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Abstract

Composite fermion (CF) wave functions are used to describe both a two dimensional
electron gas in a strong magnetic field (the quantum Hall effect system) and rotating two
dimensional atomic gases that can be either bosons or fermions. In this thesis a new
method for projecting fermionic CF wave functions (here called method 3) to the lowest
Landau level is investigated. The new projection is based on attaching a Jastrow factor
to a bosonic CF wave function projected in the standard way. This will be compared
to two other projection methods: method 1 or Girvin-Jach projection and method 2 or
Jain-Kamilla projection. I compare the minimal cyclotron energy compact CF ground
state candidates for the ∇2δ interaction both to each other and to the exact ground state
found by numerical diagonalization for up to 8 particles. The conclusion is that the CF
candidates typically are good approximations of the exact ground state, and that method
3 is almost as good as the other two at this.

An important motivation for method 3 is that it preserves linear dependencies from the
bosonic states. The puzzle of linear dependencies is a part of CF theory that is not prop-
erly understood. Certain important results for low angular momentum states have been
found for the bosonic case. Since method 3 works quite well in the cases tested here
some of these results can be imported to the fermionic case. I have compared the linear
dependencies among minimal cyclotron energy compact states for all three projection
methods. If approximate linear dependencies are considered as proper linear dependen-
cies then for all tested cases the same linear dependencies hold for all three projection
methods, up to slightly different coefficients.
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Chapter 1

Introduction

This thesis concerns a small corner of a corner of a corner of a large research field. This
is perhaps in the nature of a modern master’s thesis in physics (and to a lesser extent
modern research in general). So it would probably be in the reader’s interest if the
topic is situated in the larger field before we start getting into the nitty-gritty details.

1.1 Topological Phases of Matter

The larger field is research into the topological phases of matter. The field developed
in the late 20th century when it was discovered that in certain materials there existed
phases and phase transitions that could not be explained by the current dominant
theory, Landau symmetry breaking [1]. To my knowledge no one has been able to
come up with a precise and non-technical explanation of what, exactly, constitutes a
topological phase, and I won’t be the first. I will settle for: topological phases are
certain highly correlated quantum states with certain properties that are robust under
small changes to the material.

These topological phases initially attracted interest at least in some part because
they are weird. And, of course, weird things are interesting, because there is a good
chance that the explanation of a weird phenomenon includes something new (if it
could be explained entirely in terms of known science the phenomenon would prob-
ably not be considered so weird in the first place). After more than thirty years of
research there is still a lot to be learned about topological phases, and much of the
interest in the field is still pure curiosity.

There is, however, also a potential application: quantum computing. If universal
quantum computers ever become realizable, it could constitute a revolution in com-
puting as such computers are, theoretically, very very fast. One of the many problems
to overcome is the handling of errors due to inevitable local perturbations to the state
of the computer. Here certain topological phases may be helpful. Because topological
phases are robust with respect to these kinds of perturbations they could be used to
address the issue [2]. Of course the whole issue is a good deal more complicated than
I make it out to be here, but quantum computing is not the topic of this thesis.
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1.2 The Fractional Quantum Hall Effect and Low Dimen-
sional Systems

One of the paradigms of topological phases is the fractional quantum Hall effect. This
is a measurable effect that occurs for cold electrons in a strong magnetic field when
confined to two dimensions. The effect shows up in different materials and is robust
under small changes in purity and such. Each fraction corresponds to a topological
phase. Much work has been done on the topic, some of which will be reviewed in the
next chapter. It is an essential fact about the fractional quantum Hall effect that it oc-
curs in two spatial dimensions (and one temporal). Many topological phases occur in
such low dimensional systems [1]. Two dimensional systems also have the important
quirk that particles there do not necessarily follow bosonic or fermionic statistics, but
can rather follow a range of in-between statistics: they are anyons [3, 4]. When deal-
ing with more than two anyons the interchange statistics can get pretty complicated.
One way to think of the characterization of interchanges is through braids, where each
braid equivalence class represents a different way to interchange particles. The braid
group for two or more strands, representing two or more particles in this case, is infi-
nite, so there are infinitely many different ways to interchange particles. How different
braids manifest as different phases in the wave function depends on the nature of the
system, but potentially each braid corresponds to a different phase. See figure 1.1 for
some examples of braids on 4 strands. Many two dimensional topological phases, in-
cluding fractional quantum Hall effect states, have anyonic quasiparticle excitations,
which is both part of what makes them interesting and part of what makes them good
candidates for quantum computing.

Another low dimensional system is a cold atom gas confined to two dimensions. It
is theorized that if such a gas is rotated quickly enough, it should enter a topological
phase comparable to those of the fractional quantum Hall effect, including having
anyonic excitations. The atoms are electrically neutral and can be either bosons or
fermions,but must interact in some way. It has proved difficult to realize such a phase,
but in [5] it is claimed that it has been realized for gases of a few particles (less than
10) of 87Rb, which are bosons.
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Figure 1.1: Representation of the permutation group S4 as left-over-right 4 strand
braids. The braid group on 4 strands B4 is infinite, but can be generated by the three
left-over-right braids that correspond to permutations. © Claudio Rocchini/CC-BY-
2.5
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1.3 This Thesis

This thesis concerns a set of wave functions called composite fermion wave functions
that have been used to describe both the fractional quantum hall effect system of elec-
trons in semiconductors and the cold atomic gas system that is intimately tied to it. I
will study these wave functions as used to describe the system of a rapidly rotating
cold fermionic gas of few particles with a short range interaction.

Part of the composite fermion formalism is a procedure called projection to the
lowest Landau level. This procedure can be very computationally heavy and compli-
cated, and there are certain mathematical structures of the procedure that are not very
well understood. Projection introduces linear dependencies among states that were
previously orthogonal [6]. This happens for both fermions and bosons, although the
projection works slightly differently in the two cases, and research has been done into
these linear dependencies for both, see for example [7, 8, 9, 10]. In particular, for cer-
tain bosonic low angular momentum states it has been possible to pick out states that
form a basis after projection without actually doing the projecting [8, 9, 10].

In this thesis I will investigate an alternative method of projecting fermionic states
to the lowest Landau level, which is computationally cheaper than the original method
and connects immediately with the bosonic case. If the new method works well, its
connection to the bosonic case will allow us to immediately import some of the impor-
tant insights about the linear dependencies of the bosonic composite fermion wave
functions to the fermionic case. I will also investigate how the linear dependencies
among states projected by different methods compare to each other. I will use the
original method, the new method and also a widely used alternative, based on a dif-
ferent simplification than “my” method.

Chapter 2 is a more detailed introduction to composite fermions, with the neces-
sary background information on the quantum Hall effect. Chapter 3 introduces the
new projection method and the tools I will use to investigate it, while the results are
found in chapter 4.
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Chapter 2

Background

This chapter provides background information to the investigation of a new projection
method that is the topic of this thesis. I will first give a quick history of composite
fermion wave functions, then I describe the quantum mechanical formalism of the
problem. I also go through related work that informs the project.

2.1 History of Composite Fermion Wave Functions

2.1.1 The Hall Effect

Figure 2.1: Illustration of the Hall effect. The Lorentz force from the magnetic field on
the current pushes the electrons to one side, giving a transverse potential difference.

The Hall effect was discovered in 1879 by Edwin H. Hall [11]. He noticed that
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Maxwell’s equations implied that a current in a magnetic field transverse to the current
should be subject to an electromagnetic force.

For a situation as in figure 2.1 with a current I = qvxex in a conductor and a mag-
netic field B = Bez Lorentz’ law

F = q (E + v× B) (2.1)

implies a transverse force
Fy = qvxB. (2.2)

This force pushes the electrons in the −y-direction, leading to a difference in charge
along the y-direction of the conductor. This in turn sets up an electric field Ey in
the y-direction. When the force on the electrons due to Ey balances the force due
to the magnetic field the situation is stable with a constant transverse electric field
Ey = EH = vxB. It is useful to translate EH into a resistivity by dividing by the current
density in the x-direction jx = ρqvx, where ρ is the number density of electrons. So the
Hall-resistivity:

ρH =
EH

jx
=

B
ρq

. (2.3)

In two dimensions resistance and resistivity have the same dimensions, so rather than
speak of the Hall resistivity we may speak of the Hall resistance:

RH =
B
ρq

. (2.4)

2.1.2 The Quantum Hall Effect

In 1980 von Klitzing and his collaborators discovered the Quantum Hall Effect (QHE)
[12]. It turns out that for two dimensional high-mobility conductors in low temper-
ature and with high magnetic fields, the Hall resistance is not proportional to the
strength of the magnetic field, but rather it is quantized in plateaus. Von Klitzing
and his team discovered plateaus in the resistance of the form:

RH =
h

Ne2 , (2.5)

where h is Planck’s constant, e is the electron charge and N is an integer. This is the
integer quantum Hall effect (IQHE). See figure 2.2 for illustration. In order to compare
this to the classical Hall effect we define the filling factor:

ν ≡ hcρ
Be

. (2.6)

Now equation (2.4) may be rewritten as

RH =
1
ν

h
e2 . (2.7)

So we may state the IQHE as: When the filling factor is close to an integer value, the
Hall resistance acts as if the filling factor is that integer value.
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Figure 2.2: Illustration of the integer quantum hall effect. The dashed line is the clas-
sical Hall resistance, the solid line is an exaggeration of the observed plateaus in the
resistance when ν is close to an integer.

In [13] Laughlin explained the IQHE qualitatively without taking interactions into
account. Basically due to gaps in the energy levels and disorder in the sample, excess
electrons or holes are trapped and cannot participate in conduction. The details are
not important for our purposes.

Two years after von Klitzing’s discovery Tsui and collaborators reported that they
had discovered a new plateau in the Hall resistance at filling factor ν = 1/3 [14]. Later
more plateaus at fractions like 1/5, 1/7, 2/3, 2/5 were discovered. In [15] the authors
list more than 80 different fractions where plateaus have been discovered. This is the
fractional quantum Hall effect (FQHE). While the IQHE could be understood in terms
of non-interacting electrons, the FQHE could not. An explanation that accounted for
interactions was needed.

2.1.3 The Laughlin Wave Function

To explain the 1/3 FQHE Laughlin put forward in [16] the wave function

ΨLaughlin = ∏
j<k

(z j − zk)
m exp

(
−1

4 ∑
i
|zi|2

)
, (2.8)

where zk = xk + iyk in units of
√

h̄c/eB and m is an odd integer. The associated filling
factor is ν = 1/m. Laughlin calculated the exact ground state of the Coulomb inter-
action in the corresponding angular momentum subspace for 3 and 4 particles and
a few different values of m and found that these states had a high overlap with the
Laughlin state (2.8), indicating that (2.8) is very similar to the ground state. Laughlin
also showed that the lowest lying bulk (meaning not edge) excitations of this state are
quasiparticles that have fractional charge 1/m of the electron charge and also fractional
statistics. By fractional statistics I mean that if the positions of two quasiparticles are
exchanged counter clockwise, the wave function picks up a phase

ψ(r2, r1) = eiπαψ(r1, r2), (2.9)
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withα = 1/m. This means that the quasiparticles are neither fermions nor bosons but
anyons. For fermionsα = 1 and for bosonsα = 0.

Laughlin showed that there is an energy gap from the ground state to the next
lowest state for the ν = 1/m filling factors, i.e. the ground states are incompressible,
which would explain why there is an FQHE for these fractions by the same reasoning
as Laughlin’s original explanation of the IQHE.

The Laughlin wave functions can explain the FQHE fractions 1/m and 1 − 1/m
through particle-hole symmetry, but there are many more fractions that are not imme-
diately explained in this way. There are several ways to extend this theory to account
for more fractions. One of them is the composite fermion formalism.

2.1.4 Composite Fermion Wave Functions

In [17] Jain suggested a theory of the FQHE in terms of what he called composite
fermions (CFs). In this picture electrons and vortices due to the magnetic field com-
bine to make new composite particles, the CFs. These particles then “see” a weakened
magnetic field and interact more weakly than electrons. The CFs then produce the
IQHE, which manifests itself as the FQHE on the level of electrons. The theory in-
cludes a set of generalizations of the Laughlin states (2.8) of the form

ΨCF = PLLL

{
Φν∗ ∏

j<k
(z j − zk)

2p

}
, (2.10)

where p is an integer, Φν∗ is a wave function of CFs with “CF filling factor” ν∗ and
PLLL indicates projection to the lowest Landau level (LLL), which will be discussed in
great detail later. This wave function gives an electron filling factor

ν =
ν∗

2pν∗ ± 1
, (2.11)

and gives plateaus in the Hall resistance at fractions when ν∗ is close to an integer.
This CF theory explains many more fractions than the Laughlin states could, and also
unifies the explanations of the IQHE and the FQHE. If we include “second order CFs”
due to the interactions between the first order CFs giving rise to the same effect again,
almost (but not quite) all of the observed fractions can be explained.

2.1.5 Rotating Gasses

The Hamiltonian for a particle in a rotating harmonic trap is structurally similar to
that of a particle in a magnetic field [18]. In other words there is a mathematical rela-
tionship between the Quantum Hall system and the system of a rotating gas of atoms.
This realization has led to much theoretical and experimental work investigating the
connection between these two systems and which insights about the one system may
be applied to the other [19]. Among this work has been to use CF wave functions
to describe the rotating gas system. If the atoms in the gas are bosons the CF wave
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functions are modified into

ΨCF,bose = PLLL

{
Φν∗ ∏

j<k
(z j − zk)

2p+1

}
, (2.12)

rather than (2.10).
It has turned out that these wave function have high overlaps with numerically

calculated eigenstates for the rapidly rotating Bose-Einstein condensate (BEC) system,
and much work has been done to investigate this. CF wave functions have also been
extended to describe systems with two or more species of bosons [20, 21].

2.2 Composite Fermion Formalism

I now turn to a more technical description of the Composite Fermion formalism. In
much of this section I follow the treatment in [22].

2.2.1 Geometry

I have described the QHE-system as electrons in a flat 2D piece of material with a
transverse magnetic field. Indeed this is the natural experimental set up, however it
is often convenient to use a geometry without edges for calculations. This is because
edge effects can then be avoided, even in small systems.

There are several different geometries that capture the essential nature of the sys-
tem, namely electrons confined to two dimensions with a transverse magnetic field.
Jain does much of his work in the spherical geometry, where the electrons are confined
to a sphere and the magnetic field is due to a magnetic monopole inside the sphere
[22]. In his original paper on the IQHE Laughlin considered electrons on a cylinder
[13]. Much work is also done on a torus [23]. In this thesis we will exclusively work
with the disc geometry. Here the electrons are confined to flat surface that extends
infinitely. In this geometry we do not avoid edge effects, as the particles end up in a
droplet in the center of the disk, with an exponential tail. This geometry is also used
in the work on rotating atomic gases referred to in the previous section.

2.2.2 Hamiltonians

For the QHE-system the relevant Hamiltonian is that of non-relativistic electrons con-
fined to move in two dimensions in a perpendicular magnetic field. With the magnetic
field as B = Bez the one particle Hamiltonian is

ĥQHE =
1

2m

(
p̂ +

e
c

Â
)2

, (2.13)

where Bez = ∇× Â. Â is not fully determined by this requirement, but rather there is
gauge freedom. In the symmetric gauge Â = (B/2)(−ŷ, x̂, 0). Then

ĥQHE =
1

2m

[(
p̂x −

eB
2c

ŷ
)2

+

(
p̂y +

eB
2c

x̂
)2
]

. (2.14)
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The one particle Hamiltonian for atoms in a harmonic trap of strength ω rotating
with angular frequency Ω may be written

ĥBEC =
p2

2m
+

1
2

mω2r2 −Ω ˆ̀z, (2.15)

which can be rewritten as

ĥBEC =
1

2m

[
( p̂x −mωŷ)2 +

(
p̂y + mωx̂

)2
]
+ ĥHO + (ω−Ω) ˆ̀z, (2.16)

where ĥHO is the one dimensional harmonic oscillator in the z-direction. Comparing
this with (2.14) we see that if we introduce Be f f = 2mωc/e then

ĥBEC = ĥQHE(Be f f ) + (ω−Ω) ˆ̀z + ĥHO. (2.17)

We will assume that the system is constrained to the lowest energy level of ĥHO, ren-
dering the last term a constant that can be ignored. This constraint can be accom-
plished by making the oscillator frequency in the z-direction large. We will work in
the limit ω ≈ Ω, in which the term (ω−Ω) ˆ̀z is small. The important thing is that
the energy from the term (ω−Ω) ˆ̀z is small enough to not mix the energy levels of
ĥQHE(Be f f ) [19]. We assume that there is no spin degree of freedom. In the electronic
case this requires the magnetic field to be strong enough and the temperature low
enough that all spins point in the same direction.

To treat the electronic and atomic picture simultaneously consider ĥQHE, from here
on called just ĥ. If we introduce units `B =

√
h̄c/eB (

√
h̄/2ωm) for length and h̄ωc =

h̄eB/mc (2h̄ω) for energy we may express the unitless version of the Hamiltonian as

ĥ =
1
2

[(
−i

∂

∂x
− 1

2
ŷ
)2

+

(
−i

∂

∂y
+

1
2

x̂
)2
]

, (2.18)

where h, x and y are now dimensionless. Introducing new coordinates

z = x + iy, z = x− iy, (2.19)

and notation
∂ =

∂

∂z
, ∂ =

∂

∂z
, (2.20)

we find

ĥ =
1
2

[
−4∂∂−

(
z∂− z∂

)
+

1
4

zz
]

. (2.21)

2.2.3 Landau Levels

The Hamiltonian (2.21) may be rewritten as

ĥ =
1
2

[(
1
2

z− 2∂

)(
1
2

z + 2∂

)
+ [∂, z]

]
, (2.22)
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or, if we define

a =
1√
2

(
1
2

z + 2∂

)
, (2.23)

then
ĥ = a†a +

1
2

. (2.24)

Note that
[a, a†] =

1
2

(
[∂, z] + [∂, z]

)
= 1, (2.25)

which means that if ψ(z, z) is an eigenfunction of ĥ with eigenvalue ε then a†ψ(z)
is also an eigenfunction with eigenvalue ε + 1 and aψ(z, z) is an eigenfunction with
eigenvalue ε − 1. The function ψ0 = exp(−zz/4)/

√
2π has the properties aψ0 = 0

and ĥψ0 = 1
2 and thus defines the ground level. There is no normalizable function

ψmax for which a†ψmax = 0 so there is no highest level. In sum we have found a set of
(unnormalized) eigenfunctions

ψn =
(

a†
)n

e−
zz
4 (2.26)

with eigenvalues

En = n +
1
2

. (2.27)

These energy levels are called the Landau levels (LLs).

2.2.4 Angular Momentum Eigenstates

The z-component of the angular momentum operator (the only relevant component in
our system) is given in our units as

ˆ̀ = h̄
(

z∂− z∂

)
. (2.28)

If we move to the angular momentum in units of h̄ the dimensionless ` is then

ˆ̀ =
(

z∂− z∂

)
. (2.29)

If we define an operator b, similar to a, as

b =
1√
2

(
1
2

z + 2∂

)
, (2.30)

then
[b, b†] = 1 (2.31)

and
ˆ̀ = b†b− a†a. (2.32)

As with a and a†, b and b†are ladder operators with a bottom rungψ0 with eigenvalue
0 and no top rung. Also

[b, a] = [b, a†] = 0, (2.33)
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so
[ĥ, ˆ̀] = 0. (2.34)

Thus there exist simultaneous eigenfunctions for ĥ and ˆ̀. We can construct these
eigenfunctions by

ψnm = (b†)m+n(a†)ne−
zz
4 , (2.35)

or in terms of associated Laguerre polynomials

Lm
n =

n

∑
i=0

(−1)i
(

n + m
n− i

)
xi

i!
(2.36)

we have
ψnm = zmLm

n (zz/2)e−
zz
4 , (2.37)

which have eigenvalues

En = n +
1
2

, n = 0, 1, 2 . . . ; `m = m, m = −n,−n + 1,−n + 2, . . . (2.38)

Note that in the lowest Landau level (LLL) where n = 0 the form of (2.37) is particularly
simple:

ψm = (b†)me−
zz
4 = zme−

zz
4 . (2.39)

This means that a general single particle state in the LLL may be given by a polynomial
in only z times the exponential factor. In the LLL the operators ĥ and ˆ̀ also take simple
forms. Trivially ĥLLL = 1/2 adds only a constant, which we can ignore. Writing p(z)
for the polynomial part of the wave function we see

ˆ̀ψm = (z∂− z∂)p(z)e−
zz
4

= (z∂p(z))e−
zz
4 − 1

4
p(z)zze−

zz
4 +

1
4

p(z)zze−
zz
4

= (z∂p(z))e−
zz
4 ,

(2.40)

so
ˆ̀LLL = z∂, (2.41)

where it is understood that the derivative only acts on the polynomial part of the wave
function.

2.2.5 Degeneracy and Filling Factor

As seen from (2.38) each Landau level is infinitely degenerate. However for each level
there is a finite degeneracy per unit area. Consider the LLL. The absolute square of
a LLL state |ψm|2 is maximal at r =

√
2m. If we take this maximum as the position

of the state then in a disk of radius R there are bR2/2c states in the disk. The area
of the disk is πR2 so the degeneracy per unit area is (up to errors of order one due
to ignoring the floor function) 1/2π . As this is independent of R it must be constant.
Although this looks independent of all parameters our length unit `B depends on the
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magnetic field (or effective magnetic field). So with units the degeneracy per unit area
is eB/2πh̄c (mω/πh̄). In fact this degeneracy per unit area is the same for all Landau
levels [22].

Now we can introduce the filling factor from a different perspective: It is the num-
ber of Landau levels that would be filled if we put non-interacting fermions into this
system. This is the 2D particle density divided by the degeneracy density:

ν = ρ2π =
ρ2πh̄c

eB
=
ρπh̄
mω

, (2.42)

where ρ is the particle density given as a dimensionless number in units of 1/`2
B and

dimensionfully, respectively. We see that we have ended up with the same definition
as in (2.6).

If the magnetic field (real or effective) is sufficiently strong compared to the particle
density so that ν < 1 and the temperature is very low then non-interacting particles
would all be in the LLL. When we add interactions this is not strictly true, but if the
interaction is weak enough compared to the density it is a reasonable approximation
to focus only on the LLL.

2.2.6 Many Body LLL Wave Functions

For N particles the non interacting part of the LLL Hamiltonian is

Ĥ =
N

∑
i=1

ĥi =
1
2

N (2.43)

and the total angular momentum operator is

L̂ =
N

∑
i=1

ˆ̀ i =
N

∑
i=1

zi∂i. (2.44)

Of course [Ĥ, L̂] = 0 still. As seen from the form of (2.39) in the LLL the many body
wave functions are on the form

ψLLL = P({z}) exp

(
−∑

i
|zi|2/4

)
, (2.45)

where P({z}) is a polynomial in the zis. If we choose to look at simultaneous eigen-
functions for Ĥ and L̂, the polynomial must be homogeneous, i.e. the sum of the powers
in each term must be the same and equal to total angular momentum Ltot. For bosons
the polynomial must be totally symmetric under particle exchange, for fermions to-
tally antisymmetric. Since the exponential factor exp

(
−∑i |zi|2/4

)
is present for all

LLL wave functions I will usually suppress it to simplify notation.
All totally antisymmetric polynomials PA({z}) may be written as ∏ j<k(z j− zk)PS({z}),

where PS({z}) is a totally symmetric polynomial [24]. The factor ∏ j<k(z j − zk) ≡ J is
a Jastrow factor that will be called the Jastrow factor in this thesis. It is a homogeneous
totally antisymmetric polynomial with total power in each term N(N − 1)/2, which
in our context means it carries an angular momentum N(N − 1)/2.
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A standard way to construct totally antisymmetric wave functions is a Slater de-
terminant. A Slater determinant is a determinant of N single particle functions as
functions of N coordinates zi,∣∣∣∣∣∣∣∣∣∣∣

ψ1(z1, z1) ψ1(z2, z2) . . . ψ1(zN , zN)
ψ2(z1, z1)

... . . . ...

ψN(z1, z1) . . . ψN(zN , zN)

∣∣∣∣∣∣∣∣∣∣∣
. (2.46)

I will also use the notation

A(ψ1(z1, z1)ψ2(z2, z2) . . .ψN(zN , zN)), (2.47)

whereA is an antisymmetrization operator. Both these notations mean the same thing,
explicitly

∑
ρ∈SN

(−1)|ρ|ψ1(zρ(1), zρ(1))ψ2(zρ(2), zρ(2)) . . .ψN(zρ(N), zρ(N)), (2.48)

where SN is the symmetric permutation group on N letters. I will also represent Slater
determinants by occupation diagrams like this:

-3 -2 -1 0 1

0

1

2

3

m

n

where the dashes represent possible single particle states and the dots represent the
states that are occupied in the determinant.

The Jastrow factor is the antisymmetrization of the monomial ∏i zi−1
i , or the Slater

determinant of the N lowest angular momentum LLL single particle eigenstates. The
diagram representation of the Jastrow factor with N = 4 is

-3 -2 -1 0 1 2 3

0

1

2

3

m

n
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2.2.7 Composite Fermion Wave Functions (again)

In the composite fermion formalism the CFs have their own “internal” Landau levels
in the reduced magnetic field, called Λ levels. A CF state is a Slater determinant Φ
of single particle functions in these Λ levels. The CFs are not restricted to the lowest
Λ level. Φ is then multiplied by p Jastrow factors, which attaches p vortices to each
particle. For fermions p is even and for bosons it is odd. Finally as the final state is
restricted to the lowest Landau level the state is projected to the LLL:

ψCF = PLLL {ΦJ p} . (2.49)

In this thesis we will only look at states with minimal p, meaning p = 2 for fermions
and p = 1 for bosons.

As an example of a CF state, if all the CFs are in the lowest Λ level and have min-
imal angular momentum, Φ is just another Jastrow factor. Then the wave function is
already in the LLL and we recover the Laughlin wave function with m = p + 1 = 3.
The CF filling factor here is ν∗ = 1 while the actual filling factor is ν = ν∗/(pν∗+ 1) =
1/(2 + 1) = 1/3. To understand why, it is helpful to consider the diagram for the Jas-
trow factor

-3 -2 -1 0 1 2 3

0

1

2

3

m

n

Considered as a total state this corresponds to a filling factor ν = 1, graphically we see
that the lowest level is filled from the left,and all other levels are empty. The m = 3
Laughlin state is the Jastrow factor cubed. It thus has thrice the angular momentum
of the Jastrow factor, but is still entirely in the LLL. The state cannot be written as a
Slater determinant, and so there is no proper diagram for the whole state, but vaguely
we can represent the state with the diagram

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

0

1

2

3

m

n

The increased angular momentum is manifested in spreading out the single particle
states in angular momentum, resulting in the LLL being only 1/3 filled.
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If the Slater determinant is not completely made up of lowest Λ level states the pro-
jection to the LLL is more complicated. Let us first look at projecting a single particle
state ψnm to the LLL [20]:

〈ψ0m′ |ψnm〉 =
∫

d2z ψ0m′(z, z)ψnm(z, z). (2.50)

A given term in this expression looks like∫
d2z zm′zm+kzke−zz/2, (2.51)

which may be rewritten ∫
d2z zm′zm+k(−2∂)ke−zz/2, (2.52)

integrating by parts k times gives∫
d2z zm′

[
(2∂)kzm+k

]
e−zz/2. (2.53)

It seems that projecting ψm,n(z, z) to the LLL is equivalent to pulling z to the left and
then replacing z → 2∂, where the derivative only acts on the polynomial part of the
expression, not the exponential part. Introducing the notation : : to indicate pulling
derivatives to the left we can write

PLLL {ψ(z, z)} = :ψ(z, 2∂) : . (2.54)

This projection is formalized in [25], and also works on operators.
This implies that projecting a CF wave function to the LLL may be done by pro-

jecting the single particle states in the Slater determinant in this way, and letting the
derivatives act also on the Jastrow factors. This projection method is known as Girvin-
Jach projection, in this thesis I will call it projection method 1. In chapter 3 I will
present two alternative projection methods, both of which are simplifications of the
method presented here.

A CF wave function is determined by whether the basic particles are bosons or
fermions, the projection method and the single particle states that go into the determi-
nant. So to a large extent the differences between CF states lie in the Slater determinant
part, so I will often represent CF states by for example the occupation diagram of the
determinant.

2.3 Particle Interactions

So far we have considered only then non-interacting parts of the Hamiltonians. In
the quantum Hall effect system, the basic particles are electrons that interact by the
Coulomb interaction. In particular the FQHE may only be explained in terms of par-
ticle interactions, and trial wave functions like the Laughlin or CF wave functions are
useful precisely because they are supposed to capture these interactions.
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For the rotating gas system interactions are similarly essential, and using CF wave
functions on this system is only relevant when the interaction is strong enough to
matter. Here we will consider the basic particles of the gas to be electrically neutral
atoms that interact by a short-range or contact interaction, but in general the particles
could be charged and interact via the Coulomb interaction or some other repulsive
interaction.

Let us first add a generic two body interaction term to the Hamiltonian we have
been working with:

V̂ = ∑
i< j

v̂(|ri − r j|2) = ∑
i< j

v̂((zi − z j)(zi − z j)). (2.55)

The interaction depends only on the relative position of pairs of particles. Projecting
this to the LLL we find

V̂ = ∑
i< j

f (∂i − ∂ j)g(zi − z j)), (2.56)

where f and g depend on the form of v̂. Consider potentials on the form

V̂ = g ∑
i< j

∞
∑

m=1
vm(zi − z j)

m(∂i − ∂ j)
m, (2.57)

where g is the strength of the interaction and vm determines the form. This class of
interactions is quite large and includes the Coulomb, δ and ∇2nδ interactions [26].

In the LLL the non-interacting part of the Hamiltonian only contributes a constant
which we can ignore. Then,

Ĥ = V̂. (2.58)

When V̂ is on the form of equation (2.57) it commutes with L̂:

[V̂, L̂] = ∑
m,i< j

gvm ∑
k
[(zi − z j)

m(∂i − ∂ j)
m, zk∂k]

= ∑
m,i< j

gvmm(zi − z j)
m−1

×
(

∑
k

(
(zi − z j)∂k − zk(∂i − ∂ j)

)
(δik − δ jk)

)
× (∂i − ∂ j)

m−1

= 0,

(2.59)

because the middle sum cancels. Then V̂ separates into sections for a given Ltot, and
there are energy eigenstates for each value.

For the atomic gas system there is an additional term (ω−Ω)Lz. We have assumed
that this term is small, so to find the ground state it we should focus primarily on V̂.
However it is clear that additional angular momentum does contribute some energy
so long asω 6= Ω, so for two states with the same interaction energy the one with the
lowest angular momentum has the lowest energy.
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2.4 Translational Invariance and Center of Mass Angular
Momentum

The total angular momentum operator in the LLL takes the form

L̂LLL = ∑
i

zi∂i. (2.60)

A related operator is the LLL center of mass (COM) angular momentum:

L̂c =
1
N ∑

i j
zi∂ j = RD̂c, (2.61)

where R = ∑i zi/N is the COM coordinate, D̂c = ∑i ∂i and all derivatives act only on
the polynomial part of the wave function. For a wave function ψ with total angular
momentum Ltot = L∗ and D̂cψ = 0, which implies Lc = 0, there is a set of states

ψ′ = Rlψ, (2.62)

with Lc = l and Ltot = L∗ + l. These states are called COM excitations.
Consider interactions on the form of (2.57). The commutator [V̂, R] = 0:

[V̂, R] = ∑
m,i< j

gvm ∑
k
[(zi − z j)

m(∂i − ∂ j)
m, zk]

= ∑
m,i< j

gvmm(zi − z j)
m(∂i − ∂ j)

m−1
∑
k
(δik − δ jk)

= 0.

(2.63)

This means that for any eigenstate of V̂ the COM excitations are also eigenstates
with the same eigenvalue, but higher Ltot. This means that we can generate the whole
set of eigenstates from the subset with Lc = 0.

A related concept to COM angular momentum is translational invariance (TI). In
general a state ψ({r}) is TI if ψ({r}+ k) = ψ({r}), in other words the state does not
change if all coordinates are changed by the same vector. No LLL wave function is
TI in this sense, because the exponential factor is not TI. Therefore we instead define
TI to mean invariant under a constant shift in only the polynomial part of the wave
function: p({z}+ k) exp(−∑i |zi|2/2) = p({z}) exp(−∑i |zi|2/2).

The connection with COM angular momentum is that a state being TI is equivalent
to having Lc = 0. To see this consider (following [27]) a translation operator

T̂(k) = e−k·∑i∇i . (2.64)

In two dimensions with our notation k · ∇ = (k + k)(∂ + ∂)/2 + (k− k)(∂− ∂)/2. In
the LLL we may disregard the ∂ derivatives so we are left with k · ∇ = k∂. This gives

T̂(k) = e−k ∑i ∂i = e−kD̂c . (2.65)

Clearly [T̂(k), D̂c] = 0, so the operators have simultaneous eigenfunctions. Let ψ be
such a simultaneous eigenfunction. If T̂(k)ψ = ψ then exp(−kDc)ψ = ψ (where
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Dc is the eigenvalue of D̂c), which means that Dc = 0. If D̂cψ = 0 then T̂(k)ψ =
∑n(−kD̂c)nψ/n! = ψ, so ψ is TI. Thus TI is equivalent to Dc = 0, which is equivalent
to Lc = 0. If a state is an eigenfunction of one operator but not the other it can be
expanded in simultaneous eigenfunctions and the argument still holds.

In total this means that if we find only TI states we avoid the COM excitations.

2.5 Compact States

There is a special subset of CF states that is particularly interesting called compact states.
Compact states may be characterized by their diagrams in the following way: A state
is compact if, for an occupied single particle state, there is no unoccupied state directly to the
left or directly below it. In other words the state diagram is filled from the left and from
below. For example the state

-3 -2 -1 0

0

1

2

3

m

n

is compact, while the state

-3 -2 -1 0

0

1

2

3

m

n

is not, because the occupied n = 2, m = 0 state has unoccupied states both to the left
of and below it.

These compact states are good candidates for low energy states and are guaranteed
to be translationally invariant. A reason to expect them to have low energy is that
any non compact state can be turned into a compact state by moving the offending
single particle states into the empty slots below or to the left. This procedure will
reduce either the Λ-level (the CF energy level or CF cyclotron energy) or the angular
momentum or both. In addition to this the projected Slater determinants of compact
states may be written on a simple form, making them easier to deal with.
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To see the simple form consider (following [20]) a column of a Slater determinant:∣∣∣∣∣∣∣∣∣∣∣

ψn1 ,m1(z, z)
...

ψni ,mi(z, z)
...

ψnN ,mN(z, z)

∣∣∣∣∣∣∣∣∣∣∣
. (2.66)

If this is a compact state, then for a given occupied single particle state ψni ,mi(z, z)
either mi = −ni, ni = 0 or all ψn,mi(z, z) with 0 ≤ n < ni are also occupied. In the
first case we note that ψn,−n = z−nL−n

n (zz/2) = z−n(−1/2)n(zz)n/n! ∝ zn. We can
ignore the normalization, so these single particle states have the very simple form zn.
If n = 0 then the Laguerre polynomial is just a constant, and so we find the simple
form zm. For the third case we note first that the associated Laguerre polynomials Ln,m
have the property that the coefficient is nonzero for all powers from max(−m, 0) to
n. We also note that row operations only change the Slater determinant by a constant,
which does not matter here. Then starting from a single particle state ψn,−n or ψ0,m
we can eliminate all powers except the largest from the state ψn+1,−n or ψ1,m by row
operations, and continue up the chain to the top. Then each state can be written as
ψm,n → zn+mzn. Thus our column may be written∣∣∣∣∣∣∣∣∣∣∣

zn1+m1 zn1

...
zni+mi zni

...
znN+mN znN

∣∣∣∣∣∣∣∣∣∣∣
. (2.67)

Projecting to the LLL (and disregarding the factors of 2) zn+mzn → ∂nzn+m. This
can be simplified by [∂, z] = 1, which implies that

∂
nzn+m = ∂

n−1zm+n
∂ + (m + n)∂n−1zm+n−1. (2.68)

The second term is the state below, and can be eliminated. Moving one more:

∂
n−1zm+n

∂ = ∂
n−2zm+n

∂
2 + (m + n)∂n−2zm+n−1

∂ (2.69)

the second term corresponds to moving one derivative to the right in the n− 1 level,
so it can also be eliminated. This pattern continues, so we can write ∂nzn+m → zn+m∂n.
The column now looks like ∣∣∣∣∣∣∣∣∣∣∣

zn1+m1 ∂n1

...
zni+mi ∂ni

...
znN+mN ∂nN

∣∣∣∣∣∣∣∣∣∣∣
. (2.70)

It was possible to write the state in this simple form because the diagram was filled
from below.
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Now we can show that compact states are translationally invariant. For a constant
shift z → z + k the simple form state corresponding to ψn,m transforms as zn+m∂n →
(z + k)n+m∂n

z+k. But derivatives are invariant under a constant shift so ∂z+k = ∂. Then
we have (z + k)n+m∂n = ∑

n+m
i=0 (n+m

i )kn+m−izi∂n. The coefficients (n+m
i )kn+m−i are con-

stants. If the state is compact, then for an occupied state ψn,m also ψn,m−1, . . . ,ψn,−n
are occupied. Thus we have rows in the determinant with terms from z0∂n up to zi∂n

for every i up to n + m. Then we can eliminate each term but the largest in each row
by row operations, and are again left with∣∣∣∣∣∣∣∣∣∣∣

zn1+m1 ∂n1

...
zni+mi ∂ni

...
znN+mN ∂nN

∣∣∣∣∣∣∣∣∣∣∣
. (2.71)

So for compact states the determinant is TI. To see that the total state is TI we note that
the Jastrow factor

J = ∏
j<k

(z j − zk) (2.72)

is manifestly TI.

2.6 Multi Component Gases and Simple States

So far we have considered one component systems, where all the particles are iden-
tical. In the electronic case this is possible due to the spin degree of freedom being
frozen out, and in the atomic case there are several ways to accomplish this. However
it is of course also possible to not make this simplification and allow several species of
identical particles. In the atomic case these species could for example be different iso-
topes or different spin states of the same isotope. In the work I will consider here there
is no mechanism for switching between species, and all species considered follow the
same statistics. Also I will assume that the interaction is homogeneous, meaning that
it does not discriminate between particles of different species.

For a gas with M species of atoms with Nα atoms of speciesα let zα,i be the coordi-
nate of particle i of speciesα. The generalization of CF states to M species is

PLLL

{(
∏
α

Φα

)
J p
}

, (2.73)

where p is odd or even depending on the statistics of the particles (1 or 2 in this thesis),
Φα is a Slater determinant of Λ level states in the coordinates {zα}, and J is the total
Jastrow factor

J = ∏
µ<ν

(zµ − zν), (2.74)

where µ and ν are combined indices µ = (α, i). If all the Slater determinants are
compact, then the whole state is compact.
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For multi species gases there is a subset of compact states called simple states [20,
21]. For simple states all the CF single particle states in all the Slater determinants are
of the form ψn,−n. Single particle states in compact states may be written as zn+m∂n

which for simple states reduces to only ∂n.
For the single species gas with N particles there is only one possible simple nonzero

state, with the N single particle states being the N lowestψn,−n type states. Any other
state is zero because in the bosonic case the highest power of the derivative is higher
than the highest power of z, and in the fermionic case because the total power of the
polynomial will be too low to be antisymmetrizable. While this one state is (trivially)
the ground state for its angular momentum, it is obviously untenable as a ground state
candidate for all other angular momentum values.

For multi component gases there are many more possible simple states, all lying in
the angular momentum ranges

0 ≤ Lb ≤ ∑
α<β

NαNβ, (2.75)

where Lb is the angular momentum for bosons [21]. For fermions there is an extraN(N−
1)/2 units of angular momentum due to the extra Jastrow factor. These states have
been shown in numerical studies to be good candidates for the ground states of multi
component bosonic gases in this low angular momentum range [20, 27, 21].

2.7 Linear dependencies in CF states

Slater determinants of orthogonal single particle functions are orthogonal so long as
at least one of the occupied functions in one determinant is not occupied in the other.
So, all the different Slater determinants of Λ level states in the CF wave functions are
orthogonal, but the final projected CF wave functions are not necessarily orthogonal
or even linearly independent [6].

In one sense this is obvious, because the space of CF Slater determinants at a given
Ltot is infinite, while the LLL at the same Ltot is finite. That being said, there are finitely
many Slater determinants that survive (end up as non-zero) projection to the LLL, and
there are linear dependencies even among these states. These linear dependencies
might point the way to insights about the nature of CFs or CF wave functions.

One approach to understanding these linear dependencies is to introduce an inter-
action between CFs. This approach is taken in [7], where a special interaction serves to
eliminate certain linearly dependent states. On the interpretation of CFs as real parti-
cles it makes a lot of sense to consider an interaction between them, but the interaction
suggested here is very strange. It is infinitely strong and only exists between certain
CF excitations and holes, precisely those that give linearly dependent wave functions.
Surely this interaction is an ad hoc inclusion in the theory that does not resolve the
linear dependency puzzle so much as reframe it as a question of why the interaction
has the strange form that it has.

Another approach is to consider only the mathematical structure of projecting a CF
Slater determinant to the LLL. This approach does not depend on the interpretation
of CFs, only on the formalism. The goal of such an approach is to find proper rules
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for which linear dependencies are introduced by projecting. Realists about CFs may
find such mathematical rules less satisfactory than a physical explanation in terms of
an interaction, but on the other hand such rules would not be ad hoc in the way the
interaction from [7] is, and may well be viewed as the explanation for the strange form
of the interaction.

This mathematical approach is taken in the series [8, 9, 10], where the mathematical
origins of all linear dependencies among bosonic M-species simple states are found. It
is then possible to construct a basis for the subspace of simple states before projection
to the LLL.

Though a complete generalization of this basis to all compact bosonic states has not
yet been found, some headway has been made. In [8] an algorithm for identifying and
reducing linear dependencies among compact bosonic states for one or two species of
particles is identified. If we limit ourselves to the minimal cyclotron energy band of
compact states the procedure turned out to eliminate all linear dependencies, at least
for up to twelve particles of one or two species, producing a basis for this subspace.

2.8 From Bosons to Fermions

As mentioned in section 2.2.6 the structure of LLL wave functions means that bosonic
wave functions must be a totally symmetric polynomial multiplied with an exponen-
tial factor, while fermionic wave functions must be a totally antisymmetric polynomial
with the same exponential factor. Any totally antisymmetric polynomial in {z} may
be written as a totally symmetric polynomial multiplied with a Jastrow factor. This
means that any fermionic wave function may be written as a bosonic wave function
multiplied with the Jastrow factor and any bosonic wave function may be written as a
fermionic wave function divided by the Jastrow factor.

ψ f ermi = ψbose ×J , ψbose = ψ f ermi/J . (2.76)

It is natural to wonder what the relationship between these counterpart wave func-
tions are. In particular it is interesting to know the relationship between the energies of
the counterparts. For a harmonic interaction potential and a harmonic trap the coun-
terpart of a bosonic interaction eigenstate is also an eigenstate, with only a constant
shift in energy [28]. In [29] it is shown that a class of exact ground state wave func-
tions for bosons found in [30] have a high overlap with the exact fermionic ground
states after being transformed to fermionic wave functions by applying a Jastrow fac-
tor. According to [31] it is expected that this mapping gives good approximations to
all LLL states, especially for high angular momenta and a low number of particles.

This procedure is of course applicable to CF wave functions. While one could go
from fermions to bosons, it it probably more relevant to go the other way, from bosons
to fermions. This is because for a given CF Slater determinant or set of determinants,
it is considerably simpler to find the bosonic wave functions than the fermionic, due
to there being one less Jastrow factor in the bosonic case. So we can find a fermionic
wave function like so:

ψ f ermi = JψCF,bose = JPLLL {ΦJ } . (2.77)
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One may also look at this mapping as an alternative method of projecting a fermionic
wave function to the LLL, where instead of directly projecting according to method
1, we first project the bosonic counterpart, then add the second Jastrow factor to the
result. The aim of this thesis is to investigate this projection method.
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Chapter 3

Formalism

This chapter describes, in some technical detail, the concepts and methods needed to
produce the results in chapter 4. I first introduce three methods for projection to the
lowest Landau level. The rest of the chapter is then devoted to technical details needed
to study these methods.

3.1 Alternative methods for LLL projection

3.1.1 Method 1

As shown in section 2.2.7 the projection of a single particle state to the LLL is given by

PLLL {ψ(z, z)} = :ψ(z, 2∂) : . (3.1)

Extending this projection to many particle states simply amounts to projecting each
coordinate individually. The partial derivatives commute, so it does not matter what
order this is done in. For a fermionic CF state this becomes

P1
LLL

{
Φ({z}, {z})J 2({z})

}
= : Φ({z}, {2∂})J 2({z}) : , (3.2)

the derivatives are pulled to the left and apply to the polynomial parts of the single
particle functions in the Slater determinant and the Jastrow factors. This is projection
method 1.

Projecting in this way is very computationally expensive, and the cost rises quickly
with the number of particles N. Each Jastrow factor has N! terms, as does the Slater de-
terminant. So there are (N!)3 terms, each containing several derivatives. Even though
the differentiation can be done very efficiently this quickly becomes a huge calculation,
so it would be good to simplify it.

While this projection method is in a sense the mathematically correct one, it is not
necessarily “more correct” than any other projection method for our purposes. We
are using CF wave functions as trial wave functions to find approximations of ground
states. If we manage to find good wave functions the technicalities of the projection
do not matter, only the result does. Nevertheless it is useful to consider this projection
method as a starting point, as it was this projection method that was used to establish
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that CF wave functions could describe the QHE system in the first place. As a sec-
ondary motivation it may be noted that to the extent that the realist interpretation of
the unprojected CF wave functions should be meaningful at all there ought to be some
reasonable mathematical relationship between the projected and unprojected wave
functions.

3.1.2 Method 2

Our first alternative to projection method 1 is known as the Jain-Kamilla projection
method, or method 2 here [32]. This is the most commonly used projection method in
the literature. To see how it works, first note that we may write

J 2 = ∏
i< j

(zi − z j)
2 = ∏

i
∏
j 6=i

(zi − z j) = ∏
i

Ji, (3.3)

where
Ji ≡∏

j 6=i
(z j − zi), (3.4)

where the product is over all js except i. Then an unprojected CF wave function may
be written

∑
ρ∈SN

(−1)|ρ|
(

N

∏
i=1
ψi(zρ(i), zρ(i))

)(
∏

i
Ji

)
= ∑
ρ∈SN

(−1)|ρ|
(

N

∏
i=1
ψi(zρ(i), zρ(i))Jρ(i)

)
,

(3.5)
we see that we can “bake” the Js into the determinant as∣∣∣∣∣∣∣∣∣∣∣

ψ1(z1, z1)J1 ψ1(z2, z2)J2 . . . ψ1(zN , zN)JN
ψ2(z1, z1)J1

... . . . ...

ψN(z1, z1)J1 . . . ψN(zN , zN)JN

∣∣∣∣∣∣∣∣∣∣∣
. (3.6)

If we applied projection method 1 to this determinant the normal ordering would
in effect pull the Js back out. Projection method 2 is to project each element of the
determinant by projection method 1 individually:

P2
LLL

{
ΦJ 2

}
=

∣∣∣∣∣∣∣
:ψ1(z1, 2∂1)J1 : . . . :ψ1(zN , 2∂N)JN :

... . . . ...
:ψN(z1, 2∂1)J1 : . . . :ψN(zN , 2∂N)JN :

∣∣∣∣∣∣∣ , (3.7)

where the derivatives are evaluated before expanding the determinant. Studies have
shown that this projection method yields states that are very similar to those projected
by method 1, and thus are about as good as those projected by method 1 [6, 22]. We
will also confirm this in chapter 4.

There are N2 elements in the matrix, and for each element there is a set of deriva-
tives acting on 2N terms. So compared to the (N!)3 sets of derivatives in method 1
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there are 2N N2 sets. (N!)3 grows a lot faster with N than 2N N2, and so we expect
method 2 to be faster for large N. This sort of analysis is not very exact, and the ac-
tual cost will depend on the details of the implementations of the projection methods.
Nevertheless, it gives a rough idea of how costly the different methods are. Method 1
becomes very costly quite quickly, usually stalling out at around 10 particles. Method
2 however has been used to calculate wave functions with up to 100 particles [22].

3.1.3 Method 3

A second alternative is the projection method mentioned in section 2.8, here called
method 3. The single particle functions in the Slater determinant are projected in the
same way as for method 1, but rather than letting the derivatives act on both Jastrow
factors they act only on one of them, with the other being unaffected by the projection:

P3
LLL

{
ΦJ 2

}
= P1

LLL {ΦJ }J = J : Φ({z}, {2∂})J : . (3.8)

To the best of my knowledge this method is new in that it has not been systemati-
cally tested in the literature. Exploring it is one of the main tasks in this thesis. Why
this method? First of all it is expected to work. As explained in section 2.8 this pro-
jection method amounts to attaching a Jastrow factor to a bosonic CF state projected
by method 1. This procedure has proved a good way to create good approximations
of fermionic eigenstates from bosonic eigenstates [29, 31]. And numerical work has
shown that compact bosonic CF states are good eigenstate candidates for the δ in-
teraction for both one and more species of particles [19, 27, 21]. Therefore fermionic
compact CF states found by projection method 3 ought to be good approximations of
the eigenstates of ∇2δ interaction, the closest fermionic analogue to the δ interaction.

Secondly, this projection method preserves the linear dependencies between bosonic
states. If

P bose
LLL {Φ0J } = ∑

i
ciP bose

LLL {ΦiJ } , (3.9)

then
P3

LLL

{
Φ0J 2

}
= ∑

i
ciP3

LLL

{
ΦiJ 2

}
, (3.10)

which cannot be said of the other projection methods. This property means that we
can immediately apply any insights about the linear dependencies for bosonic states
to fermionic states produced by method 3. In particular the basis for the full space of
simple bosonic states found in [8, 9, 21] is a basis for the full space of simple fermionic
states projected by method 3 if each basis element is multiplied with a Jastrow factor.
If method 3 provides good eigenstate candidates we can use this to approximate the
full spectrum with comparatively low computational cost. Simple states only exist for
two or more species (except for the one at Lb = 0), while this thesis will only consider
single species systems. However the work in [8] on linear dependencies of compact
states applies to single species bosonic states, where it could produce a basis for the
lowest cyclotron energy band of compact states for all tested numbers of particles, up
to 12. I will discuss this more shortly.

Finally method 3 should be much cheaper computationally than method 1 as it
reduces the number of terms to be differentiated by a factor of N!. Note however
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that this still leaves (N!)2 terms, which grows very quickly with N. The number of
terms grows much faster than the number of terms for method 2, so we should not
necessarily expect to be able to use method 3 for as large systems as method 2.

3.1.4 Numerical Experiments

I will perform two “numerical experiments” to compare these three projection meth-
ods. First I will look at how well the different methods can be used to approximate the
LLL ground states of an interaction potential for small values of N and Ltot. Previous
work has shown that methods 1 and 2 will typically give good approximations, while
method 3 has to my knowledge never been tested in this way. Secondly I will examine
the linear dependencies between the ground state candidates projected by the different
methods. I will also perform the procedure for eliminating linear dependencies from
compact states outlined in [8] to check that the linear dependencies I find correspond
to those found by the procedure.

The rest of this chapter contains some essential concepts and techniques for these
experiments. The results are given in chapter 4.

3.2 Overlap

I will need to compare states to see how similar they are and for this I will use the
overlap:

O(ψ,φ) ≡ | 〈ψ|φ〉 |√
| 〈ψ|ψ〉 〈φ|φ〉 |

. (3.11)

This is a number between 0 and 1, with 1 indicating identity up to normalization and
0 indicating orthogonality. As such its interpretation is straightforward: the higher
the overlap the more similar the two states are. It is however worth noting that the
similarity measured by the overlap is a specific kind of similarity. Two states may
share many important properties and still have a low or zero overlap, for example
two states may have the same interaction energy yet still have zero overlap. So this
measure is not the be all and end all, nevertheless it is useful and the standard way of
reporting similarity between states in this field, from [16] and on.

It is sometimes helpful to look instead at the overlap squared:

O2(ψ,φ) =
| 〈ψ|φ〉 |2

| 〈ψ|ψ〉 〈φ|φ〉 | . (3.12)

These have the property that the sum of the square overlaps of any stateψwith all the
eigenstates of a Hermitian operatorφi must be equal to 1:

∑
i

O2(ψ,φi) = 1. (3.13)

So the square overlap with an eigenstate is the “share” of that particular eigenstate in
ψ, which is in my opinion easier to interpret than the direct overlaps. Nevertheless I
will mostly use overlaps, as this is the standard which makes it easier to compare with
other work. It is simple enough to square the values when needed.
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3.3 Basis

To perform the numerical experiments it is useful to represent the wave functions in
a basis. Here I present the one used for my computations. It is chosen because it
simplifies some calculations and because it is easy to translate it to a corresponding
basis for bosonic states.

Call the space of totally antisymmetric homogeneous polynomials in N variables
with total degree Ltot A(N, Ltot). The many fermion LLL angular momentum eigen-
states are elements ofA(N, Ltot) multiplied with an exponential factor exp(−∑i |zi|2/4)
that is the same in each case. So the Hilbert space for each part of the many-body
Hamiltonian for fermionsHF(N, Ltot) is isomorphic to the space of the polynomial part
A(N, Ltot). One orthogonal basis for this space is the set of antisymmetrized monomi-
als where the powers are sorted partitions of Ltot into N different integers `i ≥ 0. Let
us call this basis the monomial basis. The monomial basis set corresponds to the set of
sets of N non-negative integers `i where

`i > `i+1,
N

∑
i=1

`i = Ltot. (3.14)

For example the only ways to accomplish this for N = 4 and Ltot = 10 are {7, 2, 1, 0},
{6, 3, 1, 0}, {5, 4, 1, 0}, {5, 3, 2, 0} and {4, 3, 2, 1}. So the monomial basis when N = 4
and Ltot = 10 is{
A
(

z7
1z2

2z1
3z0

4

)
,A
(

z6
1z3

2z1
3z0

4

)
,A
(

z5
1z4

2z1
3z0

4

)
,A
(

z5
1z3

2z2
3z0

4

)
,A
(

z4
1z3

2z2
3z1

4

)}
. (3.15)

Any other monomial either has the wrong total power or is equal to zero or equiva-
lent to one of the above under antisymmetrization. Thus it should be clear that this
basis spans A(4, 10), and in general the monomial basis for a given N and Ltot spans
A(N, Ltot).

To see that the basis elements are orthogonal consider the inner product of two of
them:

〈ψa|ψb〉 =
∫ (

∏
i

d2zi

)
A
(

∏
i

z`a,i
i

)
A
(

∏
i

z`b,i
i

)
e−∑i |zi|2/2

= ∑
ρ,σ∈SN

(−1)|ρ|+|σ |∏
i

∫
d2zi

(
z
`a,ρ(i)
i z

`b,σ(i)
i e−|zi|2/2

)
.

(3.16)

The integral ∫
d2z zkzle−|z|

2/2 =
∫ 2π

0
dφ eiπ(l−k)

∫ ∞
0

dr rk+l+1e−r2/2

= δlk2π2kk!
(3.17)

so

〈ψa|ψb〉 = ∑
ρ,σ∈SN

(−1)|ρ|+|σ |∏
i
δ`a,ρ(i)`b,σ(i)

(2π)2`σ(i)`σ(i)! (3.18)
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The only way there can be a non-zero term is if there is a matching power in ψb for
every power in ψa, so for ψa 6= ψb

〈ψa|ψb〉 = 0, (3.19)

and the basis is orthogonal. To make the basis orthonormal we note

〈ψ|ψ〉 = N!(2π)N2Ltot ∏
i
`i! (3.20)

so the states may be normalized with a factor

1√
N!(2π)22Ltot ∏i `i!

. (3.21)

We can consider either finite monomial bases for each A(N, Ltot) or an infinite basis
for the whole space of antisymmetric polynomials A =

⋃
(N,Ltot)A(N, Ltot), either way

the monomial basis is orthogonal.
Any polynomial in A(N, Ltot) may be expressed as a totally symmetric polynomial

multiplied with a Jastrow factor. This means that A(N, Ltot) is isomorphic to the space
of totally symmetric homogeneous polynomials in N variables with total degree Lb =
Ltot − N(N − 1)/2, S(N, Lb). This space is again related to the space of bosonic LLL
angular momentum eigenstates by multiplication of the same exponential factor as for
the fermions.

This means that the monomial basis for A(N, Ltot) corresponds to a monomial basis
for S(N, Lb), with each antisymmetric basis state corresponding to a symmetric basis
state multiplied with a Jastrow factor. For example

A
(

z5
1z4

2z1
3z0

4

)
↔ S

(
z2

1z2
2z0

3z0
4

)
, (3.22)

where S is a symmetrization operator. The Jastrow factor itself is represented as

A
(

zN−1
1 zN−2

2 . . . z0
N

)
. (3.23)

To translate between the bosonic and fermionic bases, we add or subtract the powers
of the Jastrow factors to or from the original. This procedure depends on the powers
being sorted.

There is no simple exact formula for the dimension of these spaces as functions of
N and L, but there is an approximation. Just like each antisymmetric basis element cor-
responds to a partition of Ltot into N different non-negative integers, each symmetric
basis element corresponds to a partition of Lb into N different or equal non-negative
integers:

`i ≥ `i+1,
N

∑
i=1

`i = Lb. (3.24)

This again corresponds to a partition of Lb into N or fewer strictly positive integers,
by padding with zeros. The problem of integer partitions into maximally N terms has
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been studied and it has been shown (for example in [33]) that the number of partitions
pN(Lb) is

pN(Lb) =
LN−1

b
N!(N − 1)!

+O
(

LN−2
b

)
. (3.25)

By the isomorphisms outlined above this relation also holds for the dimensions of the
A(N, Ltot), S(N, Lb), HF(N, Ltot) and HB(N, Lb) spaces.

This is not a particularly precise result for small Ls and Ns, but it tells us that for
a fixed number of particles the number of dimensions grows quite quickly with the
angular momentum as it becomes much larger than N.

There are of course other possible bases than the monomial bases, and there are
also bases for subspaces, for example the TI subspace. The monomial bases were cho-
sen first and foremost because they allow for many calculations to be done without
ever expanding the antisymmetrization or symmetrization operators, which can make
them much simpler.

3.4 The ∇2δ Interaction

While the electronic QHE system is usually studied with the full Coulomb interac-
tion, systems of electrically neutral atomic boson systems are often studied with a δ
interaction. The δ is a reasonably good approximation of the short range interactions
between these particles. It only contributes to the energy when (loosely speaking) two
particles are in the same position, i.e. when zi = z j. For fermions such an interaction
can never contribute because the antisymmetric nature of the wave function makes it
zero whenever zi = z j. So for the short range interactions between electrically neutral
atomic fermion systems we need a different approximation.

According to [24] a short range interaction V̂(|r|) may be expanded as

v̂(|r|) =
∞
∑
j=0

c jb2 j∇2 jδ2(r), (3.26)

where b is the range. As shown in appendix A.1 for bosons only terms with even js
contribute and for fermions only terms with odd js contribute. As b→ 0 only the first
non vanishing term contributes for each kind of particles, so bosons are left with a δ
interaction, while fermions are left with an interaction on the form

v̂(r) = g2π∇2δ2(r), (3.27)

where g determines the strength of the interaction. In this thesis I will use this inter-
action with g = 1. In terms of coordinates z and z ∇2 = 4∂∂ so the interaction is

v̂(z) = 8π∂∂δ2(z). (3.28)

So the many body interaction term in the Hamiltonian is

V̂ = ∑
i< j

v̂(zi − z j) = ∑
i< j

8π∂i∂iδ
2(zi − z j). (3.29)
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The matrix elements of V̂ in the monomial basis are given by

Vab = 〈ψa| V̂ |ψb〉 = ∑
i< j

∫ ( N

∏
k=1

d2zk

)
ψaψbvi j (3.30)

A generic term is of the form (dropping the normalization constants)

∫ ( N

∏
k=1

d2zk

)
A(z`a,1

1 . . . z`a,N
N )A(z`b,1

1 . . . z`b,N
N ) exp

(
N

∑
i=1
−|zi|2

2

)
vi j (3.31)

or expanding the antisymmetrization operators

∑
ρ,σ∈SN

(−1)|ρ|+|σ |
∫ ( N

∏
k=1

d2zk z
`a,ρ(k)
k z

`b,σ(k)
k e−

|zk |
2

2

)
vi j. (3.32)

We can integrate out the non i and j coordinates by integral (3.17) noting that we only
get contributions if for each `a except two there is a matching `b. These integrals add
a constant that partially cancels the normalization constants of the basis functions. If
τ is a (one of two) permutation that makes `a,k = `b,τ(k) for all k 6= i, j, then for a
given ρ the only contributing terms are σ = ρ ◦ τ and σ = Pi j ◦ ρ ◦ τ , where Pi j is the
permutation of the ith and jth coordinate:

∑
ρ

(−1)|τ |
∫

d2zid2z j z
`a,ρ(i)
i z

`a,ρ( j)
j

(
z
`b,ρ(τ(i))
i z

`b,ρ(τ( j))
j − z

`b,ρ(τ( j))
i z

`b,ρ(τ(i))
j

)
× exp

(
−|zi|2

2
−
|z j|2

2

)(
8π∂i∂iδ

2(zi − z j)
)

.
(3.33)

By integration by parts∫
d2z f (z, z)∂∂δ(z) =

∫
d2z

(
∂∂ f (z, z)

)
δ(z). (3.34)

Performing this transformation, evaluating the derivatives and integrating out the δ
turns (3.33) into

∑
ρ

(−1)|τ |8π
(
`b,ρ(τ( j)) − `b,ρ(τ(i))

)
×
∫

d2zi

(
`a,ρ( j)z

`a,ρ(i)+`a,ρ( j)−1
i z

`b,ρ(τ(i))+`b,ρ(τ( j))−1
i

− 1
2

z
`a,ρ(i)+`a,ρ( j)
i z

`b,ρ(τ(i))+`b,ρ(τ( j))
i

)
e−|zi|2

(3.35)

which gives

∑
ρ

(−1)|τ |(2π)2
(
`a,ρ( j) − `a,ρ(i)

) (
`b,ρ(τ( j)) − `b,ρ(τ(i))

) (
`a,ρ(i) + `a,ρ( j) − 1

)
!

× δ`a,ρ( j)+`a,ρ(i) ,`b,ρ(τ(i))+`b,ρ(τ(i))
.

(3.36)
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Reinserting the normalization constants the total matrix element is then

Vab = ∑
i< j

∑
ρ

(−1)|τ |

(
`a,ρ( j) − `a,ρ(i)

) (
`b,ρ(τ( j)) − `b,ρ(τ(i))

) (
`a,ρ(i) + `a,ρ( j) − 1

)
!

N!2`a,ρ(i)+`a,ρ( j)
√
`a,ρ(i)!`a,ρ( j)!`b,ρ(τ(i))!`b,ρ(τ( j))!

× δ`a,ρ( j)+`a,ρ(i) ,`b,ρ(τ(i))+`b,ρ(τ(i))

(3.37)

We see that since the i, j-sum includes all possible pairs the permutations ρ only con-
tribute a factor of N!:

Vab = ∑
i< j

(−1)|τ |
(
`a, j − `a,i

) (
`b,τ( j) − `b,τ(i)

) (
`a,i + `a, j − 1

)
!

2`a,i+`a, j
√
`a,i!`a, j!`b,τ(i)!`b,τ( j)!

× δ`a, j+`a,i ,`b,τ(i)+`b,τ(i)

(3.38)

For diagonal elements this simplifies to

Vaa = ∑
i< j

(
`a, j − `a,i

)2 (
`a,i + `a, j − 1

)
!

2`a,i+`a, j`a, j!`a,i!
. (3.39)

3.5 Exact Diagonalization

To see how well the CF ground state candidates approximate the exact ground state
it is necessary to know the exact ground state. The Hilbert space HF(N, Ltot) for a
given Ltot and N is finite, so we can find the complete interaction matrix V by equa-
tions (3.38) and (3.39). Then it is straightforward to find the interaction eigenstates and
eigenvalues by numerically diagonalizing the matrix. This is called exact diagonaliza-
tion, although it is only exact up to the numerical precision, about 10−14 here.

This is however very costly for large matrices. For an n × n - matrix most algo-
rithms cost O

(
n2+η) operations where 0 ≤ η ≤ 1 depending on things like the sym-

metry and sparsity of the matrix and of course the choice of algorithm. For large ma-
trices personal computers will typically also run into memory issues, which will con-
siderably slow down the calculation. For example with N = 8 particles and Ltot = 84,
corresponding to the highest angular momentum compact states with eight particles ,
the dimension of the Hilbert space is 55974. So storing the matrix as a dense matrix of
32-bit numbers would take at least about 12 GB. Most personal computers don’t have
enough memory to store such a matrix, therefore diagonalizing it would be exceed-
ingly slow.

The computational cost of exact diagonalization depends on dF(N, Ltot) rather than
the number of particles. So for high N low Ltot computations it is much faster than
finding CF states by any projection method, while the cost of the three projection meth-
ods does not scale with Ltot in an obvious way, only N. Thus for relatively high Ltot
and intermediary N it can be much faster to find CF states than to diagonalize directly.
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3.6 Reduced Row Echelon Form of Matrices

One of the goals of this thesis is investigate the linear dependencies of CF states men-
tioned in section 2.7. In particular I want to look at how the new projection method 3
introduces these dependencies compared to methods 1 and 2. To do this I will want to
display the dependencies among a set of vectors. One good way to do this is to look
at the reduced row echelon form of the matrix formed by considering each vector a
column. This form is unique and is found by performing row operations so that every
zero row is to the bottom of the matrix and the first non-zero entry in each row is to
the right of the first non-zero entry of the row above it, has value 1, and is the only
non-zero entry in its column [34].

If the matrix is rank k, there will be k columns with only one non-zero element.
The other columns, if there are any, can be read as coefficients for finding the original
vector from the ones further to the left. For example: Let v and u be some linearly
independent column vectors in R3. The matrix (v, u, c1v + c2u, c3u) has the reduced
row echelon form 1 0 c1 0

0 1 c2 c3
0 0 0 0

 . (3.40)

3.7 Approximate Linear Dependency and Singular Val-
ues

Exact linear dependencies may be found and displayed by finding the reduced row
echelon form of the matrix. But I will also want to look for approximate linear depen-
dencies.

The notion of approximate linear dependency is a little unusual, so I will illustrate
with an example. Consider the set of vectors in R4

{ (1, 0, 0, 0), (0, 1, 0, 0), (1, 1,ε, 0) } , (3.41)

where 0 < ε � 1. Clearly this set is not linearly dependent, but nevertheless it seems
clear that the smaller ε is, the closer the set is to being linearly dependent. One way
to see this is to consider the overlap between the third vector (|3〉) and its projection
onto the plane spanned by the first two vectors (|312〉):

O(|3〉 , |3〉12) = 1− ε
2

4
+O

(
ε4
)

. (3.42)

For small εs this number is very close to 1 and the two vectors are very close to being
identical. It seems fair to say that we then have approximate linear dependency.

This approach is impractical for bigger sets of vectors and approximate linear de-
pendencies that are more complicated. A more general approach is to look at singular
values. An (m× n)-matrix M over the complex numbers may be decomposed as

M = UΣV †, (3.43)
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where U is a unitary (m×m)-matrix, V is a unitary (n× n)-matrix and Σ is a diagonal
(m×n)-matrix with the up to min(m, n) non-zero elements sorted in descending order
[35, 36]. The number of non-zero singular values is the rank of M. This may also be
written as

MV = UΣ, (3.44)

so letting ui be the ith column of U, vi the ith column of V andσi the ith diagonal entry
of Σ

Mvi = σiui. (3.45)

Note the similarity to an eigenvalue equation and that

|Mvi|2 = σ2
i ⇔ M†Mvi = σ

2
i vi. (3.46)

The σs are the singular values of M, they are the square roots of the eigenvalues of
M†M.

For a rank k matrix Mk there are k non-zero singular values. For a perturbation
M = Mk + E the remainder of the singular values are guaranteed to obey

∑
i=k+1

σ2
i ≤∑

i j
E2

i j, (3.47)

[37, 36]. This property makes singular values good tools for assessing approximate
linear dependency. If some of the singular values are small then the elements of the
matrix needed to perturb M to a matrix Mk for which they are zero are also small.
Then we can say that M is approximately linearly dependent with the approximate
dependencies in M corresponding to exact dependencies in Mk.

Still it is important to take some care when using singular values to find approxi-
mate linear dependencies, because singular values scale with M. Therefore one should
use relative values of the singular values to find which ones are small in the sense that
they indicate approximate linear dependence. I will also use normalized vectors to
construct the matrices to make the differences easy to see, but the relative size is what
counts.

The singular values for our example are

σ1 =
√

2− ε2

8
√

2
+O

(
ε4
)

σ2 = 1

σ3 =
ε

2
+O

(
ε3
)

,

(3.48)

where we clearly see that σ3 is much smaller than the other values for small ε, as
expected.

3.8 Ground State Candidates

I will examine as ground state candidates the sets of minimal cyclotron energy com-
pact states. These are the compact states for a given N and Ltot that minimize the total
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Λ-levels of the determinant. Let us for future reference call this set
{
ΦC

min
}

, with the

subset for specific values of N and L
{
ΦC

min,N,L

}
. The reason to restrict the compact

states to this subset is both that there are much fewer such states than compact states in
general and that it seems reasonable, at least to the extent that the Composite Fermion
interpretation is to be taken literally, that these are the lowest energy compact states.

I will look at these states for N = 4 to N = 8 particles, and for all angular momenta
that are possible for these states. This is minimally Lb = 0 and maximally Lb = N(N−
1), but not all values in between are possible. Unfortunately I was not able to project
the N = 8 states with projection method 2. This is because I ran into issues with the
memory on my computer. I was not able to find an implementation that avoided this
issue without being exceedingly slow, much slower than even my implementation
of projection method 1. For N = 8 I also had to stop at Lb = 44. For Lb = 45
d8(45) = 17674, but I again ran into memory issues when trying to diagonalize the
17674× 17674-matrix, and could not complete the computation.

3.9 Eliminating Linear Dependencies of Compact States

Projection method 3 lets us directly import linear dependencies among bosonic states
to the fermionic states. In [8] a procedure for finding linear dependencies among com-
pact state determinants before projection is presented. Here I will briefly present the
results from the article that pertain to single species compact states and the algorithm
found by combining these results. For a more detailed treatment see [8]. I will use
this algorithm to verify that it yields the same linear dependencies as projecting all
determinants and finding linear dependencies directly in chapter 4.

There are two ways to identify the linear dependencies involved: block permutation
invariance and generalized translation invariance of the Jastrow factor.

3.9.1 Block Permutation Invariance

Let us start with blocks, which are simplest to explain through occupation diagrams.
Starting from the lowest row, the rows in a diagram may be partitioned into minimal
sets of rows where the average occupancy is one. So for example in the following
compact state

-5 -4 -3 -2 -1 0 1

0

1

2

3

4

5

m

n

the rows 0, 1 and 2 form the first block, row 3 a second block and rows 4 and 5 a third.
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Let each diagram correspond to a Slater determinant of single particle statesφnm =
zn+m∂n applied to a single Jastrow factor. This corresponds to projecting a bosonic com-
pact CF state into the LLL by method 1 or to the first step of a projecting a fermionic
compact CF state to the LLL by method 3. Then it is proved in [8] that permuting the
blocks does not change the bosonic state. Since attaching a Jastrow factor to each state
does not change the linear dependencies also the fermionic states are left unchanged
by a block permutation.

Our example diagram is then equivalent to all the following diagrams:

-5 -4 -3 -2 -1 0 1

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0 1

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0 1

0

1

2

3

4

5

m

n

Of these the final one, corresponding to exchanging the first and third blocks of our
example, is a compact state. Then these two compact determinants are equivalent, and
we may discard one of them. All the other permutations break the rule that compact
states should be filled from below, so they are not compact.

Remember that the single particle states here are φnm and not projected Λ-level
orbitals PLLL {ψnm} = : zmLm(z∂) : . The association φnm ↔ PLLL {ψnm} only holds
for compact states, so the permuted non-compact states are not the same as the CF
states with the same diagram. Let us call these non compact states χi. Even though
they are not CF states they can be useful to us, as we shall see.

3.9.2 Generalized Translation Invariance

In section 2.4 I explained that a state being translationally invariant is equivalent to
the state having eigenvalue zero for the operator D̂c = ∑i ∂i. Compact states are TI, so
they are zero under this operator and the same goes for Jastrow factors. A state has
generalized translational invariance if it is zero under the operator

D̂a ≡∑
i

∂
a
i , (3.49)

where a is an integer ≥ 1. Compact states do not have this property generally, but
the Jastrow factor does. To see this, we first note that D̂a is symmetric while J is
antisymmetric, so D̂aJ is antisymmetric. Next we note that a generic term in D̂aJ
looks like

∂
a
i

N

∏
j=1

zρ( j)−1
j . (3.50)
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If a > ρ(i)− 1 the term is zero and all is well. If instead a ≤ ρ(i)− 1 there are two
coordinates with power ρ(i)− 1− a. But then the antisymmetry ensures that the term
is canceled by the term with the two equal powers exchanged. Thus D̂aJ = 0.

To exploit this note that for a projected compact Slater determinant Φ

ΦD̂a =

(
∑
ρ∈SN

(−1)|ρ|
N

∏
i=1

z
nρ(k)+mρ(k)
k ∂

nρ(k)
i

)(
N

∑
j=1

∂
a
j

)

=
N

∑
j=1

(
∑
ρ∈SN

(−1)|ρ|z
(nρ( j)+a)+(mρ( j)−a)
j ∂

nρ( j)+a
j ∏

i 6= j
z

nρ(k)+mρ(k)
k ∂

nρ(k)
i

)

=
N

∑
j=1

Φa
j ,

(3.51)

where Φa
j is the determinant Φ with the jth single particle state φn j ,m j replaced with

φn j+a,m j−a. In diagram terms this corresponds to moving one state a spots up and to
the left.

When thinking of states in terms of diagrams the single particle states are not or-
dered, so some care is needed to determine the sign of each term here. For example
by choosing a base ordering and figuring out the signature of the permutation needed
to reorder the Φa

i determinant into this ordering. As with block permutations some
of the Φa

i will be compact,some will be unknown non compact functions χi, and some
will be automatically zero if two particles occupy the same single particle state or if the
maximal n is higher than N− 1. If a χi found here is a block permutation of a compact
state, we can replace the χi with the compact state.

Now we can see the relation

ΦD̂aJ =
N

∑
i=1

Φa
iJ = 0. (3.52)

3.9.3 Combined Algorithm

By combining these results we find the following algorithm to reduce linear depen-
dencies. Let

{
ΦC

K,N,L

}
be the set of compact determinants with N particles, total

cyclotron energy K = ∑i ni and bosonic angular momentum L = ∑i mi + N(N − 1)/2.
The algorithm is

1. Find
{
ΦC

K,N,L

}
.

2. Delete determinants that are block permutations of other determinants.

3. For all a = 1, 2, . . . , min(K, N − 1):

(a) Find
{
ΦC

K−a,N,L+a

}
.

(b) For all Φ ∈
{
ΦC

K−a,N,L+a

}
find all Φa

i and relations (3.52).
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(c) If Φa
i is a block permutation of one of the remaining determinants in

{
ΦC

K,N,L

}
replace Φa

i with the one from
{
ΦC

K,N,L

}
in the relations.

4. Combining the relations found by (3.52), reduce as many of the remaining χis as
possible.

5. Use the remaining relations with no χis to reduce
{
ΦC

K,N,L

}
further.

This algorithm has been tested for minimal K states up to 12 particles. In all cases
all the linear dependencies are eliminated and we are left with a basis for the subspace
spanned by

{
ΦC

min,N,L

}
[8].

39



40



Chapter 4

Results

In chapter 3 I described two “numerical experiments” meant to investigate projection
method 3. In this chapter I collect and investigate the results of the experiments. First I
wanted to see how good projection method 3 is at producing ground state candidates,
both by comparing the method 3 candidates to the exact ground states and to the
methods 1 and 2 candidates. These comparisons serve to determine if method 3 is a
viable CF projection method, and are presented in section 4.1.

One of the main motivations behind projection method 3 is to better understand
the linear dependency puzzle of CF wave functions, as described in chapter 2. As
mentioned significant results have been found for the linear dependencies of bosonic
CF wave functions. The fermionic projection method 3 preserves the bosonic linear
dependencies, so using it we can immediately import insights about the bosonic case
to the fermionic case. It is therefore interesting to see how the linear dependencies
among the method 3 wave functions compare to those for methods 1 and 2. I present
this in section 4.2.

4.1 Comparison of CF states with Exact Ground States

I have projected the minimal cyclotron energy compact states
{
ΦC

min
}

for N = 4 – 7
with all three projection methods and up to L = 44 for N = 8 with methods 1 and 3.
I have diagonalized the ∇2δ interaction for these N, L combinations in both the entire
Hilbert space HF(N, L) and the subspace spanned by the projected CF candidates.
This produces exact eigenvalues and eigenvectors and CF ground state candidates,
respectively. I will investigate how well the CF candidate states compare to the ground
state first by considering the overlaps, and then by considering the energies.

4.1.1 Overlaps

Tables 4.1–4.5 show the overlaps of the ground state candidates with the exact TI
ground state for four to eight particles, all possible angular momenta for compact
states and all three projection methods. They also contain the overlaps among the
candidates.
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First of all some sanity checks: The number if ways to partition 0 into N non-
negative integers is dN(0) = 1 (N zeros), so the Hilbert space for N fermions with
Ltot = N(N − 1)/2, HF(N, N(N − 1)/2), is one dimensional. The overlap of any two
states in this space must then be exactly 1, so in particular the overlaps of our ground
state candidates with the exact ground state must be exactly 1. From the tables our
candidates all check this box.

Next dN(1) = 1, but this state must be the center of mass excitation of the Lb = 0
state, so it is not TI, and therefore there is no compact CF state here. dN(2) = 2 for
N ≥ 2. Again there is a COM excitation, removing this we are left with the TI subspace
which must then be one dimensional. Again any two states must have overlap 1.
Again we note that this holds for all our examples. Finally dN(3) = 3 for N ≥ 3,
which includes two COM excitations, and the TI subspace is one dimensional. The
overlaps are all 1 here also, as they must be.

On the other end of the angular momentum spectrum, for Lb = N(N − 1) there is
exactly one compact Slater determinant, the Jastrow factor. As mentioned the Jastrow
factor is already in the LLL so all three projection methods leave it be. Thus the three
projection methods all make the same state: the 1/3 Laughlin state. This means that
the overlaps among the candidates must be 1. Furthermore given Laughlin’s work it
would be very surprising if the overlap with the ground state were not quite high, and
in fact a previous study of the ∇2δ interaction has shown that it is the exact ground
state, not only for Lb = N(N − 1) but in the whole TI subspace for any angular mo-
mentum [24]. Again our candidates pass the test, as they all have overlap exactly 1 for
Lb = N(N − 1) both among each other and with the exact ground state.

Table 4.1: Overlaps between the CF ground state candidates produced with projection
methods 1, 2 and 3 and the exact ground state e for N = 4 particles. L is the bosonic
angular momentum, related to total angular momentum as Ltot = L + N(N − 1)/2.

L O(e, 1) O(e, 2) O(e, 3) O(1, 2) O(1, 3) O(2, 3)

0 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 0.998 0.999 0.990 1.000 0.997 0.996
6 0.984 0.985 0.982 1.000 1.000 0.998
7 1.000 1.000 1.000 1.000 1.000 1.000
8 0.991 0.991 0.991 1.000 1.000 1.000

12 1.000 1.000 1.000 1.000 1.000 1.000

Let us examine the other states in these tables. For 4 particles, table 4.1, there
are four values of Lb that are not covered by the checks above. All of these overlaps
are very high at 0.98 or above. The overlaps among the candidates are even higher.
For Lb = 4 and 6 projection method 2 gives the highest overlap with the ground state,
demonstrating that method 1 is not always the best, although the method 1 and method
2 candidates are very similar with overlap 1.000 to our accuracy. Method 3 gives the
worst overlap here, with the difference in the third digit. For Lb = 7 and 8 all methods
give the same overlap.
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Table 4.2: Overlaps between the CF ground state candidates produced with projection
methods 1, 2 and 3 and the exact ground state e for N = 5 particles. L is the bosonic
angular momentum, related to total angular momentum as Ltot = L + N(N − 1)/2.

L O(e, 1) O(e, 2) O(e, 3) O(1, 2) O(1, 3) O(2, 3)

0 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 0.998 0.999 0.989 1.000 0.996 0.995
5 0.995 0.996 0.976 1.000 0.993 0.991
6 0.932 0.931 0.931 1.000 1.000 1.000
7 0.988 0.988 0.988 1.000 1.000 1.000
8 0.989 0.984 0.981 0.999 0.997 0.997
9 0.954 0.953 0.966 1.000 0.992 0.991

10 0.965 0.964 0.950 1.000 0.997 0.997
11 0.421 0.421 0.421 1.000 1.000 1.000
12 0.974 0.974 0.974 1.000 1.000 0.999
13 0.803 0.803 0.803 1.000 1.000 1.000
14 0.256 0.256 0.256 1.000 1.000 1.000
15 0.985 0.985 0.985 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.2 shows that the situation for 5 particles is largely the same as for 4: Most
of the overlaps are very high with 0.95 or above for the overlaps with the ground
state and 0.99 or above among the CF candidates. The projection method which gives
the highest overlap varies, with method 3 usually performing slightly worse than the
others. For Lb = 9 method 3 actually gives the highest overlap, but not by all that
much. There are two glaring and one not as glaring exceptions to this pattern: namely
for Lb = 11, 13 and 14. Here the overlap with the ground state is much worse: 0.421
for Lb = 11, 0.803 for Lb = 13 and 0.256 for Lb = 14.

The square overlaps for these anomalies are 0.177, 0.645, 0.066, respectively. The
Lb = 13 square overlap is respectable enough, at least it is well above 0.5 so the square
overlap with all other eigenstates must be much smaller. But the Lb = 11 and 14
candidates fare much worse. The rest of the spectrum accounts for much more of the
candidates than the ground state.

In all three of these low overlap cases, the overlaps among the CF candidates are
all 1.000. So, from the perspective of evaluating method 3 compared with the well
established methods 1 and 2, we cannot say based on these cases that method 3 is any
worse than the others. Still it does show that our ground state candidates do not always
give high overlaps with the true ground state. I will discuss these states further in a
bit.

For 6 particles table 4.3 shows that again most overlaps with the ground state are
very high. There are again a few exceptions, for some of which the overlap is so small
that we should consider the states in question practically orthogonal. Still the overlaps
among the CF candidates is very high. The one exception is L = 8, where the method
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Table 4.3: Overlaps between the CF ground state candidates produced with projection
methods 1, 2 and 3 and the exact ground state e for N = 6 particles. L is the bosonic
angular momentum, related to total angular momentum as Ltot = L + N(N − 1)/2.

L O(e, 1) O(e, 2) O(e, 3) O(1, 2) O(1, 3) O(2, 3)

0 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 0.999 0.989 0.999 0.989 0.995
5 0.993 0.996 0.965 1.000 0.989 0.985
6 0.991 0.994 0.966 1.000 0.992 0.988
7 0.961 0.958 0.963 1.000 1.000 0.999
8 0.997 0.991 0.984 0.992 0.983 0.996
9 0.982 0.978 0.948 1.000 0.986 0.985

10 0.973 0.967 0.949 1.000 0.994 0.994
11 0.944 0.943 0.938 1.000 0.985 0.982
12 0.910 0.911 0.862 0.999 0.991 0.990
13 0.178 0.188 0.200 1.000 0.999 1.000
14 0.949 0.946 0.953 1.000 0.996 0.996
15 0.979 0.973 0.970 1.000 0.998 0.998
16 0.179 0.151 0.055 0.998 0.987 0.991
17 0.160 0.158 0.148 1.000 0.992 0.991
18 0.942 0.942 0.926 1.000 0.997 0.997
20 0.988 0.987 0.989 1.000 1.000 0.999
21 0.723 0.728 0.728 0.988 0.988 1.000
22 0.043 0.043 0.043 1.000 1.000 1.000
23 0.322 0.322 0.322 1.000 1.000 1.000
24 0.986 0.986 0.986 1.000 1.000 1.000
30 1.000 1.000 1.000 1.000 1.000 1.000

3 candidate has an overlap of 0.504 with the method 1 candidate and 0.658 with the
method 2 candidate. The overlap between the methods 1 and 2 candidates is high, at
0.979, so method 3 is the clear outlier here. Despite this, the overlap with the ground
state is not so that much worse for candidate 3 than the other two, 0.814 for method 3,
0.877 for method 1 and 0.937 for method 2.

Just as for N = 5 method 3 typically has the lowest overlap with the ground state
among the candidates, but again there are exceptions. This same pattern is repeated
for N = 7 and N = 8 particles, except the typical overlap with the ground state, while
still high, does seem to decrease as N increases.

Let us consider further the cases where the overlap with the ground state is less
than 1/

√
2 for at least one of the candidates, indicating that there “is” more of the rest

of the spectrum in the candidate than there “is” of the ground state. In table 4.6 I have
collected all candidates that have a higher overlap with any TI eigenstate other than
the TI ground state than with the ground state. In all cases except for N = 8, L = 33,
the candidates for all three projection methods have the highest overlap with the same
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exact eigenstate. This is expected, as we have already seen that the candidates have
very high overlaps with each other. We see that some of these states have a high
overlap with the second lowest energy TI eigenstate, at 0.89 and above. However in
many cases the highest overlap is quite low, lower than 0.8. Also in some cases the
eigenstate with the highest overlap is as much as the 12th lowest energy eigenstate.
When the maximal overlap is low the candidate states are not very similar to any
particular eigenstate, but are superpositions of several high weight states. This is the
case for the N = 8, L = 33 exception. There the method 1 candidate has overlap 0.496
with the ground state and 0.500 with the second lowest TI state. On the other hand the
method 3 candidate has overlap 0.530 with the ground state and 0.489 with the second
lowest state. The two candidates are almost identical with an overlap of 0.992, but the
slight difference makes the maximal overlap state the ground state for the method 3
candidate and the second lowest state for the method 1 candidate.

There is one case where the overlap with the ground state is the maximal overlap,
but still lower than 1/

√
2, namely N = 8, L = 43. Here the overlap of the ground state

and the method 1 candidate is 0.698, just below 1/
√

2 ≈ 0.707, while overlap of the
method 3 candidate with the ground state is 0.807. The second highest overlap of the
method 1 candidate is with the tenth lowest TI eigenstate at 0.325. Other than this the
overlaps are mostly quite low, lower than 0.2. For the method 3 candidate the ground
state is the only state with an overlap higher than 0.2. This is a case where the overlap
between the candidates is quite low at 0.763, but where the method 3 candidate has a
significantly higher overlap with the ground state than the method 1 candidate.
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Table 4.4: Overlaps between the CF ground state candidates produced with projection
methods 1, 2 and 3 and the exact ground state e for N = 7 particles. L is the bosonic
angular momentum, related to total angular momentum as Ltot = L + N(N − 1)/2.

L O(e, 1) O(e, 2) O(e, 3) O(1, 2) O(1, 3) O(2, 3)

0 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 0.999 0.990 0.999 0.990 0.995
5 1.000 0.996 0.962 0.996 0.962 0.981
6 0.987 0.993 0.945 0.999 0.985 0.977
7 0.988 0.993 0.963 0.999 0.993 0.988
8 0.877 0.937 0.814 0.979 0.504 0.658
9 0.993 0.988 0.957 0.992 0.977 0.982

10 0.988 0.980 0.950 0.992 0.979 0.991
11 0.959 0.957 0.906 0.999 0.982 0.978
12 0.958 0.953 0.924 1.000 0.991 0.990
13 0.872 0.890 0.839 0.992 0.975 0.971
14 0.878 0.891 0.792 0.996 0.975 0.958
15 0.952 0.933 0.924 0.998 0.993 0.993
16 0.754 0.799 0.839 0.955 0.934 0.976
17 0.958 0.952 0.920 1.000 0.989 0.989
18 0.947 0.938 0.915 0.999 0.993 0.993
19 0.180 0.175 0.145 0.999 0.988 0.984
20 0.936 0.929 0.928 0.998 0.995 0.992
21 0.854 0.857 0.814 1.000 0.985 0.984
22 0.852 0.847 0.843 0.999 0.998 0.996
23 0.937 0.931 0.934 1.000 0.996 0.996
24 0.971 0.964 0.961 1.000 0.998 0.999
25 0.843 0.781 0.720 0.982 0.967 0.989
26 0.101 0.096 0.105 0.999 0.999 0.997
27 0.775 0.776 0.774 1.000 1.000 0.999
28 0.938 0.937 0.923 1.000 0.997 0.997
30 0.989 0.988 0.990 1.000 1.000 0.999
31 0.765 0.792 0.792 0.920 0.920 1.000
32 0.007 0.008 0.008 0.994 0.994 1.000
33 0.082 0.082 0.082 1.000 1.000 1.000
34 0.024 0.024 0.024 1.000 1.000 1.000
35 0.987 0.987 0.987 1.000 1.000 1.000
42 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.5: Overlaps between the CF ground state candidates produced with projection
methods 1 and 3 and the exact ground state e for N = 8 particles. L is the bosonic
angular momentum, related to total angular momentum as Ltot = L + N(N − 1)/2.

L O(e, 1) O(e, 3) O(1, 3)

0 1.000 1.000 1.000
2 1.000 1.000 1.000
3 1.000 1.000 1.000
4 1.000 0.991 0.991
5 1.000 0.961 0.961
6 0.999 0.933 0.936
7 0.981 0.934 0.985
8 0.986 0.965 0.995
9 0.991 0.930 0.896

10 1.000 0.950 0.950
11 0.974 0.905 0.975
12 0.975 0.908 0.962
13 0.943 0.889 0.984
14 0.946 0.907 0.988
15 0.979 0.936 0.962
16 0.873 0.844 0.981
17 0.932 0.881 0.986
18 0.920 0.872 0.988
19 0.944 0.823 0.917
20 0.318 0.377 0.986
21 0.903 0.852 0.989
22 0.312 0.350 0.963
23 0.908 0.863 0.982
24 0.936 0.901 0.992
25 0.547 0.518 0.994
26 0.814 0.792 0.994
27 0.875 0.802 0.985
28 0.920 0.885 0.992
29 0.014 0.015 0.996
30 0.947 0.935 0.996
31 0.432 0.419 0.996
32 0.901 0.894 0.998
33 0.496 0.530 0.992
34 0.608 0.603 0.996
35 0.959 0.949 0.998
36 0.197 0.202 0.999
37 0.036 0.029 0.966
38 0.893 0.893 1.000
39 0.089 0.092 0.993
40 0.933 0.919 0.997
42 0.986 0.986 1.000
43 0.698 0.807 0.763
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Table 4.6: CF ground state candidates where the highest overlap is not with the TI
ground state, but any other TI eigenstate. The state number is counted among the
TI eigenstates from the lowest energy and up. N is the number of particles, L is the
bosonic angular momentum, O is the overlap.

method 1 method 2 method 3
N L State O State O State O

5 11 2 0.793 2 0.793 2 0.793
14 2 0.951 2 0.951 2 0.951

6 13 2 0.938 2 0.938 2 0.937
16 2 0.937 2 0.936 2 0.932
17 2 0.929 2 0.927 2 0.930
22 4 0.642 4 0.642 4 0.642
23 3 0.795 3 0.795 3 0.795

7 19 3 0.756 3 0.758 3 0.742
26 9 0.467 9 0.472 9 0.461
32 2 0.722 2 0.718 2 0.718
33 5 0.471 5 0.471 5 0.471
34 3 0.512 3 0.512 3 0.512

8 20 2 0.896 - - 2 0.843
22 3 0.781 - - 3 0.739
25 3 0.721 - - 3 0.723
29 4 0.454 - - 4 0.495
31 3 0.597 - - 3 0.590
33 2 0.500 - - 1 0.530
34 2 0.711 - - 2 0.702
36 12 0.533 - - 12 0.534
37 2 0.695 - - 2 0.554
39 8 0.548 - - 8 0.531
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4.1.2 Energy Spectra

A different way to compare the CF candidates to the ground state is to directly com-
pare the interaction energy of the candidates to the ground energy. This is useful
because a candidate may have an energy very close to or even identical to the ground
state energy and still have a low or even zero overlap.

In figures 4.1 – 4.5 I display the spectra of the ∇2δ interaction, together with the
energies of the CF ground state candidates for N = 4–8 particles. As a sanity check we
can see that each TI eigenvalue (marked by orange dots) is indeed repeated for higher
Ls by COM excitations (gray dashes).

2 4 6 8 10 12
L

0.1

0.2

0.3

0.4

0.5

0.6

V

N =4

COM Excitations

Exact TI

Method 1

Method 2

Method 3

Figure 4.1: Energy spectrum of the∇2δ interaction for 4 particles, and different values
of L, the bosonic angular momentum, which is related to the total angular momentum
as Ltot = L + N(N − 1)/2. The orange dots and gray dashes are the eigenenergies
of the translationally invariant states and the center of mass excitations, respectively,
computed by exact diagonalization. The colored rings are the ground state energies of
the interaction in the subspace spanned by minimal cyclotron energy compact states
projected by the different methods.

Unsurprisingly, in the cases with high overlaps between the TI ground state and
the CF candidates the energy is also very similar. They are, of course, slightly higher
when they are not exactly the same, and just as the overlaps were mostly a little bit
lower for method 3 than the other candidates, the energy seems to be a little bit higher
for method 3.

The cases where the overlaps between the CF candidates and the exact TI ground
state were low are reproduced in these plots as cases where the CF candidate energy
is notably higher than that of the exact TI grounds state. We first note that in most
cases the energy is still very close to the ground energy. Notable exceptions are N = 7
L = 26 and N = 8 L = 29, where the differences are of the order 0.1g.
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Figure 4.2: See figure 4.1 for explanation.

We see that in certain cases the ground state is not a TI state, but rather a COM
excitation of a lower L TI state. These special TI states whose excitations are ground
states are called a cusp states because of the shape they form on spectrum plots. We
may call the cases accessible by compact states where the ground state is an excitation
the post cusp cases. I have listed all cusp and post cusp states in table 4.7. Almost all
cases where the CF candidates have low overlap with the ground state or the energy
is clearly above the TI ground energy are post cusp states. On the other hand all cusp
states have high overlaps and low energies. This holds for all projection methods,
apparently the CF candidates are particularly bad at finding the TI ground state in
post cusp cases.

I considered that this may be due to restricting the CF candidates to the lowest
cyclotron energy states, and diagonalized the entire compact state space for projection
method 3. This did not yield any improvement, and I concluded that the constraint
was well founded and that this cusp problem is a property of compact states in general,
and not only minimal cyclotron energy compact states.

While it would certainly be nice if CF states could provide good ground state candi-
dates for post cusp cases, it is worth pointing out that the post cusp cases are precisely
those where the true ground state is not TI and therefore cannot be found by com-
pact states anyway. Since CF candidates are good approximations of the cusp states,
we can find good approximations of post cusp ground state by exciting the CF cusp
candidates.

Just as with the overlaps it does seem to be a trend that as N increases, the agree-
ment between the exact ground state energy and the CF candidate energies decreases.
We see this most clearly in figure 4.5, where almost all of the CF energies are clearly
above the exact ones. This is just to be expected, as the dimensionality of the TI sub-
space grows it becomes harder and harder to “hit” the ground state with a guess. And
the energies are after all still quite low and the overlaps quite high.
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Figure 4.3: See figure 4.1 for explanation.

Table 4.7: List of cusp states and post cusp states accessible by compact states, listed
by identifiers N and L.

N cusp state Ls post cusp state Ls

4 4, 6, 8, 12 7
5 5, 8, 10, 12, 15 6, 9, 11, 13, 14, 20
6 6, 10, 12, 15, 18, 20, 24, 30 7, 11, 13, 16, 17, 21, 22, 23
7 7, 12, 15, 18, 20, 24, 28, 30, 35, 42 8, 13, 19, 21, 25, 26, 27, 31, 32, 33, 34
8 14, 18, 21, 24, 26, 28, 30, 32, 35, 38, 40 15, 19, 22, 25, 27, 29, 31, 33, 36, 37, 39
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Figure 4.4: See figure 4.1 for explanation.
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Figure 4.5: See figure 4.1 for explanation.
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4.2 Linear Dependencies

Here I consider linear dependencies among projected CF determinants. The states con-
sidered here are not the ground state candidates from the previous section, as these
were produced by diagonalizing the interaction in the space spanned by the states
considered here. I will first look at the number of independent states both before pro-
jection and after projection by all three methods in section 4.2.1. Then I check for ap-
proximate linear dependencies and consider a few detailed examples in sections 4.2.2
and 4.2.3.

4.2.1 Number of Independent States

Figures 4.6 – 4.10 show the number of elements in the set of minimal cyclotron energy
compact determinants

{
ΦC

min
}

together with the number of strictly independent states
after projection by all three methods. We see that in many cases there is only one deter-
minant in

{
ΦC

min,N,L

}
to begin with, which obviously means that there are no potential

linear dependencies to discover. In some other cases all projection methods have re-
duced the number of independent states to 1, indicating that all of the determinants
were equal up to normalization for all projection methods.

The most interesting cases though, are the ones where at least one of the projection
methods give 2 or more independent states. In these cases projection methods 2 and 3
always give the same number of independent states, while method 1 sometimes gives
the same number as the other two methods and sometimes more independent states
than the others.
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Figure 4.6: The number of independent states before and after projection for all pro-
jection methods, with 4 particles. L, the bosonic angular momentum, is related to the
total angular momentum as Ltot = L + N(N − 1)/2. The black dots are the number
of different determinants in

{
ΦC

min,N,L

}
, while the colored rings are the number of

strictly independent states after projection with the different methods.

5 10 15 20
L

1

2

3

4

N = 5

CF

method 1

method 2

method 3

Figure 4.7: See figure 4.6 for explanation.
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Figure 4.8: See figure 4.6 for explanation.
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Figure 4.9: See figure 4.6 for explanation.
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Figure 4.10: See figure 4.6 for explanation.
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4.2.2 Approximate Linear Dependencies

If we allow for approximate linear dependencies the difference in the number of in-
dependent states for the different projection methods disappears. To see this consider
table 4.8. There I have collected the number of non-zero singular values and the max-
imal relative difference between these singular values ∆ = max((σi −σi+1)/σi+1). If
this measure is large it indicates a substantial gap in singular values. The smallest ∆
for a case where there are more strictly independent states by method 1 than the oth-
ers is 70.3 while the largest ∆ for a case where there is already no difference is 1.52.
Obviously there is no exact value for ∆ that demarcates linear independence from ap-
proximate linear dependence. Still the gap between 70.3 and 1.52 is great enough that
I think it is fair to say that the cases where method 1 gives more independent states
than methods 2 and 3 are exactly the cases where there is approximate linear depen-
dence in the method 1 set. The ∆s for methods 2 and 3 are always lower than 1.52, so
there is no approximate linear dependence there.

57



Table 4.8: The number of non-zero singular values # and the maximal relative differ-
ence ∆ = max((σi −σi+1)/σi+1) for all cases where # > 1 for at least one projection
method.

method 1 method 2 method 3
N L # ∆ # ∆ # ∆

5 6 2 84.5 1 - 1 -
6 4 2 198 1 - 1 -

7 2 85.4 1 - 1 -
8 3 95.3 2 0.0907 2 0.324

12 2 0.0446 2 0.032 2 0.274
13 2 0.645 2 0.542 2 0.699
14 2 0.464 2 0.396 2 0.498
16 2 0.37 2 0.373 2 0.491
18 2 0.205 2 0.193 2 0.236

7 4 2 113 1 - 1 -
5 2 143 1 - 1 -
8 5 1.25e+03 2 0.16 2 0.34
9 4 214 2 0.0864 2 0.479

10 3 83.9 2 0.0864 2 0.403
13 3 102 2 0.415 2 0.482
14 2 0.427 2 0.42 2 0.75
16 4 104 3 0.839 3 1.07
17 2 0.495 2 0.404 2 0.543
21 2 0.318 2 0.292 2 0.362
23 2 1.47 2 1.31 2 1.14
25 2 0.337 2 0.482 2 0.601

8 4 2 99 - - 1 -
5 2 70.3 - - 1 -
6 2 143 - - 1 -
9 6 1.5e+03 - - 2 0.444

10 8 7.7e+04 - - 3 0.783
11 4 147 - - 2 0.613
12 3 77.6 - - 2 0.465
15 5 149 - - 3 1.08
16 4 77.9 - - 3 1.14
19 4 92.5 - - 3 1.15
20 3 0.559 - - 3 0.863
22 4 80.7 - - 3 0.587
23 2 0.333 - - 2 0.353
27 3 1.52 - - 3 1.43
28 2 0.105 - - 2 0.0456
29 2 0.206 - - 2 0.244
31 2 0.541 - - 2 0.704
34 2 1.12 - - 2 0.856
37 2 0.452 - - 2 0.642
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4.2.3 Some Detailed Examples

Let us look more closely at a few examples: A simple example of approximate linear
dependence is the N = 6, L = 4 case. From figure 4.8 we see that there are three
determinants in

{
ΦC

min,6,4

}
, two strictly independent states from method 1 and one

independent state from methods 2 and 3. In table 4.9 we see from the reduced row
echelon forms that projection methods 2 and 3 project all determinants to the same
state, while method 1 gives two identical states and a third, different, state. However,
we can tell by the low singular value that the third state is almost identical to the other
two. So, if we consider approximately equal states equal, there is only one state even
for method 1.

Table 4.9: Linear dependencies among the ground state candidates.

N = 6, L = 4

Determinants

-5 -4 -3 -2 -1 0 1

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0

0

1

2

3

4

5

m

n

-5 -4 -3 -2 -1 0

0

1

2

3

4

5

m

n

Reduced Row Echelon Form

method 11 0 0
0 1 1
0 0 0


method 21 1 1
0 0 0
0 0 0


method 31 1 1
0 0 0
0 0 0


Singular Values

method 1[
1.73 0.0087

] method 2[
1.73

] method 3[
1.73

]
For a more complex example we can look at N = 7, L = 8 in table 4.10. Here there

are nine determinants in
{
ΦC

min,7,8

}
. Projected by method 1 there are five independent

states, while the four next may be written as four slightly different linear combinations
of the five first. By contrast both methods 2 and 3 give three sets of identical states.
States number 1,5 and 9 are identical, states number 2, 4, 6 and 8 are identical and
states number 3 and 7 are identical. For both methods the states number 3 and 7
may be written as a linear combination of the other two states, though with different
coefficients. The three extra independent states from method 1 correspond to three
singular values “below the gap”, that is to say three singular values that are much
smaller than the other two, indicating that the extra states are really approximately
linearly dependent on the two first.

As a final example consider N = 8, L = 9 in 4.11. Here there are fourteen deter-
minants in

{
ΦC

min,8,9

}
. By method 1 there are now six independent states, while the

next six are slightly different linear combinations and the final two are identical lin-
ear combinations. I do not have results for method 2 here, but method 3 again gives
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Table 4.10: Linear dependencies among the ground state candidates.

N = 7, L = 8

Determinants
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Reduced Row Echelon Form

method 1
1 0 0 0 0 −1.02 −0.902 −0.93 −0.0498
0 1 0 0 0 −0.424 −0.374 −0.286 −0.12
0 0 1 0 0 2.23 1.97 2.1 0.0439
0 0 0 1 0 −0.697 −0.615 −0.722 0.0536
0 0 0 0 1 −0.795 0.177 −0.825 1.01


method 2

1 0 0.794 0 1 0 0.794 0 1
0 1 0.905 1 0 1 0.905 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


method 3

1 0 1.23 0 1 0 1.23 0 1
0 1 1.12 1 0 1 1.12 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Singular Values

method 1[
2.27 1.96 0.0323 0.0172 0.00182

]
method 2[
2.27 1.96

] method 3[
2.4 1.79

]

two independent states, with states 3, 7, 9, 13 and 14 identical to the first, 6, 8 and
12 identical to the second and 4, 5, 10 and 11 identical linear combinations of the two
first states. Just as in the last example all of the extra singular values for method 1 are
“below the gap”, so all of the extra linearly independent states may be considered as
approximately linearly dependent on the first two.

In every case I have tested there are small singular values corresponding to every
“extra” linearly independent state when projected by method 1 compared to meth-
ods 2 and 3. So if we were to eliminate all the approximate linear dependencies there
would be the same number of linearly independent states. I have checked that for
all examined cases the independent states are the same states as for methods 2 and
3. Meaning that if we can identify the determinants needed to form a basis for one
method and are treating approximate linear dependencies as proper linear dependen-
cies, those same determinants also form a basis for the two other projection methods.
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This holds for the examined cases, that is to say the lowest cyclotron energy compact
one species states for N = 4 – 8 particles. I expect it to hold also for higher N.

I have executed the algorithm for reducing linear dependencies outlined in sec-
tion 3.9. The algorithm gave bases that are consistent with the linear dependencies or
approximate linear dependencies found directly (as it had to). So the algorithm may
perfectly well be applied to fermions, both projected by method 3, but also by the other
two projection methods so long as the patterns found here hold for higher N.
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Table 4.11: Linear dependencies among the ground state candidates.

N = 8, L = 9

Determinants
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Reduced Row Echelon Form

method 1
1 0 0 0 0 0 −0.0209 −0.97 0.196 −1 −0.764 −0.647 −0.0711 −0.0711
0 1 0 0 0 0 −1.13 0.38 −1.03 −0.471 −0.322 0.619 −1.19 −1.19
0 0 1 0 0 0 −1.37 1.96 −1.96 0.946 0.661 1.85 −1.62 −1.62
0 0 0 1 0 0 1.43 0.905 0.8 2 1.52 0.375 1.33 1.33
0 0 0 0 1 0 1.8 −2.07 2.81 −0.725 −0.253 −1.95 2.23 2.23
0 0 0 0 0 1 −2.24 1.73 −2.72 0.0509 −0.0537 1.92 −2.57 −2.57


method 3

1 0 1 0.97 0.97 0 1 0 1 0.97 0.97 0 1 1
0 1 0 1.43 1.43 1 0 1 0 1.43 1.43 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


Singular Values

method 1[
2.73 2.56 0.048 0.0212 0.0148 0.00182

] method 3[
3.08 2.13

]
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Chapter 5

Conclusion and Outlook

5.1 Summary and Conclusions

In this thesis I have investigated a new method for projecting composite fermion Slater
determinants to the lowest Landau level, called method 3. The method is based on
attaching a Jastrow factor to a bosonic wave function projected by the standard pro-
jection method 1.

We want to know how well projection method 3 works. I have compared the
method 3 CF ground state candidate to both the exact ground state from a numeri-
cal diagonalization and to the ground state candidates for projection methods 1 and 2.
As found in chapter 4 the overlap among the CF candidate states is almost uniformly
very high. As N grows the overlap among candidates decreases slightly, but remains
high. The energies of the different candidates are also very similar. This indicates that
projection method 3 works about as well as the other methods.

Similarly, the overlaps of all the CF candidates with the TI ground state is typically
very high, with method 3 typically performing slightly worse than the other methods.
This overlap also decreases with N. Typically the CF energies are also very close to the
true TI ground state energies, although they grow apart with N. There are, however,
exceptions. I found that almost all cases where the overlap with the TI ground state is
low, or the CF energy is very different from the TI ground state energy is in so-called
post cusp cases. These are values of L where the true ground state is not TI, but rather
a center of mass excitation of a lower L TI state, called a cusp state. The CF candidates
provide good approximations of the cusp states, so the true ground state in post cusp
cases may be well approximated by exciting a cusp state candidate.

All in all it seems that projection method 3 gives quite good approximations of the
ground state, and a very similar approximation to other CF projection methods.

The other main topic of this thesis has been the linear dependencies of projected
CF states. I have compared the linear dependencies among CF wave functions found
by projecting the minimal cyclotron energy compact states for a given N and L. For all
tested cases (N = 4 - 8 and Ls up to 44) methods 2 and 3 give the “same” linear depen-
dencies, in the sense that same coefficients are non-zero, though they have different
values. On the other hand method 1 often gives different linear dependencies, with
more linearly independent states than for the other two methods. This difference is
resolved by considering approximate linear dependencies. Then the linear dependen-
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cies from method 1 are reduced to those for methods 2 and 3. So in this sense all three
projection methods give the same linear dependencies. In particular, if one could iden-
tify a set of determinants that when projected will be a basis for the space of minimal
cyclotron energy compact states for one of the methods, the same determinants form
a basis (or approximate basis in the case of method 1) for the other methods. Such a
basis can be found, at least for up to 12 particles, with the procedure outlined in [8].

5.2 Open Questions and Outlook

There are several pertinent questions about projection method 3 that are left unan-
swered by this thesis. Most obviously, it would be good to find the exact ground state
of the ∇2δ interaction for more than eight particles and check how well the method 3
CF ground state candidate compares. It may also be interesting to see if changing the
interaction significantly alters the results, for example by using the Coulomb interac-
tion.

Next it should be checked how well method 3 performs for more than one species
of particles, especially for simple states. If it does similarly as for few particles of one
species, then the basis from [8, 9, 10] may be immediately applied to fermions to find
a good approximation of the low energy spectrum.

Similarly it should be checked whether the linear dependencies among method 1
and 2 projected states remain equal or approximately equal to the linear dependencies
among the method 3 projected states for more than one species, or for compact states
that are not minimal in cyclotron energy.

The point of investigating projection method 3 was to learn more about the linear
dependency puzzle for fermionic CF wave functions. In this thesis I have shown that
finding results for bosonic CF wave functions and importing them to the fermionic
case works well enough for single species low energy compact states that I expect
it to also work for other cases. Hopefully it will be possible to extend the work on
bosonic compact state linear dependencies into a proper basis for all compact states,
with any cyclotron energy and any number of species. If that happens the results
may be imported to the fermionic case by method 3 and hopefully will also hold for
methods 1 and 2. That would explain why the linear dependencies that show up
show up and thus resolve the linear dependency puzzle for compact states, at least
from the mathematical perspective. For the realist about CFs it would provide a kind
of explanation of why the interaction from [7] has the form that it has, although it does
not exactly provide a physical explanation for why such an interaction should exist.
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Appendix A

Additional Calculations

A.1 The ∇2nδ Interaction for Bosons and Fermions

Consider a two-particle interaction on the form

v(zi − z j) =
∞
∑

n=0
vn∇2nδ(zi − z j). (A.1)

When the particles are close together we may expand the wavefunction in terms of
z = zi − z j. For a bosonic wavefunction only even powers of z can contribute, due to
symmetry:

ψ(z) =
∞
∑

n=0
c2nz2n, (A.2)

and so
〈v〉 =

∫
d2z ∑

klm
vmc2kc2lz2k

(
∇2mδ(z)

)
z2l . (A.3)

Using
∇2 = 4∂∂ (A.4)

we find that each term in the sum over k, l, m is proportional to∫
d2z z2kz2l(∂∂)mδ(z). (A.5)

By partial integration this is ∫
d2z

(
(∂∂)mz2kz2l

)
δ(z). (A.6)

The factor (∂∂)mz2kz2l is zero if m > 2k or m > 2l, thus those terms don’t contribute.
If m < 2k or m < 2l the factor is a product of positive powers of z and z, and the
delta function makes the integral zero. So the only contribution is from terms with
m = 2k = 2l, where our factor is the constant ((2k)!)2, which is also the value of the
integral. Thus, for bosons only the terms with even m contribute.
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If we instead look at fermionic wavefunctions only odd terms in z contribute to the
wave function due to antisymmetry so the expansion (A.2) becomes instead

ψ(z) =
∞
∑

n=0
c2n+1z2n+1. (A.7)

We find that a term in 〈v〉 is proportional to∫
d2z z2k+1z2l+1(∂∂)mδ(z), (A.8)

the same arguments as above mean that the only non-zero terms are those where m =
2k + 1 = 2l + 1. Thus only odd m contribute for fermions.

We may now write

vbose =
∞
∑

n=0
v2n∇4nδ(zi − z j), (A.9)

v f ermi =
∞
∑

n=0
v2n+1∇4n+2δ(zi − z j). (A.10)
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Appendix B

Algorithms

B.1 Finding All Compact States with N particles

Here I detail the algorithm I used to find all compact states. A state may be represented
as N integer pairs (n, m) with n = 0, 1, . . . and m = −n,−n + 1, . . .. Let

{
ΦN

C
}

be the
set of compact state determinants with N particles.

The rules are: No gaps to the left, no gaps below, no particles with n ≥ N
Let

{
Φ1

C
}
= { (0, 0) }

for N∗ = 1, 2, . . . N − 1 do
forall x ∈

{
ΦN∗

C

}
do

for λ = max(n ∈ x), . . . , N∗ do
Let x∗ be x with an added particle at leftmost unoccupied position of
Λ level λ

if the rules hold for x∗ then
Add x∗ to

{
ΦN∗+1

C

}
end

end
end

end
Remove all states from

{
ΦN

C
}

where ∑i mi < −N(N − 1)
Algorithm 1: Algorithm for finding all compact states with N particles.

Then it is straightforward to pick out the minimal cyclotron energy subsets for each L,
if needed.

B.2 Projection to the LLL

Here I collect the algorithm I used for performing the projections. All three algorithms
give unantisymmetrized polynomials that can be cast into the monomial basis without
antisymmetrizing. I have written them out as symbolic polynomials, but this is not
necessary for implementation.
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B.2.1 Method 1

Let N be the number of particles
Let n and m be the occupied n and m values of the determinant
S := 0 // Projected state
forall ρ,σ ∈ SN do

ti := ρ(i) +σ(i)− 2 // The exponents of a term in J 2

di := ti!
(ti−ni)!

(−1)|t+m| := Signature of { ti + mi } compared to the sorted set
x := Sorted({ ti + mi })
if x has no duplicates then

S+ = (−1)|t+m|+|ρ|+|σ |
∏

N
i=1 diz

xi
i

end
end

Algorithm 2: Algorithm for projecting a compact state to the LLL by method 1.

B.2.2 Method 2

Let N be the number of particles
Let n and m be the occupied n and m values of the determinant
PT := 1
for i = 1, 2, . . . , N do

ST := 0
for k = 0, 1, . . . , N − 1− ni do

f := (N−1−k)!
(N−1−k−ni)!

if f 6= 0 then
ek({ z } \ zi) := the kth elementary symmetric polynomial of { z } \ zi

ST+ = f zN−1−k+mi
i ek({ z } \ zi)

end
end
PT× = ST

end
Expand PT
S = 0 // Final state
foreach term ∈ PT do

x := exponents of term
c := coefficient of term
if x has no duplicates then

S+ = (−1)|x|c ∏
N
i=1 zxi

i
end

end
Algorithm 3: Algorithm for projecting a compact state to the LLL by method 1.
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B.2.3 Method 3

Let N be the number of particles
Let n and m be the occupied n and m values of the determinant
SB := 0 // Boson part of state
forall ρ ∈ SN do

ti := ρ(i)− 1 // The exponents of a term in J
di := ti!

(ti−ni)!

if ∏
N
i=1 di 6= 0 then

x := Sorted({ ti + mi })
fi := Factorial of multiplicity of xi in x
SB+ = (−1)|ρ|∏N

i=1 di fiz
xi
i

end
end
S = 0 // Final state
foreach term ∈ SB do

x := Exponents of term
c := coefficient of term
forall ρ ∈ SN do

t := Sorted(
{

xρ(i) + (i− 1)
}

)

if t has no duplicates then
S+ = (−1)|t|c ∏

N
i=1 zti

i
end

end
end

Algorithm 4: Algorithm for projecting a compact state to the LLL by method 3.
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