and statistical learning
models like ANN, CART, logic regressions and GLMM). The reversible GMJMCMC, named
RGMJMCMC, is also suggested. It makes transitions between the populations of variables in
a way that satisfies the detailed balance equation. Based on several examples, it is shown that
the DBRM approach can be efficient for both inference and prediction in various applications.
In particular, two ground physical laws were recovered from the data with large power and low
FDR. Three classification examples were also studied, where the comparison to other popular
machine and statistical learning approaches was performed. Finally, a thorough study compar-
ing different Bayesian approaches to GWAS (including the GMJMCMC based approach) was
done. In particular, it was shown that the approaches suggested in the thesis may be success-
fully applied to data with a huge number of explanatory variables, if accurately tuned. The
developed algorithms often require significant resources in terms of computational time, hence
embarrassing parallelization of MJMCMC, GMJMCMC and RGMJMCMC was suggested and
used in some of the examples. Within this parallelization one runs multiple independent chains
of the algorithms, which all explore some (possibly intersecting) parts of the model space. Then
the results are merged together using Bayes formula of a type (4.14) with the set of all unique
models visited by the algorithms. It is in general recommended to use parallelization when
possible. A memory efficient way to perform map and reduce steps within the parallelization
is also proposed. The EMJMCMC R-package is developed and currently available from the
GitHub repository (Hubin, 2018). The developed package gives to the user high flexibility in
the choice of the methods to obtain marginal likelihoods and model selection criteria for the
class of DBRM models.
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6.1. Future work and extensions

6.1 Future work and extensions

There are several important ways to extend the work presented in this thesis. Many of the po-
tential future extensions are described in detail in the discussion sections of the corresponding
articles. Theoretical studies of the properties of the approaches suggested in this thesis could be
of great interest. For example, proving consistency of deep Bayesian regression model (in terms
of being able to recover the data generating model) is of a particular importance. Moreover, sev-
eral extensions of the models, addressed in this thesis, could be suggested to allow even more
flexibility. As mentioned in the discussion section of Paper I (and is not yet resolved), there
is a particular interest in extending the approaches from Papers I-III towards automatic search
through different probability distributions for the responses, hence further relaxing the model
assumptions. Handling missing data is also not yet incorporated in the developed in this thesis
approaches. It might be of a particular importance to carry out some research in this direc-
tion. However, in this discussion the most important future work from the author’s perspective
will be described. This work could be build upon the adaptation of the suggested models and
algorithms to extremely large sample sizes and numbers of explanatory variables. All the ap-
proaches developed in the thesis rely on marginalization of parameters of individual models
and working with the marginal space of model configurations. To be able to perform this, one
needs to compute the marginal likelihood (4.12), which currently is among the major computa-
tional bottlenecks. In fact, the computation of the marginal likelihood for a dataset consisting of
millions and billions of observations becomes almost infeasibly slow with the standard meth-
ods. At the same time, large data samples do not seem unreasonable any longer. Machine
learning techniques have shown to be able to successfully deal with large data sets. For ex-
ample, stochastic gradient descent, originally introduced as a stochastic approximation method
in Robbins and Monro (1951), allows to train deep neural networks (often involving millions
and billions of parameters too) on arbitrary large datasets. The success of modern stochastic
gradient descent approaches relies upon the extensive use of parallel computing and efficient
subsampling techniques. However, subsampling in a proper Bayesian way (with guarantees of
the ergodicity of the corresponding Markov chain Monte Carlo) is significantly more demand-
ing from both methodological and computational perspectives. Beaumont (2003); Andrieu and
Roberts (2009) have shown that if one replaces p(θ|D) described in detail in Section 3.2 by
its unbiased estimate p̂(θ|D) : E[p̂(θ|D)] = p(θ|D), then all of the standard asymptotic prop-
erties of the standard Metropolis-Hastings algorithm are still valid. The question then is how
to construct such p̂(θ|D) using subsampling techniques. It is very easy to construct the unbi-
ased estimates of ̂log p(θ|D) by means of, for example, importance sampling. Unfortunately
exp

(
̂log p(θ|D)

)
is not an unbiased estimate of p(θ|D), which means that more advanced

techniques should be applied.

Subsampling MCMC

There are several attempts to suggest subsampling techniques for MCMC using additional in-
formation from the data. These attempts are either approximate (Bardenet et al., 2014, 2017;
Korattikara et al., 2014; Quiroz et al., 2014) or exact (Quiroz et al., 2016; Maclaurin and
Adams, 2014; Liu et al., 2015). Maclaurin and Adams (2014), for instance, suggest the firefly
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6. DISCUSSION

MCMC approach. The approach is based upon introducing auxiliary and latent binary indi-
cators zi, i ∈ {1, ...n} indicating if realization of the random variable corresponding to obser-
vation i is considered for calculation of the likelihood in the given MCMC step or not. Con-
sider the notation used in Section 3.2 with conditionally independent observations and extend
p(θ|D) ∝ p(θ)

∏n
i=1 p(yi|xi,θ) to

p(θ, z|D) ∝p(θ)
n∏

i=1

p(yi|xi,θ)

[
p(yi|xi,θ)−Bi(θ)

p(yi|xi,θ)

]zi [ Bi(θ)

p(yi|xi,θ)

]1−zi
(6.1)

where zi ∈ {0, 1} and 0 ≤ Bi(θ) ≤ p(yi|xi,θ). Obviously, in this settings p(θ|D) is the
marginal distribution of p(θ, z|D). Then a standard MCMC can be performed on the joint
space of parameters z and θ, with

p(θ|D, z) ∝
n∏

i=1

[p(yi|xi,θ)−Bi(θ)]zi [Bi(θ)]1−zi , (6.2)

which only requires evaluation of p(yi|xi,θ) for zi = 1, and

p(z|D,θ) ∝
n∏

i=1

[
p(yi|xi,θ)−Bi(θ)

p(yi|xi,θ)

]zi [ Bi(θ)

p(yi|xi,θ)

]1−zi
, (6.3)

which corresponds to simple binomial sampling. The main computational benefit of this ap-
proach is that if Bi(θ) are simple to calculate, it is enough to sample from a (small) fraction of
complex components corresponding to zi’s at each iteration.

Another prominent subsampling idea is suggested in Welling and Teh (2011), who propose
a stochastic gradient MCMC technique. Recall first stochastic gradient optimization (SGO)
(Robbins and Monro, 1951), that guarantees convergence to a local extremum of the likelihood:

θ(u+1) =θ(u) +
ε(u)

2

(
∇ log p(θ(u)) +

n

m

m∑

i=1

∇ log p(yu,i|xu,i,θ(u))

)
, (6.4)

where one requires the regularity conditions

∞∑

u=1

ε(u) =∞,
∞∑

u=1

ε(u)2
<∞ (6.5)

to be satisfied. Also the likelihood function has to be smooth with respect to the parameters
of interest. Recall the standard Langevin dynamics MCMC procedure (Beskos et al., 2008)
capable of drawing from the posterior,

θ(u+1) = θ(u) +
ε

2

(
∇ log p(θ(u)) +

n∑

i=1

∇ log p(yi|xi,θ(u))

)
+ η(u), η(u) ∼ N(0, ε) (6.6)

Welling and Teh (2011) showed that a procedure combining the two approaches mentioned
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above is drawing from the posterior distribution of a parameter of interest θ, when the regularity
conditions (6.5) are satisfied. This modification is called stochastic gradient Langevin dynamics
MCMC and has the following form:

θ(u+1) = θ(u) +
ε(u)

2

(
∇ log p(θ(u)) +

n

m

m∑

i=1

∇ log p(yu,i|xu,i,θ(u))

)
+ η(u), (6.7)

where just like in the standard Langevin dynamics MCMC procedure η(u) ∼ N(0, ε(u)).

Delayed acceptance MCMC

In addition, the delayed acceptance MCMC (Banterle et al., 2014) can be used to speed-up
MCMC. It relies upon the following idea. Assume θ(u) is generated according to the standard
MCMC procedure described in Section 3.2. The delayed acceptance MCMC suggests to accept
θ(u) if it both is preliminary accepted with a probability

min{1, p(θ(u)|D)

p(θ(u−1)|D)
} (6.8)

and is finally accepted with a probability

min{1, qr(θ(u−1)|θ(u))
qr(θ

(u)|θ(u−1))
}. (6.9)

One rejects the proposal if any of the criteria is not satisfied. This allows to gain computational
efficiency when rejecting in the first stage, although in general the total acceptance rate will be
smaller than without delayed acceptance (Banterle et al., 2015, remark 1). The delayed accep-
tance MCMC approach is addressed in detail in Papers I and III of this thesis. Combinations
of the delayed acceptance MCMC and subsampling have been also suggested in several works
(Quiroz et al., 2017; Payne and Mallick, 2014). However, these approaches are still severely
limited because a full data set has to be used for all the accepted transitions in MCMC.

Divide and conquer MCMC

To facilitate computations, divide and conquer MCMC procedures (Neiswanger et al., 2013;
Scott et al., 2016; Wang and Dunson, 2013; Li et al., 2017; Minsker et al., 2014) have also
been proposed. These methods typically rely upon three steps. The first step is to split the
data into a large number of smaller (possibly overlapping) data sets. The second stage is to
perform inference on each smaller data set. In the third stage the results are combined together.
Within these approaches computation is performed on small data sets, moreover, the second
stage can be embarrassingly parallelized. However one typically ends up with inexact results,
although some asymptotic results are becoming available. Consensus Monte Carlo algorithm
(Scott et al., 2016), for instance, uses the following idea. Assume conditionally independent
blocks y1, ...,yS . This allows to factorize the posterior as

p(θ|D) ∝
S∏

s=1

p(ys|xs,θ)p(θ)1/S. (6.10)
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Then one can simulate θs,1, ...,θs,G from ps(θ|D) ∝ p(ys|xs,θ)p(θ)1/S and combine the re-
sults as θg = (

∑
sW s)

−1∑
sW sθs,g. This algorithm is approximate, but gives exact poste-

riors if ps(θ|D), s = 1, ..., S are Gaussian and the weights are chosen as W s = Varps(θ|D)[θ].
Otherwise the inference is approximate.

Unfortunately, none of the approaches described above is very efficient. Moreover, to the best
knowledge of the author, no subsampling techniques in the context of proper Bayesian model
selection and model averaging have been suggested, giving potentially interesting directions for
the new research.

Variational inference in Bayesian deep learning

Another important extension of the performed work relates to developing methodology for ap-
proximating marginal likelihoods across all layers in deep Bayesian regression models (intro-
duced in Paper III) or deep Bayesian neural networks. Consider the ANN model of a form (2.13)
with parametric neurons (2.14) described in Section 2.5. Let θ be a vector of all parameters of
this ANN across all layers. Define a prior p(θ) for them. Consider also (for simplicity) φ fixed
and known (hence excluded from θ). The most straight forward (and computationally feasible)
solution to approximate the marginal likelihood (across all layers) in this settings is to rely upon
variational approximations obtained by using efficient subsampling techniques, as shown in Gal
(2016). Consider Gaussian variational families with independence across weights, resulting in
p(θ|D,m) ≈ p̂VB(θ|D,m) = qη̂(θ) with

qη(θ) =
∏

i∈{1,...,l}
qηi(θi), (6.11)

where qηi(θi) = N(µm,i, σ
2
m,i). Here ηi = (µm,i, σ

2
m,i) and η = (η1, ...,ηl) with l being a total

number of variational components. As discussed in Section 3.2, in the VB approach one aims
at minimization of Kullback-Leibler divergence between the variational family distribution and
the true posterior, namely,

KL(qη(θ)||p(θ|D,m)) =

∫

Θ

qη(θ) log
qη(θ)

p(θ|D,m)
dθ. (6.12)

The minimization of this divergence is mathematically equivalent to the maximization of the so
called evidence lower bound (ELBO) with respect to η, where ELBO is

LV I(η) :=

∫

Θ

qη(θ) log p(D|θ,m)dθ − KL(qη(θ)||p(θ)). (6.13)

Here ELBO is always smaller or equal than the log marginal likelihood of model m, i.e.
LV I(η) ≤ log p(D|m). The integration is replaced with optimization with respect to the vari-
ational parameters θ, exactly as described in Section 3.2. However note that even within this
computationally simplified (compared to a proper MCMC approach) case, one requires to com-
pute

∫
Θ
qη(θ) log p(D|θ,m)dθ, which is infeasible for very large samples (it requires calcula-

tions over the whole data). Clever subsampling allows to resolve this computational issue. From
equation (6.13) and under the assumption of conditional independence of the observations, it
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directly follows that

LV I(η) =
N∑

i=1

∫

Θ

qη(θ) log p(yi|θ,xi,m)dθ − KL(qη(θ)||p(θ)). (6.14)

Here
∫

Θ
qη(θ) log p(yi|θ,xi,m)dθ are still not tractable for the Bayesian neural networks with

more than one hidden layer. Additionally one still has to carry out computations over the whole
data set, which is computationally expensive for large sample sizes n. The latter issue can be
addressed by applying the so called mini-batch optimization, i.e. by optimizing

L̂V I(η) :=
N

M

∑

i∈S

∫

Θ

qη(θ) log p(yi|θ,xi,m)dθ − KL(qη(θ)||p(θ)), (6.15)

where S is the set of indices of size M corresponding to random subsample of the whole data
sample. Obviously, this is an unbiased estimator of the ELBO, henceES[L̂V I(η)] = LV I(η). A
stochastic gradient descent over several subsamples with indices S can be applied for this part,
yielding some local extremum of LV I(η) (Gal, 2016). Another complicated issue is to obtain
∂
∂η

∫
Θ
qη(θ) log p(yi|θ,xi,m)dθ for computing the gradient. This issue has been attempted to

be resolved in the deep Bayesian learning community by the following simple approach. With
no loss of generality, consider an integral derivative of the form:

I(η) =
∂

∂η

∫

Ωx

f(x)pη(x)dx, (6.16)

where f(x) is a function differentiable almost everywhere and pη(x) is a density function with
parameter η. Also assume that the integral exists and it is finite in order to switch the order
of integration and differentiation. One of the approaches to compute (6.16) is to remember
a standard algebraic trick and notice that ∂

∂η
pη(x) = pη(x) ∂

∂η
log pη(x), yielding, under the

assumption of existence and finity of the integral:

∂

∂η

∫

Ωx

f(x)pη(x)dx =

∫

Ωx

f(x)
∂

∂η
pη(x)dx =

∫

Ωx

f(x)pη(x)
∂

∂η
log pη(x)dx. (6.17)

Obviously, it follows that I(η) can be approximated by an unbiased estimator of the form
Î(η) = 1

M

∑M
i=1 f(xi)

∂
∂η

log pη(xi), with xi ∼ pη(x). This estimator, however, exhibits large
variance and hence some variance reduction techniques like a common random numbers ap-
proach (known as a repartmentalization trick in the machine learning literature) should be used
(Gal, 2016).

Variationally approximated marginal likelihood p̂VB(D|m) for a given model m can be ex-
tremely biased in practice. When performing MCMC algorithms based on p̂VB(D|m), one has
to keep in mind that there are no guarantees of asymptotic unbiasedness of the results. Within
the discussed approach this comes as the price for feasibility of inference. More research has to
be conducted on how to find a balanced trade off between the bias and computational complex-
ity. On the other hand, one can be not interested in using variationally approximated marginal
likelihood and instead use variational inference for Bayesian model selection directly. There are
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successful applications of this approach in the context of linear models (Carbonetto et al., 2012).
A natural extension of the idea suggested in Carbonetto et al. (2012) to a general variable selec-
tion context of form (4.16)-(4.17) can be adapted. Consider, for instance, a model (4.16)-(4.17)
with features Fj(xi|ωj) from the topology of deep Bayesian regression models, described in
Paper III of this thesis. Loosely speaking, the q features in this context correspond to all possi-
ble architectures of neural networks of a limited depth, based on all combinations of addressed
activation functions and all possible connections between the neurons. Consider, without loss
of generality, β0 fixed and known and define variational approximation as

qη(θ,γ) =
∏

j∈{1,...,q}
qηj(ωj, γj), (6.18)

where now the factorized components qηj(ωj, γj) are of the form

qηj(ωj, γj) =

{
αjNpγj

(µγj ,Σ
2
γj

), if γj = 1;

(1− αj)δ0(ωj), if γj = 0.
(6.19)

Here δ0(·) is the delta mass or "spike" in the notation from Section 4.2 at zero and ηj =

(µγj ,Σ
2
γj
, αj). Thus, with probability αj , the parameters of a feature j are multivariate normal

with a diagonal covariance matrix structure ("slab"), and otherwise the feature is considered to
have no effect on the observations y. Then minimization of the KL divergence between the true
posterior and the variational approximation can be performed similarly to the way described
above in this section. This Bayesian feature selection approach scales linearly with respect
to the number of features, unlike the approaches developed in this thesis (which in the limit
search through 2q configurations). However if q itself is exponential in the number of input
explanatory variables (like in the case of deep Bayesian regression models or Bayesian logic
regression), calculation of (6.18) becomes infeasible and some novel techniques to approximate
it in a pragmatic (yet reasonable) way should be developed. One could think, for instance, of
introducing the latent binary indicators already for all of the components (both weights and ac-
tivations) of a single dense and fully connected ANN with the mean vector of the form (2.15).
Recall (2.13), define G = {σ1(·), ..., σT (·)} to be the set of all allowed activation functions (just
as defined in Paper III) and update (2.14) as

z
(l+1)
ij =

T∑

t=1

δ
(l)
tj σt


τ l0jβ(l)

0j +

p(l)∑

k=1

τ
(l)
kj β

(l)
kj z

(l)
ik


 , (6.20)

where the latent binary indicators δ(l)
tj ∈ {0, 1}, t ∈ {1, ..., T}, l ∈ {1, ..., L− 1} such that∑T

t=1 δ
(l)
tj = 1 are used for choosing the corresponding activation function at layer l and

τ
(l)
kj ∈ {0, 1}, k ∈ {0, ..., p(l)}, l ∈ {1, ..., L − 1} are the binary indicators for switching on

the corresponding beta coefficients at layer l. To complete Bayesian specification priors for all
parameters of (6.20) should be specified: φ ∼ pφ(φ), δ ∼ pδ(δ), τ ∼ pτ (τ ),β|τ ∼ pβ(β). As
discussed in Paper III of this thesis the priors depend drastically upon the application. On the
one hand, notation of (6.20) maps to the definition of DBRM models, described in Paper III. On
the other hand, if one uses Gaussian priors for the beta coefficients p(β|τ ) = N|τ |(µβ,Σβ)
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and independent Bernoulli priors for the latent binary indicators, τkl ∼ Bernoulli(ρτ ) and
δtl ∼ Bernoulli(ρδ), this idea becomes closely related to variational dropout, actively used
in the Bayesian deep learning community (Gal and Ghahramani, 2016; Molchanov et al., 2017;
Gal and Ghahramani, 2015; Kingma et al., 2015). Performing variational inference on all pa-
rameters of equation (6.20) allows to linearize the variational distribution for feature selection
even further, making the approach indeed scalable. Gal and Ghahramani (2016) claim that it is
prohibitive to use fully Bayesian inference for such models due to the computational complexity
of the latter to support usage of variational Bayes. The question then is whether this pragmatic
simplification will cause serious problems for the inference based on the model. This is partic-
ularly important in the light of the warning made by Jordan et al. (2013), namely: "Gatherers
of large-scale data are often forced to turn to ad hoc procedures that perhaps do provide al-
gorithmic guarantees but which may provide no statistical guarantees and which in fact may
have poor or even disastrous statistical properties." And indeed Bayesian deep learning, per-
formed with variational Bayes, has received a fair amount of criticism. Hron et al. (2017), for
instance, claim that a popular variational Gaussian dropout technique is not Bayesian at all,
since it induces an ill-posed posterior. The latter means that one cannot make inference based
on this approach in the Kolmogorov’s probability notion (Kolmogorov), however it has to be
noted (and it is not mentioned in Hron et al. (2017)) that delicately tuned inference may be
done for the improper distributions in the Renyi’s probability notion (Rényi, 1955), as noticed
in Taraldsen (2018); Taraldsen and Lindqvist (2007, 2010); Lindqvist and Taraldsen (2017).

Other remarks

Returning to other directions for continuing the research performed in this thesis, one can ad-
mit that the use of graphical processing units (GPU) in the developed approaches will allow to
achieve even better scalability. In particular, it could allow to speed up the process of obtaining
the marginal likelihood based on variational approximations for individual models. In the ma-
chine learning community it is standard to compare all novel approaches with the existing ones
based on some benchmark data sets. These datasets typically include MNIST (LeCun et al.,
1998), CIFAR10 (Krizhevsky and Hinton, 2009), CIFAR100 (Krizhevsky and Hinton, 2009),
and IMAGENET (Deng et al., 2009). In order to convince scientists from that community that
the developed approaches are reasonable and efficient, some efforts to compare their perfor-
mance to other machine learning techniques have to be done. Furthermore, once a scalable
approach for large sample sizes becomes available, it would be of a particular interest to carry
out epigenetic data analysis, like the one appearing in Papers I and III, on the full genome (in-
cluding several million observations), to get more evidence for finding sophisticated nonlinear
patterns for explanation of epigenetic observations.
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a b s t r a c t

Generalized linear mixed models (GLMM) are used for inference and prediction in a

wide range of different applications providing a powerful scientific tool. An increasing

number of sources of data are becoming available, introducing a variety of candidate

explanatory variables for these models. Selection of an optimal combination of variables is

thus becoming crucial. In a Bayesian setting, the posterior distribution of themodels, based

on the observed data, can be viewed as a relevant measure for the model evidence. The

number of possible models increases exponentially in the number of candidate variables.

Moreover, the space of models has numerous local extrema in terms of posterior model

probabilities. To resolve these issues a novel MCMC algorithm for the search through

the model space via efficient mode jumping for GLMMs is introduced. The algorithm

is based on that marginal likelihoods can be efficiently calculated within each model.

It is recommended that either exact expressions or precise approximations of marginal

likelihoods are applied. The suggested algorithm is applied to simulated data, the famous

U.S. crimedata, protein activity data and epigenetic data and is compared to several existing

approaches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study variable selection in generalized linear mixed models (GLMM) addressed in a Bayesian setting.

Being one of the most powerful modeling tools in modern statistical science (Stroup, 2013) these models have proven

to be efficient in numerous applications including simple banking scoring problems (Grossi and Bellini, 2006), insurance

claims modeling (David, 2015), studies on the course of illness in schizophrenia, linking diet with heart diseases (Skrondal

and Rabe-Hesketh, 2003), analyzing sophisticated astrophysical data (de Souza et al., 2015), and inferring on genomics
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data (Lobraux and Melodelima, 2015). In many of these applications, the number of candidate explanatory variables
(covariates) is large, making variable selection a difficult problem, both conceptually and numerically. In this paper we will
focus on efficient Markov chain Monte Carlo (MCMC) algorithms for such variable selection problems. Our focus will be on
posterior model probabilities although other model selection criteria can also easily be adopted within the algorithm.

Algorithms for variable selection in the Bayesian settings have been previously addressed, but primarily in the combined
space of models and parameters. George and McCulloch (1997) describe and compare various hierarchical mixture prior
formulations for Bayesian variable selection in normal linear regression models. They outline computational methods
including Gray Code sequencing and standard MCMC for posterior evaluation and exploration of the space of models. They
also comment on the infeasibility of exhaustive exploration of the space of models for moderately large problems as well
as the inability of standard MCMC techniques to escape from local optima efficiently. Al-Awadhi et al. (2004) consider
using several MCMC steps within a newmodel to obtain good proposals within the combined parameter andmodel domain
while Yeh et al. (2012) propose local annealing approaches. Ghosh (2015) also addresses MCMC algorithms to estimate
the posterior distribution over models. She observes that estimates of posterior probabilities of individual models based
on MCMC output are often not reliable because the number of MCMC samples is typically considerably smaller than the
size of the model space. As a consequence she considers the median probability model of Barbieri et al. (2004) instead
and shows that this algorithm can, under some conditions, outperform standard MCMC. Yet another approach for Bayesian
model selection is addressed by Bottolo et al. (2011), who propose the moves of MCMC between local optima through a
permutation based genetic algorithm that has a pool of solutions in a current generation suggested by parallel tempered
chains. A similar idea is considered by Frommlet et al. (2012). Multiple try MCMC methods with local optimization have
been described by Liu et al. (2000). Song and Liang (2015) address the case when there is by far more explanatory variables
than observations. They suggest a split and merge Bayesian model selection algorithm that first splits the set of covariates
into a number of subsets, then finds relevant variables from these subsets and in the second stage merges these relevant
variables and performs a new selection from the merged set. This algorithm in general cannot guarantee convergence to a
global optimum or find the true posterior distribution of themodels, however under some strict regularity conditions it does
so asymptotically.

For an increasing number of model classes, marginal likelihoods for specific models can be efficiently calculated, either
exactly or approximately. This makes the exploration of models much easier. Bové and Held (2011) consider an MCMC
algorithm within the model space, but only allow local moves. This might be a severe limitation in cases where multiple
sparsely located modes are present in the model space. Bivand et al. (2014) combine approximations of marginal likelihood
with Bayesian model averaging within spatial models. Clyde et al. (2011) suggest a Bayesian adaptive sampling (BAS)
algorithm as an alternative to MCMC allowing for perfect sampling without replacement.

In the general MCMC literature, various algorithms for exploration of model spaces with multiple sparse modes have
been suggested. These approaches can be divided into two groups: methods based on exploration of the tempered target
distributions (allowing to flatten or increase multimodality for different temperatures) and methods based on utilization
of local gradients. The first group of algorithms was initialized with the parallel tempering approach (Geyer, 1991), which
further had numerousmodifications (Liang, 2010;Miasojedowet al., 2013; Salakhutdinov, 2009). One of themost prominent
extensions is the equi-energy sampling approach (Kou et al., 2006), which utilizes the physical duality between temperature
and energy. This approach targets directly the former to flatten or tighten the parameter spaces. Another extension is the
multi domain sampling approach (Zhou, 2011), which first uses the target distribution tempering idea to find the set of
local modes and then uses local MCMC to explore the regions around them for further global inference. The second group
of algorithms uses auxiliary variables combined with gradients of the extended distribution to explore the state space
accurately (Neal et al., 2011; Chen et al., 2014; Sengupta et al., 2016 andmany others). Both groups of algorithms aremainly
developed for exploration of continuous parameter spaces. All of these algorithms can in principle be adapted to discrete
space problems. The approach in this article will be to adapt the mode jumping MCMC idea of Tjelmeland and Hegstad
(1999) to the variable selection problem, utilizing the existence of marginal likelihoods for models of interest.

Different approaches can be applied for calculation of marginal likelihoods. For linear models with conjugate priors,
analytic expressions are available (Clyde et al., 2011). In more general settings, MCMC algorithms combined with e.g. Chib’s
method (Chib, 1995) can be applied, giving however computationally expensive procedures. See also Friel and Wyse
(2012) for alternative MCMC based methods. For Gaussian latent variables, the computational task can be efficiently solved
through the integrated nested Laplace approximation (INLA) approach (Rue et al., 2009). Hubin and Storvik (2016) compare
INLA with MCMC based methods, showing that INLA based approximations are extremely accurate and require much less
computational effort than the MCMC approaches for within-model calculations.

In this paper we introduce a novel MCMC algorithm for search through the model space, the mode jumping MCMC
(MJMCMC). The focus will be on Gaussian latent variable models, for which efficient approximations to marginal likelihoods
are available. The algorithm is based on the idea of mode jumping within MCMC—resulting in an MCMC algorithm which
manages to efficiently explore the model space by means of mode jumping, applicable through large jumps combined with
local optimization. Mode jumping MCMC methods within a continuous space setting were first suggested by Tjelmeland
and Hegstad (1999). We modify the algorithm to the discrete space of possible models, requiring both new ways of making
large jumps and of performing local optimization. We include mixtures of proposal distributions and parallelization to
further improve the performance of the algorithm. A valid acceptance probability within the Metropolis–Hastings setting is
constructed based on the use of backward kernels.
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2. The generalized linear mixed model

We consider the following generalized linear mixed model:

Yi|μi ∼f(y|μi), μi = g−1 (ηi) , (1)

ηi =β0 +
p∑

j=1

γjβjxij + δi (2)

and

δ = (δ1, . . . , δn) ∼ Nn (0,Σb) . (3)

Here Yi is the response variable while xij, j = 1, . . . , p are the covariates. We assume f(y|μ) is a density/distribution from the
exponential family with corresponding link function g(·). The latent indicators γj ∈ {0, 1}, j = 1, . . . , p define if covariate
xij is to be included into the model (γj = 1) or not (γj = 0) while βj ∈ R, j = 0, . . . , p are the corresponding regression
coefficients.We are also addressing the unexplained variability of the responses and the correlation structure between them
through random effects δi with a specified parametric covariance matrix structure defined through Σb = Σb (ψ) ∈ R

n×n,
where ψ are parameters describing the correlation structure.

In order to put the model into a Bayesian framework, we assume

γj|q ∼ Binom(1, q), j = 1, . . . , p (4)

and

q ∼ Beta(aq, bq), (5)

where q is the prior probability of including a covariate into the model. For (β,ψ) different priors are possible, see the
applications in Section 4.

Let γ = (γ1, . . . γp), which uniquely defines a specific model. Assuming the constant term β0 is always included, there are
L = 2p different models to consider. We want to find a set of the best models with respect to posterior model probabilities
p(γ|y), where y = (y1, . . . , yn). We assume that marginal likelihoods p(y|γ) are available for a given γ , and then use MCMC
to explore p(γ|y). By Bayes formula

p(γ|y) = p(y|γ)p(γ)∑
γ ′∈Ω p(y|γ ′)p(γ ′)

. (6)

In order to calculate p(γ|y) we have to iterate through the wholemodel spaceΩ , which becomes computationally infeasible
for large p. The ordinary MCMC based estimate is based on a number of MCMC samples γ (i), i = 1, . . . ,W :

p̃(γ|y) =
∑W

i=1 1(γ (i) = γ)

W

d−−−→
W→∞

p(γ|y), (7)

where 1(·) is the indicator function. An alternative, named the renormalized model (RM) estimates by Clyde et al. (2011), is

p̂(γ|y) = p(y|γ)p(γ)∑
γ ′∈V p(y|γ ′)p(γ ′)

1(γ ∈ V), (8)

where now V is the set of visited models during the MCMC run. Although both (8) and (7) are asymptotically consistent, (8)
will often be the preferable estimator since convergence of the MCMC based approximation (7) is much slower, see Clyde
et al. (2011).

We aimat approximating p(γ|y) bymeans of searching for some subspaceV ofΩ making the approximation (8) as precise
as possible. Models with high values of p(y|γ) are important to be addressed. This means that modes and near modal values
of marginal likelihoods are particularly important for construction of reasonable V ⊂ Ω and missing them can dramatically
influence our estimates. Note that these are aspects just as important if the standardMCMC estimate (7) is to be used. Amain
difference is that while for using (7) the number of times a specific model is visited is important, for (8) it is enough that a
model is visited at least once. In this context the denominator of (8), which we would like to be as high as possible, becomes
an extremely relevant measure for the quality of the search in terms of being able to capture whether the algorithm visits
all of the modes, whilst the size of V should be low in order to save computational time.

The posterior marginal inclusion probability p(γj = 1|y) can be approximated by

p̂(γj = 1|y) =
∑
γ ′∈V

1(γ ′
j = 1)̂p(γ ′|y), (9)

giving a measure for assessing importance of the covariates. Other parameters can be estimated similarly.
Algorithms for estimating V are described in Section 3. In practice p(y|γ) may not be available analytically. We then rely

on some precise approximations p̂(y|γ). Such approximations introduce additional errors in (8) and (9), but we assume them
to be small enough to be ignored. This is further discussed in Section 3.4.
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3. Mode jumping Markov Chain Monte Carlo

MCMC algorithms (Robert and Casella, 2005) have been extremely popular for the exploration of model spaces formodel

selection, being capable of providing samples from theposterior distribution of themodels. In our setting, themost important

aspect becomes building a method to explore the model space in a way to efficiently switch between potentially sparsely

located modes, whilst avoiding visiting models with a low p(y|γ) too often.

3.1. Standard Metropolis–Hastings

Metropolis–Hastings algorithms (Robert and Casella, 2005) are a class ofMCMCmethods for drawing from a complicated

target distribution living on some space Ω , which in our setting will be π (γ) = p(γ|y). Given some proposal distribution

q(γ∗|γ), the Metropolis–Hastings algorithm accepts the proposed γ∗ with probability

rmh(γ, γ
∗) = min

{
1,

π (γ∗)q(γ|γ∗)
π (γ)q(γ∗|γ)

}
, (10)

and otherwise remains in the old state γ . This will generate a Markov chain which, given the chain is irreducible and

aperiodic, will have π as stationary distribution. Theoretical results related to convergence of MCMC based estimates can be

found in e.g. Tierney (1996). Note that the discrete finite space of models make these results easily applicable in our case.

Given that the γj’s are binary, changes correspond to swaps between the values 0 and 1. One can address various options

for generating proposals. A simple proposal is to first select the number of components to change, e.g. S ∼ Unif{ζ , . . . , η},
followed by a sample of size S without replacement from {1, . . . , p}. This implies that in (10) the proposal probability

for switching from γ to γ∗ becomes symmetric, simplifying calculation of the acceptance probability. Other possibilities

for proposals are summarized in Table 1, allowing, among others, different probabilities of swapping for the different

components. Such probabilities can for instance be associated with marginal inclusion probabilities from a preliminary

MCMC run.

3.2. MJMCMC—the mode jumping MCMC

Themain problemwith the standardMetropolis–Hastings algorithms is the trade-off between possibilities of large jumps

(bywhichwe understand proposals with a large neighborhood) and high acceptance probabilities. Large jumpswill typically

result in proposals with low probabilities. In a continuous setting, Tjelmeland and Hegstad (1999) solved this by introducing

local optimization after large jumps,which results in proposalswith higher acceptance probabilities.We adapt this approach

to the discrete model selection setting by the following algorithm:

Algorithm 1Mode jumping MCMC

1: Generate a large jump χ∗
0 according to a proposal distribution ql(χ

∗
0|γ).

2: Perform a local optimization, defined through χ∗
k ∼ qo(χ

∗
k |χ∗

0).
3: Perform a small randomization to generate the proposal γ∗ ∼ qr (γ

∗|χ∗
k).

4: Generate backwards auxiliary variables χ0 ∼ ql(χ0|γ∗), χk ∼ qo(χk|χ0).
5: Put

γ ′ =
{
γ∗ with probability rmh(γ, γ

∗;χk,χ
∗
k);

γ otherwise,

where

r∗
mh(γ, γ

∗;χk,χ
∗
k) = min

{
1,

π (γ∗)qr (γ|χk)

π (γ)qr (γ∗|χ∗
k)

}
. (11)

Here a large jump corresponds to changing a large number of γj’s while the local optimization will be some iterative

procedure based on, at each iteration, changing a small number of components until a local mode is reached.

The procedure is illustrated in Fig. 1 where the backward sequence γ∗ → χ0 → χk → γ , needed for calculating the

acceptance probability, is included. For this algorithm, three proposals need to be specified; ql(·|·) specifying the first large

jump, qo(·|·) specifying the local optimizer, and qr (·|·) specifying the last randomization, all to be described in more detail

below.

π-invariance of the MJMCMC procedures is given by the following theorem (based on similar arguments as in Storvik,

2011; Chopin et al., 2013):

Theorem 1. Assume γ ∼ π (·) and γ ′ is generated according to Algorithm 1 . Then γ ′ ∼ π (·).
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Table 1
Types of proposals suggested for moves between models during an MCMC procedure.

Here S is either a deterministic or random (S ∼ Unif {ζ , ..., η}) size of the neighborhood;
ρj is the probability of a change on variable γj .

Type Proposal Label

1

∏
j∈{j1 ,...,jS }ρj

(pS)(η−ζ+1)
Random change with random size of the neighborhood

2

∏
j∈{j1 ,...,iS }ρj

(pS)
Random change with fixed size of the neighborhood

3 1

(pS)(η−ζ+1)
Swap with random size of the neighborhood

4
(
p

S

)−1
Swap with fixed size of the neighborhood

5
1−1

(∑p
j
γj=p

)
p−∑p

j
γj+1

(∑p
j
γj=p

) Uniform addition of a covariate

6
1−1

(∑p
j
γj=0

)
∑p

j
γj+1

(∑p
j
γj=0

) Uniform deletion of a covariate

Fig. 1. Graphical illustration of a MJMCMC step with a large jump followed by a locally optimized proposal. The red arrows correspond to the large jumps,

the blue arrows correspond to local optimization, the green arrows correspond the randomization steps. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Proof. Since γ ∼ π (·) and (χ∗
0,χ

∗
k) ∼ ql(χ

∗
0|γ)qo(χ∗

k |χ∗
0) we have that

(γ,χ∗
0,χ

∗
k) ∼ π (γ)ql(χ

∗
0|γ)qo(χ∗

k |χ∗
0) ≡ π̄ (γ,χ∗

0,χ
∗
k).

We may now consider (γ∗,χ0,χk) as a proposal in the extended space, generated according to the distribution qr (γ
∗|χ∗

k)ql
(χ0|γ∗)qo(χk|χ0). An ordinary Metropolis–Hastings iteration with respect to π̄ (γ,χ∗

0,χ
∗
k) is then to accept (γ∗,χ0,χk) with

probability r∗
mh = min{1, α∗

mh} where

α∗
mh = π̄ (γ∗,χ0,χk)qr (γ|χk)ql(χ

∗
0|γ)qo(χ∗

k |χ∗
0)

π̄ (γ,χ∗
0,χ

∗
k)qr (γ

∗|χ∗
k)ql(χ0|γ∗)qo(χk|χ0)

=π (γ∗)ql(χ0|γ∗)qo(χk|χ0)qr (γ|χk)ql(χ
∗
0|γ)qo(χ∗

k |χ∗
0)

π (γ)ql(χ
∗
0|γ)qo(χ∗

k |χ∗
0)qr (γ

∗|χ∗
k)ql(χ0|γ∗)qo(χk|χ0)

= π (γ∗)qr (γ|χk)

π (γ)qr (γ∗|χ∗
k)

,

proving the algorithm has π̄ (·) as invariant distribution. Since this distribution has π (·) as marginal distribution it follows

that γ ′ ∼ π (·). �
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Table 2
Illustration of a MJMCMC step with a large jump followed by a locally optimized proposal. The red components correspond

to components swapped in the large jumps, the blue components to the ones changed in the optimizer, the green compo-

nents of γ to the randomization step. (For interpretation of the references to color in this table legend, the reader is referred

to the web version of this article.)

Note that neither the large jump distribution ql(·) nor the optimization distribution qo(·) (which can be both deterministic

and stochastic) is involved in the acceptance probability. This gives great flexibility in the choice of these distributions.

Large jumps are not performed at each iteration, but rather through a composition of standard Metropolis–Hastings

steps with local moves and large jumps. As a rule of thumb, based on suggestions of Tjelmeland and Hegstad (1999) and our

own experience, we recommend that in not more than 5% of the iterations large jumps are performed. This is believed to

provide a globalMarkov chainwith both goodmixing between themodes and accurate exploration of the regions around the

modes. This in turn induces good performance of the algorithm in terms of the captured posterior mass for a given number

of iterations. However, some tuning might well be required for the particular practical applications.

The mode jumping MCMC steps can be modified to include a mixture of different proposal kernels ql, qo, and qr and

parallelized using the multiple try MCMC idea. Technical details are given in Appendix A.

An illustrative example. Assume 10 covariates x1, . . . , x10 and thus 1024 possible models. We generated Y ∼ N(1 +
10x1 + 0.89x8 + 1.43x5, 1) with correlated binary covariates (see supplementary code for details, Appendix A) and 1000

observations. We used a Gaussian linear regression with a Zellner’s g-prior (Zellner, 1986) with g = 1000. This model has

tractable marginal likelihoods described in detail in Section 4. We consider an MJMCMC step with a large jump swapping

randomly 4 components of γ and a local greedy search, changing only one component at a time, as optimization routine. The

last randomization changes each component of γ independently with probability equal to 0.1. A typical MJMCMC step with

locally optimized proposals is illustrated in Table 2.

Large jumps. A change is defined by the components that are to be swapped. A simple choice is to give all components an

equal probability ρ to be swapped and independence between components, in which case

ql(χ
∗
0|γ) =

p∏
j=1

ρ Ij (1 − ρ)1−Ij = ρS(1 − ρ)p−S,

where Ij is a binary variable equal to 1 if component γj is to be swapped and S = ∑p

j=1Ij is the number of components

to be swapped. An alternative is to first draw the number of components, S, to swap according to a distribution qS(·) and
thereafter choose (uniformly) among the possible changes of size S. Table 1 describes different ways of making large jumps

where tuning parameters should be chosen such that the probability of a high value of S is large.

Optimization. In order to increase the quality of proposals and consequently both improve the acceptance ratio and increase

the probability of escaping from local optima, the large jump is followed by a local optimization step. Typically, qo(·) contains
many iterations, generating intermediate states χ∗

0 → χ∗
1 → · · · → χ∗

k but none of these intermediate states are needed

for the final evaluation. Different local learning and optimization routines can be applied for the generation of χ∗
k , both

deterministic and stochastic ones, see Appendix A.2 for further details. We will consider several feasible computationally

options: local greedy optimization, local simulated annealing (SA) optimization, and local MCMC methods.

Randomization. A last randomization step defined through qr (·) is needed in order to make the move back from γ∗ to γ
feasible. We typically use randomizing kernels with a high mass on a small neighborhood around the mode but with a

positive probability for any change. The two possible appropriate kernels from Table 1 are the random change of either

random S ∼ Unif{1, . . . , p} or deterministic S = p number of components with reasonably small but positive probabilities

0 < ρi 
 1. This guarantees that the MJMCMC procedure is irreducible in Ω .

Symmetric large jumps. In order for the acceptance probability to be high, it is crucial that the auxiliary variables in the

reverse sequence χ = (χ0,χk) make γ plausible (qr (γ|χk) should be large in (11)). This may be difficult to achieve because

the backwards large jump has no guarantee to be close to the current state. One way to achieve this is to choose ql(χ
∗
0|γ)

to be symmetric, increasing the probability of returning close to the initial mode in the reverse large jump. The symmetry

is achieved by swapping the same set of γ j’s in the large jumps in the forward simulation as in the backwards simulation.
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We record the components I that have been swapped. In our current implementation we require that only the components
that do not correspond to I can be changed in optimization transition kernels. The following algorithm is a modification of
Algorithm 1 taking a symmetric large jump into account.

Algorithm 2Mode jumping MCMC with symmetric backwards jump

1: Generate a large jump χ∗
0 by first generating a set I ⊂ {1, ..., p} ∼ qI (·) defining the components to be swapped.

2: Perform a local optimization, defined through χ∗
k ∼ qo(χ

∗
k |χ∗

0).
3: Perform a small randomization to generate the proposal γ∗ ∼ qr (γ

∗|χ∗
k).

4: Define the backwards large jump χ0 through swapping the components I in γ∗.
5: Generate χk ∼ qo(χk|χ0).
6: Put

γ ′ =
{
γ∗ with probability rm(γ, γ

∗;χk,χ
∗
k);

γ otherwise,

where

r∗
mh(γ, γ

∗;χk,χ
∗
k) = min

{
1,

π (γ∗)qr (γ|χk)

π (γ)qr (γ∗|χ∗
k)

}
. (12)

The following theorem shows that also this algorithm also is π-invariant.

Theorem 2. Assume γ ∼ π (·) and γ ′ is generated according to Algorithm 2 . Then γ ′ ∼ π (·).
Proof. The stochastic auxiliary components are now I,χ∗

k and χk where χ∗
0 and χ0 are deterministic functions of (γ, I) and

(γ∗, I), respectively. We have

(γ, I,χ∗
k) ∼ π (γ)qI (I)qo(χ

∗
k |χ∗

0) ≡ π̄ (γ, I,χ∗
k).

We may now consider (γ∗, I,χk) as a proposal in the extended space, generated according to the distribution qr (γ
∗|χ∗

k)qo
(χk|χ0). An ordinary Metropolis–Hastings iteration with respect to π̄ (γ, I,χ∗

k) is then to accept (γ∗, I,χk) with probability
r∗
mh = min{1, α∗

mh} where

α∗
mh = π̄ (γ∗, I,χk)qr (γ|χk)qo(χ

∗
k |χ∗

0)

π̄ (γ, I,χ∗
k)qr (γ

∗|χ∗
k)qo(χk|χ0)

=π (γ∗)qI (I)qo(χk|χ0)qr (γ|χk)qo(χ
∗
k |χ∗

0)

π (γ)qI (I)qo(χ
∗
k |χ∗

0)qr (γ
∗|χ∗

k)qo(χk|χ0)
= π (γ∗)qr (γ|χk)

π (γ)qr (γ∗|χ∗
k)

,

proving the algorithm has π̄ (·) as invariant distribution. Since this distribution has π (·) as marginal distribution it follows
that γ ′ ∼ π (·). �

3.3. Delayed acceptance

The most computationally demanding parts of the MJMCMC algorithms are the forward and backward optimizations. In
many cases, the proposal generated through the forward optimization may lead to a very small value of π (γ∗) resulting in a
low acceptance probability regardless of the way the backwards auxiliary variables are generated. In such cases, one would
like to reject directly without the need for performing the backward optimization. Such a scheme can be constructed by the
use of the delayed acceptance procedure (Christen and Fox, 2005; Banterle et al., 2015). We then have:

Theorem 3. Assume γ ∼ π (·) and assume γ∗ is generated according to either Algorithm 1 or Algorithm 2 . Accept γ∗ if both

1. γ∗ is preliminary accepted with a probability min{1, π (γ∗)
π (γ)

}
2. and is finally accepted with a probabilitymin{1, qr (γ|χk)

qr (γ∗|χ∗
k
)
}.

Then also γ∗ ∼ π (·).
Proof. We have that

α∗
mh(γ, γ

∗;χk,χ
∗
k) = α1

mh(γ, γ
∗;χk,χ

∗
k) × α2

mh(γ, γ
∗;χk,χ

∗
k)

where

α1
mh(γ, γ

∗;χk,χ
∗
k) = π (γ∗)

π (γ)
, α2

mh(γ, γ
∗;χk,χ

∗
k) = qr (γ|χk)

qr (γ∗|χ∗
k)

.
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Since α
j

mh(γ, γ
∗;χk,χ

∗
k) = [αj

mh(γ
∗, γ;χ∗

k,χk)]−1 for j = 1, 2, it follows by the general results in Banterle et al. (2015) that
we obtain an invariant kernel with respect to π̄ . �

In general the total acceptance rate will be smaller than without delayed acceptance (Banterle et al., 2015 remark 1), but
the gain by avoiding a backwards optimization step if not accepted in the preliminary step can compensate on this.

3.4. Calculation of marginal densities

In practice exact calculation of the marginal density can only be performed in simple models such as linear Gaussian
ones, so alternatives need to be considered. One approach is to use estimators that are accurate enough to neglect the
approximation errors involved. Such approximative approaches have been used in various settings of Bayesian variable
selection and Bayesianmodel averaging. Laplace’smethod (Tierney and Kadane, 1986) has beenwidely used, but is based on
rather strong assumptions. The harmonic mean estimator (Newton and Raftery, 1994) is an easy to implementMCMC based
method but can give high variability in the estimates. Chib’s method (Chib, 1995), and its extension (Chib and Jeliazkov,
2001), have gained increasing popularity and can be very accurate provided enough MCMC iterations are performed.
Approximate Bayesian Computation (Marin et al., 2012) has also been considered in this context, being much faster than
MCMC alternatives, but also giving cruder approximations. Variational methods (Jordan et al., 1999) provide lower bounds
for the marginal likelihoods and have been used for model selection in e.g. mixture models (McGrory and Titterington,
2007). Integrated nested Laplace approximation (INLA, Rue et al., 2009) provides accurate estimates of marginal likelihoods
within the class of latent Gaussianmodels. In the context of generalized linear models, BIC type approximations can be used.

An alternative is to insert unbiased estimates of π (γ) into the Metropolis–Hastings acceptance probabilities. Andrieu
and Roberts (2009) name this the pseudo-marginal approach and show that this leads to exact algorithms (in the sense of
converging to the right distribution). Importance sampling (Beaumont, 2003) and particle filter (Andrieu et al., 2010) are
two approaches that can be used within this setting. In general, the convergence rate will depend on the amount of Monte
Carlo effort that is applied. Doucet et al. (2015) provide some guidelines.

Our implementation of the MJMCMC algorithm allows for all of the available possibilities for calculation of marginal
likelihoods and assumes that the approximation error can be neglected. For the experiments in Section 4 we have applied
exact evaluations in the case of linear Gaussian models, approximations based on the assumed informative priors in case of
generalized linear models (Clyde et al., 2011), and INLA (Rue et al., 2009) in the case of latent Gaussian models. Bivand et
al. (2015) also apply INLA within an MCMC setting, but then concentrating on hyperparameters that (currently) cannot be
estimated within the INLA framework. Friel and Wyse (2012) performed comparison of some of the mentioned approaches
for calculation of marginal likelihoods, including Laplace’s approximations, harmonic mean approximations, Chib’s method
and others. Hubin and Storvik (2016) reported some comparisons of INLA and other methods for approximating marginal
likelihood. There it is demonstrated that INLA provides extremely accurate approximations on marginal likelihoods in a
fraction of time compared to Monte Carlo based methods. Hubin and Storvik (2016) also demonstrated that by means of
adjusting tuning parameters within the algorithm (the grid size and threshold values within the numerical integration
procedure, Rue et al., 2009) one can often make the difference between INLA and unbiased methods of estimating of the
marginal likelihood arbitrary small.

3.5. Parallelization and tuning parameters of the search

With large number of potential explanatory variables it is important to be able to utilize multiple cores and GPUs of
either local machines or clusters in parallel. General principles of utilizing multiple cores in local optimization are provided
in Eksioglu et al. (2002). At every step of the local optimization within the large jump steps we allow to simultaneously
draw several proposals with respect to a certain transition kernel during the optimization procedure and then sequentially
calculate the transition probabilities as the proposed models are evaluated by the corresponding CPUs, GPUs or clusters
in the order they are returned. In those iterations where no large jumps are performed, we are utilizing multiple cores by
means of addressing multiple try MCMC to explore the solutions around the current mode. The parallelization strategies are
described in detail in Appendix A.

In practice, tuning parameters of the local optimization routines such as the choice of the neighborhood, generation
of proposals within it, the cooling schedule for simulated annealing (Michiels et al., 2010) or number of steps in greedy
optimization also become crucially important and it yet remains unclear whether we can optimally tune them before or
during the search. Mixing of proposals from Table 1 and of optimizers is also possible. Tuning the probabilities of addressing
these different options can be beneficial. Such tuning is a sophisticated mathematical problem, which we are not trying to
resolve optimally within this paper, however we suggest a simple practical idea for obtaining reasonable solutions. Within
the BAS algorithm, an important feature was to utilize the marginal inclusion probabilities of different covariates. We have
introduced this in our algorithms as well by allowing insertion of estimates of the ρi’s in proposals given in Table 1 based on
some burn-in period. They then correspond to the marginal inclusion probabilities after burn-in shifted with some small ε
from 0 and 1 if necessary in order to guarantee irreducibility. Additional literature review on search parameter tuning can
be found in Luo (2016).

4. Experiments

In this section we are going to apply the MJMCMC algorithm to different data sets and analyze the results in relation to
other algorithms. Linear regression is addressed through the U.S. Crime Data (Raftery et al., 1997) and a protein activity
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data (Clyde et al., 1998). Logistic regression is considered in a simulated example based on a data set and through an
Arabidopsis epigenetic data set. The Arabidopsis example also includes random effects.

We compare the performance of our approach to competing MCMC methods such as the MCMC model composition
algorithm (MC3, Madigan et al., 1995; Raftery et al., 1997) and the random-swap (RS) algorithm (Clyde et al., 2011) as well
as the BAS algorithm (Clyde et al., 2011). Both MC3 and RS are simple MCMC procedures based on the standard Metropolis–
Hastings algorithm with proposals chosen correspondingly as an inversion or a random change of one coordinate in γ at a
time (Clyde et al., 2011). BAS carries out samplingwithout repetition from the space ofmodelswith respect to the adaptively
updatedmarginal inclusion probabilities. For one of the examples, also a comparison with the ESS++ software (evolutionary
stochastic search, Bottolo et al., 2011) is made. For the cases when full enumeration of the model space is possible we
additionally compare all of the aforementioned approaches to the benchmark TOP method that consists of the best quantile
of models in terms of the posterior probability for the corresponding number of addressed models ‖V‖ and cannot by any
chance be outperformed in terms of the posterior mass captured.

The different algorithms that are compared are implemented in different programming languages, making it difficult to
compare CPU time fairly. We have therefore focused on both the total number of visited models and the number of unique
models visited, since this is the main computational burden (marginal likelihood values of visited models can be stored).
The number of models visited for MJMCMC includes all of the models visited during global and local moves as well as local
combinatorial optimization, hence the comparison on the same number of totally visited and uniquely visitedmodels is fair.

Following Clyde et al. (2011), approximations for model probabilities (8) and marginal inclusion probabilities (9) based
on a subspace ofmodels are further referred to as RM (renormalized) approximations, whilst the correspondingMCMCbased
approximations (7) are referred to asMC approximations. The validation criteria addressed include rootmean squared errors
and bias of parameters of interest based onmultiple replications of each algorithm, similar to Clyde et al. (2011). In addition
to marginal inclusion probabilities, we also include a global measure

C(γ) =
∑

γ ′∈V p(y|γ ′)p(γ ′)∑
γ ′∈Ω p(y|γ ′)p(γ ′)

, (13)

describing the fraction of probability mass contained in the subspace V. This measure allows us to address how well
the search works in terms of capturing posterior mass within a given model space. By formula (8) maximization of C(γ)
automatically inducesminimization of the bias in terms of posterior marginal model probabilities, which vanishes gradually
when C(γ) → 1.

Mixtures of different proposals from Table 1 and local optimizers mentioned in Section 3.2 were used in the studied
examples in the MJMCMC algorithm. A validation of the gain in using such mixtures is given in Example 4.1, where we
address both MJMCMC with mixtures and a simpler version where only one choice of proposal distributions is used (the
details are given in the example). The details on the choices and frequencies of different proposals for the other examples
are given in Tables B.1–B.5 in Appendix B. The choices are based on some tuning on a simulated data example, reported in
Appendix C.1. Further small adaptations were made in some of the examples. Generally speaking, we cannot claim that the
choices of the tuning parameters are optimal. It is rather some subjectively rational choice.

4.1. Example 1

Here we address the U.S. Crime data set, first introduced by Vandaele (1978) and stated to be a test bed for evaluation
of methods for model selection (Raftery et al., 1997). The data set consists of n = 47 observations on 15 covariates and
the responses, which are the corresponding crime rates. We will compare performance of the algorithms based on a linear
Bayesian regression model using a Zellner’s g-prior (Zellner, 1986) with g = 47. This implies that the marginal likelihood is
of the following form:

p(y|γ) ∝ (1 + g)(n−p−1)/2(1 + g[1 − R2
γ ])−(n−1)/2, (14)

where R2
γ is the usual coefficient of determination of a linear regression model. With this scaling, the marginal likelihood of

the null model (the model containing no covariates) is 1.0.

This is a sophisticated example with a total of 215 = 32,768 potential models andwith several local modes. As a result, all
simple MCMCmethods easily get stuck and have extremely poor performances in terms of the captured mass and precision
of both themarginal posterior inclusion probabilities and the posterior model probabilities. Table 3 shows the RMSE (scaled
by 102) for the model parameters over 100 repeated runs for each algorithm. The True column contains the true marginal
inclusion probabilities (obtained from full enumeration) while the TOP column shows the RMSE results based on the 3276
models with highest posterior probabilities (about 10% of the total number of models). The MJMCMC columns show the
results based on using mixtures of proposals and optimizers (see Tables B.1–B.5 for details) while the MJMCMC∗ results are
based on one specific choice of proposals with swaps of 4 components at a time for the large jumps (Type 4 in Table 1) and
a local greedy optimizer changing two components at a time with a last randomization of type 2 (Table 1). For the standard
MCMC steps, a type 4 with two changing components was used.

For this example, both theMC3 and the RSmethods got stuck in some localmodes and for the 3276models only 829/1071
uniquemodels where visited. These algorithms did not reach 3276 uniquemodels within a reasonable time for this example
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Table 3
Average root mean squared error (RMSE) over the 100 repeated runs of every algorithm on the Crime data (example 1); the values reported in the table are

RMSE ×102 for p(γj = 1|y). C(γ) is defined in Eq. (13). Tot is the total number of visited models, while Eff is the number of unique models visited during

the iterations of the algorithms (for the TOP column all 215 models were visited but the RMSE are based on the best 3276 models). RM corresponds to

using the renormalization procedure Eq. (8) while MC corresponds to using the MC procedure Eq. (7). MJMCMC2 differs from MJMCMC in the number of

unique models visited (Eff) while MJMCMC∗ corresponds to a run with no mixtures of proposals. The corresponding biases are reported in Appendix C in

Table C.2.

Par True TOP MJMCMC MJMCMC2 BAS MC3 RS MJMCMC*

Δ πj – RM MC RM MC RM MC RM MC RM RM MC

γ8 0.16 3.51 6.57 10.68 5.11 10.29 5.21 6.49 3.49 5.87 3.31 6.23 9.06

γ13 0.16 3.34 7.46 10.54 5.60 10.19 6.26 8.62 3.39 8.83 3.05 6.38 10.54

γ14 0.19 3.24 8.30 12.43 6.30 12.33 6.20 6.58 2.55 6.22 2.46 7.15 10.91

γ12 0.22 3.27 6.87 13.61 5.57 13.64 3.10 5.81 6.23 4.93 5.27 5.29 10.93

γ5 0.23 2.56 6.30 13.45 4.59 13.65 1.84 6.07 13.05 5.13 12.77 5.39 10.90

γ9 0.23 3.27 9.49 16.21 7.40 16.21 9.27 5.99 2.99 5.70 2.60 7.68 11.06

γ7 0.29 2.31 4.37 13.63 3.45 12.73 2.28 4.74 9.61 3.46 9.70 3.91 10.10

γ4 0.30 1.57 6.18 19.22 3.79 17.31 0.99 13.24 21.84 13.53 21.48 4.63 13.22

γ6 0.33 1.92 8.61 19.71 6.14 19.49 3.11 10.19 7.47 10.99 7.12 5.87 15.43

γ1 0.34 2.51 11.32 22.68 7.29 20.50 8.43 22.89 25.19 23.63 24.71 7.58 12.97

γ3 0.39 0.43 3.95 11.13 2.38 6.99 5.02 21.48 30.24 21.39 29.94 2.99 12.66

γ2 0.57 1.58 5.92 13.21 3.82 9.03 13.78 30.81 37.57 29.27 37.15 5.11 14.04

γ11 0.59 0.58 3.57 13.49 2.37 15.94 4.04 11.88 21.79 11.16 21.31 2.77 12.77

γ10 0.77 3.25 7.62 7.28 5.97 4.78 15.45 21.83 19.18 20.53 19.65 6.41 14.27

γ15 0.82 3.48 9.23 4.45 6.89 5.85 14.50 69.68 76.81 69.19 76.30 6.75 14.76

C(γ) 1.00 0.86 0.58 0.58 0.71 0.71 0.66 0.10 0.10 0.10 0.10 0.60 0.60

Eff 215 3276 1909 1909 3237 3237 3276 829 829 1071 1071 3264 3264

Tot 215 3276 3276 3276 5936 5936 3276 3276 3276 3276 3276 4295 4295

(most likely the algorithm could not escape from local extrema), hence such a scenario is not reported. For this example
MJMCMC gives a much better performance than the other MCMC methods in terms of both MC and RM based estimations
with respect to the posterior mass captured, C(γ). With a total of 3276 visited, BAS slightly outperformsMJMCMC. However,
when running MJMCMC so that the number of unique models visited (‖V‖) are comparable with BAS, MJMCMC gives
better results (columns marked with MJMCMC2 in Table 3). The comparison is performed in terms of posterior mass
captured, biases and root mean squared errors for both posterior model probabilities and marginal inclusion probabilities
(Table 3).

BAS has the property of always visiting new unique models, whilst all MCMC based procedures tend to do revisiting with
respect to the corresponding posterior probabilities. When generating a proposal is much cheaper than estimating marginal
likelihoods of themodel (which is usually the case, also in this example) andwe are storing the results for the already visited
models, having generated a bit more models by MJMCMC does not seem to be a serious issue. Those unique models that are
visited have a higher posterior mass than those suggested by BAS (for the same number of models visited). Furthermore
MJMCMC (like BAS) can escape from local modes.

Also the results based on nomixture of proposals (MJMCMC* in the table) aremuch better than standardMCMCmethods,
however the results obtained by the MJMCMC algorithm with a mixture of proposals were even better. We have tested this
on some other examples too and the use of mixtures was always beneficial and thus recommended. For this reason only the
cases with mixtures of proposals are addressed in other experiments.

4.2. Example 2

In this example we are considering a new simulated data set for logistic regression. We generated p = 20 covariates as
a mixture of binary and continuous variables. The correlation structure is shown in Fig. 2 while the full details of how the
data was generated is given in Appendix B.1.

A total of 220 = 1,048,576 potential models need to be considered in this case. Additionally, in this example n = 2000,
which makes estimation of a single model significantly slower than in the previous example. For γ we use the binomial
prior (4) with q = 0.057. We are in this case using the BIC-approximation for the marginal likelihood,

log p̂(y|γ) = log p̂(y|β̂γ ) − n

2
log(|β̂γ |), (15)

where β̂γ is the maximum likelihood (or MAP) estimate for the βj’s involved and |β̂γ | is the number of parameters. This

choice was made in order to compare the results with implementations of BAS, RS and MC3 available in the supplementary
to Clyde et al. (2011), where this approximation is considered. In thatway, themodel search procedures are compared based
on the same selection criterion.

Some of the covariates involved have large correlations. This induces both multimodality within the space of models and
sparsity of the locations of the modes and creates an interesting example for comparison of different search strategies. As
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Fig. 2. Correlation structure of the covariates in Example 3.

Table 4
Average root mean squared error (RMSE) from the 100 repeated runs of every algorithm on the simulated logistic regression data (example 2); the values

reported in the table are RMSE ×102 for p(γj = 1|y). See the caption of Table 3 for further details. The corresponding biases are reported in Appendix C

in Table C.2.

Par True TOP MJMCMC MJMCMC2 BAS BAS-RS RS

Δ πj – RM MC RM MC RM RM RM MC

γ6 0.29 0.00 7.38 15.54 4.54 16.62 6.47 3.67 6.01 2.11

γ8 0.31 0.00 6.23 15.50 3.96 16.94 5.58 3.02 5.37 2.55

γ12 0.35 0.00 4.86 14.62 2.78 13.66 4.22 2.12 3.91 2.37

γ15 0.35 0.00 4.55 15.24 2.56 15.45 4.66 1.64 3.40 2.56

γ2 0.36 0.00 4.90 16.52 2.92 17.39 5.42 2.45 3.65 2.61

γ20 0.37 0.00 4.82 14.35 2.66 14.08 3.32 1.80 4.15 2.18

γ3 0.40 0.00 9.25 20.93 5.65 22.18 9.75 4.82 6.76 2.83

γ14 0.44 0.00 3.14 17.54 1.58 16.24 3.73 1.30 1.33 2.93

γ10 0.44 0.00 4.60 18.73 2.29 17.90 4.87 1.30 1.51 2.42

γ5 0.46 0.00 3.10 17.17 1.53 16.97 4.06 1.51 1.09 2.85

γ9 0.61 0.00 3.68 16.29 1.63 13.66 3.89 1.39 2.19 2.35

γ4 0.88 0.00 5.66 6.70 3.74 6.26 6.60 5.57 7.61 2.15

γ11 0.91 0.00 5.46 6.81 3.95 6.90 4.66 3.14 4.32 1.57

γ1 0.97 0.00 1.90 1.74 1.35 1.34 2.43 1.96 2.30 1.1

γ13 1.00 0.00 0.00 0.43 0.00 0.32 0.00 0.00 0.00 0.37

γ7 1.00 0.00 0.00 0.57 0.00 0.41 0.00 0.00 0.00 0.33

γ16 1.00 0.00 0.00 0.41 0.00 0.33 0.00 0.00 0.00 0.23

γ17 1.00 0.00 0.00 0.43 0.00 0.39 0.00 0.00 0.00 0.23

γ18 1.00 0.00 0.00 0.47 0.00 0.35 0.00 0.00 0.00 0.24

γ19 1.00 0.00 0.00 0.52 0.00 0.36 0.00 0.00 0.00 0.41

C(γ) 1.00 1.00 0.72 0.72 0.85 0.85 0.74 0.85 0.68 0.68

Eff 220 10,000 5148 5148 9988 9988 10,000 10,000 1889 1889

Tot 220 10,000 9998 9998 19,849 19,849 10,000 10,000 10,000 10,000

one can see in Table 4, MJMCMC outperformed pure BAS by far both in terms of posterior mass captured and in terms of

root mean square errors of marginal inclusion probabilities when based on the same number of unique models. MJMCMC

outperformed RS as well. The latter got stuck in some local modes and could only reach 1889 unique models for the 10,000

models visited. We could not reach 10,000 unique models for the RS algorithm within a reasonable time for this example

either (again most likely the algorithm could not escape from local extrema), hence such a scenario is not reported. Even

for almost two times less originally visited models in V, comparing to BAS, MJMCMC gives almost the same results in terms

of the posterior mass captured and errors. MJMCMC, for the given number of unique models visited, did not outperform a

combination of MCMC and BAS (BAS-RS), which is recommended by Clyde et al. (2011) for larger model spaces; both of

them gave approximately identical results.
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Fig. 3. Comparisons in the protein data of the log posterior probabilities of the top 100,000 models (left) and box-plots of the posterior mass captured

(right) obtained by MJMCMC, BAS-eplogp, BAS-uniform, thinned version of Random Swap (RST), BAS with Monte Carlo estimates of inclusion probabilities

from the RST samples (BAS-RST-MC), BAS re-normalized estimates of inclusion probabilities (BAS-RST-RM) from the RST samples, and ESS++ (ESS).

4.3. Example 3

This experiment is based on a much larger model space in comparison to all of the other examples. We address the
protein activity data (Clyde et al., 1998) and consider all main effects together with the two-way interactions and quadratic
terms of the continuous covariates resulting in 88 covariates in total. This corresponds to a model space of cardinality 288,
a number far to high to perform full search through all models. This model space is additionally multimodal, which is the
result of having high correlations between numerous of the addressed covariates (17 pairs of covariates have correlations
above 0.95).

We analyzed the data set using Bayesian linear regression with the binomial prior (4) with q = 0.5 for γ and a Zellner’s
g-prior with g = 96 for β (the data has n = 96 observations). We then compared the performance of MJMCMC, BAS and RS.
For this example we have also addressed the ESS++ algorithm (Bottolo et al., 2011).

The reported RS results are based on the RS algorithm run for 88 × 220 iterations and a thinning rate of 1
88

(named RST

in Clyde et al. (2011)). BAS was run with several choices of initial sampling probabilities such as uniformly distributed
within the model space one, eplogp adjusted (Clyde et al., 2011), and those based on RM and MC approximations obtained
by the RST algorithm. For the first two initial sampling probabilities BAS was run for 220 iterations. For the two latter (the
BAS-RST-RM and BAS-RST-MC) algorithms) first RS was run for 88 × 219 iterations providing 219 models for estimating
initial sampling probabilities and then BAS was run for the other 219 iterations based on RM orMC estimates of the marginal
inclusion probabilities. MJMCMCwas run until 220 uniquemodels were obtained. ESS++was runwith default search settings
until 220 unique models were visited. All of the algorithms were replicated 10 times.

In Fig. 3 box-plots of the best 100,000 models captured by the corresponding replications of the algorithms as well as
posteriormasses captured by themare displayed. BASwith both uniformand eplogp initial sampling probabilities performed
rather poorly in comparison to other methods, whilst BAS combined with RM approximations from RST did slightly better.
ESS++ as well as MJMCMC show the most promising results. BAS with RM initial sampling probabilities usually managed
to find models with the highest posterior probabilities, however MJMCMC in general captured by far higher posterior mass
within the same amount of unique models addressed. Marginal inclusion probabilities obtained by the best run of MJMCMC
with respect to mass (denominator of (8) with value 8.56 × 1020 in Fig. 3) are reported in Fig. 4, whilst those obtained by
other methods can be found in Clyde et al. (2011). Since MJMCMC obtained the highest posterior mass, we expect that
the corresponding RM estimates of the marginal inclusion probabilities are the least biased, moreover they perfectly agree
with the MC approximations. Although MJMCMC in all of the obtained replications outperformed most of the competitors
in terms of the posterior mass captured, it itself exhibited significant variation between the runs (right panel of Fig. 3). The
latter issue can be explained by that we are only allowing visiting 3.39 × 10−19% of the total model space in the addressed
replications, which might be not enough to always converge to the same posterior mass captured. Note however that the
variability in the results obtained from different runs of MJMCMC clearly indicates that more iterations are needed, while
the other methods may indicate (wrongly) that sufficient iterations have been performed.

4.4. Example 4

In this examplewe illustrate howMJMCMCworks for GLMMmodels. As illustration, we address genomic and epigenomic
data on Arabadopsis. Arabadopsis is a plant model organismwith a lot of genomic/epigenomic data easily available (Becker
et al., 2011). At each position on the genome, a number of reads are allocated. At locations with a nucleotide of type cytosine
(C), reads are either methylated or not. Our focus will be on modeling the amount of methylated reads through different
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Fig. 4. Comparisons of RM (left) andMC (right) estimates of marginal posterior inclusion probabilities obtained by the best run ofMJMCMCwith 8.56e+20

posterior mass captured.

covariates including (local) genomic structures, gene classes and expression levels. The studied data was obtained from the
NCBI GEO archive (Barrett et al., 2013).

We model the number of methylated reads Yi ∈ {1, . . . , Ri} per loci i = 1, . . . , n, where Ri ∈ N is the number of reads,
through (1)–(3) by a Poisson distribution for the response and n = 1502. Since in general the ratio of methylated bases is
low, we have preferred the Poisson distribution of the responses to the binomial. The mean ηi is modeled via the log link
to the chosen covariates, including an offset defined by Ri per location, and a spatially correlated random effect δi which is
modeled via an AR(1) process with parameter ρ ∈ R , namely δi = ρδi−1 + εi ∈ R with εi ∼ N(0, σ 2

ε ), i = 1, . . . , n. Thus,
we take into account spatial dependence structures of methylation rates along the genome as well as the variance of the
observations not explained by the covariates. We use the binomial prior (4) with q = 0.5 for γ and the Gaussian prior for
the regression coefficients:

β|γ ∼ Npγ (μβγ ,Σβγ
).

For the parameters within the random effects, we first reparametrize to ψ1 = log 1

σ2
ε,t

(1 − ρ2), ψ2 = log
1+ρ

1−ρ
and assume

ψ1 ∼ logGamma(1, 5 × 10−5) (16)

and

ψ2 ∼ N(0, 0.15−1). (17)

Marginal likelihoods were for this example calculated through the INLA package (www.r-inla.org).
We have addressed p = 13 different covariates in addition to the intercept. We have considered a factor with 3 levels

corresponding to whether a location belongs to a CGH, CHH or CHG genetic region, where H is either A, C or T and thus
generating two covariates X1 and X2 corresponding to whether a location is CGH or CHH. A second factor indicates whether
a distance to the previous cytosine nucleobase (C) in DNA is 1, 2, 3, 4, 5, from 6 to 20 or greater than 20 inducing the binary
covariates X3 − X8. A third factor corresponds to whether a location belongs to a gene from a particular group of genes of
biological interest, these groups are indicated asMα ,Mγ ,Mδ orM0 inducing 3 additional covariates X9 −X11. Finally, we have
considered two binary covariates X12 and X13 represented by expression levels exceeding 3000 and 10,000, respectively. The
cardinality of our search space Ω is 213 = 8192 for this example. The correlation structure between these 13 covariates is
represented in Fig. 5.

As seen from Table 5 (TOP column), within just the 385 best unique models (2.35% of the total model space) we were
able to capture almost full posterior mass for this problem. The model space, as shown in Fig. 6, has very few sparsely
located modes in a quite large model space. In this example we compared MJMCMC and a simple MCMC algorithm, the
latter was allowed to only swap one component per iteration (similar to the RS algorithm within the BAS package). This
example contains most of the mass in just two closely located models as can be seen in Fig. 6. This is why a simple RS
MCMC can capture essentially most of the mass after 10,000 iterations. At the same time there are a few small modes that
lie a bit further from the region of the high concentration of mass, which the simple RS MCMC algorithm did not capture.
Essentially, RS MCMC stayed within a few modes for most of the time, never being able to travel to the more remote parts
of the model space and generated very few (155 on average) unique models. This number is here very low compared to the
total number of models visited (10,000). If there were more sparsely located remote modes, the simple RS MCMC algorithm
would run into the problems similar to those discussed in the previous examples and miss a significant amount of mass. For
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Fig. 5. Correlation structure of the covariates in Example 4.

Table 5
Average root mean squared error (RMSE) from the 100 simulated runs of

MJMCMC on the epigenetic data (example 4); the values reported in the table

are RMSE ×102 for p(γj = 1|y).
Par True TOP MJMCMC RS MCMC

Δ πj RM RM MC RM MC

γ4 0.0035 0.0005 0.0022 2.0416 0.0198 1.9768

γ6 0.0048 0.0006 0.0051 2.0899 0.0257 1.9352

γ7 0.0065 0.0006 0.0056 2.3459 0.0353 0.6887

γ3 0.0076 0.0007 0.0017 3.3660 0.0353 1.2374

γ8 0.0076 0.0007 0.0079 2.3279 0.0344 1.6163

γ5 0.0096 0.0007 0.0075 2.3342 0.0455 1.7170

γ11 0.0813 0.0007 0.0200 3.6851 0.1679 2.8022

γ12 0.0851 0.0006 0.0134 2.7179 0.0766 1.9136

γ9 0.1185 0.0008 0.0184 3.3149 0.1773 3.0463

γ10 0.3042 0.0006 0.0071 9.4926 0.1106 3.7344

γ13 0.9827 0.0002 0.0063 2.5350 0.0638 1.5681

γ1 1.0000 0.0007 0.0000 4.7091 0.0000 1.2258

γ2 1.0000 0.0000 0.0000 2.7343 0.0000 0.9971

C(γ) 1.0000 1.0000 0.9998 0.9998 0.9977 0.9977

Eff 8192 385 1758 1758 155 155

Tot 8192 385 3160 3160 10,000 10,000

MJMCMC, we ran the algorithm until 3160 models where visited, resulting in 1758 unique models. MJMCMC was able to
capture the mass also from the remote small modes, adding a bit to the captured mass, slightly outperforming the simple
RS MCMC algorithm. As can be seen in Table 5, MJMCMC outperformed the simple RS MCMC algorithm in terms of the
errors of marginal model probabilities. Marginal inclusion probabilities in terms of RM are alsomore precise whenMJMCMC
is used. MC based approximations are also in this case worse than the RM versions, in this case with MJMCMC slightly
worse.

According to marginal inclusion probabilities (πj column in Table 5, obtained from full enumeration), factors of whether
the location is CGH or CHH (γ1 and γ2) are both extremely significant, as well as the higher cut off for the level of expression
(γ13). Additionally, factors for Mα and Mδ groups of genes (γ9 ad γ10) have non-zero marginal inclusion probabilities and
reasonably high significance. In future it would be of interest to obtain additional covariates such as whether a nucleobase
belongs to a particular part of the gene like the promoter or a coding region. Furthermore, it is of interest to address
factors whether a base is located within a CpG island (regions with a high frequency of C bases) or whether it belongs
to a transposon. Moreover, interactions of these covariates may be interesting. Alternative choices of the response
distributions (e.g. binomial or negative binomial) and/or other types of random effects (AR(k), ARMA(l, k)) might also be of an
interest.
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Fig. 6. Left:Multidimensional scale plot (Rohde, 2002) of the best 1024models in terms of posteriormodel probability in the space ofmodels (black dots are

centers of the models, red circles are proportional to the posterior probabilities of models, green stars—models visited by MJMCMC, purple stars—models

visited by MCMC). Right: A plot of posterior probabilities with respect to distance from the global mode (red circles correspond to all the models, the green

circles—models visited by MJMCMC, the purple circles—by simple MCMC). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

5. Summary and discussion

In this paper we have introduced the mode jumping MCMC (MJMCMC) approach for calculating posterior model
probabilities and performing Bayesian model averaging and selection. The algorithm incorporates the ideas of MCMC
with the possibility of large jumps combined with local optimizers to generate proposals in the discrete space of models.
Unlike standard MCMC methods applied to variable selection, the developed procedure avoids getting stuck in local modes
and manages to iterate through all of the important models much faster. In many cases it also outperforms Bayesian
Adaptive Sampling (BAS), having the tendency to capture a higher posterior mass within the same amount of uniquemodels
visited. This can be explained by that for problems with numerous covariates BAS requires good initial marginal inclusion
probabilities to perform well. Clyde et al. (2011) demonstrated that estimates of marginal inclusion probabilities obtained
from preliminary MCMC runs could largely improve BAS. A combination of MJMCMC with BAS could possibly improve both
algorithms even further.

The EMJMCMC R-package is developed and currently available from the Git Hub repository: http://aliaksah.github.io/
EMJMCMC2016/. The methodology depends on the possibility of calculating marginal likelihoods within models accurately.
The developed package gives a user high flexibility in the choice of methods to obtain marginal likelihoods. Whilst the
default choice for marginal likelihood calculations is based on INLA (Rue et al., 2009), we also have adopted efficient C based
implementations for exact calculations in Bayesian linear regression and approximate calculations in Bayesian logistic and
Poisson regressions in combination with g-priors as well as other priors. Several model selection criteria for the class of
methods are also addressed. Extensive parallel computing for bothMCMCmoves and local optimizers is available within the
developed package. Within a standard call, a user specifies how many threads are addressed within the in-build mclapply
function or snow based parallelization. An advanced user can specify his own function to parallelize computations on both
the MCMC and local optimization levels, using, for instance, modern graphical processing units—GPUs, which in turn allows
additional efficiency and flexibility.

Whilst the renormalized model estimators (8) are Fisher consistent (Clyde et al., 2011), they remain generally speaking
biased; although their bias reduces to zero asymptotically (with respect to the number of iterations). Standard MCMC based
estimators such as (7), which are both consistent and unbiased, are also available through our procedure; these estimators
however tend to have a much higher variance than the aforementioned ones. As one of the further developments it would
be of interest to combine knowledge available from both groups of estimators to adjust for bias and variance, which is vital
for higher dimensional problems.

Another aspect that requires being discussed is the model selection criterion. Different criteria can sometimes disagree
about the results of model selection. In order to avoid confusion, the researcher should be clear about the stated goals. If the
goal is prediction rather than inference one should adjust for that and use AIC,WAIC (Watanabe, 2009) or DIC (Spiegelhalter
et al., 2002) rather than BIC or posterior model probability as selection criterion in MJMCMC. These choices are possible
within the EMJMCMC package as well.

Based on several experiments, we claimMJMCMC to be a rather competitive algorithm that is addressing thewide class of
Generalized Linear Mixed Models (GLMM). In particular, for this class of models one can incorporate a random effect, which
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both canmodel the variability unexplained by the covariates and can introduce dependence between observations, creating

additional modeling flexibility. Estimation of parameters for such models becomes significantly harder in comparison to

simple GLM. This creates the necessity to address parallel computing extensively. We have enabled the latter within our

package by means of combining methods for calculating marginal likelihoods, such as the INLA methodology, and parallel

MJMCMC algorithm.

Currently,we only consider choice of covariates to be included into themodel. However, themode jumping procedure can

easily be extended to more general cases. In the future it would be of interest to extend the procedure to model selection

and model averaging jointly across covariates, link functions, random effect structures and response distributions. Such

extensions will require even more accurate tuning of control parameters of the algorithm, introducing another important

direction for further research.
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A Details of the MJMCMC algorithm

A.1 Multiple try MCMC algorithm

In addition to ordinary MCMC steps and mode jump MCMC, also multiple-try Metropolis (Liu et al.,
2000) is considered. Multiple-try Metropolis is a sampling method that is a modified form of the
Metropolis-Hastings method, designed to be able to properly parallelize the original Metropolis-Hastings
algorithm. The idea of the method is to allow generating S trial proposals χ∗1, ...χ

∗
S in parallel from a

proposal distribution q(·|γ). Then, γ∗ ∈ {χ∗1, ...,χ∗S} is selected with probabilities proportional to some
importance weights w(γ,χ∗i ) = π(γ)q(χ∗i |γ)λ(χ∗i ,γ) where λ(χ∗i ,γ) = λ(γ,χ∗i ). In the reversed move
χ1, ...χS−1 are generated from the proposal q(χ|γ∗) while χS = γ. Finally, the move is accepted with
probability

rm(γ,γ∗) = min

{
1,

w(χ∗1,γ) + . . .+ w(χ∗S ,γ)

w(χ1,γ
∗) + . . .+ w(χS ,γ

∗)

}
. (A-1)

In the implementation of the algorithm, ordinary MCMC is considered as a special case of multiple try
MCMC with S = 1. We recommend ordinary or multiple try MCMC steps are used in at least 95% of
the iterations with proposals of large jumps for the remaining 5%.

A.2 Choice of proposal distributions

The implementation of MJMCMC allows for great flexibility in the choices of proposal distributions for
the large jumps, the local optimization and the last randomization.

• Table 1 lists the current possibilities for drawing indexes to swap in the first large jump. One
should choose distributions where a large number of components are swapped.

• An important ingredient of the MJMCMC algorithm is the choice of local optimizer. In the
current implementation of the algorithm, several choices are possible; simulated annealing, greedy
optimizers based on best neighbor optimization or first improving neighbor (Blum and Roli, 2003)
which is another variant of greedy local search accepting the first randomly selected solution better
than the current. For each alternative the neighbors are defined through swapping a few of the γj ’s
in the current model.

• For the last randomization, again Table 1 lists the possibilities, but in this case a small number of
swaps will be preferable.

Different possibilities to combine the optimizers and proposals in a hybrid setting are also possible. Then,
at each iteration, which proposal distributions and which optimizers to use are randomly drawn from
the set of possibilities, see Robert and Casella (2005, sec 10.3) for the validity of such procedures.

A.3 Parallel computing in local optimizers

General principles of utilizing multiple cores in local optimization are provided in Eksioglu et al. (2002).
Given a current state χ∗ in the optimization routine, one can simultaneously draw several proposals
χ1, ...,χK with respect to a certain transition kernel so(·|γ) and, if necessary, calculate the transition
probabilities as the proposed models are evaluated. This step can be performed by parallel CPUs, GPUs
or clusters. Consider an optimizer with the acceptance probability function rto(χj ;χ

∗), j ∈ 1, ...,K,
which either changes over the time (iterations) t or remains unchanged. For the greedy local search
rto(χ;χ∗) = 1 {π(χ) ≥ π(χ∗)} , t ∈ 1, 2, .... For the implemented version of the simulated annealing

algorithm we consider rto(χ;χ∗) = min
{

1, exp
(

log π(χ)−log π(χ∗)
Tt

)}
, i ∈ 1, ..., N , where Tt is the SA

temperature (Blum and Roli, 2003) parameter at iteration t. The proposed parallelization strategy is
given in detail in Algorithm A.1.

A.4 Parallel MJMCMC with a mixture of proposals

Here we described the full version of our algorithm based on a combination of Algorithm 2 and the multiple
try idea. The suggested MJMCMC approach allows to both jump between local modes efficiently and
to explore the solutions around the modes simultaneously whilst keeping the desired ergodicity of the
MJMCMC procedure. This implementation allows for mixtures of both local optimizers and proposals to

1



Algorithm A.1 Parallel optimization

1: procedure Optimize(N)
2: χ∗ ← χ∗0
3: for i = 1, ..., N do
4: χi,1, ...,χi,K ∼ so(·|χ∗) . make K proposals in parallel
5: . and calculate marginal likelihoods
6: for j = 1, ...,K do
7: r ← rio(χi,j ;χ

∗) . calculate acceptance probability
8: if Unif[0; 1] ≤ r then
9: χ∗ ← χi,j . accept the transition

10: end if
11: end for
12: χ∗i ← χ∗

13: end for
14: return χ∗N
15: end procedure

be addressed within MJMCMC. Both the local optimization and the multiple try steps utilize multiple
CPUs and GPUs of a single machine or a cluster of nodes. The pseudo-code of the algorithm is given in
Algorithm A.2 below. In this pseudo-code we consider the following notation:

• % - the probability for a large jump;

• Po(·) - the distribution for the choice of the local optimizers, a discrete distribution over a finite
number of possibilities;

• Pl(·) - the distribution for the choice of large jump transition kernel, a discrete distribution over
the possibilities in Table 1 with high probabilities on a large number of swaps;

• Pr(·) - the distribution for the choice of the randomizing kernel, a discrete distribution over a finite
number of possibilities, also from Table 1, but with a small number of changes;

• Pg(·) - the distribution for the choice of proposals within the multiple try MCMC, a discrete
distribution over the possibilities in Table 1 with a high probability on a small number of swaps.

The essential ingredients of the parallel version of the MJMCMC with a mixture of proposals (Algo-
rithm A.2) are as follows:

• Multiple try MCMC steps are performed for the steps with no mode jumps;

• At the iterations with mode jumps the large jump proposals ql ∼ Pl(ζ), the optimization proposals
qo ∼ Po(ζ), and the randomizing kernels qr ∼ Pr(ζ) are chosen randomly;

• At the iterations with no mode jumps the proposal is chosen randomly as qg ∼ Pg(ζ);

• The optimization steps are parallelized as described in A.3.

• The multiple-try steps are parallelized.

B Supplementary materials for the experiments

Table B.1 describes some of the tuning parameters used for the different examples. Here, MTMCMC
refers to the multiple try MCMC steps. The remaining tuning parameters, describing the mixture
distributions P0, Pl and Pr are specified in tables B.2 (example 1), B.3 (example 2), B.4 (example 3) and
B.5 (example 4).
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Algorithm A.2 Mode jumping MCMC

1: procedure MJMCMC(Numit)
2: γ ← γ0 . define the initial state
3: for t = 1, ..., Numit do
4: if Unif[0; 1] ≤ % then . large jump with local optimization
5: ql ∼ Pl(·) . choose large jump kernel
6: qo ∼ Po(·) . choose local optimizer
7: qr ∼ Pr(·) . choose randomization kernel
8: I ∼ ql(·|γ) . Indices for large jump
9: χ∗0 ← SWAP(γ, I) . large jump

10: χ∗k ∼ qo(·|χ∗0) . local optimization
11: γ∗ ∼ qr(·|χ∗k) . randomization around the mode
12: χ0 ← SWAP(γ∗, I) . reverse large jump
13: χk ∼ qo(·|χ0) . local optimization
14: r ← rm(χ,γ;χ∗,γ∗) . from (12)
15: else . ordinary proposal
16: qg ∼ Pg(·) . choose multiple try proposal kernel
17: γ∗ ∼ qg(·|γ) . proposed solution
18: r ← rm(γ,γ∗) . from (A-1)
19: end if
20: if Unif[0; 1] ≤ r then
21: γ ← γ∗ . accept the move
22: end if
23: end for
24: end procedure

Example CPU SA Greedy MT
No Num St ∆t t0 tf S LS FI Size Steps
1 4 4 3 10 14×10−5 15 F T 4 15
2 2 5 3 10 14×10−5 20 F T 2 20
3 10 18 3 10 14×10−5 88 F T 10 88
4 1 3 3 10 14×10−5 13 F T 2 13

S.1 4 4 3 10 14×10−5 15 F T 4 15

Table B.1: Tuning parameters for local optimization within MJMCMC in the examples (Example No);
CPU (Num) - the number of CPUs utilized within the examples; St - number of iterations per temperature
in SA algorithm; ∆t - cooling factor of the cooling schedule of SA algorithm; t0 - initial temperature
of SA algorithm; tf - final temperature of SA algorithm; S - number of iterations in Greedy algorithm
(per run); LS - if local stop is allowed in Greedy algorithm; FI - if the first improving neighbor strategy
is applied in Greedy algorithm; Size - number of proposals per step in the multiple try steps; Steps -
number of multiple try iterations within the local optimizer.
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Proposal Optimizer Frequency Type 1 Type 4 Type 3 Type 5 Type 6 Type 2
qg - % = 0.9836 0.1176 0.3348 0.2772 0.0199 0.2453 0.0042
S - - {2, 2} 2 {2, 2} 1 1 15
ρj - - p̂(γj |y) - - - - p̂(γj |y)

ql - 0.0164 0 1 0 0 0 0
S - - - 4 − − − −
ρi - - - - - - - -

qo SA 0.5553 0.0788 0.3942 0.1908 0.1928 0.1385 0.0040
qo GREEDY 0.2404 0.0190 0.3661 0.2111 0.2935 0.1046 0.0044
qo MTMCMC 0.2043 0.2866 0.1305 0.2329 0.1369 0.2087 0.0040
S - - {2, 2} 2 {2, 2} 1 1 15
ρj - - p̂(γj |y) - - - - p̂(γj |y)

qr - - 0 0 0 0 0 1
S - - - - − − − 15
ρj - - - - - - - 0.0010

Table B.2: Other tuning parameters of MJMCMC for all proposal types (qg, gl, qo, and qr) in example
1; Optimizer - to which optimizer the proposal belongs (if not relevant ”-”); Frequency - the frequency
at which the proposal is addressed (% for qg and 1 − % for ql) and the frequency within the set of
local optimizers (Po for local optimizers); Type X - the frequency of proposal of type X Table 1; S -
maximal allowed size of the neighborhood for the corresponding proposal; ρi - probability of change of
component i of the current solution (if applicable to the proposal), where p̂(γj |y) = p̂(γj = 1|y) are the
approximations of marginal inclusion probabilities. Notice that for MJMCMC* reported in the example
only proposals of type 4 are used.

Proposal Optimizer Frequency Type 1 Type 4 Type 3 Type 5 Type 6 Type 2
qg - % = 0.9820 0.1179 0.3357 0.2779 0.0200 0.2459 0.0021
S - - {1, 1} 1 {1, 1} 1 1 20
ρj - - p̂(γj |y) - - - - p̂(γj |y)

ql - 0.0180 0 1 0 0 0 0
S - - - 5 − − − −
ρi - - - - - - - -

qo SA 0.5042 0.0636 0.3249 0.1571 0.2288 0.2246 0.0009
qo GREEDY 0.2183 0.0160 0.3085 0.1779 0.2474 0.2493 0.0007
qo MTMCMC 0.2774 0.2879 0.3016 0.1582 0.1107 0.1401 0.0013
S - - {1, 1} 1 {1, 1} 1 1 20
ρj - - p̂(γj |y) - - - - p̂(γj |y)

qr - - 0 0 0 0 0 1
S - - - - − − − 20
ρj - - - - - - - 0.0010

Table B.3: Other tuning parameters of MJMCMC for all proposal types (qg, gl, qo, and qr) in example
2; see Tables 1 and B.2 for details.
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Proposal Optimizer Frequency Type 1 Type 4 Type 3 Type 5 Type 6 Type 2
qg - % = 0.9816 0.0932 0.2654 0.2197 0.0158 0.1944 0.2116
S - - {1, 3} 3 {1, 3} 1 1 88
ρj - - p̂(γj |y) - - - - p̂(γj |y)

ql - 0.0164 0 1 0 0 0 0
S - - - 20 − − − −
ρi - - - - - - - -

qo SA 0.5553 0.0633 0.3165 0.1532 0.1548 0.1112 0.2011
qo GREEDY 0.2404 0.0149 0.2871 0.1656 0.2302 0.0820 0.2201
qo MTMCMC 0.2043 0.2310 0.1052 0.1877 0.1103 0.1682 0.1980
S - - {1, 3} 3 {1, 3} 1 1 88
ρj - - p̂(γj |y) - - - - p̂(γj |y)

qr - - 0 0 0 0 0 1
S - - - - − − − 88
ρj - - - - - - - 0.0010

Table B.4: Other tuning parameters of MJMCMC for all proposal types (qg, gl, qo, and qr) in example
3; see Table 1 and B.2 for details.

Proposal Optimizer Frequency Type 1 Type 4 Type 3 Type 5 Type 6 Type 2
qg - % = 0.9615 0.1662 0.3323 0.1662 0.1662 0.1662 0.0029
S - - {1, 1} 1 {1, 1} 1 1 13
ρj - - p̂(γj |y) - - - - p̂(γj |y)

ql - 0.0385 0 1 0 0 0 0
S - - - 4 − − − −
ρi - - - - - - - -

qo SA 0.5000 0.0657 0.3281 0.1588 0.2247 0.2209 0.0019
qo GREEDY 0.2500 0.0160 0.3083 0.1778 0.2472 0.2491 0.0014
qo MTMCMC 0.2500 0.2875 0.3012 0.1580 0.1105 0.1398 0.0026
S - - {1, 1} 1 {1, 1} 1 1 13
ρj - - p̂(γj |y) - - - - p̂(γj |y)

qr - - 0 0 0 0 0 1
S - - - - − − − 13
ρj - - - - - - - 0.0010

Table B.5: Other tuning parameters of MTMCMC for all proposal types (qg, gl, qo, and qr) in example
4; see Table B.2 and 1 for details.

B.1 Details on example 2

In the addressed data set the true regression parameters were chosen to be β0 = 99 for the intercept,
and for the slope coefficients

β = (−4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1.2, 0, 37.1, 0, 0, 50,−0.00005, 10, 3, 0).

What concerns the covariates, X1 and X3 are factors from a group with 3 levels, X4 and X6 are from
another group with 3 levels but additionally correlated with X1 and X3, X7 and X8 are two exponentially
distributed variables with rate 0.3 jointly made dependent through copulas, X9, X10 and X11 are all uni-
formly distributed with range from -1 to 10 and also jointly dependent through copulas, X12, X13, X14 and
X15 are multivariate normal with a zero mean, standard deviation of 0.2 and some covariance structure,
X16 represents some seasonality incorporated by the sinus transformation of the radiant representa-
tion of some angle equal to the corresponding ordering numbers of observations, X17 is the quadratic
trend associated to the squared value of positions of observations, X19 = (−4 + 5X1 + 6X3)X15 and
X20 = (−4+5X1 +6X3)X11, finally to avoid over specification 2 layers from the mentioned above groups
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of factors were replaced with some auxiliary covariatesX2 = (X10+X14)×X9 andX5 = (X11+X15)×X12.
The linear predictor is drawn as η ∼ N(β′X, 0.5), whilst the observations Y are independent Bernoulli
variables with the probability of success modeled by a logit transformation of the linear predictor, namely

Y ∼ Bernoulli
(
p = exp(η)

1+exp(η)

)
.

C Further results

In tables C.1 (example 1), C.2 (example 2) and C.3 (example 4) the estimated biases, corresponding to
the RMSE estimates given in tables 3, 4 and 5, are reported. In addition, an extra simulation experiment
on linear regression based on simulated data is reported in C.1.

Par True TOP MJMCMC MJMCMC2 BAS MC3 RS MJMCMC*
∆ πj - RM MC RM MC RM MC RM MC RM RM MC
γ8 0.16 -3.51 -6.54 -10.28 -5.09 -9.64 -5.19 5.37 -3.20 4.96 -3.06 6.23 9.06
γ13 0.16 -3.34 -7.44 -10.12 -5.57 -9.94 -6.25 7.46 2.86 8.06 2.65 6.38 10.54
γ14 0.19 -3.24 -8.27 -11.69 -6.28 -11.93 -6.19 5.27 -1.86 5.37 -2.03 7.15 10.91
γ12 0.22 -3.27 -6.82 -12.91 -5.54 -13.15 -3.08 3.00 -5.82 3.76 -5.06 5.29 10.93
γ5 0.23 -2.56 -6.21 -12.71 -4.55 -13.35 -1.80 -4.79 -12.98 -4.28 -12.72 5.39 10.90
γ9 0.23 -3.27 -9.45 -15.67 -7.35 -16.11 -9.26 4.53 -2.45 4.33 -2.10 7.68 11.06
γ7 0.29 -2.31 -4.15 -12.04 -3.41 -12.36 -2.24 -0.47 -9.41 -1.00 -9.56 3.91 10.10
γ4 0.30 -1.57 -5.82 -18.74 -3.67 -17.10 0.85 -12.67 -21.79 -13.24 -21.45 4.63 13.22
γ6 0.33 -1.92 -8.49 -19.07 -6.09 -18.84 -3.06 8.99 7.16 10.09 6.81 5.87 15.43
γ1 0.34 -2.51 -11.25 -21.94 -7.25 -20.29 -8.42 22.36 25.10 23.32 24.63 7.58 12.97
γ3 0.39 -0.43 3.51 -7.20 2.09 -4.43 4.98 -21.11 -30.20 -21.13 -29.92 2.99 12.66
γ2 0.57 1.58 5.66 -8.73 3.71 -7.51 13.73 -30.41 -37.52 -29.05 -37.12 5.11 14.04
γ11 0.59 0.58 2.86 11.75 2.13 15.32 -3.95 10.67 21.68 10.29 21.23 2.77 12.77
γ10 0.77 3.25 7.50 -2.57 5.91 2.33 15.42 -21.22 -19.06 -20.01 -19.55 6.41 14.27
γ15 0.82 3.48 9.17 0.22 6.85 3.65 14.50 -69.61 -76.81 -69.14 -76.30 6.75 14.76

C(γ) 1.00 0.86 0.58 0.58 0.71 0.71 0.66 0.10 0.10 0.10 0.10 0.60 0.60
Eff 215 3276 1909 1909 3237 3237 3276 829 829 1071 1071 3264 3264
Tot 215 3276 3276 3276 5936 5936 3276 3276 3276 3276 3276 4295 4295

Table C.1: Bias for the 100 simulated runs of every algorithm on the Crime data (example 1); the values
reported in the table are Bias ×102 for p(γj = 1|y). See the caption of Table 3 for further details.
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Par True TOP MJMCMC BAS BAS-RS RS
∆ πj - RM MC RM MC RM RM RM MC
γ6 0.29 0.00 -7.23 -14.89 -4.48 -16.40 -6.46 -3.59 -5.96 0.23
γ8 0.31 0.00 -5.97 -13.94 -3.89 -16.57 -5.57 -2.85 -5.28 -0.35
γ12 0.35 0.00 -4.07 -8.12 -2.56 -11.65 -4.20 -1.82 -3.80 0.06
γ15 0.35 0.00 -3.66 -8.85 -2.21 -12.04 -4.58 -1.35 -3.25 -0.28
γ2 0.36 0.00 -4.60 -14.71 -2.81 -16.80 -5.39 -2.19 -3.51 0.04
γ20 0.37 0.00 -4.16 -8.38 -2.46 -12.03 -3.30 -1.75 -4.07 -0.12
γ3 0.40 0.00 -8.99 -19.22 -5.58 -21.72 -9.73 -4.63 -6.69 0.23
γ14 0.44 0.00 1.08 7.12 0.51 7.63 3.68 -0.62 -0.99 0.22
γ10 0.44 0.00 -2.68 -7.62 -1.68 -11.89 -4.79 -0.29 -1.19 0.13
γ5 0.46 0.00 -1.74 -10.78 -0.88 -12.29 -3.93 0.57 0.55 -0.23
γ9 0.61 0.00 0.32 -2.29 0.00 -1.24 3.78 0.22 1.99 -0.11
γ4 0.88 0.00 5.61 6.20 3.71 6.13 6.60 5.54 7.58 -0.45
γ11 0.91 0.00 5.36 6.47 3.87 6.84 4.64 3.01 4.29 -0.28
γ1 0.97 0.00 1.86 0.98 1.32 1.17 2.43 1.94 2.28 -0.31
γ13 1.00 0.00 0.00 -0.33 0.00 -0.29 0.00 0.00 0.00 -0.3
γ7 1.00 0.00 0.00 -0.41 0.00 -0.36 0.00 0.00 0.00 -0.27
γ16 1.00 0.00 0.00 -0.33 0.00 -0.31 0.00 0.00 0.00 -0.17
γ17 1.00 0.00 0.00 -0.38 0.00 -0.35 0.00 0.00 0.00 -0.17
γ18 1.00 0.00 0.00 -0.37 0.00 -0.32 0.00 0.00 0.00 -0.19
γ19 1.00 0.00 0.00 -0.40 0.00 -0.32 0.00 0.00 0.00 -0.34

C(γ) 1.00 1.00 0.72 0.72 0.85 0.85 0.74 0.85 0.68 0.68
Eff 220 10000 5148 5148 9988 9988 10000 10000 1889 1889
Tot 220 10000 9998 9998 19849 19849 10000 10000 10000 10000

Table C.2: Bias for the 100 simulated runs of every algorithm on the simulated data of experiment 2;
the values reported in the table are Bias ×102 for p(γj = 1|y).
See the caption of Table 3 for further details.

C.1 Example S.1

In this experiment we compared MJMCMC to BAS and competing MCMC methods (MC3, RS) using
simulated data following the same linear Gaussian regression model as Clyde et al. (2011) with p = 15
and n = 100. All columns of the design matrix except for the ninth were generated from independent
standard normal random variables and then centered. The ninth column was constructed so that its
correlation with the second column was approximately 0.99. The regression parameters were chosen as
β0 = 2, β = (−0.48, 8.72,−1.76,−1.87, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0) while the variance used was σ2 = 1.

When performing inference, Zellner’s g-prior with g = T was used for the regression parameters
within each model. The marginal likelihood of a model could then be calculated through (14). To
complete the prior specification, we used (4) with q = 0.5. This lead to a rather simple example with
two main modes in the model space. Simple approaches were expected to work well in this case. The
exact posterior model probabilities could be obtained by enumeration of the model space in this case,
making comparison with the truth possible.

In the BAS algorithm 3276 models unique were visited (about 10% of the total number of models).
When running the MCMC algorithms approximately the same number of iterations were used. For the
MJMCMC algorithm, calculation of marginal likelihoods of models were stored making it unnecessary
to recompute these when a model was revisited. Therefore, for MJMCMC also a number of iterations
giving the number of unique models visited comparable with BAS was included. For each algorithm 100
replications were performed.

Table C.4, showing the root mean squared errors for different quantities, demonstrate that MJMCMC
is outperforming simpler MCMC methods in terms of RM approximations of marginal posterior inclusion
probabilities and the total captured mass. However, the MC approximations seem to be slightly poorer
for this example. Whenever both MC and RM approximations are available one should address the latter
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Par True TOP MJMCMC RS
∆ πj RM RM MC RM MC
γ4 0.0035 -0.0005 -0.0019 1.7361 -0.0189 1.6397
γ6 0.0048 -0.0006 -0.0041 1.8155 -0.0241 1.5437
γ7 0.0065 -0.0006 -0.0045 1.9763 -0.0338 0.2191
γ3 0.0076 -0.0007 -0.0014 2.9714 -0.0339 0.5167
γ8 0.0076 -0.0007 -0.0066 1.8370 -0.0326 1.1101
γ5 0.0096 -0.0007 -0.0055 1.5439 -0.0430 1.1780
γ11 0.0813 -0.0007 -0.0131 -0.7623 -0.1060 1.0394
γ12 0.0851 -0.0006 -0.0042 -0.4290 -0.0637 0.3118
γ9 0.1185 -0.0008 -0.0121 -1.3414 -0.1277 -0.4439
γ10 0.3042 -0.0006 -0.0036 -8.4912 -0.0501 2.6866
γ13 0.9827 -0.0002 0.0051 -1.6177 0.0607 -1.0082
γ1 1.0000 0.0007 0.0000 -4.4528 0.0000 -1.0018
γ2 1.0000 0.0000 0.0000 -2.3865 0.0000 -0.7782

C(γ) 1.0000 1.0000 0.9998 0.9998 0.9977 0.9977
Eff 8192 385 1758 1758 155 155
Tot 8192 385 3160 3160 10000 10000

Table C.3: Bias of the mean squared error (BIAS) from the 100 simulated runs of MJMCMC on the
epigenetic data (example 4); the values reported in the table are BIAS ×102 for p(γj = 1|y). See the
caption of Table 3 for further details.

Par True TOP MJMCMC MJMCMC2 BAS MC3 RS
∆ πj - RM MC RM MC RM MC RM MC RM
γ12 0.09 0.29 2.11 5.31 1.19 5.73 1.23 2.77 4.27 2.14 3.83
γ14 0.10 0.28 2.13 6.99 1.13 6.25 1.14 2.92 4.31 2.59 3.95
γ10 0.11 0.28 2.31 7.41 1.31 7.74 1.15 3.06 4.31 2.40 4.07
γ8 0.12 0.27 1.97 6.44 1.09 7.80 0.97 2.77 4.01 2.23 3.87
γ6 0.13 0.25 2.25 8.87 1.27 8.46 1.05 3.12 4.74 2.72 4.31
γ7 0.14 0.25 2.06 7.75 1.29 8.51 1.05 3.45 4.52 2.50 4.17
γ13 0.15 0.24 2.42 9.98 1.36 8.79 1.15 3.50 4.87 2.44 4.38
γ11 0.16 0.24 2.36 9.38 1.22 8.31 1.13 3.64 4.71 3.01 4.52
γ15 0.17 0.23 1.96 9.38 1.08 9.73 0.78 3.92 4.27 3.32 3.84
γ5 0.48 0.00 1.22 15.66 0.50 12.90 0.27 3.69 1.41 4.35 1.59
γ9 0.51 0.10 1.15 16.35 0.38 12.92 0.37 16.70 5.62 6.93 2.08
γ2 0.54 0.07 1.46 20.69 0.58 15.38 0.39 16.56 5.25 6.91 1.46
γ1 0.74 0.18 2.15 6.43 1.06 5.97 1.20 4.10 3.55 4.51 3.90
γ3 0.91 0.25 1.61 3.03 0.92 3.33 1.57 2.96 3.66 3.42 4.10
γ4 1.00 0.01 0.00 6.08 0.00 2.66 0.00 0.01 0.01 0.17 0.01

C(γ) 1.00 0.99 0.89 0.89 0.95 0.95 0.95 0.72 0.72 0.74 0.74
Eff 215 3276 1906 1906 3212 3212 3276 400 400 416 416
Tot 215 3276 3276 3276 6046 6046 3276 3276 3276 3276 3276

Table C.4: Average root mean squared error (RMSE) from the 100 repeated runs of every algorithm on
the simulated data (example S.1); the values reported in the table are RMSE ×102 for p(γj = 1|y). See
the caption of Table 3 for further details. The corresponding biases are reported in the appendix C in
Table C.2. The corresponding biases are reported in Table C.6.
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since they always have less noise. Comparing MJMCMC results to RM approximations provided by BAS
(MC are not available for this method, MJMCMC performed slightly worse when we had 3276 proposals
(but 1906 unique models visited). However MJMCMC became equivalent to BAS when we considered
6046 proposals with 3212 unique models visited in MJMCMC (corresponding to similar computational
time as BAS). In this example we were not facing a really multiple mode issue having just two modes. All
MCMC based methods tended to revisit the same states from time to time and for such a simple example
one can hardly ever beat BAS, which never revisits the same solutions and simultaneously draws the
models to be estimated in a clever adaptive way with respect to the current marginal posterior inclusion
probabilities of individual covariates.

Proposal Optimizer Frequency Type 1 Type 4 Type 3 Type 5 Type 6 Type 2
qg - % = 0.9836 0.1176 0.3348 0.2772 0.0199 0.2453 0.0042
S - - {2, 2} 2 {2, 2} 1 1 15
ρj - - p̂(γj |y) - - - - p̂(γj |y)

ql - 0.0164 0 1 0 0 0 0
S - - - 4 − − − −
ρi - - - - - - - -

qo SA 0.5553 0.0788 0.3942 0.1908 0.1928 0.1385 0.0040
qo GREEDY 0.2404 0.0190 0.3661 0.2111 0.2935 0.1046 0.0044
qo MTMCMC 0.2043 0.2866 0.1305 0.2329 0.1369 0.2087 0.0040
S - - {2, 2} 2 {2, 2} 1 1 15
ρj - - p̂(γj |y) - - - - p̂(γj |y)

qr - - 0 0 0 0 0 1
S - - - - − − − 15
ρj - - - - - - - 0.0010

Table C.5: Other tuning parameters of MJMCMC for all proposal types (qg, gl, qo, and qr) in example
S.1; see Tables 1 and B.2 for details.

Par True TOP MJMCMC BAS MC3 RS
∆ πj - RM MC RM MC RM MC RM MC RM
γ12 0.09 -0.29 -2.11 -4.95 -1.19 -5.47 -1.23 -0.14 -4.21 0.35 -3.80
γ14 0.10 -0.28 -2.12 -6.58 -1.12 -6.07 -1.14 -0.23 -4.23 0.05 -3.89
γ10 0.11 -0.28 -2.30 -6.89 -1.30 -7.64 -1.14 -0.10 -4.23 0.11 -4.02
γ8 0.12 -0.27 -1.96 -6.16 -1.08 -7.69 -0.97 0.36 -3.94 -0.51 -3.81
γ6 0.13 -0.25 -2.24 -8.03 -1.26 -8.33 -1.05 -0.65 -4.64 0.06 -4.24
γ7 0.14 -0.25 -2.05 -7.45 -1.28 -8.37 -1.04 -0.13 -4.41 0.08 -4.12
γ13 0.15 -0.24 -2.39 -9.62 -1.35 -8.62 -1.15 -0.49 -4.76 0.28 -4.32
γ11 0.16 -0.24 -2.33 -8.69 -1.21 -7.95 -1.13 -0.38 -4.59 -0.10 -4.44
γ15 0.17 -0.23 -1.93 -7.64 -1.06 -9.59 -0.78 -0.58 -4.15 -0.19 -3.74
γ5 0.48 0.00 -1.15 -14.18 -0.47 -11.97 -0.25 -0.29 -0.94 0.46 -1.17
γ9 0.51 -0.10 0.78 13.11 0.23 11.96 -0.32 -1.79 -2.20 -0.22 -1.53
γ2 0.54 -0.07 -1.21 -18.43 -0.50 -14.64 0.34 1.73 0.29 0.35 -0.25
γ1 0.74 0.18 2.12 4.88 1.04 3.99 1.19 -0.23 3.39 0.41 3.69
γ3 0.91 0.25 1.60 -1.79 0.91 0.03 1.56 -0.40 3.59 -0.14 4.00
γ4 1.00 0.01 0.00 -5.94 0.00 -2.49 0.00 0.01 0.01 -0.02 0.01

C(γ) 1.00 0.99 0.89 0.89 0.95 0.95 0.95 0.72 0.72 0.74 0.74
Eff 215 3276 1906 1906 3212 3212 3276 400 400 416 416
Tot 215 3276 3276 3276 6046 6046 3276 3276 3276 3276 3276

Table C.6: Bias for the 100 simulated runs of every algorithm on the simulated data of experiment S.1;
the values reported in the table are Bias ×102 for p(γj = 1|y). See the caption of Table 3 for further
details.
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A novel algorithmic approach to Bayesian
Logic Regression∗

Aliaksandr Hubin† , Geir Storvik‡ and Florian Frommlet§

Abstract. Logic regression was developed more than a decade ago as a tool to con-
struct predictors from Boolean combinations of binary covariates. It has been mainly used
to model epistatic effects in genetic association studies, which is very appealing due to the
intuitive interpretation of logic expressions to describe the interaction between genetic vari-
ations. Nevertheless logic regression has remained less well known than other approaches
to epistatic association mapping. Here we will adopt an advanced evolutionary algorithm
called GMJMCMC (Genetically modified Mode Jumping Markov Chain Monte Carlo) to
perform Bayesian model selection in the space of logic regression models. After describing
the algorithmic details of GMJMCMC we perform a comprehensive simulation study that
illustrates its performance given logic regression terms of various complexity. Specifically
GMJMCMC is shown to be able to identify three-way and even four-way interactions with
relatively large power, a level of complexity which has not been achieved by previous im-
plementations of logic regression. We apply GMJMCMC to reanalyze QTL mapping data
for Recombinant Inbred Lines in Arabidopsis thaliana and from a backcross population in
Drosophila where we identify several interesting epistatic effects.

Keywords: Logic Regression, Bayesian model averaging, Mode Jumping Monte Carlo
Markov Chain, Genetic algorithm, QTL mapping.

1 Introduction
Logic regression (not to be confused with logistic regression) was developed as a general tool to
obtain predictive models based on Boolean combinations of binary covariates (Ruczinski et al.,
2003). Its primary application area is epistatic association mapping as pioneered by Ruczinski
et al. (2004) and Kooperberg and Ruczinski (2005) although already early on the method was
also used in other areas (Keles et al., 2004; Janes et al., 2005). Important contributions to the
development of logic regression were later made by the group of Katja Ickstadt (Fritsch, 2006;
Schwender and Ickstadt, 2008), which also provided a comparison of different implementations
of logic regression (Fritsch and Ickstadt, 2007). Schwender and Ruczinski (2010) gave a brief
introduction with various applications and potential extensions of logic regression.

Recently a systematic comparison of the performance of logic regression and a more clas-
sical regression approach based on Cockerham’s coding (Wang and Zeng, 2009) to detect inter-
actions illustrated the advantages of logic regression to detect epistasic effects in QTL mapping
(Malina et al., 2014). Given the potential of logic regression to detect interpretable interaction
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†Department of mathematics, University of Oslo, aliaksah@math.uio.no
‡Department of mathematics, University of Oslo, geirs@math.uio.no
§Department of Medical Statistics (CEMSIIS), Medical University of Vienna, florian.frommlet@meduniwien.ac.at

c©



2 A novel algorithmic approach to Bayesian Logic Regression

effects in a regression setting it is rather surprising that it has not yet become wider addressed
in applications.

Originally logic regression was introduced together with likelihood based model selection,
where simulated annealing served as a strategy to obtain one “best” model (see Ruczinski et al.,
2003, for details). However, assuming that there is one “best” model disregards the problem
of model uncertainty. Whilst this approach works well in simulation studies, it seems to be
quite an unrealistic assumption in real world applications, where there often is no “true” model.
Hence Bayesian model averaging becomes important which implicitly takes into account model
uncertainty.

Bayesian versions of logic regression combined with model exploration include Monte
Carlo logic regression (MCLR) (Kooperberg and Ruczinski, 2005) and the full Bayesian ver-
sion of logic regression (FBLR) by Fritsch (2006). Both MCLR and FBLR use Markov Chain
Monte Carlo (MCMC) algorithms for searching through the space of models and parameters.
Inference is then based on a large number of models instead of just one model as in the original
version of logic regression. MCLR utilizes a geometric prior on the size of the model (defined
through the number of logic terms and their complexity). All models of the same size get the
same prior probability while larger models implicitly are penalized. Regression parameters are
marginalized out, significantly simplifying computational complexity.

In contrast FBLR is performed on a joint space of parameters and models. FBLR uses mul-
tivariate normal priors for regression parameters, while model size is furnished with a slightly
different prior serving similar purposes as the MCLR prior. In case of a large number of bi-
nary covariates these MCMC based methods might require extremely long Markov chains to
guarantee convergence which can make them unfeasible in practice. Additionally both of them
utilize simple Metropolis-Hastings settings which, together with the fact that the search space is
often multimodal, increases the probability that they are stuck in local extrema for a significant
amount of time.

In this paper we propose a new approach for Bayesian logic regression including model
uncertainty. We introduce a novel prior for the topology of logic regression models which is
slightly simpler to compute than the one used by MCLR and which still shows excellent prop-
erties in terms of controlling false discoveries. We consider two different priors for regres-
sion coefficients: Jeffrey’s prior which corresponds to computing marginal likelihoods with the
Laplace approximation as in BIC-like model selection criteria and the robust g-priors as a state
of the art choice for priors of regression coefficients in variable selection problems. For the ro-
bust g-prior the marginal likelihood is efficiently computed using ILA, the integrated Laplace
approximation (Li and Clyde, 2018).

The main contribution of this paper is the proposed search algorithm, named GMJMCMC,
which provides a better search strategy for exploring the model space than previous approaches.
GMJMCMC combines genetic algorithm ideas with the mode jumping Markov Chain Monte
Carlo (MJMCMC) algorithm (Hubin and Storvik, 2018) in order to be able to jump between
local modes in the model space. After formally introducing logic regression and describing the
GMJMCMC algorithm in detail we will present results from a comprehensive simulation study.
The performance of GMJMCMC is compared with MCLR and FBLR in case of logistic models
(binary responses) and additionally analyzed for linear models (quantitative responses). Models
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of different complexities are studied which allows us to illustrate the potential of GMJMCMC
to detect higher order interactions. Finally we apply our logic regression approach to perform
QTL mapping using two publicly available data sets. The first study is concerned with the
hypocotyledonous stem length in Arabidopsis thaliana using Recombinant Inbred Line (RIL)
data (Balasubramanian et al., 2009), the second one considers various traits from backcross data
of Drosophila Simulans and Drosophila Mauritana (Zeng et al., 2000).

2 Methods

2.1 Logic regression

The method of logic regression (Ruczinski et al., 2003) was specifically designed for the situ-
ation where covariates are binary and predictors are defined as logic expressions operating on
these binary variables. Logic regression can be applied in the context of the generalized linear
model (GLM) as demonstrated in Malina et al. (2014). It can also be easily expanded to the
domain of generalized linear mixed models (GLMM), but to keep our presentation as simple as
possible we will focus here on generalized linear regression models.

Consider a response variable Y ∈ R, together with m binary covariates X1, X2, . . . , Xm.
Our primary example will be genetic association studies where, depending on the context, each
binary covariate, Xj , j ∈ {1, 2, . . . ,m}, can have a different interpretation. In QTL mapping
with backcross design or recombinant inbred lines Xj simply codes the two possible genetic
variants. In case of intercross design or in outbred populations different Xj will be used to code
dominant and recessive effects (see for example Malina et al., 2014). We will adopt the usual
convention that a value 1 corresponds to logical TRUE and a value 0 to logical FALSE where
the immediate interpretation in our examples is that a specific marker is associated with a trait or
not. Each combination of the binary variables Xj with the logical operators ∧ (AND), ∨ (OR)
and Xc (NOT X), is called a logic expression (for example L = (X1 ∧X2) ∨Xc

3). Following
the nomenclature of Kooperberg and Ruczinski (2005) we will refer to logic expressions as
trees, whereas the primary variables contained in each tree are called leaves. The set of leaves
of a tree L will be denoted by v(L), that is for the specified example above we have v(L) =
{X1, X2, X3}.

We will study logic regression in the context of the generalized linear model (GLM, see
McCullagh and Nelder (1989)) of the form

Y ∼ f (y | µ(X);φ) (2.1)

h (µ(X)) = α+

q∑

j=1

γjβjLj , (2.2)

where f denotes the parametric distribution of Y belonging to the exponential family with mean
µ(X) and dispersion parameter φ. The function h is an appropriate link function, α and βj , j ∈
{1, ..., q} are unknown regression parameters, and γj is the indicator variable which specifies
whether the tree Lj is included in the model. For the sake of simplicity we abbreviate by µ(X)
the complex dependence of the mean µ on X via the logic expressions Lj according to (2.2).
Our primary examples are linear regression for quantitative responses and logistic regression
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for dichotomous responses but the implementation of our approach works for any generalized
linear model.

We will restrict ourselves to models which include no more than kmax trees and each tree
has at most Cmax leaves. Consequently the total number of considered trees q will be finite.
The vector of binary random variables M = (γ1, . . . , γq) fully characterizes a model in terms
of which logical expressions are included. Here we go along with the usual convention in the
context of variable selection that ’model’ refers to the set of regressors and does not take into
account the specific values of the non-zero regression coefficients.

Bayesian model specification

For a fully Bayesian approach one needs prior specifications for the model topology charac-
terized by the index vector M as well as for the coefficients α and βj belonging to a specific
model M . We start with defining the prior for M by

p(M) ∝ I (|M | ≤ kmax)

q∏

j=1

ρ(γj). (2.3)

Here |M | = ∑q
j=1 γj is the number of logical trees included in the model and kmax being the

maximum number of trees allowed per model. The factors ρ(γj) are introduced to give smaller
prior probabilities to more complex trees. Specifically we consider

ρ(γj) = aγjc(Lj) (2.4)

with 0 < a < 1 and c(Lj) ≥ 0 being a non-decreasing measure for the complexity of the
corresponding logical trees. In case of γj = 0 it holds that ρ(γj) = 1 and thus the prior
probability for modelM only consists of the product of ρ(γj) for all trees included in the model.
It follows that if M and M ′ are two vectors only differing in one component, say γ′j = 1 and
γj = 0, then

p(M ′)
p(M)

= ac(Lj) < 1

showing that larger models are penalized more. This result easily generalizes to the comparison
of more different models and provides the basic intuition behind the chosen prior.

The prior choice implies a distribution for the model size |M |. For kmax = q and a constant
complexity value on all trees, |M | follows a binomial distribution. With varying complexity
measures, |M | follows the Poisson binomial distribution (Wang, 1993) which is a unimodal
distribution withE[|M |] =

∑q
j=1 pj and Var[|M |] =

∑q
j=1 pj(1−pj) where pj = ac(Lj)/(1+

ac(Lj)). A truncated version of this distribution is obtained for kmax < q.

The choices of a and the complexity measure c(Lj) are crucial for the quality of the model
prior. Let N(s) be the total number of trees having s leaves which will be estimated below.
Choosing a = e−1 and c(Lj) = logN(sj) as long as the number of leaves is not larger than
Cmax results for γj = 1 in

ac(Lj) =
1

N(sj)
, sj ≤ Cmax .
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Therefore the multiplicative contribution of a specific tree of size s to the model prior will
be indirectly proportional to the total number of trees N(s) having s leaves as long as s ≤
Cmax. Given that N(s) is rapidly growing with the tree size s this choice gives smaller prior
probabilities for larger trees. The resulting penalty closely resembles the Bonferroni correction
in multiple testing similarly as discussed for example by Bogdan et al. (2008b) in the context
of modifications of the BIC.

To compute a rough approximation ofN(s) we ignore logic expressions including the same
variable multiple times. Then there are

(
m
s

)
possibilities to select variables. Each variable can

undergo logic negation giving s binary choices and furthermore there are s − 1 logic symbols
(∨,∧) to be chosen resulting in 22s−1 different expressions. However, due to De Morgan’s law
half of the expressions provide identical logic regression models. This gives

N(s) =

(
m

s

)
22s−2. (2.5)

Finally for a model of size k = |M | the full model prior is of the form

P (M) ∝ I (k ≤ kmax)
k∏

r=1

I (sjr ≤ Cmax)(
m
sjr

)
22sjr−2

, (2.6)

where j1, . . . , jk refer to the k trees of model M .

We will next discuss priors for the parameters given a specific model M . The GLM formu-
lation (2.1) includes a dispersion parameter φ, which for example in case of the linear model
is connected with the variance term σ2 for the underlying normal distribution. If a GLM has a
dispersion parameter then for the sake of simplicity we will adopt the commonly used improper
prior (Li and Clyde, 2018; Bayarri et al., 2012)

π(φ) =φ−1 . (2.7)

If a GLM does not include a dispersion parameter (like logistic regression) then one simply sets
φ = 1.

Concerning the intercept α and the regression coefficients βj , where j ∈ {j1, ..., j|M |}
correspond to the non-zero coefficients of model M , we will consider two different types of
priors, simple Jeffrey’s priors and robust g-priors. Jeffrey’s prior (Chen et al., 2008) assumes
for the parameters of the model an improper prior distribution of the form

πα(α)πβ(β) =|Jn(α,β)| 12 , (2.8)

where Jn(α,β) is the observed information. To obtain model posterior probabilities according
to equation (2.12) one needs to evaluate the marginal likelihood of the model P (Y | M) by
integrating over all parameters of the model which is often a fairly difficult task. The greatest
advantage of Jeffrey’s prior is that this integration becomes rather simple due to its relationship
with the Laplace approximation (Claeskens and Hjort, 2008). In case of the Gaussian model
choosing Jeffrey’s prior (2.8) for the coefficients and the simple prior (2.7) for the variance
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term yields that the Laplace approximation becomes exact (Claeskens and Hjort, 2008) and
gives a marginal likelihood of the simple form

P (Y |M) ∝P (Y |M, θ̂) n
|M|
2 , (2.9)

where θ̂ refers to the maximum likelihood estimates of all parameters involved. On the log
scale this exactly corresponds to the BIC model selection criterion (Schwarz, 1978) when using
a uniform model prior. In case of logistic regression the marginal likelihood under Jeffrey’s
prior becomes approximately (2.9) with an error of order O(n−1) (Tierney and Kadane, 1986;
Claeskens and Hjort, 2008). Barber et al. (2016) also describe that Laplace approximations
of the marginal likelihood yield very accurate results and can be trusted in Bayesian model
selection problems.

Although there are many situations in which selection based on BIC like criteria works
perfectly well, within the Bayesian literature using Jeffrey’s prior for model selection has been
widely criticized for not being consistent once the true model coincides with the null model
(Bayarri et al., 2012). A large number of alternative priors have been studied, see for example
Li and Clyde (2018) who give a comprehensive review on the state of the art of g-priors. In a
recent paper Bayarri et al. (2012) gave theoretical arguments in case of the linear model which
recommend the robust g-prior, which is consistent in all situations and yields errors diminishing
significantly faster than other prior choices. Thus we will introduce the robust g-prior as an
alternative to Jeffrey’s prior. However, we want to point out that the choice of priors for the
regression coefficients is not the real focus of this paper.

Our description of robust g-priors follows Li and Clyde (2018) who consider an inproper
constant prior for the intercept, P (α) ∝ 1, and a mixture g-prior for the regression coefficients
βj , j ∈ {j1, ..., j|M |} of the form

P (β | g) ∼ N|M |
(
0, g · φJn(β)−1

)
. (2.10)

Here Jn(β) is the observed information and g itself is assumed to be distributed according to
the so called truncated Compound Confluence Hypergeometric (tCCH) prior

P

(
1

1 + g

)
∼ tCCH

(
a

2
,
b

2
, r,

s

2
, v, κ

)
. (2.11)

This family of mixtures of g-priors includes a large number of priors discussed in the litera-
ture, see Li and Clyde (2018) for more details. The recommended robust g-prior is a particular
case with the following choice of parameters:

a = 1, b = 2, r = 1.5, s = 0, v =
n+ 1

|M |+ 1
, κ = 1 .

Under this prior specification precise integrated Laplace approximations of the marginal likeli-
hood for GLM are given by Li and Clyde (2018), whilst exact values are available for Gaussian
models (Li and Clyde, 2018; Bayarri et al., 2012).
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2.2 Computing posterior probabilities

Given prior probabilities for any logic regression model M the model posterior probability can
be computed according to Bayes formula as

P (M | Y ) =
P (Y |M)P (M)∑

M ′∈Ω P (Y |M ′)P (M ′)
, (2.12)

where P (Y | M) denotes the integrated (or marginal) likelihood for model M and Ω is the set
of all models in the model space. The sum in the denominator involves a huge number of terms
and it is impossible to compute all of them. Classical MCMC based approaches (like MCLR
and FBLR) overcome this problem by estimating model posteriors with the relative frequency
with which a specific modelM occurs in the Markov chain. In case of an ultrahigh-dimensional
model space (like in case of logic regression) this is computationally extremely challenging and
might require chain lengths which are prohibitive for practical applications.

An alternative approach makes use of the fact that most of the summands in the denominator
of (2.12) will be so small that they can be neglected. Considering a subset Ω∗ ⊆ Ω containing
the most important models we can therefore approximate (2.12) by

P (M | Y ) ≈ P̃ (M | Y ) =
P (Y |M)P (M)∑

M ′∈Ω∗ P (Y |M ′)P (M ′)
. (2.13)

To obtain good estimates we have to search in the model space for those models that contribute
significantly to the sum in the denominator, that is for those models with large posterior proba-
bilities or equivalently with large values of P (Y |M)P (M). In Frommlet et al. (2012) specific
memetic algorithms were developed to perform the model search for linear regression. Here we
will rely upon the GMJMCMC algorithm, which is described in the next section. For now we
assume that some method for computing of the marginal likelihood P (Y |M) is available. The
details of such computation depend on the prior specifications of the parameters of a particular
model and are given for the examples in the experimental sections.

Based on model posterior probabilities one can easily obtain an estimate of the posterior
probability for a logic expression L to be included in a model (also referred to as the marginal
inclusion probability) by

P̃ (L | Y ) =
∑

M∈Ω∗:L∈T (M)

P̃ (M | Y ). (2.14)

Inference on trees can then be performed by means of selecting those trees with a posterior
probability being larger than some threshold probability πC . More generally one can approxi-
mate the posterior probability of some parameter ∆ via model averaging as

P̃ (∆ | Y ) =
∑

M∈Ω∗

P (∆ |M,Y )P̃ (M | Y ) , (2.15)

where ∆ might be for example the predictor of unobserved data based on a specific set of
covariates.
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2.3 The GMJMCMC algorithm

To fix ideas consider first a variable selection problem with q potential covariates to enter a
model. Recall that γj needs to be 1 if the j-th variable is to be included into the model and 0
otherwise. A model M is thus specified by the vector γ = (γ1, ..., γq) and the general model
space Ω is of size 2q . If this discrete model space is multimodal in terms of model posterior
probabilities then simple MCMC algorithms typically run into problems by staying for too long
in the vicinity of local maxima. Recently, the mode jumping MCMC procedure (MJMCMC)
was proposed by Hubin and Storvik (2018) to overcome this issue.

MJMCMC is a proper MCMC algorithm equipped with the possibility to jump between
different modes within the discrete model space. The key to the success of MJMCMC is the
generation of good proposals of models which are not too close to the current state. This is
achieved by first making a large jump (changing many model components) and then perform-
ing local optimization within the discrete model space to obtain a proposal model. Within a
Metropolis-Hastings setting a valid acceptance probability is then constructed using symmet-
ric backward kernels, which guarantees that the resulting Markov chain is ergodic and has the
desired limiting distribution (Hubin and Storvik, 2018).

The MJMCMC algorithm requires that all of the covariates defining the model space are
known in advance and are all considered at each iteration of the algorithm. In case of logic
regression the covariates are trees and a major problem in this setting is that it is quite difficult
to fully specify the space Ω. In fact it is even difficult to specify the number q of the total num-
ber of feasible trees. To solve this problem we present an adaptive algorithm called Genetically
Modified MJMCMC (GMJMCMC), where MJMCMC is embedded in the iterative setting of a
genetic algorithm. In each iteration only a given set S of trees (of fixed size d) is considered.
Each S then induces a separate search space for MJMCMC. In the language of genetic algo-
rithms S is the population, which dynamically evolves to allow MJMCMC exploring different
reasonable parts of the unfeasibly large total search space. The resulting algorithm is similar to
feature engineering (Xu et al., 2012) and allows to consider combinations of covariates that can
be adapted throughout the search.

To be more specific, we consider different populations S1,S2, ... where each St is a set of
d trees. For each given population a fixed number of MJMCMC steps is performed. Since the
MJMCMC algorithm is specified in full detail in Hubin and Storvik (2018), we will concentrate
here on describing the evolutionary dynamics yielding subsequent populations St. In principle
it is possible to construct a proper MCMC algorithm which aims at simulating from extended
models of the form P (M,S | Y ) having P (M | Y ) as a stationary distribution (to be published
in a forthcoming paper). However, utilization of the approximation (2.13) in combination with
exact or approximated marginal likelihoods allows us to compute posterior probabilities for all
models in Ω∗ which have been visited at least once by the algorithm. Consequently we do not
need to fulfill detailed balance which is typically required for MCMC when model posterior
probabilities are estimated by the relative frequency of how often a model has been visited.

The algorithm is initialized by first running MJMCMC for a given number of iterations
Ninit on the set of all binary covariates X1, ..., Xm as potential regressors, but not including
any interactions. The first d1 < d members of population S1 are then defined to be the d1

trees with largest marginal inclusion probability. In our current implementation we select the
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d1 leaves which have posterior probabilities larger than ρmin, thus d1 is not pre-specified but
is obtained in a data driven way. For later reference we denote this set of d1 leaves by S0. The
remaining d− d1 members of S1 are obtained by forming logic expressions from the leaves of
S0 where trees are generated randomly by means of the crossover operation described below. In
practice one first has to choose some kmax which will depend on the expected number of trees
to enter the model in the problem one studies. The choice of d can then be guided by the results
of Theorem 2.1 given below.

After S1 has been initialized MJMCMC is performed for a fixed number of iterations
Nexpl before the next population S2 is generated. This process is iterated for Tmax popula-
tions St, t ∈ {1, ..., Tmax}. The d1 input trees from the initialization procedure remain in all
populations St throughout our search. Other trees from the population St with low marginal in-
clusion probabilities (below a threshold ρmin) will be substituted by trees which are generated
by crossover, mutation and reduction operators to be described in more detail below.

Let Dt be the set of trees to be deleted from St. Then |Dt| replacement trees must be
generated instead. Each replacement tree is generated randomly by a crossover operator with
probability Pc and by a mutation operator with probability Pm = 1− Pc. A reduction operator
is applied if mutation or crossover gives a tree larger than the maximal tree size Cmax.

Crossover: Two parent trees are selected from St with probabilities proportional to the approx-
imated marginal inclusion probabilities of trees in St. Then each one of the parents is inverted
with probability Pnot by the logical not c operator, before they are combined with a ∧ operator
with probability Pand and with a ∨ operator otherwise. Hence the crossover operator gives trees
of the form Lj1 ∧ Lj2 or Lj1 ∨ Lj2 where either Lji or Lcji is in St for i = 1, 2.

Mutation: One parent tree is selected from St with probability proportional to the approximated
marginal inclusion probabilities of trees in St, whilst the other parent tree is selected uniformly
from the set ofm−d1 leaves which did not make it into the initial population S0. Then just like
for the crossover operator each of the parents is inverted with probability Pnot by the logical
not c operator, before they are combined with a ∧ operator with probability Pand and with a ∨
operator otherwise. The mutation operator gives trees of the form Lj1 ∧X or Lj1 ∨X where
either Lj1 or Lcj1 is in St and X or Xc is in D0.

Reduction: A new tree is generated from a tree by deleting a subset of leaves, where each leave
has a probability of ρdel to be deleted. The pruning of the tree is performed in a natural way
meaning that the ’closest’ logical operators of the deleted leaves are also deleted. If the deleted
leave is not on the boundaries of the original tree the operation is resulting in obtaining two
separated subtrees. The resulting subtrees are then combined in a tree with a ∧ operator with
probability Pand or with a ∨ operator otherwise.

For all three operators it holds that if the newly generated tree is already present in St
then it is not considered for St+1 but rather a new replacement tree is proposed instead. The
pseudo-code Algorithm 1 describes the full GMJMCMC algorithm. For each iteration t the
initial model for the next MJMCMC run is constructed by randomly selecting trees from St
with probability Pinit. For the final population STmax , MJMCMC is run until Mfin unique
models are visited (within STmax

). Mfin should be sufficiently large to obtain good MJMCMC
based approximations of the posterior parameters of interest based on the final search space
STmax

.
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Algorithm 1 GMJMCMC
1: Run the MJMCMC algorithm for Ninit iterations on X1, ..., Xm and define S0 as the set

of d1 variables among them with the largest estimated marginal inclusion probabilities.
2: Generate d− d1 trees by randomly selecting crossover operations of elements from S0 and

add those trees to the set S0 to obtain S1.
3: Run the MJMCMC algorithm within search space S1.
4: for t = 2, ..., Tmax do
5: Delete trees within St−1\S0 which have estimated inclusion probabilities less than
ρmin.

6: Add new trees which are generated by crossover, mutation or reduction operators until
the having again a set of size d, which becomes St.

7: Run the MJMCMC algorithm within search space St.
8: end for

The following result is concerned with consistency of probability estimates of GMJMCMC
when the number of iterations increases.

Theorem 2.1. Assume Ω∗ is the set of models visited through the GMJMCMC algorithm where
d − d1 ≥ kmax. Then the model estimates based on (2.13) will converge to the true model
probabilities as the number of iterations Tmax converges to∞.

Proof. Note that the approximation (2.13) will provide the exact answer if Ω∗ = Ω. It is there-
fore enough to show that the algorithm in the limit will have visited all possible models. Since
S0 is generated in the first step and never changed, we will consider it to be fixed.

Define MSt
to be the last model visited by the MJMCMC algorithm on search space St.

Then the construction of St+1 only depends on (St,MSt
,X) while MSt+1

only depends on
St+1. Therefore {(St,MSt ,X)} is a Markov chain. Assume now S and S ′ are two populations
differing in one component with L ∈ S, L′ ∈ S ′, L 6= L′. Define Lsub to be any tree that
is a subtree of both L and L′ (where a subtree is defined as a tree which can be obtained by
reduction) and Ssub to be the search space where L is substituted with Lsub in S. Then it is
possible to move from S to Ssub in l steps using first mutations and crossovers to grow a tree
L∗ of size larger than Cmax, which can undergo reduction (note that although only trees that
have low enough estimated marginal inclusion probabilities can be deleted, there will always be
a positive probability that marginal inclusion probabilities are estimated to be smaller than the
threshold ρmin) to get to Lsub. Further, assuming the difference in size between Lsub and L′ is
r, a move from Ssub to S′ can be performed by r steps of mutations or crossovers. Two search
spaces which differ in s trees can be reached by s combinations of the moves described above.
Since also any model within a search space can be visited, the Markov chain {(St,MSt ,X)}
is irreducible. Since the state space for this Markov chain is finite, it is also recurrent, and there
exists a stationary distribution with positive probabilities on every model. Thereby, all states,
including all possible models of maximum size d, will eventually be visited.

When d1 > 0, some restrictions on the possible search spaces are introduced. However,
when d− d1 ≥ kmax, any model of maximum size kmax will eventually be visited.
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Remark 1 If d − d1 < kmax, then every model of size up to d − d1 plus some of the larger
models will eventually be visited, although the model space will get some additional constraints.
At the same time in practice it is more important that d−d1 ≥ k∗, where k∗ is the size of the true
model. Unfortunately neither k∗ nor d1 are known in advance, and one has to make reasonable
choices of kmax and d depending on the problem one analyses.

Remark 2 The result of Theorem 2.1 relies on exact calculation of the marginal likelihood
P (Y | M). Apart from the linear model, the calculation of P (Y | M) is typically based on an
approximation, giving similar approximations to the model probabilities. How precise these ap-
proximations are will depend on the type of method used. The current implementation includes
Laplace approximations, integrated Laplace approximations, and integrated nested Laplace ap-
proximations. In principle other methods like those from Chib, or Chib and Jaliazkov could be
incorporated relatively easily (Hubin and Storvik, 2016), resulting however in longer runtimes.

Parallelization

Due to our interest in exploring as many unique high quality models as possible and doing it
as fast as possible, running multiple parallel chains is likely to be computationally beneficial
compared to running one long chain. The process can be embarrassingly parallelized into B
chains using several CPUs, GPUs or clusters. If one is mainly interested in model probabilities,
then equation (2.13) can be directly applied with Ω∗ now being the set of unique models visited
within all runs. However, we suggest a more memory efficient approach. If some statistic ∆
is of interest, one can utilize the following posterior estimates based on weighted sums over
individual runs:

P̃ (∆ | Y ) =
B∑

b=1

wbP̃b(∆ | Y ) . (2.16)

Here wb is a set of weights which will be specified below and P̃b(∆ | Y ) are the posteriors
obtained with formula (2.15) from run b of GMJMCMC.

Due to the irreducibility of the GMJMCMC procedure it holds that limk→∞ P̃ (∆ | Y ) =
P (∆ | Y ) where k is the number of iterations. Thus for any set of normalized weights the
approximation P̃ (∆ | Y ) converges to the true posterior probability P (∆ | Y ). Therefore in
principle any normalized set of weights wb would work, like for example wb = 1

B . However,
uniform weights have the disadvantage to potentially give too much weight to posterior esti-
mates from chains that have not quite converged. In the following heuristic improvement wb is
chosen to be proportional to the posterior mass detected by run b,

wb =

∑
M ′∈Ω∗b

P (Y |M ′)P (M ′)
∑B
b=1

∑
M ′∈Ω∗b

P (Y |M ′)P (M ′)
.

This choice indirectly penalizes chains that cover smaller portions of the model space. When
estimating posterior probabilities using these weights we only need, for each run, to store the
following quantities: P̃b(∆ | Y ) for all statistics ∆ of interest and sb =

∑
M ′∈Ω∗b

P (Y |
M ′)P (M ′) as a ’sufficient’ statistic of the run. There is no further need of data transfer between
processes.
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Alternatively (as mentioned above) one might use (2.15) directly to approximate P (∆ | Y )
based on the totality Ω∗ of unique models explored through all of the parallel chains. This proce-
dure might give in some cases slightly better precision than the weighted sum approach (2.16),
but it is still only asymptotically unbiased. Moreover keeping track of all models visited by all
chains requires significantly more storage in the quick memory and RAM and requires signif-
icantly more data transfers across the processes. Consequently this approach is not part of the
current implementation of GMJMCMC.

The consistency result of Theorem 1 also holds in case of the suggested embarrassing par-
allelization. Moreover it holds that even when the number of iterations per chain is finite that
letting the numbers of chains B go to infinity yields consistency of the posterior estimates as
shown in Theorem A.1 in the web supplement. The main practical consequence is that running
more chains in parallel allows for having a smaller number of iterations within each thread.

Choice of algorithmic parameters Apart from the number of parallel chains, the GMJM-
CMC algorithm relies upon the choice of a number of parameters which were described above.
Section A of the web supplement presents the values that were used in the following simulation
study and in real data analysis.

3 Experiments

3.1 Simulation study

The GMJMCMC algorithm was evaluated in a simulation study divided into two parts. The
first part considered three scenarios with binary responses and the second part three scenarios
with quantitative responses. For each scenario we generated N = 100 datasets according to
a regression model described by equations (2.1) and (2.2) with n = 1000 observations and
p = 50 binary covariates. The covariates were assumed to be independent and were simulated
for each simulation run as Xj ∼ Bernoulli(0.3) for j ∈ {1, . . . , 50} in the first two scenarios
and as Xj ∼ Bernoulli(0.5) for j ∈ {1, . . . , 50} in the last four scenarios. All computations
were performed on the Abel cluster1.

Binary responses

The responses of the first three scenarios were sampled as modes of Bernoulli random variables
with individual success probability π specified according to

S.1 : logit(π) =− 0.7 + L1 + L2 + L3

S.2 : logit(π) =− 0.45 + 0.6 L1 + 0.6 L2 + 0.6 L3

S.3 : logit(π) = 0.4− 5 L1 + 9 L2 − 9 L3

where the corresponding logic expressions are provided in Table 1. The first two scenarios with
models including only two-way interactions were copied from Fritsch (2006) except that we

1The Abel cluster node (http://www.uio.no/english/services/it/research/hpc/abel/) with
16 dual Intel E5-2670 (Sandy Bridge, 2.6 GHz.) CPUs and 64 GB RAM under 64 bit CentOS-6 is a shared resource
for research computing.
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deliberately did not specify the trees in lexicographical order. The reason for this is that for
some procedures (like stepwise search) it might be an algorithmic advantage if the effects are
specified in a particular order. The second scenario is slightly more challenging than the first
one due to the smaller effect sizes. The third scenario is even more demanding with a model
including three-way and four-way interactions. Effect sizes were accordingly increased to give
sufficient power to detect these higher order trees.

For the binary response scenarios GMJMCMC was compared with FBLR and MCLR,
where GMJMCMC was run with Jeffrey’s prior as well as with the robust g-prior. Additionally
we ran the algorithm with Jeffrey’s prior and calculated posteriors for the visited models with
respect to both Jeffrey’s and robust g-prior. For all three algorithms we predefined Cmax = 2
leaves per tree for Scenario 1 and 2 and Cmax = 5 for Scenario 3. The maximal number of
trees per model was set to kmax = 10 for GMJMCMC and FBLR whereas for MCLR it is
only possible to specify a maximum of kmax = 5. This is apparently due to the complexity
of prior computations in MCLR. Apart from the specification of Cmax and kmax we used for
all 3 algorithms their default priors. In all scenarios we used d = 15 for the population size in
GMJMCMC.

GMJMCMC was run until up to 1.6 × 106 models were visited in the first two scenarios
and up to 2.7 × 106 models were visited for the third scenario (divided approximately equally
on 32 parallel runs). The length of the Markov chains for FBLR and MCLR were chosen to be
2× 106 for the first two scenarios and 3× 106 for the third scenario.

To evaluate the performance of the different algorithms we estimated the following metrics:

Individual power - the power to detect a particular true tree (a tree from the data generating
model);

Overall power - the average power over all true trees;

FP - the expected number of false positive trees;

FDR - the false discovery rate of trees;

WL - the total number of wrongly detected leaves.

Further computational details are given in Section B.1 of the web supplement.

A summary of the results for the first three simulation scenarios is provided in Table 1.
In all three scenarios, MCLR performed better than FBLR, even when taking into account the
positively biased summary statistics of MCLR (see Section B.1 in the web supplement). On the
other hand, GMJMCMC clearly outperformed MCLR and FBLR both in terms of power and
in terms of controlling the number of false positives, where using Jeffrey’s prior gave slightly
better results than using the robust g-prior. In the first two scenarios GMJMCMC with Jeffrey’s
prior worked almost perfectly. In the few instances where it did not detect the true tree it reported
instead the two corresponding main effects. GMJMCMC with the robust g-prior had a few more
instances where pairs of singletons were reported instead of the correct two-way interaction.
FBLR and MCLR were also good at detecting the true leaves in these simple scenarios, but
GMJMCMC was much better in terms of identifying the exact logical expressions.
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Table 1: Results for the three simulation scenarios for binary responses. Power for individual
trees, overall power, expected number of false positives (FP) and FDR are compared between
FBLR, MCLR and GMJMCMC using either Jeffrey’s prior (Jef.) or the robust g-prior (R.g.).
All algorithms were tuned to use approximately the same computational resources. In case of
MCLR we can only provide upper bounds for the power and lower bounds for FP. We also
report the total number of wrongly detected leaves (WL) over all simulation runs.

FBLR MCLR GMJMCMC

Scenario 1 Jef. R. g
L1 = Xc

1 ∧X4 0.30 ≤ 0.67 0.97 0.98
L2 = X5 ∧X9 0.42 ≤ 0.61 1.00 0.95
L3 = X11 ∧X8 0.33 ≤ 0.59 0.91 0.77
Overall Power 0.35 ≤ 0.62 0.96 0.90
FP 3.88 ≥ 2.70 0.25 0.63
FDR 0.77 ≥ 0.06 0.06 0.15
WL 0 0 0 0

Scenario 2
L1 = Xc

1 ∧X4 0.32 ≤ 0.66 0.97 0.97
L2 = X5 ∧X9 0.40 ≤ 0.67 0.99 0.96
L3 = X11 ∧X8 0.37 ≤ 0.60 0.86 0.76
Overall Power 0.36 ≤ 0.64 0.94 0.90
FP 3.83 ≥ 2.58 0.38 0.66
FDR 0.75 ≥ 0.06 0.09 0.16
WL 1 1 0 0

Scenario 3
L1 = X2 ∧X9 0.93 ≤ 0.93 1.00 1.00
L2 = X7 ∧X12 ∧X20 0.04 ≤ 0.67 0.91 0.56
L3 = X4∧X10∧X17∧X30 0.00 ≤ 0.19 1.00 0.56
Overall Power 0.32 ≤ 0.60 0.97 0.71
FP 6.40 ≥ 2.98 0.15 1.74
FDR 0.54 ≥ 0.06 0.04 0.39
WL 90 72 1 0
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The third scenario is more complex than the previous ones but nevertheless GMJMCMC
with Jeffrey’s prior performed almost perfectly. GMJMCMC with the robust g-prior had more
difficulties to correctly identify the three-way and four-way interaction. Both FBLR and MCLR
had severe problems to detect the true logic expressions and they also reported a considerable
number of wrongly detected leaves. For a more in depth discussion of these simulation results
we refer to Section B.1 of the web supplement.

Finally, when the search was performed using Jeffrey’s prior but the posteriors were ob-
tained using the robust g-priors, then the posterior estimates were almost identical to those
using only Jeffrey’s prior throughout and there was no difference in terms of detected trees.
This indicates that the choice of priors for the regression coefficients is of some importance for
the quality of the search through the model space.

Continuous responses

Responses were simulated according to a Gaussian distribution with error variance σ2 = 1 and
the following three models for the expectation:

S.4 : E(Y ) = 1+1.43 L1 + 0.89 L2 + 0.7 L3

S.5 : E(Y ) = 1+1.5 L1 + 3.5 L2 + 9 L3 + 7 L4

S.6 : E(Y ) = 1+1.5 L1 + 1.5 L2 + 6.6 L3 + 3.5 L4

+9 L5 + 7 L6 + 7 L7 + 7 L8

The logic expressions used in the three different scenarios are provided in Table 2. Scenario 4
is similar to the first two scenarios for binary responses and contain only two-way interactions.
The models of the last two scenarios both include trees of size 1 to 4, where scenario 5 has one
tree of each size. Scenario 6 is the most complex one with two trees of each size, resulting in a
model with 20 leaves in total.

For scenarios with Gaussian observations we could only study the performance of GMJM-
CMC since the other approaches cannot handle continuous responses (MCLR has an imple-
mentation but that does not work properly). For these scenarios the settings of GMJMCMC
were adapted to the increasing complexity of the model. We used kmax = 10, 10 and 20, and
d = 15, 20 and 40, respectively, for the three scenarios thus allowing for models larger than
twice the size of the data generating model and populations at least twice the size of the num-
ber of correct leaves involved. Furthermore, the total number of models visited by GMJMCMC
before it stopped was increased to 3.5 × 106 for Scenario 6. Cmax is set to 5 for all three of
these scenarios. Otherwise all parameters of GMJMCMC were set as described for the binary
responses.

Table 2 summarizes the results and further details are provided in Section B.2 of the web
supplement. Scenario 4 illustrates that given a sufficiently large sample size GMJMCMC can
reliably detect two-way interactions with effect sizes smaller than one standard deviation. Both
Jeffrey’s prior and the robust g-prior worked almost perfectly in terms of power. In this simple
scenario even the type I error was almost perfectly controlled with false discovery rates equal
to 0.005 for Jeffrey’s prior and 0 for the robust g-prior. Interestingly the only false discovery
over all 100 simulation runs was of the form X1 ∧X4 ∨X8 ∧X11 and is equal to L3 ∨L2. One
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Table 2: Results for the three simulation scenarios for linear regression. Power for individual
trees, overall power, expected number of false positives (FP), FDR and the total number of
wrongly detected leaves (WL) are given for parallel GMJMCMC. The four estimates in brackets
for Scenario 6 are explained in the text.

Scenario 4 Jeffrey’s Robust g
L1 = X5 ∧X9 1.00 1.00
L2 = X8 ∧X11 0.99 1.00
L3 = X1 ∧X4 0.97 0.98
Overall Power 0.99 0.99
FP 0.01 0.00
FDR 0.005 0.00
WL 0 0

Scenario 5 Jeffrey’s Robust g
L1 = X37 1.00 1.00
L2 = X2 ∧X9 1.00 0.99
L3 = X7 ∧X12 ∧X20 0.96 1.00
L4 = X4 ∧X10 ∧X17 ∧X30 0.89 0.90
Overall Power 0.96 0.97
FP 0.37 0.28
FDR 0.06 0.04
WL 2 5

Scenario 6 Jeffrey’s Robust g
L1 = X7 0.95 0.99
L2 = X8 0.98 0.99
L3 = X2 ∧X9 0.98 0.99
L4 = X18 ∧X21 0.96 0.95
L5 = X1 ∧X3 ∧X27 1.00 1.00
L6 = X12 ∧X20 ∧X37 0.95 0.96
L7 = X4 ∧X10 ∧X17 ∧X30 0.32 0.45
L8 = X11 ∧X13 ∨X19 ∧X50 0.21 (0.93) 0.16 (0.85)
Overall Power 0.79 (0.88) 0.81 (0.90)
FP 4.28 (2.05) 4.24 (1.96)
FDR 0.38 (0.19) 0.36 (0.16)
WL 3 7

might argue to which extent such a combination of trees should actually be counted as a false
positive, a question which is further elaborated in Section B.2 of the web supplement and in the
Discussion section.

The remaining two scenarios are way more complex due to the higher order interaction
terms involved. In Scenario 5 the power to detect any of the four trees was very large, with only
slightly smaller power for the four-way interaction. The robust g-prior had only a rather small
advantage compared with Jeffrey’s prior both in terms of power (overall 97% against 96%) and
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in terms of type I error (FDR of 4% against 6%). For both priors the majority of false positive
results were connected to detecting subtrees of true trees and in all simulation runs there were
only 2 wrongly detected leaves for Jeffrey’s prior and 5 wrongly detected leaves for the robust
g-prior.

For the last scenario we again observed large power for all true trees up to order three. For
the final two expressions L7 and L8 of order four the results became slightly more ambiguous
with power estimated to 0.32 and 0.21, respectively, for Jeffrey’s prior and 0.45 and 0.16 for the
robust g-prior. However, among the false positive detections we very often found the expres-
sions X11 ∧X13, X19 ∧X50 as well as X11 ∧X13 ∧X19 ∧X50. In fact in 72 simulation runs
for Jeffrey’s prior and 69 simulation runs for the robust g-prior all of these three expressions
were detected. According to the logic equivalence

L8 = X11 ∧X13 +X19 ∧X50 −X11 ∧X13 ∧X19 ∧X50

one might actually consider these findings as true positives. The numbers in parentheses in
Table 2 were based on taking such similarities into account, resulting in much higher power.
Among the remaining false positive detections more than two thirds were subtrees of true trees
or trees with misspecified logical operators but consisting of leaves corresponding to a true tree.
Thus again the vast majority of false detections points towards true epistatic effects where the
exact logic expression was not identified. Interestingly like in Scenario 5 GMJMCMC with the
robust g-prior detected again a larger number of wrong leaves than with Jeffrey’s prior.

Sensitivity analysis

We perform sensitivity analysis for the power to detect the four-way interaction L4 based on
P̃ (L4|Y ) > 0.5 in Scenario 5. Specifically we consider the following three questions. How is
the power effected by

1. a change in the corresponding coefficient β4?

2. a change in the sample size n?

3. a change in the population size d?

In all three scenarios the parameters were increased uniformly in 10 steps within a given range
and kmax was set to 20. The results presented in Figures 1-2 are based on 10 runs for each
parameter value, both for Jeffrey’s prior and for the robust g-prior.

The left plot of Figure 1 illustrates the dependence of power to detect L4 on the correspond-
ing coefficient β4 varying between 1 and 10. For both priors the power curves sharply increase
when β4 changes from 4 to 6. This characteristic of the power curve depends on the number
of leaves of the tree to be detected. Our model prior is designed to penalize more complex
trees more severely in order to control FDR. For interaction terms of lower order the rise of the
power curve would therefore occur already for smaller values of the corresponding regression
coefficient. The fluctuations observed in the power curves in Figure 1 are due to the fairly small
number of simulation runs per value.
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Figure 1: Dependence of power to detect L4 on the regression coefficient β4 (left) and the
sample size n (right) both for Jeffrey’s prior (red) and the robust g-prior (blue).

The right plot of Figure 1 presents power curves for the detection of L4 depending on the
sample size n. Once again due to the small number of simulation runs there is some fluctuation
but one can see for both priors clearly that the power grows gradually when n varies between
100 and 1000. In spite of the low resolution it is fairly clear that for an effect of β4 = 7 one
needs at least a sample size of n = 400 to have some power to detect this four-way interaction.
One can expect that for trees of lower complexity effects of the same size can be detected
already with smaller sample sizes. This is again explained by the nature of our model prior,
which parsimoniously penalizes more complex trees in order to control FDR.

Figure 2 is concerned with the influence of the population size d from the GMJMCMC
algorithm on the power to detect L4. Here d ranges from 15 to 150 and n = 1000. As one
can see for both priors power grows gradually from 0 to 1 when d changes from 15 to 45. For
values of d > 30 the power remains stable at 1. This illustrates the statement of Theorem 2.1,
according to which one requires d−d1 ≥ kmax to have an irreducible algorithm in the restricted
space of logic regression models. In these simulations we have kmax = 20 and d1 = 10. Hence
according to Theorem 2.1 a population size d ≥ 30 is sufficient for asymptotic irreducibility
of the GMJMCMC algorithm. For d − d1 < kmax irreducibility is no longer guaranteed and
hence we cannot expect the approximations of the model posteriors to be precise in all cases,
specifically when the model size of a data generating model is larger than d− d1.

3.2 Real data analysis

Our simulation results indicate that there is no large difference in the performance of GMJM-
CMC between using Jeffrey’s prior or the robust g-prior. On the other hand the clear compu-
tational advantage of Jeffrey’s prior seems to justify to omit the robust g-prior for analyzing
real data. Hence in this section GMJMCMC always refers to GMJMCMC when using Jeffrey’s
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Figure 2: Dependence of power to detect L4 on the population size d in GMJMCMC both for
Jeffrey’s prior (red) and the robust g-prior (blue) for n = 1000.

prior. We will analyze two data sets for QTL mapping which are publicly available. In both
cases we used kmax = 15 and d = 25 which allows for way more complex models than we
would expect to see.

Arabidopsis

Balasubramanian et al. (2009) mapped several different quantitative traits in Arabidopsis thaliana
using an advanced intercross-recombinant inbred line (RIL). Their data is publicly available as
supporting information of their PLOS ONE article (Balasubramanian et al., 2009) which also
gives all the details of the breeding scheme and the measurement of the different traits. We
consider here only the hypocytol length in mm under different light conditions 2.

Genotype data is available for 220 markers distributed over the 5 chromosomes of Arabidop-
sis thaliana with 61, 39, 43, 31 and 46 markers, respectively. Balasubramanian et al. (2009)
had genotyped 224 markers but we dismissed 4 markers which had identical genotypes with
other markers. The amount of missing genotype data is relatively small with a genotype rate of
93.9% and most importantly the data contains only homozygotes (AA:49.6% vs. BB:50.4%).
This means that the RIL population contains no heterozygote markers and logic regression can
be directly applied using the genotype data as Boolean variables. Missing data were imputed
using the R-QTL package (http://www.rqtl.org/).

The imputed data was then analyzed with our algorithm GMJMCMC to detect potential
epistatic effects and the results are summarized in Table 3. Under blue light Balasubramanian
et al. (2009) reported 4 potential QTL’s, the strongest one on chromosome 4 in the regions

2Data obtained from the second to fifth column of the file http://journals.plos.org/plosone/
article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0004318.s002
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Table 3: Potential additive and epistatic QTL for hypocytol length under different light condi-
tions for Arabidopsis thaliana. Recombinant inbreed line data set taken from Balasubramanian
et al. (2009). Only trees for which P̃ (L | Y ) > 0.05 are reported.

Phenotype Chr Marker expression P̃ (L | Y )
Blue Light 4 X44606688 0.767
Blue Light 5 X44607250 0.335
Blue Light 2 X21607656 0.309
Blue Light 4∧2 X44606688∧X44606810 0.203
Red Light 2 MSAT2.36 0.441
Red Light 2 PHYB 0.353
Red Light 2∧1 PHYBc∧X44606541 0.112
Red Light 2 X21607013 0.092
Far Red Light 4 MSAT4.37 0.302
Far Red Light 4 NGA1107 0.302
White Light 5 X44606159 0.632
White Light 1 X21607165 0.427

of marker X44606688 and three further fairly weak QTL on chromosomes 2, 3 and 5. Our
analysis based on logic regression confirmed X44606688 and also detected those markers on
chromosomes 2 and 5, though with a posterior probability slightly below 0.5. There was also
some indication of a two-way interaction between the strong QTL on chromosome 4 and the
QTL on chromosome 2.

Under red light the original interval mapping analysis reported the region of MSAT2.36
as a strong QTL on chromosome 2 and x44607889 as a weaker QTL on chromosome 1. Our
logic regression analysis distributes the marker posterior weights on three different markers on
chromosome 2 which are all in the neighborhood of MSAT2.36. Additionally there is some
rather small posterior probability for an epistatic effect between this region and a marker on
chromosome 1 which is close to x44607889.

Finally both for Far Red Light and for White Light our analysis essentially yielded the
same results as the interval mapping analysis, when observing that under the first condition
the posterior probability was again almost equally distributed between the neighboring markers
MSAT4.37 and NGA1107.

In summary the sample size in this data set might be slightly too small to detect epistatic
effects, although under the first two light conditions there was at least some indication for a
two-way interaction.

Drosophila

As a second real data example we considered the Drosophila back cross data from Zeng et al.
(2000) 3. There are five quantitative traits available for each species (abbreviated as pc1,
adjpc1, area, areat and tibia) which quantify the size and shape of the posterior lobe

3Data downloaded from ftp://statgen.ncsu.edu/pub/qtlcart/data/zengetal99. There one can
also find a linkage map in centiMorgan for the markers on three different chromosomes
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Table 4: Results for Drosophila Simulans are presented for the trait pc1 from Zeng et al. (2000).
Posterior probabilities for additive and epistatic effects detected with GMJMCMC (column
P̃ (L | Y )) are compared with the findings reported by Bogdan et al. (2008a) using mBIC as
a selection criterion (column mBIC). Posterior probabilities are only reported for trees with
P̃ (L | Y ) > 0.3 are reported.

Marker Chr Marker name P̃ (L | Y ) mBIC
m2 X w 1.000 x
m4 X v 1.000 x
m7 2 gl 0.960 x
m9 2 cg 1.000
m10 2 gpdh x
m14 2 mhc 1.000 x
m18 2 sli 0.414 x
m22 2 zip 0.838 x
m23 2 lsp 0.998 x
m26 3 dbi 1.000 x
m29 3 fz 1.000 x
m32 3 rdg x
m33 3 ht 1.000
m35 3 ninaE x
m37 3 mst 1.000 x
m40 3 hb 0.942
m41 3 rox x
m44 3 jan 1.000 x
m12, m34 2, 3 glt∧ant x
m11, m35 2, 3 ninaE ∧ ninaC 0.998

of the male genital arch. The original publication (Zeng et al., 2000) only includes results on
the first measure pc1, which was later analyzed for epistatic effects using a model selection
approach based on the Cockerham coding (Bogdan et al., 2008a).

Compared with the Arabidopsis example this backcross data set has a much larger sam-
ple size combined with a smaller number of genetic markers, which both helps to increase the
power to detect QTL. Genotype data from 45 markers is available for 471 samples from Dro-
sophila Simulans and 491 samples from Drosophila Mauritana. Six markers are located on
chromosome X, 16 markers on chromosome 2 and 23 markers on chromosome 3. Imputation
of the few missing genotypes was performed by a simple maximum likelihood approach based
on flanking markers. More details on the experiments and the measured traits can be found in
Zeng et al. (2000).

Table 4 reports trees with posterior probabilities larger than 0.3 for the trait pc1 of Dro-
sophila Simulans and compares with the model obtained with mBIC - based forward selection
by Bogdan et al. (2008a). The logic regression approach detected most of the main effects also
previously reported, which in itself is quite interesting because as we allowed for higher or-
der interactions we looked at a much larger model space and used therefore implicitly larger
penalties than mBIC. In two locations GMJMCMC preferred a neighboring marker (cg instead
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Table 5: Results for Drosophila Mauritana are presented for the trait pc1 from Zeng et al.
(2000). Posterior probabilities for additive and epistatic effects detected with GMJMCMC (col-
umn P̃ (L | Y )) are compared with the findings reported by Bogdan et al. (2008a) using mBIC
as a selection criterion (column mBIC). Posterior probabilities are only reported for trees with
P̃ (L | Y ) > 0.3 are reported.

Marker Chr Marker name P̃ (L | Y ) mBIC
m1 X ewg x
m4 X v 0.994 x
m9 2 cg 1.000 x

m11 2 ninaC 0.382 x
m15 2 ddc 1.000 x
m18 2 sli 0.523 x
m22 2 zip 1.000 x
m24 3 ve 0.966
m25 3 acr x
m26 3 dbi 0.995
m28 3 cyc 0.398 x
m29 3 fz 0.834
m34 3 ant 1.000 x
m37 3 mst x
m39 3 tub 0.999
m40 3 hb x
m41 3 rox 0.420
m44 3 jan 1.000 x

m1, m2 X, X w∨ewg 0.855
m2, m36 X, 3 w∨fas x

m29, m40 3, 3 fz∨hb x

of gpdh on chromosome 2 and hb instead of rox on chromosome 3. In one region on chromo-
some 3 mBIC selected 2 markers (rdg, ninaE) whereas GMJMCMC selected only one marker
in the middle. These kind of discrepancies are quite natural due to marker correlations in back
cross data (Bogdan et al., 2008a). Just like with the mBIC approach we detected a two-way
interaction between chromosome 2 and chromosome 3, where on both locations the two meth-
ods chose neighboring markers, respectively. Otherwise the epistatic effect detected with both
methods is identical.

Table 5 contains the corresponding results for Drosophila Mauritana. As before GMJM-
CMC detects most of the additive effects that were reported by mBIC, though it sometimes
chooses flanking markers (ve and dbi instead of acr, tub instead of hb). Interestingly the marker
ewg on the X-chromosome is not reported as a main effect but rather as a two-way interac-
tion together with v also on the X-chromosome, which also shows up as an additive effect. On
the other hand the two-way interactions obtained with mBIC are not confirmed. Instead of the
interaction between fz and hb GMJMCMC reports additional main effects on fz and rox (the
neighbor of hb). For the interaction between w and fas there are no substitutes detected.

The results for the other four traits (adjpc1, area, areat and tibia) are provided in Section
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C of the web supplement. In case of Drosophila Simulans we detect three two-way interactions
for adjpc1. For Drosophila mauritiana further two-way interactions are found; two for adjpc1,
three for area, and two more for areat. We did not find higher order interactions for any of these
traits and based on the experience from our simulation study we might conclude that there are
actually at least no strong higher epistatic effects.

4 Discussion
We have introduced GMJMCMC as a novel algorithm to perform Bayesian logic regression
and compared it with the two existing methods MCLR (Kooperberg and Ruczinski, 2005) and
FBLR (Fritsch, 2006). The main advantage of GMJMCMC is that it is designed to identify
more complex logic expressions than its predecessors. Our approach differs both in terms of
prior assumptions and in algorithmic details. Concerning the prior of regression coefficients we
compared the simple Jeffrey’s prior with the robust g-prior. Jeffrey’s prior in combination with
the Laplace approximation coincides with a BIC-like approximation of the marginal likelihood,
which was also used by MCLR. The robust g-prior has some very appealing theoretical prop-
erties for the linear model. However, in our simulation study it gave only slightly better results
than Jeffrey’s prior for the linear model and in case of logistic regression actually performed
worse in terms of power to detect the trees of the data generating logic regression model. How-
ever, when the search was performed using Jeffrey’s prior but the posteriors were calculated
with both Jeffrey’s and the robust g-prior, then the results were almost identical between both
priors.

With respect to the model topology we chose a prior which is rather similar to the one
suggested by Fritsch (2006) for FBLR, but instead of using a truncated geometric prior for the
number of leaves of a tree we suggest a prior which penalizes the complexity of a tree indirectly
proportionally to the total number of trees of a given size. The motivation behind this prior is
to control the numer of false positive detections of trees in a similar way to how the Bonferroni
correction works in multiple testing.

GMJMCMC has the capacity to explore a much larger model search space than MCLR and
FBLR because it manages to efficiently resolve the issue of not getting stuck in local extrema,
a problem that both MCLR and FBLR have in common. In logic regression the marginal pos-
terior probability function is typically multi-modal in the space of models, with a large number
of extrema which are often rather sparsely located. Additionally, the search space for logic re-
gression is extremely large, where even computing the total number of models is a sophisticated
task. As discussed in more detail in Hubin and Storvik (2018), in such a setting simple MCMC
algorithms often get stuck in local extrema, which significantly slows down their performance
and convergence might only be reached after run times which are infeasible in practice.

The success of GMJMCMC relies upon resolving the local extrema issue, which is mainly
achieved by combining the following two ideas. First, when iterating through a fixed search
space S, GMJMCMC utilizes the MJMCMC algorithm (Hubin and Storvik, 2018) which was
specifically constructed to explore multi-modal regression spaces efficiently. Second, the evo-
lution of the search spaces is governed within the framework of a genetic algorithm where a
population consists of a finite number of trees forming the current search space. The population
is updated by discarding trees with low estimated marginal posterior probability and generating
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new trees with a probability depending on the approximations of marginal inclusion probabil-
ities from the current search space. The aim of the genetic algorithm is to converge towards a
population which includes the most important trees. Finally the performance of GMJMCMC is
additionally boosted by running it in parallel with different starting points.

Irreducibility of the proposals both for search spaces and for models within the search spaces
guarantees that asymptotically the whole model space will be explored by GMJMCMC and
global extrema will at some point be reached under some weak regularity conditions. Clearly
the genetic algorithm used to update search spaces results in a Markov chain of model spaces.
In the future it will be interesting to generalize the mode jumping ideas from Hubin and Storvik
(2018) to the Markov chain of search spaces, making it converge to the right limiting distribution
in the joint space of models, parameters and search spaces, whilst remaining the property of not
getting stuck in local modes.

One important question in the context of logic regression is concerned with how to define
true positive and false positive detections in simulations. We adopted a rather strict point of
view which might be called an ’exact tree approach’: Only those detected logic expressions
which were logically equivalent with trees from the data generating model were counted as true
positives. While this seems to be a natural definition there are certain pitfalls and ambiguities
that occur in logic regressions which might speak against this strict definition. Apart from the
more obvious logic equivalences according to Boolean algebra, for example due to De Morgan’s
laws or the distributive law, there can be slightly more hidden logic identities in logic regression.
For example the expressions (X1 ∨X2)−X1 and X2 − (X1 ∧X2) give identical models. We
have seen a less trivial example including four-way interactions in Scenario 6 of our simulation
study, where the data generating tree L8 is equivalent to the expression X11 ∧ X13 + X19 ∧
X50−X11∧X13∧X19∧X50 consisting of three trees. Furthermore, different logic expressions
can be highly correlated even when they are not exactly identical.

Especially the results from the most complex Scenario 6 impose the question whether the
exact tree approach is slightly too strict to define false positives. Subtrees of true trees give
valuable information even if they are not describing the exact interaction. Often combinations
of several subtrees and trees with misspecified logical operators can give expressions which are
very close to the correct interaction term. For Scenario 6 we reported two possible summaries of
the simulation results, one based strictly on the exact tree approach and the other one counting
simultaneous detections of X11 ∧ X13, X19 ∧ X50 and X11 ∧ X13 ∧ X19 ∧ X50 also as true
positives. This was slightly ad hoc and we believe that good reporting of logic regression results
is an area which needs further research. The output of MCLR takes a step in that direction,
where only the leaves of trees are reported and if a tree has been detected then also all its
subtrees are reported. However, in our opinion MCLR throws away too much information. We
believe that several different layers of reporting might be more desirable, for example the exact
tree approach, the MCLR approach and then something in between which does not reduce trees
completely to their set of leaves. We have started to think more systematically in that direction
and leave this topic open for another publication.

Our simulation study demonstrated the potential of the GMJMCMC algorithm to find true
logical expressions with high power and low false discovery rate, whilst in the real data exam-
ples GMJMCMC could find interesting epistatic effects in QTL analysis. However, the current
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implementation has a slight tendency to prefer a set of several simple trees over a single com-
plicated tree. Specifically it does not properly take into account that a complex tree can be
represented in several equivalent ways which leaves space for further improvements. In the
future we would also like to extend GMJMCMC to more general non-linear regression settings.

The R package implementing both MJMCMC and GMJMCMC is freely available on GitHub
at http://aliaksah.github.io/EMJMCMC2016/, where one can also find examples
of further logic regression applications.

Supplementary Material
Supplementary materials (https://github.com/aliaksah/EMJMCMC2016/tree/master/examples).
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Bayesian Logic Regression

A. HUBIN, G. STORVIK, F. FROMMLET

A GMJMCMC Algortithm

A.1 Tuning parameters

In all the simulations and in real data analysis we used the default tuning parameters of the implemen-
tation of MJMCMC downloaded from http://aliaksah.github.io/EMJMCMC2016/. The values which
were used in the different simulation scenarios and for real data analysis for the parameters not related
to MJMCMC but rather to the genetic algorithm part are presented in Table A.1.

Table A.1. Tuning parameters of GMJMCMC in the different examples (Ex.), where simple digits
refer to the simulation scenario, RD1 refers to the Arabidopsis data analysis and RD2 to the Drosophila
data analysis; Threads (Th.) - the number of CPUs utilized within the examples; Ninit - the number of
steps of MJMCMC during initialization; Nexpl - the number of steps of MJMCMC between changes of
population; Mfin - the number of unique models visited by MJMCMC for the final population; Tmax -
index of the final population; ρmin - threshold for the trees to be deleted; Pand - probability of an and
operator in crossovers and mutations; Pnot - probability of using logical not in crossovers and
mutations; Pc - probability of crossover to propose replacement trees; Pinit - probability for a tree to be
included into the initial solution for a new MJMCMC run in any iteration t ≥ 1; ρdel - probability of
deletion in the reduction operator; Cmax - maximal tree size allowed; kmax - maximal number of trees
allowed in a model;d - size of population of genetic algorithm (number of trees searched by MJMCMC
in each iteration).

Ex. Th. Ninit Nexpl Mfin Tmax ρmin Pand Pnot Pinit Pc ρdel Cmax kmax d
1 32 300 300 10000 16 0.2 1.0 0.2 0.5 0.9 0.5 2 10 15
2 32 300 300 10000 16 0.2 1.0 0.2 0.5 0.9 0.5 2 10 15
3 32 300 300 15000 33 0.2 0.9 0.1 0.5 0.9 0.5 5 10 15
4 32 300 300 10000 33 0.2 0.9 0.1 0.5 0.9 0.5 5 10 15
5 32 300 300 10000 33 0.2 0.9 0.1 0.5 0.9 0.5 5 10 20
6 32 250 250 20000 40 0.2 0.7 0.1 0.5 0.9 0.5 5 20 40

RD1 64 250 250 35000 40 0.2 0.7 0.1 0.5 0.9 0.5 5 15 25
RD2 64 250 250 15000 40 0.2 0.7 0.1 0.5 0.9 0.5 5 15 25

1
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A.2 Theorem for parallel version of GMJMCMC

The following Theorem generalizes Theorem 1 from the manuscript to the parallelized version of GMJM-
CMC. Apart from letting the number of iterations go to infinity it is also possible to have only a finite
number of iterations within each run but let the number of parallel runs go to infinity.

Theorem A.1. Assume that we are running GMJMCMC in B parallel chains as describes in Section 2.3
of the manuscript. When the number of iterations within each chain b converges to infinity, the posterior
estimates P̃ (∆ | Y ) of (16) from the manuscript will converge to P (∆ | Y ).

Assuming the search space S1 is selected randomly within the total set of possible search spaces and for
a finite number of iterations within each chain b, the posterior estimates (16) will converge to P (∆ | Y )
when B →∞.

Proof. When the number of iterations within each chain b converges to infinity, each P̃b(∆ | Y ) will
converge to P (∆ | Y ) according to Theorem 1 of the manuscript. Further, each wb → 1/B, proving the
first part of the result.

When the initial search space S1 is selected randomly, any possible tree can be included. According to
the construction of the initial model for the first MJMCMC run any model will have positive probability
of being selected, giving the result directly.

Remark Selecting the search space S1 randomly among all possible models is in principle not easy due
to the difficulty of specifying the complete model space. However, running the GMJMCMC algorithm
with no data can be performed extremely fast, making it possible to select the initial population randomly.

B Details of Simulation Results

In this section we present further information on the simulation results of our six scenarios.

B.1 Binary Response

In case of GMJMCMC and FBLR a tree was counted as detected if its corresponding posterior probability
was larger than 0.5. The power to detect a true tree is estimated by the percentage of simulation runs
in which it was detected. The overall power is then defined as the average power over all individual true
trees. A detected tree was counted as true positive if it was logically equivalent to a tree from the data
generating model or to its logical complement, otherwise it was counted as false positive. FP denotes the
average, over simulation runs, number of false positive detections and FDR was estimated as the average
(over simulation runs) proportion of false discoveries, where this proportion was defined to be zero if
there were no detections at all. WL is the number of binary covariates (leaves) which were not part of
the data generating model but part of at least one detected tree.

Unfortunately, the output delivered by MCLR does not allow to compute the performance measures
in the same way. Whenever MCLR detects a tree of size s then all subtrees are also reported as being
detected. Furthermore MCLR reports for each detected tree only the set of leaves v(L) and not the exact
logical expression L itself. Thus it becomes impossible to define true positives by comparing the reported
trees directly with the trees from the data generating model. Instead we considered for MCLR a reported
tree L as a true positive whenever v(L) coincided with the set of leaves of a true tree. This definition
only gives an upper bound for the achieved power and is strongly biased in favor of MCLR. For the same
reason, any reported tree that was a subtree of a true tree was not considered to be a false positive,
resulting in only lower bounds of FP and FDR which are again strongly biased in favor of MCLR.
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Table B.1 gives details about the frequencies of trees detected by the different methods. The first
three lines give for each scenario the frequency with which the three true trees Lj in each scenario were
detected. All further detected trees are per definition false positives.

However, we considered different classes of false positives. The first class of false positives are trees
which are comprised exclusively of leaves from a true tree Lj , typically subtrees or trees with a different
logic expression. Based on the output of MCLR it is not possible to determine the frequencies of this kind
of false positive detections as we will discuss in the next paragraph. In case of FBLR and GMJMCMC
Table B.1 provides the frequency of this kind of trees in the rows labeled v(Lj). For Scenario 1 and 2
we actually provide more detailed information. Here all true trees are of size 2 and almost all detected
trees of the class v(Lj) consisted of single leaves (the only exception was two instances of the expression
Xc

8 ∧X11 in Scenario 1 for FBLR). We therefore explicitly present the number of detections of the first
leave and the second leave of Lj . The v(M) rows give the number of trees combining leaves from different
true trees. Finally the rows WL(s) are concerned with the number of trees which include s leaves which
were not in the data generating model at all.

In case of MCLR the same sort of classification is not possible due to the fact that MCLR does not
report the exact logical tree L that it detects but only the corresponding set of leaves v(L). Furthermore
MCLR automatically reports the set of leaves for all subtrees of any detected tree which makes an
assessment on how often these subtrees were actually detected by MCLR impossible. As a consequence
we simply discarded reported subtrees when computing summary statistics, with one exception. In case
of Scenario 3 MCLR reports 40 supertrees (trees for which a tree of interest is a subtree) of L1, which we
classified as false positives themselves but which in principle play an important role for the determination
of the power to detect L1. We ignored the fact that for any detected supertree of L1 MCLR automatically
also reports L1 itself as detected and we pretended that in all these cases MCLR would actually have
detected L1 itself. Another peculiarity of MCLR is that it allows to search for trees of size 4, but that
it does not report if it detected any such trees. In case of the four-way interaction L3 from Scenario 3
there were 19 simulation runs where MCLR reported all four subtrees of size 3 from L3 and we counted
those instances as true positives, although MCLR did not really report the correct four-way interaction.
For Scenario 1 and 2 none of these problems with supertrees occurred for MCLR because we restricted
the search to trees of maximal size 2 in accordance with the data generating model.

The first two scenarios include only two-way interactions and we observe that GMJMCMC with
Jeffrey’s prior worked almost perfectly well. In the few instances where it did not detect the correct tree
it reported instead the two corresponding main effects, resulting in a total of 25 and 38 false positive trees
for the two scenarios (corresponding to an average of 0.25 and 0.38 false positives within each simulation,
see Table 1 of the main manuscript). The robust g-prior resulted in a few more false positives which were
also all just single leaves instead of the two-way interactions. FBLR chose in almost two thirds of the
simulation runs two main effects instead of the correct interactions. The majority of the remaining false
positives combined leaves from different true trees but there was also for each scenario one expression
with a wrongly detected leave, respectively. In contrast MCLR reported in approximately two thirds
of the cases trees with the correct leaves resulting in larger power than for FBLR. On the other hand
MCLR reported a much larger number of trees which combined leaves from different true trees than
FBLR. MCLR reported only one tree with a wrong leave in Scenario 2 and no such tree in Scenario 1. In
summary we conclude that all three methods were doing extremely well in detecting the correct leaves
in these simple scenarios but GMJMCMC was better than FBLR and MCLR in identifying the exact
logical expressions.

The conclusion above is even more pronounced in the third scenario, which is more complex than
the previous scenarios but still allows GMJMCMC with Jeffrey’s prior to perform almost perfectly. It
detected both the two-way interaction L1 and the four-way interaction L3 with a power of 100%, and had
only some minor difficulties to detect the three-way interaction L2. From the 15 false positive detections
the majority consisted of subtrees of L2 reported in those simulation runs where L2 itself was not detected.
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Table B.1. Number of true and false positive trees for the three simulation scenarios with a binary
response. A detailed description of the different classes of false positives (v(Lj), v(M), WL(s)) is given
in the text above. The columns Jef. and Rob. g correspond to GMJMCMC with Jeffrey’s prior and
with the Robust g-prior, respectively.

FBLR MCLR Jef. Rob. g
S.1
L1 30 67 97 98
L2 42 61 100 95
L3 33 59 91 77
v(L1) 68+69 * 3 + 3 2 + 2
v(L2) 54+53 * 1 + 0 5 + 5
v(L3) 60+59(+2) * 9 + 9 25 + 24
v(M) 22 270 0 0
WL(1) 1 0 0 0
S.2
L1 32 66 97 97
L2 40 67 99 96
L3 37 60 86 76
v(L1) 64 + 66 * 3 + 3 3 + 3
v(L2) 56 + 60 * 1 + 1 4 + 4
v(L3) 56 + 56 * 15 + 15 26 + 26
v(M) 24 256 0 0
WL(1) 1 1 0 0
S.3
L1 93 93 (40SupT) 100 100
L2 4 67 91 56
L3 0 19 (SubT) 100 56
v(L1) 20 * 0 0
v(L2) 162 * 8 81
v(L3) 233 * 1 87
v(M) 167 195 5 6
WL(1) 34 54 1 0
WL(2) 16 9 0 0
WL(3) 8 0 0 0

Five trees were combinations of leaves from different true trees and there was only one tree including
a leave which was not part of the data generating model. GMJMCMC with the robust g-prior had
substantially lower power to detect L2 and L3 but instead reported many corresponding subtrees. There
were six reported logic expressions which mixed leaves from L2 and L3. In comparison, both MCLR and
FBLR performed much worse and only managed to detect L1 with fairly large power. FBLR completely
failed to detect the higher order terms L2 and L3 whereas MCLR had at least some power to detect the
three-way interaction L2. Both approaches reported way more false positive trees than GMJMCMC.

For FBLR we can discuss the structure of false positive detections in more detail. A large number of
false positive expression were comprised of leaves from single true trees, 20 for v(L1), 162 for v(L2) and 233
for v(L3). These expressions were either subtrees of true trees or trees with misspecified logical operators
and can be seen as substitutes for the true trees. Furthermore there were 167 logical expressions which
combined leaves from different trees. Additionally, FBLR reported 34 trees with one wrongly detected
leave, 16 trees with two wrongly detected leaves and even 8 trees of size three for which all leaves were
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not part of the data generating model. Thus apart from having problems with determining the exact
form of the logical expressions in this scenario FBLR produced also a large number of false positive trees
which have nothing to do with the correct model at all.

The performance of MCLR was only a little bit better. With respect to the results presented in Table
1 of the main manuscript it is now even more important than for the first two scenarios to emphasize that
we are dealing with upper bounds of the power and lower bounds of the number of false positives. MCLR
automatically reports all subtrees of any detected tree which makes an assessment how often these tree
were actually detected by MCLR impossible. As a consequence we simply discarded reported subtrees
from further statistical analysis, with one exception. In case of Scenario 3 MCLR reports some supertrees
of L1, which we classified as false positives themselves but which in principle played an important role for
the determination of the power of L1. We ignored the fact that for any detected supertree of L1 MCLR
automatically also reports L1 itself as detected and pretend that in all these cases MCLR would actually
have detected L1 itself. Another peculiarity of MCLR is that it allows to search for trees of size 4, but
that it does not report if it detected any such trees. In case of the four-way interaction L3 there were 19
simulation runs where MCLR reported all four subtrees of size 3 from L4 and we counted those instances
as true positives, although MCLR did not really report the correct four-way interaction. For Scenario
1 and 2 none of these problems with supertrees occurred for MCLR because we restricted the search to
trees of maximal size 2 in accordance with the data generating trees.

Not counting any subtrees of reported trees as false positives gives MCLR a huge advantage, never-
theless it reported almost 20 times more false positive expressions than GMJMCMC. Among those were
40 supertrees of L1, which all contributed to the power of L1 although it is not guaranteed that in all
corresponding simulation runs L1 itself was actually detected. There were 195 false positive trees which
combined leaves from different true trees. It was more problematic that there were 54 trees with one
wrongly detected leave and 9 trees with two wrongly detected leaves. While there were not as many trees
which were completely wrong as for FBLR there were still a considerable number of leaves reported by
MCLR which were not part of the data generating model.

B.2 Continuous Response

Table B.2 gives detailed results about the frequencies of detected trees similarly to Table B.1 but now
for the three linear regression scenarios. At the beginning we have again for each scenario the number of
true positives with Lj referring to the trees of the data generating model. As described above we split the
detections of false positives again in the classes v(Lj) which refers to logic expressions consisting only of
leaves from Lj , v(M) which refers to logic expressions consisting of leaves from the data generating model
but mixing leaves from different trees, and WL(1) corresponding to trees including one wrong leave. For
the last expression of Scenario 6 it holds that L8 = X11 ∧ X13 + X19 ∧ X50 − X11 ∧ X13 ∧ X19 ∧ X50

and it turned out that in many simulation runs GMJMCMC was detecting the three expression from the
alternative version. In the main manuscript we considered these findings potentially as true positives and
in Table B.2 we explicitly report the frequency of detection for each of these trees.

There is not much to be said about Scenario 4 apart from the fact that the only false positive detection
L2 ∨L3 was very close to the expression L2 +L3 of the data generating model. In Scenario 5 the results
using Jeffrey’s prior and the robust g-prior are very similar. For those trees which were detected in all
simulation runs (L1 and L2 for Jeffrey’s, L1 and L3 for the robust g-prior) no false positive subtrees were
reported. The majority of false positives for both priors is comprised of subtrees and there are only a
very small number of detections which combine leaves from two different true trees (1 for Jeffrey’s and
2 for the robust g-prior). Finally GMJMCMC with Jeffrey’s prior reported two trees of size 4 and size
5, respectively, each of which included the wrongly detected leave X43, whereas GMJMCMC with the
robust g-prior reported five trees which included wrong leaves.

For the most complex Scenario 6 once again Jeffrey’s prior and the robus g-prior perform quite similar.
For the first 6 data generating trees both priors have very large power. For L7 the power is much lower
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Table B.2. Detailed results for the three simulation scenarios for linear regression. A detailed
description of the different classes of false positives (v(Lj), v(M), WL(1)) is given in Section B.1. The
columns Jef. and Rob. g correspond to GMJMCMC with Jeffrey’s prior and with the Robust g-prior,
respectively. In Scenario 4 there was only one false positive detection which is listed explicitly. In
Scenario 6 frequencies of the three trees which in combination give L8 are also listed explicitly.

Scenario 4 Jef. Rob.g Scenario 6 Jef. Rob.g
L1 100 100 L1 95 99
L2 99 100 L2 98 99
L3 97 98 L3 98 99
L2 ∨ L3 1 L4 96 95

L5 100 100
L6 95 96

Scenario 5 L7 32 45
L1 100 100 L8 21 16
L2 100 99 X11 ∧X13 76 78
L3 96 100 X19 ∧X50 75 81
L4 89 90 X11 ∧X13 ∧X19 ∧X50 72 69
v(L2) 0 2 v(L3) 6 2
v(L3) 12 0 v(L4) 12 15
v(L4) 22 19 v(L5) 0 2
v(M) 1 2 v(L6) 18 13
WL(1) 2 5 v(L7) 84 70

v(L8) 24 49
v(M) 58 38
WL(1) 3 7

and both priors report a large number of subtrees which are counted as false positives. For L8 the
alternative representation of the logic expression has been discussed in the main manuscript. Only 58
false positive trees for Jeffrey’s prior and 38 for the robust g-prior combined leaves from different true
trees. The number of trees including one wrongly detected leave was 3 and 7, respectively, which once
more illustrates that GMJMCMC is very good at controlling the type I error when it comes to including
leaves which have nothing to do with the data generating model.
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C Real Data Analysis on Drosophila

The results for the other four traits (adjpc1, area, areat and tibia) which were neither analyzed
by Zeng et al. (2000) nor by Bogdan et al. (2008) are provided in the following two tables. In case

Table C.1. Posterior probabilities for additive and epistatic effects detected with GMJMCMC for four
additional traits: Drosophila simulans.

Population Phenotype Chr Marker name P̃ (L|Y ) > 0.5
Simulans adjpc1 3 rox 1.000
Simulans adjpc1 3 dbi 1.000
Simulans adjpc1 2 gpdh 1.000
Simulans adjpc1 X v 1.000
Simulans adjpc1 2 plu 1.000
Simulans adjpc1 3 mst 0.999
Simulans adjpc1 2∧3 (gl)∧(fz) 0.998
Simulans adjpc1 3 efi 0.985
Simulans adjpc1 X w 0.984
Simulans adjpc1 3 fz 0.983
Simulans adjpc1 3∧3 (lsp)∧(ht) 0.982
Simulans adjpc1 2∧3 (duc)∧(fas) 0.978
Simulans area 3 fz 1.000
Simulans area 2 mhc 1.000
Simulans area 3 jan 1.000
Simulans area X w 1.000
Simulans area 3 dbi 1.000
Simulans area X v 0.999
Simulans area 3 rox 0.998
Simulans area 3 ninaE 0.996
Simulans area 3 ve 0.990
Simulans area 2 ninaC 0.970
Simulans area 2 zip 0.952
Simulans area 3 ht 0.864
Simulans area 2 cg 0.806
Simulans areat 3 jan 1.000
Simulans areat 2 mhc 1.000
Simulans areat X w 1.000
Simulans areat 3 tub 1.000
Simulans areat 3 rox 1.000
Simulans areat 3 ninaE 1.000
Simulans areat 3 fz 1.000
Simulans areat X v 1.000
Simulans areat 3 dbi 1.000
Simulans areat 2 ninaC 1.000
Simulans areat 2 zip 1.000
Simulans areat 3 ve 1.000
Simulans areat 3 ht 0.952
Simulans areat 2 cg 0.925
Simulans tibia X run 0.747
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of Drosophila Simulans we detected three two-way interactions for adjpc1. For Drosophila Mauritiana
further two-way interactions were found; two for adjpc1, three for area, and two more for areat. We
did not find higher order interactions for any of these traits.

Table C.2. Posterior probabilities for additive and epistatic effects detected with GMJMCMC for four
additional traits: Drosophila Mauritiana.

Population Phenotype Chr Marker name P̃ (L|Y ) > 0.5
Mauritiana adjpc1 2 cg 1.000
Mauritiana adjpc1 3 ant 1.000
Mauritiana adjpc1 3 jan 1.000
Mauritiana adjpc1 3 acr 1.000
Mauritiana adjpc1 3 eip 1.000
Mauritiana adjpc1 3∨3 (cyc)∨(hb) 1.000
Mauritiana adjpc1 2 gl 1.000
Mauritiana adjpc1 2 sli 1.000
Mauritiana adjpc1 X ewg 1.000
Mauritiana adjpc1 3∨X (mst)∨(v) 0.999
Mauritiana area 3 ant 1.000
Mauritiana area 3 jan 1.000
Mauritiana area 2 cg 1.000
Mauritiana area 2 zip 0.999
Mauritiana area 3 acr 0.990
Mauritiana area 3 fz 0.985
Mauritiana area 3∨X (ve)∨(w) 0.984
Mauritiana area X ewg 0.958
Mauritiana area 3∨X (tub)∨(v) 0.890
Mauritiana area 3 rox 0.873
Mauritiana area 3∨3 (cyc)∨(tub) 0.862
Mauritiana area 2 sli 0.714
Mauritiana area 2 ninaC 0.613
Mauritiana area 2 mhc 0.535
Mauritiana areat 3 ant 1.000
Mauritiana areat 3 efi 1.000
Mauritiana areat 2 zip 1.000
Mauritiana areat 2 cg 1.000
Mauritiana areat X ewg 1.000
Mauritiana areat 3 rox 1.000
Mauritiana areat X∨3 (v)∨(mst) 1.000
Mauritiana areat 3 fz 0.996
Mauritiana areat 3∧2 (1-(fz))∧(ninaC) 0.974
Mauritiana areat 3 acr 0.973
Mauritiana areat 3 cyc 0.685
Mauritiana tibia X v 0.999
Mauritiana tibia 3 hb 0.999
Mauritiana tibia 2 mhc 0.997
Mauritiana tibia 2 plu 0.625
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The marginal likelihood is a well established model selection criterion in Bayesian
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1 Introduction

Marginal likelihoods have been commonly accepted to be an extremely important quan-

tity within Bayesian statistics. For data y and model M, which includes some unknown

parameters θ, the marginal likelihood is given by

p(y|M) =

∫

Ωθ

p(y|M, θ)p(θ|M)dθ (1)

where p(θ|M) is the prior for θ under modelM while p(y|M, θ) is the likelihood function

conditional on θ. Consider first the problem of comparing modelsMi andMj through the

ratio between their posterior probabilities:

p(Mi|y)

p(Mj|y)
=
p(y|Mi)

p(y|Mj)
× p(Mi)

p(Mj)
. (2)

The first term of the right hand side is the Bayes Factor (Kass and Raftery, 1995). In this

way one usually performs Bayesian model selection with respect to the posterior marginal

model model probabilities without the need to calculate them explicitly. However if we

are interested in Bayesian model averaging and marginalizing some quantity ∆ over the

given set of models ΩM, we are calculating the posterior marginal distribution, which in

our notation becomes:

p(∆|y) =
∑

M∈ΩM

p(∆|M,y)p(M|y). (3)

Here p(M|y) is the posterior marginal model probability for model M that can be calcu-

lated with respect to Bayes theorem as:

p(M|y) =
p(y|M)p(M)∑

M′∈ΩM
p(y|M′)p(M′)

, (4)

Thus one requires marginal likelihoods p(y|M) in (2), (3) and (4). Metropolis-Hastings

algorithms searching through models within a Monte Carlo setting (e.g. Hubin and Storvik,

2016) requires acceptance ratios of the form

rm(M,M∗) = min

{
1,
p(y|M∗)p(M∗)q(M|M∗)

p(y|M)p(M)q(M∗|M)

}
(5)

also involving the marginal likelihoods. All these examples show the fundamental impor-

tance of being able to calculate marginal likelihoods p(y|M) in Bayesian statistics.

Unfortunately for most of the models that include both unknown parameters θ and

some latent variables η analytical calculation of p(y|M) is impossible. In such situations

one must use approximative methods that hopefully are accurate enough to neglect the

2



approximation errors involved. Different approximative approaches have been mentioned

in various settings of Bayesian variable selection and Bayesian model averaging. Laplace’s

method (Tierney and Kadane, 1986) has been widely used, but it is based on rather strong

assumptions. The Harmonic mean estimator (Newton and Raftery, 1994) is an easy to

implement MCMC based method, but it can give high variability in the estimates. Chib’s

method (Chib, 1995), and its extension (Chib and Jeliazkov, 2001), are also MCMC based

approaches that have gained increasing popularity. They can be very accurate provided

enough MCMC iterations are performed, but need to be adopted to each application and

the specific algorithm used. Approximate Bayesian Computation (ABC, Marin et al.,

2012) has also been considered in this context, being much faster than MCMC alterna-

tives, but also giving cruder approximations. Variational methods (Jordan et al., 1999)

provide lower bounds for the marginal likelihoods and have been used for model selection

in e.g. mixture models (McGrory and Titterington, 2007). Integrated nested Laplace ap-

proximation (INLA, Rue et al., 2009) provides estimates of marginal likelihoods within

the class of latent Gaussian models and has become extremely popular. The reason for

it is that Bayesian inference within INLA is extremely fast and remains at the same time

reasonably precise.

Friel and Wyse (2012) perform comparison of some of the mentioned approaches includ-

ing Laplace approximations, harmonic mean approximations, Chib’s method and other.

However to our awareness there were no studies comparing the approximations of the

marginal likelihood obtained by INLA with other popular methods mentioned in this para-

graph. Hence the main goal of this article is to explore the precision of INLA in comparison

with the mentioned above alternatives. INLA approximates marginal likelihoods by

p(y|M) ≈
∫

Ωθ

p(y, θ,η|M)

π̃G(η|y, θ,M)

∣∣∣∣
η=η∗(θ|M)

dθ, (6)

where η∗(θ|M) is some chosen value of η, typically the posterior mode, while π̃G(η|y, θ,M)

is a Gaussian approximation to π(η|y, θ,M). Within the INLA framework both random

effects and regression parameters are treated as latent variables, making the dimension

of the hyperparmeters θ typically low. The integration of θ over the support Ωθ can be

performed by an empirical Bayes (EB) approximation or using numerical integration based

on a central composite design (CCD) or a grid (see Rue et al., 2009, for details).

In the following sections we will evaluate the performance of INLA through a number of

examples of different complexities, beginning with a simple linear latent model and ending

up with a Poisson longitudinal generalized linear mixed model.
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2 INLA versus truth and the harmonic mean

To begin with we address an extremely simple example suggested by Neal (2008), in which

we consider the following model M:

Y |η,M∼N(η, σ2
1);

η|M ∼N(0, σ2
0).

(7)

Then obviously the marginal likelihood is available analytically as

Y |M ∼ N(0, σ2
0 + σ2

1),

and we have a benchmark to compare approximations to. The harmonic mean estima-

tor (Raftery et al., 2006) is given by

p(y|M) ≈ n∑n
i=1

1
p(y|ηi,M)

where ηi ∼ p(η|y,M). This estimator is consistent, however often requires too many

iterations to converge. We performed the experiments with σ1 = 1 and σ0 being either

1000, 10 or 0.1. The harmonic mean is obtained based on n = 107 simulations and 5 runs

of the harmonic mean procedure are performed for each scenario. For INLA we used the

default tuning parameters from the package (in this simple example different settings all

give equivalent results). As one can see from Table 1, INLA gives extremely precise results

σ0 σ1 D Exact INLA H.mean

1000 1 2 -7.8267 -7.8267 -2.4442 -2.4302 -2.5365 -2.4154 -2.4365

10 1 2 -3.2463 -3.2463 -2.3130 -2.3248 -2.5177 -2.4193 -2.3960

0.1 1 2 -2.9041 -2.9041 -2.9041 -2.9041 -2.9042 -2.9041 -2.9042

Table 1: Comparison of INLA, harmonic mean and exact marginal likelihood

even for a huge variance of the latent variable, whilst the harmonic mean can often become

extremely crude even for 107 iterations. Due to the bad performance of the harmonic

mean (see also Neal, 2008) this method will not be considered further.
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3 INLA versus Chib’s method in Gaussian Bayesian

regression

In the second example we address INLA versus Chib’s method (Chib, 1995) for the US

crime data (Vandaele, 2007) based on the following model M:

Yt|µt,M iid∼N(µt, σ
2);

µt|M =β0 +

pM∑

i=1

βix
M
ti ;

1

σ2
|M ∼ Gamma(ασ, βσ);

βi|M ∼N(µβ, σ
2
β),

(8)

where t = 1, ..., 47 and i = 0, ..., pM. We also addressed two different models, M1 and

M2, induced by different sets of the explanatory variables with cardinalities pM1 = 8 and

pM2 = 11 respectively.

In model (8) the hyperparameters were specified to µβ = 0, ασ = 1 and βσ = 1. Different

precisions σ−2
β in the range [0, 100] were tried out in order to explore the properties of

different methods with respect to prior settings. Figure 1 shows the estimated marginal

log-likelihoods for Chib’s method (x-axis) and INLA (y-axis) for model M1 (left) and

M2 (right). Essentially, the two methods give equal marginal likelihoods in each scenario.

Table 2 shows more details for a few chosen values of the standard deviation σβ. The means

Figure 1: Chib’s-INLA plots of estimated marginal log-likelihoods obtained by Chib’s method (x-axis) and INLA (y-axis) for

100 different values of σ−2
β . The left plot corresponds to model M1 while the right plot corresponds to model M2

of the 5 replications of Chib’s method all agree with INLA up to the second decimal.

Going a bit more into details, Figure 2 shows the performance of Chib’s method as a

function of the number of iterations. The red circles in this graph represent 10 runs of
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M µβ σβ INLA Chib’s method

M1 0 1000 -73.2173 -73.2091 -73.2098 -73.2090 -73.2088 -73.2094

M1 0 10 -31.7814 -31.7727 -31.7732 -31.7732 -31.7725 -31.7733

M1 0 0.1 1.4288 1.4379 1.4380 1.4383 1.4378 1.4376

M2 0 1000 -96.6449 -96.6372 -96.6368 -96.6370 -96.6373 -96.6370

M2 0 10 -41.4064 -41.3989 -41.3987 -41.3991 -41.3995 -41.3996

M2 0 0.1 1.0536 1.0625 1.0629 1.0628 1.0626 1.0625

Table 2: Comparison of INLA and Chib’s method for marginal log likelihood.

Chib’s method for several choices of the number of iterations of the algorithm changing

from 200 to 102400. The horizontal solid line shows the INLA estimate with the default

settings. In this case, we used a precision of the regression parameters equal to σ−2
β = 0.2,

while in order to obtain some difference between Chib’s method and INLA we changed the

mean to µβ = 1. We only considered model M1 in this case. Although the differences are

still small, this illustrates that INLA can be a bit off the true value. The reason for this

deviance is the default choice of values for the tuning parameters in INLA. After tuning

the step of numerical integration δz defining the grid as well as the convergence criterion

of the differences of the log densities πz (Rue et al., 2009) one can make the difference

between INLA and Chib’s method arbitrary small for this example. This can be clearly

seen in Figure 2, where we depict the default INLA results (dark blue line) and the tuned

INLA results (purple line). From Figure 2 one can also see that it might take quite a while

Figure 2: Variability of Chib’s method as a function of number of MCMC iterations for the simple linear Gaussian example.

Horizontal lines correspond to INLA estimates based on default settings (dark blue) and adjusted settings (purple).

for Chib’s method to converge, whilst INLA gives stable results for the fixed values of the
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tuning parameters. The total computational time for INLA corresponds to about 50 000

iterations with Chib’s method for this model. Whilst 819200 iterations of Chib’s method

would require at least 15 times more time than INLA on the same machine 1.

The main conclusion that can be drawn from this example is that INLA approximations

of marginal likelihoods can indeed be trusted for the studied model, giving a yet another

evidence in the support of INLA methodology in general.

4 INLA versus Chib’s method for logistic Bayesian

regression with a probit link

In the third example we will continue comparing INLA with the Chib’s method (Chib,

1995) for approximating the marginal likelihood in logistic regression with a probit link

model M. The data set addressed is the simulated Bernoulli data introduced by Hubin

and Storvik (2016). The model is given by

Yt|pt,M iid∼ Bernoulli(Φ(ηt));

ηt|M =β0 +

pM∑

i=1

βix
M
ti ;

βi|M ∼N(µβ, σ
2
β),

(9)

where t = 1, ..., 2000 and i = 0, ..., pM. We addressed two different sets of explanatory

variables with different cardinalities of 11 for model M1 and 13 for model M2. We used

M µβ σβ INLA Chib’s method

M1 0 1000 -688.3192 -688.2463 -688.3260 -688.3117 -688.2613 -688.2990

M1 0 10 -633.0902 -633.1584 -633.0612 -633.0335 -633.1094 -633.0780

M1 0 0.1 -669.7590 -669.7646 -669.7666 -669.7610 -669.7465 -669.7528

M2 0 1000 -704.2266 -704.2154 -704.2138 -704.1463 -704.2526 -704.2303

M2 0 10 -639.8051 -639.7932 -639.8349 -639.8022 -639.7675 -639.8278

M2 0 0.1 -649.7803 -649.7360 -649.7604 -649.7893 -649.7532 -649.7806

Table 3: Comparison of INLA and Chib’s method for logistic Bayesian regression with a probit link

µβ = 0 while the precisions for the regression parameters were varied between 0 and 10

in Figure 3 and chosen as 10−6, 10−2 and 102 in Table 3. Figure 3 shows that INLA and

Chib’s method give reasonably similar results for both models. The total time for running

1Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz with 16 GB RAM was used for all of the computations
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Figure 3: Comparisons of marginal likelihood estimates obtained by Chib’s method (x-axis) and INLA (y-axis) for 100

different values of the precision parameter σ−2
β under 2 models with different number of covariates.

INLA within these examples is at most 2 seconds, corresponding to approximately 12000

MCMC iterations in Chib’s method. 100 000 MCMC iterations that were used to produce

the obtained results in Table 3 required at least 25 seconds per replication on the same

machine.

Figure 4: Variability of Chib’s method as a function of number of MCMC iterations for logistic Bayesian regression with a

probit link. The horizontal line corresponds to the INLA estimate based on default settings.
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5 INLA versus other methods for logistic Bayesian

regression with a logit link

In the fourth example we will continue comparing marginal likelihoods obtained by INLA

with such methods as Laplace approximations, Chib and Jeliazkov’s method, Laplace MAP

approximations, harmonic mean method, power posteriors, annealed importance sampling

and nested sampling. The modelM is the Bayesian logistic regression model addressed by

Friel and Wyse (2012), which is given by

Yt|pt,M iid∼ Bernoulli(logit−1(ηt));

ηt|M =β0 +

pM∑

i=1

βix
M
ti ;

βi|M ∼N(µβ, σ
2
β),

(10)

where t = 1, ..., 532 and i = 0, ..., pM. The data set addressed is the Pima Indians data,

which consist of some diabetes records for 532 Pima Indian women of different ages. For

M1 we have addressed such predictors as the number of pregnancies, plasma glucose con-

centration, body mass index and diabetes pedigree function and for M2 we additionally

consider the age covariate. All of the covariates for both of the models have been stan-

dardized before the analysis. Then the analysis was performed for σ2
β = 100 and σ2

β = 1

correspondingly. The prior value of µβ for both of the cases was chosen to be equal to 1.

Table 4 contains the results obtained by all of the methods. Notice that all of the calcu-

lations apart from the INLA based ones are reported in Friel and Wyse (2012). Friel and

Wyse (2012) claim that the relevant measures were taken to make the implementation of

each method as fair as possible. In their runs each Monte Carlo method used the equivalent

of 200 000 samples. In particular, the power posteriors used 20 000 samples at each of the

10 steps. The annealed importance sampling a cooling scheme with 100 temperatures and

2 000 samples generated per temperature. Nested sampling was allowed to use 2 000 sam-

ples and was terminated when the contribution to the current value of marginal likelihood

was smaller than 10−8 times the current value. Notice that the default tuning parameters

were applied for the INLA calculations. Except for the Harmonic mean, all methods gave

comparable results. The INLA method only needed a computational time comparable to

Laplace approximations, which is much faster than the competing approaches (Friel and

Wyse, 2012). Reasonably good performance of the ordinary Laplace approximation in this

case can be explained by having no latent variables in the model.
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Method M1 M2 M1 M2

INLA -257.25 -259.89 -247.32 -247.59

Laplace approximation -257.26 -259.89 -247.33 -247.59

Chib and Jeliazkov’s method -257.23 -259.84 -247.31 -247.58

Laplace approximation MAP -257.28 -259.90 -247.33 -247.62

Harmonic mean estimator -279.47 -284.78 -259.84 -260.55

Power posteriors -257.98 -260.59 -247.57 -247.84

Annealed importance sampling -257.87 -260.43 -247.30 -247.59

Nested sampling -258.82 -261.38 -246.82 -246.97

σ2
β value 100 100 1 1

Table 4: Comparison of INLA and other method for a logistic Bayesian regression with a logit link.

6 INLA versus Chib and Jeliazkov’s method for com-

putation of marginal likelihoods in a Poisson with

a mixed effect model

As models become more sophisticated we have less methodologies that can be used for

approximating the marginal likelihood. In the context of generalized linear mixed models

two alternatives will be considered, the INLA approach (Rue et al., 2009) and the Chib

and Jeliazkov’s approach (Chib and Jeliazkov, 2001).

This model is concerned with seizure counts Yjt for 59 epileptics measured first over an

8-week baseline period t = 0 and then over 4 subsequent 2-week periods t = 1, ..., 4. After

the baseline period each patient is randomly assigned to either receive a specific drug or a

placebo. Following previous analyses of these data, we removed observation 49, considered

to be an outlier because of the unusual seizure counts. We assume the data to be Poisson

distributed and model both fixed and random effects. The model M, originally defined

in Diggle et al. (1994), is given by

Yjt|λjt,M∼ Poisson(exp(ηjt));

ηjt|M = log(τjt) + β0 + β1xjt1 + β1xjt2 + β3xjt1xjt2 + bj0 + bj1xjt1;

βi|M ∼N(0, 100), i = 0, ..., 3;

bj|D,M∼N2(0,D);

D−1|M ∼ Wishart2(4, I2),

(11)

for j = 1, ..., 58, t = 1, ..., 4. Here xjt1 ∈ {0, 1} is an indicator variable of period (0 if

baseline and 1 otherwise), xjt2 ∈ {0, 1} is an indicator for treatment status, τit is the offset
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that is equal to 8 in the baseline period and 2 otherwise, and bj are latent random effects.

In Chib and Jeliazkov (2001) an estimate of the marginal log-likelihood was reported to

be -915.49, while also an alternative estimate equal to -915.23 based on a kernel density

approach by Chib et al. (1998) was given. INLA gave a value of -915.61 in this case, again

demonstrating its accuracy. The computational time for the INLA computation was in this

case on average 1.85 seconds.

7 Conclusions

The marginal likelihood is a fundamental quantity in the Bayesian statistics, which is ex-

tensively adapted for Bayesian model selection and averaging in various settings. In this

study we have compared the INLA methodology to some other approaches for approximate

calculation of the marginal likelihood. In all of the addressed examples disregarding their

complexity INLA gave reliable estimates. In all cases, default settings of the INLA proce-

dure gave reasonable accurate results. If extremely high accuracy is needed, we recommend

that before performing Bayesian model selection and averaging in a particular model space

ΩM based on marginal likelihoods produced by INLA, the produced estimates should be

carefully studied and the tuning parameters adjusted, if required. Experimenting with

different settings will also give an indication on whether more accuracy is needed.

SUPPLEMENTARY MATERIAL

Data and code: Data (simulated and real) and R scripts for calculating marginal likeli-

hoods under various scenarios are available online at https://goo.gl/0Wsqgp.
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Postface

Model based Bayesian statistics and deep learning have been historically treated as fairly in-
compatible. The former was mainly developed by rigorous mathematicians, whilst the latter
was pushed forward by computer scientists. The theory of Bayesian statistics, in which one
tries to infer the data generating processes, is based on strict model assumptions. This results in
interpretable models which explain the data reasonably well and allow to make inference on the
data generating process. In contrast, deep learning is a very complex and powerful prediction
driven tool, which often uses tones of heuristics and ad hoc solutions, but lacks interpretability
and theoretical justifications. At the same time, due to its big success in the trendy applications
(like image analysis or natural language processing) the deep learning approach has greatly af-
fected the way statistical learning is addressed in practical applications today. However, due to
the fact that deep learning lacks a rigorous mathematical formalism, deep learning’s success is
often explained by a term "black magic" and various allegories based on biology or whatsoever.
I sincerely hope that in this thesis I was able to build some bridges between the two paradigms in
the attempt to provide ideas behind potentially interpretable Bayesian deep learning techniques,
which can recover either complex neural networks as approximation to the phenomena or sim-
ple closed formed interpretable models, depending on the data addressed. There always are
some technical tricks behind the magic conjurers perform in their shows. Revealing this magic
is disappointing for some people from the ordinary audience, but inspiring for professionals to
work even more complex and exciting tricks out. I hope to have at least partially revealed the
"black magic" of deep regression models. Yet some of the approaches suggested in this thesis
remain computationally complex and I would most gratefully expect the experienced computer
science engineers to suggest novel approaches for speeding them up. Anyway, I believe that
even in the current form the developed approaches may become more and more scalable with
the development of the technology.

It is my most sincere hope that the work presented in this thesis will contribute to the foundations
of an emerging field of study, putting modern deep learning and Bayesian statistics together
and joining the efforts of numerous young and experienced statisticians and machine learning
scientists to dive further into exciting world of Bayesian deep learning. Such that machine
learning and statistics in general will greatly collaborate instead of opposing to one another.
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