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ABSTRACT
Periodontitis, rheumatoid arthritis (RA), atherosclerosis (AS), and Alzheimer’s disease (AD) are

10 examples of complex human diseases with chronic inflammatory components in their etiol-
ogies. The initial trigger of inflammation that progresses to these diseases remains unre-
solved. Porphyromonas gingivalis is unique in its ability to secrete the P. gingivalis-derived
peptidyl arginine deiminase (PPAD) and consequently offers a plausible and exclusive link to
these diseases through enzymatic conversion of arginine to citrulline. Citrullination is a post-

15 translational enzymatic modification of arginine residues in proteins formed as part of normal
physiological processes. However, PPAD has the potential to modify self (bacterial) and host
proteins by deimination of arginine amino acid residues, preferentially at the C-terminus.
Migration of P. gingivalis and/or its secreted PPAD into the bloodstream opens up the
possibility that this enzyme will citrullinate proteins at disparate body sites. Citrullination is

20 associated with the pathogenesis of multifactorial diseases such as RA and AD, which have an
elusive external perpetrator as they show epidemiological associations with periodontitis.
Therefore, PPAD deserves some prominence as an external antigen, in at least, a subset of RA
and AD cases, with as yet unidentified, immune/genetic vulnerabilities.
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Introduction

25 Investigating the effect of complex human diseases on
specific organs has previously been the norm. However,
new collaborative research assesses the knock on effect
of diverse pathologies on conditions that develop
because of the human ageing processes. Periodontitis

30 (PD), rheumatoid arthritis (RA), atherosclerosis (AS),
and Alzheimer’s disease (AD) are examples of complex
diseases. There is a strong correlation of contributions
from oral pathogens in their development without spe-
cific understanding of the mechanisms leading to the

35 disease pathogenesis. The focus of this review is on the
periodontal keystone pathogen Porphyromonas gingiva-
lis [1AQ3 �,2], and its secreted peptidyl arginine deiminase
(PPAD) enzyme in the development of the extraoral
autoimmune and inflammatory diseases mentioned

40 above [3–7] (Figure 1).
A chronic form of PD becomes prevalent in trice-

narian/quadragenarian vulnerable hosts, whilst spora-
dic AD is common in octo-nonagenarians. P.
gingivalis manipulates the host’s cellular immune

45 responses and undermines host-microbe homeostasis
[5], thereby leading to dysbiosis in a previously sym-
biotic microbiome [2]. Breakdown of cellular barriers
allows dissemination of this pathogen to the rest of
the body. Undoubtedly, human polymorphic genes

50do influence the susceptibility of the host to disease
but they also affect the direction taken by the patho-
gens that use them for their survival and prolifera-
tion. Thus, P. gingivalis is a typical example of a
pathogen that shows this trait by adapting to challen-

55ging inflammophilic environments of the host direc-
ted to kill it [8]. The virulence and potential
pathogenic effects of P. gingivalis are diverse and,
through them, this bacterium can affect many differ-
ent organs and diseases [3,6,7,9,10]. The virulence

60factor under focus here is the enzyme P. gingivalis
peptidyl-arginine deiminase (PPAD). This enzyme
modifies both bacterial and host proteins by deimi-
nation of arginine residues in proteins and peptides,
converting them to citrulline [11–13] (Figure 2).

65Protein citrullination causes deregulation of the
host’s inflammatory signalling network by altering
the spatial arrangement of the original 3D-structure
and function of the protein [3,6]. This may lead to
exposure of damage- and/or pathogen associated

70molecular patterns (PAMP/DAMP) which can then
be used by pattern recognition receptors (PRR), to
provide entry and immune evasion [14]. Subsequent
immune responses directed against the bacterial anti-
gens by the infected organ can lead to tissue damage.

75In some individuals, this can initiate autoimmune
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responses [3,6] (Figure 3). At present, P. gingivalis is
the only known pathogen that produces PPAD [3].
This gives the bacterium prominence in causing both
periodontitis and extraoral diseases, especially RA.

80 The host also has intrinsic sources of citrullination
due to genes coding for a family of enzymes called
peptidyl arginine deiminases (PADs). Although the
human peptidylarginine deiminase family contains
five isotypes (PAD 1, 2, 3, 4/5 and 6) with tissue

85 specific expression [15], there is a paucity of informa-
tion on the P. gingivalis PPAD(s) infecting different
tissues and cells [16]. Protein citrullination is impor-
tant for many normal physiological processes such as
epithelial terminal differentiation, regulation of gene

90 expression, apoptosis, and inflammation [14,15,17].
However, the posttranslational modification invol-
ving the citrullination process can affect the function

of several signalling molecules as well as protein
structures and functions. One such example is C5a

95anaphylatoxin. This is a glycoprotein with a number
of arginine residues that are released following com-
plement activation. Functional C5a induces vasodila-
tion and chemotaxis of inflammatory cells in the site
of injury. On citrullination by PPAD, C5a loses this

100function [18]. It is not surprising therefore that an
increased citrullination of cytoskeletal filaments and
PAD enzymes have been found in numerous chronic
inflammatory and autoimmune diseases like AD, RA,
and multiple sclerosis (MS), respectively [15,19].

105Owing to their similar etiologies, PPAD deserves
some consideration as an extrinsic antigen in the
pathogenesis of RA and MS, thus contributing to
autoimmune processes. The physiological conditions
and the specific arginine residues targeted for

Figure 1. Schematic to show additive effect from an oral condition such as periodontitis to the development of mixed
pathologies through smoking, atherosclerosis, and rheumatoid arthritis with direct inflammatory mediator input from P.
gingivalis infection to Alzheimer’s disease. The major arrows point to major risk factors with plausible effect on each condition.
The three-way arrows provide explanation of the link with periodontitis.

Figure 2. Chemical modification of arginine amino acid residue by P. gingivalis and host-mediated peptidylarginine deiminases
resulting in the conversion of arginine on functional peptide to citrulline (defective protein). This posttranslational modification
alters the spatial arrangement of the original 3D-structure and function of the protein peptide as indicated by arrows (arginine-
peptide and citrulline-peptide). Ammonia released during the chemical reaction is beneficial for PPAD activation.
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110 deimination by PPAD and/or host PADs remain dif-
ferential. For example, PPAD requires a higher pH
for its activity and preferentially targets carboxy-
terminal and free arginine residues [20] cleaved by
arginine-gingipains (Rgps). The human PADs, on the

115 other hand, exclusively citrullinate internal peptidyl
arginine residues [11,21], which are activated follow-
ing an influx of calcium ions from the extracellular
environment or from the cytosol [22]. Although both
(host and bacterial) enzymes catalyse the same che-

120 mical reaction [12] (Figure 2), identification of either
PPAD or PAD citrullinated arginine residues in cells
presents technical challenges. This may limit progress
in our ability to differentiate PPAD citrullinated argi-
nine residues from those of the host. The aim of the

125 present review is to discuss the possible importance
of citrullination in the pathogenesis of PD, RA, AS,
and AD, which are common, complex, chronic
inflammatory diseases with unclear etiologies.

Periodontitis and citrullination

130 Periodontitis is an inflammatory oral disease affecting
the tissues supporting teeth in their bony sockets and
occurs in two forms, aggressive and chronic. If left
untreated, periodontitis will lead to loss of teeth.
Although, PD is not an autoimmune disease per se,

135 P. gingivalis infection has the potential to induce

autoimmune responses in oral tissues [23].
Periodontitis affects approximately 65 million (47%)
US adults, 30 years and older [24]. By adopting a
more resilient phenotype through selecting different

140signalling pathway molecules, in vitro studies demon-
strate the survival ‘instincts’ of this pathogen under
both poor and sufficient bioavailability of haemin
[25,26]. This keystone pathogen with its companion
species is associated with the initiation and progres-

145sion of chronic periodontitis by secretion of several
virulence factors including Rgps and PPAD in the
periodontal pocket [27,28].
Citrullinated peptides initiated by P. gingivalis are

produced by the combined action of Rgps that cleave
150polypeptides into fragments with C-terminal argi-

nine, followed by citrullination with PPAD [29].
Thus, citrullination of surface proteins depends on
the action of Rgp proteases. The modification of
C-terminal arginine residues is the result of PPAD

155becoming structurally closer to Rgps on the bacterial
surface. This dual action of modification initially
reported when production of citrullinated peptides
derived from fibrinogen and α-enolase by PPAD has
been reported�[30]. AQ4�These two proteins are major

160auto-antigens in RA [3]. The secreted PPAD may
spread deeply within the connective tissue by shed-
ding P. gingivalis outer membrane vesicles, or
through tissue diffusion of the soluble enzyme [13].

Figure 3. Schematic to illustrate immune events leading to autoimmunity resulting from PPAD-mediated citrullination of
C-terminal arginine residues. These citrullinated peptides produced by the combined action of gingipains cleave polypeptides
into fragments. This results in PPAD structurally becoming closer to gingipains on the bacterial surface membrane.
P. gingivalis also citrullinates its own proteins generated by PPAD. These represent a pool of potent antigenic epitopes that can break the
tolerance to specific citrullinated host peptides. The loss of tolerance can generate autoantibodies against citrullinated proteins. The arrows
point to direction(s) of immune processes with the endpoint being autoimmunity. Text in boxes clarifies the symbols alongside the cascade of
events as visualized by the authors. TLR 2/4 = toll like receptors 2 and 4, MD-2 = adapter protein in the NFkB inflammatory cascade,
EGF = epidermal growth factor.
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The soluble enzyme modifies the epidermal growth
165 factor (EGF) located in the inflamed periodontium

which subsequently interferes with EGF function by
blocking the recognition between the epithelium and
the EGF signalling pathway molecules [13]. This is a
mechanism for breaking local protective epithelial

170 cell–periodontal tissue barriers and delaying the heal-
ing process [13]. In addition, PPAD inhibits the abil-
ity of EGF to stimulate epidermal cell proliferation
and migration and prevents epidermal growth factor
receptor (EGFR)–EGF interaction-dependent stimu-

175 lation by suppressing cytokine signalling 3 and inter-
feron regulatory factor 1 signalling [13]. Ammonia
produced as a byproduct during deimination can
promote the survival of P. gingivalis in the period-
ontal pocket [12] and potentially optimize the pH-

180 dependent function of Rgp and PPAD. In this way,
Rgps and PPAD may inactivate hemagglutinins, pro-
mote ATP production, and exert negative effects on
neutrophil functions [11,13,27,31].

P. gingivalis also citrullinates the proteins associated
185 with its cell envelope [3], thus generating in a PPAD-

dependent manner, a pool of potent antigenic epitopes
that can break the tolerance to specific citrullinated host
peptides [14]. The loss of tolerance can generate auto-
antibodies against citrullinated proteins (ACPAs).

190 Increased levels of ACPAs are detected in patients with
aggressive periodontitis [32] compared to controls [33].
ACPA-positive patients are also more inclined to have
moderate to severe PD than ACPA-negative patients
[34]. P. gingivalis infection in PD implies the induction

195 of autoimmune responses that are characteristic of RA.
Shimada et al. [35] found an association between anti-
PPAD IgG and anti-cyclic citrullinated peptide (CCP)
IgG responses, and proposed a role for PPAD in protein
citrullination of patients with both PD and RA.

200 Rheumatoid arthritis and citrullination

RA is an autoimmune disorder that occurs when the
host is unable to differentiate self from non-self-anti-
gens. This can give rise to an immune system mis-
takenly attacking the host (self) tissues. RA manifests

205 as painful and chronic inflammation of the joints. It
also affects other areas of the body including skin,
eyes, lungs, heart and blood vessels. Patients with RA
have a higher frequency of morbidity and mortality
from cardiovascular dysfunctions [36]. Most data

210 from the developed world estimates an RA prevalence
between 0.5 and 1% [37], with a mortality risk of 1.5–
1.6 greater than that of the general population [38].
Citrullinated protein and anti-citrullinated protein
antibodies play important roles in RA development

215 [39]. The PAD4 gene encoding the PAD4 protein is
one of the RA risk genes associated with protein
citrullination [40], and anti-PAD4 antibodies are spe-
cific markers of RA [18]. Badillo-Soto et al. [41]

suggested that citrullination of synovial proteins is
220PAD2- and PAD4-dependent and both these

enzymes have been detected in the RA synovium
[42]. These authors also found that RA patients
have high titres of antibodies preferentially binding
to fibrinogen citrullinated by PAD4. Seri et al. [43]

225reported data from mice suggesting that PAD4 defi-
ciency reduced the severity of arthritis in a glucose-6-
phosphate isomerase-induced arthritis model. An
explanation could be that chronic exposure to citrul-
linated proteins in the periodontal pocket may pre-

230dispose susceptible individuals to generate ACPA in
the synovia with subsequent development of RA. This
is because ACPA titres in RA patients correlate with
the presence of PD [34].

Atherosclerosis and citrullination

235Atherosclerosis occurs when the arteries become nar-
rower and harden due to an excessive build-up of
plaque within the lumen. The plaque reduces the
blood flow around the body, causing ischaemia,
which in turn may lead to cardiovascular complica-

240tions. Atherosclerosis is common in the elderly and
remains the major cause of death and disability in
this group. The American Heart Association (AHA)
recognizes that PD is independently associated with
arteriosclerotic vascular disease (ASVD) [44]. The

245connection between citrullinated peptides and the
development of atherosclerosis remains unclear in
comparison to RA. Citrullinated proteins are detected
in atherosclerotic plaques [45,46], but their true rele-
vance here has not been clarified. This observation

250has provided a rationale for using citrullinated his-
tone seroreactivity as a biomarker for atherosclerosis
[45]. It may reveal citrullinated fibrinogen (cFb)
within atherosclerotic plaque and therefore could
underpin the reason for accelerated atherosclerosis

255in RA patients. Geraldino-Pardilla et al. [46] reported
that higher levels of ACPAs targeting citrullinated
histone 2B were associated with higher coronary
artery calcium (CAC) scores when compared with
lower antibody levels, suggesting a potential role of

260seroreactivity to citrullinated histone in the pathogen-
esis of atherosclerosis [46].
PPAD acting together with arginine-specific protei-

nases from P. gingivalis may promote the growth of
this pathogen in the periodontal pocket [11]�delete

265space. PPAD deiminates the guanidine group of
C-terminal arginine residues on a variety of peptides,
including the vasoregulatory peptide-hormone brady-
kinin yielding a citrulline residue and ammonia [11].
Citrullinated bradykinin must be resistant to inactiva-

270tion by ubiquitous Arg-specific tissue and cell-surface
associated carboxypeptidases thus prolonging its vaso-
dilatory activity. Such pathophysiological events may
allow bacteria to penetrate the vasculature, and

4 I. OLSEN ET AL.

Ingar Olsen
Inserted Text




advance the development of cardiovascular disease
275 [47]. As P. gingivalis has a high dependency on envir-

onmental haem [48], sourced from lysing erythrocytes,
this activity implies host deprivation of its ample sup-
ply of oxygen. This would also promote hypoxic con-
ditions as well as development of atherosclerotic

280 plaque.
A recent report described citrullination that was

unique to the cardiac proteome [49]. Protein citrulli-
nation appeared to have caused important structural
alterations in the cardiac sarcomere with subsequent

285 detrimental consequences to the myocardium of
patients who died of heart failure. This implied that
pathogenic citrullination occurs in systemic diseases
but further research is needed to understand its
adverse role in heart-related tissues.

290 Citrullinated proteins such as fibrinogen and
vimentin are associated with the CAC�, score.
Sokolove et al. [45] demonstrated fibrinogen and
vimentin CAC scores in 134 patients with RA diag-
nosis. Previously mentioned PAD4 enzymes and

295 citrullinated proteins have been detected within
atherosclerotic plaques and ACPAs from athero-
sclerotic plaques in RA patients [45]. In a cohort of
3,052 healthy males, Cambridge et al. [50] monitored
ACPAs for the development of coronary artery dis-

300 ease. Their results showed that 10.4% of the cases
were ACPA positive compared to 3.8% of controls.
Statistical significance remained after controlling for
classical risk factors such as smoking and C-reactive
protein (p = 0.02). If PD had been monitored in the

305 same cohort this would have demonstrated a promi-
nent role for P. gingivalis in the production of
ACPAs. Strong staining for citrulline was detected
in the myocardial interstitium of RA patients com-
pared to rheumatoid disease and controls [51] and

310 staining for citrullination was higher in the myocar-
dial interstitium of RA patients compared to other
diseases. Since there is extensive citrullination in the
normal myocardium of RA patients as well as in the
atherosclerotic plaque, there is potential for protein

315 citrullination to promote cardiovascular pathology
within the population at large [52]. In this context,
serum antibodies to citrullinated proteins may be a
risk factor for coronary heart disease.

Alzheimer’s disease and citrullination

320 AD is the most common form of dementia, consti-
tuting 60–80% of all dementias, and has two forms.
The sporadic form is common with potential for the
role for susceptibility genes and pathogens as well as
co-morbidities, similar to those implicated in the

325 aforementioned human complex diseases [7]. Due
to the rising number of dementia cases, and the
paucity of adequate treatment for AD, there is a
consensus for preventing the disease in at least a

third of all sporadic AD cases by modifying beha-
330vioural life-styles [10]. A person showing symptoms

of AD can have difficulty in remembering words,
suffer from depression and show behavioural changes
and confusion. The benchmark of AD confirmation
is the presence of two key neurohistological hall-

335marks namely beta amyloid (Aβ) plaques, and neu-
rofibrillary tangles (NFTs) comprising hyper-
phosphorylated tau protein in specific anatomical
regions of the brain. All risk factors that apply to
heart disease also apply to AD. An underlying feature

340of stroke pathology includes vascular infections
where P. gingivalis is often identified [53]. Increased
evidence links peripheral infections with AD, and
lipopolysaccharide (LPS) entry into the ageing brain
generates cytokines via innate immune responses

345(Figure 3) [9]. LPS ischaemia from atherosclerosis
and hypoxia link P. gingivalis with early death of
erythrocytes for the supply of haem. All are potential
causes for the development of sporadic AD. P. gingi-
valis was shown to migrate from its oral location to

350the brain [54,55] where it invoked inflammatory
responses typical of neurodegenerative diseases in
mice with blood–brain barrier (BBB) damage
[55,56]. Ishigami et al. [57] identified glial fibrillary
acidic protein (GFAP), a marker of astrocytes in the

355AD brain, to be a substrate for host PAD2, and
suggested a role for the citrullinated GFAP in the
progression of this neurodegenerative disease. GFAP
deimination was characteristic for AD in humans and
in experimental autoimmune encephalomyelitis

360(EAE) in mice where the BBB was breached [58–
60]. Although not conclusively shown, citrullinated
GFAP (dysfunctional protein) would link with defects
in BBB integrity because the foot processes of astro-
cytes tightly cover capillary openings in the endothe-

365lial cell junctions to protect neurons from extrinsic
insults. Another report implicated brain-reactive
autoantibodies to AD in relation to BBB breakdown
and to certain cytoskeletal proteins such as tubulin,
GFAP, and S-100 [61] (Figure 3). The relevance of

370humoral responses in the pathophysiology of AD, is
little understood; however, by analogy, RA patients
having a high titre of antibodies in their serum sug-
gests a strong possibility of PPAD/host PAD
mediated loss of tolerance against citrullinated nerve

375tract covering myelin sheath proteins in AD.
Acharya et al. [62] confirmed citrullination of pyr-

amidal neuronal intracellular proteins in the AD hip-
pocampus. Antibodies against myelin basic protein
(MBP) are detectable in serum of patients with active

380demyelinating lesions in MS [63]. Analogous to MS as
an autoimmune condition, damaged myelin interacts
with Aβ deposits in AD and antibodies to glial derived
antigens are reported [64]. Acharya et al. [62] sug-
gested that autoantibodies in AD associate with host

385PAD4 and protein citrullination, although it is not
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clear if this refers to the antibodies reported by Papuc
et al. [64]�. Matsuomi et al. [65] found an abnormal
accumulation of citrullinated proteins and an increase
of the PAD2 content in the hippocampi of AD

390 patients. The most over-citrullinated proteins in AD
were structural proteins such as vimentin, MBP and
GFAP [15]. Neurodegenerative processes following P.
gingivalis infection in animal models are currently
under-investigated and further research is essential to

395 determine PD-related causal factors in AD.
Over expression of PADs and protein citrullination

are abnormal features of neurodegeneration and
inflammatory diseases [66] and have actually been
proposed as a possible cause of AD [67]. During

400 neurodegenerative processes, it has been hypothesized
that a higher concentration of Ca++ activates citrulli-
nation [15] but, P. gingivalis LPS and intact citrulline
constitute potential contributory factors [68].
PAD2 and PAD4 enzymes are detected in astro-

405 cytes and neurons, and there is a concomitant accu-
mulation of citrullinated proteins within PAD4-
expressing cells including neurons of the hippocam-
pus and the cerebral cortex [62,65]. This implies that
citrullination of neuronal cytoskeletal proteins may

410 be toxic, because disease-associated neuronal loss
appears to result in the release of their cellular con-
tents into the cerebral parenchyma from which they
enter the blood and lymph circulation. Some of them
are able to elicit an immune response that results in

415 the production of autoantibodies [62]. Inhibition of
PAD may therefore be worth serious therapeutic con-
sideration in the treatment/prophylaxis of diseases
where citrullination takes place.

Concluding remarks

420 Conversion of arginine to citrulline is a post-transla-
tional modification that occurs during normal phy-
siological processes. Conversely, abnormal
citrullination can lead to severe human diseases.
Epidemiologically, there seems to be a correlation

425 between citrullination caused by P. gingivalis and
PD [69,70] and between P. gingivalis and RA
[14,71–73]. There is also an association between AS
and RA [74]. In reality, cardiovascular disease,
including coronary heart disease is a significant

430 cause of death in RA [75] and AD patients [76]. P.
gingivalis secreting PPAD is related to both RA [14]
and AS [77]. It seems plausible that PPAD through its
ability to citrullinate proteins could contribute to PD,
RA, AS, and AD through increased inflammation,

435 although currently the anti-PPAD antibody response
remains unique to RA. P. gingivalis infection may
precede RA but whether it is a direct cause is con-
troversial despite supporting data from studies on
animals in the development and aggravation of

440 experimental arthritis [72]. Overall, citrullination

may contribute to a better understanding of host
proteins [14]. There is great heterogeneity in the
extracellular proteome and citrullinome of P. gingi-
valis [78]. This adds to the well-known fact that

445different strains of P. gingivalis have different degrees
of virulence. The suggestions outlined above would
benefit from more scientific support and drawing
firm conclusions on them at this time would be
inappropriate. However, if future research shows

450them to be correct; it would emphasize the need for
prevention and aggressive treatment of advancing
periodontitis where P. gingivalis is a keystone patho-
gen, but not necessarily the only one. It is also clear
that P. gingivalis as a keystone pathogen is only pre-

455sent at high prevalence rates in the host subset sus-
ceptible to PD. Therefore, although the P. gingivalis-
PPAD-systemic disease axis is a compelling line of
thought, this may not be true for all patients with RA
or AD where P. gingivalis has been implicated.
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