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Abstract

The standard axiomatization of set theory known as ZFC provides maybe the most widely

accepted foundation for mathematics. But there are natural mathematical statements,

such as Cantor’s continuum hypothesis (CH), that can neither be proved nor disproved

from ZFC. These statements are said to be independent of ZFC. The independence phe-

nomenon in set theory can be seen as motivating two very different conceptions of math-

ematical reality.

Universism has it that ZFC is about a particular mathematical structure, namely the

maximal and unique universe of all sets V. The universist claims that the independence

phenomenon shows us that our description of V is incomplete but, claims the universist,

the independent statements are either true or false in the unique universe. So, we ought to

try to formulate and justify new axioms to strengthen our theory and uniquely decide the

independent statements. This way we get a more complete description of V. Multiversism,

on the other hand, has it that there are many different universes of sets where statements

independent of ZFC, such as CH, hold in some of them and fail in others. Thus, there

is no point in trying to decide these statements in a unique manner. Instead, we should

be content to explore in more detail the different set theoretic universes, all of which,

according to the multiversist, are equally real.

In this thesis I further explore multiversism. I assess some of the strengths and weak-

nesses of the view by focusing primarily on philosophical rather than technical issues.

I also investigate in more detail in what way multiversism challenges the standard ac-

counts of justification in set theory that the universists have traditionally hoped to avail

themselves of.
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Introduction

Our only hope of understanding the universe is to look at it from as many

different points of views as possible. [...] Now, my own suspicion is that the

universe is not only queerer than we suppose, but queerer than we can

suppose.

J.B.S. Haldane (1927), Possible Worlds and Other Essays

[D]o we have today a mathematic or do we have several mathematics?

Nicholas Bourbaki (1950), “The Architecture of Mathematics”

Whatever the universe of mathematics is, whether real or not, whether an independently

existing domain or a product of our minds, it is surely a strange place. Examples abound:

we have the one-sided nonorientable surface with boundary known as the Möbius strip,

the geometric figure called Gabriel’s horn which has finite volume but infinite surface

area, the empty function from ∅ to ∅, or take, for example, the fact that there is a

one-to-one correspondence between the unit interval [0, 1] and all the points of Rn, for

any natural number n, a fact that prompted Cantor, who proved it, to write “I see it, but

I don’t believe it!”. Yet another example is the “paradoxical” yet provable Banach-Tarski

decomposition of a solid ball in 3-dimensional space into a finite number of pieces that

can be rearranged so as to yield two balls of the same size as the original ball. And there

is the transfinite hierarchy of modern-day set theory, with its unending stock of larger

and larger infinities. The universe of mathematics is not only strange but also immensely

rich in entities and structures.

But things may be stranger yet. So far we have referred to “the universe” of mathe-

matics, assuming that there is sense to be made of a unique and coherent domain where

all mathematical entities and structures belong. But can we really talk about the uni-

verse of mathematics at all? What if mathematical reality is so varied, so fractured, that

it cannot be thought of in a single coherent framework? Might it be that there is not one

mathematical universe but a plurality of universes?

In addition to the richness of mathematical objects and structures, there is also a

seeming open-endedness to mathematical operations that suggests mathematical reality
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cannot be a completely unified and delimited whole. This thought was nicely expressed

by the mathematician Saunders Mac Lane:

Understanding Mathematical operations leads repeatedly to the formation of

totalities: The collection of all prime numbers, the set of all points on an

ellipse, the manifold of all lines in 3-space, the manifold of all positions and

velocities of a mechanical system, the set of all subsets of a set, the set of all

power series expansions for a function (its Riemannian surface) or the category

of all topological spaces. There are no upper limits; it is useful to consider the

“universe” of all sets (a class) or the category Cat of all small categories as

well as CAT, the category of all big categories. This is the idea of a totality,

and these are some of its many formulations. After each careful delimitation,

bigger totalities appear. No set theory and no category theory can encompass

them all–and they are needed to grasp what Mathematics does. (Mac Lane

1986:390)

Despite this richness of entities and the open-endedness of mathematical operations, some

still think that the idea of a definite universe wherein all of mathematics belongs makes

sense and that there could be a theory capable of encompassing all of mathematics. That

way we could provide some unity to all the varied riches of mathematics. Others think

differently, and claim that the idea of a definite universe does not make sense in the case

of mathematics, and that mathematical reality is somehow indefinite or that there must

be a plurality of universes.

The aim of this thesis is to examine such views, especially views that posit many

universes, from a philosophical stance while drawing on mathematical and metamathe-

matical results. The focus will be on set theory. As we will see, this allows the questions

about the unity or disunity of mathematics raised so far, together with potential answers,

to be put in sharper terms.

Why set theory?

A response to the seeming disunity of mathematics characterized above is to avoid it by

providing a foundation or framework for mathematics. One chief task for a foundational

or framework theory, then, is to show that all the varied entities and structures we find

in different branches of mathematics really can be thought of in a unified way.

Set theory developed, in part, around the aim of providing such a foundational theory.

By considering only sets and how they are structured by the membership-relation, math-

ematicians have been able to give a language and axiomatic theory capable of unifying all

(or at least almost all) of conventional mathematics. Today, the standard axiomatization
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of set theory is called ZFC which is stated in the language L∈, which is a first-order

language with ∈ as the only non-logical symbol.1

The language of set theory is greatly expressive in that all mathematical language

(developed so far) can be translated into it, and ZFC is a powerful mathematical the-

ory able to prove most of conventional mathematics. One way to express this is to say

that any acceptable informal mathematical proof should be reconstructable as a purely

formal derivation from the axioms of ZFC. For example, within set theory one can de-

velop the whole of classical arithmetic and analysis by representing their objects of study

(natural numbers and real numbers), and the operations that apply to them (addition,

multiplication and so on), as sets. Any theorems provable from the standard axioms of

arithmetic and analysis suitably translated are thus provable in ZFC. This holds also of

almost all other branches of mathematics, such as geometry, topology and algebra. In this

way, set theory allows us to bring all the varied entities and structures throughout the

different branches of mathematics into one vast arena. This unification of mathematics

in set theory is a truly remarkable achievement of twentieth century mathematics.

Having said that, what exactly is required of a foundational or framework theory

for mathematics, if a foundation is required at all, is up for discussion. Many take set

theory to be the best candidate for a foundation around, while others have defended

different foundations such as Category theory (see Lawvere 1964 and 1966, and for further

discussion, Feferman 2013) and more recently the project known under the name of

Univalent foundations closely related to the development of homotopy type theory. All

the same, ZFC remains the most widely accepted foundational theory.

Maddy (2017) presents several roles a foundational theory, such as ZFC, can be asked

to play. Two of them she deems spurious:

• Epistemic Source: Knowledge of the foundational axioms of set theory together

with knowledge of the mathematically acceptable rules of inference is to ground our

knowledge of the theorems of mathematics.

• Metaphysical Insight: The reduction of a mathematical object to a given set

reveals the true metaphysical identity of that object.

However, there are also five legitimate roles, summarized by Maddy (2017:317) as:

• Meta-mathematical Corral: To allow for meta-mathematical consideration of

the whole expanse of the vast subject of classical mathematics at once.

• Elucidation: To provide the conceptual resources and construction techniques to

clarify old mathematical notions in order to take on new demands.

• Risk Assessment: To provide a scale of consistency strength (such as the large

cardinal hierarchy in set theory arguably does).

1The language and theory is given in Chapter 1 below.
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• Shared Standard: To serve as a benchmark of mathematical proof. As such, ZFC

is a theory of provability in mathematics.

• Generous Arena: To give a framework in which the various branches of mathe-

matics appear side-by-side, so that the objects, results, methods and resources of

classical mathematics can be pooled for fruitful interaction.

Several of these roles have been both defended and argued against by various philosophers

and mathematicians. For example, Burgess (2015) stresses the importance of several of

these roles, such as Shared Standard and Generous Arena, while Tanswell (2015)

argues against Shared Standard by trying to motivate that not all informally legitimate

proofs are formalizable (at least in a way that stays true to the original content of the

informal proof). A last, non-foundational role for set theory is as our best mathematical

theory of the infinite. For our purposes, it is in what way, if at all, set theory provides a

Generous Arena that is the central issue.

Similarly to how number theorists think of themselves as describing and studying a

specific class of objects and its structure, that is, the set of natural numbers N, many

set theorists think of themselves as describing what is called the cumulative hierarchy V,

sometimes also called the universe of all sets. The upshot of the unification of mathematics

in set theory is that we now have a candidate for the position of being the unique and

coherent domain, the vast arena, where all mathematical entities and structures belong,

namely the universe of set theory V.

But is there such a unique and definite universe of all sets? Recently, some set theorists

and philosophers of mathematics have defended views that deny the existence of a unique

and definite V, and not because of a general anti-realism about mathematical objects or

structures. Instead, they have argued that we should believe that there is a plurality

of distinct universes of sets with distinct set theoretic truths, so-called multiverse views

in set theory. As such, they claim that even at the fundamental level there is no single

definite universe where mathematics take place but many universes. The foundation itself

is fragmented.

So, moving to our foundational or framework theory, we can again ask the question

about the unity or disunity of mathematics in the following way: is there, then, a single

universe of sets or are there many? Further questions also arise: What is a multiverse view

in set theory? Why should we believe in such a view? Can it be stated in a philosophically

satisfying way? How do more or less philosophical (or at least informal) views about the

existence of a definite universe or a multiverse in set theory affect set theoretical research

programs, practice and methodology, if at all? These are the central questions that drive

this thesis.
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Structure of the thesis

In chapter 1, “ZFC, Independence and Gödel’s Program”, I start by stating the language

and axioms of ZFC together with the development of the idea of the cumulative hierarchy

V as the structure described by ZFC. After that I review the most central developments

in set theory from the construction of Gödel’s minimal inner model L and onwards. I

focus in particular on the model theory of set theory, the independence phenomenon and

the study of possible extensions of ZFC as part of the research program known as Gödel’s

program.

In chapter 2, “Multiversism in Set Theory”, I start by stating the view that set theo-

rists are studying a definite and unique structure V, sometimes called the universe of all

sets. I then look at an alternative view, which has gained in popularity recently, claiming

that there are many distinct universes of sets. I try to clarify such a multiverse view

philosophically primarily by paying attention to conceptual and metaphysical features

of the view. The rest of the chapter is devoted to assessing the different strengths and

weaknesses of multiversism often while comparing it to universism. The aim of the chap-

ter is to establish multiversism as a philosophically interesting pluralist conception of the

subject matter of set theory.

In chapter 3, “Multiversism and Mathematical Evidence”, I look at the relationship

between the multiverse view and methodology in mathematics. I focus in particular on

what happens to the status and legitimacy of two kinds of evidence in mathematics, so-

called intrinsic and extrinsic, conditional on the multiverse view being true. I conclude

that the legitimacy of these methods in establishing new basic principles of sets is under

serious doubt if multiversism is true. In the end I compare the idea of a set theoretic

multiverse to the idea of a universe with regards to potential fruitfulness for further set

theoretic practice. Although, I agree that for the most part these debates in the philosophy

of mathematics probably have little real effect on the practice of set theory, I argue that

such ideas understood as heuristic devices might still have some impact on the degree of

perceived freedom among set theorists in formulating new research projects.
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Chapter 1

ZFC, Independence and Gödel’s

Program

Before we explore the idea that there are many distinct set theoretic universes it will be

useful to review today’s most standard axiomatization of set theory, ZFC, together with

results and further developments that are important to the later discussion. Particularly

important are the independence results in set theory, showing that certain statements

φ in the language of set theory are such that neither φ nor ¬φ are provable from ZFC.

As we will see, these results are pivotal to the motivation for and formulation of both a

one-and-definite universe view and a multiverse view.

In this chapter, I first present ZFC together with the idea of the cumulative hierarchy

V. After that I turn to the independence phenomenon and its significance. I focus in

particular on what is probably the most famous statement independent of ZFC, the so-

called continuum hypothesis (abbreviated as CH). As part of this we will look briefly at

the way an independence result is established by the use of inner models and forcing.

Lastly, I discuss a central research program in set theory known as Gödel’s program,

formulated in part as a response to the independence phenomenon.

1.1 ZFC

Set theory is the study of sets. A set is a collection of distinct objects, its members, into

another object, namely the set of those objects. Here we are mainly concerned with pure

set theory. In pure set theory one studies and formulates theories concerning so-called

pure sets: a set x is called pure if all the members of x are sets, as are all members of the

members of x, and so on. So, in pure set theory, every member of a set is a set.

Today, the standard axiomatization of set theory is ZFC, short for Zermelo-Fraenkel

set theory with Choice. In this section we first give the language and state the axioms of

ZFC. After that we look at what kind of structure the axioms might be taken to describe.
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1.1.1 The Language and Formulas of ZFC

The language of ZFC, L∈, is a one-sorted first order language with symbols for the

standard logical connectives and the identity relation. In addition we add a sole non-

logical symbol ∈, which is a binary relation symbol intuitively interpreted as denoting a

membership relation. So x ∈ y is read as something along the lines of “x is a member of

y” or “x is an element of y”.

The formulas of L∈ are built up from the atomic formulas, x ∈ y and x = y, using the

standard connectives, ∧, ∨, ¬, →, ↔, and quantifiers ∀ and ∃. In addition, it is common

to expand L∈ by adding symbols for defined constants, relations and operations, such as

∅ (empty set), ⊆ (subset), ∪ (union), ∩ (intersection) and × (cartesian product). If care

is taken with the definition of each added symbol, each formula in the expanded language

can be written in a form that has only ∈ as the sole non-logical symbol.

For instance, one set being a subset of another, denoted by ⊆, is defined in the

following way:

x ⊆ y ↔ ∀z(z ∈ x→ z ∈ y).

So, x is a subset of y if and only if every member of x is a member of y. This way, whenever

we write x ⊆ y, we can always replace it with the more cumbersome ∀z(z ∈ x→ z ∈ y)

to get rid of the defined symbol.

1.1.2 The Axioms and Axiom Schemas of ZFC

ZFC can be presented in different ways.1 Here we mainly follow Enderton (1977) and

Kunen (2013), and we also give both a formal version and an informal gloss, sometimes

with additional comments, of each axiom or axiom scheme. When stating the axioms and

axiom schemas we will also help ourselves to defined notions whenever convenient:

Extensionality axiom. ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

Informally: Any two sets are identical if they share all members.

Empty set axiom.2 ∃x∀y(y /∈ x)

Informally: There is an empty set.

Comment: Furthermore, there is a unique such set: since any two sets x and y having no

members trivially share all members, then, by Extensionality, x = y. The empty set is

denoted by ∅.

1For some examples, see Enderton (1977), Kunen (1980), Jech (2003) and Kunen (2013).
2This axiom can be eschewed assuming there is at least one thing in the domain. Under that as-

sumption one can prove the existence of an empty set using the axioms of Separation. Uniqueness of the
empty set follows from Extensionality.
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Pairing axiom. ∀x∀y∃y∀w(w ∈ y ↔ w = x ∨ w = y)

Informally: For any two sets x and y there is a set containing just x and y as members.

Union axiom. ∀x∃y∀z(z ∈ y ↔ ∃w(z ∈ w ∧ w ∈ x))

Informally: For any set x, there is a set that has as its only elements any member of a

member of x.

Powerset axiom. ∀x∃y∀z(z ∈ y ↔ z ⊆ x)

Informally: For any set x there is a set of all subsets of x, called the powerset of x. We

write P(x) to denote the powerset of x.

Separation axiom scheme.3 For each formula φ in L∈ without y free, the univer-

sal closure (since φ might contain parameters) of the following is an axiom:

∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z))

Informally: For any set x and condition φ, one can “separate” out the φ’s in x into an-

other set y.

Infinity axiom. ∃x(∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ {y} ∈ x))

Informally: There is a set with ∅ as a member and such that if x is a member, then the

union of x and its singleton {x} is also a member. Thus, there is an infinite set.

Foundation axiom. ∀x(x 6= ∅→ ∃y(y ∈ x ∧ y ∩ x = ∅))

Informally: Every nonempty set contains a member that is disjoint from it.

Comment: The axiom rules out the existence of certain types of sets, such as self-

membered sets (x ∈ x) and infinite descending membership sequences (... ∈ x2 ∈ x1 ∈ x0).

Replacement axiom scheme. For each formula φ(p, q) in L∈ without y free, the uni-

versal closure (since φ(p, q) might contain parameters) of the following is an axiom:

∀x[(∀u ∈ x)∀v∀w(φ(u, v) ∧ φ(u,w)→ v = w)→ ∃y∀z(z ∈ y ↔ ∃t(t ∈ x ∧ φ(t, z)))]

Informally: The antecedent of the main conditional states that φ(p, q) is a functional

condition. So, each instance of the axiom scheme says that if φ defines a function, then

the image of any set under φ is also a set. That is, we can “replace” any member t of a

set with the value of t under the functional relation defined by φ and still get a set.

3This being an axiom scheme, there is a separation axiom for each φ in L∈, which yields infinitely
many axioms. The same holds for Replacement.
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Choice axiom.4

∀F (∅ /∈ F ∧ ∀v ∈ F∀w ∈ F (v 6= w → v ∩ w = ∅)→ ∃c∀x ∈ F∃y(c ∩ x = {y}))

Informally: For any set F of pairwise-disjoint nonempty sets, there is a set containing

exactly one member from each member of F .

Comment: Here is a picture meant to roughly illustrate the axiom: Imagine that you

have a bag F full of nonempty bags x0, x1, x2..., then you can always take another bag c

for which you choose as members exactly one thing from each bag x0, x1, x2... in the bag F .

These axioms and axiom schemas make up ZFC. The theory is extremely powerful, as

noted in the introduction of this thesis, and acts as a framework theory for (almost all of)

conventional mathematics. Set theory also deals with its own interesting subject matter

as a theory of the infinite that goes far beyond the needs of other branches of mathemat-

ics. From this point and onwards I will assume familiarity with ZFC and the basic results

and notions of set theory, such as the development of the theory of ordinals.

1.1.3 The Cumulative Hierarchy

What kind of structure or domain are these axioms meant to describe? The traditional

answer is that ZFC set theory concerns a structure in which more and more sets are

generated bottom-up in a well-ordered sequence of stages. At each stage every collection

or plurality of objects formed at an earlier stage is formed into a set, thus generating

new objects on which the operation of set-formation can act to form additional sets at

subsequent stages.

In pure set theory one starts at the bottom stage where one collects together every

object available prior to that stage into a set, and since there are no objects available

prior to the bottom stage in pure set theory we form ∅. From there on a hierarchy of

sets is built up along the ordinals by iterating the powerset operation at successor stages

and the union operation at limit stages.

Formally, we define the cumulative hierarchy of sets by transfinite recursion on the

class of ordinals in the following way:

V0 = ∅

Vα+1 = P(Vα)

Vλ =
⋃
β<λ

Vβ if λ is a limit ordinal.

4This is but one formulation of the Choice axiom to which there are many equivalent statements, some
of which are strikingly different from the one stated here. For more on the axiom and its equivalencies,
see Enderton (1977:181–4) and Moore (1982).
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Furthermore, it follows from the Foundation axiom that for every set x there is some

α such that x ⊆ Vα and x ∈ Vα+1 (see Enderton 1977:205–6). So, according to ZFC,

every set appears somewhere in the cumulative hierarchy. The cumulative hierarchy is

also known as the universe of all sets and is often denoted by V.

Every stage Vα is itself a set, but the universe V is not a set as it is a theorem of ZFC

that there is no set to which every set belongs. The existence of such a set would lead to

an inconsistency by the following argument: If we had a set of all sets, V = {x | x = x},
then by Separation there would be a set of all sets that do not contain themselves,

R = {x ∈ V | x /∈ x}. R is just the Russell set familiar from Russell’s famous paradox. Is

R a member of itself? Well, R ∈ R↔ R ∈ V ∧R /∈ R. Since V is meant to be the set of all

sets and R would have to be in V if it were a set at all, this reduces to R ∈ R↔ R /∈ R,
which is obviously inconsistent. So, there is no set of all sets.

The standard approach is to think of V as a proper class. Informally, a proper class is

a collection of objects that are “too many” to form a set. V itself is often characterized

in the following way (see for example Jech 2003:64):

V =
⋃

Vα for α ∈ ON.5

Intuitively, V is just the union of all stages. Of course, this cannot be the same as “union”

in the sense of ZFC. If it were, then V would be a set and since, as we noted above, every

set is a member of some stage Vα, V would be a set to which every set belongs. So, in

the language of ZFC our characterization of V is ill-formed and fails to pick out any

object. This can be remedied, however: Either we move to a theory which incorporates

proper classes, such as V and ON , as part of the domain together with a language that

defines union and membership so that they can be used in the way done above, or we

think of proper classes as formulas expressing conditions that a given set may meet. In

the former case V and ON would be objects (or pluralities or concepts; the options are

many) we could pick out in our formal theory and the characterization above would count

as a formal definition.6 In the latter case we could think of V as a universal condition,

such as x = x, and ON as the condition that x be an ordinal. In that case, x ∈ V and

5ON is the class of all ordinals. Since there is no set of all ordinals, by the Burali-Forti paradox, ON
is also a proper class.

6Some more detail: One approach is to assume a domain where everything is a class and then define
a set predicate S(x) as ∃C(x ∈ C), that is, x is a set if and only if there is a class C of which x is a
member. A class A is a proper class if and only if ¬∃C(A ∈ C). The schemas of ZFC can now be given
as sentences by quantifying over all classes. In addition one has a Class comprehension principle, which
is the universal closure of

∃X∀y(y ∈ X ↔ φ(y)).

If we restrict the bound variables in φ so that they may only range over sets, we get the proper class
theory known as NBG. If we allow the bound variables in φ to range over all classes, we get MK. The
first is a conservative extension of ZFC, while the second is not. In any case, we get the class V of all
sets, defined by ∀x(S(x)→ x ∈ V ).
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x ∈ ON would be read as abbreviations of the open formulas ‘x is self-identical’ and ‘x

is an ordinal’ (for more on this see Kunen 1980:24).

By looking at the way we define V and its stages, we can identify two “dimensions”

to the cumulative hierarchy. First, since the hierarchy is built up along the ordinals, the

“height” of the hierarchy is determined by the extent of the class of ordinals. Second,

since successor stages are obtained by forming the set of all subsets of the previous stage,

the “width” of the hierarchy is determined by what subsets are assigned to a set by the

powerset operation. So, at least partly, how clear our picture of V is depends on the

clarity of our understanding of the class of ordinals and the powerset operation.

1.2 Independence

One foundational role that some take ZFC to play is as a final court of appeal for questions

about the provability or unprovability of mathematical statements, that is, what we in

the introduction called providing a Shared Standard (see Maddy 2017:296–8). Given

a mathematical statement ψ we look at its set theoretic surrogate φ and ask if ZFC can

prove φ or, by proving ¬φ, disprove φ. For most mathematical statements of interest the

answer will be one of the two: provable from ZFC or disprovable from ZFC. Unfortunately,

for many open mathematical problems and conjectures, both within set theory and from

other branches of mathematics, the answer is neither (assuming ZFC is consistent). For

all its glory, ZFC is incomplete in significant ways.

A sentence φ that is neither provable nor disprovable from a first order axiomatic

theory T is said to be independent of T. The standard way of showing that a given

φ is independent of a theory T is by constructing at least two models M,N such that

M |= T + φ and N |= T + ¬φ. By the soundness of first order logic, if T proves φ, then

if M |= T, then M |= φ. So, by contraposition, given a model M such that M |= T + φ,

then T does not prove ¬φ, and given a model N such that N |= T +¬φ, then T does not

prove φ.

It follows from the completeness theorem for first order logic that a theory like ZFC

has a model if and only if it is consistent, that is, if no contradiction is provable from it.

On the standard approach to models, a model of ZFC would have to be a pair 〈M,E〉
where M is a nonempty set and E a binary relation on M such that all the axioms of

ZFC are true when we let the variables that appear in the axioms range over M and

interpret ∈ as E. Now, the second incompleteness theorem states that a theory like ZFC,

if it is consistent, cannot prove the formal statement CONZFC ∈ L∈ expressing the

consistency of ZFC. So, if ZFC is consistent, ZFC cannot prove the existence of a model

of ZFC. Therefore, if one wants to show that a certain statement φ is independent of ZFC

using ZFC as the background theory, one cannot straightforwardly construct two models

M,N such that ZFC proves that M |= ZFC + φ and N |= ZFC + ¬φ, as this would
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be a proof of the consistency of ZFC from ZFC. Instead, one must assume that ZFC

is consistent, and therefore has a model, and on this assumption construct the desired

models. Or, by contraposing, show that ZFC is inconsistent if ZFC + the statement

of interest is inconsistent. These proofs are called relative consistency proofs. If both

ZFC + φ and ZFC + ¬φ are consistent relative to the assumed consistency of ZFC, then

φ is independent of ZFC.

We mentioned earlier that a whole range of mathematical statements have been shown

to be independent of ZFC. We now turn to looking at one of these in more detail.

1.2.1 The Continuum Hypothesis

The most famous statement independent of ZFC is probably the continuum hypothesis

(CH), a suggested answer to a rather naturally occurring question concerning the cardi-

nality of the set of real numbers. The statement was first conjectured to be true by Georg

Cantor, one of the founders of set theory, in the latter half of the nineteenth century,

and later shown to be independent of ZFC through the work of Kurt Gödel and Paul

Cohen. In this section we state CH, and in the two sections after that, we briefly review

the methods that Gödel and Cohen used to establish the independence of CH from ZFC.

The cardinal number κ of a set x denotes the size of that set. Two sets x and y are said

to have the same size if they are equinumerous, written x ≈ y, which means that there

is a one-to-one correspondence between x and y (we have a one-to-one correspondence

between two sets if there is a one-to-one function from x onto y). So we can say that |x| =
|y| iff x ≈ y, where |x| denotes the cardinality of x.7 For any finite-sized set, the cardinal

number of that set will be one of the natural numbers. But the set of all natural numbers,

ω = {0, 1, 2, 3, ...}, is an infinite set. What, then, should we say about the cardinal number

of ω? One of the strengths of set theory, as it originated in the work of Cantor, is that it

allows us to speak of the sizes of infinite sets.

The cardinal number of ω is denoted by ℵ0, which is the least infinite cardinal. In

fact, many infinite-sized sets have cardinality ℵ0, like the set of all odd numbers, the set

of all integers, the set of all rational numbers, and many more. But there are also infinite

sets with cardinalities strictly greater than ℵ0. One such set is the set of real numbers

R. It can be shown that R ≈ P(ω), where P(ω) is the powerset of the set of natural

numbers. By Cantor’s theorem (6B(b) in Enderton 1977), which states that for any given

set x, the powerset of x is strictly greater than x, that is, ∀x(|x| < |P(x)|), we know

that ℵ0 < |R|. Since it also holds that |R| = 2ℵ0 , we can write ℵ0 < 2ℵ0 .

To sum up what we have so far:

7Ultimately, one defines the cardinal of a single set x to be the least ordinal α equinumerous to x; one
can then prove the definition above. A cardinal number can be thought of as a special kind of ordinal, a
so-called initial ordinal, which is an ordinal with the property of not being equinumerous to any smaller
ordinal (for more see Enderton 1977:Chapter 7).
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1. |ω| = ℵ0

2. |R| = 2ℵ0

3. ℵ0 < 2ℵ0

We are now ready to state CH. Here is a rather simple question to ask when faced with

the third statement on the list: is there any cardinal κ such that ℵ0 < κ < 2ℵ0? In other

words, is there any size in-between the size of the natural numbers and the size of the

real numbers? Cantor hypothesized that the answer is negative; there is no such κ. If we

define ℵ1 to be the least infinite cardinal such that ℵ0 < ℵ1, CH can be stated as

(CH) 2ℵ0 = ℵ1.

The negation of CH says that 2ℵ0 does not equal ℵ1. Since 2ℵ0 is strictly greater than ℵ0,
then, according to ¬CH, there must be at least one cardinality strictly between ℵ0 and

2ℵ0 . The generalized CH (GCH) states that for any infinite cardinal κ there is no cardinal

number λ such that κ < λ < 2κ. This can also be stated as: for any α, 2ℵα = ℵα+1. This

statement entails CH.

1.2.2 Gödel’s L

The first step towards showing that CH is independent of ZFC was taken by Gödel in

the late 1930s. By assuming that ZF (ZFC without the Choice axiom) is consistent, he

built a model of ZFC in which GCH (and therefore CH) holds, which establishes that

Con(ZF) → Con(ZFC + GCH).

So, if ZF is consistent, then Choice cannot be disproved from ZF and CH cannot be

disproved from either ZF or ZFC.

The proper class model Gödel constructed is known as the constructible hierarchy,

denoted by L. In a similar manner to V, L is defined by transfinite recursion on the class of

ordinals starting with ∅. The important difference is that, at successor stages, instead of

taking the full powerset of Vα to get Vα+1, one only takes the subsets of Lα definable from

Lα using elements of Lα as parameters. In general, a set x is definable over A iff there is

a φ ∈ L∈ and parameters a1, ..., an ∈ A such that x = {y ∈ A | A |= φ(y, a1, ..., an)}. The

set of subsets definable over a set A we call the definable powerset of A and denote with

D(A) (for more details on how to define L see Kunen 1980:165–6 and Jech 2003:175).
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The definitions of the stages of L can thus be stated as:

L0 = ∅

Lα+1 = D(Lα)

Lλ =
⋃
β<λ

Lβ if λ is a limit ordinal.

Furthermore, we let L be the proper class

L =
⋃

Lα for α ∈ ON .

Assume ZF has a model M = 〈DM , E1〉. Then we can produce a model N = 〈DN , E2〉
such that the domain DN is a subset of DM such that the members satisfy the definition

of being constructible and the interpretation E2 of ∈ in N is E1 ∩DN ×DN (that is, we

keep the interpretation of ∈ fixed except for restricting the relation to the domain of N).

Furthermore, N contains all the ordinals of M. We can prove that N is a model of ZF. It

will also be a model of the statement V = L which says that every set is constructible.

From ZF + V = L one can prove the Choice axiom and GCH, so Choice and GCH also

hold in N. To summarize we have

Con(ZF) → Con(ZF + V = L),

ZF + V = L ` Choice + GCH

So,

Con(ZF) → Con(ZFC + GCH).

It follows from this that if ZFC is consistent, then ZFC + CH is consistent, so there can

be no proof of ¬CH from ZFC.

If we compare L with V with regards to the “dimensions” mentioned earlier, we see

that the height of L is equal to the height of V, as the generation of stages in L is carried

out along the ordinals in the same manner as with the stages of V . The case of width is

more complicated. Starting with L0 up to and including Lω, the stages of L and V are

equally wide since D(x) = P(x) for finite x, so Lα = Vα for α ≤ ω. However, at successor

stages Lα+1 of stages Lα with ω ≤ α, we have that Lα+1 ( Vα+1, so each successor stage

after ω is thinner in L compared to the stages in V. This might suggest that the Vα’s will

outgrow the Lα’s and that L cannot be equal to V, but this is not implied. The trick is

to realize that although a given set x ∈ Vα+1 may not be a definable subset of Lα, and

thus not a member of Lα+1, x may be a definable subset of some later stage Lβ, and in

that case x ∈ Lβ+1. This way, any set that is not formed in L at the stage where it is

formed in V could possibly be retrieved at a later stage in L, allowing that L could be

equal to V. In fact, as we will see, the statement V = L is not only relatively consistent
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with ZFC but also independent of ZFC.8

One last thing to note about L is that it is an example of a so-called inner model in

set theory. More generally, we say that given an extension of ZF, T1 (which could be ZF

itself), and a theory T2 (possibly the same as T1) also stated in L∈, N is a model of T2

and inner (in M) if M is a model of T1 and N is such that the domain of N is a transitive

class of the domain of M, the interpretation of ∈ in N is equal to the interpretation of ∈
in M restricted to N and N contains all the ordinals of M.

1.2.3 Forcing

The second and last step towards showing that CH is independent of ZFC was taken

by Cohen in the early 1960s. Developing and using the technique known as forcing, he

showed how to construct, given a model of ZFC, a model of ZFC + ¬CH, thus

Con(ZFC) → Con(ZFC + ¬CH).

So, if ZFC is consistent, then CH cannot be proved from ZFC. Cohen also showed that

the negation of the Choice axiom is relatively consistent with ZF, so the Choice axiom is

independent of ZF.

With L, and inner models more generally, one assumes that there is a model of, say,

ZFC and then obtains a substructure of that model and investigates what theory might

hold there. With forcing the idea is to start with some model of ZFC and then obtain

an expansion of that model which might model additional claims in the language of set

theory. We superficially and very briefly describe one approach to forcing below, involving

the use of countable transitive models of (finite sub-theories of) ZFC. For more detailed

expositions of both this approach and others one can consult Kunen (1980, 2013), Jech

(2003) and Bell (2005). The original method and results are given by Cohen (1966) and

an attempt at a more accessible presentation can be found in Chow (2009).

The method of forcing allows us to construct from a given countable transitive model

M of ZFC, a generic extension M [G] which is also a model of ZFC and, depending

on how we carry out the construction, further claims in the language of set theory. A

model is transitive if every member y of a member x of M is also a member of M

(y ∈ x ∧ x ∈M → y ∈M); the assumption of transitivity does not matter much for our

purposes but we note that it simplifies many parts of the proof of M and M [G] being

models of ZFC as many set theoretic notions are absolute for transitive classes. Although

ZFC proves the existence of uncountable sets, it follows from the downward direction of

8Having said that, many set theorists and philosophers of mathematics would probably argue that
V 6= L. One reason is that V = L is inconsistent with the existence of relatively weak large large
cardinals, such as a measurable cardinal. For more discussion of V = L and a case against the statement,
see Maddy (1993) and (1997:216–32).
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the Löwenheim-Skolem theorem and the Mostowski collapse lemma that if ZFC has a

well-founded model, then ZFC has a countable transitive model. The main reason one

works with countable M is that if one does not assume that M is countable, then it is

not guaranteed that there will exist the right kind of G to add to M, which is a so-called

filter generic over M, but assuming that M is countable it is easy to prove the existence

of such a filter.

The standard approach to set forcing, then, is to assume the existence of a countable

transitive model M of ZFC called a ground model. We then find a partially ordered set

with a maximal element P = 〈P,≤p,1p〉 ∈M such that P is the domain, and ≤p is the

ordering on P with a maximal element 1p. We then use this partially ordered set to define

a new set G such that G is a filter on P intersecting every subset of M that is dense in

P; in that case we say that G is P-generic over M .9 It follows from this that G /∈ M.

Eschewing a lot of technical detail, we adjoin G to M in a controlled manner to get the

forcing extension M [G]. By varying P one can, with great freedom, model different claims

in the language of set theory. If all this is done with care, the resulting M [G] will be a

model of ZFC with the same ordinals as M and, importantly for our purposes, M is a

proper subset of M [G], so there are sets in M [G] that are not in M .

Intuitively, we are adding subsets to the stages of M in such a manner that we preserve

ZFC yet alter the truth value of many set theoretic statements. In this sense, the forcing

extension M [G] will be “wider” than the ground model M we started with. Cohen used

the technique to show that assuming that there is a countable transitive model M of ZFC

+ V = L, there is a forcing extension M [G] such that it is a model of ZFC + V 6= L +

¬CH. In particular, Cohen gave an M [G] such that 2ℵ0 = ℵ2 in M [G].10 We can think of

this forcing as adding ℵ2 new subsets of ω. This result means that

Con(ZFC) → Con(ZFC + V 6= L)

and

Con(ZFC) → Con(ZFC + ¬CH).

Since Gödel showed that Con(ZF) → Con(ZFC + V = L) and Cohen showed that

Con(ZFC + V = L) → Con(ZFC + V 6= L +¬CH), we get Con(ZF) → Con(ZFC +

V 6= L + ¬CH), and from that the two statements above follow. The underlying reasoning

on the countable transitive model approach is that, by features of the models and the

9Let P = 〈P,≤p〉 be a partially ordered set. A subset x of M is dense in P if for all p ∈ P, there
is a q ∈ x such that q ≤p p. G ⊂ P is a filter in P iff (a) ∀p, q ∈ G∃r ∈ G(r ≤p p ∧ r ≤p q), and (b)
∀p ∈ G∀q ∈ P (p ≤p q → q ∈ G).

10More generally, we can force 2ℵ0 to equal any cardinal with uncountable cofinality, including ℵ7,ℵω1

and even ℵ2ℵ0 . The restriction to cardinals of uncountable cofinality is due to König’s Theorem which
states that for κ greater than or equal to 2 and any infinite cardinal λ, the cofinality of κλ is strictly
greater than λ. For more details, see Kunen (2013:75).

16



finiteness of proofs, if ZFC + ¬CH proves a contradiction, that is, is inconsistent, then

ZFC proves a contradiction on its own (see Kunen 2013:281–2). So, conversely, if ZFC

is consistent, then ZFC + ¬CH is as well. Therefore, there is no proof of CH or V = L

from ZFC, and combining this with the results obtained by Gödel’s L, both statements

are independent of ZFC.

Since Gödel’s and Cohen’s introduction of the methods, the techniques of defining in-

ner models and forcing extensions have been used to show that many more or less natural

and interesting mathematical statements from several different branches of mathematics

are independent of ZFC. Examples include Whitehead’s problem in group theory, the

Borel conjecture in measure theory and Kaplansky’s conjecture on Banach algebras. This

is done by considering a diverse variety of models of set theory, as Joel David Hamkins

points out:

A large part of set theory over the past half-century has been about construct-

ing as many different models of set theory as possible, often to exhibit precise

features or to have specific relationships with other models. Would you like to

live in a universe where CH holds, but ♦ fails? Or where 2ℵn = ℵn+2 for every

natural number n? Would you like to have rigid Suslin trees? Would you like

every Aronszajn tree to be special? Do you want a weakly compact cardinal

κ for which ♦κ(REG) fails? Set theorists build models to order. (Hamkins

2012:418)

One strikingly simple and reasonable-sounding statement independent of ZFC (discussed

by Hamkins (2015:142–3)) is the statement

|x| < |y| → |P(x)| < |P(y)|.

That is, if the cardinality of y is greater than that of x, then the cardinality of the powerset

or the number of subsets of y is greater than that of the powerset or number of subsets of x.

The statement is implied by GCH but can fail in certain forcing extensions. For example,

there are models where the statement 2ω = 2ω1 , known as Luzin’s hypothesis, holds. In

such a model, the powerset of the natural numbers stands in a one-one-correspondence

with the powerset of an uncountable set, ω1. These and further examples show that ZFC

is incomplete in a significant way both regarding questions within set theory and from

other branches of mathematics.

1.3 Gödel’s Program

In 1900 the mathematician David Hilbert presented twenty-three then unsolved problems

in mathematics for which he thought that mathematicians ought to find an answer and

through which advancements in the science of mathematics may be expected. On the top

17



of that list stood CH. As we now know CH is independent of the most widely accepted

foundational theory for mathematics, ZFC, so the question of whether CH holds or not

cannot be decided in that system. ZFC doesn’t have the answer. What to do in light of

this fact?

Many mathematicians think that the question of CH is “solved” by the independence

result: it has no answer; there is nothing more to say. This could be spelled out by saying

that a question about whether a mathematical statement holds or not has a definite

and unique answer if it is decidable from ZFC, that is, ZFC proves it or its negation.

Otherwise, if the statement is undecidable from, that is, independent of, ZFC, then it

has no unique answer and if it has no unique answer, it has no answer at all.11 Of

course, the more interesting mathematical statements we prove independent of ZFC,

the less palatable this position potentially becomes. For example, if some of the most

famous and important unsolved problems in mathematics, such as Goldbach’s conjecture

or Riemann’s hypothesis, were to be proven independent of ZFC, it is less likely that the

working mathematician would go along with the response just sketched.

A different reaction came from Kurt Gödel, one of the central figures in the develop-

ment of the independence results and one of the most influential mathematicians of the

twentieth century. Gödel, who was strongly realist about the subject-matter of mathemat-

ics, thought that the independence results only show us that our axioms are incomplete

in their description of mathematical reality. In 1947, before Cohen had established that

CH is independent of ZFC, Gödel anticipated the result yet saw it as no solution. Worth

quoting at length, he wrote:

[E]ven if one should succeed in proving its [CH’s] undemonstrability [...] this

would [...] by no means settle the question definitively. Only someone who [...]

denies that the concepts and axioms of classical set theory have any meaning

(or any well-defined meaning) could be satisfied with such a solution, not

someone who believes them to describe some well-determined reality. For in

this reality Cantor’s conjecture [CH] must be either true or false, and its

undecidability from the axioms as known today can only mean that these

axioms do not contain a complete description of this reality; and such a belief

is by no means chimerical, since it is possible to point out ways in which a

decision of the question, even if it is undecidable from the axioms in their

present form, might nevertheless be obtained. (Gödel 1947:519–20)

Gödel suggests a program of research with the goal of reducing the incompleteness in set

theory by justifying new and stronger axioms that are to be added to ZFC. The test case

11A slightly different yet related reaction which we will discuss more in this thesis, is to say that there
is a lot more to be said about CH and how it might hold or fail, it is just that there is more than one
justified answer to the question of CH; the statement is both true and false relative to different universes
of set theory.
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for the success of the program is CH. This program of research is often called Gödel’s

program and lives on today in the work of several contemporary set theorists, such as W.

Hugh Woodin. It has led to the formulation of many different axiom candidates proposed

in addition to the axioms of ZFC, many of which are incompatible with each other.

The goal of Gödel’s program is to reduce the amount of incompleteness in set theory

for mathematically interesting φ ∈ L∈ such that φ is independent of ZFC, by extending

ZFC. Of course, there are trivial ways of doing this. For example, we could take the theory

ZFC + φ or the theory ZFC + ¬φ, both of which easily prove or disprove φ. So the point

of the program is to extend ZFC in a non-trivial and justified manner. This introduces

a component into the program clearly amenable to philosophical discussion: What is it

for an axiom to be justified? What evidence can we give in favor of an axiom? We will

return to these questions in Chapter 3.

Following Koellner (2006), we might divide Gödel’s program, implicit in the way

Gödel himself presented it, into two parts; the one more general than the other. First,

the narrow sense of the program is a program of reducing incompleteness by so-called

large cardinal axioms. There is no precise definition of what counts as a large cardinal

axiom, but, to give a rough characterization, many large cardinal axioms Λ are statements

asserting the existence of a cardinal κ such that κ cannot be obtained by the operations

for generating larger and larger cardinals in ZFC; in other words their existence cannot

be proved from ZFC (for a comprehensive and detailed treatment of large cardinals, see

Kanamori (2003)). Several large cardinal axioms have been formulated and many of them

decide statements independent of ZFC. For example, by the assumption that there is an

inaccessible cardinal κ, one can prove the consistency of ZFC. Koellner (2006) argues that

the program for large cardinals has been very successful “below CH” but that it breaks

down at that point as no known large cardinal axiom decides CH.

This leads us to the wider sense of the program: reducing incompleteness by any new

axioms for set theory in general. The goal of this second and more general sense of Gödel’s

program is nicely summarized by Steel (2014) as:

Decide mathematically interesting questions independent of ZFC in well-

justified extensions of ZFC.

If we strengthen this to well-justified and true or correct theories, a question of monism

vs. pluralism arises: Say that φ ∈ L∈ is satisfactorily decidable iff there is at least one

well-justified and correct extension of ZFC, T, such that T either proves φ or ¬φ. Say

that φ is uniquely decidable iff φ is satisfactorily decidable and for all well-justified and

correct extensions of ZFC, T1, if T1 proves φ, then there is no well-justified and correct

extension of ZFC, T2, such that T2 proves ¬φ and if T1 proves ¬φ, then there is no well-

justified and correct extension of ZFC, T3, such that T3 proves φ. Do the satisfactorily

and uniquely decidable φ ∈ L∈ coincide? Someone who answers “yes”, we may call a
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set theoretic monist, someone who answers “no” and thinks that there are satisfactorily

decidable φ that are not uniquely decidable, we may call a set-theoretic pluralist. Monism

and pluralism are thus understood as postions regarding correct theories of set theory.

It seems clear that Gödel proposed his program in a monist spirit and that many of

the set theorists involved in the program are committed to something like monism. That

is, if the question of whether a statement such as CH holds or fails is to be decided in

well-justified and correct extensions of ZFC, so that we can reduce the incompleteness

in set theory, it ought to be done so uniquely. In the next chapter we will investigate a

view that might be taken to give up the uniqueness requirement and holds that many of

the statements independent of ZFC, such as CH, have in fact already been established to

be satisfactorily and non-uniquely decidable, thereby reducing the incompleteness in set

theory in a different manner. The view does so by positing a multiverse of set theoretic

universes.
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Chapter 2

Multiversism in Set Theory

[I] do not agree with the pure Platonic view that the interesting problems

in set theory can be decided, that we just have to discover the additional

axiom. My mental picture is that we have many possible set theories, all

conforming to ZFC. I do not feel “a universe of ZFC” is like “the Sun”, it is

rather like “a human being” or “a human being of some fixed

nationality”[...].

S. Shelah (2003), “Logical Dreams”

ZFC is significantly or, as Andrzej Mostowski once put it, “hopelessly” incomplete (re-

ported in Lakatos 1967:93). Furthermore, if ZFC is consistent, there are many consistent

ways of extending the theory; some of which are mutually incompatible. This is what the

model theory of set theory has shown us, as we saw in the last chapter. For example, it

is consistent with ZFC that the cardinality of the real numbers takes on a wide range of

values in different models of ZFC. But among all the possible ways of extending ZFC,

should we expect one to be privileged in some way? Is there one and only one way that

correctly unfurls our concept of set embodied in the cumulative hierarchy? Is there only

one universe of sets to describe?

In this chapter we turn to the main philosophical question of this thesis, namely

whether or not there is one and only one definite universe in set theory or if there are many

distinct set theoretic universes. We start by briefly describing a one universe view and its

role in Gödel’s program; motivating the search for new axioms. After this, we look at an

alternative view. It arises in part out of the pervasiveness and seeming unresolvability of

the independence phenomenon in set theory. It posits that there are many universes of sets

in which different and sometimes incompatible extensions of ZFC hold. As such, we have

satisfactory answers to many of the statements undecided by ZFC, although not unique

answers. In the end, we consider some of the main objections to the multiverse view. The

aim of the chapter is to establish the multiverse view as a philosophically interesting and

coherent understanding of set theory without defending the view any further.
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2.1 Universism

The point of Gödel’s program is to formulate and justify new axioms for set theory that

reduce the incompleteness of ZFC. The monist thinks that among all the possible exten-

sions of ZFC, there is only one correct theory of sets. The universe view or universism can

be seen as a view of sets and the determinacy of set talk that underpins this expectation

about theory.

As we saw earlier, for Gödel the program of new axioms was motivated by the thought

that set theory is about a well-determined reality in which independent statements such

as CH either hold or not. Understood this way, the significant incompleteness of ZFC

only shows us that the axioms of ZFC are incomplete in their description of set theoretic

reality.

We could spell this out a bit more using the notion of the cumulative hierarchy

V. In the language of ZFC we can define the stages of V and from ZFC prove their

existence. But the model theory of set theory has shown us that many features of V are

left underspecified by ZFC. For a wide class of models M of ZFC, we can find models

of ZFC such that they are taller than M or wider than M.1 One way of understanding

Gödel’s view is as holding that there is a maximal and unique universe V of all sets.

ZFC tries to describe V but the theory fails to give a complete description. Still, since

the universe exists and there is only one, CH and other independent statements must be

either true or false in that universe. The uniquely correct set theory, then, is the theory

containing all true statements about V.

This way, the one universe view naturally motivates a search for a new axiom that

will give us a more complete description of V. One of the foremost contributors to the

search for new axioms, W. Hugh Woodin, commenting on the prospects for finding such

an axiom, puts it thus:

A far stronger view [...] which I also currently hold [...], is that there must be

such an axiom and in understanding it we will understand why it is essentially

unique and therefore true. Further this new axiom will in a transparent fashion

both settle the classical questions of combinatorial set theory where to date

independence has been the rule and explain the large cardinal hierarchy.

And

In other words, we would have come to a conception of the transfinite universe

which is as clear and unambiguous as our conception of the fragment Vω, the

universe of the finite integers. (Woodin 2011:17)

1I did not discuss height extensions of models of set theory in the last chapter. For our purposes it
is sufficient to note that similarly to how forcing allows us to expand models of ZFC in width, there are
techniques for expanding models of ZFC in height.
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Although the quotes as I present them contain no arguments for the one universe view,

the point is that at least some set theorists subscribe to the one universe view and see it

as an important motivation for the search for new axioms.

The one universe view invites an analogy between mathematics and natural science. In

physics, for example, most scientists believe there is an independently existing and unique

physical domain that we are studying; yet no theory we have come up with so far is seen

as anything near complete in its description of that domain. So the business of physics

as a science is to improve our theories by whatever legitimate methods of justification we

have at our hands. If we have come up with a sensible question regarding the physical

domain and our theory does not tell us the answer, then business as usual is to try to

find out what the answer is. Similarly, a proponent of the one universe view in set theory

holds that there independently exists a unique set theoretic domain, and although our

theory does not completely capture it, we can try to formulate and justify more complete

theories. This analogy was invoked and developed by Gödel (1944). The analogy isn’t

perfect: for example, in set theory, the universist would regard ZFC as incomplete but all

the same correct in its description of V, while in natural science, we would probably take

our best scientific theories to be neither complete nor correct, but more or less accurate

in their description of their domains of study. We will return to this analogy and matters

of justification in Chapter 3.

But what if the uniqueness of the set theoretic domain fails? We now turn to an

alternative response to the independence phenomenon in set theory, namely the view

that there are many distinct set theoretic universes.

2.2 Multiversism

The central idea of multiverse views in set theory is that there are many, somehow equally

legitimate, universes of sets. Motivated by the range of different model constructions for

set theory, these universes are thought to be different in various interesting ways. For

example, in some universes CH holds and in others the statement fails. In asking questions

about sets we must consequently ask our questions and seek answers relative to what kind

of universe of sets we want to consider.

Although explicit defense and more detailed development of multiverse views in set

theory are quite recent, precursor ideas of some kind of pluralism in set theory can be

found. After having established the relative consistency of ZFC + GCH with ZF by the

construction of L, Gödel gave a lecture at Göttingen where he concluded by suggesting

that “it is very plausible that with [V = L] one is dealing with an absolutely undecidable

proposition, on which set theory bifurcates into two different systems,” (Gödel 1939:155)

presumably constructible and non-constructible set theory. Gödel later recanted this view

in his (1947/1964). After Cohen’s proof of the independence of CH from ZFC and the
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establishment of a wide array of other such results, other set theorists voiced similar

opinions more firmly. For example, in 1965 Mostowski, commenting on the independence

results in a talk, argued “that there are several essentially different notions of set which are

equally admissible as the intuitive basis for set theory” (Mostowski 1965:82). Furthermore,

reminiscent of thoughts underlying contemporary multiverse views, he claimed that

[m]odels constructed by Gödel and Cohen are important [...] because they

show us various possibilities which are open to us when we want to make

more precise the intuitions underlying the notion of a set. [...] Probably we

shall have in the future essentially different intuitive notions of sets just as we

have different notions of space, and will base our discussions of sets on axioms

which correspond to the kind of sets which we want to study. (Mostowski

1965:94)

In the discussion, the mathematician László Kalmár concurred, adding “I guess that in

the future we shall say as naturally ‘let us take a set theory S’ as we take now a group

G or a field F” (in Lakatos 1967:105).2 Similarly, Cohen and Hersh (1967) distinguish,

in analogy with Euclidean and non-Euclidean geometry, between Cantorian and non-

Cantorian set theory.

In arguing against the existence of multiple universes of sets, Martin (2001:14) notes

that it is hard to criticize “the view that the independence proofs by forcing show that

there are many universes of sets” because “the view, though often expressed in conver-

sation, is rarely expounded in print.” Today, however, there are several set theorists and

philosophers of mathematics articulating and defending some form of multiversism, at-

testing to the recency of these views. There is the Hyperuniverse program of Sy-David

Friedman (see Arrigoni and Friedman 2013), the development of a language and theory

of the so-called generic multiverse by John Steel (2014), and the more radical multiverse

view defended by Joel David Hamkins (2012, 2015) who defends (in print) exactly the

kind of view Martin describes. Others, such as Saharon Shelah (2003), quoted at the

outset of this chapter, have also expressed similar ideas. There are also more general and

philosophical precursor pluralist views in the work of Balaguer (1995, 1998) and Field

(1998) which we return to briefly below. We cannot hope to review and discuss all these

views here (for a survey of different views, see Antos et al. (2015)), and therefore choose

to look in more detail at the most ardent, radical and explicitly philosophical defense of

a multiverse view, which is Hamkins’ multiversism.

2Interestingly, these early pluralists understood the pluralism as a problem for the foundational as-
pirations of set theory, in contrast to contemporary pluralists such as Hamkins. We return to this issue
below.
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2.2.1 Hamkins’ Multiversism

Hamkins asserts the existence of many universes of sets, and he characterizes his multi-

verse view in the following way:

[T]here are diverse distinct concepts of set, each instantiated in a correspond-

ing set theoretic universe, which exhibit diverse set theoretic truths. Each such

universe exists independently in the same Platonic sense that proponents of

the universe view regard their universe to exist. (Hamkins 2012:416–17)

He adds:

Part of my goal [is] to tease apart two often-blurred aspects of set-theoretic

Platonism, namely, to separate the claim that the set theoretic universe has

a real mathematical existence from the claim that it is unique. The multi-

verse perspective is meant to affirm the realist position, while denying the

uniqueness of our set-theoretic background concept. (Hamkins 2015:137)

Furthermore, Hamkins thinks that many of these universes have already been studied,

somewhat indirectly, via models of set theory, such as L and M [G].

Our most powerful set-theoretic tools, such as forcing, ultrapowers, and canon-

ical inner models are most naturally understood as methods of constructing

alternative set-theoretic possibilities. (Hamkins 2012:418)

So, there are many set theoretic universes, and the model theoretic methods in set theory

give us a handle on characterizing and studying them.

One might respond that inner models do not pose that much of a problem for the

one universe view: If there was a maximal and unique universe of sets V, and we let that

serve as our model, we could still obtain many inner models as substructures of V, that

is, by restricting our view, so to speak, of V to only certain parts of it. What Hamkins

take as much more problematic for universism is to explain the use of forcing in general

and to avoid the sense that there are universes outside of V.

Forcing allows us to expand models M of ZFC, to get forcing extensions M [G]. As we

saw in Chapter 1, if M is a model of ZFC and P ∈M is a suitable forcing notion, then,

if G is an M -generic filter over P, then G /∈ M. Consequently, if one thinks that there

is a maximal and unique universe V, there can be no V -generic filters G over non-trivial

forcing notions in V, as such a G would have to be outside of V. Thus there can be no

forcing extension of the universe.

Hamkins regards this as an overly restrictive view of the forcing method. Although

there is no such G in V, Hamkins takes the different formal approaches to forcing, es-

pecially approaches to forcing which involves the use of class models of ZFC, as ways

of simulating V [G] inside V, suggesting that there must be universes outside of V. The
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universist might take these formal techniques for extending models of ZFC as tricks that

give rise to a mistaken sense that there is something outside of V. Hamkins, on the other

hand, take the formal techniques to suggest that there is something outside of V :

The multiverse view [...] takes this use of forcing at face value, as evidence

that there actually are V -generic filters and the corresponding universes V [G]

to which they give rise, existing outside the universe. This is a claim that we

cannot prove within set theory, but [it] makes sense of our experience [...] by

positing as a philosophical claim the actual existence of the generic objects

which forcing comes so close to grasping, without actually grasping. (Hamkins

2012:425)

Adding to this, one might say that the development of forcing techniques has given us

an insight into a general mathematical phenomenon and a robust sense of what it means

for there to be a forcing extension of V, even though we cannot state that there exists

one directly from within our foundational theory. This is analogous to how we might

come to be justified in believing that our foundational theory is consistent, even though

that theory could not prove its own consistency. Thus, Hamkins’ multiversism is a philo-

sophical position trying to make sense of the model theory of set theory. It understands

the independence phenomenon not as the discovery that our theory is incomplete in its

description of a unique universe of all sets, but rather as the discovery of many kinds of

universes of sets satisfying different theories.

Hamkins compares the situation in set theory with the situation in geometry after

the middle of the 19th century. The analogy revolves around the Parallel postulate:

Euclidean Parallel Postulate: For every line l and for every point P that

does not lie on l there exists a unique line m through P that is parallel to l.3

For about two millennia geometers hoped to prove the postulate, which is equivalent to

Euclid’s fifth postulate, from Euclid’s other four postulates, known as absolute geometry.

In the nineteenth century the statement was discovered to be independent of absolute

geometry. This subsequently led to a bifurcation in the study of geometry into Euclidean

geometry, where the postulate holds, and non-Euclidean geometry, where the postulate

fails; either because there is no line parallel to l through P (Elliptic geometry) or because

there is more than one line parallel to l through P (Hyperbolic geometry). According to

the mathematician Marvin J. Greenberg:

This discovery shattered the traditional conception of geometry as the true

description of physical space. Mainly through the influence of David Hilbert’s

3Where, in the 2-dimensional case, two lines l and m are defined to be parallel if they do not intersect,
that is, if no point lies on both of them.
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Grundlagen der Geometrie, a new conception emerged in which the exis-

tence of many equally consistent geometries was acknowledged[...]. (Greenberg

1994:xi)

The point is that in geometry, mathematicians accepted the different kinds of spaces

characterized by the models used to show that the parallel postulate is independent of

absolute geometry as equally mathematically legitimate or real. Hamkins thinks that the

same is happening in set theory and that “the multiverse view now makes the same step

in set theory that geometers ultimately made long ago, namely to accept the alternative

worlds as fully real” (Hamkins 2012:426).

Although Hamkins presents a highly interesting and fascinating view, drawing on a

wealth of knowledge about technical developments in set theory, the view is somewhat

philosophically underdeveloped. For example, Hamkins often varies between talking about

universes, models, and concepts of sets, without being very explicit about how they relate

to each other: sometimes they are simply identified with each other but at other times they

are thought of as distinct entities. In the next section we try to spell out the philosophical

components of the view a bit further.

2.2.2 Multiversism as Plentiful Platonism

The universist platonist view in set theory asserts the independent existence of a deter-

minate universe of sets. Statements in the language of set theory are either true or false of

that universe, and thus uniquely true or false, and our constant symbols and interpreted

variables refer to sets in the universe. Furthermore, there are unique concepts of set and

membership, which are just the concepts that pick out all the sets in the universe and

how those are structured by the membership-relation.

I take Hamkins to defend the extension of this standard platonism to include many

distinct universes of sets and equally many distinct concepts of set. That is, there are

many universes of sets all independently existing of us. Within each there exist sets of

a certain kind, namely the sets of that universe. So, for each universe of sets there is

a concept of set. Statements in the language of set theory are either true or false of

a given universe, relative to the corresponding concept of set, and under that concept

the constant symbols and interpreted variables refer to sets in the universe. Therefore,

statements in the language of set theory need not be uniquely true or false, as a given

statement can be false relative to one concept of set and true relative to another. All the

same, on Hamkins’ multiversism (understood this way), the basic account of the ontology

of sets and its relation with truth and reference in set talk mirrors the universist account

of the same phenomena, supplemented with many universes and several set concepts.

On this understanding, Hamkins is defending a more detailed and technically moti-

vated version of what Balaguer (1995, 1998) has defended under the name of “full-blooded
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platonism” and Field (1998) explored as “plenitudinous platonism.” Maddy (1997:196)

calls it “plentiful platonism” and characterizes the view as the claim that there exists

a universe of sets corresponding to every consistent extension of ZFC. Balaguer’s and

Field’s views are much more general, less technically developed and more philosophically

motivated than Hamkins’ view. Balaguer (1995) proposes his view as an account of how

we can acquire knowledge of mathematical objects. Roughly speaking, his view is that all

mathematical objects that could exist (that is, are logically possible) actually do exist.

Then, according to Balaguer, as long as we can consistently conceive of a mathematical

object or structure, we will have an accurate representation of some mathematical object

or structure, thus knowledge, since every such object or structure that is logically possible

does in fact exist. Field (1998) explores the view as a way for a realist to characterize and

make sense of indeterminacy in set theory. He characterizes the view as “whenever you

have a consistent theory of pure mathematics[...], then there are mathematical objects

that satisfy that theory under a perfectly standard satisfaction relation” (Field 1998:292).

If we take every consistent extension of ZFC as our range of theories, then there will be,

for example, CH and ¬CH universes. This explains why CH is not uniquely true or false.

What makes Hamkins’ view interesting is how it ties these philosophical claims to the

technical developments in set theory such as forcing. For example, Hamkins’ view predicts

that ordinary set talk is ambiguous between, or involves a cluster of, different set concepts,

picking out different kinds of sets. A natural way of understanding Hamkins’ view of the

model theory of set theory is as providing tools for sharpening the ambiguous concept of

set or narrowing the cluster of set concepts in various ways. Although the methods do not

give us completely sharpened concepts, they still illuminate in informative ways what kind

of universes there are and what statements that hold there, such as with Gödel’s L and

Cohen’s M [G]. As part of this, the model-theoretic tools provide us with our primary way

of epistemically accessing the multiverse. If we can, from a model M of, say, ZFC, obtain

a model N of ZFC + φ by the use of for example inner models or forcing extensions,

then we are justified in believing that there exists a ZFC + φ universe. This way the

different kinds of model constructions we are familiar with, although not necessarily the

universes themselves, allow us to glimpse into the multiverse and characterize what kind

of universes there are.

Understood as a form of plentiful platonism, Hamkins’ multiversism thus gives us an

account of the ontology of sets, together with ways of understanding set talk and the

epistemology of set theory, that interact with technical developments in the model theory

of set theory in interesting ways.
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2.2.3 Strengths of Multiversism

We have seen that multiversism is an interesting alternative to the traditional set theoretic

platonism of Gödel and other universists. Below we summarize what one may, depending

on other commitments, take to be nice features of the view:

A simple and intuitive account of forcing

First, we have seen that the multiverse view backs a “naive” and straightforward under-

standing of forcing (and extensions more generally) in set theory. For example, Kunen

(2013) starts his explanation of the idea behind forcing in the proof of the relative con-

sistency of ¬CH with ZFC like this:

Very naively, we step outside our universe and create some ideal universe

N ) V that has sufficiently many subsets of ω so that CH fails. (Kunen

2013:244)

Of course, this informal idea needs to be worked out somehow formally, either with the

use of countable transitive models or class models. But at least it supports Hamkins’ con-

tention that, informally, the idea behind the forcing method is to allow us to study “ideal”

universes of sets which might be different in interesting ways, and that the multiverse

view in some way is taking the use of forcing at face value.

To this, the universist is liable to respond that this is too naive; talk about “going

outside V ” is just a manner of speaking, which does not really make sense on the one

universe view. Furthermore, writing things like N ) V or V [G] is an abuse of notation

used for mere expediency and should always be understood as strictly speaking referring

to an extension M [G] of a model M of set theory, both of which exist in V. As Hamkins

himself notes, the universist “can insist on an absolute background universe V, regard-

ing all forcing extensions and other models as curious complex simulations within it”

(Hamkins 2012:426).

From the multiverse perspective, however, viewing the forcing extensions of a universe

as merely simulated inside it leads to unnatural and complex contortions in the infor-

mal interpretation and understanding of the results involving them. The multiverse view

makes sense of these forcing extensions and our results about them in a simpler manner

by asserting that they in fact exist as independent universes of sets. So, when it seems

like we are starting with a universe of sets where certain statements hold, and then, via

forcing, look at a different universe where other statements hold, that is in fact exactly

what we are doing according to the multiversist; the forcing extensions are not illusions.

As such, multiversism can be seen as a kind of naive or straightforward realism about

forcing extensions. Although the universist can account for forcing extensions as well, the

multiversist account is arguably simpler and more intuitive.
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Accounting for indeterminacy

Second, to some it will be attractive that the view explains indeterminacy in set theory

while retaining realism about its subject matter. Some mathematicians think that CH

and other statements independent of ZFC are somehow vague or indeterminate (see for

example Feferman (2011)). In a loose sense, we can say that a formula φ in the language of

set theory has indeterminate truth-value if it is neither true nor false or can be correctly

interpreted as true and correctly interpreted as false.

Multiversism can be seen as giving an account of indeterminacy: Since for mathe-

matical φ ∈ L∈ independent of ZFC, ZFC + φ and ZFC + ¬φ will both be consistent

extensions of ZFC (if ZFC is consistent), there will be, on quite a radical understanding of

the multiverse view, universes where φ holds and universes where it fails. So, the formulas

in L∈ independent of ZFC lack a unique truth-value because they are true relative to

some universes of sets and false relative to other universes. So in the loose sense charac-

terized above, such φ are indeterminate. Furthermore, multiversism does this on a realist

understanding of the subject matter of set theory.

Unlike some versions of indeterminacy views, however, Hamkins’ multiversism claims

that we can sharpen or pick out, using techniques from the model theory of sets, more

determinate concepts of sets, on which the truth-value of many relevant φ is settled. This

leads us nicely to our next point.

Reducing incompleteness

Third, the view reduces incompleteness in set theory in the following way: again taking

quite a radical understanding of the multiverse, for any φ independent of ZFC, there will

be ZFC + φ universes and ZFC + ¬φ universes. As such, the set of statements T true in

any of those universes is a correct theory of sets that decides φ. Furthermore, by obtaining

models of ZFC + φ or ZFC + ¬φ, that is, establishing the independence of φ, we are

justified in believing in the corresponding universes and consequently the correctness of

its theory. Understood this way, the model theory of set theory has shown us that for

many φ, such as CH, there are well-justified and correct extensions of ZFC, such that

these extensions decide φ. So, on the multiverse view, we have that a large variety of φ

independent of ZFC are what we earlier called satisfactorily decidable. But these will not

be uniquely decidable, as for the φ we have shown independent of ZFC, we must have

obtained models of both φ and its negation, thereby having correct and well-justified yet

incompatible extensions of ZFC. Thus, multiversism leads to a form of pluralism about

set theory.

This way, the view settles many questions universists regard as open. As part of

its strengths it does so in a substantive way that does not violate the sense that these

statements lack a unique truth-value. Take CH for example. On the multiverse view,
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according to Hamkins (2015), the question of CH is settled by our detailed knowledge

of how it behaves in different models of set theory. This way the multiverse view takes

seriously CH as an interesting mathematical statement and the expectation that the

question of whether it holds or not should be answered. But, in contrast with the universe

view, the multiverse view holds that this question can be answered in more than one well-

justified and correct way; CH is true relative to some universes of sets and false relative

to others, similarly to how the parallel postulate holds in certain kinds of geometrical

spaces but fails in others. Some of these universes may be more interesting or fascinating

or nicer than others, but they are all equally real.

2.3 Objections to Multiversism

At this stage, I hope the reader have been given some sense of why multiversism might

be an attractive view in the philosophy of set theory. Let us now turn to assess some

objections that might be raised against the view.

2.3.1 Bloated Ontology

The multiverse view as we understand it posits a vast plethora of universes, each of which

contain their own infinity of sets. Is this just too much? The principle known as Occam’s

razor tells us not to multiply entities beyond necessity, and it is a call for ontological

parsimony in our theorizing. One objection to the multiverse view simply says that the

view has violated this principle.

To this, the multiversist can reply that Occam’s razor seems to have no purchase

when it comes to abstract entities. Burgess (1998) argues by looking at several smaller

case studies that reasoning conforming to Occam’s razor applied to abstract objects

plays no role in scientists’ assessment of different theories. He suggests that, in science

quite generally, one can postulate abstract entities as far as scientifically convenient. This

seems to be even more so the case in mathematics in particular, where there is great

freedom in asserting the existence of different kinds of entities and structures as long as

the resulting mathematics is interesting. As Koellner (2009a) puts it: in mathematics,

ontology is cheap.

This argument against Occam’s razor in mathematics can be seen as a naturalistic

argument by taking scientific practice as its starting point: since mathematicians them-

selves do not seem to care about ontological parsimony in mathematics, neither should

philosophers.
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2.3.2 Conceptual Issues

Central to Hamkins’ account are the various models of set theory we can construct from

a given model. Controversially, Hamkins claims that to each of these models there exists

a universe of sets satisfying the theory that holds in the model. Thus, there are several

correct theories of sets.

We saw earlier that Mostowski predicted that there would be some kind of pluralism

in set theory arising from essentially different intuitive notions of sets. Kalmár agreed and

predicted a great freedom in choosing different set theories as a points of departure for

further study; a freedom supported to a great extent by Hamkins’ view. But in response

to Kalmár, Mostowski qualifies his pluralist remarks:

I can only add that various set theories which will perhaps appear in the

future must be based on firm intuitive basis. Otherwise it is hard to see what

would be their role. Thus it is not at all clear that one will have such a degree

of freedom in the choice of a set theory as one has at present in, say, group

theory. (Mostowski 1965:105–6)

Here Mostowski is restricting the extent of acceptable set theories to those that have a

“firm intuitive basis” or in other words theories that have some thought or conception

behind them.

The supplementation of the model theory with different intuitive conceptions of space

seems to have been the case in geometry. The development of non-Euclidean models

was accompanied by an increased sense of there being different intuitive mathematical

conceptions of space that could be used to motivate alternative theories of space to the

traditional Euclidean theory. As Hamkins puts it: “In time, however, geometers gained

experience in the alternative geometries, developing intuitions about what it is like to

live in them, and gradually they accepted the alternatives as geometrically meaningful”

(Hamkins 2012:425–6). The point is that supplying an intuitive conception of space to

understand models and theories of, say, hyperbolic geometry, gives us reasons to regard

such spaces as equally mathematically real as the standard Euclidean space.

To drive home the point that having a model might not be sufficient for accepting a

corresponding mathematical reality, we could compare this with number theory. Although

mathematicians speak of a standard model N = 〈N,+,×, <,E〉 for first-order arithmetic,

one can easily construct non-standard models. We could, for example using the compact-

ness theorem for first-order logic or the Löwenheim-Skolem theorems, construct a model

A which although elementarily equivalent to N, that is, they model all the same φ in the

language of number theory, is not isomorphic to N, for example because the domain of A

contains more elements than the domain of N. More generally, there are models of PA,

the standard first-order axiomatic theory of arithmetic, which are not isomorphic to the

standard model.
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The point to make with the non-standard models is that although most mathemati-

cians would accept their existence as model-theoretic entities, it is not given that they

would accept that there exists a corresponding universe of non-standard numbers to each

non-standard model. The main reason for this seems to be that these models seem to

have no intuitive conception of numbers behind them.

If Mostowski is right that one must not only have model-constructions but also an

intuitive basis to accept a set theory as correct, a challenge to Hamkins’ radical pluralism

is to find an intuitive basis or conception behind the different models and consequently

incompatible theories he accepts. Trying to overcome the challenge might severely limit

the multiverse view. For example, some models seems to have a thought behind them

which allow us to form an intuitive picture of them, such as Gödel’s L where we build

the hierarchy in the “thinnest” possible way. Or the way we obtain models where CH fail

by “widening” the hierarchy. But there are also some non-intuitive models. For example,

assuming ZFC is consistent, we can construct countable, ill-founded models of ZFC. To

give intuitive characterizations of the universe picked out by such models might be much

more difficult.

2.3.3 Quasi-Categoricity

Another common response against claims about several universes of sets is to argue that

set theory is about a particular structure by appealing to the quasi-categoricity result

tracing back to Zermelo (1930). Such a line of argument can be found in Kreisel (1965),

Martin (2001) and Isaacson (2011).

A theory is called categorical if any two structures which satisfy it are isomorphic.

In other words, the theory picks out a unique structure up to isomorphism. Due to the

Löwenheim-Skolem theorems, there are no first-order theories T with infinite models that

are categorical. So, for example PA or ZFC are not categorical. In the case of arithmetic,

most mathematicians have the sense that there is a unique natural number-structure. The

standard move to defend this view is to formulate a second-order theory of arithmetic,

PA2, which one can show is categorical. Although the exact philosophical implications of

a categoricity result like this can be discussed and disputed (see Meadows 2013), many

take this as vindicating the view that arithmetic is about a specific structure (at least up

to isomorphism).

Zermelo (1930) adopts a second-order formulation of ZFC, ZFC2, where the axioms

schemas of ZFC are replaced with single axioms in second-order language. So, for example,

the Separation schema:

∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z))

gets replaced with

∀F∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ Fz).
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Similarly with Replacement. The idea behind Zermelo’s quasi-categoricity result is to

build up an isomorphism between two models M and N of ZFC2 in a stepwise manner.

Supposing that M and N are isomorphic up to some stage α, we can extend the isomor-

phism to stages α+ 1. Roughly, we assume that M and N meet what Martin (2001) calls

“the concept of set” which include a maximal understanding of width, taking all subsets

of sets when forming powersets in the structures, and a maximal understanding of height,

claiming that the structures contain all ordinals. One can then use these assumptions to

argue that for any two M and N with isomorphic initial segments, one can extend the

isomorphism at successor and limit stages, and this will be done equally far. We end up

with an argument to the effect that M and N must be isomorphic (if they have any

isomorphic initial segments for a given rank α).

To the multiversist, the problem with this argument to establish that there is a unique

set theoretic structure (up to isomorphism) is that it begs the question. To give the argu-

ment one must assume, in giving the semantics for the second-order language, absolute

notions of powerset and infinity. Why assume that there are absolute notions of powerset

and infinity? Koellner (2013) gives the following response on behalf of the multiversist:

But this doesn’t get any traction with the advocate of the multiverse since it

presupposes absolute conceptions of powerset and infinity and it presupposes

that there is a single, univocal conception of set. The advocate of the multi-

verse will argue that the above argument is circular. “True if one presupposes

that there is a univocal conception of set, one which has absolute notions of

powerset and infinity, then one can run the categoricity argument. But that

just presupposes in the meta-language what one set out to establish. One gets

out what one puts in.” (Koellner 2013:11)

As we have seen, someone like Hamkins thinks that there are universes of sets of differing

height and width, and consequently, the notions of all subsets of a given infinite set and

all ordinals have no absolute characterization.

One might interpret the second-order variables in the language of ZFC2 in different

ways; using for example concepts, classes, or pluralities of sets. And depending on prior

beliefs about the determinacy of those notions one might hope to make the categoricity

argument work. For someone like Hamkins, however, the response will generally be the

same: these notions are not any clearer than the notion of sets with regards to for example

questions about the width or height of infinite structures. To take a specific instance,

Hamkins would have to claim that the “powerplurality” (that is, the plurality of all

subpluralities) of ω is no more determinate than P(ω). So, in particular, CH cannot be

shown to be determinate by assuming an absolute notion of powerplurality for infinite

pluralities.
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2.3.4 New Intractable Questions

One of the nice features of the multiverse view is that it reduces incompleteness in the

way described above and allows us to answer other questions as well through the study

of various models of ZFC. This makes many questions about statements in the language

of ZFC highly tractable. But, of course, new questions arise about the multiverse itself.

If these are as intractable as the old questions were on the universe conception, then one

could doubt how much progress that has been made.

For example, we might ask what universes there are in the multiverse. Hamkins’ vision

is quite expansive:

The background idea of the multiverse [...] is that there should be a large

collection of universes, each a model of (some kind of) set theory. There seems

to be no reason to restrict inclusion to only ZFC models, as we can include

models of weaker theories, ZF, ZF−, KP, and so on, perhaps even down to

second-order number theory, as this is set theoretic in a sense. [...] We want to

consider that the multiverse is as big as we can imagine. (Hamkins 2012:436–7)

Others hold more restricted views. So, here the different multiverse views disagree. For

example, Steel (2014) does not think that the L of a given universe constitutes a universe

itself, while Hamkins accepts the following principle:

Realizability Principle. For any universe V, if W is a model of set theory

and definable or interpreted in V, then W is a universe. (Hamkins 2012:437)4

So, in particular, for any universe V, the L of that universe is itself a universe. The

point here is not so much to investigate why Steel and Hamkins think so differently

4Hamkins accept more generally the following principles in an attempt to characterize the multiverse:

Realizability Principle. For any universe V, if W is a model of set theory and definable
or interpreted in V, then W is a universe.

Forcing Extension Principle. For any universe V and any forcing notion P in V, there is
a forcing extension V [G], where G ⊆ P is V -generic.

Reflection Axiom. For every universe V, there is a much taller universe W with an ordinal
θ for which V -Wθ ≺W.
Countability Principle. Every universe V is countable from the perspective of another,
better universe W.

Well-foundedness Mirage. Every universe V is ill-founded from the perspective of another,
better universe.

Reverse Embedding Axiom. For every universe V and every embedding j : V → M in
V, there is a universe W and embedding h

W
h−→ V

j−→M

such that j is the iterate of h.

Absorption into L. Every universe V is a countable transitive model in another universe
W satisfying V = L.

These are not meant to be formalized in a first-order theory, but proposed as informal principles of the
multiverse. We return to the question of a formal theory of the multiverse briefly below.
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about the multiverse, but rather to showcase that new and tough questions about the

multiverse itself arise; the potentially different answers to which might be hard to justify

and adjudicate between.

Related to this is the worry that the pluralism will push up to the next level as well.

Hamkins often speaks as if there is a determinate multiverse. There is “the multiverse”

and we have “glimpsed” into it through our model-theoretic methods but our knowledge

of it is incomplete. Now, take for example the question: is the L of a given universe itself

a universe? A one definite multiverse person thinks that either “yes” or “no,” and we can

try to find out which answer is correct. But maybe there are many multiverses? Maybe

in some of them L of any given V is a universe, and in others not? As we can see, a

question of monism vs. pluralism about our account of the multiverse itself arises. This

can lead to familiar self-undermination arguments. Say there is no convincing argument

for a one definite multiverse view. Adopting a many multiverses view, in Hamkinsian

spirit, we would like to go as big as possible, having as many different multiverses as

possible. Well, the narrowest multiverse among all the multiverses we accept will contain

only one universe V. So, the universe view will come out as a legitimate view to hold!

Thus, Hamkins would probably do best in trying to develop and defend a one definite

multiverse view. But I will note that the question of one vs. many multiverses in set

theory seems as intractable a question as they come.

Further questions that arise in the context of multiversism are: What statements

φ ∈ L∈ are true in all universes? How do you justify that a statement φ is true across

the universe? These questions will be discussed more in the next chapter.

2.3.5 Fragmented Foundations

The early pluralists seemed to have held that pluralism is incompatible with set theory

as a foundation. Mostowski claims: “Of course if there are a multitude of set-theories

then none of them can claim the central place in mathematics.” (1965:94). Intuitively,

foundations require unity, and the multiverse view is in many ways giving up on that.

Hamkins, on the other hand, thinks that:

[T]he multiverse view does not undermine the claim that set theory serves

an ontological foundation for mathematics, since one expects to find all the

familiar classical mathematical objects and structures inside any one of the

universes of the multiverse[...]. (Hamkins 2012:417)

Of course, in line with the last section, the question of whether or not this expectation is

reasonable is a substantive question about the multiverse. But granting that expectation,

Hamkins can be taken as claiming that at least as a Generous Arena the multiverse

can still serve as a foundation, since any one of the universes can act as such an arena as

far as classical mathematics goes.
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Maddy (2017), in her review of the multiverse view in relation to the different foun-

dational roles she considers as important, largely agrees with this judgement. She agrees

that most of the roles, such as Generous Arena, Shared Standard, Elucidation and

Risk Assessment will carry over. Take Risk Assessment, for example: Hamkins claims

that one is, for different purposes, free to focus on certain parts of the multiverse, say,

parts with universes satisfying very strong theories such as ZFC + large cardinal axioms

(2012:436). So, for the purpose of risk assessment the multiverse provides the theories we

need. Maddy’s main issue with the multiverse view is the need for and potential problems

with what a theory of the multiverse itself will look like, in relation to something to play

the role of a Meta-mathematical Corral. Maddy is worried whether or not such a

multiverse theory can be formulated without relying on a prior, background set theory.

For example, Hamkins accepts the following principle:

Forcing Extension Principle. For any universe V and any forcing notion

P in V, there is a forcing extension V [G], where G ⊆ P is V -generic.

Can such a principle be made sense of without substantial amounts of set theory?

Hamkins’ response is that this is exactly why we shouldn’t expect a first-order theory of

the multiverse itself on the multiverse view, as such a theory will presuppose a specific

universe and set theory, and the whole point of the multiverse view is that there are

universes outside a given universe (Hamkins 2012:436). Thus, Hamkins may have to give

up on the hope of having a unique Meta-mathematical Corral. One option at this

point is to take what one can get in terms of foundational roles and claim that this is the

sense in which set theory is a foundation.

So, maybe, set theory could still play a foundational role even under a multiverse view.

All the same, a different response, to avoid the question altogether, is to say that set theory

need not be a foundation at all. For example, one could think that the issue of foundations

in mathematics is outdated, that mathematics isn’t really in need of a foundation, or

maybe it is that some other approach works better. On such a view the primary role of set

theory is as a mathematical theory of infinity. On such an understanding multiversism may

be more plausible. That there might be different correct accounts of the mathematically

infinite, such as the different pictures of transfinite cardinal exponentiation that arise

from whether GCH holds or the different ways it could fail, given the highly abstract

nature of the subject matter, seems not so implausible.

2.4 Chapter Conclusion

We have assessed multiversism in set theory, primarily Hamkins’ view, while often com-

paring it with the one universe view. We have seen that multiversism has certain strengths:

it gives a simpler and more straightforward informal account of forcing, it gives an account
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of indeterminacy in set theory without giving up realism, and reduces incompleteness in

set theory (albeit in a pluralistic manner). Weaknesses of the view include potential prob-

lems in providing intuitive conceptions of the different universes in the multiverse (at least

on the radical view of Hamkins), raising new intractable questions about the multiverse

itself and potentially having to play the role of a reduced foundational theory.

There are fundamental conceptual disagreements between multiversism and univer-

sism which are hard to challenge dialectically once you take a side. The case of the

quasi-categoricity results nicely illustrates this, where, as Koellner puts it, one gets out

what one puts in. So, the debate will most probably be settled (if at all) by a detailed

and nuanced assessment of several different features of the views and how these features

tie to other philosophical, meta-mathematical and mathematical considerations that goes

far beyond what has been done in this chapter. Therefore, I make no endorsement here

of either view. Still, I hope to have established multiversism as an interesting conception

of set theory worthy of further study. In the next chapter, I will assume multiversism and

its core claim which I take to be:

(Multiversism) There are many distinct universes of sets.

We then explore potential consequences of that view for set theoretical methodology and

practice.
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Chapter 3

Multiversism and Mathematical

Evidence

We have seen how multiversism effects a pluralistic reduction in incompleteness. But on

the traditional understanding of Gödel’s program, the point is to formulate and justify

stronger axioms for set theory so that we can uniquely decide interesting statements in the

language of set theory that are independent of ZFC. How can one justify new axioms or

basic principles for set theory? This question has pushed set theorists and philosophers

of mathematics to give accounts of what different kinds of evidence one could give in

support of new axioms and then go on to legitimize those kinds of evidence. Broadly

speaking, mathematical evidence is divided into two kinds: intrinsic and extrinsic. In this

chapter we will explore the relationship between these kinds of evidence and multiversism

in set theory. In particular, we will investigate in what way multiversism can be seen as

undermining certain uses of intrinsic and extrinsic evidence.

I start by introducing in more detail the two kinds of evidence which set theorists and

philosophers of mathematics have claimed can be used to argue for the adoption of new

axioms. I briefly touch upon how multiversism makes the appeal to intrinsic evidence

more difficult. Then I look in more detail at the consequences for extrinsic evidence. I

introduce a principle of my own, the criterion of match, to the effect that what counts as

proper methodology within a field of study depends in part on the nature of that which

is studied. I argue that conditional on the criterion of match and multiversism the use

of abductive reasoning, an important form of extrinsic evidence, to establish the truth of

new basic set theoretic principles is not legitimate. The conclusion is that, quite generally,

to justify basic principles of sets under multiversism would be very challenging. After that

I touch upon the issue of whether or not the debate between universists and multiversists

has any real impact on set theoretic practice.
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3.1 Evidence in Set Theory

The point of Gödel’s program is to extend ZFC with an additional axiom (or axioms), so

as to uniquely decide mathematically interesting statements in the language of set theory

independent of ZFC. Given a universist explication of the expected monism, the addition

of further axioms is supposed to yield a more complete description of set theoretical

reality. Thus, we can only add axioms we are well-justified to hold as true. This gives rise

to an interesting methodological question: how to justify axioms?

It is common to distinguish between two kinds of evidence that can be used to justify

set theoretical axioms: intrinsic and extrinsic evidence. Something along the lines of this

distinction was introduced and discussed by Gödel (1947/164), and a fuller account of

these kinds of justification in set theory has been subsequently developed, for example in

the work of Maddy (1988a, 1988b, 1990, 1997, 2011) and Koellner (2006, 2009b). Let us

look at a rough characterization of the two kinds of evidence.

Intrinsic evidence: We have intrinsic evidence in set theory when our intuitions about

sets or our analysis of the concept of set support a given axiom candidate. This might

be dubbed the traditional view of the justification of axioms. Intuitive and conceptual

evidence is unified by a kind of directness, that is, there is some immediate grasp of the

grounds for justification of the given claim. So, in contemplating sets or the concept of

set, certain things seem to hold in a direct and immediate manner and this gives intrinsic

evidence. For example, it seems inherent to the concept of set that if x and y share all

members, then x is identical to y. Accordingly, Extensionality is supported by intrinsic

evidence.

Extrinsic evidence: There can also be indirect evidence for mathematical statements, it

is claimed, not grounded in our intuitions or the concept of set. We have extrinsic evidence

when a given axiom candidate is theoretically fruitful, for example by systematizing our

theory, by simplifying certain proofs, by better explaining the intrinsic evidence (the

intuitive and conceptual data), or by having otherwise verifiable consequences in set

theory or other branches of mathematics. As a historical example, certain arguments

in favor of the Choice axiom rely on such evidence. As Maddy (1988a:488) points out,

Zermelo, although he thought that the axiom was intuitively evident, bolstered his defense

of it by listing “fundamental” and “elementary” theorems provable from the axiom in

order to argue that it is necessary for a successful development of set theory to accept

the axiom.

The distinction between intrinsic and extrinsic evidence comes with certain problem-

atic features. First, the line between the two kinds of evidence is somewhat vague and

sensitive to different understandings of the concept of set. This has led to different judge-

ments about whether particular axioms are primarily intrinsically evident or extrinsically

so. For example, Boolos (1971) thinks that the Replacement scheme and the Choice ax-
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iom cannot be inferred from the concept of set, while Gödel (1947/1964) seems to think

that at least Replacement is motivated by the concept of set. Second, the relative impor-

tance of the two kinds of evidence is debatable. Although Gödel seems to accept both

on an equal footing, others have argued that either intrinsic evidence or extrinsic evi-

dence is generally more important (an example of an extrinisicalist view of mathematics

is found in the last chapter of Maddy (2011), while intrinsicalist ideas can be found in

Tiles (1989:208) and Tait (2001:96)). A related question is the legitimacy of the different

kinds of evidence and methods in set theory. In particular, we can ask whether or not

certain applications of the two kinds of evidence counts as legitimate or illegitimate, and,

if one way or the other, why that is the case. This is a call to better understand the

conditions that must obtain for variants of these kinds of evidence to count as legitimate.

We now turn to how multiversism undermines the legitimacy of these kinds of justifi-

cation. Since philosophers sympathetic to universism, like Koellner, have already argued

for the weakness of intrinsic evidence in going beyond ZFC, we only briefly touch upon

how multiversism makes matters worse.

3.2 Problems with Evidence in Set Theory

Say that a statement φ ∈ L∈ is absolutely true, if it is true in all universes of sets.

Then according to the universist, φ is absolutely true if it is true in V. According to the

multiversist, on the other hand, φ is absolutely true if it is true across the multiverse,

that is, true in each universe. Let us call an axiom that is absolutely true a basic principle

of sets.

Note that multiversism does not preclude that there are basic principles of sets or that

we could discover new basic principles of sets. If we could justify that something was true

across the multiverse, we would be in such a situation. In fact, most multiversist positions

accept a certain amount of axioms as absolutely true and their consequences would thus

be uniquely decided. One example is a multiverse where every universe satisfies either

theories with Choice independent of them or theories with Choice. Such a multiverse

would uniquely decide theorems that follow from Choice. Throughout the subsequent

discussion, to simplify things, we will assume that both universists and multiversists

accept ZFC as a list of basic principles of sets.

Bracketing for now the question of justifying ZFC as basic principles of sets, I will

now argue that multiversism undermines the use of both kinds of evidence to establish

new basic principles of sets. After that we return to the question whether this extends to

ZFC itself or not.
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3.2.1 Intrinsic Evidence

Intrinsic evidence is intuitive or conceptual evidence. This might be the traditional form

of justifying axioms and basic principles in mathematics. In set theory, people have argued

that there seems to be no forthcoming intuitive or conceptual evidence that will support

principles φ that when added to ZFC will effect a significant reduction in incomplete-

ness. To these theorists, it seems ZFC exhausts our conception of sets, and any stronger

theory must be justified on the grounds of extrinsic evidence. Koellner (2006, 2009b), in

particular, has argued that the use of intrinsic evidence is limited in the search for new

axioms by tying intrinsic evidence to so-called reflection principles1 which he argues are

too weak to decide the statements Gödel’s program seeks to decide, such as V = L and

CH.

Of course, multiversism undermines the use of intrinsic evidence to uniquely decide

such statements even further – and radically so. To the multiversist there is a whole range

of legitimate concepts of sets instantiated in different universes. As we contemplate a set

concept and come to the judgement that φ is intuitively true, there is no guarantee that

there is no other concept of set such that ¬φ is true under that concept. To take a specific

instance, the multiverse view predicts that there will be legitimate conceptions of set, for

example what Gödel called “sets as extensions of definable properties”, such that V = L

is intrinsically evident, from which GCH follows, but also legitimate conceptions, for

example what Gödel called “sets as arbitrary multitudes”, such that V 6= L has intrinsic

evidence in its favor, under which GCH might fail. So, the multiversist can use intrinsic

evidence to argue that statements are satisfactorily decidable. But, in general, the use of

intrinsic evidence to uniquely decide basic statements in L∈ will become suspicious as

it is uncertain that what seems to follow from some concept of sets, will do so from any

concept of sets.

3.2.2 Extrinsic Evidence

Extrinsic evidence is really a term covering a great range of different kinds of indirect evi-

dence in favor of theories, such as induction, abduction, theoretical virtues like simplicity,

parsimony, fertility, elegance, and so on. An important form of extrinsic evidence is what

might be called abductive reasoning. To establish a principle by abduction, also called

inference to the best explanation, is to show that the principle in question best explains

1Roughly speaking, such principles assert that anything true in V fails to fully characterize the
universe as it is already true in some initial segment of V. Schematically, the principles are stated in the
following form, where φ is some condition, x an arbitrary parameter and φα and xα the relativization of
quantifiers and parameters to Vα:

V |= φ(x)→ ∃αVα |= φα(xα).
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(for example by having as a consequence) something already granted, and preferably,

at least in mathematics, to show that the principle is necessary to derive that which is

granted. Now, abductive reasoning is usually seen as a staple of sound method in the

natural sciences and its general legitimacy in that case unassailable. But what counts

as legitimate abductive reasoning in the case of mathematics might not be straightfor-

wardly importable from natural science. I now turn to examining why interesting uses of

abductive reasoning in set theory pertaining to Gödel’s program might fail.

The criterion of match

The question of why a certain method counts as legitimate or not within a scientific

field can be difficult to answer. To start studying the conditions under which abductive

reasoning might fail I will assume a principle I call the criterion of match. The set theorist’s

question is “what are the basic principles that hold of sets?”, and our metatheoretical

question is “what is the proper method for answering the set theorist’s question?”.

I think that the right answer to the metatheoretical question hinges in part on the

nature of the domain which we theorize about. I therefore suggest the following principle:

(Criterion of Match) What counts as proper method is determined, in part,

by the nature of that to which it will be applied.

The point of this principle is to establish a link between the ontology of that which

is studied and proper methodology within a given scientific field. In slogan form, “the

method must fit!”.

The principle generalizes, I think, a quite common sentiment in science, namely that

the ways things are should influence the way we study it. Although it can be hard to

distinguish in a principled manner between substantive claims and methodological claims,

I do think that methodological claims and maxims often depend on or assume, either

explicitly or implicitly, substantive claims. Thus, one way to undermine a methodological

claim is to undermine substantive claims on which it rests.

We should be naturalists enough to allow the justification for the substantive assump-

tions used in a scientific inquiry to come primarily from the science in question itself. For

example, the entities of modern-day physics are assumed to be able to enter into sta-

tistical or causal mechanical relations with our experimental instruments. This grounds

the legitimacy of the experimental method in physics. The best evidence, however, for

this assumption about the entities of physics comes from physics itself, utilizing the said

method.

But before having such reassurance, a potential problem is that there could be a

mismatch between method and ontology. Turning to set theory and Gödel’s program,

we can ask what prior assumptions are needed to justify the legitimacy of abductive

reasoning and whether or not they can be undermined.
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Gödel, inspired by Russell (see Gödel 1944), famously argued for the legitimacy of

extrinsic evidence in mathematics and logic by an analogy with physics and natural

science more generally, which we touched upon at the start of chapter 2. The role of

more basic principles in physics is, plausibly, to explain (and make predictions about)

the data set our observations constitute. In mathematics, Gödel contends, some axioms,

especially those with a very small degree of intrinsic evidence, get justified in a similar

manner; by having as consequence and explaining the more directly given mathematical

facts. We can see the argument as consisting of two premises: 1) Abductive reasoning to

fundamental principles is part of proper methodology in physics, and 2) what makes this

proper methodology in physics is also the case in mathematics. The conclusion is that

the same kind of justificatory process is part of proper methodology in mathematics.

The way I have stated it, this is a weak argument in favor of the use abductive

reasoning in set theory. As we have discussed in detail, much more can be said about how

the ontology of mathematics is similar or different in important respects from the ontology

of physics, and this might affect the plausibility of the argument. One salient example to

us is whether or not there is a unique domain of sets that stands in suitable parallel to the

unique physical domain assumed in physical theorizing. Multiversism, of course, claims

that this is not the case. In the next section we investigate how multiversism might block

certain important uses of abductive reasoning. In particular, how, under the multiverse

view, the ontology of sets is such that the use of abductive reasoning to the absolute

truth of new set theoretic axioms is illegitimate.

The multiverse and abductive reasoning

The ontological claim of multiversism is that set theoretical reality is fractured into

different, distinct universes. The key aspect of this feature of the view is that certain set

theoretical claims (both axioms and theorems) might not be uniformly true across the

multiverse. One way to understand this indeterminacy is as being due to a pluralism of

set concepts that corresponds to each universe. Thus, set theoretical claims might differ

in truth value under different set concepts. What consequences could this have for proper

methodology?

A suggestive discussion can be found in Hamkins (2015). We mentioned earlier that

he thinks that set-theoreticians are already more or less explicitly embracing the view

that there are CH and ¬CH universes. Furthermore, he claims that if a proposed set

theoretic principle was shown to entail either CH or ¬CH, this would prevent set-theorists

from accepting the proposed principle as a basic set-theoretic principle no matter how

much extrinsic or philosophical evidence it has in its favor. The reason is that they

have extensive experience with universes where the opposite claim holds. How can it be a

consequence of a basic principle of set theory that CH holds, when we have seen universes
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where ¬CH holds, and vice versa?

I think we can generalize Hamkins’ thinking in an argument based on the multiverse

ontology of sets to challenge certain potential uses of abductive reasoning in set theory,

especially inferring to the absolute truth of some new axiom candidate that extends ZFC.

To sum up prior to giving the argument, we have a certain substantive claim about the

ontology of sets:

(Multiversism) There are many distinct universes of sets.

And a claim about the relationship between proper methodology and substantive claims:

(Criterion of Match) What counts as proper method is determined, in part,

by the nature of that to which it will be applied.

I now show how together these two claims can be used to argue against certain uses of

abductive reasoning in set theory.

Simply put, the argument is that the truth of the ontological claim that there is a set

theoretic multiverse, which is a philosophical claim, blocks abductive reasoning to state-

ments in the language of set theory, particularly new axiom candidates. Inferring to the

absolute truth, that is, true in all universes, of a first-order set theoretic axiom candidate

because it has certain fruitful or verifiable consequences, will not in general be legitimate

if there are many distinct set theoretic universes. This is not a complete rejection of ab-

ductive reasoning in relation to sets. The best way to argue for multiversism itself seems

to be by abductive-like reasoning, for example by pointing out that the multiverse claim

best explains developments in mathematical practice and the intuitions of mathemati-

cians. Still, if the argument goes through, the use of abductive reasoning (and maybe

extrinsic evidence more generally) in support of a large class of interesting set theoretic

claims, the axiom candidates, will be defeated by a certain ontological assumption about

the subject matter.

Take two competing extensions of ZFC: ZFC + φ and ZFC + ψ (where φ and ψ stand

for arbitrary axiom candidates). Accepting the one extension over the other is no trivial

matter under Gödel’s program; the added axiom is supposed to be absolutely true. Say

ZFC + φ has a certain amount of seeming explanatory force, maybe it decides some of

the independent statements of ZFC in which we have a prior interest. Say ZFC + ψ has

similar support, but let us say that it has less of it. All else being equal, should this give

you reason to think that ZFC + φ is absolutely true as opposed to ZFC + ψ? Given

the truth of the multiverse claim, the answer is “no”, because there most likely will be

set theoretic universes where ZFC + ψ holds as opposed to ZFC + φ. The factors that

support the abductive step might give you reasons for being particularly interested in

“ZFC + φ”-universes, but, in line with the criterion of match, they do not legitimize the

further step of claiming φ to be a basic principle of sets.
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Of course, under a radical form of multiversism, this will generally be the case for

any new axiom candidate beyond whatever the multiversist take to be basic principles of

sets, say, ZFC, as a requirement is that such a candidate axiom be independent of ZFC

(there is no point in adding a statement that is decided by ZFC, because that will either

lead to a contradiction or add something already provable from the axioms). Since for

such a statement to be independent there must be a model where it holds and another

model where its negation holds, the radical multiversist will assert the existence of the

corresponding universes.

Therefore I take it that the truth of multiversism blocks approaches to discovering

new set theoretic axioms that are absolutely true. But, returning to an earlier topic, how

does the multiverse claim itself get justified? The best way to reconstruct Hamkins’ own

arguments for the existence of a multiverse is partly as a case of abductive reasoning. By

looking at assumptions implicit in mathematical practice and technical results, Hamkins

tries to persuade us that the existence of the multiverse best explains the current state of

set theory, in particular the proliferation of different set theoretic models and the failure of

attempts to settle independent claims. As such, the inference runs from the practice and

results of the given science, to an underlying ontological assumption that explains that

practice and those results. These are probably not the strongest arguments in favor of

the view, however. The best way to strengthen these arguments would be to supplement

this admittedly weak evidence in favor of the multiverse view with evidence based on a

positive and intuitive conception of mathematical reality that supports the view directly.

The upshot, anyway, is that assuming the substantive and philosophical claim that

there are many distinct universes of sets blocks appeals to a certain form of extrinsic

evidence at the first-order level, that is, inferences to the absolute truth of proposed

axiom candidates based on their fruitfulness, set-theoretic consequences, and so on. This

kind of methodology would be ruled out by the criterion of match, as being out of step

with the nature of set theoretic reality.

The multiverse and Occam’s razor

Let us return briefly to the question of Occam’s razor in mathematics. Since we are now

assuming multiversism to be true, this enables a very different argument against that

principle in mathematics compared to the naturalistic argument given before: Parsimony

does not just fail as a theoretical virtue in mathematics because working mathematicians

in fact seem to disregard Occam’s razor. We can argue, under the combined forces of

Multiversism and Criterion of Match that neither mathematicians nor philosophers

of mathematics ought to adhere to Occam’s razor due to the picture of the ontology

of abstract reality offered by multiversism. On this understanding, we have in effect

discovered why the principle fails in this case; not only that it fails.
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3.2.3 Summary

Combined, these arguments show that it is extremely hard to justify new basic principles

of sets on the multiverse conception of set theory. This is because both the legitimacy

of intrinsic and extrinsic evidence is undermined. These forms of justification might still

have roles to play, however, even to the multiversist.

Conceptual or intuitive evidence that a universe candidate has certain features that

cohere with a given concept of set might help justify the assertion that such a universe

exists. As such, intrinsic evidence flowing from different concepts of sets can help meet

Mostowski’s challenge raised in chapter 2. Extrinsic evidence can be useful in articulating

why we would like to focus on only parts of the multiverse for different purposes. So, for

example, we might want to focus on parts of the multiverse where ZFC + large cardinal

axioms hold, as this gives us a way of measuring consistency strength. To the multiversist

this nice feature of such strong theories does not suggest that they are absolutely true,

but the features can still be used to motivate a purpose-dependent restricted view of the

multiverse.

Still, to argue for new basic principles of sets is out of the question. So, the prospects

of uniquely deciding further φ in the language of set theory seem bleak. This is of course

to be expected from multiversism, but we have seen in more detail why this is so.

3.2.4 Objections

We now consider two objections to the arguments undermining the use of intrinsic and

extrinsic evidence to establish new basic principles of sets on the assumption of multiver-

sism.

Against the criterion of match

The first objection addresses the argument against extrinsic evidence via the criterion

of match. One could simply try to deny the criterion of match in the case of set theory.

This is an interesting strategy. For example, I take it that Maddy (2011) develops a view

in this spirit when claiming that both Thin realism, Arealism and Objectivism are all

appropriate starting points for the defense of extrinsic justifications in set theory (Maddy

2011:134).

More generally, strongly pragmatist approaches to the philosophy of science have it

that proper methodology within a given scientific field is not hostage to the kind of

philosophical and ontological considerations the criterion of match demands. In the case

of set theory, one would hold that many parts of proper set theoretic methodology are

not grounded in the metaphysics of sets. The hard part is to spell out this idea without

oneself taking a stance on the metaphysics of sets. Still, the idea opens up an interesting
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venue of research into how methodological principles and maxims, both in set theory and

other parts of science, might not be grounded in the ontology of what we study at all,

but in other features relevant to the scientific activity in question.

But, at least for me, there is a lingering sense that for there to be a well-defined

notion of proper methodology within a scientific enterprise aiming at truth, there must

be a relationship between what makes that method legitimate and the nature of that to

which it is applied.

Intractable questions, revisited

Second, to the universist the arguments to the effect that it will be almost impossible

to justify basic principles of sets will suggest that multiversism is an inherently unsta-

ble position. We mentioned earlier that multiversism might give rise to new intractable

questions. The upshot of the arguments so far is that it is extremely difficult to justify

new basic principles of sets either by use of intrinsic evidence or extrinsic evidence. So

questions about whether a given φ is true in all universes seem to have become intractable.

This might be self-effacing to the multiversist who accepts a list of basic principles of

sets, say, ZFC. This is because these issues re-opens old questions about justifying ZFC

with a vengeance as earlier answers might have presupposed a unique concept of set and

a unique universe. For example, if Choice is primarily established by extrinsic evidence,

how are we sure that there aren’t ¬Choice universes in the multiverse? If the multiversist,

faced with this question, wanted to argue that Choice indeed is a basic principle of sets, it

seems this have become intractable as well because of the considerations above. Of course,

for some axioms this might not be so problematic; maybe there are interesting Choice-

less hierarchies of sets or hierarchies where Replacement fails. But if the multiversist is

unable to push back on any axiom, she might end up accepting for each axiom φ of ZFC,

that there are φ and ¬φ-universes. This seems highly implausible; can a ¬Extensionality-

hierarchy be called a universe of sets at all? The problem is that the multiversist, once

we think about it, might be unable to justify anything as a basic principle of sets.

The response must be to find a non-arbitrary cut-off point for how radical the mul-

tiverse view can be. For example, maybe it is a minimal requirement that each universe

satisfy enough set theory to reconstruct a delimited part of classical mathematics we

have independent reason to think cannot fail. Or maybe we can use the finite/infinite

or countable/uncountable distinctions to argue that facts about the finite or countable

must be absolutely true while facts about the infinite or uncountable might be radically

indeterminate. The point is that there are ways for the multiversist to try to push back

and find some firm ground for characterizing the multiverse in an interesting way.

All the same, I take it that, even if multiversism fails, we have laid bare an important

and intricate interplay between ontology and method, particularly abductive reasoning,
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in set theory. A serious study of such interactions is important to any discipline with

proper scientific ambitions. This needs to be done internally to the discipline in question.

There is no prior guarantee that abstract set theoretic reality behaves in the same way

as the concrete reality of natural science. So, simpler arguments by analogy like that of

Gödel (1944) will not cut it.

We now turn to the question of whether the debate between the universist and the

multiversist has any potentially real impact on set theoretical practice at all.

3.3 The Potential Fruitfulness of Multiversism vs.

Universism

We have explored a fundamental disagreement about the subject matter of set theory –

universism vs. multiversism. Furthermore, we have seen how the latter view has conse-

quences for what counts as legitimate forms of justification in the adoption of new basic

principles of sets. All the same, one might argue that this has very little real impact on

set theoretic practice; that both views can interpret further developments under their

own fundamental view of the field.

Suppose set theorists started to unanimously work in and accept a stronger theory

than ZFC. They might give what seems like intrinsic or extrinsic evidence in favor of the

additional axiom or axioms. Linnebo (2017:181–2) suggests that both the universist and

the multiversist can interpret this development in a way consistent with their position.

Roughly, to the universist, set theorists have in fact been successful in justifying new

basic principles of sets true in V and thereby gotten the more complete description of

the universe they seek. To the multiversist, however, what has happened is that set

theorists at large have decided to focus on only certain parts of the multiverse under

some sharpened concept of sets where the stronger theory holds, for whatever reasons or

purposes they invoke in the adoption of the stronger theory. But to the multiversist this

doesn’t make all the other universes go away as independently existing entities. It is just

that for some reason or other set theorists aren’t interested in those structures.2 Linnebo

(who frames the discussion in terms of ‘monism’ vs. ‘pluralism’) concludes:

So long as both interpretations are available, mathematical practice can pro-

ceed unaffected by the question of whether monism or pluralism is right. These

reflections suggest that the question of pluralism matters less to mathematical

practice than one might initially have thought. (Linnebo 2017:182)

Although I agree that, most likely, these primarily philosophical questions and resulting

views will, and maybe should, have little effect on the practice of set theorists, I do think

2Alternatively, the multiversist may say, more analogous with the universist, that they are accepting
a stronger list of basic principles of sets which results in a narrower multiverse.
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that the views come with different expectations and guidelines for how further practice

should develop.

As heuristic devices in the further development of set theory, we can expect universism

and multiversism to play quite different roles. Universism has arguably played a great role

in inspiring set theorists to formulate new and stronger axioms of sets by emphasizing

what they understand as our lack of knowledge of the universe. But at the same time

universism has also constrained the development by expecting a unified theory of V.

For example, there have been proposed large cardinal axioms that are inconsistent with

the Choice axiom. The universist who thinks that Choice is a basic principle of sets is

then liable to discard any such theory. As set theorists have been unable to resolve or

unanimously accept stronger theories of sets that decide things like CH, multiversism

offers a different picture which might inspire set theorists to view all of the different

theories they have and might come up with as equally legitimate. Thus one can move on

to explore these theories with greater freedom, without worrying so much about unifying

everything in V. So, a universe where Choice fails because of a certain large cardinal axiom

holding there might be interesting to explore and one can do this without giving up on

universes where Choice hold. Slightly related to this, universism expects a stabilized set

of consequences of stronger theories, that is, universism cannot, ultimately, countenance

divergent sets of consequences or incompatible theories and will thus work to avoid such

things. Multiversists, on the other hand, have no impetus to do so, and are happy to

allow divergent sets of consequences and incompatible theories as the end result of set

theoretic developments.

Arguments for or against views in the philosophy of mathematics often go from prac-

tice to philosophy. That is, the philosophical views are assessed by how well they cohere

with and explain the practice as we find it. The fact that universism and multiversism

might have some impact on set theoretic practice suggests a different kind of assessment

of the views in addition to the standard one, namely asking which one is more fruitful for

further practice. Thus, we might try to assess the views on how well they might influence

or change practice in fruitful or better ways. I will not attempt the task here but leave it

open as a question for further study.

3.4 Chapter Conclusion

I have argued that the idea that we can justify the adoption of different extended first-

order axiomatizations of ZFC as absolutely true over others by means of intrinsic or

extrinsic evidence, although it might seem reasonable at first glance, can be problematic

due to certain assumptions about the ontology of sets required to sustain that methodol-

ogy. We saw that there is a view of set theoretical reality, multiversism, that invalidates

the straightforward use of such a methodology. But we also saw that setting such a high
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standard for justification might be problematic to the multiversist who wants to argue

that at least some axioms are true across the multiverse.

In the end, if one denies the multiverse conception but accepts the criterion of match,

one is left with the task, assuming intrinsic evidence is fine, of defending the method

of extrinsic evidence, in particular abductive reasoning in set theory. I hope to have

established clearly that such a defense must seriously engage with questions about the

nature of the abstract part of reality which is the subject matter of set theory.

Furthermore, we have seen to what degree universism and multiversism can be ex-

pected to influence practice in different ways. Although I agree that they will probably

do so to a small degree, they still might have the potential to do so to such a degree that

we might try to measure the success of these philosophical views not only by how well

they explain practice but also in what way they might fruitfully influence practice.
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Conclusion

Where does this leave us? We started this thesis with general questions about the unity

or disunity of mathematical reality. I proposed to sharpen these questions by looking at

the most famous attempt at giving a foundational theory for mathematics, namely set

theory. A natural view is that the domain of set theory gives us the unified domain one

might seek: the universe of all sets V.

We have seen that the independence phenomenon in set theory challenges the degree

to which we understand V. The universist thinks these results show us that our knowledge

of V is limited but argues that there are ways of trying to increase that knowledge. But

there is an alternative interpretation of these results. The multiversist claims that this

shows us that there are many different universes of sets, and they are all equally real. So,

within our foundational theory one can defend views to the effect that there is a unified

mathematical reality but also that this is not the case. We then explored and assessed

strengths and weaknesses of multiversism in more detail, and concluded that the view is

interesting and philosophically coherent but did not endorse it any further.

After that we turned to arguments challenging the use of different kinds of evidence in

mathematics to establish new basic principles of sets, which is a goal in Gödel’s program,

on the assumption of multiversism. Multiversism seems to entail that it would be nigh

impossible to justify that something is a basic principle of sets by appealing to the

traditional forms of evidence. An objection is that this consequence might undermine

multiversism itself by making the standards of justifications so high that no axiom, even

those of ZFC, can be argued to be a basic principle of sets, which is highly implausible.

After this, it was also suggested that the debate between universism and multiversism

might not only be assessed by the views’ success in explaining set theoretcal practice as

we find it but also to what degree they might influence further practice in fruitful ways.

This leaves a lot of the terrain unexplored. I therefore end this thesis by formulating

some topics which would be interesting to explore in more detail in further research.

Topics for Further Research

At the beginning of the thesis we saw some very general reasons for thinking that mathe-

matical reality cannot be a delimited and unified whole due the richness of mathematical
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structures and the open-endedness of mathematical operations. My first suggestion for

a line of further inquiry is whether these thoughts could be developed into a more intu-

itive and natural motivation for accepting multiversism in set theory in addition to the

abductive-like reasons Hamkins gives.

In this thesis I have been careful not to conflate pluralism with multiversism and

monism with universism, because one can probably develop monist and pluralist posi-

tions in other ways. I have focused on realist versions of monism and pluralism, namely

universism and multiversism. A further line of inquiry is to bring anti-realist versions

of monism and pluralism into the fray. They might illuminate the discussion further in

interesting ways. Although I have defended the importance of studying realist pluralism,

which multiversism offers, both for its own sake and how it might challenge and shed

light on unclarities with realist monism, I guess that many would find a less robust form

of realist, maybe even anti-realist, pluralism more attractive.

Even though Hamkins tries to argue that we shouldn’t expect a first-order theory of

the multiverse, it would still be nice to have a formal theory of the multiverse in some

form or another. Exploring candidates for such a theory would probably shed further

light on both strengths and weaknesses of multiversism.

Another issue we have raised, which have received little to no attention elsewhere, is

whether or not adopting multiversism puts us in an equally bad or even worse epistemic

position than universism by engendering new intractable questions. For example, is there

only one multiverse or are there many? What is true across (a) the multiverse and how can

we even justify that something is true across the multiverse? If the multiversist could give

well-motivated answers to these questions, this would probably lead us a step forward.

On the other hand, these might be the questions that end up sinking multiversism.

When arguing against the legitimacy of extrinsic evidence on the assumption of mul-

tiversism, I invoked a Criterion of Match. I also suggested that some might object to

this principle. An interesting line of further research is to investigate this criterion and its

role in science more generally. Are there parts of science and methodological principles

or maxims that do not seem to conform to the criterion?

Finally, I suggest studying the degree of fruitfulness of universism and multiversism as

distinct heuristic devices for further set theoretical practice, although, it would probably

be difficult to assess whether or not further developments in set theory connect with these

philosophical views in any substantial way. Yet, one would think that if practitioners

thought they had stumbled upon the discovery of a vast multiverse of different universes

of sets with all kinds of strange features, this would have at least some repercussions for

what they do next.
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