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Abstract. The variational heat equation is a nonlinear, parabolic equa-
tion not in divergence form that arises as a model for the dynamics of the
director field in a nematic liquid crystal. We present a finite difference
scheme for a transformed, possibly degenerate version of this equation
and prove that a subsequence of the numerical solutions converge to a
weak solution. This result is supplemented by numerical examples that
show that weak solutions are not unique and give some intuition about
how to obtain the physically relevant solution.

1. Introduction

In this paper we investigate the Cauchy problem

(1)

{
ut = c(u)(c(u)ux)x, x ∈ Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω,

where Ω = R or Ω = [0, 1] with periodic boundary conditions. We assume
that

(H.1) c ∈ C2(R), c ≥ 0, with c(ξ) = 0 only at isolated points, and, w.l.o.g.,
c ≤ 1,

(H.2) u0 ∈W 1,1(Ω) ∩W 1,∞(Ω), u0,x ∈ BV (Ω).

We call (1) the “variational heat equation”, because it can be derived from
a variational principle, similar to the variational wave equation [4, 5, 11, 13,
21], see (3) below.

The variational heat equation arises in the context of the continuum the-
ory for nematic liquid crystals as a model for the dynamics of the director
field. Liquid crystals are materials in a state of matter between the solid
and the liquid state. In the case of uniaxial nematic liquid crystals, this
means that the elongated molecules can move freely like in a fluid, but tend
to align along the same direction like in a crystal. On a macroscopic scale
such a state can be described by two vector fields, the velocity field and
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the so-called director field, which are governed by the Ericksen-Leslie equa-
tions [8, 9, 16–18, 22, 24]. The director field is a unit vector field that gives
the average direction of the molecules at each point.

To arrive at equation (1), we assume the simplified setting of a uniaxial
nematic with no flow and a director field n that lies in the x − y plane
and varies only in x-direction. Then the director can be described by an
angle u as n = (cos(u), sin(u), 0). The Oseen-Frank energy, which models
the tendency of the director to align along the same direction everywhere,
reduces to

E =
1

2

ˆ
(c(u))2(ux)2 dx ,

where

c(u) =
√
k1 cos(u)2 + k2 sin(u)2 ,(2)

and k1 and k2 are the Oseen-Frank elastic constants corresponding to bend
and splay deformations [8, 10, 19, 22, 24]. In addition, the director is subject
to the dissipation

D = κ

ˆ
(ut)

2 dx ,

where κ is the rotational viscosity coefficient. From the energy law

d

dt
E = −D ,

we obtain

0 =

ˆ
c(u)c′(u)(ux)2ut + (c(u))2uxuxt + κ(ut)

2 dx

=

ˆ (
− c(u)(c(u)ux)x + κut

)
ut dx ,

which gives (1) after scaling κ = 1.
A similar model is the variational wave equation [13, 21],

(3) utt = c(u)(c(u)ux)x ,

which is derived in the same way from the Oseen-Frank energy, but ne-
glecting dissipation and instead including inertia in the form of the kinetic
energy

1

2

ˆ
σ(ut)

2 dx ,

where σ is the rotational inertia of the director, scaled to 1 in (3). Typical
values for the elastic constants k1 and k2 in (2) are of order 10−11–10−12, the
dissipation κ is of order 10−1–10−3, and the rotational inertia σ is of order
10−13, [22, 25]. On small length scales, the term from the elastic energy
and the dissipation can be of the same order. The inertia term however is
usually dominated by the dissipation, therefore (1) is a more suitable model
than (3) in most physical settings [2].

From a mathematical point of view, if k1 and k2 are strictly positive, i.e.,
c > 0, equation (1) is a nonlinear, uniformly parabolic equation. While (3),
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and also the combination of (1) and (3) where both ut and utt are included,
does not possess a unique classical solution [4, 5, 11], standard theory of
nonlinear parabolic equations guarantees well-posedness of (1), see [14].

We are therefore interested in the degenerate case of (1) where c is allowed
to vanish at some points, i.e., if c is given by (2), in the case that k1 = 0 or
k2 = 0. Although this case is not known to be directly physically relevant in
the context of liquid crystals, it is interesting from a mathematical point of
view and also ensures that the estimates in this paper do not depend on the
ratio between k1 and k2. the Solutions of degenerate parabolic equations are
not necessarily smooth or unique, therefore new concepts of solutions, e.g.,
weak solutions, entropy solutions, or viscosity solutions are required. In the
case of (1), a formal calculation shows that there is no maximum principle
for ux, but for c(u)ux (see Section 3). At points where c(u) vanishes, this
allows for gradient blow-up.

The goal of this paper is to design a convergent numerical scheme for (1).
The form of the right-hand side and the resulting lack of a gradient bound
suggests that one should transform (1) first.

One possibility to do this is to define

(4) v = kv(u) =

ˆ u 1

c(ξ)
dξ .

Then (1) becomes

(5) vt = (c2(k̄v(v))vx)x ,

where k̄v is the inverse of kv(u). For this equation it is straightforward to
obtain an L2 bound and one can also show uniqueness of weak solutions. If
we assume c > 0, a simple finite difference scheme based on central differ-
ences and averages in space can be shown to converge to a weak solution
using Aubin-Lions lemma, see also [15, 20] for examples in a similar setting.
If however c = 0 for some u, then (4) is not necessarily finite and a bound
on vx does not follow directly from the L2 bound.

An alternative transformation of (1) is

(6) w = kw(u) =

ˆ u

c(ξ) dξ ,

so w satisfies

(7) wt = c2(k̄w(w))wxx .

The transformation kw and its inverse k̄w are well-defined for any c ≥ 0 if c
vanishes only on single points. It is also possible to show a priori bounds for
both w and wx in L∞ and BV (functions of bounded total variation), see
Section 3. However, (7) does not guarantee uniqueness of solutions. Indeed,
Ughi et al. [3, 7, 23] showed that for the special case where c2(k̄w(w)) = w,
weak solutions of (7) (defined in a standard way, see Section 2) are not
unique. To choose one unique solution, they define “viscosity solutions”
which are obtained by taking the limit of classical solutions of the equation
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with c > 0 or suitable initial data. In the setting of (2), these viscosity
solutions correspond to sending k1 or k2 to 0 or choosing the solution that
corresponds to a solution of (5). Ughi et al.’s concept of viscosity solutions
is not generally the same as Lions’ theory of viscosity solutions for degen-
erate parabolic equations [3, 6]. The uniqueness theory of the latter is not
applicable here, because the right-hand side of (7), or (1), is not proper, i.e.,
it is not monotonically increasing in w, or u, respectively.

The scheme that we will present in this paper discretizes (7). Based on
discrete versions of the L∞ and BV bounds on w and wx, we use Kol-
mogorov’s compactness theorem to show that the numerical approximations
for both w and wx converge strongly in L1(Ω). The strong convergence of
the derivative is important, because the weak formulation of (7) includes
nonlinear terms in wx. Passing to the limit in the definition of the scheme,
we prove that a subsequence of the numerical solutions converges to a weak
solution as ∆x,∆t→ 0.

Our numerical experiments confirm the nonunqiueness properties dis-
cussed above. If k1 = 0 in (2) and the grid is chosen such that c(u0(x))
is positive at every grid point, then the numerical solutions converge to
Ughi et al.’s viscosity solution. This solution is the same as the one ob-
tained by a method based on (5) and as the limit k1 → 0 of solutions of the
w-based scheme for any set of grid points. If however one of the grid points
coincides with a zero of c(u0(x)), we get another solution which corresponds
to a classical solution of (7), “glued together” at the zeros of c(u0(x)) with
Dirichlet boundary conditions. Interpreted as solutions of (1), the gradient
of u for this type of solutions becomes unbounded at the zeros of c(u0(x))
as t→∞.

The rest of this paper is structured as follows: In Section 2 we will de-
fine the scheme for (7), introduce the notion of weak solutions, and state
our convergence result. Section 3 contains discrete a priori bounds, which
are based on Harten’s lemma and motivated by formal calculations in the
continuous case. Time continuity is shown in Section 4 and the convergence
proof is carried out in Section 5. In Section 6 we present a series of nu-
merical experiments that confirm the convergence result and highlight the
nonuniqueness properties of (7).

2. A numerical scheme for w and the main result

To be precise, let us restate (7) in the form that will be the basis of our
scheme. Assume that

(H.3) B ∈ C2(I) for some interval I ⊂ R, and 0 ≤ B ≤ 1,
(H.4) w0 ∈W 1,1(Ω) ∩W 1,∞(Ω), w0,x ∈ BV (Ω), with w0(x) ∈ I.

Then we want to solve

(8)

{
wt = B(w)wxx, t > 0, x ∈ Ω,

w(x, 0) = w0(x), x ∈ Ω,
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on Ω = R or [0, 1] with periodic boundary conditions.
Equation (1) can be transformed to (8) by defining w as in (6). If u0 sat-

isfies (H.2), then w0 will satisfy (H.4), but not vice versa. Similarly, (H.3)
follows from (H.1). As an example, if we choose c according to (2) with
k1 = 0 and k2 = 1, then kw(u) = |sin(u)| and B(w) = 1 − w2, see also
Section 6.

To define the scheme, let Ω be discretized by the equidistant grid points
xj = j∆x, j = 0, . . . , N , and let tn = n∆t denote the time steps. If
Ω = [0, 1], we set periodic boundary conditions. We will implicitly assume
that all functions are periodically extended outside of the domain, so that
no boundary terms occur.

A straightforward discretization of (8) is

(9) D+
t w

n
j = B(wn+θ

j )D2wn+θ
j ,

where we used the difference quotients

D+aj =
1

∆x
(aj+1 − aj) , D−aj =

1

∆x
(aj − aj−1) ,

D+
t a

n =
1

∆t
(an+1 − an), D2aj = D+D−aj ,

and the convex combination

wn+θ
j = θwn+1

j + (1− θ)wnj , where θ ∈ [0, 1].

For θ = 0, the scheme is explicit, for θ = 1, it is fully implicit, and for θ = 1
2

we have the Crank-Nicholson time discretization.1 In the fully implicit case
of θ = 1, the scheme is unconditionally stable. Otherwise, we require that
the time step ∆t and grid size ∆x satisfy the CFL condition

(10) λ =
∆t

(∆x)2
<

1

2(1− θ)
.

For the discrete derivatives znj = D+w
n
j and ynj = D−z

n
j , the scheme defined

by (9) becomes

D+
t z

n
j = D+(B(wn+θ

j )D−z
n+θ
j ) ,(11)

D+
t y

n
j = D2(B(wn+θ

j )yn+θ
j ) .(12)

We will use these forms below to get a priori bounds on wnj .

For given initial data w0 ∈W 2,1 ∩W 1,∞, define the discrete initial data

(13) w0
j =

1

∆x

ˆ x
j+ 1

2

x
j− 1

2

w0(x) dx .

1Note that formally, i.e. for smooth solutions, the scheme with θ = 0 and θ = 1 is of
order 1 while for θ = 1/2 it is formally of order 2.
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To get from the discrete approximations wnj back to continuous functions,
we use the piecewise linear and piecewise constant interpolations

w∆t(x, t) =
xj+1 − x

∆x
wnj +

x− xj
∆x

wnj+1 ,(14)

for x ∈ [xj , xj+1), t ∈ [tn, tn+1),

w∆t(x, t) = wnj ,(15)

for x ∈ [xj− 1
2
, xj+ 1

2
), t ∈ [tn, tn+1),

z∆t(x, t) = w∆t
x (x, t) = D+w

n
j = znj ,(16)

for x ∈ [xj , xj+1), t ∈ [tn, tn+1).

Our main result is the convergence of the numerical scheme. Since B(w)
is allowed to vanish, equation (8) is a degenerate parabolic equation and
solutions are not necessarily smooth. In particular, the derivative of w may
not be defined at every point. We will therefore prove convergence to weak
solutions of (8).

Definition 2.1 (Weak solutions of (8)). A function w ∈ L∞(0,∞;H1(Ω))×
L∞(Ω× (0,∞)) is a weak solution of (8) if it satisfies

(17)

ˆ ∞
0

ˆ
Ω
wφt−B(w)wxφx−B′(w)(wx)2φdxdt+

ˆ
Ω
w0(x)φ(x, 0) dx = 0 ,

for all φ ∈ C∞c (Ω× [0,∞)).

The convergence result, which we will prove in Section 5, reads as follows.

Theorem 2.1. A subsequence of the interpolations w∆t of the solutions of
the scheme defined by (9) converges in C([0,∞),W 1,1(Ω)) to a weak solution
of (8) as defined in Definition 2.1.

Note that only a subsequence of w∆t converges, because weak solutions
of (8) are not unique. We will comment more on this in Section 6.

For the a priori bounds in the next section, we will use the discrete norms

‖an‖∞ = sup
j
|anj | , ‖an‖1 = ∆x

∑
j

|anj | , |an|BV =
∑
j

|anj − anj−1| ,

3. A priori bounds

In the following, we will show discrete maximum principles and BV
bounds for wnj and znj = D+w

n
j . Here, note that the original equation (1)

only possesses a maximum principle for u, but not for ux, since in

utx = (c(u))2uxxx + 4c(u)c′(u)uxuxx +
1

2
(c2(u))′′(ux)3 ,

the third term can lead to growth of local maxima in ux. Our numerical
examples in Section 6 confirm this. One advantage of the transformation to
w is that for equation (8) both w and z = wx are bounded in L∞.
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The BV bound for z will be important in the convergence proof, because
strong convergence for both w and its first derivative is needed to pass to
the limit in the third term of the weak formulation (17). Before turning to
the discrete setting, let us show formally how L1 bounds for z and y = zx
(i.e., BV bounds for w and z) can be obtained in the continuous case.

For z, multiply

zt = (Bzx)x

by η′(z), where η is some convex smooth function, and integrate in space to
get

d

dt

ˆ
Ω
η(z) dx = −

ˆ
Ω
B(w)(zx)2η′′(z) dx ≤ 0.

Letting η → |·|, we get an L1 bound for z.
For y, the formal continuous equivalent of equation (12) is

(18) yt = (B(w)y)xx.

Again, let η ∈ C2(R) be convex and multiply (18) by η′(y). Then,

η(y)t = (Byxx + 2Bxyx +Bxxy)η′(y)

≤ (yx)2Bη′′(y) +Byxxη
′(y) + 2Bxη(y)x +Bxxy η

′(y)

= Bη(y)xx + 2Bxη(y)x +Bxxy η
′(y)

= (Bη(y)x)x +Bxη(y)x +Bxxy η
′(y)

= (Bη(y)x)x + (Bxη(y))x −Bxxη(y) +Bxxy η
′(y)

= (Bη(y))xx +Bxx(η′(y)y − η) .

Integrating over Ω and taking η(y) = |y|ε such that it converges to |y| as
ε→ 0, we get

d

dt

ˆ
Ω
|y| dx ≤ 0 .

In the discrete case, we will base our proofs on an extended version of
Harten’s Lemma [12, p. 118].

Lemma 3.1. Let vj be given by

(19) vj = uj −Aj−1/2∆−uj +Bj+1/2∆+uj − Cj−1/2∆−vj +Dj+1/2∆+vj ,

where ∆±uj = ±(uj±1 − uj).
(i) If Aj+1/2, Bj+1/2, Cj+1/2, and Dj+1/2 are nonnegative for all j, and

Aj+1/2 +Bj+1/2 ≤ 1 for all j, then

|v|BV ≤ |u|BV .

(ii) If Aj+1/2, Bj+1/2, Cj+1/2, and Dj+1/2 are nonnegative for all j, and
Aj−1/2 +Bj+1/2 ≤ 1 for all j, then

min
i
ui ≤ vj ≤ max

i
ui
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Proof. From (19), we get

(1 + Cj+1/2 +Dj+1/2)∆+vj = (1−Aj+1/2 −Bj+1/2)∆+uj

+Aj−1/2∆−uj +Bj+3/2∆+uj+1

+ Cj−1/2∆−vj +Dj+3/2∆+vj+1 .

Hence, under the assumptions of (i),∑
j

(1 + Cj+1/2 +Dj+1/2)|∆+vj | ≤
∑
j

(1−Aj+1/2 −Bj+1/2)|∆+uj |

+
∑
j

Aj−1/2|∆−uj |+Bj+3/2|∆+uj+1|

+
∑
j

Cj−1/2|∆−vj |+Dj+3/2|∆+vj+1|

=
∑
j

|∆+uj |+ (Cj+1/2 +Dj+1/2)|∆+vj | ,

from which the BV bound follows.
For the maximum principle, we can write (19) as

(1 + Cj−1/2 +Dj+1/2)vj = (1−Aj−1/2 −Bj+1/2)uj +Aj−1/2uj−1 +Bj+1/2uj+1

+ Cj−1/2vj−1 +Dj+1/2vj+1 .

Thus, if the assumptions of (ii) hold, vj′ = maxi vi satisfies

(1 + Cj′−1/2 +Dj′+1/2)vj′ ≤ (1−Aj′−1/2 −Bj′+1/2) max
i
ui

+Aj′−1/2 max
i
ui +Bj′+1/2 max

i
ui

+ Cj′−1/2vj′ +Dj′+1/2vj′ ,

and hence, maxi vi = vj′ ≤ maxi ui. Similarly, mini vi ≥ mini ui, which
concludes the proof. �

The L∞ and BV bound for wnj and znj follow directly from the above
lemma.

Lemma 3.2. Let wnj be the solution of (9) and znj = D+w
n
j . Then

min
i
w0
i ≤ wnj ≤ max

i
w0
i , |wn|BV ≤ |w

0|BV ,

min
i
z0
i ≤ znj ≤ max

i
z0
i , |zn|BV ≤ |z

0|BV .

Proof. Rewriting (9), we get

wn+1
j = wnj + (1− θ)∆tB(wn+θ

j )D2wnj + θ∆tB(wn+θ
j )D2wn+1

j .

To apply Harten’s lemma, set vj = wn+1
j , uj = wnj , and

Aj−1/2 = (1− θ)λB(wn+θ
j ), Cj−1/2 = θλB(wn+θ

j ),

Bj+1/2 = (1− θ)λB(wn+θ
j ), Dj+1/2 = θλB(wn+θ

j ),
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where λ = ∆t/(∆x)2. Because λ satisfies the CFL condition (10) and θ and
B(w) take values in [0, 1], the assumptions of Harten’s lemma hold and we
get the maximum and BV bound for wnj .

For z, write (11) as

zn+1
j = znj + (1− θ)∆tD+(B(wn+θ

j )D−z
n
j ) + θ∆tD+(B(wn+θ

j )D−z
n+1
j ).

Set vj = zn+1
j , uj = znj , and

Aj−1/2 = (1− θ)λB(wn+θ
j ), Cj−1/2 = θλB(wn+θ

j ),

Bj+1/2 = (1− θ)λB(wn+θ
j+1 ), Dj+1/2 = θλB(wn+θ

j+1 ),

in Harten’s lemma. Again, due to the CFL condition and the bounds on B,
the conditions are satisfied and the claim follows. �

4. Continuity in time

In order to show compactness, we will need continuity in time of both

w∆t and z∆t. For w∆t this follows directly from the definition of the scheme
and the BV bound for z above.

Lemma 4.1. Let w∆t be the interpolation (14) of the solutions wnj of (9).
Then, for any t, t+ τ ≥ 0,ˆ

Ω
|w∆t(x, t+ τ)− w∆t(x, t)| dx ≤ (τ +O(∆t))|z0|BV +O(∆x)|w0|BV .

Proof. Using the piecewise constant interpolation w∆t, we getˆ
Ω
|w∆t(x, t+ τ)− w∆t(x, t)| dx ≤

ˆ
Ω
|w∆t(x, t+ τ)− w∆t(x, t+ τ)|

+ |w∆t(x, t)− w∆t(x, t)|(20)

+ |w∆t(x, t+ τ)− w∆t(x, t)| dx .
Regarding the first two terms on the right-hand side, note that for t ∈
[tn, tn+1),ˆ

Ω
|w∆t(x, t)− w∆t(x, t)| dx =

∑
j

ˆ xj

x
j− 1

2

|(xj − x)D−w
n
j |dx

+

ˆ x
j+ 1

2

xj

|(x− xj)D+w
n
j |dx

=
(∆x)2

4

∑
j

|D+w
n
j |

=
∆x

4
|wn|BV ≤

∆x

4
|w0|BV ,

(21)

where the last inequality is due to Lemma 3.2. For the last term in (20),
let m, n be such that t + τ ∈ [tn, tn+1) and t ∈ [tm, tm+1). Using the BV
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bound on z from Lemma 3.2, we getˆ
Ω
|w∆t(x, t+ τ)− w∆t(x, t)| dx =

∑
j

ˆ x
j+ 1

2

x
j− 1

2

|wnj − wmj | dx

≤ ∆x
∑
j

n−1∑
k=m

∆t|D+
t w

k
j |

= ∆x∆t
∑
j

n−1∑
k=m

|B(wk+θ
j )D−z

k+θ
j |

≤ ∆t(n−m)|z0|BV = (τ +O(∆t))|z0|BV ,

and the claim follows. �

For z∆t, we will use a version of Kružkov’s interpolation lemma [12, p. 208,
Lemma 4.11], which gives continuity in time if for all t1, t2 ≥ 0 and φ ∈
C∞0 (Br), where Br = [−r, r] ∩ Ω,
(22)∣∣∣ ˆ

Br
((z∆t(x, t2)− z∆t(x, t1))φ(x) dx

∣∣∣ ≤ Cr‖φ′‖L∞(Br)(|t2 − t1|+O(∆t)),

in addition to the L∞ and BV bound from Lemma 3.2.

Lemma 4.2. Let z∆t be the piecewise constant interpolation of znj = D+w
n
j ,

where wnj is the solution of (9). Then z∆t satisfies for any t, t+τ ≥ 0, r > 0,ˆ
Br
|z∆t(x, t+ τ)− z∆t(x, t)| dx ≤ Cr max(|z0|BV , 1)(

√
|τ |+ ∆t√

|τ |
) ,

where Br = [−r, r] ∩ Ω.

Proof. To apply Kružkov’s interpolation lemma, we need to show (22). First,
note that for any time step n,∣∣∣ˆ

Ω
(z∆t(x, tn+1)− z∆t(x, tn))φdx

∣∣∣ =
∣∣∣∑

j

(zn+1
j − znj )

ˆ xj+1

xj

φdx
∣∣∣

=
∣∣∣∑

j

∆tD+(B(wn+θ
j )D−z

n+θ
j )

ˆ xj+1

xj

φdx
∣∣∣

=
∣∣∣∑

j

∆tB(wn+θ
j )D−z

n+θ
j

1

∆x

ˆ xj+1

xj

φ(x)− φ(x−∆x) dx
∣∣∣

≤
∑
j

∆t∆x|D−zn+θ
j |‖φ′‖L∞(Ω)

≤ ∆t‖φ′‖L∞(Ω)|z
0|BV .

For given t1, t2 > 0, let n,m be such that t1 ∈ [tn, tn+1) and t2 ∈ [tm, tm+1).
By the definition of the piecewise constant interpolation, (16), the above
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estimate then yields∣∣∣ˆ
Ω

(z∆t(x, t2)− z∆t(x, t1))φdx
∣∣∣ ≤ ‖φ′‖L∞(Ω)|z

0|BV (tm − tn)

≤ ‖φ′‖L∞(Ω)|z
0|BV (t2 − t1 + 2∆t) .

Kružkov’s interpolation lemma [12, p. 208, Lemma 4.11] then impliesˆ
Br
|z∆t(x, t+ τ)− z∆t(x, t)| dx ≤ Cr(ε+ ε|z0|BV + |z0|BV

|τ |+ 2∆t

ε
),

for any ε > 0. Choosing ε =
√
|τ |, we arrive at the claim. �

5. Convergence

Finally, we are able to prove the convergence of the scheme, Theorem 2.1.

Proof of Theorem 2.1. We will apply Kolomogorov’s compactness theorem [12,

Thm. A.11, p. 437] twice, first on w∆t and then on z∆t, to get a subsequence
of w∆t that converges strongly in C([0,∞),W 1,1(Ω)).

For the compactness of w∆t, the L∞ andBV bound on wnj from Lemma 3.2

imply, for t ∈ [tn, tn+1),

‖w∆t(t)‖L∞(Ω) ≤ ‖w
n‖∞ ≤ ‖w

0‖∞ ≤ ‖w0‖L∞(Ω) ≤ C ,

|w∆t(t)|BV = |wn|BV ≤ |w
0|BV ≤ C‖w

′
0‖L1(Ω) ≤ C ,

where the constants on the right-hand side are independent of ∆t. Together
with the time continuity from Lemma 4.1, Kolmogorov’s theorem guarantees
that a subsequence of w∆t converges in C([0,∞), L1(Ω)).

Similarly, for z∆t, we have from Lemma 3.2,

‖z∆t(t)‖L∞(Ω) = ‖zn‖∞ ≤ ‖z
0‖∞ ≤ ‖w

′
0‖L∞(Ω) ≤ C ,

|z∆t(t)|BV = |zn|BV ≤ |z
0|BV ≤ C|w

′
0|BV ≤ C .

Because of the time continuity of z∆t from Lemma 4.2 and Kolomogorov’s
theorem, we can thus take another subsequence (for simplicity, we omit

the subindices in the following) such that both w∆t and z∆t converge in
C([0,∞), L1(Ω)). Let w and z denote the corresponding limits.

For the piecewise constant interpolation w∆t, recall from (21) that for any
t ≥ 0,

‖w∆t(t)− w∆t(t)‖L1(Ω) ≤ C∆x ,

where C is independent of t. Hence, also w∆t converges to w in C([0,∞), L1(Ω)).
Moreover, if we define

wθ,∆t = θ w∆t(·+ ∆t) + (1− θ)w∆t,

zθ,∆t = θ z∆t(·+ ∆t) + (1− θ) z∆t,
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then due to the time continuity from Lemma 4.1 and 4.2, also wθ,∆t and

zθ,∆t converge in C([0,∞), L1(Ω)) to w and z, respectively.
Because D+w

n
j = znj , we have that for any φj = φ(xj), φ ∈ C∞c (Ω),∑

j

wnjD−φj = −
∑
j

znj φj .

Passing to the limit, we get
ˆ

Ω
wφx dx = −

ˆ
Ω
zφ dx ,

i.e., wx = z.
Next, let φ be a test function in C∞c (Ω × [0,∞)) and set φnj = φ(xj , t

n).

Multiplying the equation of the scheme, (9), by φnj and summing in j and n,
we get ∑

n≥0

∑
j

D+
t w

n
j φ

n
j =

∑
n≥0

∑
j

B(wn+θ
j )D2wn+θ

j φnj ,

which is the same as∑
n≥0

∑
j

wn+1
j D+

t φ
n
j +

∑
j

w0
jφ

0
j =

∑
n≥0

∑
j

D+w
n+θ
j D+φ

n
jB(wn+θ

j )

+D+w
n+θ
j D+B(wn+θ

j )φnj+1 ,

or

(23)

ˆ ∞
0

ˆ
Ω
w∆t(t+ ∆t)D+

t φ
∆t dxdt+

ˆ
Ω
w∆t(x, 0)φ∆t(x, 0) dx

=

ˆ ∞
0

ˆ
Ω
zθ,∆tD+φ∆tB(wθ,∆t) + zθ,∆tD+B(wθ,∆t)φ∆t(x+ ∆x, t) dxdt ,

where D+
t φ

∆t, φ∆t, etc. denote the piecewise constant interpolations corre-

sponding to D+
t φ

n
j , φnj , etc. Similarly, zθ,∆t, B(wθ,∆t), and D+B(wθ,∆t)

are the piecewise constant interpolations that take the values D+w
n+θ
j ,

B(wn+θ
j ), and D+B(wn+θ)j for x ∈ [xj−1/2, xj+1/2), t ∈ [tn, tn+1).

Since φ ∈ C∞c ([0,∞) × Ω), we have that D+
t φ

∆t, φ∆t, D+φ∆t converge
in L∞(Ω × [0,∞)) to φt, φ, and φx, respectively. Furthermore, by the
construction of the initial data, (13),

‖w∆t(·, 0)− w0‖L∞(Ω) ≤ ∆x‖w′0‖L1(Ω) → 0 , as ∆x→ 0.

It follows that the left-hand side of (23) converges to
ˆ ∞

0

ˆ
Ω
w(x, t)φt(x, t) dxdt+

ˆ
Ω
w0(x)φ(x, 0) dx.
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For the right-hand side, since B and B′ are Lipschitz,2 the convergence

of wθ,∆t also implies the convergence of B(wθ,∆t) to B(w) and of B′(wθ,∆t)
to B′(w). Furthermore,

D+B(wn+θ
j ) = B′(wn+θ

j )D+w
n+θ
j +

∆x

2
B′′(ξ)(D+w

n+θ
j )2 ,

for some ξ ∈ I, so

‖D+B(wθ,∆t)−B′(w)wx‖L1(Ω) ≤ ‖B
′(wθ,∆t)zθ,∆t −B′(w)wx‖L1(Ω)

+
∆x

2
‖B′′‖L∞(I)‖zθ,∆t‖L1(Ω)‖zθ,∆t‖L∞(Ω)

≤ ‖B′(wθ,∆t)−B′(w)‖L1(Ω)‖zθ,∆t‖L∞(Ω)

+ ‖B′(w)‖L∞(Ω)‖zθ,∆t − wx‖L1(Ω)

+
∆x

2
‖B′′‖L∞(I)‖zθ,∆t‖L1(Ω)‖zθ,∆t‖L∞(Ω)

→ 0,

uniformly in t as ∆x → 0. Altogether, this allows us to pass to the limit
also on the right-hand side of (23) to getˆ ∞

0

ˆ
Ω
B(w)wxφx +B′(w)(wx)2φdxdt,

which together with (5) gives the weak formulation (17). �

6. Numerical experiments

As mentioned in the introduction, weak solutions of (8) are not necessarily
unique, see also the analysis of Ughi et al. [3, 7, 23] for the special case
B(w) = w. The following experiments show the nonuniqueness for B(w) =
c2(k̄w(w)), where c is given by (2) with k1 = 0 and k2 = 1, i.e., c2(u) =
sin2(u). Then the transformation from u ∈ [0, π] to w is given by

w = kw(u) =

ˆ u

π
2

c(ξ) dξ = − cos(u) ,

so

B(w) = c2(k̄w(w)) = sin2(arccos(−w)) = 1− w2 .

In the first series of experiments below we will construct the “viscosity
solution” of Ughi et al. This is achieved by choosing grid points such that
|w0(xj)| < 1, i.e., B(w0(xj)) 6= 0 for all j. We will see that in this case the
method converges and the limit is the same as the limit that one obtains

2By assumption, B ∈ C2(I), so

‖B(wθ,∆t)−B(w)‖C([0,∞),L1(Ω)) ≤ ‖B
′‖L∞(I)‖wθ,∆t − w‖C([0,∞),L1(Ω)) ,

‖B′(wθ,∆t)−B′(w)‖C([0,∞),L1(Ω)) ≤ ‖B
′′‖L∞(I)‖wθ,∆t − w‖C([0,∞),L1(Ω))
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Figure 1. The initial data

by letting k1 → 0 (for any set of grid points) or using a method for v based
on (5).

Let the initial data be given by

u0(x) =


−2πx+ π

2 , for x ∈ [0, 1
4 ],

2πx− π
2 , for x ∈ [1

4 ,
3
4 ],

−2πx+ 5
2π , for x ∈ [3

4 , 1],

i.e.,

w0(x) = − sin(2πx) , for x ∈ [0, 1],

or

v0(x) =


− tan(2πx) , for x ∈ [0, 1

4 ],

tan(2πx) , for x ∈ [1
4 ,

3
4 ],

− tan(2πx) , for x ∈ [3
4 , 1],

where v0 =
´ u0

π/2
1
c(ξ) dξ, see also Figure 1. In all of the following experiments

we will construct the discrete initial data directly by setting w0
j = w0(xj)

(v0
j = v0(xj) for the v-based scheme), instead of using (13).

Let N be an odd number, so the grid points xj = j/N do not coincide
with the critical points 1/4 and 3/4. For the time discretization, we choose
to θ = 1/2 in (9), i.e., a Crank-Nicholson type discretization. The resulting
implicit equation is solved using a standard Newton iteration. The time
step is set to ∆t = 100(∆x)2. To check convergence, we calculate a solution
w∆t∗ on a fine grid (N = 100 · 28 − 1) and define the errors

errp = ‖w∆t(·, T )− w∆t∗(·, T )‖Lp(Ω) , p ∈ {1,∞} ,(24a)

err1,p = ‖w∆t
x (·, T )− w∆t∗

x (·, T )‖Lp(Ω) , p ∈ {1,∞} ,(24b)

where T = 0.04. Table 1 shows that the numerical solutions with an odd
number of grid points converge to w∆t∗ with rate ≈ 1.

Next, we calculate numerical solutions for k1 = 10−n, n = 1, . . . , 5. If k1

and k2 are positive, the transformation kw is given by

kw(u) =

ˆ u

π/2

√
k1 cos2(ξ) + k2 sin2(ξ) dξ = k2E

(
u− π

2

∣∣∣ 1− k1

k2

)
,
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N + 1 err1 err1,1 err∞ err1,∞
100 · 20 1.2 · 10−1 1.5 3.9 · 10−1 4.1
100 · 21 7.4 · 10−3 (4.0) 6.1 · 10−2 (4.6) 1.3 · 10−2 (4.8) 9.6 · 10−2 (5.4)
100 · 22 1.5 · 10−3 (2.3) 1.6 · 10−2 (2.0) 2.7 · 10−3 (2.3) 2.9 · 10−2 (1.7)
100 · 23 5.4 · 10−4 (1.4) 6.6 · 10−3 (1.2) 9.8 · 10−4 (1.4) 1.3 · 10−2 (1.1)
100 · 24 2.5 · 10−4 (1.1) 3.2 · 10−3 (1.1) 4.5 · 10−4 (1.1) 6.6 · 10−3 (1.0)
100 · 25 1.2 · 10−4 (1.1) 1.5 · 10−3 (1.0) 2.1 · 10−4 (1.1) 3.3 · 10−3 (1.0)

Table 1. L1 and L∞ errors and rates (in brackets) of the
numerical solutions and their derivatives at time T = 0.04
for the scheme based on w with k1 = 0, k2 = 1, θ = 1/2,
CFL number ∆t/(∆x)2 = 100, and an odd number of grid
points.
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:
4

:
2

3:
4

:

u

k1 = 1e! 01
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k1 = 1e! 03
k1 = 1e! 04
k1 = 1e! 05
k1 = 0

(a) u

0 0.5 1

x
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-0.5

0

0.5

1
w

k1 = 1e! 01
k1 = 1e! 02
k1 = 1e! 03
k1 = 1e! 04
k1 = 1e! 05
k1 = 0

(b) w

Figure 2. Convergence of solutions to viscosity solution as
k1 → 0. The plots show the solutions at T = 0.04 for the
scheme based on w with k2 = 1, θ = 1/2, CFL number
∆t/(∆x)2 = 100, and N = 400 for k1 > 0 and N = 399 for
k1 = 0.

where E(u |m) is the elliptic integral of the second kind. Because the func-
tion B(w) = c2(k̄w(w)) does not have an explicit form, another Newton
iteration is needed to solve for k̄w. In practice, this significantly slows down
the method and a scheme based on (1) or (5) would be preferable. Figure 2
shows that for a fixed number of grid points3, as k1 → 0, the solutions
converge to the same w∆t∗ as above.

Another way to obtain the viscosity solution is to use the transformation
to v variables, (5). A straightforward scheme based on (5) is

(25) D+
t v

n
j = D+

(
A−c

2(k̄v(v))nj D−v
n
j

)
, ,

3 In Figure 2 we chose N = 400, but for other N , in particular also for odd N , the
result is the same.
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N + 1 err1 err1,1 err∞ err1,∞
100 · 20 5.2 · 10−3 6.1 · 10−2 1.0 · 10−2 1.3 · 10−1

100 · 21 2.6 · 10−3 (1.0) 3.0 · 10−2 (1.0) 5.0 · 10−3 (1.0) 6.6 · 10−2 (1.0)
100 · 22 1.3 · 10−3 (1.0) 1.5 · 10−2 (1.0) 2.5 · 10−3 (1.0) 3.3 · 10−2 (1.0)
100 · 23 6.1 · 10−4 (1.0) 7.3 · 10−3 (1.0) 1.2 · 10−3 (1.0) 1.7 · 10−2 (1.0)
100 · 24 2.9 · 10−4 (1.1) 3.6 · 10−3 (1.0) 5.8 · 10−4 (1.1) 8.2 · 10−3 (1.0)
100 · 25 1.4 · 10−4 (1.1) 1.7 · 10−3 (1.1) 2.7 · 10−4 (1.1) 3.9 · 10−3 (1.1)

Table 2. L1 and L∞ errors and rates (in brackets) of the
numerical solutions and their derivatives compared to the
“viscosity solution” at time T = 0.04 for the scheme based
on v, (25), with k1 = 0, k2 = 1, θ = 1/2, CFL number
∆t/(∆x)2 = 100, and an odd number of grid points.

where A−c
2(k̄v(v))nj = 1

2(c2(k̄v(v
n
j )) + c2(k̄v(v

n
j−1))). For c given by (2), we

have

kv(u) =

ˆ u

π/2

1√
k1 cos2(ξ) + k2 sin2(ξ)

dξ =
1

k2
F
(
u− π

2

∣∣∣ 1− k1

k2

)
,

where F (u |m) is the elliptic integral of the first kind. Using Jacobi’s am-
plitude function “am”, the inverse k̄v can be expressed as

k̄v(v) = am
(
k2v

∣∣∣ 1− k1

k2

)
+
π

2
.

For k1 = 0 this method is only applicable if none of the grid points is a zero
of c(u0(x)), because v would not be finite at such a point. Table 2 shows
the convergence of the v-based method to w∆t∗ for an odd number of grid
points and k1 = 0. The errors in Table 2 are calculated with w∆t and w∆t∗

in (24) replaced by the u∆t (the linear interpolation of k̄v(v
n
j )) and u∆t∗ (the

linear interpolation of k̄w(wnj )), respectively.
Finally, we construct a weak solution of the w-equation different from the

viscosity solution w∆t∗ by choosing an even number of grid points in the
scheme defined by (9). By definition, if B(w0

j ) = 0, we have B(wnj ) = 0 for
all n. This differs from the solution above, where for sufficiently large times,
e.g., at T = 0.04, we have B(w∆t∗(x, T )) > 0 at all x. Figures 3–4 show the
evolution of the two solutions in time. The errors in Table 3 are calculated
as in (24), with w∆t∗ replaced by the numerical solution for N = 100 · 28

grid points. The results confirm the convergence of (9) for an even number
of grid points. The decreasing convergence rates for the derivatives are due
to the fact that the error is calculated using an approximation of the exact
solution. Intuitively, the second solution corresponds to solutions of several
Dirichlet boundary value problems with the boundary points given by the
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Figure 3. Time evolution of the viscosity solution w∆t∗

(limit when N is odd)
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Figure 4. Time evolution of the second weak solution (limit
when N is even)

points where B(w0
j ) = 0. As T →∞, the function w(x, t) converges to

w∞(x) =


−4x , for x ∈ [0, 1

4 ],

4x− 2 , for x ∈ [1
4 ,

3
4 ],

4− 4x , for x ∈ [3
4 , 1],

which means that u(x, t) tends to

u∞(x) =


arccos(4x) , for x ∈ [0, 1

4 ],

arccos(2− 4x) , for x ∈ [1
4 ,

3
4 ],

arccos(4x− 4) , for x ∈ [3
4 , 1],

and thus ux(x, t)→∞ at x = 1
4 and 3

4 as t→∞.
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N err1 err1,1 err∞ err1,∞
100 · 20 1.3 · 10−3 1.9 · 10−2 2.3 · 10−3 5.1 · 10−2

100 · 21 1.1 · 10−4 (3.6) 2.3 · 10−3 (3.1) 1.7 · 10−4 (3.8) 7.4 · 10−3 (2.8)
100 · 22 1.3 · 10−5 (3.0) 9.3 · 10−4 (1.3) 2.0 · 10−5 (3.0) 2.1 · 10−3 (1.8)
100 · 23 2.7 · 10−6 (2.3) 4.7 · 10−4 (1.0) 4.1 · 10−6 (2.3) 1.0 · 10−3 (1.1)
100 · 24 6.9 · 10−7 (2.0) 2.7 · 10−4 (0.8) 1.1 · 10−6 (2.0) 6.0 · 10−4 (0.7)
100 · 25 1.9 · 10−7 (1.9) 1.9 · 10−4 (0.5) 2.9 · 10−7 (1.9) 3.8 · 10−4 (0.7)

Table 3. L1 and L∞ errors and rates (in brackets) of the
numerical solutions and their derivatives at time T = 0.04
for the scheme based on w with k1 = 0, k2 = 1, θ = 1/2,
CFL number ∆t/(∆x)2 = 100, and an even number of grid
points.
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