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Abstract. Inflammasomes are responsible for the maturation of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18 and activation of inflammatory cell death, pyroptosis. They assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions and are important in regulating innate immunity particularly by acting as platforms for activation of caspase proteases. They seem to be involved in several pathological processes activated by microbes including Alzheimer’s disease (AD). Best characterized in microbial pathogenesis is the NLRP3 inflammasome. AD is a neurodegenerative condition in which the neuropathological hallmarks are the deposition of amyloid beta (Aβ) and hyperphosphorylated tau protein coated neurofibrillary tangles. For decades, the role of the innate immune system in the aetiology of AD was considered less important but the recently discovered inflammatory genes by Genome-wide association studies driving inflammation in this disease has changed this view. Innate immune inflammatory activity in the AD brain can result from the pathological hallmark protein Aβ as well as from specific bacterial infections that tend to possess weak immunostimulatory responses for peripheral blood myeloid cell recruitment to the brain. The weak immunostimulatory activity is a consequence of their immune evasion strategies and survival. In this review we discuss the possibility that inflammasomes, particularly via the nucleotide-binding domain and leucine-rich repeat (NLR) family of proteins NLR-protein 3 (NLRP3) are involved in the pathogenesis of AD. In addition, we discuss the plausible contribution of specific bacteria playing a role in influencing the activity of the NLRP3 inflammasome to AD progression. 
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INTRODUCTION
Inflammasomes are large intracellular multiprotein complexes that play a central role in the regulation of receptors and sensors of the innate immune system in relation to pyroptotic cell death [1, 2]. The mechanism involves maturation of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18 and activation of inflammatory cell death via the nucleotide-binding domain and leucine-rich repeat (NLR) family of proteins [3]. Inflammasomes assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions and are important in regulating innate immunity in chronic inflammatory diseases such as periodontitis and related systemic pathologies for example atherosclerosis, and metabolic (diabetes) and cognitive deficit diseases such as dementia [4, 5]. Inflammasomes detect and respond to a large range of pathogen-associated molecular patterns (PAMPs), including bacterial flagellin, and damage-associated molecular patterns (DAMPs), such as uric acid, cholesterol crystals, and misfolded proteins. They are reported to be involved in several pathological processes activated by microbes including Alzheimer’s disease (AD).  NLR-protein 3 (NLRP3) is the best characterized inflammasome involving microbial pathogenesis [6]. We have previously discussed how oral microbes can be involved in AD [7] and how the periodontopathogen Porphyromonas gingivalis (P. gingivalis) can modify the activity of the inflammasome [5]. In the present review we discuss the possibility how inflammasomes, particularly the NLRP3 complex, may be involved in the pathogenesis of AD and that bacteria influence the activity of this inflammasome during AD pathogenesis. 

THE NLRP3 INFLAMMASOME
An inflammasome is a multilateral macro molecule containing either pyrin or apoptotic speck-containing (ASC) protein N-terminus domains, and a procaspase-1 recruitment domain (CARD), a central nucleotide binding domain (NACHT), and the C-terminus containing leucine-rich repeats that recognize pathogens and control autoregulation  [8, 9]. Among the inflammasomes detected some are particularly well characterized for their role in bacterial recognition. These include NLR-CARD4 (NLRC4), NLRP3 and absent in melanoma 2 (AIM2) inflammasomes [5]. In AD, microglial cells and astrocytes express NLRP3 which in turn can detect the extracellular amyloid-beta (Aβ) plaques and act by secreting caspase-1 to activate IL-1β and IL-18 [10 -12]. The sequence of events are thought to lead to the establishment of an inflammatory cell environment around the plaques that theoretically should downregulate the amyloid precursor protein (APP) breakdown product Aβ but instead impairs the phagocytic signals in microglia [13]. 
Numerous studies have suggested a critical role for the NLRP3 inflammasome and the inactive inflammatory cytokine IL-1β in the development of AD [14]. Heneka et al. [10] proposed from a study with APP/PSI mice that the NLRP3 inflammasome actually contributes to AD pathology via the accumulation of Aβ hallmark protein. In support of this, deficiency of the NLRP3 gene reduced Aβ deposition and demonstrated a protective role in the preservation of memory and the overall behaviour of the animals. Thus inflammasome involvement in AD can lead to progression of the disease [10, 15, 16]. The NLRP3-mediated non-specific immune response can also result in bystander brain damage, particularly if the inciting stimulus is not removed in a timely manner [17]. 
Inflammatory mechanisms in the brain can be stimulated by Aβ deposition [15], and its subsequent uptake by glia enhances the secretion of IL-1β [18, 19]. These authors suggested that cathepsin induced in glia by Aβ and released into the cytosol degrades the NLR family pyrin domain containing 10 (NLRP10), thereby allowing dissociation of NLRP and formation of the inflammasome.  
ACTIVATION AND INHIBITION OF NEUROINFLAMMATION IN AD
Inflammation in the CNS can have both pathological and protective effects depending on the biological circumstances [20]. Halle et al. [15] suggested that phagocytosis of Aβ, actually is the first step in NLRP3 activation. Aβ activates the NLRP3 inflammasome in microglial cells both in vitro and in vivo [15, 19]. If activation of the inflammasome in microglia is induced by phagocytosis of Aβ and subsequent damage caused to lysosomal processing mechanisms of glial cells [15] then cytochalasin D could be a target molecule to inhibit phagocytosis. NLRP3 inflammasome inactivation has been demonstrated to reduce phagocytosis of Aβ by microglial cells [10]. The authors suggested that Aβ-induced activation of the NLRP3 inflammasome increases the progression of AD by mediating harmful chronic inflammatory responses through synaptic dysfunction, cognitive impairment and restriction of microglial cell functions. 
According to Salminen et al. [21], the innate immune system of the brain can recognize toxic Aβ oligomers and larger fibrils (Aβ1-42) as danger signals and then activate the innate immune defenses. They also suggested that these toxic initiation signals increase the propensity of the activation of inflammasomes, which further lead to the initiation of proteostasis via caspase cascades and inflammatory responses in AD.
Endogenous danger signals (DAMPs; alarmins) and PAMPs play a crucial role in the initiation of the immune responses [22]. Therefore, another pathway that can cause inflammasome activation involves extracellular ATP (ATPe) that is released by degenerating neurons [23- 26] and acts as an independent endogenous danger signal. 
The purinergic P2X7 receptor is a trimeric ATP-gated cation channel found mainly, but not exclusively, on immune cells [27]. P2X7 activation is followed by a number of downstream events, including release of pro-inflammatory mediators, cell death and proliferation. Therefore, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. P2X7 expressed by microglial cells will also activate the NLP3 inflammasome [23, 25] and the expression of P2X7 is likely to be increased in AD brains [28]. P2X7 was particularly up-regulated around beta-amyloid plaques in a mouse model of AD [29]. 
Purinergic receptors and pattern recognition receptors (PRRs) on immune cells do not only serve as initial sensors of microbial pathogens. They induce downstream inflammatory cascades associated with cognitive diseases such as AD and other major depressive disorders including Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis [30]. PRRs such as the TLR4 receptor are expressed in the brain’s own immune cells like microglia and astrocytes that induce inflammation via cytokine secretion [31]. These receptors may also affect neurodegenerative diseases by inflammatory responses [32].  
Inhibition of the inflammasome activity may influence AD in a beneficial way. In an AD transgenic mouse model inhibition of the NLRP3 inflammasome using artemisinin, a drug used to treat malaria, reduced the neuritic plaque burden [33]. Furthermore, NLRP3 inflammasome deficiency transferred microglial cells to an M2 phenotype and ended up with decreased deposition of Aβ in the APP/PSI mouse model of AD suggesting an important role for the NLRP3/caspase-1 axis in the pathogenesis of AD [10]. 
Apolipoproteins bind to lipids forming lipoproteins and their main function is to transport lipids. Overexpression of human apolipoprotein A-1 (apoA-1) preserved cognitive function and attenuated neuroinflammation and cerebral amyloid angiopathy in a mouse model of AD [34]. Therefore, one of the mechanisms that the human apoA-1 preserves cognitive function could be by attenuating Aβ mediated neuroinflammation.

ACTIVATION AND INHIBITION OF CYTOKINES
As mentioned earlier, inflammasomes are engaged in the maturation of pro-inflammatory cytokines such as IL-1β and IL-18 [35]. Overexpression of these interleukins is critical for the onset of the inflammatory processes that exacerbates pathology [36]. Increased levels of IL-1β and IL-18 have been detected in serum, cerebrospinal fluid and brains of patients with AD and in other forms of dementia [37 - 41]. Also in vitro cell cultures of astrocytes express IL-18 constitutively whereas, the cytokine release is induced in microglia by bacterial lipopolysaccharide (LPS) [42]. It is noteworthy that IL-1β and IL-18 can activate various cell types, particularly astrocytes and microglia to induce additional cytokine release involving IL-1β, IL-6 and IL-18, and also nitric oxide (NO) synthase that can stimulate production of free radical NO, leading to the formation of peroxynitrite that denatures DNA and impairs cellular energy pathways [43, 44]. NO can also bring about apoptosis of hippocampal neurons via caspase-3 activity [45] whereas astrocyte secreted IL-1β can increase the production of APP and Aβ from neurons [46- 48]. Additionally, it can induce phosphorylation of the tau protein and promote formation of neurofibrillary tangles through the mitogen activated protein kinases-p38 (MAPK-p38) stress pathway [21, 49]. 
Blocking of IL-1β signaling of the brain in an AD mouse model altered the inflammatory response of the brain, rescued cognition, attenuated tau pathology and reduced the fibrillary Aβ burden [50]. In sharp contrast, knocking out the IL-1β receptor antagonist in mice increased neuronal damage caused by Aβ [51].  All these studies suggested a proinflammatory role of IL-1β in the pathogenesis of AD [52].
Pro-inflammatory IL-18 increases AD-associated Aβ deposition in human neuron-like cells in culture [53]. IL-18 also increases the expression of glycogen synthase kinase 3β (GSK-3β) and cyclin-dependent kinase 5, both of which are involved in hyperphosphorylation of the tau protein [54]. If intracerebral contribution of IL-1 β and IL-18 is insufficient, then the hippocampus is also prone to a leaky blood-brain barrier (BBB) during aging [55]. This implies that the vulnerable risk age for onset of the late-onset AD is likely to suffer from micro bleeds and with it will enter the associated peripheral inflammatory mediators (Fig. 1). It is therefore not surprising to note that a significant increase in IL-18 detected in stimulated mononuclear cells and macrophages of peripheral blood from AD patients [56, 57] can be a contribution from the leaky BBB and would be expected to contribute to the intracerebral AD inflammasome. Noteworthy, IL-18 gene polymorphisms can predict risk and outcome of AD, suggesting that IL-18-mediated immune mechanisms can have an important role in AD pathogenesis [58]. 
There was no significant upregulation of IL-18 in severe AD patients compared to age-matched controls, whereas mild AD patients showed a significant increase in IL-18 [59]. Accordingly, there is a gradual decline in the immune response in AD patients that might imply that IL-18 is an initiator of AD rather than an end stage mediator of continued neurodegeneration as well [52].  Both these studies indicated an important role of IL-18 in AD. 
Both IL-1β and IL-18 are generated in their mature secreted form by caspase-1 through activation of the inflammasome. IL-1β is also upregulated by oral spirochetal infections in the mouse host [60] but not IL-18.  Borrelia burgdorferi (B. burgdorferi) infections associated with AD activate the NOD-2 pathway in microglia ultimately leading to the secretion of inflammatory cytokines that directly target oligodendrocytes and neurons for apoptotic cell death resulting in axonal degeneration [61]. However, IL-18 can be derived as a byproduct from the activities of various extracellular enzymes such as protease 3, serine protease, elastase and cathepsin G [62- 64]. Interestingly, IL-1β and IL-18 can be regulated by the same inflammasome or by different inflammasomes. Thus IL-1β and IL-18 are secreted from primed murine dendritic cells in response to Listeria protein p60, but inhibition of NLRP3 reduced the production of IL-1β but not IL-18 [65]. Therefore, maturation of IL-1β and IL-18 could be regulated conditionally by different signaling mechanisms [52]. Unfortunately, there is currently no evidence to suggest that completely blocking IL-1β or IL-18 will improve the human form of AD [66], however, our own opinion is that a dampened response of the cytokines at an early stage of the disease process may be beneficial.
Another cytokine synthesized as a precursor molecule and cleaved by caspase-1 is IL-33 which binds to the orphan IL-1 family recptor T1/ST2 and stimulates T-helper 2 responses as well as mast cells (Arend et al. 2008). Genetic variants of IL-33 seemed to affect the susceptibility to late onset AD in Han Chinese (Yu et al. 2012). It has been suggested that IL-33 induces release of inflammatory molecules from glial cells and is important in the pathogenesis of AD (Xiong et al. 2014).

ACTIVATION AND INHIBITION OF CASPASE-1
In the NLRP3 inflammasome the NLR protein recruits the inflammasome-adaptor protein ASC, which in turn interacts with caspase-1 leading to its activation [5]. Once activated, caspase-1 promotes the maturation of the proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has a role in AD by increasing caspase-1 expression levels in AD brains [6, 10]. Knockout of NLRP3 and caspase-1, suppressed amyloidogenesis and neuropathology and improved cognition in AD transgenic mice [10].  By exposing LPS-primed macrophages to fibrillary Aβ, caspase-1 was activated and IL-1β release triggered [15]. The response depended on NLRP3 and involved both endosomal rupture and cathepsin B release. Heneka et al. [10] reported a strongly enhanced caspase-1 expression in human mild cognitive impairment and brains with AD suggesting a role for the inflammasome in this neurodegenerative disease. Active caspase-6 and caspase-6-cleaved ɣ-protein were detected in neurophil threads, neuritic plaques and neurofibrillary tangles in AD [67]. This made Salminen et al. [21] propose that the functional link between caspase-1 and caspase-6 connects the activation of inflammasomes to apoptotic cell death and AD pathology.

BACTERIA REGULATE INFLAMMASOME ACTIVITY
As mentioned previously inflammasomes detect and respond to a large range of PAMPs. After infection or cellular stress, inflammasomes are assembled, activated and involved in the host defense and pathophysiology of the disease [68]. Infectious agents have been linked to cognitive decline in several reports [69-72] and surprisingly all of these microbes including P. gingivalis [73] and T. denticola [74] being highly inflammophillic, do not appear to be potent activators of myeloid cells in the brain, strengthening their plausible association with AD neuropathology and progressive deterioration. Also studies with gene-deficient mice and cells have indicated that NLR inflammasomes are implicated in the host response of a wide range of microbial pathogens, inflammatory diseases, cancer and metabolic and autoimmune disorders [75]. 
Inflammasomes have a highly adaptable scaffold suited for detecting and initiating rapid innate responses to diverse bacteria [76]. Thus the NLRP3 inflammasome sensing Streptococcus pneumoniae (S. pneumoniae) had a protective effect since mice deficient in NLRP3 had a more severe course of lung infection [77]. However, in a mouse model of S. pneumoniae meningitis NLRP3 inflammasome induction and the subsequent cytokine response increased brain pathology [78, 79]. IL-1β or IL-18 signaling had minimal impact on bacterial growth within the brain but promoted local, pathogen associated inflammatory responses [78, 79]. This is another example where inflammasome activation by bacteria was more harmful. The pneumolysin of S. pneumoniae induces IL-1β and TNF-α in human mononuclear cells possibly by a mechanism similar to other pore-forming toxins [75]. During infection of human dendritic cells secretion of IL-1β was increased indicating a dynamic role for pneumolysin in IL-1β maturation [80].
Also other bacteria have been reported to activate specific inflammasomes like NLRP3 or NLRC4. These are Staphylococcus aureus (S. aureus), Mycobacterium tuberculosis (M. tuberculosis) and Legionella pneumophila (L. pneumophila) [81- 83]. Unfortunately, only in vitro effects of these bacteria have been examined. Microglial cells have a functional Naip5-NLRC4 inflammasome that is important in monitoring and clearing CNS infection from flagellated bacteria [83]. Pseudomonas aeruginosa (P. aeruginosa) is also a potent activator of the NLRC4 inflammasome. This is mediated by flagellin-dependent and –independent mechanisms [75].
Several pathogenic bacteria have developed strategies to counteract inflammasomes through “stealth” mechanisms [84]. One of these is S. aureus which can modify its cell wall peptidoglycan to prevent degradation by lysozymes through peptidoglycan O-acyl transferase A that strongly suppresses inflammasome activation and inflammation in vitro and in vivo [85]. Inhibition of the inflammasome has also been detected for Yersinia and Mycobacterium species [75]. Yersinia encodes a family of outer membrane proteins, Yops that is injected into the cytosol by the type III secretion system (T3SS). Among these proteins YopE, YopT and YopK inhibit inflammasome activity [86, 87]. The BCG strain of Mycobacterium tuberculosis (M. tuberculosis) encodes a Zn2+ metalloprotease Zmp1 and suppresses inflammasome function [88]. On the other hand, Francisella tularensis (F. tularensis) does not induce a substantial pro-inflammatory response. The live vaccine strain of F. tularensis encodes two loci, ripA and mviN that inhibit inflammasome activation [89, 90]. MviN which is a flippase, inhibits caspase-1 activation in an AIM2-dependent manner. 
In the apoliporotein knockout mouse (ApoE-/-) model of inflammation and dyslipidemia, P. gingivalis, the keystone pathogen of chronic periodontitis [91], and probably also important in AD [7], actively invaded the brain contributing to complement activation with bystander neural injury [92]. Immunolabeling and immunoblotting of brain tissue from human beings with and without AD showed that LPS from P. gingivalis was present in the brains (4 out of 10; p= 0.029) while LPS was absent in non-AD control tissue [73]. The P. gingivalis LPS epitope was only detected on glial cells which participate in the innate immune responses towards fighting the brains infection. The LPS-hypersensitized microglia [73] are likely to increase the synthesis of inflammatory mediators like TNFα, IL-1β and IL-6, complement factors, TLR 2 and 4, as well as NO that releases free radicals and oxygen species. 
We have recently highlighted that P. gingivalis has several mechanisms of modulating innate immune responses [93] and one of these is via activation of the NLRP3 inflammasome, e.g., through suppressing activation by another dental biofilm bacterium, Fusobacterium nucleatum (F. nucleatum) by using its extracellularly secreted nucleoside diphosphate kinase homologue (NDK), the purine receptors P2X4/P2X7, its A2a adenosine receptor, phosphatidylserine and underacylated LPS [5, 94]. Among them, ATP-/P2X7-signaling has been associated with periodontitis and with development of several systemic diseases related to periodontitis such as AD [5]. To what extent inflammasome modification by P. gingivalis also occurs in the brain is not known. Theoretically, P. gingivalis might attenuate the inflammasome for its own survival [5]. However, even though P. gingivalis inhibits an activation pathway that can kill the bacterium, this may not be the integral part of a general immune suppression strategy since P. gingivalis harnesses acute sustained inflammation that is relatively harmless to the bacterium [5, 93]. It should also be remembered that P. gingivalis has a number of other virulence factors that may affect CNS health [92]. These authors detected C3 activation fragments opsonized on pyramidal neurons in ApoE-/- mice after active invasion of P. gingivalis, suggesting that P. gingivalis and/or its DNA could have triggered complement activation in these mice. The detection of C3 activation fragments (iC3b, C3b, C3d) and the membrane attack complex (anti-C9 neoepitope) exclusively on complement activated (CA) pyramidal neurons after 24 weeks but not at 12 weeks, suggested that the inflammatory burden increased from protection to bystander injury on CA neurons. Accordingly, periodontal bacteria especially Treponema denticola (T. denticola) may contribute to AD pathology involving mechanisms such as acute phase proteins, cytokines and the complement cascade in which neurons would be attacked even if these bacteria modulate inflammasome activity at a much slower pace than P. gingivalis due to their slow replication cycle in the brain [95].
Other studies with ApoE -/- mice used as a model for AD inflammation revealed activation of glial cells with evidence of increased secretion of cytokines, particularly TNF-α [96, 97], complement components [92] and oxidative stress [98]. This may reflect an impaired immune-modulatory function of macrophages in their control of the innate immune responses [99-101] at the outset. Although  mice are very interesting as models for AD, their findings cannot always be used as explanation for human AD. Nevertheless, As a parallel, neutrophil-P. gingivalis interactions and subsequent subversion of innate immunity are key contributing factors in the pathogenesis of periodontal disease [102] which seems to be closely related to AD [7]. 
In conclusion, innate immune responses, particularly those activating inflammasomes, may contribute to the onset and progression of AD. The mechanisms of inflammasome assembly and activation in the CNS are not yet fully understood, neither is the precise role of the NLRP3 inflammasome in AD. Nevertheless, the fact that NLRP3 inhibition could protect from memory loss and decrease Aβ deposition in an AD mouse model supports the notion of their application in therapy. Innate immune responses, particularly those associated with inflammasome activation could contribute to the onset and progression of neurocognitive disease such as AD. Although microglia, astrocytes and neurons express inflammasomes, little is known about how this diversity of cells affects the regulation of IL-1β signaling at the tissue level. Also, inflammasomes have recently been found to release other immune substances than just IL-1β and IL-18 such as prostaglandins and leukotrienes. In the complex play of factors involved in AD pathogenesis the inflammatory activators of NLRP3 inflammasome/caspase-1 are important.  It is clear that the NLP3 inflammasome is involved in the innate immune response to Aβ. Soluble oligomeric assemblies of the Aβ peptide (ADDLs) seem to be the more toxic Aβ species and potent danger signals to activate the inflammasome. Microorganisms are also important both as activators and modifiers of inflammasome action as demonstrated in animal models. It is clear that pathogenic bacteria have developed a plethora of strategies to inhibit inflammasome-mediated processing of IL-1β and IL-18. The key pathobiont P. gingivalis is no exception in this sense as it can modify inflammasome activity in several ways. The importance of this in the CNS is not clear. It should be emphasized that it is probably not in the “interest” of P. gingivalis to completely inhibit inflammasome activity since it requires maintenance of some inflammation to obtain nutrients for its growth such as hemin and peptides from tissue breakdown. Modification of inflammasome activity might allow more room for other virulence factors of P. gingivalis to contribute in AD, particularly complement inactivation followed by neural injury from LPS.
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Figure 1 Inflammasome activation in the brain with a leaky blood-brain barrier. Pathogenic PAMPs from bacteria “prime” the inflammasome via activating TLRs/NOD receptors that induce NF-κB activation and the expression of cytokines pro-IL-1β and IL-18. The inflammasome may recruit ASC and procaspase-1 in response to death activation signals. The inflammasome can be activated in response to reactive oxygen species released from damaged mitochondria. Once activated the inflammasome causes the activation of caspase-1 which cleaves the precursor proforms of IL-1β and IL-18 into their mature forms. 
Abbreviations: ASC, apoptosis-related speck-like protein containing a caspase recruitment domain;  IL, interleukin; LRR, leucine-rich repeat; NACHT, central nucleotide-binding and oligomerization; NF-κB, nuclear factor kappa B; ROS, reactive oxygen species; TLR, Toll-like receptor; MD, MyD88 adapter protein; PGE2, prostaglandins; NO, nitric oxide; ERK, extracellular-signal-regulated kinase; JNK, c-Jun N-terminal kinases; p38, p38 mitogen-activated protein kinase; apoE, apolipoprotein E; NOD, nucleotide oligomerization domain; RBCs, red blood cells  
	
