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ABSTRACT: The main idea of this paper is to use the notion of buffered failure probability from probabilistic
structural design, first introduced by Rockafellar & Royset (2010), to introduce buffered environmental con-
tours. Classical environmental contours are used in structural design in order to obtain upper bounds on the
failure probabilities of a large class of designs. The purpose of buffered failure probabilities is the same. How-
ever, in contrast to classical environmental contours, this new concept does not just take into account failure vs.
functioning, but also to which extent the system is failing. For example, this is relevant when considering the
risk of flooding: We are not just interested in knowing whether a river has flooded. The damages caused by the
flooding greatly depends on how much the water has risen above the standard level.

1 INTRODUCTION

Environmental contours are widely used as a basis for
e.g., ship design. Such contours allow the designer to
verify that a given mechanical structure is safe, i.e,
that the failure probability is below a certain value.
A realistic model of the environmental loads and the
resulting response is crucial for structural reliability
analysis of mechanical constructions exposed to en-
vironmental forces. See Winterstein et al. (1993) and
Haver & Winterstein (2009). For applications of en-
vironmental contours in marine structural design, see
e.g., Baarholm et al. (2010), Fontaine et al. (2013),
Jonathan et al. (2011), Moan (2009) and Ditlevsen
(2002).

The traditional approach to environmental contours
is based on the well-known Rosenblatt transforma-
tion introduced in Rosenblatt (1952). This transfor-
mation maps the the environmental variables into in-
dependent standard normal variables. Using the trans-
formed environmental variables a contour with the de-
sired properties can easily be constructed by identify-
ing a sphere centered in the origin and with a suitable
radius. More specifically, the sphere can be chosen
so that any non-overlapping convex failure region has
a probability less than or equal to a desired excee-
dence probability. The corresponding environmental
contour in the original space can then be found by
transforming the sphere back into the original space.

Alternatively, an environmental contour can be
constructed directly in the original space using Monte
Carlo simulation. See Huseby et al. (2013), Huseby
et al. (2015a) and Huseby et al. (2015b). Contours
constructed using this approach will always be convex

sets. This yields a more straightforward interpretation
of the contours. Another advantage of this approach
is a more flexible framework for establishing envi-
ronmental contours, which for example simplifies the
inclusion of effects such as future projections of the
wave climate related to climatic change. See Vanem
& Bitner-Gregersen (2012).

In the present paper we introduce a new concept
called buffered environmental contours. This concept
is based on the notion of buffered failure probability
from probabilistic structural design, first introduced
by Rockafellar & Royset (2010). Contrary to classi-
cal environmental contours, this new concept does not
just take into account failure vs. functioning, but also
to which extent the system is failing. For example, this
is relevant when considering the risk of flooding: We
are not just interested in knowing whether a river has
flooded. The damages caused by the flooding greatly
depends on how much the water has risen above the
standard level.

The structure of this paper is as follows: In Section
2, we recall the classic definition of failure probabil-
ity in probabilistic structural design and compare this
to the concept of buffered failure probability, as de-
fined in Rockafellar & Royset (2010). Furthermore,
we recall some of the arguments favoring the buffered
failure probability over the regular failure probability.
Then, in Section 3, we recall the concept of environ-
mental contours and how such contours are used in
structural design in order to find upper bounds on the
failure probabilities of a large class of designs. In Sec-
tion 4, we introduce the new concept of buffered envi-
ronmental contours, and argue that these contours are
better suited than the classical ones in cases where the



level of malfunctioning is important. Finally, in Sec-
tion 5, we apply the proposed contours to a real life
example, and compare the contours to the classical
environmental contours.

2 STRUCTURAL DESIGN AND THE
BUFFERED FAILURE PROBABILITY

In probabilistic structural design, it is common to de-
fine a performance function1 g(x,V ) depending on
some design variables x = (x1, x2, . . . , xm)′ and some
environmental quantities2 V = (V1, V2, . . . , Vn)′ ∈ V ,
where V ⊆Rn. The design variables can be influenced
by the designer of the structure, and may respresent
material type or layout. The quantities are usually ran-
dom, and cannot be directly impacted by the designer.
Hence, they may describe environmental conditions,
material quality or loads. To emphasize the random-
ness of the quantities, we denote them by captial let-
ters. In contrast, the design variables are controlled by
the designer and hence denoted by small letters.

For a given design x, g(x,V ) represents the per-
formance of the structure, and is called the state of
the structure. A given mechanical structure can with-
stand environmental stress up to a certain level. The
failure region of the structure is the set of states of
the environmental variables that imply that the struc-
ture fails. The performance function is defined such
that if g(x,V ) > 0, the structure is failed, while if
g(x,V ) ≤ 0, the structure is functioning. Moreover,
for a given x the set F(x) = {v ∈ V : g(x,v) > 0} is
called the failure region of the structure3.

2.1 The failure probability, reliability and
approximation methods

The failure probability, denoted by pf (x), of the
structure is the probability that the structure is failed.
That is, pf (x) = P (g(x,V )> 0). If fV (v) is the joint
probability density function for the random vector V ,
the failure probability is given by:

pf (x) =

∫
F(x)

fV (v)dv. (1)

For a given x the reliability, R(x), of the system is
defined as the probability that the system is function-
ing, i.e.:

R(x) = 1− pf (x) (2)

1The performance function is sometimes called the limit-
state function.

2Environmental quantities should here be understood in a
broad sense. E.g., for marine structures such quantities typically
includes wave height and period. For other types of structures,
one may consider e.g., material quality, effects of erosion or cor-
rosion as environmental quantities.

3In some papers, such as Huseby et al. (2013), the failed
states are defined as the states such that g(x,V ) < 0. This is
just a matter of choice of notation.

A classic problem is to compute the reliability of
the system. In order to do so, we need to compute
the integral (1). In many cases it is difficult to obtain
and analytical solution to this. To overcome this issue
various approximation methods have been proposed.
Two traditional methods for doing this are the first-
order reliability method (FORM) and the second-
order reliability method (SORM). The basic idea of
the first-order reliability method is to approximate the
failure boundary at a spesific point by a first order
Taylor expansion. The idea behind SORM is similar,
but using a second order Taylor expansion instead. In
both cases, the approximated failure probability can
be used to optimize the structural design, i.e. deter-
mine a feasible design which has an acceptable failure
probability.

2.2 Return periods

As is common in structural design models, we view
V as representing the average value of the relevant
environmental variables in a suitable time interval of
length L. Based on this and knowledge of the per-
formance function g it is possible to compute the so-
called return period. This is done as follows:

We consider the environmental exposure of the
given design from time t ≥ 0. The time axis is di-
vided into intervals of some specified length L, and
we let Vi denote the average environmental quantity
in the ith period, i = 1,2, . . .. It is common to assume
that V1,V2, . . . are independent and identically dis-
tributed. This is a fairly strict assumption, but as it is
so frequently used in structural design, we assume this
as well. We then let T := min{i : g(x,Vi) > 0}. By
the assumptions it follows that T is geometrically dis-
tributed with probability pf = P (g(x,V ) > 0). The
return period is defined as E[T ] = 1/pf . Thus, the
return period can be interpreted as a property of the
distribution of g(x,V ). Hence, it suffices to analyze
this distribution, which is what we will focus on in
this paper.

2.3 The buffered failure probability

The approximations made by FORM and SORM can
sometimes be too crude and ignore serious risks.
Therefore, we will consider the buffered failure prob-
ability, introduced by Rockafellar & Royset (2010) as
an alternative to the failure probability. This concept
relates closely to the conditional value-at-risk (also
called expected shortfall, average value-at-risk or ex-
pected tail loss), which is a notion frequently used in
mathematical finance and financial engineering, see
Pflug (2000), Rockafellar (2007) as well as Rockafel-
lar & Uryasev (2000).

Recall that for any level of probability α, the α-
quantile of the distribution of a random variable is
the value of the inverse of its cumulative distribution
function at α. For the random variable g(x,V ), we let



qα(x) denote its α-quantile. Similarly, for any proba-
bility level α, the α-superquantile of g(x,V ), q̄α(x),
is defined as:

q̄α(x) = E[g(x,V )|g(x,V ) > qα(x)]. (3)

That is, the α-superquantile is the conditional expec-
tation of g(x,V ) when we know that its value is
greater than or equal the α-quantile. Rockafellar &
Royset (2010) then define the buffered failure proba-
bility, p̄f (x), as follows:

p̄f (x) = 1− α, (4)

where α is chosen so that q̄α(x) = 0. Note that from
the previous definitions we have:

p̄f (x) = P (g(x,V ) > qα(x)) = 1− F (qα(x)) (5)

where F denotes the cumulative distribution function
of g(x,V ).
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Figure 1: Buffered failure probability calculation where:
pf (x) = 0.048, qα(x) = −0.743, α = F (qα(x)) = 0.879, and
p̄f (x) = 1− α = 0.121.

In order to show how to calculate the buffered fail-
ure probability p̄f (x), we consider the plot shown in
Figure 1. The curve in the plot represents the cumula-
tive distribution function of the performance function,
g(x,V ). As an example we have chosen a Gaussian
distribution with mean value −2.5 and standard devi-
ation 1.5. For this distribution we have F (0) = 0.952,
as can also be seen in the figure by considering the
right-most vertical dashed line starting at 0 on the x-
axis, and the corresponding upper horizontal dashed
line starting at 0.952. Hence, we get that pf (x) =
1− F (0) = 0.048. In the figure pf (x) is the distance
between 100%-line and the upper horizontal dashed
line.

Using e.g., Monte Carlo simulation it is easy to es-
timate qα(x), and we find that qα(x) = −0.743. In
the figure qα(x) is represented by the leftmost vertical
dashed line. By following this line until it crosses the
cumulative curve, we find that α= F (qα(x)) = 0.879.

Finally, the buffered failure probability is found to be
p̄f (x) = 1 − α = 0.121. In the figure p̄f (x) is the
distance between 100%-line and the lower horizontal
dashed line.

It is easy to see that we always have qα(x) ≤ 0,
and thus, it follows that α = F (qα(x)) ≤ F (0). This
implies that:

p̄f (x) = 1− α ≥ 1− F (0) = pf (x).

Hence, it follows that the buffered failure probability
is more conservative than the failure probability. See
Rockafellar & Royset (2010) for a detailed discussion
of this.

Rockafellar & Royset (2010) present several ad-
vantages of using the buffered failure probability in-
stead of the regular failure probability. The following
are some of the key arguments:

• In general, the failure probability pf (x) can-
not be computed analytically, and the tech-
niques commonly used to approximate it, such as
FORM or Monte Carlo methods, can sometimes
ignore serious risks. This makes it problematic
to apply standard non-linear optimization algo-
rithms in connection to structure design. In con-
trast, non-linear optimization algorithms are di-
rectly applicable when using the buffered failure
probability instead.

• The buffered failure probability contains more
information about the tail behaviour of the dis-
tribution of g(x,V ) than the failure probability.

• The buffered failure probability can lead to more
computational efficiency in design optimization
when the performance function g(x,V ) is ex-
pensive to evaluate.

The buffered reliability, R̄(x), of the structure is
defined as R̄(x) = 1− p̄f (x). Since pf (x) ≤ p̄f (x),
it follows that R(x)≥ R̄(x). That is, the reliability of
the system is greater than or equal to the buffered re-
liability. Again, this essentially says that the buffered
reliability is more conservative than the reliability.

3 ENVIRONMENTAL CONTOURS

Environmental contours are typically used during the
early design phases where the exact shape of the fail-
ure region is typically unknown. At this stage it it may
not be possible to express a precise functional rela-
tionship between a set of design variables x and the
performance of the structure. Instead we skip x in the
notation and let the design options be embedded in
the performance function g(V ) itself. In particular we
denote the failure region simply by F , while the cor-
responding failure probability, P (V ∈ F), is denoted
by pf (F).



Although F is unknown, it may still be possible to
argue thatF belongs to some known family, E , of fail-
ure regions. As in the previous sections we consider
cases where the environmental conditions can be de-
scribed by a stochastic vector V ∈ Rn with a known
distribution. An important part of the probabilistic de-
sign process is then to make sure that P (V ∈ F) is
acceptable for all F ∈ E .

In order to avoid failure regions with unacceptable
probabilities, it is necessary to put some restrictions
on the family E . This is done by introducing a set B ⊆
Rn chosen so that for any relevant failure region F
which do not overlap with B, the failure probability
P (V ∈ F) is small. The family E is chosen relative to
B so thatF ∩B ⊆ ∂B for allF ∈ E , where ∂B denotes
the boundary of B. This boundary is then referred to
as an environmental contour. See Figure 2.
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Figure 2: An environmental contour ∂B and a failure region F .

Following Huseby et al. (2017) we define the ex-
ceedence probability of B with respect to E as:

Pe(B,E) := sup{pf (F) : F ∈ E}. (6)

For a given target probability Pe the objective is to
choose an environmental contour ∂B such that:

Pe(B,E) = Pe

We observe that the exceedence probability defined
above represents an upper bound on the failure prob-
ability of the structure assuming that the true failure
region is a member of the family E . Of particular in-
terest are cases where one can argue that the failure
region of a structure is convex. That is, cases where
E is the class of all convex sets which do not inter-
sect with the interior of B. In the remaining part of
the paper we will assume that E satisfies this.

3.1 Monte Carlo contours

There are many possible ways of constructing en-
vironmental contours. In this paper we focus on
the Monte Carlo based approach first introduced in
Huseby et al. (2013), and improved in Huseby et al.
(2015a) and Huseby et al. (2015b).

Let U be the set of all unit vectors in Rn, and let
u ∈ U . We then introduce a function C(u) defined
for all u ∈ U as:

C(u) := inf{C : P (u′V > C) ≤ Pe} (7)

Thus, C(u) is the (1 − Pe)-quantile of the distribu-
tion of u′V . Given the distribution of V , the function
C(u) can easily be estimated by using Monte Carlo
simulation. Thus, let V1, . . . ,VN be a random sample
from the distribution of V . We then choose u ∈ U ,
and let Yr(u) = u′Vr, r = 1, . . . ,N . These results are
sorted in ascending order:

Y(1) ≤ Y(2) ≤ · · · ≤ Y(N)

Using the sorted numbers we first estimate C(u).
Since C(u) is the (1 − Pe)-quantile in the distribu-
tion, a natural estimator is:

Ĉ(u) = Y(k),

where k is determined so that:

k

N
≈ 1− Pe.

Note, however, that this estimator can be improved
considerably by using importance sampling. See
Huseby et al. (2015b) for details.

For each u ∈ U , we also introduce the halfspaces:

Π−(u) = {v : u′v ≤ C(u)},

Π+(u) = {v : u′v > C(u)}.

We then define the environmental contour as the
boundary ∂B of the convex set set B given by:

B :=
⋂
u∈U

Π−(u) (8)

It follows that the exceedence probability of B with
respect to E is given by:

Pe(B,E) = sup{pf (F) : F ∈ E}

= sup{pf (Π+(u)) : u ∈ U}

= sup
u∈U

P (u′V > C(u)) = Pe,

where the second equality follows since we have as-
sumed thatF is convex and hence contained in Π+(u)
for allF ∈ E . In fact for all u ∈ U we have Π+(u) ∈ E
as well, and these halfspaces are the maximal sets
within E . Moreover, the last equation follows by the
definition of C(a) given in (7). Thus, we conclude
that the contour ∂B indeed has the correct exceedence
probability with respect to E . See Huseby et al. (2017)
for further details regarding this.



4 BUFFERED ENVIRONMENTAL CONTOURS

In this section, we introduce a new concept called
buffered environmental contours. This combines the
ideas behind buffered failure probabilities and envi-
ronmental contours. Before we introduce the main re-
sults we review a result on superquantiles which will
be essential in our approach (See Rockafellar (2007).)

Proposition 4.1 Let g1 and g2 be two performance
functions such that g1(V ) ≤ g2(V ) almost surely, and
let q̄1,α and q̄2,α denote the α-superquantiles of g1 and
g2 respectively. Then q̄1,α ≤ q̄2,α.

As a corollary of this result we get the following result
on buffered failure probabilities:

Corollary 4.2 Let g1 and g2 be two performance
functions such that g1(V ) ≤ g2(V ) almost surely, and
let p̄1,f and p̄2,f denote the buffered failure probabili-
ties of g1 and g2 respectively. Then p̄1,f ≤ p̄2,f .

For a given performance function g its failure prob-
ability, pf , can be computed based on the failure re-
gion of g alone. In contrast, computing the buffered
failure probability, p̄f , requires more detailed infor-
mation about the distribution of g. We indicate this by
expressing p̄f as a function of g and denoted p̄f (g).

Just as for classical environmental contours, a
buffered environmental contour is the boundary ∂B̄
of some suitable set B̄ ⊆ Rn. We shall now describe
how the set B̄ can be constructed. As in the previous
section we let U be the set of all unit vectors in Rn,
and let u ∈ U . Moreover, we let Pe be a given target
probability, and let C(u) be defined by (7). In order
to introduce buffering, we let:

C̄(u) := E[u′V |u′V > C(u)]. (9)

Given the distribution of V , the function C̄(u) can
easily be estimated by using Monte Carlo simulation.
As in Subsection 3.1, we let V1, . . . ,VN be a ran-
dom sample from the distribution of V , and choose
u ∈ U . Based on the sorted values Y(1) ≤ Y(2) ≤ · · · ≤
Y(N) we first estimate C(u) by Y(k) as previously ex-
plained. We then estimate C̄(u) by computing the av-
erage value of the sampled values which are greater
than Y(k). Thus, we estimate C̄(u) by:

ˆ̄C(u) =
1

N − k
∑
r>k

Y(r).

For each u ∈ U , we also introduce the halfspaces:

Π̄−(u) = {v : u′v ≤ C̄(u)},

Π̄+(u) = {v : u′v > C̄(u)},

similar to what we did in the previous section. Finally,
we define the buffered environmental contour as the
boundary ∂B̄ of the convex set set B̄ given by:

B̄ :=
⋂
u∈U

Π̄−(u) (10)

We observe that by (9) we obviously have that
C̄(u) > C(u). By comparing (8) and (10), it is easy
to see that this implies that:

B ⊂ B̄.

Thus, given that the same target probability Pe is used
to construct both contours, the buffered environmen-
tal contour is more conservative than the classical en-
vironmental contour.

The next step is to identify a family G of perfor-
mance functions defined relative to the set B such that
p̄f (g) ≤ Pe for all g ∈ G. We recall that for the clas-
sical environmental contour we chose to let E be the
family of all convex failure regions which do not in-
tersect with the interior of B. Thus, one might think
that the natural counterpart for buffered environmen-
tal contours would be to let G be the family of per-
formance functions with convex failure regions which
do not intersect with the interior of B̄. In this case,
however, we need more control over the distributions
of the performance functions. In order to do so we
choose u ∈ U and introduce the performance func-
tion Γ(u, ·) given by:

Γ(u,V ) = u′V − C̄(u)

By (9) we have:

E[Γ(u,V )|Γ(u,V ) > C(u)− C̄(u)]

= E[u′V |u′V > C(u)]− C̄(u) = 0.

Moreover, by (7) we have:

p̄f (Γ(u, ·)) = P (Γ(u,V ) > C(u)− C̄(u))

= P (u′V > C(u)) = Pe

Since the unit vector u was arbitrarily chosen, we
conclude that the performance function Γ(u, ·) has
the desired buffered failure probability Pe for all u ∈
U .

We will use these performance functions as a ba-
sis for constructing the family G where the Γ(u, ·)-
functions serve as maximal elements in this family.
Note that the Γ(u, ·)-functions now play a similar role
as the halfspaces Π+(u) played in the construction of
the family F . Thus, we let G be the family of all per-
formance functions g for which there exists a u ∈ U
such that g(v) ≤ Γ(u,v) for all v ∈ V . By the above
discussion the following result is immediate:



Theorem 4.3 For all g ∈ G we have p̄f (g) ≤ Pe.

Proof: Assume that g ∈ G. Then there exists a u ∈ U
such that g(V ) ≤ Γ(u,V ) almost surely. Hence, by
Corollary 4.2 and the above calculations we have:

p̄f (g) ≤ p̄f (Γ(u, ·)) = Pe.

2

Having constructed both the set B̄ and the family
G we are now ready to introduce the buffered excee-
dence probability of B̄ with respect to G defined as:

P̄e(B̄,G) := sup{p̄f (g) : g ∈ G}. (11)

We note that by the definition of G it follows that
Γ(u, ·) ∈ G for all u ∈ U . Hence, we get:

P̄e(B̄,G) = sup{p̄f (g) : g ∈ G}

= sup{p̄f (Γ(u, ·)) : u ∈ U} = Pe,

Thus, we conclude that the contour ∂B̄ indeed has the
correct buffered exceedence probability with respect
to G.

If g ∈ G and g(v)≤ Γ(u,v) for all v ∈ V , we have:

F(g) ⊆ F(Γ(u, ·))

= {v : u′v− C̄(u) > 0}

= {v : u′v > C̄(u)} = Π̄+(u)

Thus, the failure region of a performance function g ∈
G does not overlap with the interior of the set B̄, but
is contained within a halfspace supporting B̄. This is
similar to the relation between failure regions in the
family E and the set B for the classical environmental
contours. However, as already pointed out, knowledge
about the failure region of a performance function is
not sufficient to ensure that the performance function
has the correct buffered failure probability.

It may be argued that the choice of the Γ(u, ·)-
functions as maximal elements in the family G is too
restrictive. In order to have a more flexible frame-
work, it is possible to consider a slightly more general
approach where we define:

C̄a(u) := E[au′V |u′V > C(u)] = aC̄(u), (12)

where a is a positive constant. By increasing the a-
factor, the contour may be inflated so that it can be
used for steeper performance factors.

On the other hand it should be noted that to ensure
that a given performance function g has the correct
buffered failure probability, it is not necessary that
g(v) is dominated by some Γ(u, ·)-function for all
v ∈ V . It is sufficient that this holds for v-values cor-
responding to the upper tail area of g.

5 NUMERICAL EXAMPLE

In this subsection we illustrate the proposed method
by considering a numerical example introduced in
Vanem & Bitner-Gregersen (2015). More specifically,
we consider joint long-term models for significant
wave height, denoted by H , and wave period denoted
by T . A marginal distribution is fitted to the data
for significant wave height and a conditional model,
conditioned on the value of significant wave height,
is subsequently fitted to the wave period. The joint
model is the product of these distribution functions:

fT,H(t, h) = fH(h)fT |H(t|h)

Simultaneous distributions have been fitted to data as-
suming a three-parameter Weibull distribution for the
significant wave height, H , and a lognormal condi-
tional distribution for the wave period, T . The three-
parameter Weibull distribution is parameterized by
a location parameter, γ, a scale parameter α, and a
shape parameter β as follows:

fH(h) =
β

α

(
h− γ
α

)β−1
e−[(h−γ)/α]

β

, h ≥ γ.

The lognormal distribution has two parameters, the
log-mean µ and the log-standard deviation σ and is
expressed as:

fT |H(t|h) =
1

t
√

2π
e−[(ln(t)−µ)

2/(2σ2)], t ≥ 0,

where the dependence between H and T is modelled
by letting the parameters µ and σ be expressed in
terms of H as follows:

µ = E[ln(T )|H = h] = a1 + a2h
a3 ,

σ = SD[ln(T )|H = h] = b1 + b2e
b3h.

The parameters a1, a2, a3, b1, b2, b3 are estimated us-
ing available data from the relevant geographical lo-
cation. In the example considered here the parameters
are fitted based on a data set from North West Aus-
tralia. We consider data for two different cases: swell
and wind sea. The parameters for the three-parameter
Weibull distribution are listed in Table 1, while the
parameters for the conditional log-normal distribution
are listed in Table 2. In all the examples we use a re-
turn period of 25 years. The models are fitted using
sea states representing periods of 1 hour. Thus, we get
24 data points per 24 hours. Thus, the desired excee-
dence probability is given by:

Pe =
1

25 · 365.25 · 24
= 4.5631 · 10−6.

For more details about these examples we refer to
(Vanem & Bitner-Gregersen 2015).



Table 1: Fitted parameter for the three-parameter Weibull distri-
bution for signifcant wave heights

α β γ
Swell 0.450 1.580 0.132
Wind sea 0.605 0.867 0.322

Table 2: Fitted parameter for the conditional log-normal distri-
bution for wave periods

i = 1 i = 2 i = 3
Swell ai 0.010 2.543 0.032

bi 0.137 0.000 0.000
Wind sea ai 0.000 1.798 0.134

bi 0.042 0.224 -0.500

The classical environmental contours are estimated
based on the methods presented in Huseby et al.
(2013). More specifically, we have used Method 2
presented in this paper. The buffered environmental
contours are estimated in exactly the same way, ex-
cept that Ĉ(u) is replaced by ˆ̄C(u) for all u ∈ U .

In Figure 3 and Figure 4 the resulting environment
contours are shown. As one expected, the classical en-
vironmental contours are located inside their respec-
tive buffered contours. Thus, since the target proba-
bility Pe is the same for both types of contours, the
buffered contours are more conservative than the clas-
sical contours.
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Figure 3: Buffered environmental contour (black) and classical
environmental contour (gray) for North West Australia Swell
with return period 25 years.

6 CONCLUSIONS AND FUTURE WORK

In the present paper we have introduced the concept
of buffered environmental contours, and shown how
such contours can be estimated using Monte Carlo
simulations. Such contours do not just take into ac-
count the probability of failure, but also the con-
sequences of a failure. This is relevant e.g., when

0.00 3.00 6.00 9.00 12.00 15.00

12.50

10.00

7.50

5.00

2.50

0.00

Figure 4: Buffered environmental contour (black) and classical
environmental contour (gray) for North West Australia Wind sea
with return period 25 years.

analysing the risk of flooding at a given location.
While it may not be possible to prevent floodings
from occurring, the damage caused by such an event
can vary a lot depending on how much the water has
risen above the normal level. In some cases only mi-
nor damages may be the result. In other cases the con-
sequences can be catastrophic.

For a given target probability, Pe buffered envi-
ronmental contours are generally more conservative
than the classical environmental contours. However,
in cases where the consequences are more important
than the triggering event itself, a higher target proba-
bility might be acceptable as long as the damages are
manageable. Thus, in real-life applications a buffered
environmental contour may not be so conservative af-
ter all. At the same time these contours provide much
more information about the tail area of the environ-
mental variables. This may be very useful when a de-
sign is optimized.

The buffered environmental contours proposed in
this paper are the natural extension of the Monte Carlo
contours introduced in Huseby et al. (2013). In partic-
ular both contour types are boundaries of convex sets.
Sometimes this restriction may lead to contours which
include areas of very low probability. Thus, it would
be of interest to investigate other ways of constructing
buffered contours. In particular, it is possible to mod-
ify contours obtained by using the Rosenblatt trans-
formation so that they include buffering. To make this
work, however, evaluating the resulting contours be-
comes very important. The evaluation framework de-
scribed in Huseby et al. (2017) may serve as a starting
point.

Future work in this area also includes the use of
buffered environmental contours in design optimiza-
tion, but with additional design constraints. The ques-
tion is how such additional constraints can be dealt
with. An initial idea is to apply a Lagrange duality
method in order to transform the problem into a pre-



viously known form.
It would also be interesting to compare buffered en-

vironmental contours to the conservative environmen-
tal contours defined by Leira (2008). The contours
defined in Leira (2008) are typically larger sets than
the environmental contours considered in Section 3,
which means that they are more conservative when it
comes to classifying structures as safe.

Another idea which requires further investigation is
how time can be introduced into this model in a less
restrictive way. As mentioned in Subsection 2.2, we
consider average stochastic environmental conditions
V1,V2, . . . over some specified time intervals and as-
sume independence and identical distributions of the
V ′i s. A more realistic approach would be to introduce
a stochastic process in continuous time modelling the
environmental situation. It is interesting to see how
this affects the model and what consequences this has
for the design optimization.
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