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Abstract. It has recently been demonstrated (Class. Quantum Grav. 31, 085010,

2014) that the conformally invariant wave equation on a Minkowski background can

be solved with a fully pseudospectral numerical method. In particular, it is possible

to include spacelike infinity into the numerical domain, which is appropriately repre-

sented as a cylinder, and highly accurate numerical solutions can be obtained with

a moderate number of gridpoints. In this paper, we generalise these considerations

to the spherically-symmetric wave equation on a Schwarzschild background. In the

Minkowski case, a logarithmic singularity at the future boundary is present at leading

order, which can easily be removed to obtain completely regular solutions. An impor-

tant new feature of the Schwarzschild background is that the corresponding solutions

develop logarithmic singularities at infinitely many orders. This behaviour seems to be

characteristic for massive space-times. In this sense this work is indicative of properties

of the solutions of the Einstein equations near spatial infinity. The use of fully pseu-

dospectral methods allows us to still obtain very accurate numerical solutions, and the

convergence properties of the spectral approximations reveal details about the singular

nature of the solutions on spacelike and null infinity. These results seem to be impos-

sible to achieve with other current numerical methods. Moreover, we describe how to

impose conditions on the asymptotic behaviour of initial data so that the leading-order

logarithmic terms are avoided, which further improves the numerical accuracy.
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1. Introduction

The study of the role of conformal structures in the large scale behaviour of solutions

to the Einstein equations has a long tradition in general relativity, and was initiated

by Roger Penrose’s pioneering work in the 1960s [22, 23]. Of course, conformal

transformations were already applied in differential geometry much earlier, probably for

the first time by Hermann Weyl in 1918 [24]. Nowadays, it is well known that conformal

infinity is crucial for a rigorous description of gravitational waves. Most importantly,

the Einstein equations themselves can be reformulated in terms of quantities that
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characterise the conformal structure and are regular even at “infinity”, which leads

to Helmut Friedrich’s conformal field equations [7, 8]. Yet another, further refined

reformulation of the field equations, which avoids certain mathematical difficulties at

spacelike infinity i0, is again due to Friedrich: the generalised conformal field equations

[9]. An important ingredient is a novel representation of i0 as a cylinder I that connects

past and future null infinity I ±. In this way, the behaviour of fields near spacelike

infinity can be appropriately resolved. For comprehensive overviews of conformal

methods and detailed references, we refer the interested reader to [5] and [18].

In order to understand basic properties of fields near i0, and, in particular, to

study how they can be reconstructed numerically, it is most appropriate to adopt the

formulation in which i0 is blown up to the above-mentioned cylinder. However, instead of

solving the rather complicated full system of the (generalised) conformal field equations,

we consider the conformally invariant wave equation

gab∇a∇bf −
R

6
f = 0 (1)

for a scalar function f as a toy model, where g is a fixed metric and R the corresponding

scalar curvature. While this equation is much simpler, it has a similar structure of

characteristics, and it is assumed to already mirror important features and potential

numerical difficulties of the full problem. In the case of a Minkowski background, and

under the assumption of spherical symmetry, this problem was successfully solved in [6]

with a fully pseudospectral scheme, which means that spectral expansions are used with

respect to space and time. The main result was that highly accurate solutions close to

machine accuracy can be obtained and that one observes spectral convergence, i.e. the

error decays exponentially with the numerical resolution.

In this paper, as the next logical step, we extend these results to a less trivial

spacetime: we consider the spherically-symmetric wave equation on a Schwarzschild

background. Again our main interest is in an appropriate description of the behaviour

near spacelike infinity. This implies, in particular, that we first have to identify suitable

coordinates that are sufficiently well-behaved near the cylinder I. In the Minkowski

case, initial data subject to a regularity condition (namely asymptotically conformally

static data for which the initial time derivative vanishes at the cylinder) have a regular

time development, since this condition achieves that a logarithmic singularity that

could appear at highest order is removed. In contrast to that we will observe that

certain logarithmic singularities (at infinitely many orders) are generally present for a

Schwarzschild background. Hence it is important to study what impact this has on our

numerical considerations.

We will solve the Schwarzschild wave equation with the same fully pseudospectral

method that we also used in the Minkowski case. This scheme is based on Marcus

Ansorg’s approach to solving elliptic problems with pseudospectral methods [1], and

it was first generalised to time-evolution problems in [15]. For a number of further

applications of this method, we refer the reader to [2, 14, 17, 19]. We will not go into

numerical details in this paper, since the method is extensively discussed in the previous
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references. However, we briefly summarise the main idea of the method, which consists

in the following steps:

(i) We map the physical domain to one (or several) unit square(s) by introducing

spectral coordinates (σ, τ) ∈ [0, 1] × [0, 1] such that the surface on which initial

data are given corresponds to τ = 0. For the present application, one unit square

turns out to be sufficient.

(ii) We enforce the initial conditions by expressing the unknown function f(σ, τ) in

terms of another unknown f2(σ, τ) via f(σ, τ) = f0(σ) + τf1(σ) + τ 2f2(σ, τ).

(iii) We choose spectral resolutions nσ and nτ in spatial and temporal directions and

approximate the new unknown f2 in terms of Chebyshev polynomials Ti in the form

f2(σ, τ) ≈
nσ−1∑
i=0

nτ−1∑
j=0

cijTi(2σ − 1)Tj(2τ − 1). (2)

(iv) We obtain an algebraic system of equations by requiring that the relevant

differential equations (and boundary or regularity conditions, where applicable)

are satisfied at a set of collocation points. For our purposes, a suitable choice are

Gauss-Lobatto nodes (σi, τj), i = 0, . . . , nσ − 1, j = 0, . . . , nτ − 1, defined by

σi = sin2

(
iπ

2(nσ − 1)

)
, τj = sin2

(
jπ

2(nτ − 1)

)
. (3)

These have the advantage that gridpoints lie at all four boundaries σ, τ = 0, 1.

(v) Starting from some initial guess, we solve this system iteratively with the Newton-

Raphson method. In the present case of a linear wave equation, we can simply

choose the trivial solution f2 ≡ 0. For nonlinear equations, however, one usually

needs to provide an initial guess sufficiently close to the solution, in order to

guarantee convergence.

This paper is organised as follows. In Sec. 2, we introduce coordinates that

are suitable for a discussion of the wave equation near spacelike infinity. In these

coordinates, we first reconstruct a simple test solution numerically, which is regular

everywhere. Then we show that general solutions suffer from logarithmic singularities

at I+, where the sets I and I + approach each other. We also show that the development

of initial data that are chosen subject to certain regularity conditions avoids the leading-

order singularities, and we study how the logarithmic terms at different orders influence

the numerical accuracy. Afterwards, in Sec. 3, we include the event horizon into the

numerical domain. To this end, we show how a coordinate singularity of the previous

coordinates, which prevents access to the horizon, can be removed, and we numerically

solve the wave equation in the modified coordinates. Finally, in Sec. 4, we summarise

and discuss our results.
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2. Numerical studies near spacelike infinity

2.1. Coordinates and the conformally invariant wave equation

In order to investigate and numerically solve the conformally invariant wave equation

near spacelike infinity, we first need to choose suitable coordinates that are sufficiently

well-behaved in the sense that they allow us to construct accurate numerical solutions.

Ideally, one could envision coordinates that cover the entire exterior of the black

hole — and probably even further regions of the maximally extended Schwarzschild

solution. The well-known standard compactification and its variations simply shrink

the Kruskal-Szekeres coordinates by mapping the corresponding null coordinates to a

finite domain, see, e.g., [11, 12, 21]. The resulting metrics, however, are typically not

conformally related to another metric with desirable geometric properties, in particular

near infinity, and at least some degree of regularity of the metric will be lost at the

conformal boundary. A promising new family of coordinate systems that achieves an

analytic conformal compactification has been constructed in [13] with particular view

on suitability for numerical computations. While i0 is still treated as a point in these

coordinates, it is possible to blow it up to the cylinder I with an additional coordinate

transformation. Unfortunately, even though these coordinates behave better near null

infinity (as shown in a direct comparison with standard compactifications in [13]), they

turn out not to be optimal for our treatment of spacelike infinity. The problem is that

the metric contains terms that behave like ε2 ln ε near the cylinder, which is assumed to

be located at ε = 0. This is only a weak logarithmic singularity with bounded function

values and derivatives, but second derivatives blow up as ε→ 0. Since spectral methods

are very sensitive to this type of irregularity, these coordinates are not a good choice for

our purposes. As a consequence, we have to be satisfied with choosing other coordinates

that cover only a certain portion of the exterior vacuum region, but are suitable for our

numerical computations. However, since our main interest lies in the behaviour near

the cylinder, this appears to be an acceptable restriction.

We first consider coordinates that were introduced by Friedrich [10]. These are

adapted to one family of radial null geodesics (instead of both families, as in the Kruskal-

Szekeres coordinates), and a conformal metric is chosen according to the conformal

cn-gauge2. Starting from the Schwarzschild metric g̃ in isotropic coordinates (t̃, r̃, θ, φ),

g̃ =

(
1− m

2r̃

1 + m
2r̃

)2

dt̃ 2 −
(

1 +
m

2r̃

)4
(dr̃2 + r̃2dσ2) (4)

with dσ2 := dθ2 + sin2 θ dφ2, we compactify the radial coordinate r̃ and rescale the time

coordinate t̃ by setting

r =
m

2r̃
, t =

2t̃

m
. (5)

2 The cn-gauge reduces the degree of freedom of choosing a conformal spacetime by imposing that

orthonormal frames are transported in a certain way along conformal geodesics, see [9, 10] for details.
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With the additional transformation

t =

∫ ρ

r

ds

F (s)
, r = ρ(1− τ), where F (s) =

s2(1− s)
(1 + s)3

, (6)

we finally arrive at coordinates (τ, ρ, θ, φ) such that ρ is a null coordinate and in

which spacelike infinity is blown up. Note that the integral in the above coordinate

transformation can be evaluated to give

t = −ρτ +
τ

r
− 4 ln(1− τ)− 8 ln

1− ρ
1− r , (7)

but this explicit form is not needed in the following. The metric can now be written as

g̃ = Θ−2g in terms of the conformal metric

g =
2

ρ
A dρ dτ − 1− τ

ρ2
A[2− (1− τ)A]dρ2 − dσ2, (8)

where

A :=
F (r)

(1− τ)2F (ρ)
≡ (1− r)(1 + ρ)3

(1− ρ)(1 + r)3
, (9)

and with the conformal factor

Θ =
2r

m(1 + r)2
. (10)

We consider the new coordinates in the intervals 0 < ρ ≤ ρmax < 1 and 0 ≤ τ < 1. The

restriction of ρ to values below a maximum ρmax is necessary, because the transformation

(6) introduces a coordinate singularity at ρ = 1, due to F (1) = 0. This is also clear

from the explicit relation (7). As a consequence, the conformal metric (8) is singular

at ρ = 1, where A diverges, see (9). Since the event horizon of the Schwarzschild black

hole is located at r̃ = m/2, corresponding to r = 1, i.e. ρ = 1/(1 − τ) ≥ 1, the region

that can be described with these coordinates does not extend to the horizon. Instead,

the coordinates cover a domain as indicated in the standard Penrose diagram in Fig. 1.

The boundaries of our ρ-τ domain have the following correspondence to regions of the

extended Schwarzschild spacetime:

(i) τ = 0, 0 ≤ ρ ≤ ρmax: The initial slice on which we prescribe the data f and f,τ .

(ii) ρ = ρmax, 0 ≤ τ ≤ 1: This boundary, like all curves ρ = constant, is an outgoing

null geodesic and a characteristic of the corresponding wave equation. Hence no

information can enter our domain through this boundary, so that no boundary

conditions are required there. This is particularly convenient for our numerical

computations as we avoid to impose “artificial boundary conditions”, as is done so

often in numerical simulations, even though this is physically rather inappropriate,

since usually no information about the unknown functions is available at such

boundaries that would justify to impose any particular conditions there. The exact

location of the left boundary of the triangular region in Fig. 1 depends on the choice

of ρmax.

(iii) τ = 1, 0 < ρ ≤ ρmax: (A part of) Schwarzschild future null infinity I +.
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Figure 1. Illustration of the domain covered by the coordinates ρ and τ .

(iv) ρ = 0, 0 ≤ τ < 1: The (future half of) the cylinder representation of spacelike

infinity.

(v) ρ = 0, τ = 1: The “critical set” I+.

We are now in a position to formulate the conformally invariant wave equation in

terms of the ρ-τ coordinates. From a physical point of view, the equation is initially

valid for finite values of the original Schwarzschild coordinates t̃ and r̃. In terms of our

compactified coordinates, we extend this domain by imposing the same equation also at

the conformal boundaries ρ = 0 and τ = 1. Note that, while standard hyperbolic

PDE theory guaranties existence of unique solutions in the original, “physical” set

0 ≤ τ < 1, 0 < ρ ≤ ρmax, existence on the extended set is not immediately clear

(due to the particular degeneracy of the equation at the boundaries, in particular,

at I). This gap, however, is closed with our numerical investigations, which provide

(numerical approximations to) solutions with a certain degree of smoothness on the

extended domain.

In order to formulate the wave equation (1), we first compute the Ricci scalar in

these coordinates, which turns out to be R = −24r/(1 + r)2 ≡ −12mΘ. With this we

obtain the wave equation for a function f = f(τ, ρ),

(1− τ)[2− (1− τ)A] f,ττ + 2ρ f,τρ − 2

[
1− 1− 2r

1− r2 (1− τ)A

]
f,τ +

4rA

(1 + r)2
f = 0. (11)

The metric g in (8) is real analytic when ρ 6= 0. This property guarantees that

(11) is hyperbolic on the physical part of the computational domain. The theory

of hyperbolic equations then implies that the initial value problem based on the

hypersurface τ = constant is well posed for initial data on 0 < ρ < ρmax which are

sufficiently regular.

The equation also makes sense for ρ = 0 but it loses hyperbolicity there. Therefore,

we need to discuss this location separately. The discussion is significantly simplified by

the fact that ρ = 0 is a total characteristic of the equation. This can be seen as follows.

If we consider (11) in the limit ρ → 0, i.e. at the cylinder, then it reduces

to the intrinsic equation (1 − τ 2)f,ττ − 2τf,τ = 0. This immediately implies that

f,τ (τ, 0) = c/(1 − τ 2) for some integration constant c. Hence the solution f generally
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diverges at I+ (ρ = 0, τ = 1), where I and I + approach each other, unless we choose

initial data with

f,τ (τ = 0, ρ = 0) = 0, (12)

for which c = 0 follows. This is exactly the same situation as for the conformally

invariant wave equation on a Minkowski background [6]. As in the Minkowski case,

we will exclusively consider initial data subject to this regularity condition. Note,

however, that we will later observe an interesting difference to the situation with a

Minkowski background: while initial data subject to this regularity condition guarantee

a regular solution in the Minkowski case, the solutions to the Schwarzschild wave

equation generally still contain higher-order logarithmic singularities at I+. This will

be revealed by a more detailed study of the behaviour of f near the cylinder in Sec. 2.3

below.

For our choice of initial data subject to (12), the solution f satisfies f,τ = 0 on the

entire cylinder ρ = 0, and we will impose this equation there.3. For an interpretation of

this condition, we can reformulate it in terms of the original Schwarzschild coordinates

t̃ and r̃, with respect to which it becomes f,t̃ → 0 as r̃ → ∞ for finite t̃. If f has

an expansion f(t̃, r̃) = ψ0(t̃) + ψ1(t̃)r
−1 + ψ2(t̃)r

−2 + . . ., then this condition implies

ψ0 = constant, i.e. it enforces that f has a unique limit at spacelike infinity irrespective

of the spacelike slice along which it is approached.

Note that, at τ = ρ = 0, the condition f,τ = 0 is identically satisfied for our initial

data. Instead, we can impose f,ττ = 0 at this particular point, which immediately

follows from the other condition by differentiation.

Furthermore, exactly as in the Minkowski case [6], it turns out that numerical

stability requires to also choose another condition than f,τ = 0 at the special point

ρ = 0, τ = 1, i.e. at I+ (provided that we decide to include I + into the numerical

domain). The reason why an extra condition is required is the following. At τ = 1,

the wave equation implies the intrinsic equation ρf,τρ − f,τ = 0 for sufficiently smooth

solutions. It follows that f,τ = cρ there for some constant c. Due to the intrinsic nature

of the equation at τ = 1, the problem at τ = 1 is decoupled from the problem at τ < 1, so

that this constant is completely undetermined from the numerical point of view. Hence

the pseudospectral method cannot converge to a well-defined solution. However, if we

provide an alternative condition that fixes c, then the numerical method will converge.

The required extra condition, of course, must be a consequence of the wave equation

— certainly we cannot choose just any condition. Similarly to the Minkowski situation,

the extra condition is obtained by differentiating the wave equation with respect to

the radial coordinate ρ. At ρ = 0, this gives (1 + τ)f,ττρ + 2f,τρ + 4f = 0. Since

f(τ, 0) =: f0 = constant on the cylinder, this is an intrinsic equation for the mixed

3 Note that the cylinder I is a characteristic surface. Consequently, from the analytical point of view,

boundary conditions are not required at I and we could impose the wave equation itself. However,

since the wave equation reduces to an intrinsic equation there, which, for our choice of initial data, is

equivalent to f,τ = 0, we can still choose to impose this condition as a numerical boundary condition
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derivative g(τ) := f,τρ(τ, 0). The solution can be expressed in terms of the values f0
and g0 := g(0) ≡ f,τρ(0, 0),

g(τ) =
g0 + 2f0
(1 + τ)2

− 2f0. (13)

Hence we know the values of f,τρ everywhere on the cylinder. At the particular point

I+, we can prescribe the correct value for this mixed derivative (which is identical with

the above-mentioned constant c, which is therefore fixed), i.e. we can use the boundary

condition f,τρ(1, 0) = (g0−6f0)/4, where f0 and g0 can be read off from the initial data.

In summary, at ρ = 0, i.e. at the cylinder, we impose the following boundary conditions:

at ρ = 0 :


f,ττ = 0, τ = 0,

f,τρ =
1

4
(g0 − 6f0), τ = 1,

f,τ = 0, otherwise.

(14)

Above we have mentioned how the condition f,τ = 0 translates into the Schwarzschild

coordinates t̃, r̃. A similar interpretation of the extra condition at τ = 1 would

be interesting, but may be difficult to obtain, as this would require to consider the

simultaneous limit r̃ →∞, t̃→∞, where the limit is performed in exactly such a way

that the special point I+ is approached.

Finally, another boundary of our numerical domain is ρ = ρmax. As mentioned

above, no boundary condition is required there as this is a characteristic of the wave

equation. Instead, we just impose the wave equation itself.

2.2. A simple test solution

In order to find out whether the fully pseudospectral scheme can be applied to the

Schwarzschild wave equation, we first try to numerically reproduce a simple exact

solution. This can be obtained by looking for time-independent solutions with respect

to the original isotropic Schwarzschild coordinates (t̃, r̃). In these coordinates, the

conformally invariant wave equation for a function f̃ = f̃(r̃) reads[(
r̃2 − m2

4

)
f̃,r̃

]
,r̃

= 0. (15)

This equation can be readily integrated to obtain

f̃(r̃) = c ln
2r̃ −m
2r̃ +m

+ d (16)

with two integration constants c and d. The corresponding solution f in our compactified

coordinates (τ, ρ) is obtained from f̃ via f = Θ−1f̃ , since (in four spacetime dimensions)

the conformally invariant wave equation has the conformal weight −1. Hence we get

f(τ, ρ) =
m(1 + r)2

2r

(
c ln

1− r
1 + r

+ d

)
, r = ρ(1− τ). (17)

In this form, the solution has a nontrivial dependence on the compactified time

coordinate τ .
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Figure 2. Convergence plot for the numerical reconstruction of the test solution (18).

The numerical error is shown as a function of the spectral resolutions, where the same

resolutions in spatial and time directions have been chosen, nσ = nτ .

For regularity at the cylinder we have to choose d = 0. Moreover, without loss of

generality (given that we study a linear equation), we can choose c = 2/m to finally

obtain

f(τ, ρ) =
(1 + r)2

r
ln

1− r
1 + r

(18)

as an exact solution that is regular in the entire domain 0 ≤ ρ ≤ ρmax, 0 ≤ τ ≤ 1.

Now we try to reconstruct this solution from the corresponding initial data f(0, ρ)

and f,τ (0, ρ), which can be read off from (18). In particular, we are interested in

the numerical error, which we compute as the largest absolute difference between the

numerical approximation and the exact solution, max |fnumerical − fexact|. Here, the

maximum is approximated by comparing the solutions at 100× 100 equidistant points,

where the numerical values are obtained via Chebyshev interpolation. The results are

displayed in Fig. 2, where the error is shown for different spectral resolutions and for

different choices of the coordinate range specified by the value of ρmax. We observe

that, for each choice of ρmax, the error as a function of the resolution approximately

follows a straight line until saturation is reached close to machine accuracy (about 16

figures for our double-precision code). A straight line in a logarithmic plot corresponds

to an exponentially decaying error, i.e. to spectral convergence. This is exactly what

is typically expected for (pseudo)spectral methods, provided the solution is sufficiently

well-behaved. If we compare the curves that are obtained for different values of ρmax,

then clearly higher resolutions are required to achieve the same error for a larger ρmax.

Nevertheless, for sufficient resolutions, the errors reach the same order of magnitude of

about 10−11 to 10−12, corresponding to about 11 to 12 significant figures in the numerical

solutions. It was to be expected that a larger value of ρmax requires a higher resolution,

since the function f then needs to be represented on a larger domain. However, an

even more important reason for the requirement of higher resolutions is that larger ρmax
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bring the numerical domain closer to the singularity of the term ln(1 − r) appearing

in the exact solution (18). Since the solution has steep gradients near the boundary

ρ = ρmax, more Chebyshev polynomials are naturally required to represent the function

accurately. Nevertheless, we can still reach an accuracy close to machine accuracy for

just a moderate number of collocation points, even if the domain is relatively close to the

coordinate singularity at ρ = 1. Note that we could even further improve the numerical

performance by appropriately stretching our coordinates in a vicinity of ρ = 1, which

effectively places more collocation points near the boundary. This is described in detail

in [20]. For our purposes, however, this is not really necessary. Firstly, we are mainly

interested in a vicinity of spacelike infinity, so there is no need to choose ρmax very close

to 1. Secondly, the singularity at ρ = 1 is a coordinate singularity without any physical

meaning. Later we will modify our coordinates in order to remove that singularity, and

hence there is no reason to study the wave equation close to a singularity that can be

removed.

In summary, we find that we can solve the conformally invariant wave equations

with the fully pseudospectral scheme. We observe spectral convergence and obtain

highly accurate solutions close to machine accuracy. This is possible since our test

solution (18) is well-behaved in the entire numerical domain. In the next subsection,

however, we will see that general solutions usually develop logarithmic singularities at

the point I+. Indeed, our exact solution (18) and multiples of it may well be the only

solutions without such singularities. Hence it is important to understand the general

behaviour of solutions near i0 and to test to what extent the numerical method works

in those cases.

2.3. General behaviour near spacelike infinity

Next we consider the case of general initial data at τ = 0, which usually give rise to

solutions that are less regular than our explicit example solution (18).

In order to analyse the behaviour near the cylinder, we expand the solution f in a

Taylor series about ρ = 0 with τ -dependent coefficients,

f(τ, ρ) = φ0(τ) + φ1(τ)ρ+ φ2(τ)ρ2 + φ3(τ)ρ4 + . . . (19)

Plugging this form of f into the wave equation (11), we obtain a sequence of ordinary

differential equations for the functions φ0, φ1, . . . The first four of these will be discussed

and solved in the following. If we abbreviate the left hand side of (11) with W , so that

the wave equation can be written as W = 0, we obtain at the cylinder, i.e. in the limit

ρ→ 0,

lim
ρ→0

W = (1− τ 2)φ̈0 − 2τ φ̇0 = 0, (20)

where a dot denotes differentiation with respect to τ . The general solution

φ0(τ) = c0 + c1 ln
1− τ
1 + τ

(21)
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with integration constants c0 and c1 diverges at τ = 1, which, at ρ = 0, corresponds

to the point I+. However, since φ̇0(0) = −2c1, we can achieve that the singular term

vanishes, if we choose initial data with

f,τ (0, 0) ≡ φ̇0(0) = 0 (22)

so that c1 = 0. This is exactly the same condition for the initial data that we discussed

earlier [cf. (12)], and which is required for bounded function values at I+. Hence we can

eliminate the leading-order singularity at I+ with an appropriate choice of initial data.

Unlike the corresponding Minkowski case, where this was the only singular term at I+,

we will find weaker logarithmic singularities at higher orders in the Schwarzschild case.

Assuming that initial data with c1 = 0 have been chosen, we next examine the

equation for φ1. This is obtained from

lim
ρ→0

W

ρ
= (1− τ 2)φ̈1 + 2(1− τ)φ̇1 + 4c0(1− τ) = 0, (23)

which has the general solution

φ1(τ) = −2c0τ −
2c0 + c2

1 + τ
+ c3. (24)

Since this function is regular for all 0 ≤ τ ≤ 1, no further singularities are introduced

at this order.4

Once φ1 is chosen as in (24), the next equation becomes

lim
ρ→0

W

ρ2
= (1− τ 2)φ̈2 + 2(2− τ)φ̇2 − 8c0

(1− τ)(τ 4 + 3τ 3 + 3τ 2 − τ + 2)

(1 + τ)3

− 8c2
(1− τ)2

(1 + τ)3
+ 4c3(1− τ) = 0. (25)

The general solution to this equation again contains a logarithmic term,

φ2(τ) = 4(2c0 − c3)
(

1− τ
1 + τ

)2

ln(1− τ) +
8(2c0 + c2)τ

(1 + τ)2
ln(1 + τ) +

c4τ

(1 + τ)2
+ c5

+
2 [c0(2τ

4 + 6τ 3 + 6τ 2 + 84τ + 36) + 6c2(1 + 2τ)− 3c3(τ
3 + 2τ 2 + 10τ + 4)]

3(1 + τ)2

= 4(2c0 − c3)
(

1− τ
1 + τ

)2

ln(1− τ) + regular terms. (26)

Here, the singular term is proportional to (1− τ)2 ln(1− τ), i.e. φ2 and φ̇2 are bounded,

but φ̈2 diverges as τ → 1. This corresponds to a divergence of the fourth derivative

f,ττρρ at I+. However, it is again possible to choose suitable initial data for which this

term does not appear. Since (f,ρ+f,τρ)|τ=ρ=0 = φ1(0)+ φ̇1(0) = c3−2c0, we can achieve

4 Note that (24) is generally still singular at τ = −1. If we want to consider the solution on a larger

time interval that includes τ = −1, then further restrictions need to be imposed on the initial data in

order to remove singularities. For example, initial data with (2f + f,τρ)|τ=ρ=0 ≡ 2c0 + c2 = 0 lead to a

solution with regular φ1, since the 1/(1 + τ)-term in (24) then disappears. In the following, however,

we will restrict ourselves to domains with τ ≥ 0.
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that the coefficient 2c0−c3 of the singular term vanishes by choosing initial data subject

to the additional regularity condition

(f,ρ + f,τρ)
∣∣∣
τ=ρ=0

= 0. (27)

Finally, we consider one further order, assuming that initial data are chosen such

that singularities in all previous orders have been eliminated. The equation that results

from limρ→0(W/ρ
3) = 0 is rather lengthy and we do not give it explicitly, but we observe

that the general solution has the form

φ3(τ) =
8

3
(6c0 + 5c2 + 3c5)

(
1− τ
1 + τ

)3

ln(1− τ) + regular terms. (28)

This time we find a logarithmic term proportional to (1−τ)3 ln(1−τ), which corresponds

to a singularity in the sixth derivative f,ρρρτττ . Once again it is possible to choose initial

data for which the coefficient of the singular term vanishes. Here this can be achieved

with data subject to

(3f,ρρ + 14f,ρ − 36f)
∣∣∣
τ=ρ=0

= 0. (29)

These considerations illustrate that logarithmic terms are present in the solution

near I+, but they can be eliminated step-by-step by choosing initial data subject to

more and more regularity conditions at τ = ρ = 0.

For some general remarks on a systematic treatment of the singular behaviour

of φn(τ), we refer to Appendix A. In particular, we observe that, if all singularities

up to the order n − 1 have been eliminated, then the singular term at order n is

proportional to (1 − τ)n ln(1 − τ). In other words, the trend observed here for the

explicitly calculated φ-functions continues in the same way at higher orders. The

calculations in the appendix also show that the singularities are related to the non-

vanishing mass m of the Schwarzschild spacetime, and all singularities in φ1, φ2, . . .

disappear in the limit m→ 0, leaving only a (possible) singularity in φ0 (depending on

the initial data).

2.4. Numerical studies in the general case

How do we numerically solve the conformally invariant wave equation in situations where

the logarithmic singularities from the previous subsection are present? In cases where

the exact structure of a singularity is known, one can try to reformulate the problem

entirely in terms of regular quantities. An example is the computation of rotating disks

of dust, as discussed, e.g., in [3] or [16]. The mass density of these disks behaves like

a square root near the rim of the disk, so that it has unbounded derivatives. However,

one can simply write the mass density as a square root times another function, where

this other function turns out to be regular. Hence it is possible to reformulate the field

equations using this regular function, and, consequently, one can again obtain highly

accurate numerical solutions.
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As a second example for removing singularities, we point to the numerical

construction of five-dimensional black strings with pseudospectral methods in [17].

While the physical relevance of these configurations is rather questionable, they are

certainly mathematically very interesting. It turns out that some of the unknown

functions contain logarithmic terms of the form χl lnm χ, where χ is one of the

coordinates and l,m > 0 are constants. With a coordinate transformation χ =

χI exp(1 − 1/η), χI = constant, these logarithmic terms (and therefore the metric

potentials) become C∞ (even though not analytic) functions of the new coordinate

η, which is sufficient for highly accurate numerics.

In our case, unfortunately, both of the above regularisation procedures seem not to

be applicable, as they require an exact knowledge of the structure of the singular terms.

Since the calculations in the previous subsection only reveal the behaviour of f and its

derivatives as I+ is approached along the cylinder ρ = 0, and not along any other curve,

it is not clear if f can be written as a combination of singular terms and one or more

regular functions. Another difference between our situation and the above examples,

where time-independent equilibrium configurations are studied, is that we have to solve

a time-evolution problem. Even if f could be expressed in terms of regular functions

and well-defined singular terms, we would then also need to decompose the initial data

into parts that could be used as initial data for those regular functions and parts that

give rise to the singular terms. Since the initial data can be chosen as arbitrary, regular

functions at τ = 0, it is not clear how the individual components could be extracted. (If

the above hypothesis is true, according to which the only entirely regular solutions in

our domain 0 ≤ τ ≤ 1 and 0 ≤ ρ ≤ ρmax may be the test solution (18) and its multiples,

then the “regular portion” of the initial data may correspond to initial data for this

solution. But this was only a conjecture.)

Hence it appears to be impossible to eliminate the logarithmic terms from our

solution via coordinate transformations or reformulations of the unknown function.

Instead, we will try to solve the equation without reformulations and thereby test

how the presence or absence of the leading-order singularities influences the numerical

accuracy. However, we will only allow initial data subject to the regularity condition

(22), for which the highest-order singularity in φ0 is eliminated. This ensures that at

least function values, even though not derivatives, are bounded.

In the following, we choose ρmax = 0.5 and consider the family of initial data given

by

τ = 0 : f =
35 + β

18
+ sin(5ρ), f,τ = (α− 5)ρ, (30)

which depends on two parameters α, β ∈ R. These parameters allow us to control which

of the leading-order singularities will be present in the evolution of these data. Since

f,τ (0, 0) = 0 holds for all values of α and β, the leading singularity in φ0 is removed —

as required. We also obtain (f,ρ + f,τρ)|τ=ρ=0 = α. Hence the parameter α controls the

next-order logarithmic singularity in φ2, cf. (27): for α = 0 there is no singularity in φ2,

whereas φ2 diverges at τ = 1 for α 6= 0. In the latter case, the magnitude of α determines
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Figure 3. Convergence plot for the family of initial data (30) for several values of the

parameters α and β. Note the double-logarithmic scale.

how large the coefficient of the logarithmic term is, i.e. how “strong” the singularity

is. Finally, this family of initial data satisfies (3f,ρρ + 14f,ρ − 36f)|τ=ρ=0 = −2β.

Comparing with (29), we see that we can eliminate the next-order logarithmic singularity

by choosing β = 0.

Numerical experiments show that the fully-pseudospectral scheme also converges

in these cases. Note that, in order to determine the accuracy of the resulting solutions,

we have to find a different measure than before, since no exact solution is available for

these examples. To this end, we compare the function value f(1, ρmax) as obtained for

some resolution with the corresponding value obtained for the highest resolution that we

choose as nσ = nτ = 42. Since our numerical method effectively couples all gridpoints,

any small error at one point usually spoils the accuracy at all other points. Hence the

investigation of the behaviour at just one point is already a good measure for the overall

accuracy.5 It turns out that the curves in the resulting convergence plot are not straight

lines as in the case of the above test solution, if we choose a logarithmic scale as in

Fig. 2. However, if we use a log-log plot instead, we again (roughly) obtain straight

lines. This is shown in Fig. 3. Based on this observation, we conclude that the error

does not decay exponentially, but proportional to a (negative) power of the resolution,

i.e. we have algebraic convergence rather than the previous spectral convergence. This

is exactly what one expects for pseudospectral methods if the solution is only Ck with

some finite k rather than C∞ or analytic [4].

In the following, we have a closer look at the examples illustrated in Fig. 3. First

we consider the case β = 1 and choose several non-zero values for α. The results can

5 Of course, we have to choose a point where the function value is not fixed by initial or boundary

conditions. In our example, the values at τ = 0 are given in form of the initial values, while the values

at ρ = 0 are constant for our boundary condition f,τ (τ, 0) = 0, so that f is effectively known at ρ = 0

as well. This explains our choice of the point (τ = 1, ρ = ρmax), which ensures that we look at function

values as far away as possible from the region where f is trivially known.



Fully pseudospectral solution of the conformally invariant wave equation II. 15

then be compared with the case α = 0. The corresponding curves in Fig. 3 clearly show

that the singularity in φ2 has a strong influence on the numerical accuracy. Without

that singularity (i.e. for α = 0), the final error is below 10−11. However, even for the

small value α = 0.01, the final error is already about two orders of magnitude larger.

If we further increase α, then the singularity becomes stronger and the accuracy is

further reduced. Finally, we consider the case α = β = 0, in which the next logarithmic

term, namely the singularity in φ3, is removed as well. Compared to the simulations

with α = 0, β = 1, we gain about one further order of accuracy, and the error for

the largest considered resolution is around 10−12. This improvement is smaller than

the one achieved by going from α = 0.01 to α = 0 (in the case β = 1). Hence

we conclude that the singularity in φ3 is already of sufficiently high order to have

only a relatively small influence on the result. Nevertheless, the convergence curve

corresponding to α = β = 0 is also a straight line in the log-log plot, which illustrates

that the pseudospectral methods still clearly notice the fact that the solution has a

limited regularity.

In summary, we see that the numerical accuracy very much depends on our choice

of initial data. If we want highly accurate results, we can restrict ourselves to data

satisfying the first two, or even the first three regularity conditions (rather than only

the first), thus leaving logarithmic singularities only at high orders. Nevertheless, even

for our most inaccurate example (obtained for α = 5, β = 1), the final error of about

10−7 is still better than what some other numerical methods typically achieve. We could

also just choose a larger spectral resolution, which would further reduce the error, but

this would somehow be against the spirit of pseudospectral methods, where one wants

to obtain very good results for a moderate number of gridpoints.

Finally, we want to verify that the observed algebraic convergence for the solutions

with the above initial data (30) is indeed caused by the logarithmic singularities at I +

and does not result from some other unpleasant feature of the particular solutions. For

that purpose, we solve the same initial value problems from Fig. 3 again, but this time

on the smaller domain 0 ≤ ρ ≤ ρmax, 0 ≤ τ ≤ 0.9, which does not contain the upper

boundary τ = 1. Since the solutions should be well-behaved in the entire new domain,

we should find better convergence properties. This is what we indeed observe in Fig. 4,

where the errors approximately follow straight lines in a logarithmic plot (rather than

the previously used double-logarithmic scale). Moreover, the convergence curves for

the different parameter choices overlap, and we find comparable errors for all examples.

Saturation with final errors of about 10−14 close to machine-accuracy is reached with

between 25 and 30 gridpoints in spatial and time directions. This shows that we can

restore all the nice features that pseudospectral methods usually have, if we exclude the

logarithmic singularities from our computational domain.
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Figure 4. Convergence plots for the same examples as in Fig. 3, but this time on the

smaller time interval 0 ≤ τ ≤ 0.9.

3. Including the event horizon

3.1. On three modifications of the compactified coordinates

In the previous discussion our attention was focused on an accurate description of the

cylinder at spacelike infinity and on solving the conformally invariant wave equation in a

neighbourhood of this cylinder. However, we have already seen that our coordinates do

not allow us to include the event horizon into our considerations, due to the coordinate

singularity at ρ = 1, which prevents access from the horizon at r = 1 (which is formally

located at ρ = 1/(1 − τ) > 1). This singularity is introduced with the coordinate

transformation (6), since, for points close to the horizon, we have r < 1 and ρ > 1, such

that the integration interval r ≤ s ≤ ρ in (6) then contains the point s = 1 at which

1/F (s) is singular. In the following we will — in several steps — construct alternative

coordinates which are suitable for solving the wave equation in a domain that contains

both the cylinder and the event horizon.

In a first step, we can try to modify the transformation equation r = ρ(1−τ). This

part of the coordinate transformation achieves the blow up of i0, and the important

point is that both ρ = 0 (i0) and τ = 1 (I +) correspond to r = 0, i.e. to an infinite

value of the radial isotropic Schwarzschild coordinate r̃ = m/(2r), cf. (5). A modified

transformation equation should still have this property, but at the same time avoid that

ρ-values greater than 1 are required. This could be achieved by replacing (6) with the

following transformation,

t =

∫ ρ

r

ds

F (s)
, r =

ρ(1− τ)

1− ρτ , where F (s) =
s2(1− s)
(1 + s)3

. (31)

With the new formula for r, the boundaries ρ = 0 and τ = 1 still correspond to r = 0, but

ρ = 1 does now imply r = 1. Hence the resulting coordinates cover the horizon, which

will be located at ρ = 1. It is easy to check that the corresponding metric is regular
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Figure 5. Radial null geodesics in the three ρ-τ coordinate systems defined via the

coordinate transformations (31) [panel (a)], (34) [panel (b)] and (36) [panel (c), shown

for the parameter choice d = 3].

for ρ < 1, but not invertible at the horizon ρ = 1. Moreover, radial null geodesics

are irregular near the horizon: while one family of null geodesics is simply given by

ρ = constant, the geodesics in the other family all accumulate at the point ρ = τ = 1,

see Fig. 5(a). This is similar to the behaviour of null geodesics in advanced or retarded

Eddington-Finkelstein coordinates, in which one class of geodesics is well-behaved, but

the other class only approaches the horizon asymptotically. In our compactified picture,

this asymptotic approach is mapped to the finite coordinate value τ = 1.

In order to improve our coordinates, we can choose a new time coordinate adapted

to the behaviour of geodesics near the accumulation point. From the normalisation

condition gab
dxa

dλ
dxb

dλ
= 0 for null geodesics, one can derive that the geodesics near the

point ρ = τ = 1 are approximately given by τ ≈ 1 − c√1− ρ, c = constant. Based on

this observation, we introduce a new time coordinate τ ′ via

τ = 1− (1− τ ′)
√

1− ρ. (32)

If we only do this coordinate change, then geodesics in the resulting coordinate system

would no longer be accumulated at a single point, but they would have an infinite slope

at the horizon. This is caused by the term
√

1− ρ in the coordinate transformation.

We can solve this problem by also changing our ρ-coordinate via

ρ′ = 1−
√

1− ρ, (33)

which is still defined in the interval [0, 1]. If we combine our earlier transformation

(31) with the subsequent transformations (32), (33), then we can express the complete

transformation as follows (where we skip the primes),

t =

∫ ρ(2−ρ)

r

ds

F (s)
, r =

ρ(1− τ)

w + ρ(1− τ)
, w :=

1− ρ
2− ρ (34)

with the same function F (s) as before. The resulting geodesics are now regular and

reach the horizon at a finite slope, see Fig. 5(b). However, these coordinates still have

an unpleasant feature: the behaviour of the geodesics close to the initial surface τ = 0
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Figure 6. Sketch of the domain that is covered by the coordinates introduced in (36).

Note that the exact form of the lower boundary depends on the parameter d. (The

picture shows how this curve would approximately look like for d = 2, provided that

the Penrose diagram is constructed by compactifying the Kruskal null coordinates with

arctan-functions.)

shows that this surface is not everywhere spacelike. In fact, it turns out that τ = 0

is spacelike only for ρ < 0.735947731 . . . In order to prescribe initial data for the wave

equation, we therefore either have to choose a different, spacelike surface or find yet

another coordinate system in which τ = 0 is spacelike.

We choose the latter approach and include an additional term in the coordinate

transformation (32), which we replace with

τ = 1− (1− τ ′)
√

1− ρ
[
1 + d

(
1−

√
1− ρ

)]
, (35)

where d is a parameter. This allows us to control the shape of the τ ′-coordinate lines

at one further order. If we again combine this with the previous transformations (and

drop the primes), then we can write down the complete transformation as follows,

t =

∫ ρ(2−ρ)

r

ds

F (s)
, r =

ρ(1− τ)

w + ρ(1− τ)
, w :=

1− ρ
(2− ρ)(1 + dρ)

, (36)

which differs from (34) by an additional term in the definition of w. Obviously, our new

coordinates contain the previous ones as the special case d = 0. However, if we restrict

ourselves to parameter values d > 1/2, then the initial surface τ = 0 is spacelike as

required, see the example in Fig. 5(c).

If we consider the new coordinates in the domain 0 ≤ ρ ≤ 1 and 0 ≤ τ ≤ 1, then

we describe a part of the Schwarzschild spacetime as shown in Fig. 6. Similarly to our

earlier coordinates, the boundary ρ = 0 corresponds to the cylinder i0, and I + is located

at τ = 1. Now we also cover the event horizon H, which is at the boundary ρ = 1.

Note that, in our earlier coordinates, the initial Cauchy surface τ = 0 corresponded to a

vanishing isotropic Schwarzschild time, t̃ = 0, cf. (6) or (7). For the present coordinates,

however, τ = 0 is a different hypersurface, parts of which can have positive values of

t̃ and other parts negative. Therefore, the lower boundary of the relevant domain in

Fig. 6 is no longer a straight line (as in the corresponding picture in Fig. 1), and we

effectively solve initial value problems with data on a different hypersurface.
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3.2. The conformally invariant wave equation

We express the Schwarzschild metric in terms of our (new) coordinates τ and ρ as defined

in (36). The result is the following conformal metric,

g =
2w

ρ
B dρ dτ +

1− τ
ρ2

B
[
(1− τ)[w + ρ(1− τ)]2B − 2W

]
dρ2 − dσ2, (37)

where w was defined in (36), and the quantities B and W are the following abbreviations,

B :=
2(1− ρ)F (r)

(1− τ)2F (ρ[2− ρ])
≡ 2(1− r)

[w + ρ(1− τ)]2(2− ρ)2(1− ρ)

(
1 + ρ(2− ρ)

1 + r

)3

, (38)

W := w − ρdw

dρ
≡ w +

ρ [1 + d+ d(1− ρ)2]

(2− ρ)2(1 + dρ)2
. (39)

The conformal factor is the same as before, given in (10).

Using this new form of the conformal metric, we can again formulate the conformally

invariant wave equation. The result is

(1− τ)
[
2W − (1− τ)[w + ρ(1− τ)]2B

]
f,ττ + 2ρwf,τρ

+2

[
(1− τ)[w + ρ(1− τ)]B

(
w

1− 2r

1− r2 + ρ(1− τ)

)
−W

]
f,τ

+
4rw2B

(1 + r)2
f = 0. (40)

Similarly to our previous considerations, we can again derive boundary conditions

for regular solutions from the wave equation. In the limit ρ → 0, the wave equation

again becomes an intrinsic equation whose solutions blow up for τ → 1, unless we

restrict ourselves to solutions that are constant on i0, which is guaranteed if we impose

the same regularity condition on our initial data as before, namely,

f,τ (0, 0) = 0. (41)

This is what we will do in the following. Similarly, one could repeat the entire earlier

discussion of logarithmic singularities at higher orders and impose further conditions

to avoid these. However, here it is better to choose a numerical domain that does not

contain I +. The reason is that, in the current setting with a domain that includes

the event horizon H, we do not only have to cope with logarithmic singularities at

I+ (ρ = 0, τ = 0), but also with a physical singularity at future timelike infinity i+

(ρ = τ = 1). (Recall that the curvature singularity of the Schwarzschild solution,

indicated by the upper wiggly line in Fig. 6, touches the point i+ in the compactified

picture.) Hence there is no hope that solutions to the wave equation will be regular at

i+, if the underlying spacetime is not. Consequently, we will only solve the problem in

a smaller domain that excludes this singularity. To this end, we restrict the coordinates

to a rectangular domain of the form

0 ≤ ρ ≤ 1, 0 ≤ τ ≤ τmax < 1. (42)



Fully pseudospectral solution of the conformally invariant wave equation II. 20

With this choice, we obtain the solution in a region that contains both the cylinder i0

(at ρ = 0) and the horizon H (at ρ = 0), but not I + (at τ = 1). As a consequence,

the logarithmic singularities at I+ are not relevant for our discussion as this point is

excluded from our domain too. (As we have seen before, the logarithmic singularities

are too mild to cause problems in domains away from I+, cf. Fig. 4.) The singularity

at i+, on the other hand, could be strong enough to influence the numerical accuracy

if τmax is too close to 1. Hence we will need to investigate what values of τmax lead to

acceptable results.

Besides i0, the wave equation also becomes an intrinsic equation on the horizon.

This equation can be integrated to show that the following linear combination of first-

order derivatives is constant on the horizon,

H : [1− 2d(1− τ)]f,τ − 2(1 + d)f,ρ = constant. (43)

For our numerical purposes, however, this is not important, as we just impose the

wave equation itself at ρ = 1 (which is a characteristic boundary, so that no additional

conditions are required there).

3.3. Numerical studies

We intend to test how accurately the conformally invariant wave equation can be solved

with the fully pseudospectral method. Note that in our new coordinates, we cannot try

to reconstruct the test solution (18), as this diverges at the horizon, i.e. for r → 1, and

for which even initial data at τ = 0 would be irregular. Instead we have to choose some

regular initial data. As an example, consider the following data,

τ = 0 : f = cos(2ρ), f,τ = sin(ρ), (44)

which satisfy the regularity condition (41). In order to test how close we can come to

the singularity at τ = 1, we solve the corresponding initial value problem on different

domains, obtained by choosing different values for τmax. To measure the numerical

accuracy, we compare the function values f(τmax, 1) as obtained for various spectral

resolutions to the value obtained for the highest resolution of 42 × 42. The resulting

convergence plot is shown in Fig. 7.

For τmax = 0.5, 0.6, 0.7, 0.8, we observe spectral convergence and highly accurate

solutions with error saturation below 10−13. The errors in all these examples are

comparable, i.e. the particular value of τmax has no big influence on the accuracy as

long as the numerical domain is sufficiently far away from i+. For τmax = 0.9, however,

there is a considerable loss of accuracy, compared to the previous examples: the error

is about two orders of magnitude larger. Nevertheless, the smallest error as obtained

for the highest resolution is below 10−11, so that we still have very accurate results.

With further increasing τmax to 0.95 we loose two further orders of magnitude, and for

τmax = 0.99 the final error is as large as 2 × 10−6. This shows that, as expected, our

numerical scheme depends quite sensitively on the proximity to the singularity. However,

unless we are really close to τ = 1, very accurate solutions are found.
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Figure 7. Convergence plot for the initial data (44). The parameter d in the

coordinates has been chosen as d = 2.

4. Discussion

We have studied the conformally invariant wave equation on a Schwarzschild spacetime

with particular consideration of an appropriate treatment of spacelike infinity i0 as a

cylinder I. This problem can be regarded as a toy model for the general behaviour of

more complicated equations (e.g., the spin-2 system or the full Einstein equations) and

their solutions near the cylinder. In particular, our present studies extend the previous

discussions of the Minkowski wave equation in [6] to a nontrivial background metric.

Our approach should be compared to the “standard” way of solving problems on

compactified spacetimes, where data are given on a hyperboloidal or characteristic initial

slice. The data are then chosen somewhat arbitrarily such that everything extends

smoothly to future null infinity. However, in this way, the connection to spacelike

infinity is completely lost, and there is no way to say anything about past null infinity.

We found that we can numerically solve the conformally invariant wave equation

for the Schwarzschild spacetime with the fully pseudospectral scheme that we also used

in the Minkowski case. Moreover, for sufficiently regular solutions, we observe the same

numerical properties: we achieve highly accurate solutions close to machine accuracy

with a moderate number of gridpoints, and the error decreases exponentially with the

spectral resolution, i.e. we have spectral convergence. However, as opposed to the

Minkowski case, the solutions are generally not regular if future null infinity I + is part of

the numerical domain. Indeed, in the present Schwarzschild case, the solutions generally

develop logarithmic singularities at I+, where I and I + approach each other. As a

consequence, the numerical convergence is only algebraic in those cases. Nevertheless,

the numerical approximations turn out to be still very accurate. The analysis of the

behaviour of solutions along the cylinder shows that logarithmic singularities can appear

at I+ in derivatives of every order. These singularities can be eliminated order by order

as discussed in the appendix which has the consequence that the solution can be made Ck
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at I+ for arbitrary natural number k by imposing sufficiently many conditions at I0. The

interesting feature of the fully pseudospectral method is that the finite differentiability

is directly reflected in the convergence behaviour of the solution. In this way, we have

a direct way of controlling the smoothness on null infinity by imposing conditions at

I0 on the initial data. In this sense the influence of logarithmic singularities on the

convergence properties of our numerical method is actually something very positive. In

this way, the numerical simulations can be used to analyse the degree of regularity of

the solution for any given set of initial data. No other numerical method may be able

to provide this useful information.

Overall, we see that the fully pseudospectral scheme is very well-suited for treating

the conformally invariant wave equation on a Schwarzschild background, even in the

presence of logarithmic singularities. Hence we have found yet another application for

which this method works very well, and we can expect that more complicated equations

and more general problems can be successfully studied with the same approach in the

future.

Another important object of further analysis would be to generalise the present

considerations to numerical domains that include (a part of) past null infinity. As

discussed in the construction of coordinates in Sec. 2.1, our ρ-τ coordinates only cover

the “future half” of the Schwarzschild spacetime. Moreover, coordinates based on the

Kruskal extension introduce singularities at the cylinder. Hence the currently available

coordinate systems are either irregular or do not cover past null infinity, and it would

first be necessary to identify new types of well-behaved coordinates.

Appendix A. A general recursion formula for the expansion at spacelike

infinity

In Sec. 2.3 we have explicitly derived how the solution f(τ, ρ) behaves near spacelike

infinity in the first four orders in ρ, described by the functions φ0(τ), . . . , φ3(τ). Here we

give a recursion for φn(τ), which allows to study properties of the expansion in greater

generality.

In order to obtain the desired formula, we multiply the wave equation (11) with

(1 − ρ)[1 + ρ(1 − τ)]5, which leads to an equation in which each derivative of f is

multiplied by a polynomial in ρ (with τ -dependent coefficients). Plugging the expansion

(19) into this equation and comparing coefficients of different ρ-powers, we obtain a

recursion formula. A certain complication is introduced by the fact that the coefficient

polynomials in the reformulated wave equation are of up to seventh degree, which mixes

quite a number of different functions φn. Nevertheless, the somewhat involved formula

that one obtains has a simple structure,

(1− τ 2)φ̈n + 2(n− τ)φ̇n = Rn, (A.1)

where Rn depends on the six previous φ-functions φn−1, . . . , φn−6. Hence, even just to

start the iteration, we need more φ-functions than we have computed above.
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For completeness, we give the full expression for Rn, which reads

Rn =
(

(1− τ)(τ 2 + 5τ − 4)φ̈n−1 + 2[τ 2 + (5n− 9)τ + 6− 4n]φ̇n − 4(1− τ)φn−1

)
− (1− τ)

(
(1− τ)(τ 2 − 19τ + 5)φ̈n−2 − 2[2τ 2 + (10n− 37)τ + 17− 5n]φ̇n−2

+ 4(τ + 2)φn−2

)
− (1− τ)

(
− τ(1− τ)(τ 2 − 26τ + 26)φ̈n−3

+ 2[(10n− 46)τ 2 + (55− 10n)τ − 8]φ̇n−3 + 12τφn−3

)
− (1− τ)

(
(1− τ)2(13τ 2 − 9τ − 5)φ̈n−4 + 2(1− τ)[5(n− 5)τ 2 + 6τ + 18− 5n]φ̇n−4

+ 4(3τ − 2)φn−4

)
− (1− τ)2

(
(1− τ)2(2τ 2 + 3τ − 4)φ̈n−5

+ 2(1− τ)[(n− 6)τ 2 + (3n− 18)τ + 22− 4n]φ̇n−5 − 4φn−5

)
− (1− τ)5

(
(2τ − 1)φ̈n−6 − 2(n− 7)φ̇n−6

)
.

The second-order equation (A.1) for φn can, in principle, be solved with two integrations

by rewriting it as

d

dτ

(
(1 + τ)n+1

(1− τ)n−1
φ̇n

)
=

(
1 + τ

1− τ

)n
Rn. (A.2)

Obviously, two new integration constants will be introduced at each order n.

If we assume that an appropriate choice of the integration constants (corresponding

to a suitable subset of initial data) has eliminated all singularities up to the order n−1,

then Rn will be a regular function of τ . If we further assume that this regular function

has an expansion

Rn(τ) = c0 + c1(1− τ) + c2(1− τ)2 + . . . , (A.3)

near τ = 1, then the differential equation can be explicitly solved for φn(τ). We observe

that the contribution of the term ck(1 − τ)k is regular as long as k > n − 1. For

k = 0, 1, . . . , n−1, however, the results contain terms that behave like (1− τ)n ln(1− τ)

near τ = 1. Consequently, we expect weaker and weaker logarithmic singularities at

infinitely many orders.

This does not explicitly show how we have to restrict the initial data in order to

eliminate the logarithmic singularities up to a given order, since that would require an

explicit knowledge of the solution including the relevant integration constants. But it

illustrates the structure of the singular terms, and it provides a systematic approach to

computing φ-functions up to arbitrary orders.

Finally, it is interesting to see how the singular behaviour results from the non-

vanishing mass m of the background Schwarzschild spacetime. Since the mass is

absorbed into the definition of the coordinates τ and ρ, this is not directly possible with

the previous equations. However, we can re-derive the wave equation in coordinates

that leave m in the metric and equations. To this end, we replace (5) with r = 1/(2r̃),

t = 2t̃ and change the definition of F (s) from (6) to F (s) = s2(1 − ms)/(1 + ms)3.
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We can then perform a similar analysis of the resulting wave equation. In particular, it

turns out that the differential equation (A.1) needs to be replaced with

(1− τ 2)φ̈n + 2(n− τ)φ̇n = mR̃n, (A.4)

where R̃n is a slightly modified version of the previous function Rn. Most importantly,

we observe that the equation has a factorm on the right-hand side. As long asm 6= 0, the

above analysis applies, which reveals singularities at infinitely many orders. However,

for m = 0, the right-hand side vanishes so that the equations for the different φ-functions

decouple. We can even solve them explicitly to obtain that

φn(τ) =


c0 + d0 ln

(
1− τ
1 + τ

)
, n = 0

cn + dn

(
1− τ
1 + τ

)n
, n > 0

(A.5)

with integration constants cn, dn. Evidently, the corresponding expansion has a

singularity only at the lowest order — exactly what we know about the Minkowski

situation — while singular terms at all other orders disappear.
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