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Algebraic K-theory of quotient stacks

Amalendu Krishna and Charanya Ravi

We prove some fundamental results like localization, excision, Nisnevich de-
scent, and the regular blow-up formula for the algebraic K-theory of certain
stack quotients of schemes with affine group scheme actions. We show that the
homotopy K-theory of such stacks is homotopy invariant. This implies a similar
homotopy invariance property of the algebraic K-theory with coefficients.

1. Introduction

The higher algebraic K-theories of Quillen and Thomason–Trobaugh are among the
most celebrated discoveries in mathematics. Fundamental results like localization,
excision, Nisnevich descent, and the blow-up formula have played pivotal roles in
almost every recent breakthrough in the K-theory of schemes; see, e.g., [Cortiñas
2006; Cortiñas et al. 2008; Schlichting 2010]. The generalization of these results
to equivariant K-theory is the theme of this paper.

The significance of equivariant K-theory [Thomason 1987a] in the study of the
ordinary (nonequivariant) K-theory is essentially based on two principles. First, it
often turns out that the presence of a group action allows one to exploit representation-
theoretic tools to study equivariant K-theory. Second, there are results (see, for
instance, [Merkurjev 2005, Theorem 32]) which directly connect equivariant alge-
braic K-theory with the ordinary K-theory of schemes with group action. These
principles have been effectively used in the past to study both equivariant and
ordinary algebraic K-theory; see, for instance, [Joshua and Krishna 2015; Vezzosi
and Vistoli 2003]. In addition, equivariant K-theory often allows one to understand
various other cohomology theories of moduli stacks and moduli spaces from the
K-theoretic point of view.

However, any serious progress towards the applicability of equivariant K-theory
(of vector bundles) requires analogues for quotient stacks of the fundamental results
of Thomason–Trobaugh. The goal of this paper is to establish these results, so that
a very crucial gap in the study of the K-theory of quotient stacks can be filled.
Special cases of these results were earlier proven in [Krishna 2009; Krishna and
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Østvær 2012; Heller et al. 2015]. Here is a summary of our main results. The
precise statements and the underlying notation can be found in the body of the text.
We fix a field k.

Theorem 1.1. Let X be a nice quotient stack over k with the resolution property.
Let K denote the (nonconnective) K-theory presheaf on the 2-category of nice quo-
tient stacks. Let Z ↪→ X be a closed substack with open complement U . Then the
following hold.

(1) There is a homotopy fibration sequence of S1-spectra

K(X on Z)→ K(X )→ K(U).

(2) The presheaf X 7→ K(X ) satisfies excision.

(3) The presheaf X 7→ K(X ) satisfies Nisnevich descent.

(4) The presheaf X 7→ K(X ) satisfies descent for regular blow-ups.

Theorem 1.2. The nonconnective homotopy K-theory presheaf KH on the 2-cate-
gory of nice quotient stacks with resolution property satisfies the following.

(1) It is invariant under every vector bundle morphism (Thom isomorphism for
stacks).

(2) It satisfies localization, excision, Nisnevich descent, and descent for regular
blow-ups.

(3) If X is the stack quotient of a scheme by a finite nice group, then KH(X ) is
invariant under infinitesimal extensions.

The following result shows that K-theory with coefficients for quotient stacks is
homotopy invariant, i.e., it satisfies the Thom isomorphism. No case of this result
was yet known for stacks which are not schemes.

Theorem 1.3. Let X be a nice quotient stack over k with the resolution property
and let f : E→ X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f ∗ : K(X ;Z/n)→ K(E;Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map f ∗ : K(X ;Z[1/n])→ K(E;Z[1/n])
is a homotopy equivalence.

In the above results, a nice quotient stack means a stack of the form [X/G],
where G is an affine group scheme over k acting on a k-scheme X such that G is
nice, i.e., it is either linearly reductive over k or char(k) = 0. Group schemes of
multiplicative type (e.g., diagonalizable group schemes) are notable examples of
this in positive characteristic. We refer to Section 2B for more details.
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Applications. Similar to the case of schemes, one expects the above results to be
of central importance in the study of the K-theory of quotient stacks. Already
by now, there have been two immediate major applications: (1) the cdh-descent
and, (2) Weibel’s conjecture for negative KH -theory of stacks. In a sense, these
applications motivated the results of this paper.

Hoyois [2017] has constructed a variant of KH -theory for nice quotient stacks
and has used the main results of this paper to prove the cdh-descent for this variant.
The results of this paper (and their generalizations) have also been used recently
by Hoyois and the first author [Hoyois and Krishna 2017] to prove cdh-descent
for the KH -theory (as defined in Section 5) of nice stacks, and to prove Weibel’s
conjecture for the vanishing of negative KH -theory of such stacks.

Another application of the above results is related to a rigidity type theorem for
the K-theory of semilocal rings. Let A be a normal semilocal ring with isolated
singularity with an action of a finite group G, and let Â denote its completion
along the Jacobson radical. The rigidity question asks if the map K ′

∗
(G, A)→

K ′
∗
(G, Â) is injective. If G is trivial, this was proven for K ′0(G, A) by Kamoi and

Kurano [2002] for certain type of isolated singularities. They apply this result to
characterize certain semilocal rings. The main tool of [Kamoi and Kurano 2002]
is Theorem 1.1 for the ordinary K-theory of singular rings. We hope that the
localization theorem for the K-theory of quotient stacks can now be used to prove
the equivariant version of this rigidity theorem.

2. Perfect complexes on quotient stacks

Throughout this text, we work over a fixed base field k of arbitrary characteristic. In
this section, we fix notations, recall basic definitions and prove some preliminary
results. We conclude the section with the proof of an excision property for the
derived category of perfect complexes on stacks.

2A. Notations and definitions. Let Schk denote the category of separated schemes
of finite type over k. A scheme in this paper will mean an object of Schk . A group
scheme G will mean an affine group scheme over k. Recall that a stack X (of finite
type) over the big fppf site of k is said to be an algebraic stack over k if the diagonal
of X is representable by algebraic spaces and X admits a smooth, representable
and surjective morphism U → X from a scheme U . Throughout this text a “stack”
will always refer to an algebraic stack. We shall say that X is a quotient stack if it
is a stack of the form [X/G] (see, for instance, [Laumon and Moret-Bailly 2000,
§2.4.2]), where G is an affine group scheme acting on a scheme X .

2B. Nice stacks. Given a group scheme G, let ModG(k) denote the category of
k-modules with G-action. Recall that G is said to be linearly reductive if the
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“functor of G-invariants” ( – )G :ModG(k)→Mod(k), given by the submodule of
G-invariant elements, is exact. If char(k)= 0, it is well known that G is linearly
reductive if and only if it is reductive. In general, it follows from [Abramovich et al.
2008, Propositions 2.5, 2.7, Theorem 2.16] that G is linearly reductive if there is
an extension

1→ G1→ G→ G2→ 1, (2.1)

where each of G1 and G2 is either finite over k of degree prime to the exponen-
tial characteristic of k, or is of multiplicative type (étale locally diagonalizable)
over k. One knows that linearly reductive group schemes in positive characteristic
are closed under the operations of taking closed subgroups and base change.

Definition 2.2. We shall say that a group scheme G is nice if either it is linearly
reductive or char(k)= 0. If G is nice and it acts on a scheme X , we shall say that
the resulting quotient stack [X/G] is nice.

2C. Perfect complexes on stacks. Given a stack X , let Sh(X ) denote the abelian
category of sheaves of abelian groups, Mod(X ) the abelian category of sheaves
of OX -modules, and QC(X ) the abelian category of quasicoherent sheaves, each
on the smooth-étale site Lis-Et(X ) of X . Let Chqc(X ) denote the category of
all (possibly unbounded) chain complexes over Mod(X ) whose cohomology lie
in QC(X ), and Ch(QC(X )) the category of all chain complexes over QC(X ). Let
Dqc(X ) and D(QC(X )) denote the corresponding derived categories. Let D(X )
denote the unbounded derived category of Mod(X ). If Z ↪→X is a closed substack
with open complement j : U ↪→ X , we let

Chqc,Z(X )=
{
F ∈ Chqc(X ) | j∗(F)

q. iso.
−−−→ 0

}
.

The derived category of Chqc,Z(X ) will be denoted by Dqc,Z(X ). Recall that a
stack X is said to have the resolution property if every coherent sheaf on X is a
quotient of a vector bundle.

Lemma 2.3. Let X be the stack quotient of a scheme X with an action of a group
scheme G. Then the following hold.

(1) Every quasicoherent sheaf on X is the direct limit of its coherent subsheaves.

(2) X has the resolution property if X has an ample family of G-equivariant line
bundles. In particular, X has the resolution property if X is normal with an
ample family of (nonequivariant) line bundles.

(3) X has the resolution property if X is quasi-affine.

Proof. Part (1) is [Thomason 1987b, Lemma 1.4]. For (2), note that [Spec(k)/G]
has the resolution property [Thomason 1987b, Lemma 2.4]. Therefore, if X has
an ample family of G-equivariant line bundles, it follows from [Thomason 1987b,
Lemma 2.6] that X has the resolution property. If X is normal with an ample family
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of (nonequivariant) line bundles, it follows from [Thomason 1987b, Lemmas 2.10,
2.14] that X has the resolution property. Part (3) is well known and follows, for
example, from [Hall and Rydh 2017, Lemma 7.1]. �

Recall from [SGA 6 1971, Definition I.4.2] that a complex of OX -modules on a
Noetherian scheme is perfect if it is Zariski locally quasi-isomorphic to a bounded
complex of locally free sheaves.

Definition 2.4. Let X be a stack over k. A chain complex P ∈ Chqc(X ) is called
perfect if for any affine scheme U = Spec(A) with a smooth morphism s :U→ X ,
the complex of A-modules s∗(P) ∈ Ch(Mod(A)) is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules.

We shall denote the category of perfect complexes on X by Perf(X ) and its
derived category by Dperf(X ). For a quotient stack with the resolution property,
we can characterize perfect complexes in terms of their pull-backs to the total
space of the quotient map.

Lemma 2.5. Let f : X ′→ X be a faithfully flat map of Noetherian schemes. Let
P be a chain complex of quasicoherent sheaves on X such that f ∗(P) is perfect
on X ′. Then P is a perfect complex on X.

Proof. By [Thomason and Trobaugh 1990, Proposition 2.2.12], a complex of qua-
sicoherent sheaves is perfect if and only if it is cohomologically bounded above,
its cohomology sheaves are coherent, and it has locally finite Tor-amplitude. But
all these properties are known to descend from a faithfully flat cover. �

Proposition 2.6. Let X be the stack quotient of a scheme X with an action of a
group scheme G and let u : X → X be the quotient map. Assume that X has the
resolution property. Let P be a chain complex of quasicoherent OX -modules. Then
the following are equivalent.

(1) P is perfect.

(2) u∗(P) is perfect.

(3) u∗(P) is quasi-isomorphic to a bounded complex of G-equivariant vector bun-
dles in Ch(QCG(X)), where QCG(X) denotes the category of G-equivariant
quasicoherent sheaves on X.

Proof. (1)⇒ (2). We let Q = u∗(P). Consider an open cover of X by affine open
subsets {Spec(Ai )}. Let s :U→[X/G] be an atlas and si :Ui→ Spec(Ai ) its base
change to Spec(Ai ), where Ui are algebraic spaces. Take étale covers ti : Vi →Ui

of Ui , where the Vi are schemes. Let fi : Vi→U and gi : Vi→Spec(Ai ) denote the
obvious composite maps. It follows from (1) that Lg∗i (Q|Spec(Ai ))' L f ∗i (s

∗(P)) is
a perfect complex on Vi . Therefore, by Lemma 2.5, Q|Spec(Ai ) is a perfect complex
in Ch(Mod(Ai )). Equivalently, Q is perfect.
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(2)⇒ (3). We want to apply the inductive construction lemma [Thomason and
Trobaugh 1990, Lemma 1.9.5] with A being QCG(X), D the category of G-equi-
variant vector bundles on X and C the category of complexes in Ch(QCG(X))
satisfying (2). It is enough to verify that the hypothesis [loc. cit., 1.9.5.1] holds.

Suppose C ∈ C such that H i (C)= 0 for i ≥ n, and q :F � H n−1(C) in QCG(X).
By [Thomason and Trobaugh 1990, Proposition 2.2.3], G = H n−1(C) is a coherent
OX -module. Therefore, G is a coherent G-module. By Lemma 2.3(1), we can
write F = lim

−−→
Fα , where Fα are coherent G-submodules of F . Under the forgetful

functor, this gives an epimorphism q : lim
−−→

Fα � G in QC(X), where Fα, G are
coherent modules.

Now, as G is coherent and X is Noetherian, we can find an α such that the
composite map Fα ↪→ F

q
−→ G is surjective. By the resolution property, there exists

E ∈ D such that E � Fα. Hence the composite E→ Fα ↪→ F
q
−→ G is also surjec-

tive. Applying the conclusion of [Thomason and Trobaugh 1990, Lemma 1.9.5] to
C• = P and D• = 0, we get a bounded above complex E of G-vector bundles and
a quasi-isomorphism φ : E

∼
−→ P in Ch(QCG(X)). Therefore, E ∈ C.

Since X is Noetherian, E has globally finite Tor-amplitude. To show that Q is
quasi-isomorphic to a bounded complex over D, it suffices to prove that the good
truncation τ≥a(E) is a bounded complex of G-equivariant vector bundles and the
map E → τ≥a(E) is a quasi-isomorphism. It is enough to prove this claim by
forgetting the G-action. But this follows exactly along the lines of the proof of
[Thomason and Trobaugh 1990, Proposition 2.2.12].

(3) =⇒ (1) is clear. �

2D. Perfect complexes and compact objects of Dqc(X ). Recall that if T is a trian-
gulated category which is closed under small coproducts, then an object E ∈Obj(T )
is called compact if the functor HomT (E, – ) on T commutes with small coprod-
ucts. The full triangulated subcategory of compact objects in T is denoted by T c.
If X is a scheme, one of the main results of [Thomason and Trobaugh 1990] is that
a chain complex P ∈ Chqc(X) is perfect if and only if it is a compact object of
Dqc(X). For quotient stacks, this is a consequence of the results of [Neeman 1996;
Hall and Rydh 2015]:

Proposition 2.7. Let X be a nice quotient stack. Then a chain complex P ∈Chqc(X )
is perfect if and only if it is a compact object of Dqc(X ).
Proof. Suppose P is compact. We need to show that s∗(P) is perfect on U=Spec(A)
for every smooth map s :U→X . Since the compact objects of Dqc(U ) are perfect,
it suffices to show that s∗(P) is compact. We deduce this using [Neeman 1996,
Theorem 5.1].

The push-forward functor Rs∗ : Dqc(U )→ Dqc(X ) is a right adjoint to the pull-
back Ls∗ : Dqc(X )→ Dqc(U ). As Rs∗ and Ls∗ both preserve small coproducts
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(see the proof of Lemma 2.8 below), it follows from [Neeman 1996, Theorem 5.1]
that s∗(P) is compact.

If P is perfect, then it is a compact object of Dqc(X ) by our assumption on X
and [Hall and Rydh 2015, Theorem C]. �

Lemma 2.8. Let X be a nice quotient stack and let Z ⊂ X be a closed sub-
stack. Then the compact objects of Dqc,Z(X ) are exactly those which are perfect
in Chqc(X ).

Proof. It follows from Proposition 2.7 that Dperf
Z (X ) ⊆ Dc

qc,Z(X ). To prove the
other inclusion, let K ∈ Dc

qc,Z(X ). We need to show that K is a perfect complex
in Dqc(X ). Let s : V =Spec(A)→X be any smooth morphism and set T = s−1(Z).
Consider a set of objects {Fα} in Dqc,T (V ). Since X is a quotient stack, there exists
a smooth atlas u : X → X , where X ∈ Schk . This gives a 2-Cartesian square of
stacks

W s′
//

u′
��

X
u
��

V s
// X

(2.9)

The maps u and s are Tor-independent because they are smooth. Since1X is rep-
resentable and V is affine, it follows that s is representable. We conclude from [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] that u∗Rs∗(Fα)

'
−→ Rs ′

∗
u′∗(Fα). It

follows that Rs∗(Fα) ∈ Dqc,Z(X ). Using adjointness [Krishna 2009, Lemma 3.3],
we get

HomDqc,T (V )
(
s∗(K ),

⊕
αFα

)
' HomDqc,Z (X )

(
K , Rs∗

(⊕
αFα

))
'

1 HomDqc,Z (X )
(
K ,
⊕

αRs∗(Fα)
)

'
2 ⊕

αHomDqc,Z (X )(K , Rs∗(Fα))

'
⊕

αHomDqc,T (V )(s
∗(K ), Fα),

where '1 follows from the fact that Rs∗ preserves small coproducts [Hall and Rydh
2017, Lemmas 2.5(3), 2.6(3)], and '2 follows since K ∈ Dc

qc,Z (X ). This shows
that s∗(K ) ∈ Dc

qc,T (V ). Since V is affine, this implies that s∗(K ) is perfect. �

2E. Excision for derived category. We now prove an excision property for the
derived category of perfect complexes on stacks using the technique of Cartan–
Eilenberg resolutions.

Let A be a Grothendieck category and let D(A) denote the unbounded derived
category of A. Let Ch(A) denote the category of all chain complexes over A. An
object A ∈ Ch(A) is said to be K-injective if for every acyclic complex J ∈ Ch(A),
the complex Hom•(J, A) is acyclic. Since A has enough injectives, a complex over
A has a Cartan–Eilenberg resolution; see [EGA III1 1961, Chapitre 0, (11.4.2)].
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It is known that a Cartan–Eilenberg resolution of an unbounded complex over A
need not, in general, be a K-injective resolution. However, when X is a scheme or
a Noetherian and separated Deligne–Mumford stack over a fixed Noetherian base
scheme, it has been shown that for a complex J of OX -modules with quasicoherent
cohomology, the total complex of a Cartan–Eilenberg resolution does give a K-
injective resolution of J ; see [Keller 1998; Krishna 2009, Proposition 2.2]. Our
first objective is to extend these results to all algebraic stacks. We follow the
techniques of [Krishna 2009] closely. Given a double complex J •,•, let Totˆ(J )
denote the (product) total complex.

Proposition 2.10. Let X be a stack and let K ∈ Chqc(X ). Let E
ε
−→ I •,• be a

Cartan–Eilenberg resolution of E in Ch(X ). Then E
ε
−→ Totˆ(I ) is a K-injective

resolution of E.

Proof. Since Mod(X ) is a Grothendieck category and I •,• is a Cartan–Eilenberg
resolution, Totˆ(I ) is a K-injective complex by [Weibel 1996, A.3]. We only need
to show that E

ε
−→ Totˆ(I ) is a quasi-isomorphism. Let

τ≥p(E) := 0→ E p/B p E→ E p+1
→ · · ·

denote the good truncation of E . Then {τ≥p(E)}p∈Z gives an inverse system of
bounded below complexes with surjective maps such that E

'
−→ lim
←−−p τ

≥p(E). Let
τ≥p(I ) denote the double complex whose i-th row is the good truncation of the
i-th row of I •,• as above.

Let L•,•p = Ker(τ≥p(I )� τ≥p+1(I )). Then I •,• � τ≥p(I )� τ≥p+1(I ) and
I •,•

'
−→ lim
←−−p τ

≥p(I ). Therefore, Totˆ(I )
'
−→ lim
←−−p Totˆ(τ≥p(I )). Moreover, since

τ≥p(I ) is a Cartan–Eilenberg resolution of the bounded below complex τ≥p(E),
it is known that for each p ∈ Z, τ≥p(E)

εp
−→ Totˆ(τ≥p(I )) is a quasi-isomorphism.

Furthermore, the standard properties of Cartan–Eilenberg resolutions imply that
B p E→ B p I •,• is an injective resolution and hence, the inclusions B p I •,i ↪→ I •,i

are all split. In particular, the maps τ≥p(I )� τ≥p+1(I ) are termwise split surjec-
tive. Since τ≥p(I ) are upper half plane complexes with bounded below rows, we
conclude that the sequences

0→ Totˆ(L p)→ Totˆ(τ≥p(I ))→ Totˆ(τ≥p+1(I ))→ 0 (2.11)

are exact and are split in each degree.
Hence, we see that Totˆ(I )

'
−→ lim
←−−p Totˆ(τ≥p(I )), where each Totˆ(τ≥p(I )) is a

bounded below complex of injective OX -modules, and ε is induced by a compatible
system of quasi-isomorphisms εp. Furthermore, Totˆ(τ≥p(I ))→ Totˆ(τ≥p+1(I ))
is degreewise split surjective with kernel Totˆ(L p), which is a bounded below
complex of injective OX -modules. Since Hi (E) ∈ QC(X ) and QC(X )⊆Mod(X )
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satisfies [Laszlo and Olsson 2008, Assumption 2.1.2], the proposition now follows
from [Laszlo and Olsson 2008, Proposition 2.1.4]. �

Corollary 2.12. Let f : Y→X be a morphism of stacks and let E ∈ Dqc(Y). Then
the natural map R f∗(E)→ lim

←−−n R f∗(τ≥n(E)) is an isomorphism in Dqc(X ).

Proof. This is easily checked by replacing E by a Cartan–Eilenberg resolution and
using properties of Cartan–Eilenberg resolutions and good truncation. �

Recall that a morphism f : Y→ X of stacks is representable if for every alge-
braic space T and a morphism T → X , the fiber product T ×X Y is represented by
an algebraic space. If T ×X Y is represented by a scheme whenever T is a scheme,
we say that f : Y→ X is strongly representable.

Proposition 2.13. Let f : Y→ X be a strongly representable étale morphism of
stacks. Let Z i

↪→ X be a closed substack such that f : Z×X Y→ Z induces an iso-
morphism of the associated reduced stacks. Then f ∗ : Dqc,Z(X )→ Dqc,Z×XY(Y)
is an equivalence.

Proof. We set W = Z ×X Y . Let us first assume that E ∈ D+qc,Z(X ). We claim
that the adjunction map E→ R f∗ ◦ f ∗(E) is an isomorphism. The proof of this
claim is identical to that of [Krishna and Østvær 2012, Proposition 3.4] which
considers the case of schemes and Deligne–Mumford stacks. We take a smooth
atlas s :U→X with U ∈ Schk and note that U ×X Y→U is an étale morphism in
Schk because f is strongly representable. As in the proof of [Krishna and Østvær
2012, Proposition 3.4], an application of [Hall and Rydh 2017, Corollary 4.13] now
reduces the problem to the case of schemes. By similar arguments, if F ∈ D−qc,W(Y),
the co-adjunction map f ∗ ◦ R f∗(F)→ F is an isomorphism (see the proof of
[Krishna and Østvær 2012, Theorem 3.5] for details).

To prove the proposition, we need to show that f ∗ is fully faithful and essentially
surjective on objects. To prove the first assertion, let E ∈ Dqc,Z(X ). Since f ∗

is exact, it commutes with good truncation. Applying this to the isomorphism
E
'
−→ lim
←−−n τ

≥n(E), we conclude from Corollary 2.12 and what we showed above
for the bounded below complexes that the adjunction map E→ R f∗ ◦ f ∗(E) is an
isomorphism. If E ′ ∈ Dqc,Z(X ) is now another object, then

HomDqc,Z (X )(E, E ′)' HomDqc,Z (X )(E, R f∗ ◦ f ∗(E ′))

' HomDqc(X )(E, R f∗ ◦ f ∗(E ′))

'
1 HomDqc(Y)( f ∗(E), f ∗(E ′))

' HomDqc,W (Y)( f ∗(E), f ∗(E ′)),

where '1 follows from the adjointness of ( f ∗, R f∗) [Krishna 2009, Lemma 3.3].
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To prove the essential surjectivity of f ∗, let F ∈ Dqc,W(Y). If F ∈ D−qc,W(Y),
then we have shown above that the map f ∗ ◦ R f∗(F)→ F is an isomorphism.
The general case follows from the bounded above case using the isomorphism
lim
−−→n τ

≤n(F)
'
−→ F . �

3. Algebraic K-theory of nice quotient stacks

In this section, we prove Theorem 1.1. Let X be a stack. We begin with the
definition and some preliminary results on the K-theory spectrum for stacks.

3A. K-theory spectrum. The algebraic K-theory spectrum K (X ) of X is defined
to be the K-theory spectrum of the complicial bi-Waldhausen category of perfect
complexes in Chqc(X ) in the sense of [Thomason and Trobaugh 1990, §1.5.2].
Here, the complicial bi-Waldhausen category structure is given with respect to the
degreewise split monomorphisms as cofibrations and quasi-isomorphisms as weak
equivalences. The homotopy groups of the spectrum K (X ) are defined to be the
K-groups of the stack X and are denoted by Kn(X ). Note that these groups are 0 if
n < 0; see [Thomason and Trobaugh 1990, §1.5.3]. We shall extend this definition
to negative integers later in this section. For a closed substack Z of X , K (X on Z)
is the K-theory spectrum of the complicial bi-Waldhausen category of those perfect
complexes on X which are acyclic on X \Z .

Lemma 3.1. For a stack X with affine diagonal, the inclusion of the complicial
bi-Waldhausen category of perfect complexes of quasicoherent OX -modules into
the category of perfect complexes in Chqc(X ) induces a homotopy equivalence of
their K-theory spectra.

Similarly, for a closed substack Z ↪→ X , K (X on Z) is homotopy equivalent
to the K-theory spectra of the complicial bi-Waldhausen category of perfect com-
plexes of quasicoherent OX -modules which are acyclic on X \Z .

Proof. For a stack X with affine diagonal, by [Lurie 2005, Theorem 3.8] the inclu-
sion functors 8 : Ch(QC(X ))→ Chqc(X ) and 8Z : ChZ(QC(X ))→ Chqc,Z(X )
induce equivalences of their left bounded derived categories. Therefore, they re-
strict to the equivalences of the derived homotopy categories of the bi-Waldhausen
categories of perfect complexes of quasicoherent OX -modules and that of perfect
complexes in Chqc(X ), both with support in Z in the case of 8Z . By [Thomason
and Trobaugh 1990, Theorem 1.9.8], these inclusions therefore induce homotopy
equivalence of their K-theory spectra. �

Lemma 3.2. Let X be a quotient stack with the resolution property. Consider the
following list of complicial bi-Waldhausen categories:

(1) bounded complexes of vector bundles on X ,
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(2) perfect complexes in Ch(QC(X )),

(3) perfect complexes in Chqc(X ).

Then the obvious inclusion functors induce homotopy equivalences of all their K-
theory spectra. Furthermore, K (X ) is homotopy equivalent to the algebraic K-
theory spectrum of the exact category of vector bundles on X .

Proof. The inclusion of (1) in (2) induces a homotopy equivalence of K-theory
spectra by Proposition 2.6 and [Thomason and Trobaugh 1990, Theorem 1.9.8].
The inclusion of (2) in (3) induces homotopy equivalence of K-theory spectra by
Lemma 3.1. The last assertion follows from [Thomason and Trobaugh 1990, The-
orem 1.11.7]. �

3B. The localization and excision for K-theory. We now establish the localiza-
tion sequence and excision for the K-theory of nice quotient stacks. We begin with
the following localization at the level of Dqc(X ).

Proposition 3.3. Let X be a nice quotient stack and let Z ↪→ X be a closed sub-
stack with open complement j : U ↪→ X . Assume that X has the resolution property.
Then the following hold.

(1) Dqc(X ), Dqc,Z(X ) and Dqc(U) are compactly generated.

(2) The functor
j∗ :

Dqc(X )
Dqc,Z(X )

→ Dqc(U)

is an equivalence of triangulated categories.

Proof. The stack U has the resolution property by our assumption and [Gross
2017, Theorem A]. It follows from Proposition 2.7 that every perfect complex in
Dqc(X ) is compact, i.e., X is concentrated. Since X and U have affine diagonal
with resolution property, it follows from [Hall and Rydh 2017, Proposition 8.4]
that Dqc(X ), Dqc,Z(X ) and Dqc(U) are compactly generated.

The second statement is an easy consequence of adjointness of the functors
( j∗, R j∗) and works exactly like the case of schemes. One checks easily that j∗

is fully faithful and j∗ ◦ R j∗ is the identity on Dqc(U). �

Theorem 3.4 (localization sequence). Let X be a nice quotient stack and let Z ↪→ X
be a closed substack with open complement j : U ↪→ X . Assume that X has the
resolution property. Then the morphism of spectra K (X on Z)→ K (X )→ K (U)
induce a long exact sequence

· · · → Ki (X on Z)→ Ki (X )→ Ki (U)→ Ki−1(X on Z)
→ · · · → K0(X on Z)→ K0(X )→ K0(U).
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Proof. It follows from Proposition 2.7, Lemma 2.8 and Proposition 3.3 that there
is a commutative diagram of triangulated categories

Dperf
Z (X )
� _

��

// Dperf(X )� _

��

// Dperf(U)� _

��

Dqc,Z(X ) // Dqc(X ) // Dqc(U)

(3.5)

where the bottom row is a localization sequence of triangulated categories and
the top row is the sequence of full subcategories of compact objects of the corre-
sponding categories in the bottom row. Moreover, each triangulated category in
the bottom row is generated by its compact objects in the top row. We can thus
apply [Neeman 1992, Theorem 2.1] to conclude that the functor

Dperf(X )

Dperf
Z (X )

→ Dperf(U) (3.6)

is fully faithful, and an equivalence up to direct factors.
Let 6 be the category whose objects are perfect complexes in Chqc(X ), and

where a map x→ y is a weak equivalence if the restriction x |U → y|U is a quasi-
isomorphism in Chqc(U). The cofibrations in 6 are degreewise split monomor-
phisms. Then it is easy to see that 6 is a complicial bi-Waldhausen model for
the quotient category Dperf(X )/Dperf

Z (X ). Thus, by the Waldhausen localization
theorem [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8], there is a homo-
topy fibration of spectra K (X on Z)→ K (X )→ K (6). It follows from (3.6) and
[Neeman 1992, Lemma 0.6] that K (6)→ K (U) is a covering map of spectra. In
particular, Ki (6)

'
−→ Ki (U) for i ≥ 1 and K0(6) ↪→ K0(U). �

Theorem 3.7 (excision). Let X be a nice quotient stack and let Z ↪→ X be a
closed substack. Let f : Y → X be a strongly representable étale morphism
of stacks such that f : Z ×X Y → Z induces an isomorphism of the associated
reduced stacks. Assume that X ,Y have the resolution property. Then f ∗ induces a
homotopy equivalence

f ∗ : K (X on Z) '−→ K (Y on Z×XY).

Proof. We observe that since f is strongly representable, Y is also a nice quotient
stack. The theorem now follows directly from Lemma 2.8 and Proposition 2.13. �

3C. Projective bundle formula. In order to define the nonconnective K-theory of
stacks, we need the projective bundle formula for their K-theory. This formula
for the equivariant K-theory was proven in [Thomason 1993a, Theorem 3.1]. We
adapt the argument of Thomason to extend it to the K-theory of all stacks. Though
this formula is used in this text only for quotient stacks, its most general form plays
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a crucial role in [Hoyois and Krishna 2017]. For details on the projective bundles
over algebraic stacks, see [Laumon and Moret-Bailly 2000, Chapter 14].

Theorem 3.8. Let X be a stack, E a vector bundle of rank d and p : PE→ X the
projective bundle associated to it. Let OPE(1) be the fundamental invertible sheaf
on PE and OPE(i) its i -th power in the group of invertible sheaves over X .

Then the morphism of K-theory spectra induced by the exact functor that sends
a sequence of d perfect complexes in Chqc(X ), (E0, . . . , Ed−1) to the perfect com-
plex

p∗E0⊕OPE(−1)⊗ p∗E1⊕ · · ·⊕OPE(1− d)⊗ p∗Ed−1

induces a homotopy equivalence

8 :
∏
d

K (X ) ∼−→ K (PE).

Similarly, for each closed substack Z , the exact functor restricts to the subcategory
of complexes acyclic on X \Z to give a homotopy equivalence

8 :
∏
d

K (X on Z) ∼−→ K (PE on P(E|Z)).

We need the following steps to prove this theorem.

Lemma 3.9. Under the hypothesis of Theorem 3.8, let F be a perfect complex in
Chqc(X ) or in general a complex with quasicoherent and bounded cohomology.
Then the canonical adjunction morphism (3.10) is a quasi-isomorphism:

η : F
∼
−→ Rp∗ p∗F = Rp∗(OPE ⊗ p∗F). (3.10)

In addition, for j = 1, 2, . . . , d − 1, we have as a result of cancellation

Rp∗(OPE(− j)⊗ p∗F)' 0. (3.11)

Proof. The assertion of the lemma is fppf local on X . Let u :U → X be a smooth
atlas for X , where U is a scheme. Since p : PE→ X is strongly representable, we
can apply [Hall and Rydh 2017, Lemma 2.5(3), Corollary 4.13] to reduce to the
case when X ∈ Schk . In this latter case, the lemma is proven in [Thomason 1993a,
Lemma 3]. �

Lemma 3.12. Under the hypothesis of Theorem 3.8, if E is a perfect complex in
Chqc(PE), then the following hold.

(1) Rp∗(E) is a perfect complex in Chqc(X ).

(2) If Rp∗(E ⊗OPE(i)) is acyclic on X for i = 0, 1, . . . , d − 1, then E is acyclic
on PE .
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Proof. Since the assertion is fppf local on X and the perfectness is checked by
base change of X by smooth morphisms from affine schemes, we can use [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] again to replace X by a scheme.
Part (1) then follows from [Thomason 1993a, Lemma 4] and (2) follows from
[Thomason 1993a, Lemma 5]. �

Proof of Theorem 3.8. The proof follows exactly along the lines of the proof of
[Thomason 1993a, Theorem 1], using Lemmas 3.9 and 3.12, which generalize
[Thomason 1993a, Lemmas 3, 4, 5] to stacks. �

3D. K-theory of regular blow-ups of stacks. A closed immersion Y → X of
stacks over k is defined to be a regular immersion of codimension d if there
exists a smooth atlas U → X of X such that Y ×X U → U is a regular immer-
sion of schemes of codimension d. This is well defined as U is Noetherian and
regular immersions behave well under flat base change and satisfy fpqc descent.
For a closed immersion i : Y → X , the blow-up of X along Y is defined to be
p : X̃ = Proj

(⊕
n≥0 I

n
Y
)
→ X . See [Laumon and Moret-Bailly 2000, Chapter 14]

for relative proj construction on stacks. Note that in the case of a regular immersion,
X̃ ×X Y→ Y is a projective bundle over Y , similar to schemes.

Theorem 3.13. Let i : Y→ X be a regular immersion of codimension d of stacks.
Let p :X ′→X be the blow-up of X along Y and j :Y ′=Y×X X ′→X ′, q :Y ′→Y
be the maps obtained by base change. Then the square

K (X ) i∗
//

p∗
��

K (Y)

q∗
��

K (X ′)
j∗
// K (Y ′)

(3.14)

is homotopy Cartesian.

Proof. This is proved in [Cortiñas et al. 2008, Proposition 1.5] in the case of
schemes and an identical proof works for the case of stacks, in the presence of the
results of Section 3C and Lemma 3.16. We give some details on the strategy of the
proof. For r =0, . . . , d−1, let Dperf

r (X ′)⊂ Dperf(X ′) be the full triangulated subcat-
egory generated by Lp∗F and R j∗Lq∗G⊗OX ′(−l) for F ∈ Dperf(X ), G ∈ Dperf(Y)
and l = 1, . . . , r . Let Dperf

r (Y ′) ⊂ Dperf(Y ′) be the full triangulated subcategory
generated by Lq∗G⊗OY ′(−l) for G ∈ Dperf(Y) and l = 0, . . . , r . By Lemmas 3.9
and 3.16(1), Lp∗ : Dperf(X ) → Dperf

0 (X ′) and Lq∗ : Dperf(Y) → Dperf
0 (Y ′) are

equivalences. Exactly as in [Cortiñas et al. 2008, Lemma 1.2], one shows that
Dperf

d−1(X
′)= Dperf(X ′) and Dperf

d−1(Y
′)= Dperf(Y ′) using Lemmas 3.12 and 3.16.

To prove the theorem, it is sufficient to show that L j∗ is compatible with the
filtrations on Dperf(X ′) and Dperf(Y ′):
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Dperf(X )

Li∗

��

Lp∗

∼
// Dperf

0 (X ′)

L j∗

��

� � // Dperf
1 (X ′)

L j∗

��

� � // · · ·
� � // Dperf

d−1(X
′)= Dperf(X ′)

L j∗

��

Dperf(Y)
Lq∗

∼
// Dperf

0 (Y ′) �
�
// Dperf

1 (Y ′) �
�
// · · ·
� � // Dperf

d−1(Y
′)= Dperf(Y ′)

(3.15)

and that for r = 0, . . . , d − 2, L j∗ induces equivalences on quotient triangulated
categories:

L j∗ : Dperf
r+1(X

′)/Dperf
r (X ′) ∼−→ Dperf

r+1(Y
′)/Dperf

r (Y ′).

Given this, it follows from [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8]
that every square in (3.15) induces a homotopy Cartesian square of K-theory spectra.

To prove the compatibility of L j∗, it is enough to check on generators and in
this case, it can be reduced to the case of schemes using [Hall and Rydh 2017,
Corollary 4.13]. To prove that L j∗ induces equivalence on quotients, we first note
that the composition

L j∗ ◦ [OX ′(−r − 1)⊗ R j∗Lq∗] : Dperf(Y)→ Dperf
r+1(X

′)/Dperf
r (X ′)

→ Dperf
r+1(Y

′)/Dperf
r (Y ′)

agrees with OY ′(−r − 1)⊗ Lq∗ : Dperf(Y)→ Dperf
r+1(Y

′)/Dperf
r (Y ′), up to a natural

equivalence. This follows as in the proof of [Cortiñas et al. 2008, Lemma 1.4] using
[Hall and Rydh 2017, Corollary 4.13]. Therefore, it is enough to show that the
functors OX ′(−r −1)⊗ R j∗Lq∗ and OY ′(−r −1)⊗ Lq∗ are equivalences. But the
proof of this is exactly the same as the one in [Cortiñas et al. 2008, Proposition 1.5]
for schemes. �

Lemma 3.16. Under the hypotheses of Theorem 3.13, the following hold.

(1) Let F be a perfect complex on X . Then the canonical adjunction morphism
(3.17) is a quasi-isomorphism:

η : F
∼
−→ Rp∗Lp∗F = Rp∗(OX ′ ⊗ Lp∗F). (3.17)

(2) Let r be an integer such that 1≤ r ≤ d−1. Let A′r denote the full triangulated
subcategory of Dperf(X ′) of those complexes E for which Rp∗(E⊗OX ′(i))' 0
for 0 ≤ i < r . Then there exists a natural transformation ∂ of functors from
A′r to Dperf(X ′):

∂ : (R j∗Lq∗Rq∗(E ⊗OX ′ OY ′(r − 1))⊗OX ′(−r))[−1] → E . (3.18)

Moreover, Rp∗(∂ ⊗OX ′(i)) is a quasi-isomorphism for 0≤ i < r + 1.

(3) Suppose E ∈ Dperf(X ′) is such that Rp∗(E ⊗ OX ′(i)) is acyclic on X for
i = 0, . . . , d − 1. Then E is acyclic on X ′.
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Proof. Statements (1) and (3) are proved in [Thomason 1993b] for schemes. The
general case can be deduced from this exactly as in Lemmas 3.9 and 3.12. For (2),
the existence of ∂ follows from [Thomason 1993b, Lemma 2.4(a)] as the construc-
tion of ∂ given there is natural in X for schemes. To check that Rp∗(∂⊗OX ′(i)) is
a quasi-isomorphism for 0≤ i < r + 1, we may again assume that X is a scheme,
and this case follows from [loc. cit., Lemma 2.4(a)]. �

3E. Negative K-theory of stacks. Let U ↪→ X be an open immersion of stacks
over k. As K0(X )→ K0(U) is not always surjective in the localization theorem, we
want to introduce a nonconnective spectrum K(–) with K (–) as its (−1)-connective
cover, so that K(X on Z)→ K(X )→ K(U) is a homotopy fiber sequence for any
closed substack Z of X with complement U . We define K only in the absolute case
below. The construction of K(X on Z) follows similarly, as shown in [Thomason
and Trobaugh 1990]. We shall use the following version of the Bass fundamental
theorem for stacks to define K(X ). The homotopy groups of K(X ) will be denoted
by Ki (X ).

Theorem 3.19 (Bass fundamental theorem). Let X be a nice quotient stack with
the resolution property and let X [T ] = X ×Spec(k[T ]). Then the following hold.

(1) For n ≥ 1, there is an exact sequence

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])

( j∗1 , j∗2 )
−−−−→ Kn(X [T, T−1

])
∂T
−→ Kn−1(X )→ 0.

Here p∗1, p∗2 are induced by the projections X [T ] → X , etc., and j∗1 , j∗2 are
induced by the open immersions X [T±1

] = X [T, T−1
] → X [T ], etc. The

sum of these exact sequences for n = 1, 2, . . . is an exact sequence of graded
K∗(X )-modules.

(2) For n ≥ 0, ∂T : Kn+1(X [T±1
])→ Kn(X ) is naturally split by a map hT of

K∗(X )-modules. Indeed, the cup product with T ∈ K1(k[T±1
]) splits ∂T up

to a natural automorphism of Kn(X ).

(3) There is an exact sequence for n = 0:

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])
( j∗1 , j∗2 )
−−−−→ Kn(X [T±1

]).

Proof. It follows from [Thomason 1987b, Lemma 2.6] that P1
X and X [T ] are nice

quotient stacks with the resolution property. It follows from Theorem 3.8 that
there is an isomorphism K∗(P1

X ) ' K∗(X )⊕ K∗(X ), where the two summands
are K∗(X )[O] and K∗(X )[O(−1)] with respect to the external product K (X )∧
K (P1

k) → K (P1
X ) and with [O], [O(−1)] ∈ K0(P

1
k). As for schemes, (1) now



ALGEBRAIC K-THEORY OF QUOTIENT STACKS 223

follows directly from Theorems 3.4 and 3.7; see also [Thomason and Trobaugh
1990, Theorem 6.1].

For (2), it suffices to show that the composite map

∂T (T ∪ p∗( – )) : Kn(X )→ Kn+1(X [T±1
])→ Kn(X )

is an automorphism of Kn(X ) for n ≥ 0. By naturality and the fact that ∂T is a map
of K∗(X )-modules, this reduces to showing that ∂T : K1(k[T±1

])→ K0(k) sends
T to ±1. But this is well known and (3) follows from (2) using the analogue of
[Thomason and Trobaugh 1990, (6.1.5)] for stacks. �

Theorem 3.20. For a nice quotient stack X with the resolution property, there is
a spectrum K(X ) together with a natural map of spectra K (X )→ K(X ) which
induces isomorphism Ki (X )

'
−→ Ki (X ) for i ≥ 0.

Let Y be a nice quotient stack with the resolution property and let f : Y→ X
be a strongly representable étale map. Let Z ↪→ X be a closed substack such
that Z×XY → Z induces an isomorphism of the associated reduced stacks. Let
π : P(E)→ X be the projective bundle associated to a vector bundle E on X of
rank r. Then the following hold.

(1) There is a homotopy fiber sequence of spectra

K(X on Z)→ K(X )→ K(X \Z).

(2) The map f ∗ : K(X on Z)→ K(Y on Z×XY) is a homotopy equivalence.

(3) The map
∏r−1

0 K(X )→ K(P(E)), (a0, . . . , ar−1) 7→
∑

i O[−i] ⊗ π∗(ai ), is
a homotopy equivalence.

Proof. The construction of the spectrum K(X ) follows directly from Theorem 3.19
by the formalism given in (6.2)–(6.4) of [Thomason and Trobaugh 1990]. Like
for schemes, the proof of (1), (2) and (3) is a standard deduction from Theo-
rems 3.4, 3.7 and 3.8, using the inductive construction of K(X ). �

3F. Schlichting’s negative K-theory. Schlichting [2006] defined negative K-theory
of complicial bi-Waldhausen categories. Let X be a nice quotient stack. Schlicht-
ing’s negative K-theory spectrum K Scl(X ) is the K-theory spectrum of the Frobe-
nius pair associated to the category Chqc(X ). It follows from [Schlichting 2006,
Theorem 8] that K Scl

i (X ) = Ki (X ) for i ≥ 0. The following result shows that
K Scl

i (X ) agrees with Ki (X ) for i < 0.

Theorem 3.21. Let X be a nice quotient stack with the resolution property. Then
there are natural isomorphisms between K Scl

i (X ) and Ki (X ) for i ≤ 0.

Proof. Let p :P1
X→X be the projection map. Then we can prove as in Theorem 3.8

that the functors p∗ :Dperf(X )→Dperf(P1
X ) and O(−1)⊗p∗ :Dperf(X )→Dperf(P1

X ),
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which are induced by maps of their Frobenius models, induce isomorphisms

(p∗,O(−1)⊗ p∗) : K Scl
i (X )⊕ K Scl

i (X ) '−→ K Scl
i (P1

X )

for i ≤ 0. It follows from the proof of Bass’ fundamental theorem in [Thomason
and Trobaugh 1990, Theorem 6.6(b)] that there is an exact sequence of abelian
groups

0→K Scl
i (X )→K Scl

i (X [T ])⊕K Scl
i (X [T−1

])→K Scl
i (X [T, T−1

])→K Scl
i−1(X )→0

for i ≤ 0. As K Scl
0 (Y)=K0(Y) for any stack Y , the negative K-groups coincide. �

4. Nisnevich descent for K-theory of quotient stacks

In this section, we prove Nisnevich descent in a 2-category of stacks whose objects
are all quotients of schemes by action of a fixed group scheme. So let G be a
group scheme over k. Let SchG

k denote the category of separated schemes of finite
type over k with G-action. The equivariant Nisnevich topology on SchG

k and the
homotopy theory of simplicial sheaves in this topology was defined and studied in
detail in [Heller et al. 2015]. As an application of Theorem 3.20, we shall show in
this section that the K-theory of quotient stacks for G-actions satisfies descent in
the equivariant Nisnevich topology on SchG

k .

Definition 4.1 [Heller et al. 2015, Definition 2.1]. A distinguished equivariant
Nisnevich square is a Cartesian square

B

��

// Y

p
��

A �
� j

// X

(4.2)

in SchG
k such that

(1) j is an open immersion,

(2) p is étale, and

(3) the induced map (Y \ B)red→ (X \ A)red of schemes (without reference to the
G-action) is an isomorphism.

Remark 4.3. We remark here that given a Cartesian square of the type (4.2) in SchG
k ,

the closed subscheme (X \ A)red (or (Y \ B)red) may not in general be G-invariant,
unless G is smooth. However, it follows from [Thomason 1987a, Lemma 2.5] that
we can always find a G-invariant closed subscheme Z ⊂ X such that Zred = X \ A.
This closed subscheme can be assumed to be reduced if G is smooth. Using the
elementary fact that a morphism of schemes is étale if and only if the induced
map of the associated reduced schemes is étale, it follows immediately that the
condition (3) in Definition 4.1 is equivalent to
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(3′) there is a G-invariant closed subscheme Z ⊂ X with support X \ A such that
the map Z ×X Y → Z in SchG

k is an isomorphism.

The collection of distinguished equivariant Nisnevich squares forms a cd-structure
in the sense of [Voevodsky 2010]. The associated Grothendieck topology is called
the equivariant Nisnevich topology. It is also called the eN-topology. It follows
from [Heller et al. 2015, Theorem 2.3] that the equivariant Nisnevich cd-structure
on SchG

k is complete, regular, and bounded. We refer to [Voevodsky 2010, §2] for
the definition of a complete, regular, and bounded cd-structure.

Let SchG
k/Nis denote the category of G-schemes X , such that X admits a family of

G-equivariant ample line bundles, equipped with the equivariant Nisnevich topol-
ogy. Note that all objects of SchG

k/Nis have the resolution property by Lemma 2.3.
It follows from [Heller et al. 2015, Corollary 2.11] that for a sheaf F of abelian
groups on SchG

k/Nis, we have H i
G/Nis(X,F)= 0 for i > dim(X).

Definition 4.4. An equivariant morphism Y → X in SchG
k splits if there is a filtra-

tion of X by G-invariant closed subschemes

∅= Xn+1 ( Xn ( · · ·( X0 = X, (4.5)

such that for each j , the map (X j \ X j+1)×X Y → X j \ X j+1 has a G-equivariant
section. If f is étale and surjective, the morphism is called an equivariant split
étale cover of X.

4A. Equivariant Nisnevich covers. In [Heller et al. 2015, Proposition 2.15], it
is shown that an equivariant étale morphism Y → X in SchG

k is an equivariant
Nisnevich cover if and only if it splits. Further, when G is a finite constant group
scheme, it is shown that an equivariant étale map f : Y → X in SchG

k is an equivari-
ant Nisnevich cover if and only if for any point x ∈ X , there is a point y ∈ Y such
that f (y)= x and f induces isomorphisms k(x)' k(y) and Sy ' Sx . Here, for a
point x ∈ X , the set-theoretic stabilizer Sx ⊆G is defined by Sx = {g ∈G | g.x = x}
[Heller et al. 2015, Proposition 2.17].

Let G0 denote the connected component of the identity element in G. Suppose
that G is of the form G=

∐r
i=0 gi G0, where {e= g0, g1, . . . , gr } are points in G(k)

which represent the left cosets of G0. In the next proposition, we give an explicit
description of the equivariant Nisnevich covers of reduced schemes X ∈ SchG

k . For
x ∈ X , let S̃x := {gi | 0≤ i ≤ r, gi .x = x}.

Proposition 4.6. Let G be a smooth affine group scheme over k as above. A mor-
phism f : Y → X in SchG

k is an equivariant split étale cover of a reduced scheme
X if and only if for any point x ∈ X , there is a point y ∈ Y such that f (y)= x and
f induces isomorphisms k(x)' k(y) and S̃y ' S̃x .
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Proof. It is clear that a split étale G-equivariant family of morphisms satisfies the
given conditions. The heart of the proof is to show the converse.

Suppose Y f
−→ X is such that for any point x ∈ X , there is a point y ∈ Y such

that f (y) = x and f induces isomorphisms k(x) ' k(y) and S̃y ' S̃x . Let W be
the regular locus of X . Then W is a G-invariant dense open subscheme of X . Set
U = Y ×X W. Notice that W is a disjoint union of its irreducible components, and
each fU being étale, it follows that U is regular and hence a disjoint union of its
irreducible components.

Let x ∈ W be a generic point of W. Then the closure Wx = {x} in W is an
irreducible component of W. By our assumption, there is a point y ∈U such that

f (y)= x, kx
'
−→ ky, and S̃y

'
−→ S̃x . (4.7)

Then the closure Uy = {y} in U is an irreducible component of U . Since Uy→Wx

is étale and generically an isomorphism, it must be an open immersion. Thus f
maps Uy isomorphically onto an open subset of Wx . We replace Wx by this open
subset f (Uy) and call it our new Wx .

Let GUy be the image of the action morphism µ :G×Uy→U . Notice that µ is
a smooth map and hence open. This in particular implies that GUy is a G-invariant
open subscheme of U as Uy is one of the disjoint irreducible components of U and
hence open. By the same reason, GWx is a G-invariant open subscheme of W .

Since the identity component G0 is connected, it keeps Uy invariant. Therefore,
y ∈ U is fixed by G0 and hence G acts on this point via its quotient G = G/G0.
Since each g j G0 takes Uy onto an irreducible component of U and since U has only
finitely many irreducible components which are all disjoint, we see that GUy =

U0qU1q · · · qUn is a disjoint union of some irreducible components of U with
U0 =Uy . In particular, for each U j , we have U j = g ji G

0Uy = g ji Uy for some ji .
Since f maps Uy isomorphically onto Wx , we conclude from the above that

f maps each Uj isomorphically onto one and only one Wj such that GWx =

f (GUy)=W0qW1q· · ·qWm (with m ≤ n) is a disjoint union of open subsets of
some irreducible components of W with W0 =Wx . The morphism f will map the
open subscheme GUy isomorphically onto the open subscheme GWx if and only
if no two components of GUy are mapped onto one component of GWx . This is
ensured by using the condition (4.7).

If two distinct components of GUy are mapped onto one component of GWx ,
we can (using the equivariance of f ) apply automorphisms by the g ji and assume
that one of these components is Uy . In particular, we can find j ≥ 1 such that

Wx = f (Uy)= f (Uj )= f (g ji Uy)= g ji f (Uy)= g ji Wx . (4.8)

But this implies that g ji ∈ S̃x and g ji /∈ S̃y . This violates the condition in (4.7)
that S̃y and S̃x are isomorphic. We have thus shown that the morphism f has a
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G-equivariant splitting over a nonempty G-invariant open subset GWx . Letting
X1 be the complement of this open subset in X with reduced scheme structure, we
see that X1 is a proper G-invariant closed subscheme of X , and by restricting our
cover to X1, we get a cover for X1 satisfying the given conditions. The proof of
the proposition is now completed by the Noetherian induction. �

4B. Equivariant Nisnevich descent. It is shown in [Heller et al. 2015, §3] that
the category of presheaves of S1-spectra on SchG

k/Nis (denoted by Pres(SchG
k/Nis))

is equipped with the global and local injective model structures. A morphism
f : E→ E ′ of presheaves of spectra is called a global weak equivalence if the map
E(X)→ E ′(X) is a weak equivalence of S1-spectra for every object X ∈ SchG

k/Nis.
It is a global injective cofibration if E(X)→ E ′(X) is a cofibration of S1-spectra
for every object X ∈ SchG

k/Nis. The map f is called a local weak equivalence
if it induces an isomorphism on the sheaves of stable homotopy groups of the
presheaves of spectra in the eN-topology. A local (injective) cofibration is the
same as a global injective cofibration.

A presheaf of spectra E on SchG
k/Nis is said to satisfy the equivariant Nisnevich

descent (eN-descent) if the fibrant replacement map E→ E ′ in the local injective
model structure of Pres(SchG

k/Nis) is a global weak equivalence. Let KG denote
the presheaf of spectra on SchG

k which associates the spectrum K([X/G]) to any
X ∈ SchG

k . As a consequence of Theorem 3.20, we obtain the following.

Theorem 4.9. Let G be a nice group scheme over k. Then the presheaf of spectra
KG on SchG

k/Nis satisfies the equivariant Nisnevich descent.

Proof. Since the eN-topology is regular, complete and bounded by [Heller et al.
2015, Theorem 2.3], it suffices to show using [Voevodsky 2010, Proposition 3.8]
that KG takes a square of the type (4.2) to a homotopy Cartesian square of spectra.
In other words, we need to show that the square

K([X/G])
j∗
//

p∗

��

K([A/G])

p′∗

��

K([Y/G])
j ′∗
// K([B/G])

(4.10)

is homotopy Cartesian. But this is an immediate consequence of Theorem 3.20. �

Corollary 4.11. Let G be a nice group scheme over k and let X ∈ SchG
k/Nis. Then

there is a strongly convergent spectral sequence

E p,q
2 = H p

eN (X,K
G
q )⇒ Kq−p([X/G]).

Proof. This is immediate from Theorem 4.9 and [Heller et al. 2015, Theorem 2.3,
Corollary 2.11]. �
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5. Homotopy invariance of K-theory with coefficients for quotient stacks

It is known that with finite coefficients, the ordinary algebraic K-theory of schemes
satisfies the homotopy invariance property (see [Weibel 1989, Theorem 1.2, Propo-
sition 1.6] for affine schemes and [Thomason and Trobaugh 1990, Theorem 9.5]
for the general case). This is a hard result which was achieved by first defining a
homotopy invariant version of algebraic K-theory [Weibel 1989] and then showing
that with finite coefficients, this homotopy (invariant) K-theory coincides with the
algebraic K-theory.

However, the proof of the agreement between algebraic K-theory and homotopy
K-theory with finite coefficients requires the knowledge of a spectral sequence
relating NK -theory and homotopy K-theory; see [Weibel 1989, Remark 1.3.1].
Recall here that NK (X) denotes the homotopy fiber of the pull-back map ι∗, where
ι : X ↪→ A1

k × X denotes the 0-section embedding into the trivial line bundle over
a scheme X . The existence of homotopy K-theory for quotient stacks is not yet
known and one does not know if the above spectral sequence would exist for the
homotopy K-theory of quotient stacks. In this section, we adopt a different strategy
to extend the results of Weibel and Thomason–Trobaugh to the K-theory of nice
quotient stacks (see Theorem 5.5).

5A. Homotopy K-theory of stacks. For n ∈ N, let

1n = Spec
(
k[t0, . . . , tn]/

(∑
i

ti − 1
))
.

Recall that 1• = {1n}n≥0 forms a simplicial scheme whose face and degeneracy
maps are given by the formulas

∂r (t j )=


t j if j < r ,
0 if j = r ,
t j−1 if j > r ,

δr (t j )=


t j if j < r ,
t j + t j+1 if j = r ,
t j+1 if j > r .

Definition 5.1. For a nice quotient stack X with the resolution property, the homo-
topy K-theory is defined to be the spectrum

KH(X )= hocolimn K(X ×1n).

It is clear from the definition that KH(X ) is contravariant with respect to mor-
phisms of stacks. Furthermore, there is a natural map of spectra K(X )→ KH(X ).
It is well known that K(X ) is not a homotopy invariant functor. Our first result on
KH(X ) is the following.

Theorem 5.2. Let X be a nice quotient stack with the resolution property, and
let f : E → X be a vector bundle morphism. Then the associated pull-back map
f ∗ : KH(X )→ KH(E) is a homotopy equivalence.
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Proof. We first show that the map KH(X )→ KH(X ×1n) is a homotopy equiva-
lence for every n ≥ 0. But this is essentially a direct consequence of the definition
of KH -theory. By identifying 1n with An

k and using induction, one needs to show
that the map KH(X )→ KH(X [T ]) is a homotopy equivalence. Proof of this is
identical to the case of the KH -theory of schemes [Weibel 1989, Theorem 1.2].

To prove the general case, we write X = [X/G], where G is a group scheme
over k acting on a k-scheme X . We let E = u∗(E), where u : X→X is the quotient
map. Then E is a G-equivariant vector bundle on X such that [E/G] ' E .

We consider the standard fiberwise contraction map H :A1
k× E→ E . Explicitly,

for an open affine U =Spec(A)⊆ X over which f is trivial (without G-action), H |U
is induced by the k-algebra homomorphism A[X1, . . . , Xn] → A[X1, . . . , Xn, T ]
given by X j 7→ TX j . It is then clear that this defines a unique map H as above
which is G-equivariant for the trivial G-action on A1

k . We have the commutative
diagram

{1}× E
id

||

i1
��

h1

""

E A1
k × E

p
oo

H
// E

{0}× E
id

bb

i0

OO

h0

<<
(5.3)

where h j = H ◦ i j for j = 0, 1 and p is the projection map.
Let ι : X ↪→ E denote the 0-section embedding, so that f ◦ ι= idX . So we only

need to show that f ∗ ◦ ι∗ is the identity on KH([E/G]). Since h0= ι◦ f , it suffices
to show that h∗0 is the identity.

It follows from the weaker version of homotopy invariance shown above (applied
to E) that p∗ is an isomorphism on the KH -theory of the stack quotients. In
particular, i∗0 = (p

∗)−1
= i∗1 . Since h1 = idE , we get i∗1 ◦ H∗ = id, which in turn

yields H∗ = (i∗1 )
−1
= p∗ and hence h∗0 = i∗0 ◦ H∗ = i∗0 ◦ p∗ = id. This finishes the

proof. �

5B. Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct consequence
of the definition of KH(X ) and similar results for the K-theory. Part (1) of the
theorem is Theorem 5.2. Part (2) follows directly from Theorems 3.20 and 3.13
because the homotopy colimit preserves homotopy fiber sequences.

We now prove (3). Let G be a finite group acting on a scheme X such that
X admits an ample family of line bundles. Then X is covered by G-invariant
affine open subschemes. By Theorem 4.9, it suffices to prove the theorem when
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X = Spec(A) is affine. In this case, K([X/G]) is homotopy equivalent to the K-
theory of the exact category PG(A) of finitely generated G-equivariant projective
A-modules (see Lemma 3.2).

Since G is also assumed to be nice, it follows from [Levine and Serpé 2008,
Lemma 1.3] that PG(A) is equivalent to the exact category P(Atw

[G]) of finitely
generated projective Atw

[G]-modules. Recall here that Atw
[G] =

⊕
g∈G Aeg and

the product is defined by (rg · eg)(rh · eh)= rg · (rh ? g−1)egh , where ? indicates the
G-action on A.

If I is a nilpotent ideal of A with quotient B = A/I , it follows from Lemma 5.4
that the map Atw

[G] → B tw
[G] is surjective and its kernel is a nilpotent ideal

of Atw
[G]. We now apply [Weibel 1989, Theorem 2.3] to conclude that the map

KH(Atw
[G])→ KH((A/I )tw[G]) is a homotopy equivalence. Since G acts triv-

ially on 1•, there is a canonical isomorphism (A[1•])tw[G] ' (Atw
[G])[1•]. We

conclude that the map KH([Spec(A)/G])→ KH([Spec(B)/G]) is a homotopy
equivalence. This finishes the proof. �

Lemma 5.4. Let G be a finite group acting on commutative unital rings A and B.
Let A � B be a G-equivariant surjective ring homomorphism whose kernel is
nilpotent. Then the induced map Atw

[G] → B tw
[G] is surjective and its kernel is

nilpotent.

Proof. Let I denote the kernel of f : A � B. By hypothesis, there exists an integer
n such that I n

= 0. Since the induced map Atw
[G] → B tw

[G] is a G-graded
homomorphism induced by f on each graded piece, it is a surjection and its kernel
is given by I tw

[G] =
⊕

g∈G I eg. Since I is a G-invariant ideal of A, each element
of (I tw

[G])n is of the form (a1.eg1 + · · · + am .egm ), where gi ∈ G and ai ∈ I n.
Therefore, (I tw

[G])n = 0. �

5C. K-theory of stacks with coefficients. For an integer n ∈ N, let

K(X ;Z[1/n]) := hocolim(K(X ) ·n−→ K(X ) ·n−→ · · · ),

K(X ;Z/n) := K(X )∧S/n,

where S/n is the mod-n Moore spectrum. Our final result is the homotopy invari-
ance property of K-theory with coefficients.

The proof of Theorem 5.5 uses the notion of K-theory of dg-categories. We
briefly recall its definition and refer to [Keller 2006, §5.2] for further details. Let
A be a small dg-category. The category D(A) is the localization of the category
of dg A-modules with respect to quasi-isomorphisms. The category of perfect
objects Per(A) is the smallest triangulated subcategory of D(A) containing the
representable objects and closed under shifts, extensions and direct factors. The
algebraic K-theory of A is defined to be the K-theory spectrum of the Waldhausen
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category Per(A), where the cofibrations are the degreewise split monomorphisms
and the weak equivalences are the quasi-isomorphisms.

Theorem 5.5. Let X be a nice quotient stack over k with the resolution property
and let f : E→ X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f ∗ : K(X ;Z/n)→ K(E;Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map f ∗ : K(X ;Z[1/n])→ K(E;Z[1/n])
is a homotopy equivalence.

Proof. The category Perf(X ) has a natural dg enhancement [Cisinski and Tabuada
2012, Example 5.5] whose algebraic K-theory (in the sense of K-theory of dg-
categories) coincides with K(X ) by [Keller 2006, Theorem 5.1]. It follows from
Proposition 2.7 and [Hall and Rydh 2017, Proposition 8.4] that Dqc(X ) is com-
pactly generated and every perfect complex on X is compact. We conclude from
[Tabuada 2017, Theorem 1.2] that the theorem holds when f is the projection map
X [T ] → X . To prove the general case, we use (5.3) and repeat the argument of
Theorem 5.2 verbatim. �

Corollary 5.6. Let X be as in Theorem 5.5. Then the following hold.

(1) For any integer n invertible in k, the natural map K(X ;Z/n)→ KH(X ; Z/n)
is a homotopy equivalence.

(2) For any integer n nilpotent in k, the natural map K(X ;Z[1/n])→KH(X ;Z[1/n])
is a homotopy equivalence.
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