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Abstract

In this paper we show that, with respect to the L2 norm, three classes of functions
in Hr(0, 1), defined by certain boundary conditions, admit optimal spline spaces of
all degrees ≥ r − 1, and all these spline spaces have uniform knots.
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1 Introduction

Recently there has been renewed interest in using splines of maximal smoothness, i.e.
of smoothness Cd−1 for splines of degree d, as finite elements for solving PDEs. This
is one of the main ideas behind isogeometric analysis [1, 4, 2, 10]. This raises the
issue of how good these splines are at approximating functions of a certain smoothness
class, especially with respect to approximation in the L2 norm. This was answered
to some extent by Melkman and Micchelli [7] who studied the L2 approximation of
functions u in the Sobolev space

Hr = Hr(0, 1) = {u ∈ L2(0, 1) : u(α) ∈ L2(0, 1), α = 1, 2, . . . , r},

and measured the error relative to the L2 norm of u(r). They showed that from this
point of view there are two spaces of splines that are optimal, one of degree r−1, the
other of degree 2r − 1. Later it was shown in [3] that these two spaces are just the
first two of a whole sequence of optimal spline spaces of degrees lr−1, l = 1, 2, 3, . . ..
In the case r = 1 there is therefore an optimal spline space of every degree, but
whether this is true for r ≥ 2 is an open question.
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In this paper we study the related problem of approximating functions in Hr

subject to certain boundary conditions. Specifically, we look at

Hr
0 = {u ∈ Hr : u(k)(0) = u(k)(1) = 0, 0 ≤ k < r, k even},

Hr
1 = {u ∈ Hr : u(k)(0) = u(k)(1) = 0, 0 ≤ k < r, k odd},

Hr
2 = {u ∈ Hr : u(k)(0) = u(l)(1) = 0, 0 ≤ k, l < r, k even, l odd}.

Our main result is to show that for all r ≥ 1, the spaces Hr
i , i = 0, 1, 2, admit optimal

spline spaces of all degrees ≥ r − 1. This is very similar to the numerical results
reported by Evans et al. [2] regarding the degrees of the spline spaces, however their
paper considered other boundary conditions (periodic conditions or no conditions).

The derivations in [7] and [3] were based on the use of an integral operator K
that represents integration r times. Roughly speaking, and ignoring what happens
at the boundary of the interval, if Xn is an optimal space of splines of some degree
d, then the space K(Xn), i.e., the space generated by integrating the splines in Xn,
r times, is also an optimal space, consisting of splines of degree d+ r.

In contrast, in this paper we work only with an integral operator K that represents
a single integration. We generate optimal spline spaces for Hr

i , i = 0, 1, 2, by applying
K, i.e., one integration, both to the initial Sobolev space H1

i and its optimal spline
space, Xn, of degree 0. This approach works for Hr

i , i = 0, 1, 2, because, unlike Hr

itself, when we apply (the right) K to the functions in Hr
i we get back a similar

space, with r increased by one.
The optimal spline spaces we obtain have the same type of boundary conditions

(odd or even derivatives are zero at the ends of the interval) as the spaces Hr
i them-

selves. The splines also have uniform knots, thus making them convenient to use in
practice. In particular, some of the spline spaces corresponding to Hr

1 are precisely
the ‘reduced spline spaces’ studied recently by Takacs and Takacs [10, Section 5]
(see also the end of Section 3 in this paper). They proved approximation estimates
and inverse inequalities for these spaces, with a view to constructing fast iterative
methods for solving PDEs in the framework of isogeometric analysis.

2 Kolmogorov n-widths

We start by formulating the concept of optimality in terms of Kolmogorov n-widths [9].
Denote the norm and inner product on L2 = L2(0, 1) by

‖f‖2 = (f, f), (f, g) =

∫ 1

0
f(t)g(t) dt,

for real-valued functions f and g. For a subset A of L2, and an n-dimensional
subspace Xn of L2, let

E(A,Xn) = sup
u∈A

inf
v∈Xn

‖u− v‖

be the distance to A from Xn relative to the L2 norm. Then the Kolmogorov L2

n-width of A is defined by
dn(A) = inf

Xn

E(A,Xn).
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A subspace Xn is called an optimal space for A provided that

dn(A) = E(A,Xn).

Now, consider the function classes

Ari = {u ∈ Hr
i : ‖u(r)‖ ≤ 1}, i = 0, 1, 2. (1)

By looking at u/‖u(r)‖, for functions u ∈ Hr
i , we have for any n-dimensional subspace

Xn of L2,
‖u− Pnu‖ ≤ E(Ari , Xn)‖u(r)‖,

where Pn denotes the L2 projection onto Xn. Moreover, if Xn is an optimal subspace
for Ari , then

‖u− Pnu‖ ≤ dn(Ari )‖u(r)‖,

and dn(Ari ) is the least possible constant over all n-dimensional subspaces Xn.

3 Main results

We first describe the n-widths for Ari in (1) and the optimal subspaces based on
eigenfunctions. We will show

Theorem 1 For any integer r ≥ 1, the n-widths of Ari , i = 0, 1, 2, are

dn(Ar0) =
1

(n+ 1)rπr
, dn(Ar1) =

1

(nπ)r
, dn(Ar2) =

1

(n+ 1
2)rπr

. (2)

Furthermore, the spaces

[sinπx, sin 2πx, . . . , sinnπx], (3)

[1, cosπx, cos 2πx, . . . , cos(n− 1)πx], (4)

[sin(1/2)πx, sin(3/2)πx, . . . , sin(n− 1/2)πx] (5)

are optimal n-dimensional spaces for, respectively, Ar0, Ar1 and Ar2.

Here, [· · · ] denotes the span of a set of functions. The result for A1
1 was shown by

Kolmogorov [6]. With r an even number the result for Ar0 was shown in [3]. The
remaining cases will be shown in Sections 7 and 8.

Now, let us describe the optimal spline spaces for these sets. Suppose τ =
(τ1, . . . , τm) is a knot vector such that

0 < τ1 < · · · < τm < 1,

and let I0 = [0, τ1), Ij = [τj , τj+1), j = 1, . . . ,m−1, and Im = [τm, 1]. For any d ≥ 0,
let Πd be the space of polynomials of degree at most d. Then we define the spline
space Sd,τ by

Sd,τ = {s ∈ Cd−1[0, 1] : s|Ij ∈ Πd, j = 0, 1, . . . ,m},
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which has dimension m+d+ 1. We now define the three n-dimensional spline spaces
Sd,i, for i = 0, 1, 2, by

Sd,0 = {s ∈ Sd,τ0 : s(k)(0) = s(k)(1) = 0, 0 ≤ k ≤ d, k even},
Sd,1 = {s ∈ Sd,τ1 : s(k)(0) = s(k)(1) = 0, 0 ≤ k ≤ d, k odd},
Sd,2 = {s ∈ Sd,τ2 : s(k)(0) = s(l)(1) = 0, 0 ≤ k, l ≤ d, k even, l odd},

(6)

where the knot vectors τ i for i = 0, 1, 2, are given as

τ 0 =

{
( 1
n+1 ,

2
n+1 , . . . ,

n
n+1), d odd,

( 1/2
n+1 ,

3/2
n+1 , . . . ,

n+1/2
n+1 ), d even,

τ 1 =

{
(1/2n ,

3/2
n , . . . ,

n−1/2
n ), d odd,

( 1
n ,

2
n , . . . ,

n−1
n ), d even,

τ 2 =

{
( 1
2n+1 ,

3
2n+1 , . . . ,

2n−1
2n+1), d odd,

( 2
2n+1 ,

4
2n+1 , . . . ,

2n
2n+1), d even.

(7)

All these knot vectors have equidistant knots, but if we extend them to include the
endpoints of [0, 1], the first and last knot intervals of these extended knot vectors
sometimes have half the length of the interior ones. Examples of these knot vectors
are shown in Figures 2, 3 and 4. Our main result is then the following.

Theorem 2 Suppose r ≥ 1. Then for any i = 0, 1, 2, the spline spaces Sd,i are
optimal n-dimensional spaces for the set Ari for any d ≥ r − 1.

The case A1
1 was shown in [3, Theorem 2]. On the other hand, the case Ar0 is a

generalization of [3, Theorem 1] since that theorem only treated even r and spline
spaces of degrees lr − 1 for l = 1, 2, . . ., thus leaving gaps between the degrees.
When the degree d is even, the spaces Sd,1, whose common extended knot vector
is equidistant, are the ‘reduced spline spaces’ of Takacs and Takacs [10, Section 5].
They have also derived approximation results regarding these spaces, using Fourier
analysis. We can see from Theorem 2 and (2) that, for even d, the constant

√
2 in

[10, Corollary 5.1] can be replaced by the optimal constant 1/π.

4 Sets defined by kernels

We need some properties of kernels, and so this section is similar to [3, Section 3].
The starting point of the analysis is to represent the lowest order function classes A1

i ,
i = 0, 1, 2, in the form

A = K(B) = {Kf : ‖f‖ ≤ 1}, (8)

where B is the unit ball in L2, and K is the integral operator

Kf(x) =

∫ 1

0
K(x, y)f(y) dy.
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As in [7] we use the notation K(x, y) for the kernel of K. We only consider kernels
K(x, y) that are continuous or piecewise continuous for x, y ∈ [0, 1]. Observe that
for A in (8) and any n-dimensional subspace Xn of L2,

E(A,Xn) = sup
‖f‖≤1

‖(I − Pn)Kf‖ = ‖(I − Pn)K‖2, (9)

where Pn is the orthogonal projection onto Xn, and ‖ · ‖2 denotes the operator norm
induced by the L2 norm for functions.

We will denote by K∗ the adjoint, or dual, of the operator K, defined by

(f,K∗g) = (Kf, g).

The kernel of K∗ is K∗(x, y) = K(y, x). Similar to matrix multiplication, the kernel
of the composition of two integral operators K and L is

(KL)(x, y) = (K(x, ·), L(·, y)).

The operator K∗K, being self-adjoint and positive semi-definite, has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0, (10)

and corresponding orthogonal eigenfunctions

K∗Kφn = λnφn, n = 1, 2, . . . . (11)

If we further define ψn = Kφn, then

KK∗ψn = λnψn, n = 1, 2, . . . , (12)

and the ψn are also orthogonal. The square roots of the λn are known as the s-
numbers of K (or K∗). With these definitions we obtain [9, p. 6 or p. 65]:

Theorem 3 dn(A) = λ
1/2
n+1, and the space [ψ1, . . . , ψn] is optimal for A.

5 Totally Positive Kernels

Melkman and Micchelli [7] proved that if K is nondegenerate totally positive (NTP)
[9, p. 108], then there are in fact two other optimal subspaces for A. Specifically, if K
is NTP it follows from a theorem of Kellogg [9, p. 109] that the eigenvalues of K∗K
and KK∗ in (11) and (12) are positive and simple, λ1 > λ2 > · · · > λn > · · · > 0,
and the eigenfunctions φn+1 and ψn+1 have exactly n simple zeros in (0, 1),

φn+1(ξj) = ψn+1(ηj) = 0, j = 1, 2, . . . , n,

0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηn < 1.

Melkman and Micchelli [7, Theorem 2.3] then proved that the spaces

X0
n = [K(·, ξ1), . . . ,K(·, ξn)],

X1
n = [(KK∗)(·, η1), . . . , (KK∗)(·, ηn)]

(13)
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are optimal for A. Using a duality technique that we will discuss in the next section
it was later shown in [3, Theorem 5] that, given these two optimal spaces, there is
an optimal space Xd

n, for all d = 0, 1, 2, . . ., where

Xd
n =

{
[(KK∗)iK(·, ξ1), . . . , (KK∗)iK(·, ξn)], d = 2i,

[(KK∗)i+1(·, η1), . . . , (KK∗)i+1(·, ηn)], d = 2i+ 1.
(14)

Melkman and Micchelli also constructed two optimal subspaces for the set A even
when K is not NTP, but for K satisfying some related properties. We will deal with
such a situation in Section 8.

6 Further optimality results

In this section we describe how optimal subspaces for the set A in (8) can be used to
find optimal subspaces for sets of the form K∗(A), KK∗(A), and so on. The results
here will hold for any integral operator K.

To ease notation we define two function classes Ar and Ar∗, for r ≥ 1, by

Ar =

{
(KK∗)iK(B), r = 2i+ 1,

(KK∗)i(B), r = 2i,
Ar∗ =

{
(K∗K)iK∗(B), r = 2i+ 1,

(K∗K)i(B), r = 2i.
(15)

Observe that both Ar and Ar∗ are defined by alternately applying the operators K
and K∗, r times, to the unit ball B, with K always being the left-most operator
for Ar, and K∗ always being the left-most operator for Ar∗. Since A1 = A, we will
write A∗ when referring to A1

∗. As we shall see momentarily the duality between
the operators K and K∗ will play an important role for the sets Ar and Ar∗, and
especially their respective optimal subspaces. In some sense their optimal subspaces
could be considered ‘dual’ to each other.

Since eigenvalues of powers of KK∗ (and K∗K) are just powers of the λn in (10),
with the same corresponding eigenfunction, it follows that the n-widths of the sets
Ar and Ar∗ are given by

dn(Ar∗) = dn(Ar) = dn(A)r, (16)

and the space [ψ1, . . . , ψn] in Theorem 3 is optimal for Ar, and the space [φ1, . . . , φn]
is optimal for Ar∗. As a tool for finding further optimal subspaces for Ar and Ar∗,
with r ≥ 2, we start with the following lemma.

Lemma 1 For any integral operator K, let L = KK∗. If Xn and Yn are any sub-
spaces of L2, then

E(Ar, Li(Xn)) ≤ E(A,Xn)E(Ar−1, Li(Xn)), r = 2i+ 1,

E(Ar, Li−1K(Yn)) ≤ E(A∗, Yn)E(Ar−1, Li−1K(Yn)), r = 2i,

for r ≥ 2.
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Proof. First assume r = 2i + 1, for i ≥ 1. From the definition of Ar we have
Ar = LiK(B) and Ar−1 = Li(B).

Let Pn be the L2 projection onto Xn, and let Qn be L2 projection onto Li(Xn).
Then

LiPnKf ∈ Li(Xn),

for all f ∈ L2, and so
(I −Qn)LiPnK = 0.

Thus, by using equation (9), we find that

E(Ar, Li(Xn)) = ‖(I −Qn)LiK‖2 = ‖(I −Qn)LiK − (I −Qn)LiPnK‖2,
= ‖(I −Qn)Li(I − Pn)K‖2 ≤ ‖(I −Qn)Li‖2‖(I − Pn)K‖2,
= E(Ar−1, Li(Xn))E(A,Xn).

Next, assume r = 2i, for i ≥ 1. Then Ar = Li(B) and Ar−1 = Li−1K(B). In
this case, let Pn be the L2 projection onto Yn, and let Qn be L2 projection onto
Li−1K(Yn). Then, as before,

(I −Qn)Li−1KPnK
∗ = 0,

and the result follows by an almost identical argument as in the previous case. 2

Now suppose that X0
n is an optimal n-dimensional subspace for A, and Y 0

n is an
optimal n-dimensional subspace for A∗. With these two subspaces one can generate
a whole sequence of subspaces Xd

n and Y d
n , by

Xd
n = K(Y d−1

n ), Y d
n = K∗(Xd−1

n ), (17)

for all d = 1, 2, 3, . . ., and it follows from [3, Lemma 1] that all the Xd
n are optimal

for the n-width of A1 = A, and all the Y d
n are optimal for the n-width of A1

∗ = A∗.
Note that for d > 0, the spaces Xd

n and Y d
n could in general have dimension less

than n, but they are still optimal for the n-width problem. In fact, if Xd
n or Y d

n have
dimension m, 0 ≤ m < n, then dm(A) must equal dn(A) by definition of the n-width.

Next, we consider Ar and Ar∗ for r ≥ 2.

Lemma 2 Suppose the subspace X0
n is optimal for A and Y 0

n is optimal for A∗.
Then, for r ≥ 2,

E(Ar, Xd
n) ≤ dn(A)E(Ar−1, Xd

n), (18)

E(Ar∗, Y
d
n ) ≤ dn(A)E(Ar−1∗ , Y d

n ), (19)

for all d ≥ r − 1.

Proof. We start by proving inequality (18). Let L = KK∗. First, assume r = 2i+ 1,
for i ≥ 1. It then follows from (17) that Xd

n = Li(Xd−r+1
n ) for d ≥ r − 1, and so the

result follows from Lemma 1, with Xn = Xd−r+1
n , since Xd−r+1

n is optimal for A.
Next, assume r = 2i, for i ≥ 1. It then follows from (17) that Xd

n = LiK(Y d−r+1
n )

for d ≥ r − 1, and so the result follows from Lemma 1, with Yn = Y d−r+1
n , since

Y d−r+1
n is optimal for A∗ and dn(A∗) = dn(A).

Inequality (19) then follows from the same argument if we interchange the roles
of K and K∗. 2
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Using Lemma 2, we now obtain optimality results for Ar and Ar∗, for all r ≥ 1.

Theorem 4 Suppose the subspace X0
n is optimal for A and Y 0

n is optimal for A∗.
Then, for r ≥ 1,

• the subspaces Xd
n in (17) are optimal for the n-width of Ar, and

• the subspaces Y d
n in (17) are optimal for the n-width of Ar∗,

for all d ≥ r − 1.

Proof. The case r = 1 follows from [3, Lemma 1]. For r ≥ 2 the result for the Xd
n

follows from inequality (18) in Lemma 2, equation (16) and induction on r, since
dn(A)r = dn(A)dn(A)r−1. Similarly, now using inequality (19) in Lemma 2, we get
the result for the Y d

n as well. 2

X0
n Y 1

n X2
n Y 3

n · · ·
A1 A1

∗ A1 A1
∗ · · ·

A2
∗ A2 A2

∗ · · ·
A3 A3

∗ · · ·
A4
∗ · · ·

Y 0
n X1

n Y 2
n X3

n · · ·
A1
∗ A1 A1

∗ A1 · · ·
A2 A2

∗ A2 · · ·
A3
∗ A3 · · ·

A4 · · ·

Figure 1: Optimality results.

We have summarized the statement of Theorem 4 in Figure 1. Under the assump-
tion of Theorem 4 on X0

n and Y 0
n , all the spaces (above the line) in the two tables

are optimal for all the function classes below them. Optimality of X0
n for A1 implies

optimality of Y 1
n for A1

∗ by [3, Lemma 1], and so on along the first row (below the
line) in the left table. Then, by Lemma 2, optimality of X0

n for A1, and Y 1
n for A1

∗,
imply optimality of Y 1

n for A2
∗, and so on along the second row. Optimality of X0

n for
A1, and X2

n for A2, imply optimality of X2
n for A3, and so on along the third row.

Similarly for the right table.
Let us now turn back to the case where K is NTP. The subspace X0

n in (13) is
optimal for A, and since K being NTP is equivalent to K∗ being NTP, we also have
that the subspace

Y 0
n = [K∗(·, η1), . . . ,K∗(·, ηn)] (20)

is optimal for A∗, and so we can apply Theorem 4. The subspaces Xd
n in (17) are in

this case the same as those in equation (14). Since the eigenvalues (10) (and thus
also the n-widths) are strictly decreasing whenever K is NTP, the subspaces Xd

n and
Y d
n are in this case also n-dimensional for all d ≥ 0.

7 Mixed boundary conditions

In this section we study the n-width problem for the function class Ar2 in (1). Consider
the operator K given by

Kf(x) =

∫ x

0
f(y)dy =

∫ 1

0
K(x, y)f(y)dy, (21)
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whose kernel is

K(x, y) =

{
0 x < y,

1 x ≥ y.
(22)

Using the equality K∗(x, y) = K(y, x), we find that

K∗f(x) =

∫ 1

x
f(y)dy. (23)

Thus K represents integration from the left, while K∗ represents integration from
the right.

From (21) we see that the set A1
2 in equation (1) can be expressed as

A1
2 = {u ∈ H1 : ‖u′‖ ≤ 1, u(0) = 0} = {

∫ x

0
f(y)dy : ‖f‖ ≤ 1} = K(B).

To see that the remaining Ar2 can be expressed in terms of K and K∗, it is conve-
nient to recognize the kernel of the composition KK∗ as the Green’s function for a
boundary value problem, whose eigenfunctions we will need later anyway [in equation
(27)].

Lemma 3 If u(x) = KK∗f(x) then u is the unique solution to the boundary value
problem

−u′′(x) = f(x), u(0) = u′(1) = 0. (24)

Proof. We see from (21) and (23) that for any h,

(Kh)′(x) = h(x), (25)

(K∗h)′(x) = −h(x).

So, if u(x) = KK∗f(x) then −u′′(x) = f(x). For the left boundary condition, from
(21), we find that

u(0) = (KK∗f)(0) = 0.

For the right boundary condition, from (25) and (23),

u′(1) = (KK∗f)′(1) = (K∗f)(1) = 0.

To see that u is unique, suppose f = 0 in (24). Then u must be a linear function,
but to satisfy the boundary conditions we must have u = 0. 2

By applying the above lemma to functions f in B and K(B) respectively and
repeating the procedure i times, we find that

A2i
2 = (KK∗)i(B), A2i+1

2 = (KK∗)iK(B),

where A2i
2 and A2i+1

2 are as in equation (1). Observe that the left-most operator for
the function class Ar2 is always K, and so Ar2 is an instance of Ar in (15).
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7.1 Proof of Theorem 1 for Ar
2

In analogy to Lemma 3 we have, for the other composition K∗K,

Lemma 4 If u(x) = K∗Kf(x) then u is the unique solution to the boundary value
problem

−u′′(x) = f(x), u′(0) = u(1) = 0.

From Lemma 4, we see that the eigenvalues and eigenfunctions of K∗K are

λn =
1

(n− 1/2)2π2
, φn(x) = cos(n− 1/2)πx, n = 1, 2, . . . . (26)

From Lemma 3, the operator KK∗ has the same eigenvalues, but the eigenfunctions
are

ψn(x) = sin(n− 1/2)πx, n = 1, 2, . . . . (27)

So, by Theorem 3, the n-width of A1
2 is as given in equation (2) and an optimal

subspace is as given in (5). The analogous results for Ar2, r > 1, follow from equation
(16).

7.2 Proof of Theorem 2 for Ar
2

We have already seen that the function class Ar2 is the function class Ar in (15) when
K has a kernel as given in (22). Since it is well known that this choice of K is NTP [5,
p. 16], we can apply Theorem 4 to the spaces X0

n in (13) and Y 0
n in (20). All that

remains to show is that the optimal subspaces Xd
n generated as in equation (17) are

the spline spaces we claim.
The zeros ξj of φn+1(x) in (26) are the knots in the even degree case for the knot

vector τ 2 in equation (7), and the zeros ηj of ψn+1(x) in (27) are the knots in the
odd degree case. Thus, X0

n in (13), with the kernel of K as in equation (22), is equal
to

X0
n = [K(·, ξ1), . . . ,K(·, ξn)] = S0,2,

where S0,2 is the piecewise constant spline space given in equation (6). To find X1
n

we perform a simple calculation to see that

KK∗(x, y) = (K(x, ·),K(y, ·)) =

{
x, x < y,

y, x > y,

and so, X1
n = K(Y 0

n ) = [(KK∗)(·, η1), . . . , (KK∗)(·, ηn)] = S1,2, the piecewise linear
spline space given in equation (6). The remaining Xd

n, for d ≥ 2, can be found by
using the fact that Xd+2

n = KK∗(Xd
n) and applying Lemma 3, since the derivative

of a spline is a spline on the same knot vector of one degree lower.
Remark: We note that interchanging the roles of K and K∗ shows that the sub-

spaces Y d
n are optimal for the sets defined by interchanging the boundary conditions

in Ar2, i.e., odd derivatives set to zero at the left-hand side, and even derivatives set
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to zero at the right-hand side. One finds that the subspaces Y d
n are equal to their

corresponding ‘dual’ subspace Xd
n, just with interchanged boundary conditions and

interchanged knots (i.e., replacing the even degree case for τ 2 in (7) with the odd
degree case, and vice versa).

8 Symmetric boundary conditions

In this section we study the n-width problems for the remaining function classes Ar0
and Ar1 in (1). Let K1 be the operator given by

K1 = (I −Q)K, (28)

where Q is the orthogonal projection onto the constant functions, Π0, and K is again
the operator (21). From [7] we know that the set A1

1 given in equation (1) can be
written as the orthogonal sum

A1
1 = Π0 ⊕K1(B).

It follows from [9, Chap. IV, Sec. 3.2] that the set A1
0 in equation (1) can be written

as

A1
0 = {u ∈ H1 : ‖u′‖ ≤ 1, u(0) = u(1) = 0},

= {K∗f : ‖f‖ ≤ 1, f ⊥ 1} = K∗(I −Q)(B) = K∗1 (B).

The kernel of K1K
∗
1 is the Green’s function to the boundary value problem

−u′′(x) = f(x), u′(0) = u′(1) = 0, u, f ⊥ 1 (29)

(see e.g. [3, Lemma 4]). Using equation (29) i times and then adding back the
constants we find that,

A2i
1 = Π0 ⊕ (K1K

∗
1 )i(B), A2i+1

1 = Π0 ⊕ (K1K
∗
1 )iK1(B), (30)

where A2i
1 and A2i+1

1 are as in equation (1). The kernel of K∗1K1 is the Green’s
function to the boundary value problem

−u′′(x) = f(x), u(0) = u(1) = 0 (31)

(see e.g. [3, Lemma 3]). Then, using equation (31) i times we find that,

A2i
0 = (K∗1K1)

i(B), A2i+1
0 = (K∗1K1)

iK∗1 (B),

where A2i
0 and A2i+1

0 are as in equation (1). Observe that the left-most operator
for the function class Ar0 is always K∗1 , and so Ar0 is an instance of Ar∗ in (15). The
function class Ar1, on the other hand, is not quite an instance of Ar in (15), but it is
of the form Π⊕Ar.

11



8.1 Proof of Theorem 1 for Ar
0 and Ar

1

From equation (31) we see that the eigenvalues and eigenfunctions of K∗1K1 are

λn =
1

(nπ)2
, φn(x) = sin(nπx), n = 1, 2, . . . . (32)

The operator K1K
∗
1 has the same eigenvalues, but the eigenfunctions are

ψn(x) = cos(nπx), n = 1, 2, . . . . (33)

So, by Theorem 3, the n-widths of both A1
0 = K∗1 (B) and K1(B) are equal to dn(A1

0)
in equation (2). An optimal n-dimensional subspace for A1

0 is as given in (3), and
an optimal n-dimensional subspace for K1(B) is [cos(πx), cos(2πx), . . . , cos(nπx)].
Since this subspace is orthogonal to Π0 it follows that an optimal (n+1)-dimensional
subspace for A1

1 = Π0 ⊕K1(B) is

[1, cos(πx), cos(2πx), . . . , cos(nπx)],

thus showing that (4) is an optimal n-dimensional space, and that the n-width of A1
1

is as given in (2). Pay special attention to this index-shift caused by Π0: the n-width

of K1(B) is equal to λ
1/2
n+1, but the n-width of A1

1 is equal to λ
1/2
n in (32). As before,

the analogous results for Ar0 and Ar1, r > 1, follow from equation (16).

8.2 Proof of Theorem 2 for Ar
0 and Ar

1

To prove Theorem 2 for Ar0 and Ar1 we will use Theorem 4 with K1 playing the role
of the generic operator K. We must therefore identify the first optimal space X0

n

for K1(B) and the first optimal space Y 0
n for A1

0 = K∗1 (B). Unlike K in equation
(21), K1 is not NTP (specifically, it is not totally positive) and this creates an extra
challenge compared with subsection 7.2. Fortunately, as shown in [7, 8] the operator
K∗1K1 is in fact NTP, and we can make use of this and other results in [7, Section 5].
Specifically, we have from [7, Theorem 5.1] that

X0
n = [K1(·, ξ1), . . . ,K1(·, ξn)]

is an optimal subspace for the n-width of K1(B), where the ξj , for j = 1, 2, . . . , n,
are the n zeros of φn+1(x) in (32). Observe, that these ξj ’s are the knots in the odd
degree case for the knot vector τ 0 in (7).

Now, we consider Y 0
n . First, let ηj , for j = 1, 2, . . . , n + 1, be the n + 1 zeros of

ψn+1(x) in (33), which are the knots in the even degree case of τ 0 in (7). Additionally,
let J be the interpolation operator from C[0, 1] to Π0 determined by interpolating at
η1, and define the operator

K1 = (I − J)K,

where K still is the operator (21). If we let Y 0
n be the n-dimensional space

Y 0
n = [K

∗
1(·, η2), . . . ,K

∗
1(·, ηn+1)], (34)

then the proof of [7, Theorem 5.1] (or [9, Theorem 5.11 p. 121]) contains the following
important result.
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Lemma 5 If Pn is the orthogonal projection onto the space Y 0
n , and λn+1 is as in

(32), then

sup
‖f‖≤1

‖K1(I − Pn)f‖ ≤ λ1/2n+1. (35)

Proof. The operator K1 is a special case of the operator K1 in [9] (as explained on
page 124). It therefore satisfies the assumptions of [9, Theorem 5.11 p. 121], and
inequality (35) is then proved on page 122. Note the shift in index, the above n+ 1
corresponds to n in [9, Theorem 5.11]. 2

Using this inequality we can show the following.

Theorem 5 The space Y 0
n is optimal for A1

0 = K∗1 (B).

Proof. Let Pn be the orthogonal projection onto Y 0
n in (34). To prove that Y 0

n is an
optimal subspace for A1

0, we need to show that

E(A1
0, Y

0
n ) ≤ dn(A1

0),

or equivalently,

‖(I − Pn)K∗1‖2 ≤ λ
1/2
n+1,

with λn+1 as given in (32). First observe that

‖(I − Pn)K∗1‖2 = ‖K1(I − Pn)‖2 = ‖(I −Q)K(I − Pn)‖2.

Next, since both J and Q are projections onto the constants, Π0, but only Q is the
orthogonal projection, we must have

‖(I −Q)K(I − Pn)‖2 ≤ ‖(I − J)K(I − Pn)‖2 = ‖K1(I − Pn)‖2.

Hence, the result follows from Lemma 5. 2

Remark: Melkman and Micchelli [7, Theorem 5.1] used the inequality in Lemma 5
to directly conclude that the (n+ 1)-dimensional space

Π0 + [(K1K
∗
1)(·, η2), . . . , (K1K

∗
1)(·, ηn+1)],

is optimal for the set A1
1 = Π0 ⊕K1(B). On the other hand, from [3, Lemma 1] and

the above Theorem 5, it follows that K1(Y
0
n ) is an optimal space for K1(B), and so

Π0 ⊕K1(Y
0
n ) = Π0 ⊕ [(K1K

∗
1)(·, η2), . . . , (K1K

∗
1)(·, ηn+1)],

is optimal for A1
1. This is consistent with their result, since the difference

(K1K
∗
1)(·, ηj)− (K1K

∗
1)(·, ηj),

is a constant for any j = 2, . . . , n+ 1.
We now have the first optimal space X0

n for K1(B) and the first optimal space
Y 0
n for A1

0 = K∗1 (B), and so we can apply Theorem 4. To do this let us express Ar1
in equation (30) as

Ar1 = Π0 ⊕ Ãr1.
Now, if Xd

n and Y d
n are generated as in (17) with K1 playing the role of the generic

K, then it follows from Theorem 4 that, for all r ≥ 1,
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• the n-dimensional spaces Xd
n are optimal for the n-width of Ãr1, and

• the n-dimensional spaces Y d
n are optimal for the n-width of Ar0,

for all d ≥ r − 1. Note further that these spaces are all n-dimensional since the
n-widths in (2) are strictly decreasing. Moreover, since both Xd

n ⊥ Π0 and Ãr1 ⊥ Π0,
we find that the (n + 1)-dimensional spaces Π0 ⊕Xd

n are optimal for Ar1 = Π0 ⊕ Ãr1
for d ≥ r − 1.

The remaining task is to recognize the spaces Π0 ⊕Xd
n and Y d

n as spline spaces.
As already stated, the optimal spaces Π0⊕Xd

n were identified in [3] and we have the
equality

Sd,1 = Π0 ⊕Xd
n−1,

where Sd,1 is the n-dimensional space defined in (6). However, only the spline spaces
Y d
n when d is odd were found in [3]. In that case we have

Sd,0 = Y d
n , (36)

with Sd,0 also as in (6). Now, using the definition of K1 we find that the kernel
K
∗
1(x, y) = K1(y, x) is equal to

K
∗
1(x, y) =


0, x < η1,

1, η1 < x < y,

0, x > y,

for y > η1. The space Y 0
n in equation (34) is then the space of piecewise constant

splines with knots ηj , j = 1, . . . , n+1, that vanish on the intervals [0, η1) and (ηn+1, 1].
Since Y 2

n = K∗1K1(Y
0
n ), and so on, we know from (31) that equation (36) also holds

in the case of d even. This proves Theorem 2 for Ar0 and Ar1.

9 Basis functions

In this section we describe how to create a local basis for the spline spaces Sd,i,
i = 0, 1, 2. First consider i = 1. An explanation of how to construct a local basis
for Sd,1 (with d even) is presented in [10]. The basic idea consists of three parts.
Start with our uniform knot vector τ 1 in (7) and extend it to a uniform knot vector
on the whole real line. Second, construct all the B-splines on this infinite knot
vector that have non-zero support on (0, 1). Third, identify the B-splines that cross
the boundary and add them together in pairs, chosen in such a manner that the
symmetry of uniform B-splines ensures the boundary conditions (all odd derivatives
set to zero) are satisfied. Figure 2 shows the basis functions for Sd,1 of degree 0 to 3
with knot-distance 0.2 (n = 5).

Next, we consider i = 0. Constructing a basis for Sd,0 can be done by essentially
the same procedure as for Sd,1. Instead of adding pairs of B-splines together we take
differences. The symmetry of uniform B-splines will again ensure that the boundary
conditions (all even derivatives set to zero) are satisfied. Figure 3 shows the basis
functions for Sd,0 of degree 0 to 3 with knot-distance 0.2 (n = 4).
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Figure 2: Basis functions for Sd,1.
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Figure 3: Basis functions for Sd,0.
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Figure 4: Basis functions for Sd,2.

Regarding i = 2, adding pairs of B-splines together on the right-hand side and
subtracting on the left-hand side will give a basis for Sd,2. Figure 4 shows the basis
functions for Sd,2 of degree 0 to 3 with knot-distance 2/9 (n = 4).
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