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Abstract

For large multicomponent systems it is typically too costly to monitor the entire system
constantly. In the present paper we consider a case where a component is unobserved in a
time interval [0, T ]. Here T is a stochastic variable with a distribution which depends om the
structure of the system and the lifetime distribution of the other components. Thus, different
systems will result in different distributions of T , the main focus of the paper is on how the
unobserved period of time affects what we learn about the unobserved component during this
period. We analyse this by considering three different cases. In the first case we consider both
T as well as the state of the unobserved component at time T as given. In the second case
we allow the state of the unobserved component at time T to be stochastic, while in the third
case both T and the state are treated as stochastic variable. In all cases we study the problem
using preposterior analysis. That is, we investigate how much information we can expect to get
by the end of the time interval [0, T ]. The methodology is also illustrated on a more complete
example.

1 Introduction

Multistate systems were introduced in the mid 1970’s as a natural generalisation of binary sys-
tems. For an extensive introduction and key results on such systems, see [Natvig 2011]. See also
[Lisnianski et. al. 2010]. As more powerful computers have become available, advanced analysis
of multistate systems is now becoming possible. Such analysis includes evaluating the system
reliability and availability, as well as calculating advanced multistate importance measures. See
[Natvig et. al. 2009]. A key method in relation to this is discrete event simulation. This is de-
scribed in [Huseby et. al. 2010]. Improved algorithms also allows various optimization problems
related to multistate systems to be solved. See e.g., [Liu 2010] and [Huang and Wang 2016]. In
[Skutlaberg and Natvig 2016] a new approach to importance measures based on decision analysis
and optimization is introduced.

Continuously monitoring individual components in a complex system is typically very costly.
Thus, when gathering operational data from such systems, some or all of the components will typ-
ically be monitored only at certain points of time e.g., when component degradation or errors are
displayed through changes in the system state. As a result of such partial monitoring one ends up
with various types of censored observations. In [Natvig and G̊asemyr 1998] a binary, monotone sys-
tem whose component states are dependent through the possible occurrence of independent common
shocks was considered. The system is assumed to be observed until it fails. At this instant, the set of
failed components and the failure time of the system are noted. The failure times of the individual
components, however, are assumed to be unknown. Using a Bayesian approach the paper shows how
to handle such autopsy data. A similar situation is considered in [G̊asemyr and Natvig 2001]. This
paper also discusses applications to preventive system maintenance. In [G̊asemyr and Natvig 2005]
a marked point process linked to partial monitoring of some components is considered. Furthermore,
the paper demonstrates how to arrive at the posterior distribution for the relevant parameter vector
by using a data augmentation method. The more recent paper [Curcurù et. al. 2010] also considers
predictive maintenance policies and proposes a procedure for the computation of the maintenance
time that minimizes the global maintenance cost. By adopting a stochastic model for the degrada-
tion process and by hypothesizing the use of imperfect monitoring, the paper shows how to carry

1



out Bayesian updating of prior knowledge.
Partial monitoring of components is particulary relevant for systems where both the components

as well as the system itself can be in multiple states. In the present paper we provide a new
methodology for analyzing data from such systems. In particular, we show how the effects of the
imperfect monitoring can be quantified by using preposteriory analysis.

We consider a multistate system with component set E = {1, . . . , n}. For all i ∈ E we let
Si = {0, 1, . . . , si} denote the possible states of component i. The states are ordered in the natural
way such that si is the best state while 0 denotes the state where the component is completely
failed. The state of component i at time t is denoted by Xi(t), t ≥ 0, i ∈ E. At time 0 each
component starts out in its best state. That is, we assume that Xi(0) = si, i ∈ E. As time goes by
the components go through their respective states until reaching state 0. At this point of time the
components will be replaced or repaired back to its best state again. However, in this context we
consider only the first life cycles of the components, and introduce for all i ∈ E and j ∈ Si:

Tij = The time component i spends in state j during its first life cycle,

Uij = The point of time when component i enters state j in its first life cycle.

Thus, Ui,si = 0, Ui,si−1 = Ti,si , Ui,si−2 = Ti,si + Ti,si−1 and so on. Moreover, for all i ∈ E and
j ∈ Si we have:

Xi(t) = j, t ∈ [Ui,j , Ui,j−1).

For all i ∈ E we also let:

T i = (Ti0, Ti1, . . . , Ti,si),

λi = (λi0, λi1, . . . , λi,si).

Regarding distributions we assume that Tij |λij ∼ Exp(λij) and that λij ∼ Gamma(αij , βij), for
all i ∈ E and j ∈ Si. We refer to the λij ’s as the transition rates of the ith component. we also
assume that the components are stochastically independent.

Throughout this paper the chosen parametrisation of a Gamma(α, β)-distribution is such that if
λ ∼ Gamma(α, β) apriori, then the prior density of λ is given by:

π(λ) =
βα

Γ(α)
λα−1 exp(−βλ), λ > 0.

The resulting expectation and variance are thus E[λ] = α/β and Var[λ] = α/β2. If T is a stochastic
variable where T |λ ∼ Exp(λ), it follows from Bayes’ theorem that λ|T = t ∼ Gamma(α+ 1, β + t),
and that λ|T > t ∼ Gamma(α, β + t).

We now focus on a specific component i ∈ E. In order to simplify the notation we define s to be
the best state of this component, i.e., si = s. The main idea in this article is to study a situation
where this component is unmonitored in an interval [0, T ]. Here T denotes a stochastic variable with
a probability distribution that may depend on the structure of the system as well as on the lifetime
distributions of the other components. T may e.g., be the point of time where the system reaches a
state where it needs to be fully inspected, and we refer to T as the censoring point of time.

In Section 3 both the censoring point of time and the state of component i at this time are
considered to be fixed. In Section 4 we still assume that censoring point of time is fixed, but that
the state of component i is assumed to stochastic, while in Section 5 both the censoring point of time
and the state are stochastic. Finally, we apply the methodology to multistate systems in Section 6.

2 Preposterior analysis

Before we proceed with the main part of the paper, we review the basic ideas of preposteriory analy-
sis. For a more extensive introduction to this see [Räıffa and Schlaifer 1961], [Barlow and Wu 1981]
or [Berger 1985]. We will now describe this principle.

2



Assume that θ ∈ Θ is an unknown parameter with prior distribution π(θ). By observing X ∈ X
our knowledge of θ will increase. With θ given, then X follows the distribution p(x|θ). From Bayes
Theorem we find that the posterior distribution for θ is

π(θ|x) =
p(x|θ)π(θ)

p(x)
,

where the unconditional distribution for X is given by:

p(x) =

∫
Θ

p(x|θ)π(θ)dθ.

A decision d ∈ D is made based on X. Let L(θ, d) be the loss connected to this decision. The
optimal decision is found by minimizing the expected loss with respect to X given the decision d:

E[L(θ, d)|X] =

∫
Θ

L(θ, d)π(θ|X)dθ.

Let δ(X) denote the optimal decision. We now have that

E[L(θ, δ(X))|X] ≤ E[L(θ, d)|X], ∀d ∈ D.

When using preposterior analysis one wishes to estimate the expected loss before X is observed.
This means that prior to the observation of X we try to find out how well we are able to make the
decision after we observe X. We find the following:

E[L(θ, δ(X))] =

∫
X

E[L(θ, δ(x))|x]p(x)dx

Assume that we are interested in estimating θ with quadratic loss, that is L(θ, d) = (θ − d)2. It is
well known that the optimal estimate for θ is δ(X) = E[θ|X]. See for instance [Berger 1985]. We
get:

E[L(θ, δ(X))|X] = E[(θ − E[θ|X])2] = Var[θ|X].

The expected loss based on the observation X, but calculated before the actual observation, can be
expressed as:

E[L(θ, δ(X))] =

∫
X

E[L(θ, δ(x))|x]p(x)dx =

∫
X

Var[θ|x]p(x)dx = E[Var[θ|X]]. (1)

The expectation E[L(θ, δ(X))] is referred to as the preposterior loss based on the observation X.
Note that the preposterior loss differs from what we would get if we were to estimate θ without
knowledge of X. If we were unable to observe X, the best estimate of θ would be the expectation
in the prior distribution. Let δ0 denote this estimate. Thus, we have δ0 = E[θ]. The expected loss
for this decision is therefore:

E[L(θ, δ0)] = E[(θ − E[θ])2] = Var[θ],

which is the prior variance. This can be expressed as:

Var[θ] = E[Var[θ|X]] + Var[E[θ|X]].

Since Var[E[θ|X]] ≥ 0, it follows that:

E[L(θ, δ0)] ≥ E[L(θ, δ(X))].

Furthermore, the value of the observation X is the reduction in the expected loss as a consequence
of the fact that we can observe X:

E[L(θ, δ0)]− E[L(θ, δ(X))] = Var[E[θ|X]].

We will use this expression as a quantification of the value of a future observation.
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3 Fixed censoring point of time and state

In this section we compute the posterior distributions for the transition rates of the unmonitored
component i given the censoring point of time T = t as well as the state Xi(t).

Since component i is a multistate component, the posterior distributions for the transition rates
will depend on the state of this component at the censoring point of time. Due to the somewhat
complex censoring patterns, it is not always possible to calculate these posterior distributions ana-
lytically. When analytical calculations are not possible, we will use rejection sampling to estimate
the posterior distributions for the transition rates. It is also possible to use data augmentation and
Gibbs-sampling, as described in [G̊asemyr and Natvig 2005].

Given that T = t and Xi(t) = j, the rejection sampling method can be described as follows:

Algorithm 3.1 Repeat the following steps until a sufficient amount of samples (not counting the
rejected ones) has been generated:

Step 1. Generate λi from the given priors.
Step 2. Generate T i from the conditional distributions given λi.
Step 3. Calculate the resulting value of Xi(t).
Step 4. If Xi(t) = j, we keep λi. Otherwise the vector is rejected.

The calculation of Xi(t) in Step 3 is done as follows: If Tis > t, no transitions have occurred
in [0, t]. Thus, in this case Xi(t) = s. If Tis ≤ t and Tis + Ti,s−1 > t, a transition from state
s to state s − 1 has occurred in [0, t]. Thus, in this case Xi(t) = s − 1. If Tis + Ti,s−1 ≤ t and
Tis + Ti,s−1 + Ti,s−2 > t, a transition from state s to state s − 1 and a transition from state s − 1
to state s − 2 have occurred, implying that Xi(t) = s − 2. By proceeding in this fashion the state
Xi(t) is eventually identified.

If Xi(t) = s, this implies that Tis > t. This means that the state of component i has been the
same throughout the interval [0, t]. This implies that we have no information beyond the prior belief
concerning λi1, . . . , λi,s−1. Moreover, in this case the posterior distribution of λis can be calculated
analytically, and we get that λis|Tis > t ∼ Gamma(αis, βis + t). For all other transition rates the
posterior distribution equals the prior distribution.

If Xi(t) = s − 1, then Tis ≤ t while Tis + Ti,s−1 > t. In this case, we use rejection sampling to
estimate the posterior distributions for both λis and λi,s−1. For the other failure rates, the posterior
distribution equals the prior distribution.

If Xi(t) = s−2, then Tis+Ti,s−1 ≤ t, while Tis+Ti,s−1 +Ti,s−2 > t. Estimation of the posterior
distribution for λis, λi,s−1 and λi,s−2 are done using rejection sampling. The posterior distribution
equals the prior distribution for λi,s−3, . . . , λi1.

This scheme continues until Xi(t) = 0 where Tis + · · ·+ Ti1 ≤ t. In this case, rejection sampling
is used to estimate the posterior distributions for the failure rates λis, . . . , λi1.

In order to illustrate this we consider a specific example where Si = {0, 1, 2, 3}. In this example
we consider three different censoring points: t = 5, t = 10 and t = 15. Since we do not include repairs
in the model, we focus on the transition rates λi1, λi2, and λi3. We assume that the parameters
in the prior distributions for these transition rates are αij = 1.0 and that βij = 5.0 for j = 1, 2, 3.
Thus, we have the following prior expectations and variances:

E[λij ] =
αij
βij

=
1

5
= 0.2, j = 1, 2, 3.

Var[λij ] =
αij
β2
ij

=
1

52
= 0.04, j = 1, 2, 3.

In order to estimate the posterior distributions Algorithm 3.1 was used. After all rejected samples
were eliminated, we ended up with 500000 samples.
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(a) Xi(5) = 3
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(b) Xi(5) = 2

0,00 0,30 0,60 0,90 1,20 1,50

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

(c) Xi(5) = 1
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(d) Xi(5) = 0

Figure 1: Posterior distributions for t = 5 for λij , j = 1, 2, 3 (red, green and blue curves respectively)
along with the common prior distribution, Gamma(1, 5) (violet curve).

In Figure 1, Figure 2 and Figure 3 we have shown the estimated posterior cumulative distributions
for λij , j = 1, 2, 3 (red, green and blue curves respectively) given that Xi(t) = 0, 1, 2, 3 along with
the common prior distribution, Gamma(1, 5) (violet curve).

When Xi(t) = 0, all the posterior distributions are identical. Thus, the red, green and blue
curves are displayed on top of each other. We observe that in this case the posterior distributions
are located to the right of the prior distribution (violet curve). This indicates that all the transition
rates are higher than the prior distribution implies since in this case all possible transitions have
occurred in [0, t]. This effect is most visible when t is small since in this case all transitions occur
within a short interval. When t is larger, the effect is weaker since in this case all transitions occur
within a longer interval.

When Xi(t) = 1, the posterior distributions of λi2 (green curve) and λi3 (blue curve) are identical
and located to the right of the prior distribution (violet curve). This indicates that the transition
rates λi2 and λi3 are higher than the prior distribution implies. This reflects that in this case both
transitions from state 3 to state 2 and from state 2 to state 1 have occurred in [0, t]. Again this
effect is most visible when t = 5, and less dramatic as t increases. The posterior distribution of λi1
(red curve), on the other hand, is located to the left of the prior distribution. The reason for this is
that when Xi(t) = 1, no transition from state 1 to state 0 has occurred in [0, t]. This indicates that
the transition rate λi1 is lower than implied by the prior distribution. This effect is stronger when
t is large than when t is small.

When Xi(t) = 2, the posterior distribution of λi3 (blue curve) is located to the right of the prior
distribution (violet curve). This indicates that λi3 is higher than implied by the prior. This reflects
that in this case a transition from state 3 to state 2 has occurred in [0, t]. This effect is stronger
when t is small, where the transition from state 3 to state 2 must occur early, and weaker when t
is large, where the transitions from state 3 to state 2 may occur later. The posterior distribution of
λi2 (green curve) is located to the left of the prior distribution (violet curve). This indicates that
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(a) Xi(10) = 3
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(b) Xi(10) = 2

0,00 0,30 0,60 0,90 1,20 1,50

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

(c) Xi(10) = 1
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(d) Xi(10) = 0

Figure 2: Posterior distributions for t = 10 for λij , j = 1, 2, 3 (red, green and blue curves respectively)
along with the common prior distribution, Gamma(1, 5) (violet curve).

λi2 is lower than implied by the prior. This reflects that in this case a transition from state 2 to
state 1 has not occurred in in [0, t]. This effect is stronger when t is large than when t is small which
again is as expected. Finally, since no transition from state 1 to state 0 can occur in this case, the
posterior distribution of λi1 (red curve) is identical to the prior distribution (violet curve).

When Xi(t) = 3, the posterior distribution of λi3 (blue curve) is located to the left of the prior
distribution (violet curve). Again this indicates that λi3 is lower than implied by the prior since in
this case no transitions from state 3 to state 2 occurred in [0, t]. As one can expect, this effect is
stronger when t is large than when t is small. Since no transitions from state 2 to state 1 or from
state 1 to state 0 can occur in this case, the posterior distributions of λi2 (green curve) and λi1 (red
curve) are identical to the prior distribution (violet curve).

As a step towards the preposterior analysis, we have estimated conditional variances:

Var[λij |Xi(t) = x], x = 0, 1, 2, 3, j = 1, 2, 3.

The results are listed in Table 17, Table 19, and Table 21 in Appendix A. As a comparison we
have also estimated the corresponding conditional variances given that component i is monitored
continuously throughout the interval [0, t]:

Var[λij |X(u) : for all u ∈ [0, t], X(t) = x], x = 0, 1, 2, 3, j = 1, 2, 3.

The results are listed in Table 18, Table 20, and Table 22 in Appendix A.

4 Fixed censoring point of time, stochastic state

In this section we proceed with the preposterior analysis. In this section, we will assume, as we did
in Section 3, that t is fixed. However, now the state of component i at time t, Xi(t), is considered
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(a) Xi(15) = 3
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(b) Xi(15) = 2
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(c) Xi(15) = 1
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(d) Xi(15) = 0

Figure 3: Posterior distributions for t = 15 for λij , j = 1, 2, 3 (red, green and blue curves respectively)
along with the common prior distribution, Gamma(1, 5) (violet curve).

to be stochastic. The goal is to describe the value of observing the state Xi(t). It is also of interest
to compare this to the value of observing component i in the entire interval [0, t].

As described previously, we consider the case where the failure rates λi1, . . . , λis are estimated
with quadratic loss. This implies that the resulting preposterior losses are given by:

E[Var[λij |Xi(t)]], j = 1, . . . , s.

Since there are only a finite number of possible states for component i, the preposterior losses can
easily be calculated as:

E[Var[λij |Xi(t)]] =

s∑
x=0

Var[λij |Xi(t) = x] Pr(Xi(t) = x), j = 1, . . . , s. (2)

In (2) the posterior variances Var[λij |Xi(t) = x], x = 0, 1, . . . s are estimated using the posterior
distributions we found using Algorithm 3.1. In fact it is easy to include this estimation as a part
of the rejection sampling. All the posterior variances needed for these calculations are listed in
Appendix A.

The only remaining problem is to estimate the probability distribution of Xi(t). This can be
done using the first three steps of Algorithm 3.1. However, instead of rejecting samples, we use all
samples, and thus obtain an estimate the distribution of Xi(t) by calculating the fractions of these
samples where Xi(t) = x, x = 0, 1, 2, 3.

In order to illustrate this we consider the example introduced in Section 3, and calculate the
estimates for the distribution of Xi(t) for t = 5, 10, 15. The results are shown in Table 1. We
observe that for t = 5 the probability distribution is skewed towards the higher values. For such a
short time interval there is a high probability that the number of transitions is either 0 or 1, i.e., that
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Xi(t) is either 3 or 2. On the other hand when t = 15, the probability distribution of Xi(t) is close
to uniform. This reflects that when the time interval [0, t] is longer, there is a higher probability
that more transitions have occurred. By combining the probability distributions in Table 1 with the

x = 0 x = 1 x = 2 x = 3
P (Xi(5) = x) 0.0490 0.1302 0.3207 0.5000
P (Xi(10) = x) 0.1632 0.1996 0.3038 0.3333
P (Xi(15) = x) 0.2769 0.2120 0.2612 0.2498

Table 1: Estimated probability distribution of Xi(t) for t = 5, 10, 15.

corresponding variance estimates in the Appendix, using (2), we arrive at the estimated preposterior
losses. The results are given in Table 2.

λi1 λi2 λi3
E[Var[λij |Xi(5)]] 0.0387 0.0361 0.0300
E[Var[λij |Xi(10)]] 0.0371 0.0344 0.0309
E[Var[λij |Xi(15)]] 0.0362 0.0342 0.0320

Table 2: Estimated preposterior losses when component i is not monitored in [0, t], t = 5, 10, 15.

As a comparison we have also estimated the preposterior losses given that component i is mon-
itored continuously throughout the interval [0, t]. In this case the exact points of times when the
state of component i changes would be known, and thus, the resulting posterior variances can be
calculated analytically using the following formulas:

Case 0. Xi(t) = 0.

Var[λi1|Xi(u) : u ∈ [0, t]] =
α1 + 1

(β1 + Ti1)2
, (3)

Var[λi2|Xi(u) : u ∈ [0, t]] =
α2 + 1

(β2 + Ti2)2
,

Var[λi2|Xi(u) : u ∈ [0, t]] =
α3 + 1

(β3 + Ti3)2
,

Case 1. Xi(t) = 1.

Var[λi1|Xi(u) : u ∈ [0, t]] =
α1

(β1 + t− Ti2 − Ti3)2
, (4)

Var[λi2|Xi(u) : u ∈ [0, t]] =
α2 + 1

(β2 + Ti2)2
,

Var[λi2|Xi(u) : u ∈ [0, t]] =
α3 + 1

(β3 + Ti3)2
,

Case 2. Xi(t) = 2.

Var[λi1|Xi(u) : u ∈ [0, t]] =
α1

β2
1

, (5)

Var[λi2|Xi(u) : u ∈ [0, t]] =
α2

(β2 + t− Ti3)2
,

Var[λi2|Xi(u) : u ∈ [0, t]] =
α3 + 1

(β3 + Ti3)2
,
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Case 3. Xi(t) = 3.

Var[λi1|Xi(u) : u ∈ [0, t]] =
α1

β2
1

, (6)

Var[λi2|Xi(u) : u ∈ [0, t]] =
α2

β2
2

,

Var[λi2|Xi(u) : u ∈ [0, t]] =
α3

(β3 + t)2
,

The relevant formula, i.e., either (3), (4), (5) or (6) chosen according to the value of Xi(t), is
applied in each of the simulations, and the average values of the resulting variances are calculated.
The resulting preposterior losses are obtained by combining the average variances with the estimated
probability distribution for Xi(t). The results for t = 5, 10, 15 are listed in Table 3, while in Table
4 we have listed the differences in preposterior losses.

λi1 λi2 λi3
E[Var[λij |Xi(u) : u ∈ [0, 5]]] 0.0386 0.0353 0.0283
E[Var[λij |Xi(u) : u ∈ [0, 10]]] 0.0362 0.0323 0.0271
E[Var[λij |Xi(u) : u ∈ [0, 15]]] 0.0343 0.0307 0.0269

Table 3: Estimated preposterior losses when component i is monitored in [0, t], t = 5, 10, 15.

λi1 λi2 λi3
Loss difference, t = 5 0.0001 0.0008 0.0017
Loss difference, t = 10 0.0009 0.0021 0.0038
Loss difference, t = 15 0.0019 0.0035 0.0051

Table 4: Differences between estimated preposterior losses when component i is monitored and when
the component is not monitored.

As one could expect, the preposterior losses when component i is monitored in [0, t] is somewhat
smaller than the corresponding preposterior losses when component i is not monitored in [0, t]. The
difference is greatest when t is large since in this case more information is lost by not monitoring
component i. We also note that the difference is a bit greater for λi3 than for the the other
parameters. In fact for λi3 the preposterior loss when component i is not monitored increases as
t increases. Since component i starts out in state 3, we get the most precise information about
the transition rate λi3 in the beginning. As time goes by, however, the exact point of time when
the transition from state 3 to state 2 occurs, becomes more and more uncertain. As a result
the preposterior loss increases. On the other hand if component i is monitored continuously, the
preposterior losses are always decreasing by increasing t since no information is lost.

For all the transition rates the prior loss, i.e., the prior variance is αij/β
2
ij = 0.04. Hence, the

value of observing Xi(t), i.e., the difference between the prior loss and the preposterior loss can
easily be calculated. The results are shown in Table 5.

λi1 λi2 λi3
Value of observing Xi(5) 0.0013 0.0039 0.0100
Value of observing Xi(10) 0.0029 0.0056 0.0091
Value of observing Xi(15) 0.0038 0.0058 0.0080

Table 5: The value of observing Xi(t) expressed as the difference between the prior loss and the
preposterior loss.
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We observe that the value of observing Xi(t) increases as t increases for λi1 and λi2, and decreases
for λi3. These effects are explained above.

5 Stochastic censoring point of time and state

While the rejection algorithm ensures that Var[λij |Xi(t) = x] is estimated very precisely for each
value of x, the algorithm throws away huge amount of samples where the calculated value of x does
not match the desired one. Since we want to estimate Var[λij |Xi(t) = x] for all values of x, all these
rejected samples could in fact be used as well. However, if we do this, we lose control over how many
samples we get for each value of x. In particular for values of x where P (Xi(t) = x) is small we get
few samples, while for values of x where P (Xi(t) = x) is large we get many samples. Still, when
calculating the preposterior loss E[Var[λij |Xi(t)]] using (2), it is the terms where P (Xi(t) = x) is
large where the precision is most important.

0.00 5.00 10.00 15.00 20.00 25.00 30.00

0.045

0.040

0.035

0.030

0.025

0.020

Figure 4: Preposterior losses for λi1 (red curve), λi2 (green curve) and λi3 (blue curve) as a function
of the censoring point of time t when component i is not monitored in [0, t].500000 simulations are
used in order to estimate each of the points on the curves.

This issue becomes more relevant when censoring point of time, t, varies over a longer interval,
or when this quantity is stochastic. In particular, when T is small, the distribution of Xi(t) becomes
strongly concentrated on the higher states, while the probability of gettingXi(t) = 0 is approximately
zero. In such cases the rejection algorithm takes very long time to converge, as a huge amount of
samples are rejected. Thus, we instead use the following algorithm:

Algorithm 5.1 Repeat the following steps until a sufficient amount of samples has been generated:

Step 1. Generate λi from the given priors.
Step 2. Generate T i from the conditional distributions given λi.
Step 3. Calculate the resulting value of Xi(t).
Step 4. Add λi to the sampled vectors for this particular value of Xi(t), and keep track of the
number of times the different states Xi(t) occur.

Note that by counting the number of times the different states Xi(t) occur in Step 4 of Algorithm
5.1, allows the probability distribution of Xi(t) to be estimated.
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Figure 5: Preposterior losses for λi1 (red curve), λi2 (green curve) and λi3 (blue curve) as a function
of the censoring point of time t when component i is monitored in [0, t]. 500000 simulations are
used in order to estimate each of the points on the curves.

Extensive tests have shown that Algorithm 5.1, where all samples are used, actually works very
well with respect to the precision of the preposterior loss. In order to illustrate this we have run
this algorithm where we have varied t in the range [0, 30]. The results for the unmonitored case
are shown in Figure 4, while the corresponding results for the monitored case is shown in Figure 5.
While the curves for the monitored case are decreasing all the way, the curves for the unmonitored
case are decreasing in the beginning and then increasing again as t increases.

In order to take a closer look at the asymptotic behaviour of the preposterior loss curves, we
start by considering the probability distribution of Xi(t). The event that Xi(t) = 0 is equivalent
with the event that component i has gone through all states from 3 down to 0 at time t, i.e., that
Ti3 + Ti2 + Ti1 < t. Since the sum Ti3 + Ti2 + Ti1 is finite with probability one, we have

lim
t→∞

P (Xi(t) = 0) = lim
t→∞

P (Ti3 + Ti2 + Ti1 < t) = 1.

Hence, by (2) we get that:

lim
t→∞

E[Var[λij |Xi(t)]] = lim
t→∞

Var[λij |Xi(t) = 0], j = 1, 2, 3.

We consider first the unmonitored case, and let A ⊆ [0,∞) be an arbitrary measurable set. We then
have:

P (λij ∈ A|Xi(t) = 0) =
P (λij ∈ A ∩Xi(t) = 0)

P (Xi(t) = 0)

=
P (λij ∈ A) · P (Xi(t) = 0|λij ∈ A)

P (Xi(t) = 0)

Thus, since obviously limt→∞ P (Xi(t) = 0) = limt→∞ P (Xi(t) = 0|λij ∈ A) = 1, it follows that:

lim
t→∞

P (λij ∈ A|Xi(t) = 0) = P (λij ∈ A).

Thus, the conditional distribution of λij given Xi(t) = 0 converges to the prior distribution of λij ,
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j = 1, 2, 3 as t goes to infinity. Hence, we get:

lim
t→∞

E[Var[λij |Xi(t)]] = Var[λij ] =
αij
β2
ij

= 0.04, j = 1, 2, 3.

That is, the preposterior loss converges to the prior loss as t goes to infinity. This explains why the
curves in Figure 4 increases for larger values of t.

We then consider the monitored case. In this case the event Xi(t) = 0 implies that the exact
values of Ti3, Ti2 and Ti1 are known at time t. The posterior distributions of λi3, λi2 and λi1 can
then easily be calculated using Bayes’ theorem, and we get that:

λij |Tij ∼ Gamma(αij + 1, βij + Tij), j = 1, 2, 3.

Hence, as in (3), we have:

Var[λij |Xi(t) = 0] = Var[λij |Tij ] =
αij + 1

(βij + Tij)2
, j = 1, 2, 3.

The preposterior loss is then given by:

E[Var[λij |Tij ]] = E[
αij + 1

(βij + Tij)2
] =

αij(αij + 1)

β2
ij(αij + 2)

=
2

75
= 0.0267, j = 1, 2, 3.

In Figure 5 we see that the curve for the preposterior loss of λi3 appears to converge rapidly to the
value 0.0267 as t increases. For λi2 and λi1 the convergence is slower, but as t increases these curves
will converge towards the same value as well.

By using a similar sampling method, estimates of the preposterior losses for the case where T
is stochastic can be obtained. We now make the important assumption that the censoring point of
time, T , is independent of all the variables affecting the state of component i, i.e., λi and T i. It
then follows that the preposterior losses can be calculated using the following extended version of
(2):

E[Var[λij |Xi(T )]] =

∫ ∞
0

[

s∑
x=0

Var[λij |Xi(t) = x] Pr(Xi(t) = x)]fT (t)dt, j = 1, . . . , s, (7)

where fT denotes the probability density of T . In order to calculate this integral analytically we
would need to estimate both the posterior variances as well as the probability distribution of Xi(t)
for all t ≥ 0. However, this integral can easily be estimated using Monte Carlo simulation. In order
to do this the simulations must be run within a double loop. In the outer loop T is sampled from its
distribution. This loop is run 10000 times. In the inner loop the modified sampling procedure with
no rejections is run in order to estimate the preposterior losses for each given value t of T as well as
the probability distribution of Xi(t). This inner loop is also run 10000 times. A formal description
of this algorithm is as follows:

Algorithm 5.2 Repeat the following steps until a sufficient amount of samples has been generated:

Step 1. Generate T from the given distribution.

For each value value of T repeat the following steps until a sufficient amount of samples has been
generated:

Step 2. Generate λi from the given priors.
Step 3. Generate T i from the conditional distributions given λi.
Step 4. Calculate the resulting value of Xi(T ).
Step 5. Add λi to the sampled vectors for this particular value of Xi(T ), and keep track of the
number of times the different states Xi(T ) occur.
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E[T ] Var[T ]
Gamma(4, 0.4) 10 25
Gamma(8, 0.4) 20 50
Gamma(12, 0.4) 30 75

Table 6: Distributions for T .

As before counting the number of times the different states Xi(T ) occur, enables us to estimate the
probability distribution of Xi(T ) i ∈ E.

Three different Gamma-distributions for T were considered in the simulations. The parameters
as well as the corresponding expectations and variances are listed in Table 6.

Averaging the estimated preposterior losses with respect to the sampled values of T we arrived
at the preposterior losses for the three different distributions for T given respectively in Table 7,
Table 8 and Table 9. In these table we have listed the preposterior losses for the unmonitored case,
the monitored case as well as the difference in preposterior losses.

λi1 λi2 λi3
E[Var[λij |Xi(T )]] 0.0374 0.0349 0.0310
E[Var[λij |Xi(u) : u ∈ [0, T ]]] 0.0364 0.0329 0.0276
Difference 0.0010 0.0020 0.0034

Table 7: Estimated preposterior losses when T ∼ Gamma(4, 0.4).

λi1 λi2 λi3
E[Var[λij |Xi(T )]] 0.0362 0.0345 0.0330
E[Var[λij |Xi(u) : u ∈ [0, T ]]] 0.0333 0.0301 0.0268
Difference 0.0029 0.0044 0.0062

Table 8: Estimated preposterior losses when T ∼ Gamma(8, 0.4).

λi1 λi2 λi3
E[Var[λij |Xi(T )]] 0.0360 0.0351 0.0345
E[Var[λij |Xi(u) : u ∈ [0, T ]]] 0.0314 0.0290 0.0267
Difference 0.0046 0.0061 0.0078

Table 9: Estimated preposterior losses when T ∼ Gamma(12, 0.4).

We observe that when T ∼ Gamma(4, 0.4), the differences in preposterior losses between the
unmonitored and the monitored case are not very large. The main reason for this is that the
expected value of T is only 10. As we saw in Figure 4 and Figure 5 as well as in the analysis of
the asymptotic behaviour of the two cases, the preposterior losses in the unmonitored case increase
and converge to the prior loss when t increases, while the corresponding preposterior losses in the
monitored case converges to a significantly lower value when t increases. Exactly the same effects are
seen in the stochastic cases. Thus, the differences in preposterior losses increases considerably when
T is sampled from the Gamma(12, 0.4)-distribution. These effects are intuitively very reasonable
since the consequence of not monitoring a component obviously is worse if the length of the time
interval with no information about the state of the component is increased.
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6 Applications to multistate systems

In this section we show how the methodology introduced in the previous sections can be applied
to multistate systems. As in the previous sections we let Tij denote the time component i spends
in state j during its first life cycle, j ∈ Si, i ∈ E. We assume that Tij |λij ∼ Exp(λij) and that
λij ∼ Gamma(αij , βij), j ∈ Si, i ∈ E.

The states of the individual components are not monitored continuously. Instead the system is
left unmonitored until its state reaches a given critical level C. We denote the point of time when
this happens by T . At that point of time the system is inspected and the states of the components
are recorded. Thus, the situation is similar to the case considered in [Natvig and G̊asemyr 1998].
However, since we are considering multistate systems, the critical level C does not need to be zero.

Given the censoring point of time, T , and the states of the components at time T , Xi(T ), i ∈ E,
the posterior distributions for the transition rates can in principle be estimated. However, in this
case T is not independent of the other variables. In fact T is a function of the vectors T i, i ∈ E.
While it is not difficult to obtain an estimate of the marginal distribution of T using Monte Carlo
simulation, it is more difficult to obtain the necessary conditional distributions needed for the inner
loop in order to use Algorithm 5.2. Still this is at least possible by using e.g., the Metropolis-Hastings
algorithm.

In this study we have chosen a simpler solution where we instead estimate the posterior distri-
butions of the λij ’s given only the states Xi, i ∈ E at the censoring point of time. This essentially
implies that the exact value of T is ignored. It should be noted, however, that since the Xi’s obvi-
ously depend strongly on the value of T , the loss of information is not as great as one could suspect.
In fact, as we shall see, the increases in preposterior losses even compared to the monitored case
turn out to be small.

With this simplification the necessary data can be obtained by applying the following simulation
algorithm:

Algorithm 6.1 Repeat the following steps until a sufficient amount of samples has been generated:

Step 2. Generate λi from the given priors for all i ∈ E.
Step 3. Generate T i from the conditional distributions given λi for all i ∈ E.
Step 4. Calculate the states of the components, Xi at the censoring point of time for all i ∈ E.
Step 5. Add λi to the sampled vectors for this particular value of Xi for all i ∈ E, and keep track
of the number of times the different states Xi occur.

In order to calculate the states of the components in Step 4 of Algorithm 6.1, a flexible and convenient
approach is to use a discrete event model. An event in this context is a state transition for one of
the components in the system. All such events are processed in chronological order using an event
queue. As an event is processed, we also update the system state. When the system state reaches the
critical level C, the processing stops and the relevant quantities are stored. This approach is easy
to implement even for large complex multistate systems, and allows fast and efficient calculation of
the states of the components. For further details see [Huseby et. al. 2010].

In Step 5 of Algorithm 6.1 we keep track of the number of times the different states Xi occur. As
in the previous sections these counts are used to estimate the probability distribution of Xi i ∈ E.
The resulting preposterior losses can be calculated by the following simplified formula:

E[Var[λij |Xi]] =

s∑
x=0

Var[λij |Xi = x] Pr(Xi = x), j = 1, . . . , s. (8)

While it is easy to apply this approach to arbitrary complex multistate systems, we have chosen to
illustrate the methodology by considering a very simple multistate parallel system consisting of just
two components. We assume that Si = {0, 1, 2, 3}, i = 1, 2, and that the state of the system at time t
is given by the structure function φ(t) = φ(X1(t), X2(t)) = X1(t) +X2(t). Thus, φ(t) ∈ {0, 1, . . . , 6}
for all t ≥ 0. We assume that X1(0) = X2(0) = 3, implying that φ(0) = 3 + 3 = 6. As time goes by
the components go through their respective states until reaching the complete failure state 0. The
parameter values of the prior distributions are listed in Table 10.
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i αi1 βi1 αi2 βi2 αi3 βi3
1 1.0 4.0 1.0 4.0 1.0 4.0
2 1.0 6.0 1.0 6.0 1.0 6.0

Table 10: Parameters in the prior distributions

In the simulation study three different critical levels for the system are considered: C = 2, C = 3
and C = 4. As in the previous sections we start out by estimating the posterior losses given the state
of the components. These results are given in Appendix B. Moreover, we estimate the probability
distributions of Xi(T ), i = 1, 2. The results for the three different critical values C = 2, C = 3 and
C = 4 are given in Table 11, Table 12 and Table 13 respectively.

x = 0 x = 1 x = 2 x = 3
P (X1(T ) = x) 0.4484 0.2705 0.2811 0.0000
P (X2(T ) = x) 0.2811 0.2705 0.4484 0.0000

Table 11: Estimated probability distribution of Xi(t), i = 1, 2 for C = 2.

x = 0 x = 1 x = 2 x = 3
P (X1(T ) = x) 0.2444 0.3393 0.2755 0.1408
P (X2(T ) = x) 0.1408 0.2755 0.3393 0.2444

Table 12: Estimated probability distribution of Xi(t), i = 1, 2 for C = 3.

x = 0 x = 1 x = 2 x = 3
P (X1(T ) = x) 0.0000 0.3582 0.4134 0.2284
P (X2(T ) = x) 0.0000 0.2284 0.4134 0.3582

Table 13: Estimated probability distribution of Xi(t), i = 1, 2 for C = 4.

Note that since the system is inspected when its state reaches level C, we always have:

P (φ(T ) = C) = P (X1(T ) +X2(T ) = C) = 1.

This implies that X1(T ) = x if and only if X2(T ) = C − x. Thus, the events X1(T ) = x and
X2(T ) = C − x must have equal probability, for max(0, C − 3) ≤ x ≤ min(3, C). By examining
Table 11, Table 12 and Table 13 we see that this property is satisfied.

Also note that if C = 2, then Xi(T ) ≤ 2, i = 1, 2. Thus, in this case P (Xi(T ) = 3) = 0. Similarly,
if C = 4, then Xi(T ) ≥ 1, i = 1, 2. Thus, in this case P (Xi(T ) = 0) = 0.

The preposterior losses can now by calculated using (8) by combining the estimated variances
listed in Appendix B with the estimated probability distributions. The results are shown in Table 14
(C = 2), Table 15 (C = 3) and Table 16 (C = 4). In these tables we have also included preposterior
losses for the corresponding cases where the components are monitored continuously. As before
these are calculated using (3), (4), (5) or (6).

The prior losses for component 1 are Var(λ1j) = α1j/β
2
1j = 1/42 = 0.0625 for j = 1, 2, 3. The

corresponding prior losses for component 2 are Var(λ2j) = α2j/β
2
2j = 1/62 = 0.0278 for j = 1, 2, 3

for component 2. That is, the prior losses are larger for component 1 than for component 2. As
could be expected, these differences also affect the preposterior losses which are larger for component
1 than for component 2.
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The differences between the unmonitored cases and the monitored cases are largest when C = 2
and smallest when C = 4. This is intuitively reasonable since when C = 2 the system is left
unmonitored for a longer period of time compared to when C = 4. We also note that the differences
in preposterior losses are larger for λ1,3 and λ2,3 compared to e.g., λ1,1 and λ2,1. The reason for this
is that both the components start out in state 3. Thus, when monitoring the components one would
with a very high probability observe the exact value of T1,3 and T2,3. On the other hand, when the
components are not monitored, this information will be lost.

Finally, we note that when C = 4, we have X1(T ) + X2(T ) = 4. From this it follows that we
must have Xi(T ) ≥ 1, i = 1, 2. Thus, there will never be a transition from state 1 to state 0 for
any component within the interval [0, T ]. In fact, at time T when the system reaches state C = 4,
we would not have any new information about λ1,1 or λ2,1. Hence, the preposterior losses for these
parameters are equal to the corresponding prior losses, respectively 0.0625 for component 1 and
0.0278 for component 2, both in the unmonitored case and the monitored case.

λi1 λi2 λi3
E[Var[λ1j |X1(T )]] 0.0602 0.0596 0.0597
E[Var[λ1j |X1(u) : u ∈ [0, T ]]] 0.0511 0.0451 0.0416
Difference 0.0091 0.0145 0.0181
E[Var[λ2j |X2(T )]] 0.0270 0.0265 0.0263
E[Var[λ2j |X2(u) : u ∈ [0, T ]]] 0.0244 0.0213 0.0185
Difference 0.0026 0.0052 0.0078

Table 14: Estimated preposterior losses when C = 2.

λi1 λi2 λi3
E[Var[λ1j |X1(T )]] 0.0613 0.0584 0.0565
E[Var[λ1j |X1(u) : u ∈ [0, T ]]] 0.0559 0.0475 0.0419
Difference 0.0054 0.0109 0.0146
E[Var[λ2j |X2(T )]] 0.0274 0.0263 0.0242
E[Var[λ2j |X2(u) : u ∈ [0, T ]]] 0.0260 0.0226 0.0189
Difference 0.0014 0.0037 0.0053

Table 15: Estimated preposterior losses when C = 3.

λi1 λi2 λi3
E[Var[λ1j |X1(T )]] 0.0625 0.0600 0.0554
E[Var[λ1j |X1(u) : u ∈ [0, T ]]] 0.0625 0.0524 0.0427
Difference 0.0000 0.0076 0.0127
E[Var[λ2j |X2(T )]] 0.0278 0.0268 0.0242
E[Var[λ2j |X2(u) : u ∈ [0, T ]]] 0.0278 0.0247 0.0195
Difference 0.0000 0.0021 0.0047

Table 16: Estimated preposterior losses when C = 4.

7 Conclusions

In the present paper we have shown how to quantify the effect of partial monitoring of multistate
components in a multistate system. The quantification is done by calculating preposterior loss.
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As part of the process of calculating preposterior losses we also show how to compute posterior
distributions under various assumptions. This methodology provides a framework for determining
an optimal monitoring plan balancing the cost of monitoring with the loss in information. It is
e.g., possible to identify which of the components that should be given priority with respect to
monitoring.

In cases where all components in the system are monitored continuously, it is often possible to
calculate the posterior loss analytically. In the unmonitored case, however, the calculations must
typically be based on Monte Carlo simulation. Fortunately, the simulation methods can be done
very efficiently even for large complex multistate systems by using discrete event simulation.

In all our calculations we have assumed that the components are stochastically independent of
each other. A more realistic model should allow for various types of dependence, both physical
dependence as well as dependence due to similar components sharing the same transition rates.
The model should ideally also allow for analysis of more than one life cycle, and include perfect or
imperfect repairs.
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A Estimated variances from Section 3

λi1 λi2 λi3

Xi(t) = 0 0.0581 0.0588 0.0584
Xi(t) = 1 0.0238 0.0532 0.0533
Xi(t) = 2 0.0400 0.0192 0.0471
Xi(t) = 3 0.0400 0.0400 0.0100

Table 17: Var[λij |Xi(t) = x] for t = 5.

λi1 λi2 λi3

Xi(t) = 0 0.0563 0.0563 0.0563
Xi(t) = 1 0.0232 0.0507 0.0507
Xi(t) = 2 0.0400 0.0185 0.0435
Xi(t) = 3 0.0400 0.0400 0.0100

Table 18: Var[λij |Xi(u) : for all u ∈ [0, t], Xi(t) = x] for t = 5.

λi1 λi2 λi3

Xi(t) = 0 0.0506 0.0506 0.0506
Xi(t) = 1 0.0169 0.0450 0.0453
Xi(t) = 2 0.0400 0.0123 0.0397
Xi(t) = 3 0.0400 0.0400 0.0044

Table 19: Var[λij |Xi(t) = x] for t = 10.

λi1 λi2 λi3

Xi(t) = 0 0.0465 0.0465 0.0465
Xi(t) = 1 0.0156 0.0398 0.0397
Xi(t) = 2 0.0400 0.0112 0.0334
Xi(t) = 3 0.0400 0.0400 0.0044

Table 20: Var[λij |Xi(u) : for all u ∈ [0, t], Xi(t) = x] for t = 10.

λi1 λi2 λi3

Xi(t) = 0 0.0469 0.0471 0.0467
Xi(t) = 1 0.0132 0.0412 0.0413
Xi(t) = 2 0.0400 0.0090 0.0372
Xi(t) = 3 0.0400 0.0400 0.0025

Table 21: Var[λij |Xi(t) = x] for t = 15.
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λi1 λi2 λi3

Xi(t) = 0 0.0411 0.0412 0.0412
Xi(t) = 1 0.0116 0.0342 0.0343
Xi(t) = 2 0.0400 0.0077 0.0291
Xi(t) = 3 0.0400 0.0400 0.0025

Table 22: Var[λij |Xi(u) : for all u ∈ [0, t], Xi(t) = x] for t = 15.

B Estimated variances and posterior distributions from Sec-
tion 6

λ1,1 λ1,2 λ1,3

X1(T ) = 0 0.0676 0.0673 0.0670
X1(T ) = 1 0.0466 0.0622 0.0631
X1(T ) = 2 0.0616 0.0448 0.0448
X1(T ) = 3 n/a n/a n/a

Table 23: Var[λ1j |X1(T ) = x], C = 2.

λ2,1 λ2,2 λ2,3

X2(t) = 0 0.0314 0.0312 0.0313
X2(t) = 1 0.0212 0.0300 0.0295
X2(t) = 2 0.0277 0.0214 0.0217
X2(t) = 3 n/a n/a n/a

Table 24: Var[λ2j |X2(T ) = x], C = 2.

λ1,1 λ1,2 λ1,3

X1(T ) = 0 0.0699 0.0692 0.0700
X1(T ) = 1 0.0539 0.0664 0.0661
X1(T ) = 2 0.0623 0.0376 0.0578
X1(T ) = 3 0.0625 0.0613 0.0075

Table 25: Var[λ1j |X1(T ) = x], C = 3.

λ2,1 λ2,2 λ2,3

X2(T ) = 0 0.0320 0.0320 0.0321
X2(T ) = 1 0.0243 0.0318 0.0317
X2(T ) = 2 0.0278 0.0182 0.0279
X2(T ) = 3 0.0276 0.0281 0.0060

Table 26: Var[λ2j |X2(T ) = x], C = 3.
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λ1,1 λ1,2 λ1,3

X1(T ) = 0 n/a n/a n/a
X1(T ) = 1 0.0620 0.0715 0.0712
X1(T ) = 2 0.0625 0.0485 0.0638
X1(T ) = 3 0.0619 0.0629 0.0152

Table 27: Var[λ1j |X1(T ) = x], C = 4.

λ2,1 λ2,2 λ2,3

X2(T ) = 0 n/a n/a n/a
X2(T ) = 1 0.0275 0.0333 0.0337
X2(T ) = 2 0.0281 0.0226 0.0313
X2(T ) = 3 0.0279 0.0276 0.0100

Table 28: Var[λ2j |X2(T ) = x], C = 4.
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Figure 6: Posterior distributions for C = 2 for λ1j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X1(t) = 0, 1, 2, (3) along with the common prior distribution, Gamma(1, 4) (violet
curve).
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(a) X2(T ) = 3
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(b) X2(T ) = 2
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(c) X2(T ) = 1
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Figure 7: Posterior distributions for C = 2 for λ2j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X2(t) = 0, 1, 2, (3) along with the common prior distribution, Gamma(1, 6) (violet
curve).
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(a) X1(T ) = 3
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(c) X1(T ) = 1
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Figure 8: Posterior distributions for C = 3 for λ1j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X1(t) = 0, 1, 2, 3 along with the common prior distribution, Gamma(1, 4) (violet
curve).
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(a) X2(T ) = 3
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(c) X2(T ) = 1
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Figure 9: Posterior distributions for C = 3 for λ2j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X2(t) = 0, 1, 2, 3 along with the common prior distribution, Gamma(1, 6) (violet
curve).
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(a) X1(T ) = 3
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(c) X1(T ) = 1
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Figure 10: Posterior distributions for C = 4 for λ1j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X1(t) = (0), 1, 2, 3 along with the common prior distribution, Gamma(1, 4) (violet
curve).
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(c) X2(T ) = 1
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Figure 11: Posterior distributions for C = 4 for λ2j , j = 1, 2, 3, (red, green and blue curves respec-
tively) given that X2(t) = (0), 1, 2, 3 along with the common prior distribution, Gamma(1, 6) (violet
curve).
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