Opprinnelsen og alderen til de yngste felsiske plutonene i Oslofeltet

En LAM-MC-ICPMS U-Pb og Lu-Hfisotopstudie av zirkon

Marius Tevik Olsen

Masteroppgave Geologi: Mineralogi og geokjemi 60 studiepoeng

Institutt for geofag Matematisk-naturvitenskapelig fakultet UNIVERSITETET I OSLO

01.06.2018

UiO **Institutt for geofag**

Det matematisk-naturvitenskapelige fakultet

Opprinnelsen og alderen til de yngste felsiske plutonene i Oslofeltet

En LAM-MC-ICPMS U-Pb og Lu-Hf-isotopstudie av zirkon

Marius Tevik Olsen Masteroppgave, våren 2018

© Marius Tevik Olsen, 2018

Veileder: Tom Andersen

Opprinnelsen og alderen til de yngste felsiske plutonene i Oslofeltet

Marius Tevik Olsen

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo

Sammendrag

Den tektomagmatiske aktiviteten i Oslofeltet startet i slutten av karbon og endte muligens så sent som i trias. Tidspunktet for da den tektomagmatiske aktiviteten startet, er godt begrenset, både ved biostratigrafi og ved U-Pb-isotopdateringer. Aldersestimatene av de yngste intrusjonene baserer seg på 70-80-talls Rb-Sr-dateringer, som antyder at den magmatiske aktiviteten varte i opptil 78 Ma, noe som er veldig lenge for en kontinental rift.

Ved bruk av LAM-MC-ICPMS er totalt 544 zirkoner fra 18 lokaliteter i Oslofeltet blitt analysert for U-Pb og Lu-Hf-isotoper.

9 av 18 prøver datert med U-Pb, kan direkte sammenlignes med tidligere Rb-Sr-aldere og gir aldere som er 6 – 26 Ma eldre, hvor den yngste daterte intrusjonen er $256 \pm 1,2$ Ma og tilhører Tryvannskomplekset. Lu-Hf analysene viser at prøvene inneholder komponenter fra både depleted mantle lignende kilder (ϵ Hf (260) \geq 12), samt komponenter som kan komme fra lokal prekambrisk berggrunn (ϵ Hf < 0).

Den tektomagmatiske aktiviteten i Oslofeltet kan forkortes med opptil 11 Ma. Den varte i ca. 63 Ma og endte i slutten av Perm.

Forord

Denne studien ble utført ved Institutt for geofag, Universitetet i Oslo med Tom Andersen som veileder. En forløper til denne undersøkelsen ble i sin tid initiert av Odd Nilsen. Tom Andersen fortsatte å arbeide med problemstillingene med noen foreløpige analyser da Odd Nilsen dessverre ble syk. Denne studien er en utvidet versjon av det Odd Nilsen og Tom Andersen startet opp omkring 2007-2008.

Jeg vil takke Tom Andersen for god veiledning gjennom hele prosessen. Han har vært behjelpelig fra den dagen jeg banket på døra til kontoret og lurte på om han hadde en potensiell masteroppgave liggende. Døra til kontoret har alltid vært åpen siden, og han har vært flink til å formidle all den kunnskapen han har opparbeidet i sin karriere. Det setter jeg veldig stor pris på.

Jeg vil takke Magnus Kristoffersen for all hjelp og støtte med LAM-MC-ICPMS analysene, og for at han gjør en utrolig god jobb med å holde maskineriet ved like. Jeg vil også takke Gunborg Bye Fjeld for møysommelig gjennomgang av knusing av stein, Berit Løken Berg og Siri L. Simonsen for god veiledning i bruken av SEM og katodeluminisensbildene. Jeg vil takke Kjetil Ovesen, Kari E. Frogner og Birk Jakob Slipersæter (GIS folket), for all hjelp i ArcMap, og Kristine Jarsve for utforming av framsiden. Jeg vil takke hele gjengen på rom 217 og lunsjgjengen for alle verdensproblemene vi løste i pausene. Eivind Vikhagen for at du leste og retta på noe som i utgangspunktet kunne virke gresk, og Georg Steffenssen for faglige og rekreasjonelle samtaler de siste to åra. Jeg vil også takke pappa for all hjelp og støtte og for alle de gode samtalene.

Sist men ikke minst vil jeg takke min fantastiske samboer Ida og våres tre døtre Emma, Eva og Oda. Dere har vært tålmodige og vært den største motivasjonen jeg kunne hatt disse årene som student. Dere betyr alt for meg!

Marius Tevik Olsen

Oslo, Juni 2018

Innholdsfortegnelse

1. Innlednin	ng	1
1.1. For	målet med masteroppgaven	1
1.2. Geo	logisk setting	3
1.2.1.	Osloriftens evolusjon	3
1.2.2.	Geologisk oppbygning	7
1.2.3.	Rb-Sr som kronometer	9
2. Analytisl	ke metoder	11
2.1. Teo	retisk bakgrunn	11
2.1.1.	Innledning	11
2.1.2.	Zirkon	11
2.1.3.	U-Pb	13
2.1.4.	Lu-Hf	16
2.1.5.	LAM-MC-ICPMS	
2.2. Prø	ver	21
2.2.1.	Prøvetagning	21
2.2.2.	Prøvepreparering	21
2.2.3.	Tynnslip	21
2.2.4.	Mineralseperasjon og videre preparering	22
2.2.5.	SEM-CL	22
2.3. LAN	M-MC-ICPMS	23
2.3.1.	U-Pb	23
2.3.2.	Lu-Hf	24
3. Resultate	er	25
3.1. Prø	vebeskrivelser	25
3.1.1.	Innledning	25
3.1.2.	ON154 – Granitt	
3.1.3.	ON281 – Ringgang	29
3.1.4.	X3 – Alkalifeltspatgranitt	
3.1.5.	GB14 – Ringgang	31
3.1.6.	L8 – Syenittporfyr	32
3.1.7.	ON33 – Syenittporfyr	

3.1.8.	ON39 – Granofyrisk alkalifeltspatgranitt	
3.1.9.	ON266 – Syenittporfyr	
3.1.10.	MTO-17-1 – Alkalifeltspatsyenitt	40
3.1.11.	MTO-17-2 – Alkalifeltspatsyenitt	41
3.1.12.	MTO-17-3 – Alkalifeltspatgranitt	43
3.1.13.	MTO-17-4 – Alkalifeltspatsyenitt	44
3.1.14.	MTO-17-5 – Alkalifeltspatgranitt	45
3.1.15.	MTO-17-6 – Alkalifeltspatgranitt	47
3.1.16.	MTO-17-7 – Alkalifeltspatsyenitt	49
3.1.17.	MTO-17-8 – Alkalifeltspatsyenitt	51
3.1.18.	MTO-17-9 – Alkalifeltspatsyenitt	53
3.1.19.	GSW1 – Alkalifeltspatsyenitt/Grefsensyenitt	55
3.2. U-H	Pb resultater	57
3.2.1.	Innledning	57
3.2.2.	ON154 – Granitt	
3.2.3.	ON281 – Ringgang	
3.2.4.	X3 – Alkalifeltspatgranitt	60
3.2.5.	ON33 – Syenittporfyr	61
3.2.6.	ON39 – Granofyrisk alkalifeltspatgranitt	
3.2.7.	ON266 – Syenittporfyr	63
3.2.8.	GB14 – Ringgang	64
3.2.9.	L8 – Syenittporfyr	65
3.2.10.	MTO-17-1 – Alkalifeltspatsyenitt	66
3.2.11.	MTO-17-2 – Alkalifeltspatsyenitt	67
3.2.12.	MTO-17-3 – Alkalifeltspatgranitt	
3.2.13.	MTO-17-4 – Alkalifeltspatsyenitt	69
3.2.14.	MTO-17-5 – Alkalifeltspatgranitt	70
3.2.15.	MTO-17-6 – Alkalifeltspatgranitt	71
3.2.16.	MTO-17-7 – Alkalifeltspatsyenitt	72
3.2.17.	MTO-17-8 – Alkalifeltspatsyenitt	73
3.2.18.	MTO-17-9 – Alkalifeltspatsyenitt	74
3.2.19.	GSW1 – Alkalifeltspatsyenitt/grefsensyenitt	75
3.3. Lu-	Hf resultater	77

3.3.1.	Innledning	77
3.3.2.	Error-boksdiagram: MTO-17-1 og MTO-17-3 til MTO-17-6	
3.3.3.	Error-boksdiagram: MTO-17-7, MTO-17-8, MTO-17-9, ON33 og ON	N39 79
3.3.4.	Error-boksdiagram: GB14, GSW1, L8, ON266 og ON281	80
4. Disku	sjon	
4.1. U	J-Pb	81
4.1.1.	Innledning	81
4.1.2.	Hva er den yngste intrusjonen i Oslofeltet?	
4.1.3.	Sammenligning av tidligere geokronologistudier i Oslofeltet	
4.1.4.	Den tektomagmatiske evolusjonen satt i lys av nye aldere	
4.2. U	J-Pb vs. Rb-Sr kronologi	
4.2.1.	Innledning	
4.2.2.	Termiske faktorer	
4.2.3.	Metasomatiske faktorer	90
4.2.4.	Hvor kommer fluidene fra?	92
4.3. L	u-Hf	95
4.3.1.	Innledning	95
4.3.2.	Sammenligning med andre permiske bergarter fra Oslofeltet	95
4.3.3.	Hva er magmakilden?	97
5. Konkl	usjon	
Litteraturli	ste	
Vedlegg A	- Tynnslip	111
Vedlegg B	– U-Pb data	
Vedlegg C	– Lu-Hf data	

1. Innledning

1.1. Formålet med masteroppgaven

Osloriften er en del av et interkontinentalt riftsystem i Nord-Europa, som ble dannet for ca. 319 millioner år siden mot slutten av karbon, og den endelige dannelsen av Pangea. Utviklingen av en riftsone er relatert til stress i litosfæren, og oppvarming eller dekompresjon i underliggende mantel. Osloriften er et godt studert eksempel som kombinerer mange av de klassiske egenskapene til kontinentale riftsystemer. Riften er preget av lavgrads ekstensjon (Pallesen, 1993), og magmatisk aktivitet.

Det er sannsynligvis to hovedårsaker til dannelsen av Osloriften. Den generelle tektoniske tolkningen antyder at riftingen hovedsakelig forekommer som følge av fortynning og strekking av litosfæren (Neumann et al., 2004), knyttet til riftstrukturer og forkastninger som ble dannet i forlandet under den Varisiske orogonese. Den nordligste delen av forkastningene følger *Sorgenfrei-Tornquist-Sonen*, som er en strukturgeologisk grense mellom Fennoskandia og resten av Europa. Litosfæren ble strukket nord og sør for denne sonen, og skjærbevegelsene førte til riftstrukturer og grabener, hvor den største av disse er Osloriften (Larsen et al., 2013).

Den andre hovedårsaken er knyttet til unormalt høye temperaturer under Oslofeltet, som kan ha vært årsaken til at litosfæren ble mekanisk svekket. Temperaturanomalien er knyttet til en mantel plume, som har migrert fra omtrent 3000 km dyp, og smeltet seg gjennom astenosfæren og litosfæren og dannet en magmatisk provins som Osloriften er blitt en del av. Provinsen dekker et areal på omtrent 500 000 km² med et mulig sentrum i Skagerrak og blir derfor betegnet som Skagerrak Large Igneous Province (SCLIP) (Larsen et al., 2013; Torsvik et al., 2008).

Den tektoniske og magmatiske aktiviteten i Oslofeltet, fortsatte gjennom mesteparten av paleozoikum, kanskje muligens helt til midtre trias. Dateringen rundt disse tektoniske og magmatiske hendelsene er basert på store sett med Rb-Sr isokron aldere (Sundvoll et al., 1990), som nå sakte men sikkert blir erstattet av U-Pb data hovedsakelig fra zirkoner. U-Pb geokronologi gir en indikasjon på kortere tidsintervall enn det som tidligere er blitt antatt ved

hvert av de tektomagmatiske hendelsene ved Osloriften, og indikerer generelt sett en noe eldre alder enn det Rb-Sr-dataene tilsier.

Hensikten med dette prosjektet er å få bedre kontroll på alderen av den senere magmatismen i Oslofeltet, og dermed varigheten av de tektomagmatiske hendelsene ved Osloriften. Dette skal utføres ved en systematisk geokronologistudie av U-Pb i zirkoner ved bruk av LA-ICPMS. I tillegg skal det utføres Hf-isotopanalyser ved bruk av multicollector-ICPMS, for å få kontroll på magmakilden, om den f.eks. stammer fra mantel eller kontinental jordskorpe.

1.2. Geologisk setting

1.2.1. Osloriftens evolusjon

Den siste evolusjonen av Osloriften kan deles inn i fem til seks stadier (Ramberg & Larsen, 1978; Neumann et al., 2004; Larsen et al., 2008).

Geological map

1. Forstadium til riftingen

I perioden senkarbon ble det dannet grunne sedimentasjonsbasseng i Osloområdet. Restene av dette bassenget finner man fra Skien i sør til Nittedal i nord, og blir betegnet som Askergruppa (Larsen et al., 2013). En maksimal aldersgrense for deponering av Askergruppa er gitt ved 319 ± 5 Ma IDalder TIMS av en detritalzirkon (Dahlgren & Corfu, 2001). Alderen samsvarer med fossiler som indikerer en øvre Westphalian alder på 312-300 Ma (Olaussen, Larsen, & Steel, 1994).

2. Det innledende riftstadiet

Dette stadiet blir karakterisert ved de første basaltlavaene. Basaltlavaene har forskjellig tykkelse, antall lavastrømmer, kjemisk og mineralogisk sammensetning og kan derfor grupperes i fire provinser: Brunlanes, Skien – Porsgrunn, the Oslo Graben Lithologies Volcanics and sediments Intrusives Gabbroic intrusives large intrusive dykes Cambro-silurian sediment Caledonian thrust front Precambrian basement Precambrian basement nside the rift Faults > 500 m 50 - 500 m Udifferentiated Thrust faults

Figur 1: Simplifisert kart over Oslofeltet og dets forskjellige bergarter og forkastninger (Larsen et al., 2008).

Holmestrand – Jeløya og Krokskogen – Kolsås – Nittedal. Brunlanesbasaltene er de sørligste og antakeligvis de eldste basaltene i Oslofeltet. Disse basaltene er silika-undermettede og består av nefelinitt og melilititt (Larsen et al., 2013). Corfu & Dahlgren (2008) har brukt

perovskitt fra disse silikafattige, vulkanske bergartene, sammen med magmatisk titanitt i en mer utviklet ignimbritt. Ved bruk av disse mineralene og ID-TIMS har de fått aldere med meget høy presisjon på henholdsvis 300-299 Ma fra sørlig til nordvestlig del av Brunlanesbasaltene. Basaltutbruddene ble tynnere lenger nordover og døde ut rundt Oslo.

3. Riftdannelsens klimaks

Dette stadiet kjennetegnes av storstilt vulkanisme, oppsprekking og forkastningsaktivitet. Store mengder rombeporfyr strømmet ut av lange spaltevulkaner, som fulgte hovedsprekkeretningene i Osloriften og gikk ned til magmakamrene på grensen mellom skorpe og mantel. Rombeporfyr dannet store lavaplatåer og står for det største volumet av vulkanske bergarter i Oslofeltet (Larsen et al., 2013). Rombeporfyrstrømmene har en Rb-Sr alder på 294 ± 6 til 276 ± 6 Ma (Sundvoll & Larsen, 1990, 1993). Larvikplutonen intruderte ved dette stadiet og er blitt datert med U-Pb i zirkoner til 299-289 Ma ved bruk av ID-TIMS (Dahlgren et al., 1996, 1998) og LA-ICPMS (Ramö & Andersen, 2011). Det er også blitt gjort U-Pb dateringer fra zirkoner og baddeleyitt av plutoner nord og sør for Siljan-Skrim området. To intrusive komplekser nord i området bestående av Skrim larvikitt og Mykle ekeritt har en alder på 281,2 ± 0,6 Ma til 279,8 ± 0,7 Ma. Det sørlige Siljan-Hvarnes komplekset består av en serie av monzonittiske til syenittiske intrusjoner og har en alder på 278,5 ± 0,8 Ma til 277,3 ± 0,8 Ma (Pedersen et al., 1995).

4. Store sentralvulkaner og kalderaer

Ved dette stadiet fikk vulkanene en annen karakter. Tidligere vulkaner kan karakteriseres som *monogenetiske spaltevulkaner*, ved at det strømmet rombeporfyr fra lange spalter. De senere vulkanene hadde hyppigere små utbrudd fra nesten samme kraterpunkt og kalles *polygenetiske sentralvulkaner*. Disse vulkanene kunne bli omtrent 1000 meter høye og ha en diameter på 15 km og oppover. I dag finner vi restene av de største sentralvulkanene i ringformete kalderastrukturer. Øyangkalderaen på Krokskogen skal være blandt den yngste kalderaen i Oslofeltet og har en sentral syenittintrusjon og en bred syenittisk ringgang. Disse er aldersbestemt til å være 268 ± 3 Ma (Larsen et al., 2013). Den yngste kalderaen i Oslofeltet 243 ± 3 Ma (Sundvoll et al., 1990).

5. De store batolittenes tid

I løpet av dette stadiet ble det igjen tilført magma i Oslograbenen. Nye batolitter krystalliserte fra sør i Vestfoldgrabenen og hele Akershusgrabenen til Skreifjella ved Mjøsa i nord. Dypbergartene fra denne perioden er enten av syenittisk, nordmarkittisk eller ekerittisk sammensetning. Nordmarkitt og ekeritt er ikke-standardiserte bergarstnavn, men termene blir mye brukt i arbeid med Osloriften. Nordmarkitt blir definert som en alkalisyenitt, og ekeritt definert som en alkaligranitt (Neumann, 1976). Rb-Sr datering av disse bergartene antyder alder på 273-241 Ma (Sundvoll et al., 1990). Corfu og Dahlgren (2008) refererer til en upublisert U-Pb zirkon alder for Tryvannsgranitten på 259 \pm 1 Ma. De underliggende dataene for denne alderen er ikke tilgjengelige, men er en indikasjon på at Rb-Sr isotopsystemet gir noe lave intrusjonsaldere enn det som er reelt. Den eldste batolitten datert med Rb-Sr er Bolærne larvikitten og er 281 \pm 4 Ma (Sundvoll et al., 1990).

Drammensplutonen som består av flere granittiske intrusjoner er blitt datert ved bruk av U-Pb i zirkon med LAM-ICPMS, og U-Pb alderne gir 286-272 Ma (Haug, 2007)). Til sammenligning har Rb-Sr dateringer av drammensgranitten gitt en alder på 267 ± 4 Ma (Sundvoll & Larsen, 1993). Larsen et al., (2013) ser på de yngste intrusjonene og gangene som et tydelig sluttstadium i evolusjonen av Osloriften, stadium 6. Det er også blitt gjort Ar-Ar dateringer av diorittiske og monzonittiske ganger i de nordligste delene av Osloriften, Lunner og Bøverbru. Dette er noen av de aller yngste intrusjonene, med en alder på henholdsvis 246-238 Ma (Torsvik et al., 1998).

Tabell 1: Tektomagmatiske stadiene i Osloriften

		Stratigrafiske	U-Pb aldere
Stad i ana	Produktene	eller Rb-Sr aldere	(Ma)(Ref.)
Stadiene		(Ma)(Ref.)	
1. Forstadiet til	Askergruppa	Øvre Westphalian	< 319 (5)
mungen		ca. $312 - 300(1)$	
2. Innledende	Silikafattige basalter	304 - 294 (2)	300 - 299 (6)
riftstadiet			
3. Riftdannelsens	Rombeporfyr og	294 - 276 (3)	299 – 277 (7)
klimaks	larvikitt intrusjoner	281 – 273 * (4)	
4. Sentralvulkaner og	Kalderaer,	276 - 243 (4)	
kalderaer	ringganger og		
	diverse vulkanske		
	bergarter		
5. Batolittene	Larvikitt, syenitter	273 – 241 ** (4)	286 (8) - 259 (6)
	og granitter		

* Tidsintervallene for rombeporfyrstrømmene og larvikittintrusjonene overlapper hverandre (4).

** De yngste larvikittintrusjonene overlapper med intrusjonsalderen til syenitter og granitter.(4).

Kilder fra tabell 4: 1) (Olaussen et al., 1994). 2) (Sundvoll et al., 1992). 3) (Sundvoll & Larsen, 1990, 1993). 4) (Sundvoll et al., 1990). 5) og 6) (Corfu & Dahlgren, 2008; Dahlgren & Corfu, 2001). 7) (Dahlgren et al., 1996, 1998; L. E. Pedersen et al., 1995; Ramö & Andersen, 2011). 8) (Haug, 2007).

1.2.2. Geologisk oppbygning

Selve riftstrukturen i Oslofeltet er delt inn i fire grabensegmenter, hvor tre av dem er onshore: Vestfoldgrabenen, Akerhusgrabenen og Rendalsgrabenen. Den fjerde befinner seg offshore lenger og kalles Skagerrakgrabenen. sør Grabensegmentene er halvgrabener og hovedforkastningene dem i mellom skifter fra den ene til den andre siden, knyttes og sammen av sidelengsforkastninger (Larsen et al., 2013).

Akershus og Vestfoldgrabenen danner den klassiske Oslograbenen, og er 220 km lang og 60 km bred. Dette samt Rendalsgrabenen i nord på 100 km og Skagerrakgrabenen i sør på 180 km, utgjør Osloriften hele 500 km (Larsen et al., 2008).

Blant de eksponerte permiske bergartene i dag finner vi 15 - 18kalderaer innenfor et område på 180 km. Disse kalderaene varierer i størrelse fra 5 - 16 km i diameter, med et gjennomsnitt på rundt 10 - 12 km. Kun seks kalderaer har bevart sin

Figur 2: Grabensegmentene og deres skiftende polaritet, hovedforkastningene samt sidelengsforkastningene dem imellom. R.F.=Rendalen forkastningen, S.H.=Solberg Horst, R.H.F. = Randsfjorden-Hunnselv forkastningen, K.K.T.F. = Krokkleiva-Kjaglidalen transversforkastning, E.T.F. = Ekeberg transferforkastning, O.F. = Oslofjordforkastningen og L.A.Z = Langesund overgangsområde (Larsen et al., 2008).

opprinnelige periferi, tre har mistet halvparten av sitt opprinnelige område til yngre plutoner, og ni dukker opp som segmenter eller halvmønstre. Ringgangene er som regel syenittiske, og sentrale intrusjoner spenner fra monzonittiske til syenittiske, med noen granittiske plugger (Oftedahl, 1978).

Oslofeltet består av flere plutonske komplekser. Fra Larvikkomplekset i sør, som er det eldste, til alkaligranitter og alkalisyenitter i Akershus Graben Segmentet, som er de yngste og som markerer slutten på den tektomagmatiske utviklingen av Osloriften. Tryvannsgranitten er datert med Rb-Sr til 241 \pm 3 Ma og er med det den yngste plutonske intrusjonen i Oslofeltet (Sundvoll et al., 1990).

Figur 3 er et palaeogeografisk kart som blant annet viser hvor Norge og Oslofeltet lå for 280 Ma. Sørlige deler av Norge lå ved ca. 20° nord for ekvator innenfor det subtropiske høytrykksbeltet og vitner om et ørkenklima i sørlige deler av Norge. Rester av ørkenklima finner vi blant annet i Brumunddal, hvor det er blitt bevart eolisk ørkensand på toppen av rombeporfyrlava. Brumunddalssandsteinen er omtrent 800 meter tykk og er unik ved at den har bevart den høye porøsiteten i likhet med mange andre reservoarbergarter på norsk og utenlandsk sokkel (Larsen et al., 2013). Den røde stiplete linjen på kartet (fig. 3) viser Plume Generation Zone (PGZ), et område som ligger i barrieren mellom kjerne og mantel, hvor det dannes termokjemiske plumer som migrerer opp til astenosfæren og litosfæren og står for dannelsen av samtlige LIPs, hot-spots og kimberlitter (Torsvik et al., 2008).

Figur 3: Palaeogeografisk bilde som viser hvor Norge og Oslo befant seg for 280 Ma (Torsvik & Cocks, 2016).

1.2.3. Rb-Sr som kronometer

For datering av bergarter ved bruk av isotoper forutsettes det at systemet forblir uforstyrret i forhold til det isotopsystemet som blir brukt. Ved bruk av Rb-Sr forutsetter det at mengden av Rb-87 og datternukliden Sr-87 ikke endres ved utveksling med omgivelsene, slik at Sr-87 samsvarer med mengden Rb som har desintegrert. Når et isotopsystem forblir uforstyrret blir det kalt et lukket system. Dette gjelder for alle isotopsystemer, og hver av dem har forskjellige betingelser ved for eksempel temperatur og fluider som kan forstyrre og tilbakestille systemet. Rb-Sr isotopsystemet har en lukningstemperatur på 300-500 °C som er relativt lavt sammenlignet med U-Pb i zirkoner som har en lukningstemperatur på 900 °C (Waight, 2015; Lee et al., 1997). Hvis for eksempel et relativt varmt magma intruderer i en allerede relativt varm bergart, vil den termiske gradienten mellom disse være liten. Da vil den intrusive bergarten bruke lenger tid på kjøles ned, og dermed vil Rb-Sr alderne gi en yngre alder enn andre isotopsystemer med en relativt høyere lukningstemperatur (Waight, 2015).

Metamorfose kan føre til temperaturer som overstiger lukningstemperaturen, samt føre til frigjøring av fluider som fremmer diffusjon og adveksjon av ioner og elementer (metasomatose). Dette gjelder spesielt de «mobile» store ion-litofile-elementene (LILE), som inkluderer de fleste alkali og jordalkalielementene, inkludert Rb og Sr. Ofte vil Rb og Sr budsjettet i metasomatiske bergarter endres vesentlig. Isotopsystemer er svært følsomme for slike prosesser, selv uten tilsynelatende metamorfe overpregning, og kan til og med påvirke en bergart og isotopsystemer under de nevnte lukningstemperaturene. Zirkoner er derimot svært motstandsdyktige mot kjemisk og fysisk forvitring og kjemisk forandring over et bredt spekter av trykk og temperaturer i forskjellige geologiske miljøer (Hanchar, 2016). Følsomheten til metamorfe og metasomatiske prosesser gjenspeiles ofte i aldersrelasjoner av eldre bergarter som gir yngre Rb-Sr aldere. Dette i tillegg til den allerede lave lukningstemperaturen til systemet som mange metamorfe reaksjoner kan overskride, har lenge ført til at tolkning av Rb-Sr aldere har vært et langvarig problem (Fairbairn et al., 1961; Riley & Compston, 1962; Waight, 2015).

Denne tilsynelatende begrensningen av Rb-Sr kronometeret kan derimot fordelaktig brukes til å datere sekundære hendelser, dvs. da isotopsystemet ble tilbakestilt ved metamorfe reaksjoner (Waight, 2015).

2. Analytiske metoder

2.1. Teoretisk bakgrunn

2.1.1. Innledning

Et fellesnavn for alle atomslag, uavhengig av grunnstoff er nuklide, definert ved antallet protoner (Z) og nøytroner (n) i atomkjernen. Alle nuklider av ett og samme grunnstoff har samme Z, og betegner isotoper, disse skiller seg fra hverandre ved forskjellig atomvekt (u). Vi skiller mellom stabile og radioaktive nuklider (radionuklider). Radioaktive nuklider bryter ned til stabile nuklider (datternuklider) ved forskjellige radioaktive nedbrytningsprosesser. Dette kan skje direkte (f.eks. ⁸⁷Rb \rightarrow ⁸⁷Sr), eller gjennom radioaktive nedbrytningskjeder (f.eks. ²³⁸U \rightarrow ²⁰⁶Pb) der de intermediære datternuklidene også er radioaktive.

I et system som er lukket i forhold til ytre påvirkninger vil nedbrytningsprodukter akkumulere over tid, og vi kan i prinsippet bruke forholdet mellom akkumulerte stabile nuklider og den opprinnelige radionukliden til å datere geologiske prosesser.

2.1.2. Zirkon

Zirkon (ZrSiO₄) er et enkeltsilikat med separate SiO₄ grupper og zirkonium (Zr⁴⁺) i uregelmessig 8-koordinerte posisjoner, og er et relativt vanlig aksessorisk mineral i magmatiske, metamorfe og sedimentære bergarter samt ukonsoliderte sedimenter (f.eks. i elv og sandstrand) (Finch og Hanchar, 2003).

U⁴⁺, Th⁴⁺, Hf⁴⁺, Y³⁺og de tunge REE kan erstatte Zr⁴⁺ i zirkonstrukturen. Pb²⁺ har for lav ioneladning og for stor ioneradius til å kunne gå inn i strukturen. Radiogent bly (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) dannet ved radioaktiv nedbrytning av U og Th isotoper vil imidlertid bli bevart i zirkonstrukturen med mindre zirkonkrystallen utsettes for en senere termisk eller kjemisk påvirkning, som fører til tap av radiogent bly. Høyt innhold av U og Th og lavt initialt blyinnhold gjør zirkon til et meget godt dateringsverktøy (Speer, 1982; Davis et al., 2003). Over tid vil alfastråling fra U, Th og radioaktive datterprodukter påføre zirkonstrukturen skade, og den kan ende opp som fullstendig amorf (metamikt) (Woodhead et al., 1991). Metamikt zirkon er reaktiv, og vil lett tape radiogent bly, og ta opp bly fra omgivelsene («common lead»). De tetravalente kationene hafnium (Hf) og uran i zirkon er forholdsvis immobile under de fleste geologiske forhold. Det fører til at kjemiske soneringer og isotopiske signaturer av arvelige kjerner kan bevares selv om U-Pb systemet er sterkt forstyrret (Cherniak, 2010; Cherniak et al., 1997).

Zirkon er motstandsdyktig mot kjemisk og fysisk påvirkning, og kan overleve for eksempel lav til midlere grads metamorfose og forvitringsprosesser. Geokjemisk informasjon blir ofte bevart i indre strukturer og soneringer fra flere geologiske hendelser og kan observeres ved bruk av katodeluminisens (CL) og reflekterte (tilbakespredte) elektroner (BSE) i elektronmikroskop (SEM) (Corfu et al., 2003).

U-Pb isotopsystemet i krystalline zirkoner har en relativt høy lukningstemperatur, ca. 900°C. Det er derfor robust ovenfor de fleste metamorfe prosesser, og har evne til å bevare isotopsignaturer gjennom geologisk tid (Ireland & Williams, 2003). De eldste zirkonene som hittil er påvist er ca. 4404 \pm 8 Ma korn i konglomeratboller fra Jack Hills, Australia (Cavosie et al., 2007). Dette er det eldste terrestriele materiale man hittil har funnet.

 Hf^{4+} kan erstatte Zr^{4+} i alle forhold i zirkonstrukturen. Dette gir opphav til en fast blandbarhetsserie mellom zirkon (Zr, Hf)SiO₄ og hafnon (Hf, Zr)SiO₄ (Hoskin & Rodgers, 1996; Ramakrishnan et al., 1969). Hf-nivået i zirkon varierer fra 0.5 til 7 wt% (Hoskin & Schaltegger, 2003). Flere sporelementer kan gå inn i krystallstrukturen til zirkon, deriblant lutetium, (inkludert ¹⁷⁶Lu som er radioaktiv og bryter ned til ¹⁷⁶Hf), men nivået er lite. Dette resulterer i et lavt Lu/Hf-forhold på rundt ~ 0.002 (Kinny & Maas, 2003). På grunn av et lavt Lu/Hf-forhold egner zirkon seg dårlig til radiometrisk dateringer ved bruk av Lu-Hf metoden, men det initielle ¹⁷⁶Hf/¹⁷⁷Hf-forholdet er godt egnet til å si noe om hva slags mulig miljø zirkonet er dannet, og om forhistorien til kildematerialet zirkonet ble dannet i (Kinny & Maas, 2003).

2.1.3. U-Pb

Den radioaktive nedbrytningsserien fra U og Th til Pb danner grunnlaget for tre geokronologiske dateringsmetoder. U har tre naturlig forekommende radioaktive isotoper: ²³⁵U som bryter ned til ²⁰⁷Pb (actinium-serien), ²³⁸U som bryter ned til ²⁰⁶Pb (uran-serien) og ²³⁴U som er en intermediær datter tilhørende ²³⁸U serien. ²³²Th bryter ned til ²⁰⁸Pb. Isotoper danner U og Th og gir opphav til hver sin kjede av radioaktive datterisotoper, som til slutt bryter ned til en stabil Pb isotop (Faure & Mensing, 2005). Disse radioaktive seriene kan beskrives av følgende ligninger:

$$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8\alpha + 6\beta^{-} + Q \tag{1}$$

$$^{235}\text{U} \rightarrow ^{207}\text{Pb} + 7\alpha + 4\beta^{-} + Q \tag{2}$$

$$^{232}\text{Th} \rightarrow ^{208}\text{Pb} + 6\alpha + 4\beta^{-} + Q \tag{3}$$

Tabell 2: Naturlig forekommende isotoper, overflod, halveringstider og halveringskonstanter etter (Steiger & Jäger, 1977).

Isotop	Hyppighet	Halveringstid	Halveringskonstant
	(%)	(Ma)	(y-1)
²³⁸ U	99,2743	4468	1,55125 × 10 ⁻¹⁰
²³⁵ U	0,7200	703,8	9,8485 × 10 ⁻¹⁰
²³² Th	100,0	14010	4,9475 × 10 ⁻¹¹

hvor α er en alfapartikkel (⁴He), β ⁻ er en beta-minus partikkel og Q er den totale energien.

U-Pb geokronologi har en fordel i forhold til, for eksempel Rb/Sr systemet, at man har parallelle isotopsystem med de samme geokjemiske egenskapene, men med forskjellig halveringstid (tabell 2). Radiogen akkumulasjon av blyisotoper beskrives ved følgende ligninger:

$${}^{206}\text{Pb} = {}^{206}\text{Pb}_i + {}^{238}\text{U} (e^{\lambda 238t} - 1)$$
(4)

$${}^{207}\text{Pb} = {}^{207}\text{Pb}_i + {}^{235}\text{U} (e^{\lambda 235t} - 1)$$
(5)

hvor λ_{238} og λ_{235} er halveringskonstantene til ²³⁸U og ²³⁵U (tabell 1), og *i* er initialt Pb. t er tiden i Ma.

Bly går normalt ikke inn i krystallstrukturen til zirkon, så vi kan gå ut i fra at det ikke var noe bly i strukturen under dannelsen av mineralet, som betyr at ligning 4 og 5 kan forenkles til:

$$\frac{206Pb^*}{238U} = (e^{\lambda 238t} - 1) \tag{6}$$

$$\frac{207Pb^*}{235U} = \left(e^{\lambda 235t} - 1\right) \tag{7}$$

hvor Pb* representerer radiogent bly. Ligningene 6 og 7 kan løses hver for seg med hensyn på *t*, for å oppnå en alder, eller kombineres til å gi ligningen:

$$\frac{207\text{Pb}*/235\text{U}}{206\text{Pb}*/238\text{U}} = \frac{e^{\lambda 235\text{t}} - 1}{e^{\lambda 238\text{t}} - 1}$$
(8)

som kan uttrykkes:

$$\frac{207\text{Pb}*}{206\text{Pb}*} \times \frac{1}{137,88} = \frac{e^{\lambda 235\text{t}} - 1}{e^{\lambda 238\text{t}} - 1}$$
(9)

siden $\frac{235}{238}$ U forholdet er konstant $\frac{1}{137,88}$ (Steiger & Jäger, 1977).

Denne må løses iterativt for *t* hvis ${}^{207}\text{Pb}*/{}^{206}\text{Pb}*$ forholdet blir målt, og dagens naturlige ${}^{238}\text{U}/{}^{235}\text{U}$ forhold brukes. Det er nylig blitt stilt spørsmålstegn ved den normalt aksepterte verdien for dagens uranisotopforhold, ${}^{238}\text{U}/{}^{235}\text{U} = 137,88$ (Brennecka et al., 2010). En alternativ verdi som avviker med 0,031% har blitt foreslått (Richter et al., 2010). For sen-Paleozoiske bergarter vil en slik endring gi 0,4 – 0,8 Ma yngre aldre (Richter et al., 2010). Siden den nye verdien for ${}^{238}\text{U}/{}^{235}\text{U}$ hittil ikke er kommet i allmenn bruk, og for eksempel ikke er implementert i Isoplot-programmet (Ludwig, 2008), blir den «gamle» verdien på 137,88 brukt i dette arbeidet.

Ligningene 6 og 7, vil gi aldre som er like innenfor analytisk usikkerhet (konkordante aldere) hvis: *i*) Mineralet har vært et lukket system, som hverken har blitt tilført eller mistet U, Th eller intermediære datteratomer, slik at all endring i Pb/U forholdet skyldes akkumulasjon av radiogent bly. *ii*) Ikke initielt bly tilstede. *iii*) Nedbrytningskonstantene som brukes må være nøyaktige. *iv*) Ingen isotopfraksjonering av uran eller noen indusert fisjon av ²³⁵U skal ha oppstått. *v*) De analytiske resultatene skal være nøyaktige og fri for systematiske feil (Faure & Mensing, 2005).

U-Pb dateringer er ofte diskordante. Dvs. at alderen er forskjellig med mer enn det man skulle vente fra analytisk usikkerhet. Dette skyldes at betingelsene ikke er oppfylt ved at radiogent bly eller uran har gått tapt i en prosess etter den opprinnelige krystallisasjon. Blytap kan skyldes at radiogent bly diffunderes ut som følge av termisk påvirkning under metamorfose, eller ved påvirkning fra fluider under hydrotermale omvandlingsprosesser eller forvitring. Metamikte zirkoner er særlig utsatt for slikt blytap og fører til normal diskordans. Invers diskordans med $a_{207/235} < a_{206/238}$, skyldes urantap eller «common lead» kontaminasjon. Urantap kan skyldes at U danner det vannoppløselige uranyl-ionet (UO_2^{2+}) under oksiderende forhold. For at betingelsene for *ii*) skal være oppfylt, må korreksjonene til de målte verdiene av ²⁰⁷Pb og ²⁰⁶Pb bli estimert på grunnlag av mengden vanlig bly fra en generell terrestriel Pbevolusjonsmodell.

Ulike diagrammer kan brukes til å visualisere variasjon i U-Pb-data fra en prøve. Wetherill's (1956) konkordiadiagram er et av dem. I Wetherills (1956) konkordiadiagram plottes ²⁰⁶Pb/²⁰⁷Pb mot ²⁰⁷Pb/²³⁵U forholdet. I dette diagrammet vil alle konkordante zirkoner plotte på en kurve (konkordia kurve).

Tera-Wasserburg diagrammet er et annet diagram som blir mye brukt. I dette diagrammet plotter man ²⁰⁶Pb/²³⁸U mot ²⁰⁷Pb/²³⁵U forholdet (Tera & Wasserburg, 1972). Tera-Wasserburg diagrammet har fordeler for zirkoner der man ikke kan korrigere for «common lead», enten ved at målingene av ²⁰⁴Pb er for upresise eller ikke lar seg måle. I slike tilfeller danner de plottede dataene i et Tera-Wasserburgdiagram en regresjonslinje som skjærer y-aksen, som tilsvarer ²⁰⁷Pb/²⁰⁶Pb-forholdet til «common lead», og et nedre skjæringspunkt med konkordiakurven som tilsvarer ²³⁸U/²⁰⁶Pb-forholdet. Det har en fordel ved at disse to variablene kun har en svak korrelasjon (Parrish & Noble, 2003).

2.1.4. Lu-Hf

I tillegg til den stabile og naturlig forekommende ¹⁷⁵Lu, har lutetium også en naturlig forekommende og radioaktiv isotop, ¹⁷⁶Lu, som ved β ⁻ nedbrytning, brytes ned til den stabile ¹⁷⁶Hf-isotopen. Halveringstiden beskrives ved ligningen:

$${}^{176}\text{Lu} \rightarrow {}^{176}\text{Hf} + \beta^2 + \tilde{\nu} + Q \tag{9}$$

hvor β^{-} er en beta-minus partikkel, \tilde{v} er et antinøytrino og Q er den totale energien.

Ligningen:

$$\frac{176\text{Hf}}{177\text{Hf}} = \left(\frac{176\text{Hf}}{177\text{Hf}}\right)_i + \frac{176\text{Lu}}{177\text{Hf}}\left(e^{\lambda 176\text{Lu}*t} - 1\right)$$
(10)

hvor ¹⁷⁶Hf/¹⁷⁷Hf og ¹⁷⁶Lu/¹⁷⁷Hf er de målte forholdene til isotopene ved nåtid, i er initialverdiene til ¹⁷⁶Hf/¹⁷⁷Hf og λ^{176} Lu er nedbrytningskonstanten til ¹⁷⁶Lu (λ^{176} Lu = 1.867 × 10-11y⁻¹; Scherer et al., 2007, 2001; Söderlund et al., 2004). Isotopsystemet kan brukes til radiometrisk datering, men det forutsetter at mineralet, eller bergarten som skal dateres har et relativt høyt Lu/Hf-forhold, slik at usikkerheten til det initielle Lu/Hf-forholdet blir neglisjerbart i forhold til det målte Lu/Hf-forholdet. Dette er ikke tilfellet i zirkon, som har et lavt Lu/Hf-forhold. Siden Lu/Hf-forholdet er lavt, vil isotopsammensetningen av Hf i zirkon endres veldig sakte over tid.

Avviket til ¹⁷⁶Hf/¹⁷⁷Hf-forholdet i zirkon, relativt til ¹⁷⁶Hf/¹⁷⁷Hf-forholdet i det kondrittisk udifferensiert reservoaret (CHUR) ved samme tid betegnes som ϵ_{Hf} -verdien og beskrives ved ligningen:

$$\epsilon_{\rm Hf}(t) = \left[\frac{(^{176} {\rm Hf} / ^{177} {\rm Hf})_{sample}^t}{(^{176} {\rm Hf} / ^{177} {\rm Hf})_{CHUR}^t} - 1 \right] \times 10^4$$
(11)

 $(176 \text{Hf}/177 \text{Hf})_{sample}^{t}$ er forholdet i prøven og $(176 \text{Hf}/177 \text{Hf})_{CHUR}^{t}$ er CHUR-forholdet ved tiden t.

Hafnium er mer inkompatibelt i smelteprosesser i mantelen enn lutetium. Det fører til at mantelsmelte har lavere Lu/Hf-forhold enn gjenværende utarmet mantel (depleted mantle, DM). Ved å sammenligne det initielle ¹⁷⁶Hf/¹⁷⁷Hf-forholdet til en zirkon og ¹⁷⁶Hf/¹⁷⁷Hf-forholdet til CHUR ved dannelsen av zirkonen, kan man fortelle noe om forhistorien til kildematerialet zirkonen ble dannet i; negative epsilon Hf – verdier indikerer at zirkon er dannet fra en kilde med lavere Lu/Hf-forhold enn CHUR, dvs. kontinental jordskorpe. Positive epsilon Hf – verdier indikerer en kilde med høyere Lu/Hf-forhold enn CHUR, dvs. utarmet mantel. Intermediære epsilon Hf – verdier kan være en indikasjon på en blandet magmakilde, eller gammel jordskorpekilde med Lu/Hf-forhold lavere enn DM.

2.1.5. LAM-MC-ICPMS

LAM-MC-ICPMS (Laser Ablation Microprobe, Multi-Collector, Inductively Coupled Mass Spectrometry) er en laser-ablasjonsmetode som blir brukt sammen med en induktivt koblet plasmakilde og et massespektrometer.

For å kunne analysere enkeltkorn (zirkoner), blir disse separert ut fra prøven ved fysiske separasjonsmetoder og håndplukking. Deretter blir de montert på dobbeltsidig tape og støpt inn i epoxy. Epoksyklossene blir slipt ned slik at kornene er eksponert, overflaten blir polert. Epoksyklossen er montert i et lufttett kammer fylt med helium (He), på en motordrevet justerbar base som kontrolleres med en datamaskin. For å navigere blir det brukt et digitalt mikroskop i kombinasjon med laseren.

Interaksjonen mellom laserstråle en og fast fase er en kompleks prosess. Prøven absorberer energi fra laseren og danner en aerosol av faste partikler og smeltedråper, i en prosess som kalles ablasjon (Košler & Sylvester, 2003). Aerosolen transporteres fra ablasjonscellen til plasmakilden, ved hjelp av en He + Ar gass. Temperaturen i plasmaet har en temperatur på 8000 – 10000 K. Her vil partiklene i aerosolen fra prøvene brytes opp til atomer. Disse vekselvirker med Ar⁺ i plasmaet. Ar⁺ tar til seg elektroner fra atomene, og etterlater seg positive ioner og Ar⁰. Deretter suges plasma med ioner fra atmosfæretrykk i plasmakilden til høyvakum i massespektrometeret gjennom et system av metall «cones» (Ni eller Pt) (filtreringskjegler i figur 4) i to trinn («sampler» og «skimmer» cones). Vi kaller dette for «interface» i massespektrometeret, og det pumpes ned med en stor rotasjonspumpe. Ionene blir deretter filtrert ved kinetisk energi i en elektrostatisk analysator. Ved utgangen av analysatoren passerer ionestrømmen en spalte («energy defining slit»). Ionene som passerer denne vil alle ha samme kinetiske energi før den når den magnetiske sektorfeltanalysatoren, der ionestrømmen blir sortert etter masse. Detektorene til Nu Plasma ICPMS er stasjonære, så massedispersjonen foregår i forstørrelseslinsene (zoom ion lens). Ionestrømmene blir deretter fanget opp av Faradaydetektorer og/eller ionetellere. IC0 – multiplikatoren teller ²⁰⁷Pb, IC1 – ²⁰⁶Pb og IC2 – ²⁰⁴Pb isotopene (fig. 4). Maskinen på instituttet har en dedisert U-Pb blokk som har en annen konfigurasjon enn standardblokken på bildet (fig. 4). Helt til slutt blir rådata redusert på en datamaskin.

LAM-MC-ICPMS

Figur 4: Figuren illustrerer oppbygningen av et Nu-Plasma-Multicollector system, og er modifisert etter Nu Plasma HR sin instrument brosjyre.

2.2. Prøver

2.2.1. Prøvetagning

Bergartsprøvene har blitt samlet med det formål å gjøre mineralogiske/petrologiske tynnslipsbeskrivelser, og for aldersbestemmelse ved bruk av LAM-MC-ICPMS. Prøvetagningsstedene ble valgt med tanke på bergartsprøven som skal beskrives, og bergartens grad av forvitring. Prøvene ble hovedsakelig tatt fra blottlagte veiskjæringer, og de friskeste prøvene ble tatt ved bruk av slegge og hammer.

8 av totalt 18 prøver som er analysert i denne studien (ON154, ON281, X3, GB14, L8, ON33, ON39 og ON266) er prøver som opprinnelig er innsamlet av Odd Nilsen. GSW1 er innsamlet av Tom Andersen.

2.2.2. Prøvepreparering

I alt 9 prøver ble samlet for petrografiske beskrivelser, og undersøkelser av zirkoner ved elektronmikroskop i SEM, og datering og tatt isotopanalyse ved bruk av LAM-MC-ICPMS. Begge metoder krever prøvepreparering, og vil presenteres her.

2.2.3. Tynnslip

Prøvene ble skåret med diamantsag til en 0,5 cm tykk og ca. 30 x 20 mm stor skive. Tynnslipene ble laget av S. Akhavan, ved Institutt for Geofag på UiO. Her ble de montert på glass og slipt og polert ned til ønsket tykkelse på 30 µm. Tynnslipene ble deretter undersøkt ved bruk av mikroskop i planpolarisert og krysspolarisert lys.

2.2.4. Mineralseperasjon og videre preparering

Prøvene ble kuttet opp til ca. 10x10 cm størrelse, vasket for hånd og lagt i ultralydbad i ca. 10-15 min før de tørket i ovn ved lav temperatur. Deretter ble de knust i kjeftknuser til relativt grove korn (<1 cm). Etter at prøven er knust ble finfraksjon < ca. 250 μ m siktet ut, og tunge mineraler separert ut ved pannevasking, som er det samme prinsippet som ved vasking etter gull. Zirkon har høyere tetthet enn f.eks. feltspat og kvarts, og vil bli værende igjen i pannen, mens de lettere mineralene suspenderes og vaskes ut. Etterhvert vil bare tyngre mineraler ligge igjen i vaskepannen, som f.eks. magnetitt, apatitt, granat, rutil og zirkon. Magnetitten fjernes ved bruk av en Nd håndmagnet.

Zirkonene ble deretter plukket under binokularlampe ved hjelp av et mikroskop og pinsett, montert på en plexiglassplate dekket med dobbeltsidig tape, støpt i en epoxyform og polert for å eksponere zirkonene. Pukkene (epoxyformene) ble karbonbelagt for avbildning i SEM, hvor det ble tatt katodeluminescensbilder (CL).

Før zirkonene kan analyseres i LAM-MC-ICPMS må karbonbelegget på pukkene og Pbforurensningen fjernes fra overflaten. Dette ble gjort med et diamantslipemiddel, og en 15 minutters vask med 2% HNO₃ i ultralydbad, og deretter i MilliQ vann i 15 minutter.

2.2.5. SEM-CL

Alle zirkonene som er analysert i LAM-MC-ICPMS ble i forkant undersøkt av et Hitachi SU 5000 elektronmikroskop (SEM). Før undersøkelsen ble epoksyklossene med ferdig monterte og slipte zirkoner belagt med karbon, for å forhindre ladning av prøven. Katodeluminescens (CL) bilder ble tatt av alle zirkonene. CL-bildene ble brukt som referansekart og for å kunne optimalisere plasseringen av punktanalysene. De viser eventuelle kjerner, mineralinneslutninger, sprekker og soneringer i zirkonene og evt. de homogene områdene man helst vil analysere.

SEM-bildene ble tatt ved Institutt for Geofag på UiO, med bistand fra Berit Løken og Siri Simonsen.
2.3. LAM-MC-ICPMS

U-Pb og Lu-Hf-forholdene ble målt ved bruk av Nu Plasma HR multi collector ICPMS og en Cetac LSX-213 G2+ (213 nm Nd:YAG), med dobbelt volum Helex celle.

2.3.1. U-Pb

²⁰⁴Pb, ²⁰⁶Pb og ²⁰⁷Pb ble målt på ionetellere (discrete dynode electron multiplier) og ²³⁸U ble målt i en Faradaydetektor (fig. 4). ²³⁵U-signalet er for svakt til å kunne måles med tilstrekkelig presisjon og blir derfor beregnet ut i fra det naturlige forholdet, ²³⁸U/²³⁵U = 137,88.

²⁰⁴Pb ble brukt som en indikator for «common lead» forurensning. Siden kvikksølv (²⁰⁴Hg) i argongassen interferer ²⁰⁴Pb-signalet (pga. isobarisk interferens fra ²⁰⁴Hg), ble det utført 30 sekunders bakgrunnsmåling (on-mass-background correction) før hver analyse. Ablasjonen varte i 60 sekunder. Ablasjonsparameterene var som følger: Strålediameter – 40 µm; pulsfrekvens – 10 Hz; stråleenergitetthet – $\geq 0,1$ J/cm⁻². Analysepunktene ble valgt ved å kombinere informasjon fra det digitale mikroskopet til laseren og CL-bilder tatt på SEM.

For å korrigere for U-Pb fraksjonering og for drift i ionetellerene, ble det analysert to kjente standarder mellom hver 10-15 ukjente. Ved starten og ved slutten av hver økt, ble tre kjente standarder analysert to ganger hver. Standardene er som følger: GJ-1 nr. 67 ($601 \pm 0,4$ Ma; Schaltegger et al., 2015), 91500 (1065 ± 1 Ma; Weidenbeck et al., 1995) og A382 (1877 ± 2 Ma; Huhma et al., 2012). I tillegg til disse ble en intern referanseprøve ved Institutt for Geofag, (STA-1 ($294,3 \pm 0,3$ Ma; L. E. Augland, personlig meddelelse)) analysert som ukjent mellom 10-15 ukjente.

Rå-dataene fra Nu-programvaren ble redusert ved et interaktivt, Microsoft Excel® regneark, NuAge.xlt. Regnearket gjør de nødvendige korreksjonene - ekstrapolerende korreksjonsfaktorer mellom standardkjøringer. Det muliggjør for valg av integrasjonsområde og vanlige blykorreksjoner basert på den målte ²⁰⁴Pb verdien og Stacey-Kramers globale blyutviklingskurve (Stacey & Kramers, 1975). For en grundigere forklaring av datareduksjonsteknikkene se Andersen et al., (2009) og Rosa et al., (2009).

2.3.2. Lu-Hf

Massene 172-179 ble målt samtidig i Faradaydetektorene i en separat analyseprosess etter ablasjon for U-Pb, ved bruk av Nu Plasma HR massespektrometeret sin U-Pb «collector block». Massene som ble målt var: ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁴Yb, ¹⁷⁴Hf, ¹⁷⁵Lu, ¹⁷⁶Yb + ¹⁷⁶Hf + ¹⁷⁶Lu, ¹⁷⁷Hf, ¹⁷⁸Hf og ¹⁷⁹Hf. Ablasjonsparameterene var som følger: Strålediameter – 55 µm; pulsfrekvens – 5 Hz; stråleenergitetthet – ca. 2 J/cm⁻². Der det var mulig ble punktanalysene kjørt på samme sted som punktanalysene for U-Pb. For å oppnå en intern presisjon på $\leq \pm$ 0,000020 (1SE) ble det utført 30 sekunders bakgrunnsmåling etterfulgt av 150 sekunders ablasjon.

For å få ¹⁷⁶Hf/¹⁷⁷Hf-forholdene ble rådataene redusert etter metoder beskrevet av Elburg et al. (2013). Isotopforholdene ble målt ved bruk av Nu Plasma time-resolved programvare. Rådata ble korrigert for massediskriminasjon ved bruk av en eksponentiell lov, og massediskriminasjonsfaktoren for Hf ($f_{\rm Hf}$) ble bestemt ut fra ¹⁷⁹Hf/¹⁷⁷Hf = 0.7325 (Patchett & Tatsumoto, 1980). For å oppnå nøyaktige ¹⁷⁶Hf/¹⁷⁷Hf forhold, må den isobariske interferensen fra ¹⁷⁶Lu, ¹⁷⁶Yb og ¹⁷⁶Hf korrigeres. ¹⁷⁶Lu beregnes ut fra interferensfri ¹⁷⁵Lu ved bruk av ¹⁷⁶Lu/¹⁷⁵Lu = 0.02655 (Vervoort et al., 2004) og $f_{\rm Hf}$. ¹⁷⁶Yb beregnes fra ¹⁷²Yb og forholdet ¹⁷⁶Yb/¹⁷²Yb = 0.58715 og massediskriminasjonsfaktoren for Yb ($f_{\rm Yb}$) (Elburg et al., 2013). $f_{\rm Yb}$ ble beregnet ut fra ¹⁷⁴Yb/¹⁷²Yb = 1.46182 (Elburg et al., 2013). ¹⁷⁴Hf er beregnet ut fra forholdet ¹⁷⁴Hf/¹⁷⁷Hf = 0.008658 (Thirlwall & Anczkiewicz, 2004), som ble brukt til «peak stripping» av ¹⁷⁴Yb for å beregne massediskriminasjonsfaktoren for Yb (Elburg et al., 2013).

Nedbrytningskonstanten til ¹⁷⁶Lu ($\lambda_{176Lu} = 1.867 \times 10^{-11}y^{-1}$;Scherer et al., 2007, 2001; Söderlund et al., 2004), ble brukt i alle beregningene. Dagens CHUR-verdier, ¹⁷⁶Hf/¹⁷⁷Hf = 0,0336 og ¹⁷⁶Hf/¹⁷⁷Hf = 0,282785 (Bouvier et al., 2008) ble benyttet ved alle ϵ_{Hf} - beregninger.

3. Resultater

3.1. Prøvebeskrivelser

3.1.1. Innledning

Denne delen gir en oversikt over de ulike bergartsprøvene. Beskrivelsen av hver prøve består av to deler: 1) Petrografisk beskrivelse av bergarten ved bruk av håndstykker og tynnslip (mineraler, farge, tekstur etc.). 2) Petrografisk beskrivelse av zirkonpopulasjonen.

Petrografiske tynnslipsbeskrivelser med bilder følger i vedlegg A.

Enkelte bergartsprøver mangler petrografiske beskrivelser av håndstykker og/eller tynnslip, da bergartsprøver og tynnslip ikke har vært å oppdrive.

Prøver med manglende petrografiske beskrivelser av bergart ved tynnslip er ON154, ON281, GB14, GSW1 og L8.

Prøver uten petrografiske beskrivelser av bergart ved håndstykke er ON154, ON281, X3, GB14, L8, ON33, ON39, ON266 og GSW1.

Prøve ON154, ON281, X3, GB14, L8, ON33, ON39 og ON266 er prøver fra avdøde Odd Nilsens samling, og er lenger ikke å finne ved Institutt for Geofag.

Katodeluminescensbildene (CL) av zirkonene er fra et utvalg av zirkonpopulasjonen for den respektive prøven, som viser variasjonen innen hver prøve i de forskjellige populasjonene. Alle bildene er av zirkoner som er blitt analysert med LAM-MC-ICPMS, og viser eksempler av både konkordante og diskordante zirkoner fra hver prøve (vedlegg B).

Figur 5: (forrige side): Flyfoto og 1:50000 berggrunnskart over Oslo med alle lokalitetene og legende (denne siden). MTO-17-5 til MTO-17-9 er forkortet til 5,6,7,8,9 i kartet. Bergartsgrensene varierer noe mellom kartbladene grunnet forskjellig terminologi av NGU. Kartet er lastet ned fra hoydedata.no, norgeibilder.no og NGU ("Høydedata," 2018; "NGU - Berggrunnskart 1:50000," 2018; "Norge i bilder," 2018).

3.1.2. ON154 – Granitt

ON154 er en granitt fra sørlige deler av Nordmarka (fig. 5).

Zirkonbeskrivelser

Majoriteten av zirkonene er elongerende, prismatiske krystaller med pyramidetermineringer (figur 6). De fleste har bred og svak sonering, og et fåtall har iscollatorisk vekstsonering (fig. 6). Omtrent halvparten av zirkonene har inneslutninger som sees som svarte områder i CL (fig. 6, ON154-20). Noen bærer preg av omvandling og har metamikte områder. De øverste zirkonene (fig. 6) er eksempler på konkordante zirkoner, de nederste diskordante (tabell 1, vedlegg B).

Figur 6: SEM-CL-bilder av zirkoner fra prøve ON154.

3.1.3. ON281 - Ringgang

ON281 er en ringgang fra Ørfiskebekken i nordlige deler av Nordmarka/Nittedal (fig. 5).

Zirkonbeskrivelser

Majoriteten av zirkonene i separatet er fragmenter med varierende grad med soneringer. De fleste har vekstsoneringer, og en mindre andel har liten til ingen sonering (fig. 7). Enkelte zirkoner har mer innviklet (convoluted) zonering og rekrystallisering (Hoskin & Schaltegger, 2003) (ON281-19b, fig. 7). De aller fleste har sprekker og bærer preg av omvandling og har metamikte områder. ON281-05a og ON281-29a (fig. 7) er konkordante, resten er diskordante.

Figur 7: SEM-CL bilder av zirkoner fra prøve ON281.

3.1.4. X3 – Alkalifeltspatgranitt

Prøve X3 er en alkalifeltspatgranitt tatt fra Rødkleiva i Voksenkollen og er en del av Tryvannskomplekset (fig. 5).

Bergarten inneholder omtrent 50% feltspat og 45% kvarts. Feltspat består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 30 mm, og har pertittlameller og serisitt. Kvarts har vann og gass inneslutninger som sees som små røde prikker. Feltspat og kvarts har eutektoid tekstur med orienterte sammenvoksninger i enkelte domener i tynnslipet.

Amfibol består av 1 - 10 mm subhedrale til anhedrale krystaller og utgjør mindre enn 1% av bergarten, og den er stedvis sterkt omvandlet til magnetitt. Magnetitt opptrer sammen med biotitt som består av 0,5 - 4 mm anhedrale til subhedrale krystaller. Biotitt har flere inneslutninger av subhedrale til euhedrale zirkon krystaller på 0,05 - 0,25 mm.

Figur 8: SEM-CL bilder av zirkoner fra prøve X3.

Zirkonbeskrivelser

Majoriteten av zirkonene i separatet er fragmenter med varierende grad med soneringer. De fleste har vekstsoneringer, og en mindre andel har bred og svak sonering (fig. 8). De fleste har sprekker og bærer preg av omvandling, lokal rekrystallisering og har metamikte områder. De øverste zirkonene i bildet er konkordante, mens de nederste er diskordante (fig. 8).

3.1.5. GB14 – Ringgang

Prøve GB14 er tatt fra et steinbrudd i Skuggen sør-vest for Tryvann og er del av Bærumskalderaen (fig. 5).

Zirkonbeskrivelser

Like stor andel prismatiske zirkoner og fragmenter av større krystaller i separatet. Majoriteten har fin vekstsonering. Omtrent halvparten av zirkonene i separatet har sprekker og bærer preg av omvandling og lokal rekrystallisering. Enkelte har kjerner (GB14-07a, fig. 9). GB14-07a og GB14-12ab er konkordante zirkoner, mens de andre er diskordante (fig. 9).

Figur 9: SEM-CL bilder av prøve GB14.

3.1.6. L8 – Syenittporfyr

Prøve L8 er en syenittporfyr nord-vest for Pipenhus i Sørkedalen (fig.5).

Zirkonbeskrivelser

Zirkonene er blitt avbildet etter at de ble analysert med LAM-MC-ICPMS, og sporene etter laseren kan sees på bildet (fig. 10). Zirkonkrystallen (L8-05) nederst i bildet (fig. 10) er blitt avbildet med CL og sekundærelektroner for å illustrere hvordan interaksjonen mellom laser og zirkon varierer ved innehold av U og sporelementer. Sekundærelektronbildet nederst til høyre (fig. 10) viser at ablasjonsegenskapene er forskjellige i to forskjellige soner av krystallen. Interaksjonen med laser har vært større i venstre halvdel av lasergropen. Dette er det mørke området i CL bildet som inneholder mer U, enn området med soneringer.

De fleste zirkonene er elongerende, prismatiske krystaller med pyramidetermineringer (fig. 10). Omtrent halvparten av zirkonene i separatet har vekstsoneringer, hvor disse varierer mellom å være brede og svake, og fint sonerte. En liten andel har sektorsoneringer (L8-04, fig. 10). Enkelte zirkoner har mer innviklet (convoluted) zonering (Hoskin & Schaltegger, 2003) (L8-24, fig. 10). De aller fleste har sprekker og inneslutninger. L8-24 og L8-25 er konkordante, resten er diskordante.

Figur 10: SEM-CL bilder av prøve L8. Zirkonene har tydelige lasergroper forårsaket av laseren til massespektrometeret. Bildet nederst til høyre er et sekundærelektronbilde.

3.1.7. ON33 – Syenittporfyr

Prøve ON33 er tatt fra en bussholdeplass på Bogstad og er del av Bærumskalderaen (fig. 5).

Bergarten består av 1 - 20 mm store euhedrale til subhedrale fenokrystaller bestående av feltspat, og utgjør omtrent 3% av mineralene i tynnslipet. Noen av krystallene har karlsbadtvillinger.

Matriks består av ca. 70% feltspat og ca. 20% kvarts. Feltspat har røde rustpigmentdannelser og pertittisk struktur. Flere av kornene inneholder serisitt.

Kvarts virker klarere enn feltspat, og inneholder vann/gass-inneslutninger som sees som små røde prikker. Enkelte kvartskorn har utviklet krystallflater mot miarolittiske hulrom som senere er fylt med kalkspat. Tynnslipet har omtrent 1% jevnt fordelte subhedrale til anhedrale magnetittkrystaller. Enkelte av magnetittkrystallene i tynnslipet har mørkerøde anisotropiske områder bestående av hematitt. Tynnslipet har ca. 1% anhedrale kalkspatkrystaller med høy dobbeltbrytning, som opptrer som sen-fyllinger i miarolittiske hulrom som er begrenset av kvarts og feltspatkrystaller.

Zirkonene i tynnslipet er sunhedrale til euhedrale krystaller på 0,05 – 0,25 mm. Amfibolkrystallene i slipet består av subhedrale til anhedrale lysegrønne krystaller og er sterkt omvandlet.

Zirkonbeskrivelser

Majoriteten av zirkonene i separatet er prismatiske, med fint sonerte vekstsoneringer. De aller fleste zirkonene i separatet har sprekker og omtrent halvparten av disse propagerer fra inneslutninger (ON33-03b, ON33-07, fig. 11). ON33-35 og ON35-36b (fig. 11) er konkordante, resten er diskordante.

Figur 11: SEM-CL bilder av prøve ON33.

3.1.8. ON39 – Granofyrisk alkalifeltspatgranitt

Prøve ON39 er en granofyrisk alkalifeltspatgranitt fra toppen av Tryvannskleiva (fig. 5).

Tynnslipet består av omtrent 60% feltspat og ca. 30% kvarts. Feltspat består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. Alle krystallene har pertittlameller og enkelte er serisittiserte. Feltspat og kvarts har eutektoid tekstur med orienterte sammenvoksninger i flere domener av tynnslipet. Kvarts består av subhedrale til anhedrale krystaller på 0,1 - 5 mm og inneholder gass/væske-inneslutninger.

Tynnslipet inneholder også anhedrale til subhedrale, pleokroisk mørke til lysebrune biotittkrystaller på 0,5 - 4 mm. Flere biotittkrystaller har inneslutninger av elongerte, prismatiske apatittkrystaller på 0,1 - 0,2 mm. Magnetitt utgjør mindre enn 1% av bergarten og består av subhedrale til anhedrale, opake korn på 0,1 - 1 mm. Amfibolkrystallene i tynnslipet er 0,1 - 0,5 mm store og har pleokroisk lysegrønne til turkise subhedrale til anhedrale krystaller. Zirkonene er subhedrale til euhedrale og 0,05 til 0,25 mm store. Tynnslipet inneholder også karbonat, som sees som anhedrale fargeløse krystaller på 0,1 - 0,4 mm med høy dobbeltbrytning.

Zirkonbeskrivelser

Majoriteten av zirkonene i separatet er prismatiske, med fint sonerte vekstsoneringer. Flere har lokal rekrystallisering, inneslutninger og noen har kjerner. De fleste zirkonene har sprekker hvor flere av disse propagerer fra inneslutninger. ON39-08 og ON39-20abc (fig. 12) er konkordante, resten er diskordante.

Figur 12: SEM-CL bilder av prøve ON39.

3.1.9. ON266 – Syenittporfyr

Prøve ON266 er tatt fra området rundt Lomma i Skollerudveien i Lommedalen og er del av Bærumskalderaen (fig. 5).

Bergarten består av 1 - 10 mm store euhedrale til subhedrale fenokrystaller bestående av feltspat, og utgjør omtrent 3% av mineralene i tynnslipet. Krystallene har et rødt rustpigment langs randsonene. De største krystallene har en klarere kjerne. Noen av krystallene har karlsbadtvillinger og apatittinneslutninger.

Matriks består av ca. 70% feltspat og ca. 20% kvarts. Feltspat har røde rustpigmentdannelser og pertittisk struktur. Flere av kornene inneholder serisitt.

Kvarts virker klarere enn feltspat, og inneholder vann/gass-inneslutninger som sees som små røde prikker.

Tynnslipet har omtrent 1% jevnt fordelte subhedrale til anhedrale magnetittkrystaller.

Zirkonene i tynnslipet er sunhedrale til euhedrale krystaller på 0,05 – 0,25 mm. Enkelte har soneringer, som sees som soner med lavere dobbeltbrytning i krysspolarisert lys. Amfibolkrystallene i slipet består av subhedrale til anhedrale lysegrønne krystaller.

Zirkonbeskrivelser

Omtrent like stor andel prismatiske korn og fragmenter av større korn i separatet. De fleste av disse er fint sonerte og har oscillatorisk vekstsoneringer. En stor andel har inneslutninger, kjerner og sprekker. ON266-01 og ON266-07 (fig. 13) er konkordante, resten er diskordante.

Figur 13: SEM-CL bilder av prøve ON266.

Figur 14: (Forrige side): Bildet viser de ulike bergartsprøvene og illustrerer bergartenes forskjellige farge og tekstur. Munsell fargeskala er blitt brukt som fargereferanse. Figuren er i skalaen 1:1.

3.1.10. MTO-17-1 – Alkalifeltspatsyenitt

Prøve MTO-17-1 er en alkalifeltspatsyenitt fra sørlige deler av Nordmarka (fig. 5).

Bergarten er mørkegrå til rosa og ufoliert. Den er middels grovkornet med jevnt fordelte svarte til rustrøde amfiboler. Feltspat utgjør omtrent 95% av bergarten og kvarts i underkant av 5%.

Feltspat består av 1-5 mm anhedrale korn, hvor enkelte har velutviklede albittvillinger, mens andre har pertittisk struktur. Feltspatkornene har sekundær mineraldannelse langs korngrensene, med chessboard utslukning.

Kvarts består av 1-7 mm anhedrale krystaller med vann/gass-inneslutninger.

Amfibol utgjør omtrent 3% av bergarten og består av subhedrale til anhedrale korn på 1-5 mm med blå-grønnlig turkis pleokroisme, og opptrer sammen med magnetitt og biotitt.

Zirkonene i prøven er 0,5 - 1 mm subhedrale til anhedrale krystaller som opptrer som inneslutninger i amfiboler.

Zirkonbeskrivelser

Separatet inneholdt relativt mange zirkoner. Mange av disse var euhedrale og korte med pyramidetermineringer. Zirkonene var fargeløse, klare til gule i fargen.

Majoriteten av zirkonene i separatet har fin sonering. De aller fleste har vekstsonering, men noen har også bimodal, oscillatorisk sonering (Corfu et al., 2003) (MTO-17-1-19, fig. 15) og sektorsonering (MTO-17-1-18, fig. 15). De fleste zirkonene har sprekker. Enkelte viser tegn på omvandling og har metamikte områder (MTO-17-1-12, MTO-17-1-17, fig. 15). De nederste zirkonene på bildet (fig. 15) er konkordante, resten er diskordante.

Figur 15: SEM-CL bilder av prøve MTO-17-1.

3.1.11. MTO-17-2 – Alkalifeltspatsyenitt

Prøve MTO-17-2 er en alkalifeltspatsyenitt fra sørlige deler av Nordmarka (fig. 5).

Bergarten er relativt grovkornet og ufoliert. Den har lyse til mørkegrå og rosa, subhedrale til anhedrale feltspatkrystaller på opptil 10 mm. Flere av krystallene har kryssende, polysyntetiske tvillinger og pertittlameller. Krystallene har omvandlingsmineraler langs korngrensene, og brudd fylt med rødt rustpigmentfarget alterasjonsfasemineral. Feltspat utgjør omtrent 97% av bergarten.

Bergarten har jevnt fordelt svarte amfibolkrystaller på 0,5 - 5 mm med grønnlig, turkis pleokroisme. Amfibol opptrer sammen med subhedrale til anhedrale magnetittkrystaller som har sekundærmineralisering av biotitt rundt korngrensene.

Bergarten inneholder 1 - 2 mm subhedrale til anhedrale titanittkrystaller med svak pleokroisme og høy dobbeltbrytning. Zirkonene i bergarten er subhedrale til euhedrale korn på 0,5 - 1 mm, hvor mesteparten opptrer som inneslutninger eller rundt amfiboler.

Zirkonbeskrivelser

Separatet inneholdt veldig få zirkoner, hvor flesteparten av disse besto av gul-brune fragmenter med relativt mange sprekker.

CL-bilder av zirkonene i separatet viser bred og svak sonering, sprekker, omvandling og metamikte områder (fig. 16). Alle zirkonene på bildet (fig. 16) er diskordante.

Figur 16: SEM-CL bilder av prøve MTO-17-2.

3.1.12. MTO-17-3 – Alkalifeltspatgranitt

Prøve MTO-17-3 er en alkalifeltspatgranitt fra Solemskogen i sørlige deler av Nordmarka (fig. 5).

Bergarten er middels til grovkornet, ufoliert og lyserosa til burgunderrød. Den inneholder omtrent 60% feltspat og 35% kvarts. Feltspatkrystallene er 0,5 - 5 mm og har pertittisk struktur. De fleste krystallene er serisittiserte.

Kvartskrystallene er 0,5 - 3 mm og anhedrale. Kornene opptrer både interstitielt mellom og innesluttet i feltspat i en eutektoid tekstur og har vann og gass-inneslutninger i sprekkdannelser. Biotitt består av sterkt omvandlet brune-rustrøde korn på 0,5 - 1 mm og opptrer sammen med opake oksider/sulfider (ilmenitt, magnetitt, hematitt eller pyritt). Mest sannsynlig magnetitt, da det var relativt mye magnetitt i separatet.

Figur 17: SEM-CL bilder av prøve MTO-17-3.

Zirkonene i bergarten består av subhedrale korn på 0,1 - 0,5 mm, og flesteparten er i relativt dårlig forfatning.

Zirkonbeskrivelser

Separatet inneholdt relativt få zirkoner, hvor majoriteten av disse besto av klare og gule fragmenter med en del sprekker.

CL-bilder av zirkonene i separatet viser hovedsakelig bred og svak sonering og noe lokal rekrystallisering (fig. 17). De to øverste zirkonene i CL-bildet (fig. 17) er konkordante, mens de to nederste er diskordante.

3.1.13. MTO-17-4 – Alkalifeltspatsyenitt

Prøve MTO-17-4 er en alkalifeltspatsyenitt fra Kringla i sørlige deler av Nordmarka (fig. 5).

Figur 18: SEM-CL bilder av prøve MTO-17-4.

Bergarten er lysegrå til rosa, ufoliert, relativt grovkornet med ca. 95% feltspat og 3% kvarts. Feltspat består av subhedrale til anhedrale korn på 1 - 10 mm. De fleste krystallene har karlsbadtvillinger og kryssende, polysyntetiske tvillinger (chessboard struktur) mellom korngrensene. Enkelte krystaller har soner med albittvillinger. De fleste er serisittiserte.

Kvarts opptrer i trippelpunkt mellom feltspat, som anhedrale korn på 0,1 - 1 mm. Biotitten i bergarten er sterkt omvandlet til magnetitt. Zirkon opptrer som subhedrale korn på 0,1 - 0,5 mm.

Zirkonbeskrivelser

Relativt få zirkoner i separatet, hvor omtrent alle besto av klare til gule fragmenter med brune flekker. CL-bilder av zirkonene i separatet viser hovedsakelig bred og svak sonering, sprekker og noe lokal rekrystallisering (fig. 18). MTO-17-4-02 og MTO-17-4-18 (fig. 18) er konkordante, mens resten er diskordante.

3.1.14. MTO-17-5 – Alkalifeltspatgranitt

Prøve MTO-17-5 er en relativt finkornet alkalifeltspatgranitt fra Rødkleiva (fig. 5).

Bergarten er lys rød til rosa, ufoliert og inneholder ca. 50% feltspat og 45% kvarts. Feltspat består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. All feltspat har pertittlameller, og noen har serisittisering internt i krystallene. Feltspat og kvarts har eutektoid tekstur med orienterte sammenvoksninger i enkelte domener av tynnslipet.

Kvarts består av anhedrale krystaller på 0,1-5 mm og opptrer både interstitielt mellom og innesluttet i feltspat. Enkelte har vann og gass-inneslutninger, som sees som små rød-rosa prikker.

Jevnt fordelt svarte til rustrøde biotittkorn på 0,5 - 4 mm. Biotitt består av anhedrale til subhedrale, pleokroisk mørkebrune til lysebrune krystaller, og opptrer sammen med magnetitt.

Zirkonene i bergarten er 0,05 - 0,25 mm subhedrale til euhedrale krystaller. De fleste opptrer som inneslutninger i biotitt. Separatet av denne bergarten inneholdt relativt store mengder pyritt.

Zirkonbeskrivelser

Separatet består av relativt mange zirkoner. De fleste er euhedrale, men det er også flere fragmenter blant populasjonen. Zirkonene er gule, har brune flekker, sprekker og inneslutninger.

CL-bildene viser at de fleste zirkonene er fint sonerte og har oscillatoriske vekstsoneringer, kjerner, inneslutninger og sprekker (fig. 19). MTO-17-5-26 og MTO-17-5-31 (fig. 19) er konkordante, og de to andre er diskordante.

Figur 19: SEM-CL bilder av MTO-17-5.

3.1.15. MTO-17-6 – Alkalifeltspatgranitt

Prøve MTO-17-6 er en relativt finkornet alkalifeltspatgranitt fra Tryvannshøgda (fig. 5).

Bergarten er lys, rød til rosa, ufoliert og inneholder ca. 60% feltspat og 35% kvarts. Majoriteten består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. De største kornene har en kjerne bestående av serisittisert plagioklas med velutviklede albittvillinger og mikroklin mot korngrensene som viser kryssende, polysyntetiske tvillinger. All feltspat har pertittlameller, og noen har serisittisering internt i krystallene.

Feltspat og kvarts har eutektoid tekstur med orienterte sammenvoksninger i enkelte domener av tynnslipet.

Kvarts består av anhedrale krystaller på 0,1 - 5 mm og opptrer både interstitielt mellom og innesluttet i feltspat. Enkelte har vann og gass-inneslutninger, som sees som små rød-rosa prikker.

Biotitt er jevnt fordelt i bergarten og sees som svarte til rustrøde korn på 0,5 – 4 mm. I tynnslip opptrer biotitt som subhedrale til anhedrale, pleokroisk lysegrønnne til beige krystaller.

Magnetitt opptrer i selskap sammen med biotitt. Enkelte magnetittkrystaller har en mørkerød, anisotropisk randsone bestående av hematitt.

Både zirkoner og apatittkrystaller opptrer som subhedrale til euhedrale inneslutninger i biotitt. Zirkonene er 0,05 - 0,25 mm, og apatittkrystallene 0,1 - 0,2 mm.

Zirkonbeskrivelser

Andelen zirkoner i separatet var relativt stor, og de fleste av dem er elongerende, prismatiske krystaller med pyramidetermineringer. Zirkonene er klare og champagnegule. Noen er flekkete og har inneslutninger.

CL-bildene viser at de fleste zirkonene er fint sonerte og har vekstsoneringer, inneslutninger og sprekker (fig. 20). MTO-17-6-02 og MTO-17-6-11 (fig. 20) er konkordante, og de to andre er diskordante.

Figur 20: SEM-CL bilder av prøve MTO-17-6.

3.1.16. MTO-17-7 – Alkalifeltspatsyenitt

Prøve MTO-17-7 er en grovkornet alkalifeltspatsyenitt fra Frognerseteren (fig. 5).

Bergarten er ufoliert med lysegrå til mørkegrå og rosa feltspat. Feltspat utgjør omtrent 95% og har 3 - 15 mm subhedrale til anherale krystaller. Flere har røde rustpigmentdannelser, og pertittisk tekstur.

Andelen kvarts er ca. 3-5% og består av 1 - 2 mm anhedrale krystaller. Flere har sprekker, og de fleste har vann og gass-inneslutninger.

Bergarten har jevnt fordelt svarte amfibolkrystaller på 1 - 10 mm, som opptrer som subhedrale til euhedrale, pleokroisk lysegrønne til turkise krystaller. Amfibolkrystallene opptrer sammen med magnetitt og biotitt.

Biotittkrystallene har inneslutninger av apatitter og zirkoner på 0,05 – 0,25 mm.

Figur 21: SEM-CL bilder av prøve MTO-17-7.

Zirkonbeskrivelser

Meget stor andel zirkoner i separatet, og de fleste av dem er elongerende, prismatiske krystaller med pyramidetermineringer. Zirkonene er relativt store, klare og champagnegule. Enkelte har inneslutninger.

CL-bildene viser at de fleste zirkonene har homogene områder uten sonering, med fin og tydelig sonering langs sidene. Større andel sektorsoneringer, enn vekstsoneringer. Omtrent halvparten av zirkonene i separatet har inneslutninger og sprekker. Alle zirkonene (fig. 21) er konkordante bortsett fra MTO-17-7-10b og MTO-17-7-11.

3.1.17. MTO-17-8 – Alkalifeltspatsyenitt

Prøve MTO-17-8 er en middels til grovkornet alkalifeltspatsyenitt like vest for Frognerseteren (fig. 5).

Bergarten er lys grå til oransje og ufoliert. Feltspat utgjør omtrent 90% av bergarten, og består av 3 - 15 mm subhedrale til anhedrale krystaller med røde rustpigmentdannelser. De fleste krystallene har pertittisk struktur.

Bergarten har relativt stor andel amfibol (ca. 2- 3%). Amfibolkrystallene er subhedrale til anhedrale, 1 - 10 mm store, med lysegrønn til turkis pleokroisme. Amfibolkrystallene opptrer sammen med magnetitt og biotitt.

Biotittkrystallene har inneslutninger av apatitter og zirkoner på 0,05 – 0,25 mm.

Figur 22: SEM-CL bilder av prøve MTO-17-8.

Zirkonbeskrivelser

Meget stor andel zirkoner i separatet, og de fleste av dem er elongerende, prismatiske krystaller med pyramidetermineringer. Zirkonene er relativt store, klare og champagnegule. Enkelte har inneslutninger.

CL-bildene viser at zirkonene har fin og tydelig sonering, hvor omtrent halvparten har iscollatorisk vekstsoneringer. Flere har sprekker, og noen av sprekkene propagerer fra inneslutninger eller kjerner (MTO-17-8-07, fig. 22). MTO-17-8-34 og MTO-17-8-36 er konkordante, mens de andre er diskordante.

3.1.18. MTO-17-9 – Alkalifeltspatsyenitt

Prøve MTO-17-9 er en middels til grovkornet alkalifeltspatsyenitt fra Holmenkollen (fig. 5).

Bergarten er lys rosa til oransje og ufoliert. Feltspat utgjør omtrent 90% av bergarten, og består av 3 - 15 mm subhedrale til anhedrale krystaller med røde rustpigmentdannelser. De fleste krystallene har pertittisk struktur.

Bergarten har omtrent 3% kvarts, bestående av 0,5 - 5 mm anhedrale krystaller. De fleste har vann og gass inneslutninger.

Bergarten har relativt stor andel amfibol (ca. 2- 3%). Amfibolkrystallene er subhedrale til anhedrale, 1 - 10 mm store, med lysegrønn til turkis pleokroisme. Amfibolkrystallene opptrer sammen med magnetitt og biotitt.

Biotittkrystallene har inneslutninger av apatitter og zirkoner på 0,05 – 0,25 mm.

Figur 23: SEM-CL bilder av prøve MTO-17-9.

Zirkonbeskrivelser

Andelen zirkoner i separatet var meget høy og de fleste av dem er elongerende, prismatiske krystaller med pyramidetermineringer. Varierende størrelse. De minste er klare, mens de større er champagnegule. Enkelte har inneslutninger og brune sprekker.

CL-bildene viser at zirkonene har fin og tydelig sonering, og at de fleste av dem har oscillatorisk vekstsoneringer, og enkelte har sektorsonering. Omtrent halvparten av zirkonene har inneslutninger og sprekker. Enkelte har kjerner. MTO-17-9-30 og MTO-17-9-33 er konkordante, og de andre er diskordante (fig. 23).

3.1.19. GSW1 – Alkalifeltspatsyenitt/Grefsensyenitt

Prøve GSW1 er tatt fra Grorud Granitt og Skifer AS (fig. 5) og er en middels til grovkornet syenitt.

Zirkonbeskrivelser

Separatet har middels til stor andel zirkoner. De aller fleste består av relativt store fragmenter, og er klare og gule i fargen. CL-bildene viser at zirkonene har homogene områder uten sonering, med fin og tydelig vekstsonering langs sidene. Omtrent halvparten av zirkonene har inneslutninger og sprekker. GSW1-18 og GSW1-26 er konkordante, mens de to andre er diskordante (fig. 24).

Figur 24: SEM-CL bilder av prøve GSW1.

3.2. U-Pb resultater

3.2.1. Innledning

I dette kapittelet vil resultatene av det geokronologiske arbeidet bli presentert.

Fra de 18 prøvene ble det analysert totalt 544 zirkoner for U-Pb med LAM-MC-ICPMS ved institutt for Geofag på Universitetet i Oslo.

I tabell 1-20 (vedlegg B) presenteres det komplette datasettet fra det geokronologiske arbeidet, og alle verdier som kommenteres i dette kapittelet, finnes i disse tabellene.

Resultatene presenteres som elliptiske punkter i konkordiadiagram. Disse punktene representerer alder og absolutt feil fra hver enkelt analyse. Ellipsene har fått farger for syns skyld, og for lettere å kunne skille dem fra hverandre. I hvert diagram er det en ellipse som representerer konkordiaalderen til den gitte prøven. Ellipsene har en positiv helning fordi usikkerheten (analytical error) i ²⁰⁷Pb/²³⁵U og ²⁰⁶Pb/²³⁸U er positivt korrelert, og fordi det er en sammenheng mellom ²³⁵U og ²³⁸U. Det er viktig å ta denne korrelasjonen med i betraktning når man regner ut en regresjonslinje (Ludwig, 2008).

Alderen til hver prøve er blitt estimert ved å utelukke de zirkonene som har minimum rim diskordanse på mer enn 0% og sentraldiskordanse på over $\pm 16\%$. Dette utgjør 365 zirkoner og 2/3 av alle zirkonene. Av 544 zirkoner er 179 konkordante og tatt med i videre aldersberegninger i konkordiadiagram. Figur 53 (vedlegg B) er et eksempel på hvordan diskordante zirkonanalyser kan se ut i et konkordiadiagram før redusering av data, og er representativt for veldig mange av zirkonanalysene i denne studien.

To prøver (ON281 og MTO-17-2) har henholdsvis 93 og 96% diskordante zirkoner. Aldersberegninger av disse er blitt gjort ved bruk av Tera-Wasserburg konkordiadiagram med 3D regresjon.

3.2.2. ON154 – Granitt

Totalt 25 zirkoner ble analysert (tabell 1, vedlegg B). 21 av disse var diskordante, og ble derfor ikke brukt videre aldersberegning.

Konkordiadiagrammet viser analysen av fire zirkoner (ON154-02, ON154-09, ON154-10 og ON154-21) med diskordans på under 13,3% (fig. 25).

Den brune ellipsen representerer konkordiaalderen for disse fire zirkonene.

Konkordiaalderen for disse fire zirkonene er 268 ± 8 Ma. MSWD = 0,30 og sannsynligheten for konkordansen = 0.58.

Figur 25: Konkordiadiagram av prøve ON154.
3.2.3. ON281 – Ringgang

Totalt 44 zirkoner fra ON281 ble analysert (tabell 2, vedlegg B). 41 av disse hadde en diskordans på over 16%, og ble derfor ekskludert fra aldersberegning ved bruk av Wetherhills konkordiadiagram. Samtlige av de diskordante zirkonene viser en «common lead» linje og er derfor blitt plottet i Tera Wasserburgs invers konkordiadiagram (nederst i fig. 26).

Konkordiadiagrammet (fig. 26) viser analysene av tre zirkoner (ON281-05a, ON281-29, ON281-33) med diskordans under 16%. Den mørkeblå ellipsen representerer konkordiaalderen.

Konkordiaalderen for alle de tre zirkonene er $260 \pm$ 8 Ma og MSWD = 2,8 og sannsynligheten for konkordansen = 0,092.

I Tera-Wasserburg diagrammet alle er zirkonene bortsett fra ON281-15 og ON281-39 blitt tatt med i beregningene. De resterende 42 zirkonene utgjør en alder på 253 ± 5 Ma. MSWD = 14.

Figur 26: Konkordiadiagram og Tera-Wasserburg diagram av prøve ON281.

3.2.4. X3 – Alkalifeltspatgranitt

Totalt 18 zirkoner fra denne prøven ble analysert (tabell 3, vedlegg B). 16 av disse var diskordante (27 - 92%) og ble derfor ikke tatt med i videre beregninger.

X3-01(4,7 %) og X3-08(-5,4 %) gir en konkordiaalder på 253 ± 6 Ma (fig. 27). Denne representeres av den grønne ellipsen.

MSWD = 0,0110 og sannsynligheten for konkordanse = 0,92. Konkordansen + ekvivalensen gir MSWD = 1,60 og med en sannsynlighet for konkordanse på 0,20.

Figur 27: Konkordiadiagam av prøve X3.

3.2.5. ON33 – Syenittporfyr

Totalt 29 zirkoner ble analysert (tabell 4, vedlegg B). 14 av disse hadde en diskordans på over 15% og ble derfor ikke tatt med for videre aldersberegning. De resterende 15 zirkonene gir en konkordiaalder på $266,3 \pm 1,7$ Ma (fig. 28).

MSWD = 1,12 og sannsynligheten for konkordansen = 0,29. Konkordansen + ekvivalensen gir MSWD = 1,04 og med en sannsynlighet for konkordanse på 0,40.

Figur 28: Konkordiadiagram av prøve ON33.

3.2.6. ON39 – Granofyrisk alkalifeltspatgranitt

Totalt 14 zirkoner ble analysert (tabell 5, vedlegg B). 11 av disse hadde en diskordanse på over 16% og ble derfor ikke tatt med i videre aldersberegning.

Tre zirkoner (ON39-05, ON39-19 og ON39-25) hadde en diskordanse på under 5% og gir en konkordiaalder på $268 \pm 4,0$ Ma (fig. 29).

MSWD = 0,21 og sannsynligheten for konkordanse = 0,64. Konkordansen + ekvivalensen gir MSWD = 0,41 og med en sannsynlighet for konkordanse på 0,84.

Figur 29: Konordiadiagram av prøve ON39.

3.2.7. ON266 – Syenittporfyr

Totalt 14 zirkoner ble analysert (tabell 6, vedlegg B). 8 av disse er diskordante og ble derfor ikke brukt til aldersberegning.

Konkordiadiagrammet viser analysen av seks zirkoner (ON266-03, ON266-05, ON266-07, ON266-09, ON266-15, ON266-16) med diskordans på under 11,4% (fig. 30). Konkordiaalderen for disse seks zirkonene er 267 ± 5 Ma.

MSWD = 1,5 og sannsynligheten for konkordansen = 0,22. Konkordansen + ekvivalensen gir MSWD = 1,5 og med en sannsynlighet for konkordanse på 0,11.

ON266

Figur 30: Konkordiadiagram av prøve ON266.

3.2.8. GB14 – Ringgang

Totalt 19 zirkoner ble analysert (tabell 7, vedlegg B). 12 av disse hadde en diskordans på over 15% og ble derfor ekskludert fra videre aldersberegning.

Konkordiadiagrammet (fig. 31) viser analysen av syv zirkoner (GB14-07a, GB14-08, GB14-10a, GB14-10b, GB14-12a, GB14-12b, GB14-15), med konkordiaalder på 261 ± 3 Ma.

MSWD = 8,2 og sannsynligheten for konkordansen = 0,004. Konkordansen + ekvivalensen gir MSWD = 1,4 og med en sannsynlighet for konkordanse på 0,13.

Figur 31: Konkordiadiagram av prøve GB14.

3.2.9. L8 – Syenittporfyr

Totalt 29 zirkoner ble analysert (tabell 8, vedlegg B), hvor fem (L8-13, L8-24, L8-25, L8-29, L8-31) av disse er blitt brukt til videre aldersberegning (fig. 32).

Konkordiadiagrammet viser analysen av disse med en konkordiaalder på 274 ± 3 Ma.

MSWD = 13 og sannsynligheten for konkordansen = 0. Konkordansen + ekvivalensen gir MSWD = 1,7 og med en sannsynlighet for konkordanse på 0,082.

Figur 32: Konkordiadiagram av prøve L8.

3.2.10. MTO-17-1 – Alkalifeltspatsyenitt

Totalt 51 zirkoner ble analysert (tabell 9, vedlegg B), hvor 13 av disse hadde en diskordans på over 16% og ble derfor ikke tatt med i videre aldersberegning.

De resterende 38 zirkonene gir en konkordiaalder på $262,8 \pm 1,8$ Ma (fig. 33).

MSWD = 22 og sannsynligheten for konkordanse = 0. Konkordansen + ekvivalensen gir MSWD = 1,2 og med en sannsynlighet for konkordanse på 0,11.

MTO-17-1

Figur 33: Konkordiadiagram av prøve MTO-17-1.

3.2.11. MTO-17-2 – Alkalifeltspatsyenitt

Kun én (MTO-17-2-01a) av 28 zirkoner fra denne prøven var konkordant (tabell 10, vedlegg B). Dette zirkonet har diskordans på 1,7% og en ²⁰⁶Pb/²³⁸U alder på 263 Ma.

For å få et aldersestimat av bergarten ble zirkonene plottet (tabell 21, vedlegg B) i et Tera-Wasserburg-diagram (fig. 34).

I Tera-Wasserburg-diagrammet er alle zirkonene bortsett fra MTO-17-2, MTO-17-12 og MTO-17-13 blitt tatt med i beregningene. De resterende 25 zirkonene utgjør en alder på 264 ± 5 Ma. MSWD = 3.

MTO-17-2: Invers concordia

Figur 34: Tera-Wasserburg diagram av prøve MTO-17-2.

3.2.12. MTO-17-3 – Alkalifeltspatgranitt

Totalt 25 zirkoner ble analysert (tabell 11, vedlegg B), hvor fire (MTO-17-3-01, MTO-17-3-03, MTO-17-3-06, MTO-17-3-15) av disse var konkordante og ble brukt for videre aldersberegning (fig.35). De gir en konkordiaalder på 268 ± 6 Ma.

MSWD = 0,51 og sannsynligheten for konkordanse = 0,47. Konkordansen + ekvivalensen gir MSWD = 0,55 og med en sannsynlighet for konkordanse på 0,80.

MTO-17-3

Figur 35: Konkordiadiagram av prøve MTO-17-3.

3.2.13. MTO-17-4 – Alkalifeltspatsyenitt

Totalt 26 zirkoner ble analysert (tabell 12, vedlegg B), hvor seks (MTO-17-4-02, MTO-17-4-05, MTO-17-4-14, MTO-17-4-17, MTO-17-4-18, MTO-17-4-30) av disse var mindre enn 16% diskordante og ble brukt for videre aldersberegning.

De seks zirkonene gir en konkordiaalder på 282 ± 5 Ma (fig. 36).

MSWD = 1,3 og sannsynligheten for konkordanse = 0,25. Konkordansen + ekvivalensen gir MSWD = 0,72 og med en sannsynlighet for konkordanse på 0,72.

MTO-17-4

Figur 36: Konkordiadiagram av prøve MTO-17-4.

3.2.14. MTO-17-5 – Alkalifeltspatgranitt

Totalt 35 zirkoner ble analysert (tabell 13, vedlegg B), hvor fem (MTO-17-5-26, MTO-17-5-31, MTO-17-5-32a, MTO-17-5-32b, MTO-17-5-35) av disse var konkordante og ble brukt for videre aldersberegning.

Konkordiaalderen til de fem zirkonene er 264 ± 3 Ma (fig. 37).

MSWD = 0,47 og sannsynligheten for konkordanse = 0,49. Konkordansen + ekvivalensen gir MSWD = 0,56 og med en sannsynlighet for konkordanse på 0,83.

MTO-17-5

Figur 37: Konkordiadiagram av prøve MTO-17-5.

3.2.15. MTO-17-6 – Alkalifeltspatgranitt

Totalt 40 zirkoner ble analysert (tabell 14, vedlegg B), hvor 10 av disse ble brukt til videre aldersberegning.

Disse 10 zirkonene gir en konkordiaalder på $262 \pm 1,6$ Ma (fig. 38).

MSWD = 1,4 og sannsynligheten for konkordanse = 0,23. Konkordansen + ekvivalensen gir MSWD = 0,64 og med en sannsynlighet for konkordanse på 0,88.

MTO-17-6

Figur 38: Konkordiadiagram av prøve MTO-17-6.

3.2.16. MTO-17-7 – Alkalifeltspatsyenitt

Totalt 23 zirkoner ble analysert (tabell 15, vedlegg B), hvor 8 av disse var diskordante og ble ikke brukt til videre aldersberegning.

De resterende 15 gir en konkordiaalder på $261,1 \pm 1,4$ Ma (fig. 39), og representeres i diagrammet av den minste blå ellipsen.

MSWD = 0,51 og sannsynligheten for konkordanse = 0,48. Konkordansen + ekvivalensen gir MSWD = 0,31 og med en sannsynlighet for konkordanse på 1,000.

MTO-17-7

20790/.

3.2.17. MTO-17-8 – Alkalifeltspatsyenitt

Totalt 49 zirkoner ble analysert (tabell 16, vedlegg B) og 23 av disse var diskordante.

De resterende 26 zirkonene gir en konkordiaalder på $258,8 \pm 1,4$ Ma (fig. 40), og representeres av den lysegrønne ellipsen i senter av diagrammet.

MSWD = 3,0 og sannsynligheten for konkordanse = 0,082. Konkordansen + ekvivalensen gir MSWD = 0,44 og med en sannsynlighet for konkordanse på 1,000.

MTO-17-8

Figur 40: Konkordiadiagram av prøve MTO-17-8.

3.2.18. MTO-17-9 – Alkalifeltspatsyenitt

Totalt 38 zirkoner ble analysert (tabell 17, vedlegg B) og 19 av disse var diskordante og ble derfor ekskludert fra videre aldersberegning.

De resterende 19 zirkonene gir en konkordiaalder på $256,3 \pm 1,2$ Ma (fig. 41), og representeres i diagrammet av den minste blå ellipsen.

MSWD = 0,15 og sannsynligheten for konkordanse = 0,69. Konkordansen + ekvivalensen gir MSWD = 1,06 og med en sannsynlighet for konkordanse på 0,37.

MTO-17-9

Figur 41: Konkordiadiagram av prøve MTO-17-9.

3.2.19. GSW1 – Alkalifeltspatsyenitt/grefsensyenitt

Totalt 37 zirkoner ble analysert (tabell 18, vedlegg B). 11 av disse var konkordante og ble derfor ikke tatt med i videre aldersberegning.

De resterende konkordante zirkonene gir en konkordiaalder på $268,6 \pm 1,4$ Ma (fig. 42), og representeres av den lysegrønne ellipsen i senter av diagrammet.

MSWD = 5,6 og sannsynligheten for konkordanse = 0,018. Konkordansen + ekvivalensen gir MSWD = 0,52 og med en sannsynlighet for konkordanse på 0,998.

GSW1

Figur 42: Konkordiadiagram av prøve GSW1.

3.3. Lu-Hf resultater

3.3.1. Innledning

I dette kapittelet vil resultatene av Lu-Hf-arbeidet bli presentert.

152 zirkoner fra 15 av 18 prøver, ble analysert for Lu-Hf med LAM-MC-ICPMS, ved institutt for Geofag på Universitetet i Oslo.

Det ble kun utført Lu-Hf analyser av zirkoner som ga konkordante U-Pb-data.

I tabell 1-15 (vedlegg C) presenteres det komplette datasettet fra det geokjemiske analytiske arbeidet, og alle verdier som kommenteres i dette kapittelet, finnes i disse tabellene.

3.3.2. Error-boksdiagram: MTO-17-1 og MTO-17-3 til MTO-17-6

Figur 43: Hver enkelt analyse er representert ved en boks som viser den interne analytiske usikkerheten $(\pm 1SE)$ eller presisjonen av dataene. Regresjonslinjen er en referanseisokron med initialforhold 0,28272 og alder 260 Ma, og illustrerer variasjonen i analysene fra hver prøve. MTO-17-4 skiller seg ut fra de andre prøvene, ved at den avviker fra referanseisokronen i tillegg til å ha større spredning.

3.3.3. Error-boksdiagram: MTO-17-7, MTO-17-8, MTO-17-9, ON33 og ON39

Figur 44: Hver enkelt analyse er representert ved en boks som viser den interne analytiske usikkerheten ($\pm 1SE$) eller presisjonen av dataene. Regresjonslinjen er en referanseisokron med initialforhold 0,28272 og alder 260 Ma, og illustrerer variasjonen i analysene fra hver prøve.

3.3.4. Error-boksdiagram: GB14, GSW1, L8, ON266 og ON281

Figur 45: Hver enkelt analyse er representert ved en boks som viser den interne analytiske usikkerheten ($\pm 1SE$) eller presisjonen av dataene. Regresjonslinjen er en referanseisokron med initialforhold 0,28272 og alder 260 Ma, og illustrerer variasjonen i analysene fra hver prøve.

De fleste zirkonanalysene har ¹⁷⁶Hf/¹⁷⁷Hf forhold tilsvarende referanseisokronen med initialforhold 0,28272 og alder 260 Ma. Prøve MTO-17-4 (fig. 43) skiller seg ut fra de andre prøvene med større spredning og høyere ¹⁷⁶Hf/¹⁷⁷Hf forhold.

4. Diskusjon

4.1. U-Pb

4.1.1. Innledning

I dette kapittelet vil resultatene fra det U-Pb kronologiske arbeidet bli satt i lys av teori og tidligere forskning, for å finne ut av når den tektomagmatiske aktiviteten endte i Oslofeltet.

Siden det geokronologiske arbeidet med Rb-Sr systemet ble gjort, er det kommet en ny IUPAC-IUGS anbefaling for halveringstid og konstant for ⁸⁷Rb (Villa et al., 2015). Den tidligere halveringskonstanten som ble brukt for ⁸⁷Rb var 1,42 × 10⁻¹¹ a⁻¹, og den nye er 1,3972 × 10⁻¹¹ a⁻¹ (Villa et al., 2015).

Alle omtalte Rb-Sr-alderne i dette kapittelet er blitt re-kalkulert med den nye halveringskonstanten, som resulterer i aldere som er omtrent 1% eldre enn tidligere Rb-Sr-aldere.

4.1.2. Hva er den yngste intrusjonen i Oslofeltet?

Figur 46: Diagrammet viser U-Pb alderne til de forskjellige prøvene (3.2.2 til 3.2.19) og deres usikkerhet. Den analytiske usikkerheten er 2 σ *.*

Figur 46 viser en sammenligning av de geokronologiske dateringene. Av prøvene som er analysert i dette arbeidet viser X3 seg å være den yngste, med konkordiaalder på 253 ± 6 Ma. 16 av 18 zirkoner i analysen var diskordante og alderen baserer seg på to analyser (X3-01 og X3-08, tabell 3, vedlegg B), med ²⁰⁶Pb/²³⁸U aldere på 259 ± 4 Ma og 247 ± 4 Ma.

X3 og MTO-17-5 er begge alkalifeltspatgranitter fra Rødkleiva og er innenfor samme bergartsgrense (fig. 5) og går under betegnelsen Tryvannsgranitt (Sundvoll et al., 1990).

MTO-17-5 er 8 Ma eldre (264 \pm 3 Ma), basert på fem konkordante analyser (tabell 13, vedlegg B).

Siden begge prøvene er av samme bergart fra samme område kan man anta at gjennomsnittsalderen fra de konkordante analysene fra begge prøvene vil være representativ for bergarten i sin helhet.

Gjennomsnittsalderen til begge prøvene, og dermed Tryvannsgranitten fra Rødkleiva er 261 ± 6 Ma (fig. 47), og kan tolkes som intrusjonsalderen for denne plutonen.

Gj. snitt. alder av X3 og MTO-17-5

Figur 47: Diagrammet viser gjennomsnittsalderen (rød linje) til de konkordante analysene til både X3 og MTO-17-5 fra Rødkleiva.

De yngste alderne bestemt i denne studien er fra prøvene MTO-17-6, MTO-17-7, MTO-17-8 og MTO-17-9 og befinner seg like sør for Tryvannsgranitten (fig 5). MTO-17-9 (alkalifeltspatsyenitt) er den yngste prøven i denne studien, med en konkordiaalder på $256,3 \pm 1,2$ Ma.

4.1.3. Sammenligning av tidligere geokronologistudier i Oslofeltet

X3 og MTO-17-5 er tatt fra Tryvannsgranittplutonen og som i følge Sundvoll et al. (1990), er den yngste plutonen i Oslofeltet, med en Rb-Sr alder på 245 \pm 3 Ma (Sundvoll et al., 1990). U-Pb dateringer av samme bergart (X3 og MTO-17-5) tyder på at Tryvannsgranitten er 261 \pm 6 Ma og dermed 16 Ma eldre enn tidligere antatt.

Figur 48 er et geologisk kart fra Sundvoll et al. (1990), som viser aldersforhold i den sørvestlige delen av Akershus graben segment (GS). Alderne er i Ma og baserer seg på Rb-Sr «whole rock» og mineral isokron geokronologi, med geologiske data fra Sæther (1962) og Larsen (1978). Lokalitetene som baserer seg på Rb-Sr mineral isokronaldere er fra Kampen kaldera (Syenittporfyr, 278 \pm 6 Ma), Oppkuven kaldera (Oppkuven syenittporfyr, 276 \pm 6 Ma), Heggelia kaldera (Heggelia syenittporfyr, 274 \pm 4 Ma), Øyangen kaldera (Basaltlava, 285 \pm 7 Ma) og Kjeldsås larvikitt (277 \pm 4 Ma) (Sundvoll et al. 1990).

Bergart	Eldre prøver (Ref.)	Rb-Sr alder	Nye prøver	U-Pb alder	Differanse
		(Ma)		(Ma)	(Ma)
Tryvannsgranitt	Tryvannsgranitt (1)	245 ± 3	X3	253 ± 6	8
-	-	-	MTO-17-5	264 ± 3	19
-	-	-	X3 + MTO-17-5	261 ± 6	16
Nordmarkitt	Nittedal Nordmarkitt (2)	256 ± 3	MTO-17-1	$\textbf{262,8} \pm \textbf{1,8}$	6
-	-	-	MTO-17-2	264 ± 5	8
-	-	-	MTO-17-3	268 ± 6	12
-	-	-	MTO-17-4	282 ± 5	26
-	-	-	ON154	268 ± 8	12
Grefsensyenitt	Grefsensyenitt, Nittedal (1)	259 ± 4	GSW1	$268,6 \pm 1,4$	10
Syenittporfyr	Bærum Syenittporfyr (1)	247 ± 3	ON266	267 ± 5	20

Tabell 3: Aldersforhold mellom Rb-Sr aldere og U-Pb aldere. (1) Sundvoll og Larsen (1990); (2) Rasmussen et al., (1988).

Ved å sammenligne prøvelokalitetene (fig. 5) med prøvelokalitetene til Sundvoll et al. (1990) (fig. 48), kan vi sammenligne fire lokaliteter med Rb-Sr aldere, mot nye U-Pb aldere. Prøvene med tidligere Rb-Sr dateringer er: Tryvannsgranitt, Grefsensyenitt, Bærum Syenittporfyr (Sundvoll & Larsen, 1990) og Nordmarkitt (Rasmussen et al., 1988).

Prøve MTO-17-1 til MTO-17-4 og ON154 er fra sørlige deler av Nordmarka (fig. 5). MTO-17-3 og ON154 er alkalifeltspatgranitter mens de tre andre er alkalifeltspatsyenitter. Disse prøvene kommer fra intrusjoner som i følge Sæthers kart er ekvivalente med Sundvolls sine nordmarkittprøver. Nittedal Nordmarkitt (tabell 3, fig. 48) er fra området nordøst for Maridalsvannet, i samme området som de nye prøvene. U-Pb dateringene av nordmarkitten gir aldere som er 6, 8, 12 og 26 Ma eldre enn Rb-Sr dateringen (tabell 3).

Grefsensyenitten på Sundvoll et al. (1990) sitt kart (fig. 48) er fra samme bergartsgrense som GSW1 (fig. 5), og er muligens tatt fra samme lokalitet (Grorud Granitt & Skifer AS, steinbrudd ved Bånkall). U-Pb datering av grefsensyenitten gir en alder som er 10 Ma år eldre enn Rb-Sr dateringen (tabell 3).

Bærum Syenittporfyr er del av Bærumskalderaen og er datert med Rb-Sr til å være blant de aller yngste intrusjonene (247 ± 3 Ma) i Oslofeltet, og markerer slutten på stadium 4 (tabell 4) (Sundvoll et al., 1990). Prøvelokaliteten korrelerer med Odd Nilsen sin prøve (ON266) (fig. 5 og fig. 48). U-Pb datering av syenittporfyren gir en alder som er 20 Ma eldre (267 ± 5 Ma) enn Rb-Sr alderne (tabell 3).

Figur 48: Geologisk kart som viser aldersforhold i den sørvestlige delen av Akershus GS. Alderne er i Ma og baserer seg på Rb-Sr data fra Sundvoll et al., (1990); Sæther (1962) og Larsen (1978). K = Kampen kaldera; O = Oppkuven kaldera; H = Heggelig kaldera; S = Svarten kaldera; Ø = Øyangen kaldera; B = Bærum kaldera; N = Nittedal kaldera; SY = Stryken ringkompleks. Kartet er hentet fra Sundvoll et al., (1990).

4.1.4. Den tektomagmatiske evolusjonen satt i lys av nye aldere

Tabell 4 viser de forskjellige stadiene i den tektomagmatiske evolusjonen i Oslofeltet, med nye U-Pb aldere for stadiene 4 og 5, samt Rb-Sr aldere kalkulert med den nye halveringskonstanten (Villa et al., 2015).

Tabell 4: Er	revidert	tektomagmatisk	evolusjon i	Oslofeltet.
--------------	----------	----------------	-------------	-------------

		Stratigrafiske	U-Pb aldere
Stadiono	Droduktoro	eller Rb-Sr aldere	(Ma)(Ref.)
Staulene	riouuktene	(Ma)(Ref.)	
1. Forstadiet til	Askergruppa	Øvre Westphalian	< 319 (5)
riftingen		ca. $312 - 300(1)$	
2. Innledende	Silikafattige basalter	309 - 299 (2)	300 - 299 (6)
riftstadiet			
3. Riftdannelsens	Rombeporfyr og	299 - 281 (3)	299 – 277 (7)
klimaks	larvikitt intrusjoner	286 – 277 * (4)	
4. Sentralvulkaner og	Kalderaer,	281 – 247 (4)	277 - 267
kalderaer	ringganger og		
	diverse vulkanske		
	bergarter		
5. Batolittene	Larvikitt, syenitter	277 - 245 ** (4)	286 (8) – 256
	og granitter		

* Tidsintervallene for rombeporfyrstrømmene og larvikittintrusjonene overlapper hverandre (4).

** De yngste larvikittintrusjonene overlapper med intrusjonsalderen til syenitter og granitter.(4).

Kilder fra tabell 4: 1) (Olaussen et al., 1994). 2) (Sundvoll et al., 1992). 3) (Sundvoll & Larsen, 1990, 1993). 4) (Sundvoll et al., 1990). 5) og 6) (Corfu & Dahlgren, 2008; Dahlgren & Corfu, 2001). 7) (Dahlgren et al., 1996, 1998; L. E. Pedersen et al., 1995; Ramö & Andersen, 2011). 8) (Haug, 2007).

De re-kalkulerte Rb-Sr alderne avviker mindre fra U-Pb alderne enn tidligere. I de tidligste stadiene i den tektomagmatiske evolusjonen (tabell 4), 1 - 3 er avviket minimalt. Det er de senere stadiene ved dannelsen av sentralvulkaner, kalderaer og batolitter at forskjellen mellom Rb-Sr aldere og U-Pb aldere er størst (tabell 4).

Stadium 4 er stadiet for dannelsen av store polygenetiske spaltevulkaner, etterfulgt av deres kollaps og dannelsen av kalderastrukturer, ringganger og forkastninger. De yngste kalderaene datert med Rb-Sr er Øyangkalderaen i Vestfold (272 – 270 Ma) og Bærumskalderaen i Akershus GS (270 – 247 Ma) (Sundvoll et al., 1990) (fig. 48).

Nye U-Pb dateringer av ringgangen (ON266, 267 ± 5 Ma) tilhørende Bærumskalderaen antyder at vulkanen kollapset og at kalderaen ble dannet 20 Ma tidligere enn først antatt.

Stadium 5 er stadiet hvor batolitter med granittisk og syenittisk sammensetning krystalliserte i Vestfoldgrabenen og Akershusgrabenen. Den yngste intrusjonen datert med Rb-Sr, er Tryvannsgranitten (243 Ma) som tidligere har markert sluttstadiet for evolusjonen i Osloriften (Larsen et al., 2013). U-Pb dateringer av samme bergart (X3, MTO-17-5, 261 Ma) er 16 Ma eldre enn Rb-Sr dateringen. Den yngste intrusjonen datert i denne studien er derimot MTO-17-9 (256,3 \pm 1,2 Ma) som er en alkalifeltspatsyenitt tilhørende Tryvannskomplekset like sør for Tryvannsgranitten (fig. 5).

4.2. U-Pb vs. Rb-Sr kronologi

4.2.1. Innledning

De felsiske intrusivene i Oslofelet datert med Rb-Sr er 6 til 24 Ma yngre enn dateringene gjort med U-Pb (tabell 3 og 4). Hva kan årsakene til dette være, og i hvor stor grad påvirker de ulike faktorene de forskjellige isotopsystemene?

4.2.2. Termiske faktorer

Grorud (1991) kunne ut i fra estimater av dannelsestemperatur for kontaktmetamorfe mineralselskaper i de sedimentære bergartene i Asker området, vise at temperaturen like ved de intrusive bergartene var ca. 470 °C, og at temperaturen to km. fra intrusjonen var ca. 340 °C. Dette er innenfor lukningstemperaturintervallet for Rb-Sr. Men hvor lang tid tar det for en smelte å krystallisere og kjøles ned?

Hvis for eksempel et relativt varmt magma intruderer i en allerede relativt varm bergart, vil den termiske gradienten mellom disse være liten. Da vil den intrusive bergarten bruke lenger tid på kjøles ned, og dermed vil Rb-Sr alderne gi en yngre alder enn andre isotopsystemer med en relativt høyere lukningstemperatur (Waight, 2015).

Alkalifeltspatgranittene (MTO-17-3, MTO-17-5, MTO-17-6 og X3) har eutektoid tekstur (vedlegg A), eller det som også kalles for granofyr. Det kan sees i mikroskop som orienterte sammenvoksninger mellom optisk kontinuerlige kvarts og alkaliefeltspatkorn. Dette tyder på at feltspat og kvarts har krystallisert samtidig i eutektikum. Nilsen (1992) observerte dette samt miarolittiske hulrom i sine prøver av Tryvannsgranitten. Han mente at tilstedeværelsen av disse hulrommene i de granofyriske alkaligranittene antydet en hurtig krystallisasjon av et vannmettet magma. Miarolittiske hulrom ble også observert i en syenittporfyr (ON33, vedlegg A) som er en del av ringgangen til Bærumskalderaen (fig. 5).

Vi kan dermed anta at temperaturen til intrusjonene i Tryvannskomplekset har vært relativt lave og at krystallisasjonsforløpet har gått relativt fort, og at det er andre faktorer som har påvirket Rb-Sr-isotopsystemet.

4.2.3. Metasomatiske faktorer

Det er blitt gjort flere observasjoner i bergartene og deres mineralselskap i denne studien, som beviser tilstedeværelsen av fluider og metasomatiske prosesser. Heretter skal disse observasjonene bli presentert.

Egne observasjoner knyttet til fluider

Alkalifeltspatsyenittene MTO-17-2, MTO-17-7 og MTO-17-8 har relativt store feltspatkrystaller som er grå/blålig i kjernen med rosa/beige farge langs korngrensene. Plümper et al. (2017) har studert larvikitter med samme karakteristikk, og viser at den omvandlede rosa/beige feltspaten inneholder nanoporer som er et direkte resultat av metasomatiske prosesser.

Observasjoner av bergartene i tynnslip vitner også om tilstedeværelsen av fluider. Tilnærmet all feltspat har rødlig rustpigmentdannelser som er blitt beskrevet av Putnis et al. (2007) til å være rosetter eller nåler av krystallin hematitt, og at dette er et resultat av en fluiddrevet prosess. De aller fleste kvartskrystallene har også inneslutninger med fluider og gass, som sees som små røde prikker (vedlegg C). Disse opptrer ofte i gamle gjenvokste brudd, hvor transporten av vann har foregått.

Zirkonbeskrivelsene til de forskjellige prøvene varierer i stor grad. Fra å være klare og champagnegule med god sonering, til flekkete og brune med liten til ingen sonering i CL.

Connelly (2001) har vist at det er en korrelasjon mellom graden av sonering i magmatiske zirkoner og konkordanse i U-Pb kronologi. Zirkoner som er blitt utsatt for kjemisk diffusjon i så stor grad at den primære soneringen er blitt borte, har også blitt utsatt for tap av radiogent bly («lead loss»).

Selv om zirkoner er svært motstandsdyktige mot kjemisk og fysisk forvitring og kjemisk forandring over et bredt spekter av trykk og temperatur i forskjellige geologiske miljøer (Hanchar, 2016), er fortsatt 2/3 av zirkonene som er analysert for U-Pb isotoper i denne studien diskordante. Geisler et al. (2002) viser at fluider med temperaturer så lave som 175 °C kan transportere U, Th og Pb i metamikte zirkoner.

De petrografiske bevisene for at de felsiske bergartene i Bærumskalderaen og nittedalskalderaen er utsatt for hydrotermale prosesser er mange. De hydrotermale prosessene er mest sannsynlig sekundære og har mest sannsynlig tilbakestilt Rb-Sr isotopsystemet. Rb-Sr dateringene av de felsiske plutonene gjenspeiler kanskje alderen for da disse prosessene foregikk.

Figur 49: Kart av Oslofeltet som viser ringforkastningene i Bærumskalderean og Nittedalskalderaen, samt permiske mineralforekomster (*Ihlen & Vokes, 1978; Naterstad, 1978; Nilsen, 1992; Ramberg, 1976*).

4.2.4. Hvor kommer fluidene fra?

Nilsen (1992) konkluderte at oksider og sulfider i Tryvannsgranitten skyldes postmagmatiske, epitermiske prosesser. Forholdet mellom den intraplutoniske hydrotermale aktiviteten til Tryvannsgranittkomplekset, og dannelsen av flere av de kontaktmetasomatiske mineralårene og forekomstene av skarn i Oslo-Bærum distriktet, har ennå ikke blitt studert (Nilsen, 1992).

Det finnes flere forekomster av molybden (Mo) (Petersen & Schönwandt, 1981), bly (Pb), zink (Zn), jern (Fe) og kobber (Cu) i Oslofeltet (Ihlen & Vokes, 1978; Naterstad, 1978) (fig. 49). Disse forekomstene er relatert til fluider.

Figur 50 illustrerer fluidkildene i en hydrotermal prosess; magmatisk vann og meteorisk vann, og hvordan det etterhvert blir dannet en konveksjonscelle av fluider rundt intrusivet. Figuren illustrerer dannelsen av en Lowell-Guilbert modell (B, fig. 50), der det dannes porfyrisk kobber og molybden (Evans, 1980).

Figur 50: Bildet viser skjematiske snitt av en porfyrisk kobberforekomst, og to stadier i utviklingen av hydrotermale fluider som fører til formasjonen til en Lowell-Guilbert modell (B). Pr=Propylittisk omvandling (Evans, 1980). (Modifisert fra Sheppard (1977).

De magmatiske hydrotermale fluidene utvikles etter at intrusjonen har krystallisert. Fluidene reagerer med porfyren og med varierende grad de omliggende bergartene, som gir opphavet til en sone med kalium og silika omvandling (A, fig. 50). Noen metaller og sulfider blir introdusert i denne fasen. Like utenfor den intrusive bergarten, vil termale gradienter føre til en konvektiv sirkulasjon av vann i vertsbergarten, som gir opphavet til propylittisk omvandling (Pr) (Evans, 1980). (Pr = Propylitt: andesitt eller lignende vulkansk bergart som er sterkt omvandlet ved innvirkning av vann, svovel og karbondioksid ved forholdsvis lav temperatur. Ligner grønnskifer og er sammensatt av mineralene kalkspat, kloritt, epidot, serpentin, kvarts pyritt og jernoksider) (Sigmond et al., 2013).

Når intrusjonen kjøles ned vil meteorisk vann i konveksjonscellen blandes med magmatisk vann som skilles ut fra intrusjonen og føre til dannelsen av lavtemperaturmineraler; serisitt, pyrofyllit og leiremineraler. Denne omvandlingen vil først og fremst foregå i feltspat og biotitt i den ytre delen av den opprinnelige kaliumrike omvandlingssonen. Den relativt store forskjellen i pH, temperatur, salinitet, osv., mellom disse to hydrotermale systemene, er sannsynligvis det som er årsaken til forekomstene av kobber og porfyrisk molybden rundt grensen mellom den kaliumrike og fyllittiske sonen (Evans, 1980).

Andersen (1990) har studert veskeinneslutninger i kvarts fra nordmarkitten i Sandeplutonen. Veskeinneslutningene er av magmatisk opprinnelse og evolusjonen til denne fluidfasen kan spores i inneslutninger fra solidustemperaturer (ca. 700 °C) til ca. 300 °C, hvor tilførselen av eksterne fluider (hydrotermalt meteorisk vann) kan ha hatt en større betydning.

De felsiske intrusivene i Oslofeltet er blitt omvandlet av fluider. Fluidene stammer fra både magmatiske og meteoriske kilder, og har ført til tilbakestilling av Rb-Sr isotopsystemet, som gjenspeiles av de unge alderne.
4.3. Lu-Hf

4.3.1. Innledning

I denne delen skal Lu-Hf resultatene sammenlignes med andre permiske og prekambriske bergarter, for å finne evt. anomalier og potensielle kilder til bergartene i denne studien.

4.3.2. Sammenligning med andre permiske bergarter fra Oslofeltet

Figur 51: Epsilon-Hf diagram med «box whisker-plots». Boksene representerer den interkvartile variasjonsbredden med median som en horisontal linje inne i boksen, og «whiskers» maksimum og minimumsverdiene av permiske bergarter i Oslofeltet (Borg, 2011; Haug, 2007; Ramö & Andersen, 2011)

Figur 51 er et diagram med epsilon-Hf sammenligninger av ulike permiske bergarter fra Oslofeltet. Diagrammet har «box and whisker-plots». Boksene representerer den interkvartile variasjonsbredden med median som en horisontal linje inne i boksen, og «whiskers» maksimum og minimumsverdiene av epsilon-Hf data, fra akeritten (Borg, 2011), drammensgranitten (Haug, 2007), larvikitten (Ramö & Andersen, 2011) og nye prøver fra denne studien.

Variasjonsbredden til prøvene har et spenn fra ca. -3 til 9, og medianen fra ca. 0,5 til 6. Variasjonen blant prøvene er relativt liten. Akeritten og drammensgranitten har omtrent samme median, og larvikitten har omtrent samme variasjonsbredde som de nye prøvene.

«Whisker-plots» illustrerer minimum og maksimumsverdiene av epsilon-Hf i diagrammet, og her er variasjonen større (fig. 51). Drammensgranitten har de laveste verdiene på -20, og larvikitten de høyeste på 27 (dette er mest sannsynlig en analytisk feil).

Av de nye prøvene i denne studien skiller MTO-17-4 (alkalifeltspatsyenitt fra sørlige Nordmarka, fig. 5) seg ut, ved å ha sterkere mantelkarakter enn de andre prøvene, med anormalt høye epsilon-Hf verdier på 8,4 - 15,6. Denne prøven er også den eldste daterte prøven i denne studien med en U-Pb alder på 282 ± 5 Ma (3.2.13).

4.3.3. Hva er magmakilden?

Figur 52: Evolusjonsdiagram av Hf-isotopet fra 2,15 til 0,15 Ga. Prøver fra pre-kambrium (gult/oransje) og permiske prøver fra Oslofeltet (blått). Den røde linjen viser utviklingen av depleted mantle (DM; Griffin et al., 2000), og den blå linjen er CHUR (Chondritic uniform reservoir; Bouvier et al., 2008). Den brune linjen er en referanselinje for en sannsynlig utviklingskurve for prekambrisk jordskorpe (¹⁷⁶Lu/¹⁷⁷Hf = 0.015; (Griffin et al., 2002). 1) Permiske Oslofelt bergarter: Akeritt (Borg, 2011), drammensgranitt (Haug, 2007), larvikitt (Ramö & Andersen, 2011) og nye prøver fra denne studien. 2) Posttektoniske, Sveconorvegiske granitter og RIC (Rogaland Igneous Complex) (Pedersen et al., 2009). 3) Gneisser og granitter i Telemark (Andersen et al., 2007). 4) Gneisser i Setesdal (Pedersen et al., 2009). 5) Tinngranitt og superkrustale granitter (Andersen et al., 2002). 6) Tonalittiske gneisser i Sør-Norge (Pedersen et al., 2009). 7) TIB (Transscandinavian Igneous Belt) (Andersen et al., 2009).

Figur 52 viser utviklingen av ϵ Hf i sørvestre Fennoskandia fra Paleoproterozoikum til i dag. De gule ellipsene representerer initiell Hf isotopsammensetning i forskjellige prekambriske bergartskomplekser (se figurtekst). CHUR og DM kurvene viser utviklingen av globale reservoarer med tid, og den brune linjen utviklingen av en ca. 1,5 – 1,6 Ga jordskorpe i Sør-Norge (e.g Andersen et al., 2002). Det totale variasjonsområdet for felsiske intrusjoner i Oslofeltet er fra ca. -4 til ca. +10. Dette svarer til en stor del av den totale forskjellen mellom DM og lokal prekambrisk jordskorpe.

Variasjonen i ϵ Hf vist i fig. 51 og 52 viser at en mantelderivert Hf komponent (ϵ Hf \geq 12 ved 260 Ma) har vært involvert i dannelsen av de felsiske bergartene i Oslofeltet, inkludert de som er undersøkt i denne studien. Det må i midlertidig ha forekommet betydelig innblanding av materiale fra lokal kontinental jordskorpe. «Whole rock» Sr, Nd og Pb isotopdata viser lignende kontaminasjonsrelasjoner (Andersen & Knudsen, 2000). Haug (2007) har også funnet nedarvete zirkonkjerner i Drammensgranitten og har vist at skorpebidragene i Drammensgranitten kan spores tilbake til metarhyolitter i Telemarkkomplekset.

5. Konklusjon

- De yngste felsiske plutonene i Oslofeltet er blitt datert med U-Pb isotoper i zirkoner ved bruk av LAM-MC-ICPMS. Den yngste intrusjonen som er blitt datert i denne studien er 256,3 ± 1,2 Ma (MTO-17-9, alkalifeltspatsyenitt) og tilhører Tryvannskomplekset.
- Den tektomagmatiske aktiviteten i Oslofeltet endte i slutten av Perm og varte dermed i 63 Ma.
- 9 av 18 prøver datert med U-Pb kan direkte sammenlignes med tidligere Rb-Sr aldere og gir aldere som er 6 26 Ma eldre, (når Rb-Sr aldere er omregnet med ny halveringskonstant som gir aldre ca. 1% eldre enn de opprinnelige publiserte).
- De felsiske intrusivene i Oslofeltet er blitt omvandlet av fluider. Fluidene stammer fra både magmatiske og meteoriske kilder, og har ført til tilbakestilling av Rb-Sr isotopsystemet, som gjenspeiles av de yngre Rb-Sr-alderne.
- Lu-Hf analysene viser at prøvene i denne studien har fellestrekk med andre prøver fra Oslofeltet og at de inneholder komponenter fra en depleted mantle (DM) lignende kilde (εHf (260) ≥ 12) og en komponent med εHf < 0, som kan skrive seg fra lokal prekambrisk berggrunn.

Litteraturliste

- Andersen, T. (1990). Melt-mineral-fluid interaction in peralkaline silicic intrusions in the Oslo Rift, Southeast Norway. IV: Fluid inclusions in the Sande nordmarkite. *Norges Geologiske Undersøkelse Bulletin*, 417, 41–54.
- Andersen, T., Andersson, U. B., Graham, S., Aberg, G., & Simonsen, S. L. (2009). Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. *Journal of the Geological Society*, 166(2), 233–247. https://doi.org/10.1144/0016-76492007-166
- Andersen, T., Griffin, W. L., & Pearson, N. J. (2002). Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. *Journal of Petrology*, 43(9), 1725–1747. https://doi.org/10.1093/petrology/43.9.1725
- Andersen, T., Griffin, W. L., & Sylvester, A. G. (2007). Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway. *Lithos*, 93(3–4), 273–287. https://doi.org/10.1016/j.lithos.2006.03.068
- Andersen, T., & Knudsen, T. L. (2000). Crustal contaminants in the Permian Oslo Rift, South Norway: Constraints from Precambrian geochemistry. *Lithos*, 53(3–4), 247–264. https://doi.org/10.1016/S0024-4937(00)00028-1
- Borg, G. (2011). Petrology of akerite (quartz monzonite) in the Oslo Rift, SE Norway.
- Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters*, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
- Brennecka, G. A., Weyer, S., Wadhwa, M., Janney, P. E., Zipfel, J., & Anbar, A. D. (2010).
 238U/235U Variations in Meteorites: Extant 247Cm and Implications for Pb-Pb Dating. *Science*, 327(5964), 449 LP-451. Retrieved from http://science.sciencemag.org/content/327/5964/449.abstract

- Cavosie, A. J., Valley, J. W., & Wilde, S. A. (2007). Chapter 2.5 The Oldest Terrestrial Mineral Record: A Review of 4400 to 4000 Ma Detrital Zircons from Jack Hills, Western Australia. *Developments in Precambrian Geology*. https://doi.org/10.1016/S0166-2635(07)15025-8
- Cherniak, D. J. (2010). Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime. *Reviews in Mineralogy and Geochemistry*, 72(1), 827–869. Retrieved from http://dx.doi.org/10.2138/rmg.2010.72.18
- Cherniak, D. J., Hanchar, J. M., & Watson, E. B. (1997). Diffusion of tetravalent cations in zircon. *Contributions to Mineralogy and Petrology*, *127*(4), 383–390. https://doi.org/10.1007/s004100050287
- Connelly, J. N. (2001). Degree of preservation in igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. *Chemical Geology*, 172(1–2), 25–39. https://doi.org/10.1016/S0009-2541(00)00234-5
- Corfu, F., & Dahlgren, S. (2008). Perovskite U-Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Permo-Carboniferous Oslo Rift. *Earth and Planetary Science Letters*, 265(1–2), 256–269. https://doi.org/10.1016/j.epsl.2007.10.019
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of Zircon Textures. *Reviews in Mineralogy and Geochemistry*, 53(1), 469–500. https://doi.org/10.2113/0530469
- Dahlgren, S., & Corfu, F. (2001). Northward sediment transport from the Late Carboniferous Variscan Mountains: zircon evidence from the Oslo Rift, Norway. *Journal of the Geological Society*, 158(1), 29–36. https://doi.org/10.1144/jgs.158.1.29
- Dahlgren, S., Corfu, F., & Heaman, L. M. (1996). U–Pb isotopic time constraints, and Hf and Pb source characteristics of the Larvik plutonic complex, Oslo paleorift. Geodynamic and geochemical implications for the rift evolution. *Journal of Conference Abstracts.*, 1.
- Dahlgren, S., Corfu, F., & Heaman, L. M. (1998). Datering av plutoner og pegmatitter i Larvik pluton-kompleks, sydlige Oslo Graben, ved hjelp av U-Pb isotoper i zirkon og baddeleyitt. Norsk Bergverksmuseum Skrift, 14, 32–39.

- Davis, D. W., Krogh, T. E., & Williams, I. S. (2003). Historical Development of Zircon Geochronology. *Reviews in Mineralogy and Geochemistry*, 53(1), 145–181. Retrieved from http://dx.doi.org/10.2113/0530145
- Elburg, M. A., Andersen, T., Bons, P. D., Simonsen, S. L., & Weisheit, A. (2013). New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia. *Gondwana Research*, 24(2), 700–712. https://doi.org/10.1016/j.gr.2012.12.017
- Evans, A. M. (1980). Disseminated and Stockwork Deposits Associated with Plutonic Intrusives. In An Introduction to Ore Geology: Geoscience Texts Volume 2 (pp. 112– 129).
- Fairbairn, H. W., Hurley, P. M., & Pinson, W. H. (1961). The relation of discordant Rb-Sr mineral and whole rock ages in an igneous rock to its time of crystallization and to the time of subsequent Sr87/Sr86 metamorphism. *Geochimica Et Cosmochimica Acta*, 23(1–2), 135–144. Retrieved from http://www.sciencedirect.com/science/article/B6V66-488Y2J1-76/2/9fdd45baf7a248bbd5d27a77313b893f
- Faure, G., & Mensing, T. M. (2005). *Isotopes: Principles and applications* (3rd ed.). John Wiley & Sons Inc.
- Finch, R. J., & Hanchar, J. M. (2003). Structure and Chemistry of Zircon and Zircon-Group Minerals. *Reviews in Mineralogy and Geochemistry*, 53(1), 1–25. https://doi.org/10.2113/0530001
- Geisler, T., Pidgeon, R. T., Van Bronswijk, W., & Kurtz, R. (2002). Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. *Chemical Geology*, 191(1–3), 141–154. https://doi.org/10.1016/S0009-2541(02)00153-5
- Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly,
 S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. *Geochimica et Cosmochimica Acta*, 64(1), 133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

- Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lithos*, *61*(3–4), 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8
- Grorud, H. (1991). Kontaktmetamorfose i Paleozoiske sedimenter i Oslo-feltet. Et profil i Asker. University of Oslo.
- Hanchar, J. M. (2016). Encyclopedia of Scientific Dating Methods, 1–5. https://doi.org/10.1007/978-94-007-6326-5
- Haug, L. E. (2007). *Mantel- og skorpekomponenter i Drammensgranitten*. Universitetet i Oslo.
- Hoskin, P. W. O., & Rodgers, K. A. (1996). Raman spectral shift in the isomorphous series (Zr1-xHfx) SiO4. *European Journal of Solid State and Inorganic Chemistry*, *33*(11), 1111–1121.
- Hoskin, P. W. O., & Schaltegger, U. (2003). The Composition of Zircon and Igneous and Metamorphic Petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53(1), 27–62.
 Retrieved from http://dx.doi.org/10.2113/0530027
- Huhma, H., Mänttäri, I., Peltonen, P., Kontinenz, A., Halkoaho, T., Hanski, E., ...
 Whitehouse, M. (2012). The age of the Archaean greenstone belts in Finland. *Special Paper of the Geological Survey of Finland*, 2012(54), 74–175.
- Høydedata. (2018). Retrieved April 13, 2018, from https://hoydedata.no/LaserInnsyn/
- Ihlen, P., & Vokes, F. (1978). Metallogeny. Norges Geologiske Undersøkelse Bulletin, 45, 75–90.
- Ireland, T. R., & Williams, I. S. (2003). Considerations in Zircon Geochronology by SIMS. *Reviews in Mineralogy and Geochemistry*, 53(1), 215–241. Retrieved from http://dx.doi.org/10.2113/0530215

- Kinny, P. D., & Maas, R. (2003). Lu–Hf and Sm–Nd isotope systems in zircon. *Reviews in Mineralogy and Geochemistry*, 53(1), 327–341. Retrieved from http://dx.doi.org/10.2113/0530327
- Košler, J., & Sylvester, P. J. (2003). Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. *Reviews in Mineralogy and Geochemistry*. https://doi.org/10.2113/0530243
- Larsen, B. T. (1978). Krokskogen lava area. A Review and Guide to Excursions: Norges Geol. Unders., Bull, 337, 143--162.
- Larsen, B. T., Olaussen, S., Sundvoll, B., & Heeremans, M. (2008). The permo-Carboniferous Olso Rift through six stages and 65 million years. *Episodes*, *31*(1), 52–58.
- Larsen, B. T., Olaussen, S., Sundvoll, B., & Heeremans, M. (2013). Landet blir til: Vulkaner, forkastninger og ørkenklima. In K. Rangnes & K. Mørk (Eds.), *LANDET BLIR TIL: Norges Geologi* (2nd ed., p. 655, 288–331.). Trondheim: Norsk Geologisk Forening.
- Lee, J. K. W., Williams, I. S., & Ellis, D. J. (1997). Pb , U and Th diffusion in natural zircon. *Nature*, 390(November), 159–162. https://doi.org/10.1038/36554
- Ludwig, K. R. (2008). User's Manual for Isoplot 3.70 A Geochronological Toolkit for Microsoft Excel. *Berkeley Geochronology Center Special Publication*.
- Naterstad, J. (1978). Nittedal Cauldron. Nytt Fra Oslofeltgruppen, 1, 29-41.
- Neumann, E. R. (1976). Compositional relations among pyroxenes, amphiboles and other mafic phases in the Oslo Region plutonic rocks. *Lithos*, (115).
- Neumann, E. R., Wilson, M., Heeremans, M., Spencer, E. A., Obst, K., Timmerman, M. J., & Kirstein, L. (2004). Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. *Geological Society, London, Special Publications*, 223(1), 11–40. https://doi.org/10.1144/GSL.SP.2004.223.01.02
- NGU Berggrunnskart 1:50000. (2018). Retrieved April 13, 2018, from http://geo.ngu.no/kart/berggrunn_mobil/

Nilsen, O. (1992). Petrology and metallogeny associated with the Tryvann Granite Complex, Oslo Region. *Norges Geologiske Undersøkelse Bulletin*, 423, 1–18.

Norge i bilder. (2018). Retrieved April 13, 2018, from http://norgeibilder.no/

- Oftedahl, C. (1978). Caoldrons of the Permian Oslo Rift. *Journal of Volcanology and Geothermal Research*, *3*, 343–371.
- Olaussen, S., Larsen, B. T., & Steel, R. (1994). The upper Carboniferous-Permian Oslo Rift; Basin fill in realtion to tectonic development. *Pangea: Global Environments and Resources*, 17(1994), 175–197.
- Pallesen, S. (1993). Crustal extension in the Oslo Graben, SE Norway: a method incorporating magmatism and erosion. *Tectonophysics*, 221(2), 155–172. https://doi.org/10.1016/0040-1951(93)90330-M
- Parrish, R. R., & Noble, S. R. (2003). 7. Zircon U-Th-Pb geochronology by isotope Dilution
 Thermal Ionization Mass Spectrometry (ID-TIMS). *Reviews in Mineralogy and Geochemistry*. https://doi.org/10.2113/0530183
- Patchett, P. J., & Tatsumoto, M. (1980). Lu–Hf total-rock isochron for the eucrite meteorites. *Nature*, 288, 571. Retrieved from http://dx.doi.org/10.1038/288571a0
- Pedersen, L. E., Heaman, L. M., & Holm, P. M. (1995). Further constraints on the temporal evolution of the Oslo Rift from precise U-Pb zircon dating in the Siljan-Skrim area. *Lithos*, 34(4), 301–315. https://doi.org/10.1016/0024-4937(94)00014-S
- Pedersen, S., Andersen, T., Konnerup-Madsen, J., & Griffin, W. L. (2009). Recurrent mesoproterozoic continental magmatism in South-Central Norway. *International Journal* of Earth Sciences, 98(5), 1151–1171. https://doi.org/10.1007/s00531-008-0309-0
- Petersen, J. S., & Schönwandt, H. K. (1981). Porphyry-Mo occurences in the Oslo rift-system. Abstracts of Papers Presented to the Conference on Processes of Planetary Rifting. A Lunar and Planetary Institute Topical Conference Held December 3-5, 1981, in Napa Valley, CA.

- Plümper, O., Botan, A., Los, C., Liu, Y., Malthe-Sørenssen, A., & Jamtveit, B. (2017). Fluiddriven metamorphism of the continental crust governed by nanoscale fluid flow. *Nature Geoscience*, 10(9), 685–690. https://doi.org/10.1038/ngeo3009
- Putnis, A., Hinrichs, R., Putnis, C. V., Golla-Schindler, U., & Collins, L. G. (2007). Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. *Lithos*, 95(1–2), 10–18. https://doi.org/10.1016/j.lithos.2006.07.004
- Ramakrishnan, S. S., Gokhale, K. V. G. K., & Subbarao, E. C. (1969). Solid solubility in the system zircon-hafnon. *Materials Research Bulletin*, *4*(5), 323–327.
- Ramberg, I. B. (1976). Gravity interpretation of the Oslo Graben and associated igneous rocks. *Norges Geologiske Undersøkelse*, *325*, 193.
- Ramberg, I. B., & Larsen, B. T. (1978). Tectomagnetic evolution. Norges Geologiske Undersøkelse Bulletin, 337, 55–73.
- Ramö, O. T., & Andersen, T. (2011). System Magmatic evolution of the Permo-Carboniferous Oslo rift : U-Pb- and Lu-Hf-in-zircon evidence from the 299- 289 Ma Larvik plutonic complex. *American Geophysical Union, Fall Meeting 2011, Abstract* #V12B-02.
- Rasmussen, E., Neumann, E. R., Andersen, T., Sundvoll, B., Fjerdingstad, V., & Tabel, A. (1988). Petrogenetic processes associated with intermediate and silicic magmatism in the Oslo rift, south-east Norway. *Mineral. Mag.*, *52*(June), 293–307. Retrieved from http://rruff.info/doclib/MinMag/Volume_52/52-366-293.pdf
- Richter, S., Eykens, R., Kühn, H., Aregbe, Y., Verbruggen, A., & Weyer, S. (2010). New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. *International Journal of Mass Spectrometry*, 295(1–2), 94–97. https://doi.org/10.1016/J.IJMS.2010.06.004
- Riley, G. H., & Compston, W. (1962). Theoretical and technical aspects of Rb-Sr geochronology. *Geochimica et Cosmochimica Acta*, 26, 1255–1281.

- Rosa, D. R. N., Finch, A. A., Andersen, T., & Inverno, C. M. C. (2009). U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. *Mineralogy and Petrology*, 95(1–2), 47–69. https://doi.org/10.1007/s00710-008-0022-5
- Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. *Chemical Geology*, 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028
- Scherer, E., Munker, C., & Mezger, K. (2007). The Lu-Hf systematics of meteorites: Consistent or not? In *Goldschmidt Conference Abstracts 2007.Geochimica et Cosmochimica Acta 71 (15S)* (p. 888).
- Scherer, E., Münker, C., & Mezger, K. (2001). Calibration of the lutetium-hafnium clock. *Science*. https://doi.org/10.1126/science.1061372
- Sheppard, S. M. F. (1977). Identification of the origin of oreforming solutions by the use of stable isotopes. *Geological Society, London, Special Publications*, 7(1), 25 LP-41.
 Retrieved from http://sp.lyellcollection.org/content/7/1/25.abstract
- Sigmond, E. M. O., Bryhni, I., & Jorde, K. (2013). Norsk geologisk ordbok. Akademika forl.
- Speer, A. (1982). Zircon. (P. H. Ribbe, Ed.), Reviews in Mineralogy (2nd ed., Vol. 5). Mineralogical Society of America.
- Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, 26(2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
- Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. *Earth and Planetary Science Letters*. https://doi.org/10.1016/0012-821X(77)90060-7
- Sundvoll, B., & Larsen, B. T. (1990). Rb-Sr isotope systematics In the magmatic rocks of the Oslo Rift. *Norges Geologiske Undersøkelse Bulletin*, 418, 27–46.

- Sundvoll, B., & Larsen, B. T. (1993). Rb-Sr and Sm-Nd relationships in dyke and sill intrusions in the Oslo Rift and related areas. *Norges Geologiske Undersøkelse*, *Bulletin* 4, 25–41.
- Sundvoll, B., Larsen, B. T., & Wandaas, B. (1992). Early magmatic phase in the Oslo Rift and its related stress regime. *Tectonophysics*, 208(1–3), 37–54. https://doi.org/10.1016/0040-1951(92)90335-4
- Sundvoll, B., Neumann, E. R., Larsen, B. T., & Tuen, E. (1990). Age relations among Oslo Rift magmatic rocks: implications for tectonic and magmatic modelling. *Tectonophysics*, 178(1), 67–87. https://doi.org/10.1016/0040-1951(90)90460-P
- Sæther, E. (1962). Studies on the Igneous Rock Complex of the Oslo Region: General Investigation of the Igneous Rocks in the Area North of Oslo. XVIII. Oslo University Press.
- Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science Letters*. https://doi.org/10.1016/S0012-821X(04)00012-3
- Tera, F., & Wasserburg, G. J. (1972). U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. *Earth and Planetary Science Letters*. https://doi.org/10.1016/0012-821X(72)90128-8
- Thirlwall, M. F., & Anczkiewicz, R. (2004). Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. *International Journal of Mass Spectrometry*. https://doi.org/10.1016/j.ijms.2004.04.002
- Torsvik, T., & Cocks, L. R. M. (2016). *Permian. Earth history and palaegeography*. Cambridge university press.
- Torsvik, T., Eide, E. A., Meert, J. G., Smethurst, M. A., & Walderhaug, H. J. (1998). The Oslo Rift: new palaeomagnetic and 40 Ar/ 39 Ar age constraints. *Geophysical Journal International*, 135(3), 1045–1059. https://doi.org/10.1046/j.1365-246X.1998.00687.x

- Torsvik, T., Smethurst, M., Burke, K., & Steinberger, B. (2008). Long term stability in deep mantle structure: Evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). *Earth and Planetary Science Letters*, 267(3–4), 444–452. https://doi.org/10.1016/j.epsl.2007.12.004
- Vervoort, J. D., Patehett, P. J., Söderlund, U., & Baker, M. (2004). Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. *Geochemistry, Geophysics, Geosystems*. https://doi.org/10.1029/2004GC000721
- Villa, I. M., De Bièvre, P., Holden, N. E., & Renne, P. R. (2015). IUPAC-IUGS recommendation on the half life of ⁸⁷Rb. *Geochimica et Cosmochimica Acta*. https://doi.org/10.1016/j.gca.2015.05.025
- Waight, T. (2015). Rb--Sr Geochronology (Igneous Rocks). In W. Jack Rink & J. W. Thompson (Eds.), *Encyclopedia of Scientific Dating Methods* (pp. 698–703). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6304-3_105
- Weidenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., ... Spiegel, W. (1995). Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. *Geostandards Newsletter*, 19(1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
- Wetherill, G. W. (1956). Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union. https://doi.org/10.1029/TR037i003p00320
- Woodhead, J. A., Rossman, G. R., & Silver, L. T. (1991). The metamictization of zircon: radiation dose-dependent structural characteristics. *American Mineralogist*.

Vedlegg A - Tynnslip

Prøve MTO-17-1: Alkalifeltspatsyenitt

Hovedmineraler

Feltspat – Ca. 95%. Relativt store anhedrale korn på 1 - 5 mm. Enkelte har velutviklede albittvillinger, mens andre har pertittisk struktur. Feltspatkornene har skarpe til kurvete overganger til andre feltspatkorn, samt sekundær mineraldannelse seg i mellom, med chessboard utslukning. De fleste kornene har sprekker.

Kvarts– > 5%. Relativt store anhedrale korn på 1 - 7 mm. Noen av krystallene har undulerende utslukning. Krystallene opptrer mellom korngrensene til feltspat. Noen av krystallene har mindre sprekker. Ved 40X forstørrelse kan man se røde korn i sprekkene.

Mindre hyppige og aksessoriske mineraler

Amfibol -> 3%. Euhedrale til subhedrale korn på 1 – 5mm, med blå-grønnlig turkis pleokroisme.

Magnetitt – >0,5 %. Euhedrale til subhedrale opaque korn på 1 - 2 mm. Ca. 50% av magnetitt i tynnslip opptrer i forbindelse med amfiboler. Enkelte av magnetittkornene har sekundærmineralisering av biotitt rundt korngrensene.

Biotitt ->0,5 %. Anhedrale korn som opptrer som inneslutninger i amfibol og rundt magnetittkorn.

Zirkon ->0,5 %. Subhedrale til euhedrale korn på 0,5-1 mm. Mesteparten av kornene opptrer innesluttet i eller rundt amfiboler.

Titanitt ->0,5 %. Subhedrale til anhedrale korn på 1-2 mm, med svak pleokroisme og høy dobbeltbrytning.

Prøve MTO-17-2: Alkalifeltspatsyenitt

Hovedmineraler

Feltspat – Ca. 97%. Anhedrale korn på opptil 10 mm. Noen har kryssende, polysyntetiske tvillinger og vitner om mikroklin, mens andre har pertittlameller. Flere av kornene har omvandlingsmineraler mellom korngrensene. Flere av krystallene har brudd fylt med alterasjonsfasemineraler med rød rustpigmentfarge.

Mindre hyppige og aksessoriske mineraler

Biotitt -> 1 %. Subhedrale korn på 0,5 - 3 mm.

Amfibol ->1 %. Anhedrale korn på 0,5-5 mm, med grønnlig, turkis pleokroisme.

Titanitt ->0,5 %. Subhedrale til anhedrale korn på 1-2 mm, med svak pleokroisme og høy dobbeltbrytning.

Magneitt -> 0.5 %. Subhedrale på 0.5 - 2 mm. Ca. 50% av magnetitt i tynnslip opptrer i forbindelse med amfiboler. Enkelte av magnetittkornene har sekundærmineralisering av biotitt rundt korngrensene.

Zirkon ->0,5 %. Subhedrale til euhedrale korn på 0,5 - 1 mm. Mesteparten av kornene opptrer innad eller rundt amfiboler.

Apatitt ->0,1%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i biotittkrystallene.

Prøve MTO-17-3: Alkalifeltspatgranitt

Hovedmineraler

Feltspat – ca. 60 %. Anhedrale korn på 0,5 - 5 mm med pertittlameller. Korngrensene har skarpe til kurvete overganger og rustpigmentdannelser. De fleste krystallene har serisitt.

Kvarts -> 35 %. Anhedrale korn på 0,5 -3 mm. Kornene opptrer både interstitielt mellom og innesluttet i feltspat i en eutektoid tekstur. Vann og gass-inneslutninger i sprekkdannelser.

Mindre hyppige og aksessoriske mineraler

Biotitt – 1%. Sterkt omvandlet korn på 0,5 – 1 mm, sammen med et svart opakt mineral.

Zirkon - > 1%. Subhedrale korn på 0,1 - 0,5 mm. Flesteparten av kornene er omvandlet/metamikte. Se zirkonbeskrivelser i avsnitt 4.3.11.

Opakt mineral -> 0,5 %. Subhendrale til euhedrale korn på 0,1 - 0,5 mm i og rundt biotitt. Mest sannsynlig magnetitt, da det var rikelig med magnetitt i separatet (magnetitsk), men kan også være ilmenitt, hematitt eller pyritt.

Prøve MTO-17-4: Alkalifeltspatsyenitt

Hovedmineraler

Feltspat – ca. 95%. Subhedrale til anhedrale korn på 1 - 10 mm. Majoriteten av krystallene har karlsbadtvillinger og albittisering mellom korngrenser. Innesluttet i enkelte feltspatkrystaller er det soner med albittvillinger. De fleste har serisitt.

Kvarts -> 3%. Anhedrale korn på 0, 1 - 1 mm. Opptrer i trippelpunkt mellom feltspatkrystaller.

Mindre hyppige og aksessoriske mineraler

Biotitt \rightarrow 1%. Anhedrale til subhedrale pleokroisk mørkebrune til lysebrune korn på 1 – 5 mm. Stor grad av omvandling til magnetitt.

Magnetitt ->1%. Subhendrale til euhedrale korn på 0, 1 - 0, 5 mm i og rundt biotitt.

Zirkon -> 0,5%. Subhedrale korn på 0,1-0,5 mm.

Prøve MTO-17-5: Alkalifeltspatgranitt

Hovedmineraler

Feltspat – Ca. 50%. Feltspat består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. All feltspat har pertittlameller, og noen har serisittisering internt i krystallene. Eutektoid/granofyr teksturer i enkelte domener av slipet: Orienterte sammenvoksninger mellom optisk kontinuerlige kvarts og alkaliefeltspatkorn, som tyder på at feltspat og kvarts har krystallisert samtidig i eutektikum.

Kvarts – Ca. 45%. Anhedrale krystaller på 0,1-5 mm. Kornene opptrer både interstitielt mellom og innesluttet i feltspat. Enkelte har vann og gass-inneslutninger, som sees som små rød-rosa prikker.

Mindre hyppige og aksessoriske mineraler

Biotitt -> 1%. Anhedrale til subhedrale, pleokroiske, mørkebrune til lysebrune korn på 0,5 til 4 mm.

Magnetitt -> 1%. Opake subhedrale til anhedrale korn på 0,1-1 mm. Opptrer sammen med biotitt.

Pyritt -> 1%. Opake subhedrale til anhedrale korn på 0, 1 - 1 mm.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i biotitt.

Prøve MTO-17-6: Alkalifeltspatgranitt

Hovedmineraler

Feltspat – Ca. 60%. Majoriteten består av anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. De største kornene har en kjerne bestående av serisittisert plagioklas med velutviklede albittvillinger og mikroklin mot korngrensene som viser kryssende, polysyntetiske tvillinger. All feltspat har pertittlameller, og noen har serisittisering internt i krystallene. Eutektoid/granofyr teksturer: Orienterte sammenvoksninger mellom optisk kontinuerlige kvarts og alkaliefeltspatkorn, som tyder på at feltspat og kvarts har krystallisert samtidig i eutektikum.

Kvarts – Ca. 35%. Anhedrale krystaller på 0,1-5 mm. Kornene opptrer både interstitielt mellom og innesluttet i feltspat. Enkelte har vann og gass-inneslutninger, som sees som små rød-rosa korn.

Mindre hyppige og aksessoriske mineraler

Biotitt -> 1%. Anhedrale til subhedrale, pleokroisk lysegrønne til beige korn på 0,5 til 4 mm.

Magnetitt -> 1%. Opake subhedrale til anhedrale korn på 0,1-1 mm. Opptrer rundt og som inneslutninger i biotittkrystallene.

Hematitt ->0,5%. Mørkerøde anisotropiske områder rundt korngrensene til magnetitt.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i biotittkrystallene med pleokroisk halo. 0

Apatitt ->0,1%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i biotittkrystallene.

Prøve MTO-17-7: Alkalifeltspatsyenitt

Hovedmineraler

Alkalifeltspat – Ca. 95%. 3 - 15 mm subhedrale til anherale krystaller. Flere har røde rustpigmentdannelser, og pertittisk tekstur.

Kvarts – 3-5%. Anhedrale krystaller på 0,1-5 mm. Kornene opptrer både interstitielt mellom og innesluttet i feltspat. Enkelte har vann og gass-inneslutninger, som sees som små rød-rosa prikker.

Mindre hyppige og aksessoriske mineraler

Amfibol -> 1%. 1 - 10 mm subhedrale til anhedrale krystaller med lysegrønn til turkis pleokroisme. Flere er omvandlet til magnetitt.

Biotitt -> 1%. Anhedrale til subhedrale pleokroisk lysegrønne til beige korn på 0,5 til 2 mm. De fleste opptrer i selskap med amfibol og magnetitt.

Magnetitt -> 1%. Opake subhedrale til anhedrale korn på 0,1-1 mm. Opptrer rundt og som inneslutninger i biotittkrystallene.

Apatitt ->0,1%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i biotitt.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i biotitt.

Prøve MTO-17-8: Alkalifeltspatsyenitt

Hovedmineraler

Alkalifeltspat – Ca. 90%. 3 - 15 mm subhedrale til anherale krystaller. Flere har røde rustpigmentdannelser, og pertittisk tekstur.

Mindre hyppige og aksessoriske mineraler

Amfibol -> 3%. 1 - 10 mm subhedrale til anhedrale krystaller med lysegrønn til turkis pleokroisme. Flere er omvandlet til magnetitt.

Biotitt -> 2%. Anhedrale til subhedrale pleokroisk lysegrønne til beige korn på 0,5 til 2 mm. De fleste opptrer i selskap med amfibol og magnetitt.

Magnetitt -> 2%. Opake subhedrale til anhedrale korn på 0,1 -1 mm. Opptrer rundt og som inneslutninger i biotittkrystallene.

Apatitt ->0,1%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i biotitt.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i biotitt.

Prøve MTO-17-9: Alkalifeltspatsyenitt

Hovedmineraler

Feltspat – Ca. 90%. De fleste består av 3 – 15 mm subhedrale til anherale krystaller. Flere har røde rustpigmentdannelser, og pertittisk tekstur.

Store deler av feltspaten består av mikroklin med viser kryssende, polysyntetiske tvillinger. En mindre andel av feltspat består av plagioklas med velutviklede albittvillinger. Denne er også sterkt omvandlet (serisittisering). Kvarts – Ca. 3%. 0.5 - 5 mm anhedrale krystaller. De fleste har vann og gass-inneslutninger.

Mindre hyppige og aksessoriske mineraler

Amfibol -> 3%. 1 – 10 mm subhedrale til anhedrale krystaller med lysegrønn til turkis pleokroisme. Sterkt omvandlet. Flere er omvandlet til magnetitt.

Magnetitt - > 1%. Opake subhedrale til anhedrale korn på 0,1 - 1 mm. Opptrer rundt og innad i biotittkrystallene.

Titanitt - > 1%. Subhedrale til anhedrale korn på 1 - 2 mm, med svak pleokroisme og relativt høy dobbeltbrytning.

Biotitt -> 0.5%. Anhedrale til subhedrale pleokroisk brune til beige korn på 0.5 til 2 mm. De fleste opptrer i selskap med amfibol og magnetitt.

Apatitt – >0,5%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i amfibol og biotitt. Zirkon – > 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i amfibol.

Prøve ON266: Syenittporfyr

Hovedmineraler

Feltspat – Ca. 70%. Anhedrale krystaller på 0,1 - 0,4 mm med røde rustpigmentdannelser utgjør matriks sammen med kvarts. Krystallene har pertittisk struktur og inneholder serisitt.

Ca. 3% av feltspatt består av euhedrale til subhedrale fenokrystaller på 1 - 10 mm. Disse har også et rødt rustpigment, og viser tegn til omvandling. De største fenokrystallene har en renere kjerne med økt omvandling nærmere randsonen. Enkelte av krystallene har karlsbadtvillinger.

Kvarts – Ca. 20%. Anhedrale krystaller på 0,1 - 0,4 mm som utgjør matriks i selskap med feltspatkrystaller av samme størrelse. Kvarts virker klarere enn feltspat. De fleste korn inneholder vann/gass-inneslutninger.

Mindre hyppige og aksessoriske mineraler

Magnetitt -> 1%. Subhedrale til euhedrale sorte og mørkerøde krystaller. Kornene er jevnt fordelt i slipet.

Apatitt ->0,5%. Subhedrale til euhedrale prismatiske krystaller på 0,1-0,2 mm. De fleste er inneslutninger i feltspat fenokrystallene.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. Enkelte har soneringer, som sees som soner med lavere dobbeltbrytning i krysspolarisert lys (XPL).

Amfibol -> 0,5%. 0,1 - 0,5 mm subhedrale til anhedrale lysegrønne krystaller. Opptrer som inneslutninger i feltspat. Delvis omvandlet til magnetitt og biotitt.

Biotitt -> 0.5%. Anhedrale til subhedrale pleokroisk brune til beige korn på 0.1 - 0.3 mm.

Prøve X3: Alkalifeltspatgranitt

Hovedmineraler

Feltspat – Ca. 50%. De fleste er anhedrale til subhedrale K-feltspat krystaller på 0,1 - 30 mm. All feltspat har pertittlameller, og enkelte har serisitt. Eutektoid/granofyr teksturer: Orienterte sammenvoksninger mellom optisk kontinuerlige kvarts og alkaliefeltspatkorn, som tyder på at feltspat og kvarts har krystallisert samtidig i eutektikum.

Kvarts – Ca. 45%. Anhedrale krystaller på 0,1-5 mm. Opptrer innad og rundt feltspatkrystaller. De fleste har vann/gass-inneslutninger

Mindre hyppige og aksessoriske mineraler

Amfibol -> 1%. 1 - 10 mm subhedrale til anhedrale krystaller med lysegrønn til turkis pleokroisme. Sterkt omvandlet. Mange er omvandlet til magnetitt.

Biotitt -> 1%. Anhedrale til subhedrale lys til mørk brun pleokroiske korn på 0,5 til 4 mm.

Magnetitt -> 1%. Opake subhedrale til anhedrale korn på 0,1-1 mm. Opptrer sammen med biotitt.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm. De fleste opptrer som inneslutninger i biotitt.

Prøve ON33: Syenittporfyr

Hovedmineraler

Feltspat – Ca. 70%. Anhedrale krystaller på 0,1 - 0,4 mm med røde rustpigmentdannelser utgjør matriks sammen med kvarts. Krystallene har pertittisk struktur, er omvandlet og serisittisert.

Ca. 3% av feltspatt består av euhedrale til subhedrale fenokrystaller på 1 - 20 mm. Enkelte av krystallene har karlsbadtvillinger.

Kvarts – Ca. 20%. Anhedrale til subhedrale krystaller på 0,1 - 0,4 mm som utgjør matriks i selskap med feltspatkrystaller av samme størrelse. Kvarts virker klarere enn feltspat, men de fleste inneholder vann/gass-inneslutninger. Kvartskorn har utviklet krystallflater mot miarolittiske hulrom som senere er fylt med kalkspat.

Mindre hyppige og aksessoriske mineraler

Magnetitt -> 1%. Subhedrale til anhedrale krystaller. Fordelingen av krystallene er jevnt fordelt i tynnslipet.

Karbonat – > 1%. Anhedrale fargeløse krystaller med høy dobbeltbrytning på 0,1 - 0,4 mm. Opptrer som sen fyllinger i miarolittiske hulrom som er begrenset av kvarts og feltspatkrystaller.su

Hematitt – 0,5% Mørkerøde anisotropiske områder som opptrer rundt magnetitt.

Zirkon -> 0.5%. Subhedrale til euhedrale krystaller på 0.05 - 0.25 mm.

Amfibol -> 0.5%. 0.1 - 0.5 mm subhedrale til anhedrale lysegrønne krystaller. Sterkt omvandlet.

Prøve ON39: Granofyrisk alkalifeltspatgranitt

Hovedmineraler

Feltspat – Ca. 60%. De fleste er anhedrale til subhedrale K-feltspat krystaller på 0,1 - 10 mm. All feltspat har pertittlameller, og noen er serisittisert. Eutektoid/granofyr teksturer: Orienterte sammenvoksninger mellom optisk kontinuerlige kvarts og alkaliefeltspatkorn, som tyder på at feltspat og kvarts har krystallisert samtidig i eutektikum.

Kvarts – Ca. 30%. Anhedrale til subhedrale krystaller på 0,1-5 mm. Opptrer som inneslutninger og rundt feltspatkrystaller. Majoriteten har vann/gass-inneslutninger.

Mindre hyppige og aksessoriske mineraler

Biotitt -> 1%. Anhedrale til subhedrale pleokroiske mørkebrune til lysebrune korn på 0,5 til 4 mm.

Magnetitt -> 1%. Opake subhedrale til anhedrale korn på 0, 1 - 1 mm.

Amfibol -> 0.5%. 0.1 - 0.5 mm subhedrale til anhedrale pleokroisk lysegrønne til turkise krystaller.

Zirkon -> 0,5%. Subhedrale til euhedrale krystaller på 0,05 - 0,25 mm.

Karbonat -> 0,5%. Anhedrale fargeløse krystaller med høy dobbeltbrytning på 0,1-0,4 mm.

Apatitt ->0,5%. Subhedrale til euhedrale prismatiske krystaller på 0,1 - 0,2 mm. De fleste opptrer som inneslutninger i biotitt.

Vedlegg B – U-Pb data

U-Pb data fra LAM-MC-ICPMS

Figur 53: Konkordiadiagram av prøve ON281 før redusering av diskordante zirkonanalyser

Tabell 1: U-Pb data fra prøve ON154

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim(%)	207/206	1s	207/235	1s	206/238	1s
ON154-01	677	27,7		1165	0,06554	0,00059	0,383	0,00779	0,042386	0,000774	0,898	-67,6	-65,5	792	18	329	6	268	5
ON154-02	435	17,1		7502	0,05148	0,00025	0,2898	0,0058	0,040832	0,000793	0,97	-1,6		262	11	258	5	258	5
ON154-03	324	13,6		1729	0,07487	0,00332	0,44949	0,02211	0,043542	0,00093	0,434	-75,8	-69,1	1065	86	377	15	275	6
ON154-04	961	40,9		44	0,35636	0,0056	2,14312	0,0646	0,043617	0,001122	0,853	-94,4	-94,2	3734	23	1163	21	275	7
ON154-05	405	19,2		164	0,13552	0,00337	0,91384	0,03211	0,048908	0,001213	0,706	-87,8	-86,9	2171	43	659	17	308	7
ON154-06	301	13,7		1718	0,05539	0,00042	0,35687	0,00865	0,046729	0,001076	0,951	-31,9	-25,3	428	16	310	6	294	7
ON154-07	479	19,4		3666	0,05799	0,00118	0,33321	0,01065	0,04167	0,001025	0,77	-51,3	-40,5	530	42	292	8	263	6
ON154-08	379	14,8		4236	0,05039	0,00033	0,27854	0,00721	0,040092	0,001005	0,968	19,4	3,2	213	15	249	6	253	6
ON154-09	461	18,2		5272	0,05212	0,00044	0,29198	0,00778	0,040631	0,001026	0,948	-11,9		291	19	260	6	257	6
ON154-10	584	22,8		4117	0,05247	0,00065	0,30488	0,00616	0,042144	0,000671	0,788	-13,3		306	28	270	5	266	4
ON154-11	245	9,2		2608	0,0499	0,00065	0,27844	0,0058	0,040473	0,000661	0,784	35,2	6,3	190	29	249	5	256	4
ON154-12	796	32,1		2259	0,05506	0,00069	0,32848	0,00687	0,043271	0,000725	0,801	-34,8	-24	415	27	288	5	273	4
ON154-13	243	10,6		1062	0,06577	0,00105	0,42458	0,00969	0,046817	0,000765	0,716	-64,5	-60,8	799	32	359	7	295	5
ON154-14	427	17		522	0,07593	0,00153	0,44971	0,01176	0,042953	0,000717	0,639	-76,8	-74,6	1093	40	377	8	271	4
ON154-15	217	10,5		275	0,09257	0,00242	0,66471	0,0208	0,052076	0,000895	0,549	-79,8	-78	1479	47	517	13	327	5
ON154-16	310	13,7		790	0,06696	0,00118	0,43933	0,01077	0,047583	0,00081	0,694	-65,7	-61,9	837	36	370	8	300	5
ON154-17	213	13,9		63	0,25165	0,00928	2,39115	0,10605	0,068915	0,0017	0,556	-89,3	-88,5	3195	56	1240	32	430	10
ON154-18	376	16,3		409	0,07274	0,00267	0,46759	0,01792	0,04662	0,000506	0,283	-72,4	-65,9	1007	75	390	12	294	3
ON154-19	228	11,1		85	0,20778	0,01312	1,50691	0,09744	0,0526	0,000729	0,214	-90,7	-89,5	2888	99	933	39	330	4
ON154-20	351	14,9		192	0,11586	0,00513	0,73853	0,03392	0,046231	0,000568	0,267	-86,5	-84,6	1893	77	562	20	291	3
ON154-21	469	18,9		4658	0,05142	0,00185	0,31093	0,01189	0,043856	0,000561	0,335	6,7		260	82	275	9	277	3
ON154-22	650	24,9		1032	0,06278	0,00233	0,36211	0,01424	0,041832	0,000541	0,329	-63,6	-49	701	79	314	11	264	3
ON154-23	314	13,4		928	0,0739	0,00308	0,47294	0,02071	0,046416	0,000625	0,308	-73,5	-66,3	1039	81	393	14	292	4

ON154-24	460	17	4462	0,04745	0,0017	0,26296	0,00996	0,040196	0,000505	0,331	258,8	107,9	72	77	237	8	254	3
ON154-25	671	26,7	235	0,10237	0,00632	0,61071	0,03861	0,043266	0,000583	0,213	-85,3	-81,9	1668	113	484	24	273	4

Tabell 2: U-Pb data fra prøve ON281

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u> Control	Min Dim	Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	²⁰⁷ Pb ^{/235} U*	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	(%)	(%)	207/206	1s	207/235	1 s	206/238	1s
ON281-01	44	6,8	0,00E+00	22	0,60697	0,02247	12,62279	0,54232	0,15083	0,003289	0,508	-85,2	-84,4	4525	52	2652	40	906	18
ON281-02	258	19,8	0,00E+00	28	0,53134	0,02088	5,16895	0,28764	0,070555	0,00278	0,708	-92,6	-92	4331	58	1848	47	440	17
ON281-03	995	42		9385	0,05446	0,00046	0,30889	0,00741	0,041133	0,000924	0,937	-34,1	-26,3	390	18	273	6	260	6
ON281-04	60	2,8		326	0,13454	0,00869	0,83602	0,05799	0,045067	0,001142	0,365	-88,7	-86,7	2158	108	617	32	284	7
ON281-05a	609	25,9		21396	0,05257	0,00048	0,30103	0,00808	0,041528	0,001049	0,941	-15,8	-1,8	310	20	267	6	262	6
ON281-6	534	24,1	•	3225	0,05546	0,00083	0,31143	0,01653	0,04073	0,002075	0,960	-41	-28,7	431	32	275	13	257	13
ON281-6b	1178	49,4		893	0,06807	0,00092	0,38341	0,01312	0,040851	0,001284	0,919	-71,8	-69,2	871	26	330	10	258	8
ON281-7	51	2,1		947	0,05552	0,00086	0,31249	0,01118	0,040822	0,001316	0,901	-41,3	-29	433	34	276	9	258	8
ON281-8	25	5,5		20	0,69003	0,02942	20,1	1,29644	0,211705	0,010208	0,749	-80,3	-78,6	4710	59	3098	62	1238	54
ON281-9	207	9,5		106	0,17545	0,0058	1,08046	0,05446	0,044664	0,001699	0,755	-91,1	-90,2	2610	53	744	27	282	10
ON281-10	65	3		441	0,10316	0,00246	0,64352	0,02854	0,045241	0,001692	0,843	-84,8	-83,4	1682	43	504	18	285	10
ON281-11	24	1		268	0,0598	0,00174	0,34032	0,01681	0,041278	0,001649	0,809	-57,4	-44,5	596	57	297	13	261	10
ON281-12	819	35,8		1417	0,07212	0,00212	0,42439	0,02125	0,042677	0,00173	0,81	-74,3	-69,9	989	58	359	15	269	11
ON281-13	807	34,5		7809	0,05304	0,00063	0,30588	0,01327	0,041829	0,001746	0,962	-20,4	-3,4	330	26	271	10	264	11
ON281-14	1063	58,3		50	0,31538	0,00764	2,32428	0,11492	0,053451	0,002303	0,872	-92,7	-92,2	3547	36	1220	35	336	14
ON281-15	474	22,3		222	0,11062	0,00235	0,6546	0,04797	0,042916	0,003009	0,957	-86,8	-85,6	1810	37	511	29	271	19
ON281-16	1161	34,5		47	0,33398	0,01457	1,3	0,11172	0,027368	0,002112	0,871	-96,4	-96	3635	66	828	50	174	13
ON281-17	389	16,1		56092	0,05472	0,00073	0,30551	0,01595	0,040492	0,002042	0,966	-36,9	-24,2	401	29	271	12	256	13
ON281-18	448	19,9		284	0,10531	0,00267	0,62885	0,03615	0,043311	0,002236	0,898	-85,8	-84,4	1720	44	495	23	273	14
ON281-19	243	9,1		183	0,1178	0,00148	0,6198	0,01641	0,03816	0,000889	0,88	-89	-88,5	1923	22	490	10	241	6
ON281-20	752	31,5		89	0,19606	0,00224	1,21364	0,02086	0,044896	0,000576	0,747	-91,7	-91,5	2794	18	807	10	283	4
ON281-21	1099	43,3		1740	0,05966	0,00064	0,34475	0,00497	0,041911	0,000405	0,671	-56,4	-52,3	591	22	301	4	265	3
ON281-22	16	0,6		180	0,083	0,00228	0,4886	0,01474	0,042695	0,000531	0,412	-80,4	-78	1269	52	404	10	270	3
ON281-24	876	35,6		226	0,11532	0,00194	0,68518	0,01341	0,043092	0,000434	0,515	-87,3	-86,8	1885	30	530	8	272	3
ON281-25	597	22,5		238	0,13219	0,00981	0,72971	0,05475	0,040037	0,000449	0,150	-89,8	-87,5	2127	128	556	32	253	3
ON281-26	20	1,4		25	0,60091	0,01019	5,93597	0,13703	0,071644	0,001122	0,678	-92,9	-92,7	4510	24	1967	20	446	7
ON281-27	802	33,8		1249	0,06329	0,00061	0,38154	0,00614	0,043721	0,000562	0,799	-62,9	-60,3	718	20	328	5	276	3
																		1	20

ON281-28	791	34,7	•	132	0,15689	0,00345	0,97589	0,02322	0,045113	0,000412	0,384	-90,1	-89,7	2422	37	691	12	284	3
ON281-29	490	19,3	•	17875	0,05179	0,00027	0,3	0,00349	0,041479	0,000437	0,893	-5,3		276	12	263	3	262	3
ON281-30	1129	45,2	•	3421	0,05602	0,00027	0,32634	0,00394	0,042249	0,000469	0,920	-42	-38,8	453	10	287	3	267	3
ON281-31	31	1,2		515	0,06606	0,00072	0,38114	0,00616	0,041843	0,000502	0,743	-68,7	-66,5	808	22	328	5	264	3
ON281-32	543	21,1		3615	0,05629	0,0008	0,31766	0,0058	0,040927	0,000468	0,627	-45,2	-35,5	464	30	280	4	259	3
ON281-33	85	3,3		1771	0,0508	0,00055	0,28272	0,00476	0,040365	0,000523	0,769	10,3		232	24	253	4	255	3
ON281-34	1069	41,9		152	0,14141	0,00304	0,78384	0,01844	0,040201	0,000381	0,403	-90,3	-89,9	2245	35	588	10	254	2
ON281-35	619	23,9		228	0,11368	0,00417	0,62879	0,02396	0,040115	0,000408	0,267	-88	-86,7	1859	63	495	15	254	3
ON281-36	562	21,8		5981	0,0539	0,00055	0,30894	0,00568	0,041567	0,000634	0,829	-29,1	-18,2	367	23	273	4	263	4
ON281-37	428	17,3		105	0,16939	0,00107	1,0	0,01091	0,041382	0,000386	0,827	-91,5	-91,3	2552	10	687	6	261	2
ON281-38	68	4,1		36	0,42988	0,00952	3,76659	0,11176	0,063548	0,001255	0,665	-92,7	-92,3	4017	32	1586	24	397	8
ON281-39	1281	36,7		41	0,37873	0,00995	1,53271	0,05117	0,029351	0,000604	0,617	-96,4	-96,2	3827	39	944	21	186	4
ON281-40	263	10,3		2672	0,05629	0,00071	0,32219	0,00742	0,041515	0,000801	0,837	-44,3	-36,1	464	25	284	6	262	5
ON281-41	32	5,4		22	0,65617	0,01278	15,92475	0,43532	0,176016	0,003376	0,702	-83,3	-82,6	4638	25	2872	26	1045	19
ON281-42	909	35,3		1972	0,05776	0,0003	0,32274	0,0059	0,040522	0,000709	0,958	-51,8	-49,2	521	11	284	5	256	4
ON281-43	278	14,2		114	0,17996	0,01038	1,28451	0,08051	0,051768	0,001273	0,392	-89,8	-88,6	2653	93	839	36	325	8
ON281-44	367	14,3	•	9820	0,05348	0,00034	0,29956	0,00568	0,040621	0,000724	0,941	-27,1	-19,8	349	13	266	4	257	4

Tabell 3: U-Pb data fra prøve X3

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	²⁰⁷ Pb ^{/235} U*	1SE	²⁰⁶ Pb ^{/238} U*	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1s	207/235	1 s	206/238	1s
X3-01	287	15,5		2754	0,05115	0,00038	0,28906	0,00515	0,040986	0,000663	0,908	4,7		248	16	258	4	259	4
X3-02	528	28,7		6144	0,05373	0,00038	0,30542	0,00545	0,041223	0,000677	0,920	-28,2	-20,7	360	15	271	4	260	4
X3-03	911	64,2		44	0,33509	0,00614	2,46404	0,06608	0,053332	0,001044	0,730	-93	-92,7	3641	26	1262	19	335	6
X3-04	1277	71		194	0,15945	0,01069	0,92431	0,06736	0,042042	0,001203	0,393	-90,9	-89,5	2450	113	665	36	265	7
X3-05	624	29,8		172	0,12268	0,00324	0,62111	0,02126	0,03672	0,0008	0,637	-89,9	-89,1	1996	46	491	13	232	5
x3-06 130	965	39,1		477	0,07783	0,00089	0,3353	0,0073	0,031245	0,000578	0,849	-83,9	-83	1143	22	294	6	198	4

X3-07	527	63,5	32	0,44897	0,01007	5,74712	0,23115	0,09284	0,0031	0,83	-89,5	-88,9	4082	33	1938	35	572	18
X3-08	152	7,6	1271	0,05144	0,0004	0,27687	0,00512	0,039035	0,000654	0,906	-5,4		261	18	248	4	247	4
X3-09	102	4,4	2157	0,05222	0,00066	0,2	0,00559	0,033976	0,000645	0,831	-27,4	-8,7	295	28	222	5	215	4
X3-10	214	26,7	39	0,36972	0,00799	4,86404	0,19777	0,095418	0,003287	0,847	-88,1	-87,4	3790	32	1796	34	587	19
X3-11	1187	59,1	170	0,11087	0,00251	0,60545	0,01786	0,039607	0,000747	0,639	-87,8	-87	1814	40	481	11	250	5
X3-12	357	19,6	211	0,12128	0,00272	0,74367	0,0214	0,044472	0,000801	0,626	-87,6	-86,8	1975	39	565	12	280	5
X3-13	1081	42,2	567	0,07457	0,0009	0,32312	0,00689	0,031427	0,000554	0,826	-82,4	-81,2	1057	23	284	5	199	3
X3-14	1016	49,1	349	0,08662	0,00066	0,46369	0,01026	0,038826	0,000806	0,938	-83,4	-82,8	1352	14	387	7	246	5
X3-15	1114	27,5	1069	0,18566	0,00467	0,5	0,01963	0,020747	0,000562	0,733	-96	-95,8	2704	40	433	13	132	4
X3-16	275	12,3	5451	0,05497	0,00053	0,27902	0,00578	0,036811	0,000677	0,887	-44,1	-37	411	21	250	5	233	4
X3-17	1058	46,1	133	0,14971	0,00311	0,72858	0,02238	0,035297	0,000798	0,736	-91,9	-91,5	2343	35	556	13	224	5
X3-18	521	48,6	44	0,34362	0,00646	3,56687	0,11214	0,075284	0,001897	0,802	-90,2	-89,8	3679	28	1542	25	468	11

Tabell 4: U-Pb data fra prøve ON33

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>	Min.	<u>Aldere</u>					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	²⁰⁷ Pb ^{/235} U*	1SE	²⁰⁶ Pb ^{/238} U*	1SE	Rho	Central (%)	Rim (%)	207/206	1 s	207/235	1s	206/238	1 s
ON33- 02	88	4,6		1494	0,05252	0,0004	0,30364	0,00421	0,041932	0,000486	0,836	-14,3	-2,9	308	17	269	3	265	3
ON33- 03	96	4		1092	0,05149	0,0004	0,23659	0,00342	0,033323	0,000406	0,844	-20	-6,9	263	17	216	3	211	3
ON33- 04	103	4		3616	0,05851	0,001	0,2557	0,00692	0,031698	0,000662	0,772	-64,3	-58,1	549	37	231	6	201	4
ON33- 05	85	4,5		2250	0,05792	0,00057	0,34177	0,00551	0,042793	0,000547	0,793	-49,8	-44,9	527	21	299	4	270	3
ON33- 06	63	3,3		1222	0,05088	0,00054	0,2962	0,0045	0,042219	0,000462	0,72	13,5		236	23	263	4	267	3

ON33- 07	55	2,9	753	0,0521	0,00047	0,3	0,00458	0,042017	0,000513	0,806	-8,7		290	19	268	4	265	3
ON33- 08	92	4,7	1392	0,05477	0,00046	0,30695	0,00461	0,040647	0,000508	0,832	-37	-30,1	403	18	272	4	257	3
ON33- 09	236	12,6	4981	0,05183	0,00028	0,30746	0,00475	0,043026	0,000622	0,936	-2,3		278	12	272	4	272	4
ON33- 10	73	3,8	1435	0,05235	0,00053	0,30349	0,00531	0,042049	0,000601	0,816	-11,9		301	22	269	4	266	4
ON33- 11	76	4	1029	0,05124	0,00042	0,29529	0,00416	0,041794	0,000478	0,81	4,9		252	18	263	3	264	3
ON33- 12	131	6,9	4817	0,05584	0,00053	0,32547	0,00535	0,042276	0,00057	0,819	-41	-34,4	446	20	286	4	267	4
ON33- 13	62	3,2	1073	0,05186	0,00057	0,30081	0,00521	0,042071	0,000562	0,771	-4,9		279	24	267	4	266	3
ON33- 15	86	4,5	1519	0,05113	0,00033	0,29902	0,00379	0,042419	0,000463	0,860	8,8		247	14	266	3	268	3
ON33- 16	108	5,6	1907	0,0505	0,00036	0,29253	0,00387	0,042008	0,000466	0,838	22	6,8	218	16	261	3	265	3
ON33- 17	278	10,8	1242	0,07463	0,0007	0,31982	0,00506	0,031082	0,000395	0,804	-82,6	-81,8	1058	18	282	4	197	2
ON33- 18	41	2,1	2420	0,05283	0,00059	0,30237	0,00509	0,041506	0,000523	0,749	-18,9	-3	322	25	268	4	262	3
ON33- 19	298	15,5	1253	0,07589	0,00382	0,43636	0,0229	0,041704	0,000613	0,280	-77,4	-70,1	1092	97	368	16	263	4
ON33- 20	63	3,4	1406	0,05489	0,00053	0,32375	0,00493	0,042775	0,000506	0,777	-34,5	-26,3	408	21	285	4	270	3
ON33- 21	109	5,8	2389	0,05108	0,00037	0,2975	0,00413	0,042241	0,000501	0,855	9,3		244	16	264	3	267	3
ON33- 22	121	6,3	1831	0,05114	0,00029	0,29553	0,00381	0,041912	0,000484	0,897	7,3		247	13	263	3	265	3
ON33- 23	50	2,7	1503	0,05203	0,00054	0,30554	0,00533	0,04259	0,000598	0,805	-6,4		287	22	271	4	269	4
ON33- 24	84	4,5	1844	0,05118	0,00044	0,30224	0,00476	0,04283	0,000565	0,837	8,8		249	19	268	4	270	3
ON33- 26	34	1,8	335	0,05134	0,00054	0,30118	0,0057	0,042549	0,000668	0,829	5		256	24	267	4	269	4
ON33- 27	44	2,2	774	0,05026	0,00053	0,27455	0,00501	0,039621	0,000592	0,819	21,5	0,2	207	23	246	4	250	4
ON33- 28	76	3,7	1399	0,0555	0,00064	0,29524	0,00524	0,03858	0,000518	0,757	-44,4	-36,3	433	25	263	4	244	3
ON33- 29	302	16,1	8571	0,0514	0,0003	0,30067	0,00443	0,042426	0,000572	0,916	3,6		259	13	267	3	268	4
-------------	-----	------	------	---------	---------	---------	---------	----------	----------	-------	-------	-------	-----	----	-----	---	-----	---
ON33- 30	76	4	2259	0,05094	0,00033	0,29339	0,00412	0,041772	0,00052	0,885	11		238	14	261	3	264	3
ON33- 31	69	3,5	1735	0,05304	0,00039	0,30037	0,00427	0,041075	0,000498	0,853	-21,9	-12,5	330	16	267	3	259	3
ON33- 32	352	19,3	3492	0,06036	0,00067	0,36402	0,00603	0,043742	0,000539	0,744	-56,4	-52,4	616	23	315	4	276	3

Tabell 5: U-Pb data fra prøve ON39

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		<u>Aldere</u>					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb [*]	1SE	²⁰⁷ Pb ^{/235} U*	1SE	²⁰⁶ Pb ^{/238} U*	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1s	206/238	1s
ON39-01	270	13,1		4330	0,06067	0,00044	0,32146	0,00805	0,038429	0,000922	0,958	-62,4	-60	628	15	283	6	243	6
ON39-02	154	8,4		720	0,07513	0,00395	0,5	0,02628	0,043505	0,001103	0,435	-76	-67,7	1072	102	378	18	275	7
ON39-03	20	17,4		18	0,82748	0,02656	71,37837	5,23621	0,625613	0,041268	0,899	-46,2	-42	4970	44	4348	73	3132	164
ON39-04	127	5,9		2494	0,05379	0,00052	0,27661	0,00811	0,037293	0,001032	0,944	-35,5	-25,7	362	20	248	6	236	6
ON39-05	86	4,6		1319	0,05137	0,0005	0,30268	0,00801	0,042737	0,001053	0,931	4,9		257	20	268	6	270	7
ON39-07	307	16,7		7975	0,05305	0,00033	0,32184	0,00458	0,044004	0,000564	0,899	-16,4	-8,1	331	14	283	4	278	3
ON39-12	261	13,4		2360	0,05318	0,00036	0,30746	0,00378	0,041935	0,000431	0,835	-21,7	-13,4	336	15	272	3	265	3
ON39-19	182	9,6		3889	0,05165	0,00029	0,30486	0,00404	0,042809	0,000514	0,906	0,1		270	13	270	3	270	3
ON39-22	242	13,5		1270	0,07522	0,00212	0,46934	0,01427	0,045251	0,00051	0,371	-75,1	-71,2	1074	55	391	10	285	3
ON39-23	201	10,5		4221	0,05618	0,00037	0,32864	0,00486	0,042424	0,00056	0,893	-42,6	-38,2	460	14	289	4	268	3
ON39-24	840	48,2		231	0,10546	0,00219	0,67224	0,01737	0,046232	0,00071	0,594	-84,9	-84	1722	37	522	11	291	4

ON39-25	189	9,8	3351	0,05145	0,00026	0,29777	0,00377	0,041976	0,000487	0,918	1,6 .		261	11	265	3	265	3
ON39-26	235	12	2880	0,05314	0,00027	0,30181	0,00459	0,04119	0,00059	0,942	-22,7	-16,4	335	11	268	4	260	4
ON39-27	163	8,9	2111	0,05396	0,0005	0,3	0,00529	0,044244	0,000581	0,817	-25	-14,8	369	20	289	4	279	4

Tabell 6: U-Pb data fra prøve ON266

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	²⁰⁷ Pb ^{/235} U*	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1s	206/238	1 s
ON266-01	33	1,8		196	0,07495	0,00402	0,43231	0,02527	0,041834	0,000979	0,400	-76,8	-68,4	1067	108	365	18	264	6
ON266-02	451	25,6		4091	0,05551	0,00056	0,34639	0,00885	0,045256	0,001063	0,919	-34,8	-26,4	433	22	302	7	285	7
ON266-03	642	33,1		7397	0,05173	0,00029	0,29177	0,00672	0,040908	0,000913	0,969	-5,6		273	13	260	5	258	6
ON266-05	1029	55		14709	0,05196	0,00027	0,30306	0,00702	0,042305	0,000954	0,974	-5,9		283	12	269	5	267	6
ON266-06	376	20		602	0,07293	0,00176	0,42394	0,01401	0,042159	0,000953	0,684	-75,2	-72,1	1012	47	359	10	266	6
ON266-07	585	31,7		9048	0,05245	0,00031	0,31044	0,00716	0,042931	0,000958	0,967	-11,4	-1,9	305	13	275	6	271	6
ON266-08	73	3,4		987	0,06927	0,00181	0,35306	0,01267	0,036968	0,00091	0,686	-75,5	-71,7	907	53	307	10	234	6
ON266-09	909	49,5		20702	0,05144	0,00029	0,3	0,00718	0,04321	0,000983	0,971	4,7		261	12	271	6	273	6
ON266-10	114	4,5		75	0,23687	0,02399	1,03639	0,10834	0,031733	0,000824	0,248	-94,9	-93,8	3099	158	722	54	201	5
ON266-11	94	5		1290	0,0596	0,00081	0,3449	0,00928	0,041969	0,000975	0,863	-56,1	-50,6	589	28	301	7	265	6
ON266-12	367	20,8		699	0,07409	0,00166	0,4574	0,01517	0,044777	0,001096	0,738	-74,5	-71,6	1044	44	382	11	282	7
ON266-13	205	10,7		4712	0,05385	0,00041	0,30949	0,00775	0,041681	0,000994	0,953	-28,4	-20,1	365	17	274	6	263	6
ON266-15	562	30,1		9102	0,05112	0,0003	0,3002	0,00731	0,04259	0,001006	0,971	9,4		246	13	267	6	269	6
ON266-16	212	11,1		3602	0,0517	0,00033	0,29492	0,00728	0,04137	0,000986	0,965	-4,1		272	15	262	6	261	6

Tabell 7: U-Pb data fra prøve GB14

	<u>ppm</u>				Forhold							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	²⁰⁷ Pb ^{/235} U*	1SE	²⁰⁶ Pb ^{/238} U*	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1 s	206/238	1 s
GB14-01a	188	7,1		13483	0,05284	0,00035	0,29122	0,00512	0,039975	0,000653	0,929	-21,9	-13,3	322	14	260	4	253	4
GB14-01b	201	7,5		712	0,07452	0,0013	0,40537	0,00906	0,039452	0,000551	0,624	-77,8	-76	1056	33	346	7	249	3
GB14-02	221	8,5		2217	0,05364	0,00043	0,29967	0,00421	0,040516	0,000469	0,823	-28,7	-20,2	356	17	266	3	256	3
GB14-03	286	10,9		639	0,06659	0,00044	0,4	0,00475	0,040283	0,000443	0,857	-70,5	-69,2	825	13	320	4	255	3
GB14-05	336	12,9		3537	0,05511	0,00037	0,30769	0,00387	0,040492	0,000429	0,843	-39,4	-34,3	417	14	272	3	256	3
GB14-06a	292	11,4		2038	0,0602	0,00062	0,34406	0,00557	0,041453	0,000516	0,769	-58,3	-54,6	611	21	300	4	262	3
GB14-06b	190	7,3		2220	0,06446	0,00065	0,3602	0,00686	0,04053	0,000656	0,85	-67,5	-65,1	757	20	312	5	256	4
GB14-07a	285	11,1		2771	0,05239	0,00034	0,29764	0,0041	0,041208	0,0005	0,882	-14,2	-4,4	302	14	265	3	260	3
GB14-07b	206	8,1		447	0,08939	0,00366	0,5139	0,02249	0,041698	0,000651	0,357	-83	-80	1412	77	421	15	263	4
GB14-08	290	11,3		4415	0,05158	0,00036	0,29355	0,00458	0,041274	0,000575	0,892	-2,4		267	16	261	4	261	4
GB14-09	272	10,7		1592	0,05938	0,00063	0,3	0,00584	0,041789	0,000557	0,781	-55,7	-51,5	581	23	299	4	264	3
GB14-10a	160	6,2		2077	0,05112	0,00042	0,29037	0,00559	0,041192	0,000718	0,906	5,7		246	18	259	4	260	4
GB14-10b	342	13,4		6192	0,05157	0,00035	0,29551	0,00428	0,041559	0,000531	0,883	-1,5		266	15	263	3	262	3
GB14-11	666	27,2		5623	0,0563	0,00048	0,33617	0,00453	0,043306	0,000449	0,769	-42	-36,4	464	18	294	3	273	3
GB14-12a	253	9,8		4037	0,05156	0,00036	0,29118	0,00406	0,040956	0,000495	0,867	-2,8		266	15	259	3	259	3
GB14-12b	309	12		3463	0,05201	0,00035	0,2963	0,00425	0,041318	0,000522	0,881	-8,9		286	15	264	3	261	3
GB14-13	197	8,5		1424	0,06199	0,0012	0,39005	0,00989	0,045635	0,000745	0,644	-58,6	-52,2	674	39	334	7	288	5
GB14-14	277	10,9		9110	0,05492	0,00082	0,31588	0,00611	0,041713	0,000516	0,639	-36,3	-22,5	409	31	279	5	263	3
GB14-15	235	9,1		5191	0,05239	0,00037	0,29739	0,00407	0,041167	0,000485	0,859	-14,4	-3,7	303	16	264	3	260	3

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		<u>Aldere</u>					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb [*]	1SE	$^{207}{Pb}^{/235}{U}^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1 s	206/238	1s
L8-01	774	27,6	6,90E-01	2051	0,05157	0,00051	0,2735	0,00729	0,038466	0,000952	0,929	-8,8		266	21	245	6	243	6
L8-02	870	30,6		11353	0,05374	0,0006	0,28743	0,00927	0,038791	0,001173	0,937	-32,5	-20,4	360	24	257	7	245	7
L8-03	1320	47,6		24315	0,05261	0,00058	0,28882	0,00931	0,039813	0,001208	0,941	-19,8	-3,3	312	24	258	7	252	7
L8-04	865	30,2		13931	0,0541	0,00059	0,29228	0,00957	0,039185	0,00121	0,943	-34,6	-23,7	375	23	260	8	248	8
L8-05	511	18		21639	0,0559	0,00065	0,30686	0,01015	0,039811	0,001233	0,937	-44,7	-36,6	449	25	272	8	252	8
L8-06	541	18,4		10505	0,05326	0,0006	0,28489	0,0095	0,038792	0,001219	0,942	-28,4	-14,6	340	25	255	8	245	8
L8-07	525	18,1	1,20E+00	1260	0,05318	0,00113	0,28396	0,01085	0,038723	0,001232	0,833	-27,8		337	48	254	9	245	8
L8-08	706	24,2		11807	0,05189	0,0006	0,28179	0,00953	0,03939	0,001252	0,939	-11,4		280	27	252	8	249	8
L8-09	628	21,5	•	1684	0,0597	0,00157	0,3	0,01337	0,039467	0,001248	0,768	-59	-48,1	593	54	286	10	250	8
L8-10	647	22		11664	0,05269	0,00063	0,28772	0,00979	0,039603	0,001263	0,937	-21,1	-3,5	316	25	257	8	250	8
L8-11	866	43,9		458	0,08035	0,00187	0,47669	0,01443	0,043028	0,000836	0,642	-79,1	-77	1206	45	396	10	272	5
L8-12	669	32,9	-	10092	0,0541	0,00046	0,31127	0,00651	0,041729	0,000798	0,914	-30,4	-21,8	375	19	275	5	264	5
L8-13	1704	86,1	•	18729	0,05201	0,00022	0,30663	0,00606	0,042756	0,000825	0,977	-5,7		286	10	272	5	270	5
L8-15	854	41,7		12892	0,05357	0,00037	0,3064	0,00631	0,041485	0,000805	0,942	-26,3	-18,3	353	15	271	5	262	5
L8-16	1092	52,8		20286	0,05426	0,00037	0,30698	0,00636	0,041034	0,000802	0,944	-32,7	-26,1	382	15	272	5	259	5
L8-17	951	50,6		4557	0,06088	0,00148	0,37788	0,0122	0,045015	0,000957	0,658	-56,5	-47	635	51	325	9	284	6
L8-18	532	25,6		4387	0,05538	0,00041	0,31211	0,0067	0,040877	0,000824	0,940	-40,4	-34,8	427	16	276	5	258	5
L8-20	2064	106,7		1534	0,06212	0,00138	0,37554	0,01162	0,043843	0,000946	0,697	-60,5	-53,3	678	44	324	9	277	6
L8-21	1556	77		9447	0,05328	0,00027	0,30936	0,00681	0,042114	0,000903	0,973	-22,4	-16,1	341	11	274	5	266	6
L8-22	1072	52,4		23971	0,05579	0,00049	0,32113	0,00795	0,041747	0,000967	0,935	-41,5	-35	444	19	283	6	264	6
L8-23	859	42,5		8753	0,05352	0,00048	0,31182	0,00775	0,042259	0,000978	0,932	-24,4	-13,6	351	20	276	6	267	6
L8-24	1164	57,7		34252	0,05216	0,0003	0,30407	0,00747	0,042276	0,00101	0,972	-9		293	13	270	6	267	6
L8-25	1602	80,3		23943	0,05245	0,00031	0,30407	0,00806	0,042044	0,001087	0,975	-13,3	-4,1	305	13	270	6	265	7
L8-26	995	48,3		6533	0,05374	0,00044	0,30816	0,00786	0,041588	0,001003	0,946	-27,6	-18,4	360	18	273	6	263	6

L8-27	1271	63,1		5729	0,05435	0,00053	0,31492	0,00864	0,042023	0,001078	0,935	-31,8	-22,2	386	21	278	7	265	7
L8-28	883	44,7		1653	0,06107	0,00108	0,36464	0,01109	0,043302	0,001069	0,812	-58,6	-52,3	642	37	316	8	273	7
L8-29	738	35,6		9723	0,05262	0,0003	0,29997	0,00764	0,041344	0,001027	0,975	-16,8	-8,5	313	12	266	6	261	6
L8-30	153	7	-	343	0,1094	0,00442	0,59532	0,02833	0,039467	0,000991	0,528	-87,7	-86,2	1789	72	474	18	250	6
L8-31	537	25,7		6355	0,0528	0,00045	0,29787	0,008	0,040915	0,001042	0,948	-19,7	-7,6	320	19	265	6	259	6

Tabell 9: U-Pb data fra prøve MTO-17-1

	<u>ppm</u>				Forhold							<u>Diskordans</u>	Min Dim	Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	(%)	207/206	1 s	207/235	1s	206/238	1s
MTO-17-1-02	78	3		761	0,05248	0,00049	0,3029	0,00691	0,041858	0,000872	0,913	-14		307	20	269	5	264	5
MTO-17-1-03	59	2,2		639	0,05184	0,00051	0,29897	0,01059	0,041825	0,001425	0,961	-5,3		278	21	266	8	264	9
MTO-17-1-04	85	3,2		1489	0,05196	0,0004	0,29869	0,00823	0,041691	0,001103	0,96	-7,3		284	17	265	6	263	7
MTO-17-1-05	105	4		1191	0,0513	0,00042	0,29372	0,00625	0,04153	0,000815	0,922	3,3		254	18	261	5	262	5
MTO-17-1-06	100	3,8		1345	0,05153	0,00046	0,29802	0,00717	0,041943	0,000936	0,928	0,1		265	20	265	6	265	6
MTO-17-1-07	117	4,5		1197	0,0578	0,00156	0,34086	0,01149	0,042771	0,000868	0,602	-49,3	-31,5	522	59	298	9	270	5
MTO-17-1-08	79	2,9		1335	0,05126	0,00046	0,29203	0,00712	0,041321	0,000938	0,931	3,5		252	21	260	6	261	6
MTO-17-1-09	158	5,9		3023	0,05245	0,0004	0,3	0,00599	0,041249	0,000765	0,924	-14,9	-3,1	305	18	265	5	261	5
MTO-17-1-10	129	4,8		2671	0,05142	0,00039	0,29021	0,00614	0,040934	0,00081	0,935	-0,4		260	16	259	5	259	5
MTO-17-1-11	92	3,4		2292	0,05208	0,00048	0,29664	0,00825	0,04131	0,001084	0,943	-9,9		289	20	264	6	261	7
MTO-17-1-12	95	3,8		888	0,10902	0,01225	0,6665	0,07838	0,044339	0,001535	0,294	-86,1	-78,7	1783	197	519	48	280	9
MTO-17-1-13	141	5,2		1746	0,05184	0,00038	0,29071	0,00606	0,040672	0,000793	0,935	-7,8		278	16	259	5	257	5
MTO-17-1-14	121	4,5		1846	0,05161	0,00037	0,2914	0,00621	0,040951	0,000821	0,941	-3,6		268	16	260	5	259	5
MTO-17-1-15	82	3		1125	0,05182	0,00048	0,29628	0,00916	0,04147	0,001223	0,954	-5,6		277	21	263	7	262	8
MTO-17-1-16	120	4,4		2148	0,05482	0,00046	0,30432	0,00618	0,040259	0,000745	0,912	-37,9	-31	405	18	270	5	254	5

MTO-17-1-17	119	5,4	63	0,24819	0,00507	1,71873	0,04873	0,050225	0,000988	0,694	-92,1	-91,7	3173	31	1016	18	316	6
MTO-17-1-18	88	3,2	1469	0,05237	0,00054	0,2905	0,0085	0,040228	0,001102	0,936	-16,1		302	23	259	7	254	7
MTO-17-1-19	84	3	2153	0,05183	0,00045	0,2883	0,00738	0,040343	0,000973	0,942	-8,4		278	19	257	6	255	6
MTO-17-1-20	84	3,1	1203	0,05652	0,00086	0,31669	0,00838	0,040635	0,00088	0,819	-46,6	-37	473	32	279	6	257	5
MTO-17-1-21	105	3,8	3171	0,05181	0,00043	0,28948	0,00695	0,040526	0,000913	0,938	-7,6		277	18	258	5	256	6
MTO-17-1-23	128	4,7	1959	0,0515	0,00041	0,29023	0,00652	0,04087	0,000858	0,934	-2		263	18	259	5	258	5
MTO-17-1-25	116	4,3	1277	0,05221	0,00044	0,2936	0,00639	0,040785	0,000817	0,92	-12,8		295	19	261	5	258	5
MTO-17-1-26	107	3,9	1151	0,05207	0,00041	0,28942	0,00631	0,040311	0,000819	0,932	-12		289	17	258	5	255	5
MTO-17-1-27	95	3,5	1644	0,05164	0,00043	0,29382	0,00826	0,041269	0,001108	0,955	-3,3		269	18	262	6	261	7
MTO-17-1-28	142	5,2	1246	0,05427	0,00044	0,3027	0,00654	0,040456	0,00081	0,927	-33,8	-26	382	18	269	5	256	5
MTO-17-1-29	160	5,9	1483	0,05095	0,00039	0,28692	0,00648	0,040842	0,000866	0,939	8,3		239	17	256	5	258	5
MTO-17-1-30	48	1,9	1012	0,09741	0,00179	0,59396	0,02044	0,044221	0,001287	0,846	-84	-82,8	1575	33	473	13	279	8
MTO-17-1-31	77	2,8	1782	0,05056	0,00045	0,29011	0,00903	0,041616	0,001241	0,959	19,4		221	20	259	7	263	8
MTO-17-1-33	710	32,7	9033	0,05141	0,00029	0,30814	0,00547	0,043471	0,000732	0,949	5,9		259	13	273	4	274	5
MTO-17-1-34	103	4,4	1271	0,05172	0,00047	0,29125	0,00764	0,040841	0,001005	0,938	-5,6		273	20	260	6	258	6
MTO-17-1-35	71	3	985	0,05145	0,00057	0,29154	0,01162	0,041101	0,001573	0,960	-0,5		261	24	260	9	260	10
MTO-17-1-36	125	5,3	1983	0,05126	0,00041	0,28582	0,00706	0,040439	0,000945	0,947	1,2		253	17	255	6	256	6
MTO-17-1-37	109	4,6	2675	0,05046	0,00043	0,28829	0,00953	0,041432	0,001323	0,966	21,3	0,9	216	20	257	8	262	8
MTO-17-1-38	100	4,1	1388	0,05118	0,00045	0,28515	0,00895	0,04041	0,001218	0,960	2,7		249	21	255	7	255	8
MTO-17-1-39	75	3,1	1618	0,05373	0,00052	0,303	0,00948	0,040902	0,001216	0,95	-28,7	-17,7	360	22	269	7	258	8
MTO-17-1-41	106	4,5	1355	0,05121	0,00039	0,29521	0,01061	0,041806	0,001469	0,977	5,5		250	17	263	8	264	9
MTO-17-1-42	139	5,8	1946	0,05113	0,00036	0,3	0,00634	0,040865	0,000854	0,949	4,7		247	15	257	5	258	5
MTO-17-1-43	79	3,4	688	0,06428	0,00131	0,37353	0,01371	0,042143	0,001284	0,830	-65,9	-60,7	751	41	322	10	266	8
MTO-17-1-44	105	4,3	1653	0,05235	0,00044	0,29395	0,00762	0,040723	0,001	0,947	-14,7	-1,3	301	18	262	6	257	6
MTO-17-1-45	102	4,3	3890	0,05165	0,00039	0,29774	0,00846	0,041809	0,001144	0,963	-2,2		270	16	265	7	264	7
MTO-17-1-46	82	3,4	1892	0,05154	0,00042	0,29501	0,01027	0,041516	0,001404	0,972	-1		265	18	262	8	262	9
MTO-17-1-47	106	4,4	1216	0,0521	0,0004	0,2975	0,00875	0,041412	0,001175	0,965	-10		290	17	264	7	262	7

MTO-17-1-52	104	4,3	1492	0,05173	0,00048	0,3	0,00811	0,041417	0,001069	0,94	-4,5		274	21	263	6	262	7
MTO-17-1-53	77	3,2	809	0,05095	0,00048	0,30684284	0,007740453	0,042224441	0,001115283	0,963	11,3		238	21	262	7	265	8
MTO-17-1-54	113	4,6	2377	0,05136	0,00039	0,305268366	0,007625348	0,042238792	0,001119032	0,964864709	1,2		257	17	260	5	260	6
MTO-17-1-55	89	3,7	1329	0,05113	0,00055	0,303693892	0,007510243	0,042253143	0,00112278	0,967076318	7,9		247	23	264	7	266	7
MTO-17-1-56	71	2,9	2558	0,05169	0,00057	0,302119418	0,007395138	0,042267494	0,001126529	0,969287928	-2,6		272	24	265	7	265	7
MTO-17-1-57	79	3,2	837	0,05112	0,00044	0,300544944	0,007280032	0,042281845	0,001130277	0,971499537	8		246	19	264	8	266	9
MTO-17-1-58	150	6,2	1565	0,05179	0,00039	0,298970471	0,007164927	0,042296195	0,001134026	0,973711147	-4		276	16	267	5	265	5
MTO-17-1-59	71	2,9	709	0,05059	0,00049	0,297395997	0,007049822	0,042310546	0,001137774	0,975922757	21,2		222	22	264	9	269	9
MTO-17-1-60	151	6,3	2066	0,05601	0,00057	0,32874	0,00788	0,042571	0,000922	0,904	-41,5	-34,2	453	22	289	6	269	6

Tabell 10: U-Pb data fra prøve MTO-17-2

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1 s	206/238	1 s
MTO-17-2-01a	227	9,2	•	3383	0,0514	0,00036	0,29538	0,00602	0,041677	0,000797	0,939	1,7		259	16	263	5	263	5
MTO-17-2-01	1112	45,7		928	0,06533	0,0005	0,37479	0,00767	0,041611	0,00079	0,928	-67,9	-66,1	785	16	323	6	263	5
MTO-17-2-02	1331	51,3		70	0,23016	0,00492	1,24462	0,03555	0,039219	0,000743	0,663	-93,5	-93,2	3053	34	821	16	248	5
MTO-17-2-03	694	30,6		206	0,1161	0,00307	0,71867	0,02335	0,044896	0,000849	0,582	-86,9	-85,9	1897	47	550	14	283	5
MTO-17-2-04	2020	98,9		69	0,23526	0,00541	1,61883	0,04905	0,049905	0,000984	0,651	-91,9	-91,5	3088	35	978	19	314	6
MTO-17-2-05	22	1,5	•	37	0,39596	0,00841	3,84863	0,11351	0,070495	0,001442	0,693	-91,5	-91,1	3894	30	1603	24	439	9
MTO-17-2-06	13	0,9		32	0,42369	0,01185	4,31116	0,18439	0,073798	0,002389	0,757	-91,4	-90,9	3995	40	1695	35	459	14
MTO-17-2-07	629	33,5		71	0,23044	0,00617	1,73169	0,05829	0,054501	0,001113	0,607	-91	-90,5	3055	41	1020	22	342	7
MTO-17-2-08	86	9,6	•	28	0,52382	0,02078	8,21132	0,63081	0,113692	0,00748	0,856	-88	-86,9	4310	56	2255	70	694	43
MTO-17-2-09	67	3,1		81	0,19302	0,00267	1,3	0,02919	0,047305	0,000881	0,803	-91,2	-90,8	2768	22	827	13	298	5
MTO-17-2-10	650	31,3	•	130	0,15234	0,00573	1,04952	0,04457	0,049966	0,000987	0,465	-88,8	-87,9	2372	61	729	22	314	6
MTO-17-2-11	399	18,8		102	0,19997	0,01097	1,36506	0,08362	0,04951	0,001351	0,445	-91	-90,1	2826	88	874	36	312	8

MTO-17-2-12	1082	30,4	90	0,19052	0,00328	0,7855	0,02111	0,029903	0,000617	0,768	-94,4	-94,1	2747	28	589	12	190	4
MTO-17-2-13	5215	239,1	2124	0,05743	0,00039	0,3863	0,00818	0,048785	0,000977	0,946	-40,5	-36,1	508	15	332	6	307	6
MTO-17-2-14	453	22,7	107	0,17889	0,00619	1,30849	0,05673	0,053049	0,001385	0,602	-89,5	-88,7	2643	56	849	25	333	8
MTO-17-2-15	205	8,3	188	0,12203	0,001	0,7	0,01507	0,043532	0,000822	0,918	-87,9	-87,6	1986	14	558	9	275	5
MTO-17-2-16	1956	96,8	70	0,23165	0,00334	1,71206	0,04626	0,053604	0,001225	0,846	-91,2	-90,8	3063	22	1013	17	337	7
MTO-17-2-17	805	32,4	617	0,08021	0,00259	0,48038	0,01804	0,043438	0,000835	0,512	-78,8	-75,7	1202	60	398	12	274	5
MTO-17-2-18	245	10,6	143	0,16234	0,00839	1,04526	0,06037	0,046697	0,001205	0,447	-90	-89	2480	84	727	30	294	7
MTO-17-2-19	75	3,8	69	0,2344	0,00727	1,75671	0,07203	0,054355	0,001458	0,654	-91,1	-90,5	3082	48	1030	27	341	9
MTO-17-2-20	81	4,6	47	0,31868	0,00675	2,70549	0,08328	0,061572	0,001376	0,726	-91,7	-91,3	3563	32	1330	23	385	8
MTO-17-2-21	1509	67,4	149	0,1486	0,00787	1,02228	0,05855	0,049896	0,001086	0,380	-88,5	-87,1	2330	87	715	29	314	7
MTO-17-2-22	1136	45,4	641	0,06976	0,00063	0,42493	0,00963	0,044176	0,000918	0,918	-71,2	-69,6	921	18	360	7	279	6
MTO-17-2-23	3387	135,8	10191	0,05337	0,00034	0,32403	0,00758	0,044038	0,000991	0,962	-19,7	-11,5	344	14	285	6	278	6
MTO-17-2-24	438	16,8	360	0,08969	0,00066	0,53092	0,01136	0,042933	0,000862	0,938	-82,6	-82	1419	13	432	8	271	5
MTO-17-2-25	361	13,6	1530	0,05957	0,00072	0,3476	0,00825	0,042323	0,000866	0,862	-55,7	-50,8	588	26	303	6	267	5
MTO-17-2-26	2262	94,7	321	0,09237	0,00141	0,57453	0,01983	0,045111	0,001396	0,897	-82,5	-81,3	1475	29	461	13	284	9
MTO-17-2-27	33	1,8	50	0,32465	0,00543	2,81899	0,07533	0,062977	0,001312	0,78	-91,6	-91,2	3592	25	1361	20	394	8

Tabell 11: U-Pb data fra prøve MTO-17-3

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		<u>Aldere</u>					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1 s	206/238	1 s
MTO-17-3-01	73	2,9		2075	0,05137	0,00044	0,29984	0,01225	0,042335	0,001692	0,978	3,9		257	19	266	10	267	10
MTO-17-3-02	456	18,9		4721	0,05315	0,00033	0,31057	0,00582	0,04238	0,000749	0,944	-20,6	-12,6	335	14	275	5	268	5
MTO-17-3-03	147	6		1574	0,05159	0,0004	0,29785	0,0065	0,041875	0,000854	0,935	-1		267	17	265	5	264	5
MTO-17-3-05	195	8		1644	0,05435	0,00046	0,31529	0,00618	0,042074	0,000743	0,901	-31,7	-23,6	386	18	278	5	266	5
MTO-17-3-06	122	5,1		1559	0,05167	0,00047	0,31051	0,00705	0,043588	0,000908	0,917	1,6		271	19	275	5	275	6
MTO-17-3-07	136	7,7		59	0,27065	0,00349	2,17213	0,05541	0,058208	0,001281	0,863	-91,3	-91	3310	19	1172	18	365	8
MTO-17-3-08	81	3,5		812	0,06694	0,00071	0,41467	0,01315	0,044927	0,001343	0,943	-67,6	-65,1	836	21	352	9	283	8
MTO-17-3-09	166	7,4		1021	0,06857	0,00052	0,43365	0,01051	0,045866	0,001055	0,950	-68,9	-67,3	886	15	366	7	289	7
MTO-17-3-10	129	5,2		1057	0,06039	0,00098	0,35301	0,00982	0,042396	0,000959	0,813	-57,8	-51,8	618	34	307	7	268	6
MTO-17-3-12	88	5,9		41	0,36066	0,00607	3,48242	0,12169	0,07003	0,002144	0,876	-91,1	-90,7	3753	25	1523	28	436	13
MTO-17-3-13	65	4		115	0,15435	0,00198	1,10447	0,04	0,051897	0,001758	0,935	-88,5	-88	2395	22	756	19	326	11
MTO-17-3-14	113	5,5		1596	0,05577	0,00052	0,31762	0,00956	0,041302	0,001182	0,951	-42	-35,1	443	21	280	7	261	7
MTO-17-3-15	70	3,4		1370	0,05099	0,00056	0,29356	0,01085	0,041758	0,001473	0,955	10		240	25	261	9	264	9
MTO-17-3-16	74	4,2		128	0,13418	0,0015	0,9128	0,03894	0,049338	0,002031	0,965	-87,6	-87,1	2153	19	659	21	310	12
MTO-17-3-17	89	7,1		46	0,3186	0,00652	2,95636	0,10864	0,0673	0,002054	0,830	-90,9	-90,4	3563	31	1396	28	420	12
MTO-17-3-18	124	6,3		2320	0,0532	0,00046	0,31337	0,00875	0,042717	0,001135	0,951	-20,5	-9	338	19	277	7	270	7
MTO-17-3-19	245	12,8		433	0,07641	0,0006	0,46451	0,01274	0,044087	0,001158	0,958	-76,4	-75,4	1106	15	387	9	278	7
MTO-17-3-20	134	6,9		61	0,27452	0,00834	1,64595	0,07516	0,043485	0,001482	0,746	-93,6	-93,1	3332	46	988	29	274	9
MTO-17-3-21	243	18		42	0,35494	0,00811	3,1	0,11071	0,062369	0,001757	0,777	-92	-91,6	3728	34	1421	28	390	11
MTO-17-3-22	136	7,3		181	0,12303	0,00145	0,76087	0,02261	0,044855	0,001224	0,919	-87,7	-87,1	2001	21	575	13	283	8
MTO-17-3-23	83	5,2		67	0,23595	0,00459	1,71102	0,06456	0,052593	0,0017	0,857	-91,5	-91	3093	31	1013	24	330	10
MTO-17-3-24	81	5,6		54	0,27479	0,00482	2,22745	0,09739	0,058791	0,002355	0,916	-91,3	-90,9	3334	26	1190	31	368	14
MTO-17-3-25	211	12,2		184	0,11532	0,00114	0,77296	0,02411	0,048613	0,001438	0,949	-85,7	-85,2	1885	17	581	14	306	9
MTO-17-3-26	55	2,7		430	0,05854	0,00072	0,34518	0,01688	0,042763	0,002024	0,968	-52	-45,7	550	26	301	13	270	13
MTO-17-3-27	106	7,6		52	0,2879	0,00637	2,38927	0,09627	0,060191	0,002026	0,835	-91,4	-90,9	3406	34	1239	29	377	12

Tabell 12: U-Pb data fra prøve MTO-17-4

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb [*]	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1s	207/235	1s	206/238	1s
MTO-17-4-01	765	26,9	2,80E+01	55	0,03615	0,00285	0,09876	0,00912	0,019813	0,000952	0,520	274,6		-27	227	96	8	126	6
MTO-17-4-02	582	28,3		3412	0,05223	0,00022	0,31934	0,00486	0,044344	0,000649	0,963	-5,5		295	9	281	4	280	4
MTO-17-4-04	152	7,4	•	4608	0,05084	0,00028	0,32333	0,00853	0,046121	0,001189	0,978	24,9	10,7	234	12	284	7	291	7
MTO-17-4-05	141	6,8		4706	0,05151	0,00036	0,32765	0,0084	0,046131	0,001137	0,961	10,4		264	15	288	6	291	7
MTO-17-4-06	193	13,8	•	50	0,33015	0,01622	3,19204	0,19905	0,070121	0,002693	0,616	-90,7	-89,8	3618	71	1455	48	437	16
MTO-17-4-07	199	8,7		4506	0,05146	0,0003	0,34094	0,00998	0,048049	0,001378	0,979	16	3	262	13	298	8	303	8
MTO-17-4-08	551	23,7		2152	0,06163	0,00096	0,40277	0,01248	0,047397	0,001269	0,864	-56,1	-50,4	661	31	344	9	299	8
MTO-17-4-09	181	8		3607	0,05237	0,00032	0,35744	0,01054	0,049503	0,001428	0,978	3,4		302	14	310	8	311	9
MTO-17-4-10	141	6		703	0,07737	0,00176	0,5	0,02009	0,048631	0,001522	0,808	-74,6	-71,7	1131	44	424	13	306	9
MTO-17-4-11	19	0,7	•	412	0,08714	0,00161	0,81261	0,14721	0,067632	0,012189	0,995	-71,3	-69	1364	35	604	82	422	74
MTO-17-4-12	138	5,2		246	0,10519	0,00417	0,55791	0,02792	0,038466	0,001174	0,61	-87,4	-85,8	1718	70	450	18	243	7
MTO-17-4-13	22	0,9	•	289	0,05262	0,001	0,45264	0,09225	0,06239	0,01266	0,996	25,7		312	42	379	64	390	77
MTO-17-4-14	517	22,6		11687	0,05202	0,00059	0,32063	0,00986	0,044704	0,001279	0,93	-1,5		286	25	282	8	282	8
MTO-17-4-15	891	37,5	•	66	0,27806	0,01852	1,66597	0,13588	0,043454	0,002044	0,577	-93,6	-92,8	3352	99	996	52	274	13
MTO-17-4-17	670	28,5	•	5360	0,05198	0,0006	0,32281	0,00979	0,045042	0,001263	0,924	-0,2		285	26	284	8	284	8
MTO-17-4-18	270	10,9	•	3389	0,05171	0,00062	0,31222	0,00991	0,043793	0,001287	0,926	1,4		273	27	276	8	276	8
MTO-17-4-19	191	7,6		1075	0,05749	0,0008	0,3	0,01158	0,044095	0,001324	0,906	-46,5	-38,1	510	29	304	9	278	8
MTO-17-4-20	394	11,4		37	0,3967	0,01447	1,76075	0,08269	0,032191	0,000952	0,63	-96,1	-95,9	3897	53	1031	30	204	6
MTO-17-4-22	268	8,1	•	33	0,42211	0,00996	1,89578	0,06151	0,032573	0,000725	0,686	-96,2	-96	3990	36	1080	22	207	5
MTO-17-4-23	103	4,1	•	590	0,07282	0,00116	0,43556	0,01378	0,043379	0,001186	0,864	-74,4	-72,1	1009	32	367	10	274	7
MTO-17-4-25	242	10		2285	0,05508	0,00043	0,33917	0,00655	0,044658	0,000788	0,914	-32,9	-26,1	416	17	297	5	282	5
MTO-17-4-26	1811	74,6		3181	0,05518	0,00037	0,33472	0,00695	0,043994	0,000865	0,948	-34,6	-28,9	420	14	293	5	278	5
MTO-17-4-27	341	17,3	•	96	0,21594	0,01196	1,66709	0,09804	0,055993	0,001105	0,336	-90,4	-89,4	2951	90	996	37	351	7
MTO-17-4-28	543	22,1	•	3894	0,05464	0,00041	0,32893	0,00707	0,043664	0,000881	0,938	-31,3	-24,3	397	16	289	5	276	5
MTO-17-4-29	108	4,2		402	0,07547	0,00086	0,44354	0,01273	0,042622	0,001124	0,919	-76,7	-75,2	1081	21	373	9	269	7
MTO-17-4-30	154	6,2	•	4322	0,05239	0,00038	0,3	0,00678	0,044083	0,000883	0,941	-8,2		302	16	281	5	278	5

Tabell 13: U-Pb data fra prøve MTO-17-5

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u> Control		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	(%)	Min. Rim (%)	207/206	1 s	207/235	1 s	206/238	1s
MTO-17-5-01	1042	32,9		143	0,12649	0,00394	0,58186	0,0219	0,033364	0,000704	0,561	-91,1	-90,4	2050	56	466	14	212	4
MTO-17-5-02	213	8,1		1940	0,05475	0,00111	0,30414	0,00815	0,040289	0,000708	0,656	-37,4	-16,8	402	46	270	6	255	4
MTO-17-5-03	343	17,8		540	0,26488	0,02623	2,6174	0,37011	0,071666	0,007235	0,714	-89,2	-86,6	3276	150	1306	104	446	44
MTO-17-5-04	497	17,3		393	0,07885	0,00195	0,40534	0,01196	0,037284	0,000602	0,547	-81,2	-79,2	1168	46	346	9	236	4
MTO-17-5-05	318	11,7		4021	0,05406	0,00106	0,29262	0,0075	0,03926	0,000648	0,644	-34,2	-10,8	373	40	261	6	248	4
MTO-17-5-06	623	22,4		223	0,10847	0,00457	0,57771	0,02618	0,038626	0,000645	0,369	-87,8	-86,2	1774	70	463	17	244	4
MTO-17-5-07	394	14,7		203819751	0,05268	0,00102	0,29183	0,00759	0,040177	0,000701	0,671	-19,8		315	42	260	6	254	4
MTO-17-5-08	152	5,7		1257	0,06538	0,00147	0,38609	0,02138	0,042829	0,002166	0,913	-67	-61,2	787	45	332	16	270	13
MTO-17-5-09	328	12		866	0,06511	0,00136	0,4	0,00968	0,03958	0,000692	0,642	-69,1	-64,7	778	43	309	7	250	4
MTO-17-5-11	152	5,2		850	0,07252	0,00359	0,37154	0,01995	0,03716	0,000777	0,389	-77,9	-70	1000	101	321	15	235	5
MTO-17-5-12	379	14		5045	0,04706	0,0009	0,26357	0,0067	0,040623	0,000685	0,663	400	131	52	42	238	5	257	4
MTO-17-5-13	278	10,1		5074	0,04611	0,00089	0,25219	0,00657	0,039666	0,000699	0,676	7184,8	292	4	34	228	5	251	4
MTO-17-5-14	983	36,2		20543	0,04638	0,00087	0,25845	0,00644	0,040416	0,000659	0,655	1397,3	242,8	17	36	233	5	255	4
MTO-17-5-15	209	7,4		4787	0,04695	0,00094	0,25297	0,00706	0,039081	0,000764	0,7	439,5	119,6	47	44	229	6	247	5
MTO-17-5-16	326	11,6		1558	0,05214	0,00103	0,3	0,00736	0,039421	0,000668	0,653	-14,8		292	45	253	6	249	4
MTO-17-5-17	277	10		1208	0,0534	0,00115	0,29507	0,00798	0,040072	0,000657	0,606	-27,3		346	46	263	6	253	4
MTO-17-5-18	496	18,3		8660	0,04635	0,00089	0,26023	0,00663	0,040719	0,00068	0,655	1547,4	245,9	16	37	235	5	257	4
MTO-17-5-19	262	9,5		3298	0,04585	0,00089	0,25302	0,00663	0,040025	0,000708	0,674	2487,4	241	-10	34	229	5	253	4
MTO-17-5-20	493	22,2		52	0,21845	0,01274	1,51095	0,09794	0,050165	0,001419	0,436	-91,4	-90,5	2969	92	935	40	316	9
MTO-17-5-22	289	6		120	0,11538	0,0035	0,37155	0,0134	0,023355	0,000455	0,54	-93,1	-92,6	1886	53	321	10	149	3
MTO-17-5-23	254	9		646	0,06103	0,0013	0,33223	0,0091	0,039483	0,000678	0,627	-62,2	-55	640	46	291	7	250	4
MTO-17-5-24	266	9,6		5059	0,04659	0,00093	0,25886	0,00681	0,040297	0,000695	0,655	817,8	186,7	28	43	234	5	255	4
MTO-17-5-25	360	13,4		242	0,0868	0,00207	0,49925	0,01492	0,041715	0,000753	0,604	-82,2	-80,6	1356	43	411	10	263	5
MTO-17-5-26	219	9,1		4074	0,05163	0,00037	0,29392	0,00427	0,041286	0,000521	0,868	-3,2		269	16	262	3	261	3
MTO-17-5-27	334	12,1		861	0,06341	0,00049	0,31611	0,00505	0,036154	0,000504	0,873	-69,5	-67,7	722	16	279	4	229	3
MTO-17-5-28	271	10,8		786	0,063	0,00059	0,34561	0,0049	0,039785	0,000423	0,750	-65,7	-63,5	708	19	301	4	251	3
MTO-17-5-29	269	11,2		3431	0,05738	0,00171	0,32876	0,0106	0,041552	0,000511	0,381	-49,1	-25,3	506	64	289	8	262	3
																			1.

MTO-17-5-30	138	5,3	1636	0,05561	0,00055	0,29841	0,00558	0,038923	0,00062	0,852	-44,5	-37,8	437	21	265	4	246	4
MTO-17-5-31	155	6,4	2975	0,05128	0,00032	0,29196	0,00429	0,041289	0,000548	0,903	2,9		254	14	260	3	261	3
MTO-17-5-32a	170	7,1	1698	0,05125	0,00037	0,29465	0,0043	0,041696	0,00053	0,871	4,5		252	16	262	3	263	3
MTO-17-5-32b	349	14,7	6383	0,05133	0,00031	0,29752	0,00359	0,042037	0,00044	0,867	3,9		256	14	264	3	265	3
MTO-17-5-33	168	6,9	561	0,0718	0,00153	0,4	0,00985	0,040969	0,000478	0,481	-75,1	-72	980	42	346	7	259	3
MTO-17-5-34	106	4,9	125	0,13381	0,0029	0,84624	0,02224	0,045869	0,000681	0,565	-88,4	-87,8	2149	37	623	12	289	4
MTO-17-5-35	256	10,9	5957	0,05156	0,00031	0,30124	0,00384	0,042371	0,000477	0,885	0,6		266	13	267	3	268	3
MTO-17-5-36	420	12,4	149	0,12886	0,00489	0,50955	0,02263	0,028679	0,00066	0,518	-92,5	-91,8	2082	66	418	15	182	4

Tabell 14: U-Pb data fra prøve MTO-17-6

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	$^{207}Pb^{/206}Pb^{\ast}$	1SE	$^{207}{Pb}^{/235}{U}^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1 s	207/235	1s	206/238	1s
MTO-17-6-01	339	14,3		9163	0,052	0,00031	0,3025	0,00381	0,042193	0,00047	0,884	-6,8		285	13	268	3	266	3
MTO-17-6-02	345	14,3		9895	0,05141	0,00033	0,29289	0,00444	0,041317	0,000568	0,907	0,6		259	14	261	3	261	4
MTO-17-6-03	326	14,5		475	0,07555	0,00145	0,5	0,01029	0,044296	0,0005	0,506	-75,8	-73,5	1083	38	385	7	279	3
MTO-17-6-04	96	3,8		953	0,06448	0,00064	0,35121	0,00665	0,039504	0,000638	0,852	-68,3	-66,1	757	20	306	5	250	4
MTO-17-6-05	277	11,6		4740	0,0509	0,00033	0,29398	0,00383	0,041885	0,000473	0,867	12,1		236	14	262	3	265	3
MTO-17-6-06	1483	64,3		4826	0,05456	0,00043	0,326	0,00442	0,043338	0,000476	0,81	-31,3	-24	394	17	287	3	273	3
MTO-17-6-07	355	14,7		9100	0,05212	0,00029	0,29755	0,00384	0,041407	0,000484	0,905	-10,2	-1,2	291	12	264	3	262	3
MTO-17-6-08	173	7,2		2966	0,0525	0,00039	0,30394	0,00449	0,041991	0,000536	0,864	-13,9	-2,7	307	16	269	3	265	3
MTO-17-6-09	251	10,3		89550	0,05143	0,00034	0,29421	0,00394	0,041489	0,000485	0,872	0,7		260	14	262	3	262	3
MTO-17-6-10	355	14,5		59659	0,05161	0,00029	0,29037	0,00415	0,040808	0,000536	0,919	-3,9		268	13	259	3	258	3
MTO-17-6-11	223	9,2		5524	0,05131	0,00032	0,29264	0,0046	0,041365	0,000597	0,918	2,6		255	14	261	4	261	4
MTO-17-6-12	311	12,8		6345	0,05276	0,00061	0,29883	0,00499	0,041079	0,000495	0,722	-18,9	-2	318	25	265	4	260	3
MTO-17-6-13b	261	10,7		3851	0,05217	0,00032	0,29456	0,00417	0,040947	0,000523	0,902	-12	-2,1	293	13	262	3	259	3
MTO-17-6-14	475	19,7		11880	0,05188	0,00029	0,29685	0,00417	0,0415	0,000537	0,920	-6,5		280	12	264	3	262	3
MTO-17-6-16a	190	7,8		3533	0,05207	0,00033	0,29475	0,00439	0,041056	0,000552	0,903	-10,3		288	14	262	3	259	3

MTO-17-6-16b	209	8,7	2639	0,05289	0,00057	0,30384	0,00518	0,041664	0,000547	0,77	-19,2	-3,9	324	24	269	4	263	3
MTO-17-6-17	395	16,2	10067	0,05167	0,0003	0,2935	0,00374	0,041197	0,000466	0,889	-4		271	13	261	3	260	3
MTO-17-6-18	340	14,1	4868	0,05343	0,00047	0,30632	0,00463	0,041579	0,000509	0,81	-24,9	-14,5	347	19	271	4	263	3
MTO-17-6-19	88	3,6	956	0,06115	0,00153	0,34687	0,01066	0,041141	0,000734	0,581	-60,9	-51,5	644	52	302	8	260	5
MTO-17-6-20	458	18,5	4744	0,05173	0,00034	0,30355	0,00281	0,042558	0,000274	0,697	-1,8		273	15	269	2	269	2
MTO-17-6-21	240	9,8	3591	0,0655	0,00191	0,38766	0,01237	0,042923	0,000551	0,403	-67,1	-59,2	791	61	333	9	271	3
MTO-17-6-22	242	9,2	905	0,06776	0,00113	0,37081	0,00696	0,039688	0,000342	0,459	-72,2	-69,2	861	32	320	5	251	2
MTO-17-6-23	269	10,8	19782	0,05919	0,0027	0,34397	0,016	0,042148	0,000396	0,202	-54,7	-20,3	574	96	300	12	266	2
MTO-17-6-24	448	17,9	27458	0,05181	0,0003	0,29829	0,00253	0,041758	0,000261	0,738	-4,9		277	13	265	2	264	2
MTO-17-6-25	186	7,6	3658	0,0519	0,00039	0,30527	0,00389	0,042663	0,000441	0,811	-4,2	•	281	17	271	3	269	3
MTO-17-6-26	704	28,8	17752	0,05173	0,00031	0,30562	0,00289	0,042852	0,000314	0,776	-1,1	•	273	13	271	2	270	2
MTO-17-6-27	303	12	3938	0,0516	0,00035	0,29425	0,00342	0,041357	0,000393	0,816	-2,5		268	15	262	3	261	2
MTO-17-6-28	216	8,6	2555	0,05132	0,00033	0,3	0,0035	0,041449	0,000417	0,842	2,6		255	14	261	3	262	3
MTO-17-6-29	413	17	10055	0,05168	0,00032	0,30644	0,00302	0,043002	0,000327	0,772			271	14	271	2	271	2
MTO-17-6-30	199	8,1	317	0,09462	0,00328	0,55727	0,02048	0,042716	0,000517	0,329	-83,9	-81,8	1521	64	450	13	270	3
MTO-17-6-31	199	8,1	414	0,07169	0,00054	0,422	0,00699	0,042693	0,000629	0,889	-73,9	-72,8	977	15	357	5	270	4
MTO-17-6-31b	236	9,4	3765	0,05092	0,00036	0,29337	0,0035	0,041781	0,000404	0,811	11,4		237	16	261	3	264	3
MTO-17-6-32	52	2	631	0,05073	0,00049	0,29926	0,01256	0,042787	0,001747	0,973	18,6		228	21	266	10	270	11
MTO-17-6-33	183	7,4	5087	0,05277	0,00038	0,3	0,00451	0,042506	0,000541	0,872	-16,2	-6,2	319	16	274	3	268	3
MTO-17-6-34	349	14,2	2430	0,05766	0,00044	0,33873	0,0037	0,042605	0,000333	0,716	-49	-45,2	517	16	296	3	269	2
MTO-17-6-35	405	16,3	28268	0,05137	0,00032	0,29949	0,00287	0,042281	0,00031	0,765	3,7	•	258	14	266	2	267	2
MTO-17-6-36a	437	17,5	8514	0,05145	0,0003	0,29549	0,00303	0,041651	0,00035	0,819	0,7	•	261	14	263	2	263	2
MTO-17-6-36b	372	14,9	5153	0,05356	0,00038	0,30911	0,00337	0,041856	0,000348	0,762	-25,6	-17,8	353	16	273	3	264	2
МТО-17-6-37а	491	19,1	13374	0,05213	0,00032	0,29102	0,00373	0,040491	0,000456	0,879	-12,3	-2,5	291	14	259	3	256	3
MTO-17-6-37b	191	7,6	2253	0,05354	0,00045	0,30562	0,00475	0,041403	0,000541	0,842	-26,1	-16,7	352	19	271	4	262	3

Tabell 15: U-Pb data fra prøve MTO-17-7

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u> Control	Min Dim	Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	(%)	(%)	207/206	1s	207/235	1s	206/238	1s
MTO-17-7-01	452	18		20730	0,05143	0,00032	0,29415	0,0034	0,041482	0,000403	0,839	0,8		. 260	14	262	3	262	2
MTO-17-7-02	142	5,6		1126	0,05149	0,00041	0,29256	0,00495	0,04121	0,000616	0,884	-0,9		. 263	18	261	4	260	4
MTO-17-7-03	221	8,7		28088	0,05137	0,00037	0,29332	0,00431	0,041414	0,000533	0,874	1,7		. 257	16	261	3	262	3
MTO-17-7-04	268	10,8		3827	0,05164	0,00033	0,30056	0,00384	0,042215	0,000467	0,867	-1,1		. 269	14	267	3	267	3
MTO-17-7-05	159	6,3		1792	0,05138	0,00038	0,29082	0,00473	0,04105	0,000594	0,889	0,5		. 258	16	259	4	259	4
MTO-17-7-07a	189	7,4		2794	0,05121	0,0004	0,28952	0,00395	0,041002	0,000461	0,824	3,5		. 250	16	258	3	259	3
MTO-17-7-07b	124	4,9		1754	0,05277	0,00043	0,30116	0,00595	0,041392	0,000744	0,91	-18,4	-6,8	319	18	267	5	261	5
MTO-17-7-08	249	9,9		3250	0,0515	0,00037	0,29232	0,0033	0,041163	0,000362	0,778	-1,3		. 263	16	260	3	260	2
MTO-17-7-09a	240	9,5		5391	0,05175	0,00036	0,29432	0,00342	0,041252	0,000382	0,796	-5,1		. 274	16	262	3	261	2
MTO-17-7-09b	208	8,2		3479	0,05165	0,00039	0,29422	0,00465	0,041311	0,000574	0,880	-3,5		. 270	17	262	4	261	4
MTO-17-7-10a	182	7,2		2857	0,05159	0,00038	0,29232	0,004	0,041098	0,000474	0,843	-2,9		. 267	17	260	3	260	3
MTO-17-7-10b	253	9,8		3993	0,05835	0,0015	0,32475	0,00927	0,040365	0,000505	0,438	-54,1	-38,6	543	54	286	7	255	3
MTO-17-7-11a	165	6,6		3691	0,05268	0,00039	0,30409	0,00413	0,041864	0,000478	0,842	-16,4	-6	315	16	270	3	264	3
MTO-17-7-11b	111	4,4		1225	0,05258	0,00042	0,29693	0,00462	0,040959	0,000545	0,856	-17	-5,4	311	18	264	4	259	3
MTO-17-7-12	282	11,1		3770	0,05244	0,00038	0,29589	0,00367	0,040925	0,000413	0,813	-15,4	-4,7	305	16	263	3	259	3
MTO-17-7-13	217	8,6		4140	0,05148	0,00035	0,29364	0,00454	0,041365	0,000576	0,901	-0,5		. 263	15	261	4	261	4
MTO-17-7-14a	168	6,6		3392	0,05213	0,00038	0,29371	0,00372	0,040862	0,000422	0,817	-11,5		. 291	16	261	3	258	3
MTO-17-7-14b	303	12,2		5566	0,05162	0,00034	0,29743	0,00341	0,041793	0,000395	0,825	-1,7		. 268	14	264	3	264	2
MTO-17-7-15	200	8		2551	0,05158	0,00037	0,2944	0,00407	0,041397	0,000489	0,856	-2		. 267	16	262	3	261	3
MTO-17-7-16	207	8,1		3661	0,05178	0,00038	0,29072	0,0039	0,040723	0,000458	0,839	-6,8		. 276	16	259	3	257	3
MTO-17-7-17	276	10,6		642	0,08114	0,00322	0,44513	0,01839	0,039787	0,000457	0,278	-81	-77,1	1225	76	374	13	252	3
MTO-17-7-18	434	17,4		5216	0,05133	0,00035	0,29509	0,00299	0,041696	0,000314	0,744	3,1		. 256	15	263	2	263	2
MTO-17-7-19	146	5,8		1765	0,05166	0,00042	0,29402	0,00506	0,041281	0,000628	0,883	-3,6		. 270	18	262	4	261	4

Tabell 16: U-Pb data fra prøve MTO-17-8

	<u>ppm</u>				Forhold							Diskordans		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	$^{207}Pb^{/206}Pb^{\ast}$	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1s	207/235	1s	206/238	1s
MTO-17-08-01	108	4,2		1085	0,05164	0,00076	0,28739	0,00608	0,040361	0,000616	0,722	-5,5		270	33	257	5	255	4
MTO-17-8-02	115	4,5		996	0,05223	0,0007	0,29017	0,00594	0,040292	0,000621	0,752	-14,1		296	30	259	5	255	4
MTO-17-8-03	89	3,5		1043	0,05278	0,00082	0,29651	0,00648	0,040747	0,000625	0,702	-19,7		319	33	264	5	257	4
MTO-17-8-04	68	2,7		931	0,05387	0,00137	0,30181	0,00918	0,040634	0,000675	0,546	-30,4		366	54	268	7	257	4
MTO-17-8-05	75	2,9		770	0,05444	0,00096	0,30379	0,0073	0,04047	0,000664	0,683	-35	-17,1	389	37	269	6	256	4
MTO-17-8-06	196	7,7		4139	0,05135	0,00069	0,29167	0,00585	0,041192	0,000615	0,745	1,4		257	30	260	5	260	4
MTO-17-8-08b	177	6,9		3021	0,05107	0,00068	0,28605	0,00606	0,040623	0,00067	0,779	5,3		244	30	255	5	257	4
MTO-17-8-09	30	1,1		40124090	0,04716	0,00157	0,25827	0,00968	0,039716	0,000692	0,465	343,1	96,8	58	67	233	8	251	4
MTO-17-8-10a	71	2,8		370	0,06942	0,00204	0,4	0,01313	0,040784	0,000663	0,484	-73,1	-67,9	911	57	335	10	258	4
MTO-17-8-12a	63	2,4		864	0,05216	0,00087	0,28951	0,00655	0,040253	0,000618	0,679	-13,3		293	37	258	5	254	4
MTO-17-8-13	185	7		5318	0,05162	0,00067	0,28665	0,00604	0,040273	0,000671	0,791	-5,4		269	29	256	5	255	4
MTO-17-8-14	120	4,6		1883	0,05195	0,00072	0,28971	0,00594	0,040449	0,000609	0,734	-9,9		283	31	258	5	256	4
MTO-17-8-15	48	1,8		683	0,0502	0,00136	0,2743	0,00856	0,03963	0,00062	0,502	23,1		204	61	246	7	251	4
MTO-17-8-16a	98	3,7		1214	0,06662	0,00223	0,37371	0,01385	0,040685	0,000644	0,427	-70,2	-62,2	826	66	322	10	257	4
MTO-17-8-17	65	2,4		660	0,05279	0,00088	0,28875	0,00662	0,039667	0,000624	0,687	-22		320	35	258	5	251	4
MTO-17-8-18	41	1,5		405	0,05091	0,00147	0,27381	0,00943	0,039004	0,000732	0,545	4,2		237	66	246	8	247	5
MTO-17-8-20a	135	5,1		2521	0,05151	0,00076	0,3	0,00679	0,040969	0,000744	0,778	-1,8		264	33	259	5	259	5
MTO-17-8-20b	176	6,8		3220	0,05193	0,00069	0,29409	0,00645	0,041077	0,000716	0,795	-8,2		282	30	262	5	260	4
MTO-17-8-21b	36	1,4		839	0,05386	0,00136	0,30292	0,00937	0,040792	0,000734	0,582	-30		365	55	269	7	258	5
MTO-17-8-22	110	4,1		1297	0,05146	0,00072	0,2888	0,00659	0,0407	0,000736	0,793	-1,7		262	30	258	5	257	5
MTO-17-8-23	74	2,8		976	0,05282	0,00086	0,29403	0,00711	0,04037	0,000719	0,736	-21		321	34	262	6	255	4
MTO-17-8-24	83	3,1		999	0,05147	0,00091	0,28931	0,00731	0,040764	0,000739	0,717	-1,8		262	38	258	6	258	5
MTO-17-8-25a	144	5,5		2102	0,05178	0,0007	0,29505	0,00661	0,041329	0,000738	0,796	-5,4		276	29	263	5	261	5
MTO-17-8-25b	89	3,4	•	1644	0,05273	0,00084	0,30095	0,00711	0,041393	0,000723	0,739	-17,9		317	35	267	6	261	4
MTO-17-8-26	121	4,5		2468	0,05137	0,00075	0,29084	0,00669	0,041061	0,00073	0,772	0,7		258	33	259	5	259	5

MTO-17-8-27a	83	3,1	1405	0,05241	0,00076	0,2994	0,0069	0,041429	0,000741	0,776	-14		303	31	266	5	262	5
MTO-17-8-27b	98	3,7	2238	0,05133	0,00074	0,29007	0,00667	0,040987	0,000736	0,781	1,3		256	31	259	5	259	5
MTO-17-8-28	134	5	1830	0,05226	0,00073	0,29359	0,00662	0,040744	0,000723	0,788	-13,5		297	30	261	5	257	4
MTO-17-8-29	59	2,2	533	0,05299	0,00096	0,29295	0,00742	0,040096	0,000708	0,698	-23,3		328	39	261	6	253	4
MTO-17-8-30	75	2,8	3000	0,0518	0,00077	0,2903	0,00674	0,040646	0,000726	0,77	-7,3		277	33	259	5	257	4
MTO-17-8-32	104	3,9	1571	0,05255	0,00083	0,29865	0,00708	0,04122	0,00073	0,747	-16,1		309	35	265	6	260	5
MTO-17-8-33	26	0,9	302	0,05369	0,00144	0,29641	0,00966	0,040038	0,000741	0,567	-29,9		358	60	264	8	253	5
MTO-17-8-34	125	4,8	1428	0,05156	0,00159	0,28726	0,00936	0,040408	0,000419	0,318	-4,1		266	67	256	7	255	3
MTO-17-8-35	92	3,7	849	0,05203	0,00159	0,30002	0,00974	0,041823	0,000461	0,340	-8		287	66	266	8	264	3
MTO-17-8-36	153	6	2818	0,0512	0,00154	0,28802	0,00922	0,040802	0,000444	0,340	3,3		250	64	257	7	258	3
MTO-17-8-37a	119	4,7	2555	0,0506	0,00153	0,28593	0,00911	0,040984	0,000407	0,312	16,7		223	65	255	7	259	3
MTO-17-8-38	74	2,9	1658	0,05171	0,00157	0,29404	0,00947	0,041243	0,000439	0,330	-4,5		273	69	262	7	261	3
MTO-17-8-40a	119	4,7	2366	0,05479	0,00196	0,30952	0,01174	0,040975	0,000504	0,325	-36,6		404	80	274	9	259	3
MTO-17-8-43a	139	5,5	3288	0,05138	0,00154	0,2927	0,00936	0,041321	0,000456	0,345	1,3		258	68	261	7	261	3
MTO-17-8-43b	59	2,3	842	0,05268	0,00175	0,29916	0,01038	0,041186	0,000422	0,296	-17,8		315	74	266	8	260	3
MTO-17-8-44c	126	5	2083	0,05141	0,00155	0,29233	0,00937	0,041239	0,000452	0,342	0,5		259	68	260	7	261	3
MTO-17-8-45	96	3,7	1371	0,05176	0,00157	0,29236	0,00933	0,040964	0,000416	0,318	-6		275	68	260	7	259	3
MTO-17-8-46a	164	6,5	2216	0,05069	0,00126	0,3	0,0078	0,04128	0,000435	0,39	15,4		227	56	257	6	261	3
MTO-17-8-46b	69	2,7	883	0,05021	0,00133	0,2834	0,00814	0,040935	0,000451	0,384	26,8	2,8	205	61	253	6	259	3
MTO-17-8-47a	53	2,1	731	0,05928	0,00172	0,33938	0,01049	0,041524	0,000449	0,35	-55,7	-39,3	577	62	297	8	262	3
MTO-17-8-47b	114	4,5	1557	0,05007	0,00124	0,28416	0,00763	0,041157	0,000421	0,381	31,7	7,7	198	56	254	6	260	3
MTO-17-8-48a	123	4,9	2305	0,0518	0,00132	0,29384	0,00809	0,041144	0,000426	0,376	-6,1		276	57	262	6	260	3
MTO-17-8-48b	149	5,9	1361	0,05045	0,00125	0,28507	0,00762	0,04098	0,000417	0,381	20,3		216	57	255	6	259	3
MTO-17-8-51a	124	4,8	1511	0,05034	0,0013	0,28072	0,00776	0,040447	0,000406	0,363	21,8	0,9	211	60	251	6	256	3

Tabell 17: U-Pb data fra prøve MTO-17-9

	<u>ppm</u>				<u>Forhold</u>							Diskordans		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1s	207/235	1s	206/238	1s
MTO-17-9-01a	74	2,8		825	0,05637	0,00168	0,30094	0,0095	0,038717	0,000399	0,327	-48,5	-21	467	62	267	7	245	2
MTO-17-9-01b	69	2,6		2121	0,052	0,00139	0,28344	0,00817	0,039531	0,00043	0,377	-12,7		285	60	253	6	250	3
MTO-17-9-03	91	3,6		1065	0,05297	0,00138	0,29636	0,00826	0,040577	0,000397	0,351	-22,2		328	58	264	6	256	2
MTO-17-9-04	105	4		1520	0,05199	0,00138	0,28616	0,00809	0,039919	0,000392	0,348	-11,7		285	57	256	6	252	2
MTO-17-9-05	67	2,6		825	0,05138	0,00141	0,28176	0,00827	0,039774	0,000412	0,353	-2,5		258	59	252	7	251	3
MTO-17-9-06	160	6,2		2249	0,05138	0,00132	0,28527	0,00785	0,040266	0,000399	0,360	-1,4		258	57	255	6	254	2
MTO-17-9-07	136	5,3		3490	0,05078	0,00133	0,28507	0,008	0,040714	0,000419	0,367	11,6		231	58	255	6	257	3
MTO-17-9-08	120	4,7		3387	0,0526	0,00142	0,29379	0,00849	0,04051	0,00041	0,350	-18,2		312	58	262	7	256	3
MTO-17-9-09	51	2		508	0,06014	0,00185	0,33371	0,01086	0,040243	0,000437	0,334	-59,4	-44,2	609	62	292	8	254	3
MTO-17-9-10	174	6,8		2734	0,05261	0,00138	0,29374	0,00822	0,040493	0,000403	0,355	-18,4		312	56	261	6	256	2
MTO-17-9-16a	87	3,4		1677	0,05237	0,00139	0,29679	0,00842	0,041099	0,000407	0,349	-14,3		302	60	264	7	260	3
MTO-17-9-16b	81	3,1		1375	0,04998	0,00132	0,27865	0,0079	0,040435	0,000425	0,37	32,3	7,2	194	60	250	6	256	3
MTO-17-9-18b	181	7,2		2461	0,05117	0,00132	0,29284	0,0082	0,041508	0,000454	0,39	5,6		248	60	261	6	262	3
MTO-17-9-20a	74	3		1375	0,05096	0,00132	0,29237	0,00816	0,041607	0,000436	0,375	10		239	61	260	6	263	3
MTO-17-9-21a	96	3,9		11188	0,05166	0,00135	0,30182	0,00847	0,042375	0,000438	0,369	-1		270	57	268	7	268	3
MTO-17-9-21b	108	4,3		1283	0,05162	0,00135	0,29559	0,00844	0,041534	0,000474	0,399	-2,3		268	57	263	7	262	3
MTO-17-9-23	78	3,1		1479	0,05123	0,00136	0,29204	0,00846	0,041347	0,000472	0,394	4,1		251	59	260	7	261	3
MTO-17-9-24a	48	1,9		644	0,05024	0,00144	0,28824	0,00881	0,041613	0,000445	0,350	28,2	4,6	206	64	257	7	263	3
MTO-17-9-24b	87	3,5		1310	0,05139	0,00133	0,29238	0,0082	0,041268	0,000436	0,377	1		258	58	260	6	261	3
MTO-17-9-25a	41	1,6		563	0,05229	0,00159	0,29698	0,00959	0,041194	0,000446	0,335	-12,9		298	67	264	8	260	3
MTO-17-9-26a	120	4,7		1579	0,05215	0,00136	0,29466	0,00831	0,040977	0,000436	0,378	-11,6		292	58	262	7	259	3
MTO-17-9-26b	82	3,2		1285	0,05094	0,00138	0,28577	0,00829	0,040689	0,000421	0,356	8,2		238	59	255	7	257	3
MTO-17-9-27a	36	1,4		493	0,05288	0,00162	0,29181	0,00945	0,040019	0,000425	0,328	-22,3		324	66	260	7	253	3
MTO-17-9-27b	71	2,8		4047	0,05515	0,00162	0,31238	0,00978	0,041077	0,000436	0,339	-38,8	-0,3	418	65	276	8	260	3

MTO-17-9-28a	117	4,6	1459	0,05159	0,00137	0,28774	0,00821	0,040453	0,000426	0,369	-4,4	267	60	257	6	256	3
MTO-17-9-29	87	3,4	3096	0,05113	0,00134	0,28511	0,00804	0,04044	0,000418	0,367	3,6	247	58	255	6	256	3
MTO-17-9-30	86	3,3	1270	0,05182	0,00136	0,28313	0,00795	0,039629	0,000403	0,362	-9,9	277	58	253	6	251	2
MTO-17-9-31a	126	4,8	2240	0,05168	0,00136	0,28419	0,008	0,039881	0,000409	0,364	-7,2	271	58	254	6	252	3
MTO-17-9-32	60	2,2	922	0,05252	0,00146	0,28175	0,00839	0,038905	0,000421	0,364	-20,6	308	61	252	7	246	3
MTO-17-9-33	87	3,3	1157	0,0519	0,00138	0,2854	0,00815	0,039882	0,000414	0,364	-10,5	281	59	255	6	252	3
MTO-17-9-35b	105	4,1	8154	0,05153	0,00135	0,2882	0,00818	0,040559	0,000444	0,385	-3,3	265	58	257	6	256	3
MTO-17-9-36	41	1,6	968	0,05487	0,00157	0,30438	0,00935	0,040233	0,000458	0,370	-38,3	407	62	270	7	254	3
MTO-17-9-37	38	1,5	929	0,05461	0,00168	0,30651	0,0101	0,040704	0,000476	0,355	-35,8	396	65	271	8	257	3
MTO-17-9-38a	99	3,8	1616	0,05183	0,00137	0,2884	0,00823	0,040354	0,000437	0,379	-8,4	278	57	257	6	255	3
MTO-17-9-39	94	3,6	1669	0,05133	0,00134	0,28504	0,00804	0,040278	0,000434	0,382	-0,4	255	58	255	6	255	3
MTO-17-9-40	66	2,6	1217	0,05209	0,00142	0,28813	0,00848	0,040116	0,000446	0,377	-12,7	289	60	257	7	254	3
MTO-17-9-41a	68	2,6	933	0,05469	0,00154	0,30048	0,00903	0,039847	0,000421	0,351	-37,7	400	65	267	7	252	3
MTO-17-9-41b	38	1,4	491	0,05186	0,00153	0,28064	0,0089	0,039248	0,000462	0,371	-11,3	279	70	251	7	248	3

Tabell 18: U-Pb data fra prøve GSW1

	<u>ppm</u>				<u>Forhold</u>							<u>Diskordans</u>		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb [*]	1SE	$^{207}{\rm Pb}^{/235}{\rm U}^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	Central (%)	Min. Rim (%)	207/206	1s	207/235	1s	206/238	1s
GSW1-05	125	4,5		1546	0,0517	0,00057	0,30277	0,0059	0,042473	0,000684	0,826	-1,5		272	25	269	5	268	4
GSW1-06	126	5		1542	0,0561	0,00091	0,32994	0,00916	0,042654	0,000958	0,809	-41,9	-30	456	35	290	7	269	6
GSW1-07	148	5,6		1804	0,05102	0,00046	0,30409	0,00631	0,043231	0,000806	0,899	13,2		242	20	270	5	273	5
GSW1-08	54	2		1665	0,05066	0,00086	0,29984	0,00773	0,042922	0,000832	0,753	20,5		226	37	266	6	271	5
GSW1-09	73	2,6		933	0,08131	0,00107	0,46171	0,01146	0,041185	0,000866	0,846	-80,4	-79,1	1229	25	385	8	260	5
GSW1-10	64	2,2		807	0,0513	0,00086	0,28039	0,0072	0,039644	0,000767	0,754	-1,4		254	38	251	6	251	5
GSW1-11	94	3,4		1177	0,05159	0,00064	0,3	0,00759	0,040042	0,000945	0,886	-5,3		267	28	254	6	253	6
GSW1-12	133	4,7		1765	0,05094	0,00064	0,28739	0,00676	0,040919	0,000812	0,844	8,8		238	27	257	5	259	5
GSW1-13	332	14,6		4964	0,05133	0,00031	0,30275	0,00449	0,042781	0,000579	0,913	5,8		255	14	269	4	270	4

GSW1-15	701	31,3		35367	0,05125	0,00026	0,30594	0,00431	0,043293	0,000569	0,933	8,5		252	11	271	3	273	4
GSW1-16	222	9,8		1876	0,05141	0,00041	0,30341	0,00471	0,042805	0,00057	0,858	4,3		259	18	269	4	270	4
GSW1-17	185	8		3443	0,05149	0,00034	0,29925	0,00445	0,042151	0,000563	0,897	1,3		263	14	266	3	266	3
GSW1-18	229	10		3393	0,0516	0,00042	0,30074	0,00471	0,04227	0,000567	0,857	-0,3		268	18	267	4	267	4
GSW1-19	146	6,4		1485	0,05202	0,00052	0,30598	0,00509	0,042663	0,000566	0,796	-6		286	22	271	4	269	3
GSW1-20	131	5,7		1574	0,0509	0,00055	0,29854	0,00512	0,04254	0,000566	0,775	14		236	24	265	4	269	3
GSW1-22	211	9,2		1436	0,05102	0,00039	0,29855	0,00461	0,042442	0,00057	0,87	11,1		242	17	265	4	268	4
GSW1-23	83	3,6		1124	0,05233	0,00067	0,3	0,00579	0,042415	0,000594	0,74	-11		300	28	271	4	268	4
GSW1-24	131	5,8		1150	0,05127	0,0005	0,30111	0,00512	0,042595	0,000592	0,817	6,4		253	21	267	4	269	4
GSW1-25	166	7,3		2542	0,05139	0,00042	0,30219	0,00484	0,042648	0,000588	0,86	4,3		258	18	268	4	269	4
GSW1-26	257	11,3		7198	0,05088	0,00039	0,29914	0,00468	0,042638	0,000582	0,872	14,6		236	17	266	4	269	4
GSW1-27	186	8,1		6282	0,05154	0,00044	0,29971	0,00487	0,042179	0,000585	0,854	0,6		265	19	266	4	266	4
GSW1-28	142	6,2		1014	0,05146	0,00052	0,30252	0,0052	0,042634	0,000595	0,813	2,9		262	22	268	4	269	4
GSW1-29	195	8,5		2668	0,05211	0,00041	0,30556	0,0049	0,042524	0,000594	0,871	-7,7		290	18	271	4	268	4
GSW1-30	33	1,4		4863	0,04956	0,00111	0,28849	0,0077	0,042217	0,000618	0,549	53,9	14,5	174	52	257	6	267	4
GSW1-31	80	3,6		659	0,06965	0,00471	0,4	0,0291	0,043574	0,00071	0,234	-71,5	-52,4	918	139	355	21	275	4
GSW1-32	191	8,3	•	115906	0,05142	0,00047	0,30078	0,00504	0,042424	0,000596	0,838	3,2		260	21	267	4	268	4
GSW1-33	249	10,9	•	2028	0,05145	0,00037	0,30369	0,00492	0,042807	0,00062	0,894	3,5		261	16	269	4	270	4
GSW1-34	175	7,6		1365	0,05117	0,00041	0,29889	0,00487	0,042362	0,000601	0,871	7,7	•	249	18	266	4	267	4
GSW1-35	144	6,3		1522	0,05197	0,00047	0,30515	0,00519	0,042581	0,000612	0,845	-5,6	•	284	20	270	4	269	4
GSW1-36	50	2,3		365	0,10604	0,01009	0,65921	0,06403	0,045088	0,000887	0,203	-85,4	-79,3	1732	167	514	39	284	5
GSW1-37	109	4,8	•	1199	0,0519	0,00053	0,30358	0,00539	0,042422	0,000615	0,816	-4,8		281	22	269	4	268	4
GSW1-38	180	7,9	•	1268	0,05141	0,00039	0,30452	0,00502	0,042963	0,000629	0,888	4,8		259	17	270	4	271	4
GSW1-39	249	10,9		2583	0,05175	0,0004	0,30439	0,00501	0,042657	0,000621	0,886	-1,9		275	17	270	4	269	4
GSW1-40	158	7		2376	0,05128	0,00049	0,30419	0,00538	0,043025	0,00064	0,841	7,4		253	22	270	4	272	4
GSW1-41	53	2,3	•	288	0,05312	0,00076	0,31365	0,00662	0,042825	0,000663	0,734	-19,4		334	32	277	5	270	4
GSW1-42	327	14,1		753	0,07936	0,00298	0,45878	0,01873	0,041929	0,000677	0,395	-79,1	-75,1	1181	71	383	13	265	4
GSW1-43	171	7,5		3123	0,05127	0,00044	0,30315	0,00514	0,042881	0,000629	0,864	7,1		253	19	269	4	271	4

Tabell 19: U-Pb data fra intern husstandard STA

	<u>ppm</u>				<u>Forhold</u>							Diskordans		Aldere					
Navn	U	²⁰⁶ Pb	²⁰⁶ Pbc(%)	206/204	²⁰⁷ Pb ^{/206} Pb*	1SE	$^{207}Pb^{/235}U^{*}$	1SE	$^{206}Pb^{/238}U^{*}$	1SE	Rho	(%)	Min. Rim (%)	207/206	1s	207/235	1 s	206/238	1 s
STA-170323-TA-01	34	1,4		210	0,05196	0,00107	0,3366	0,00901	0,046988	0,000808	0,643	4,5		283	47	295	7	296	5
STA-170323-TA-02	127	5,1		1735	0,05169	0,00054	0,33522	0,00616	0,047032	0,000709	0,820	9,2		272	23	294	5	296	4
STA-170323-TA-04	127	5,2		1151	0,0618	0,00072	0,4067	0,00778	0,047731	0,000726	0,795	-56,2	-52,2	667	24	346	6	301	4
STA-170323-TA-03	124	5		1939	0,05223	0,00059	0,33801	0,00638	0,046933	0,000708	0,800			296	24	296	5	296	4
STA-101-170323	323	15,8		2696	0,05267	0,0003	0,34419	0,00503	0,047394	0,000638	0,920	-5,3		315	13	300	4	299	4
STA-102-170323	273	13,3		8157	0,05286	0,00034	0,34428	0,00504	0,047239	0,000624	0,901	-8		323	15	300	4	298	4
STA-104-170323	230	11,2		2451	0,05212	0,00043	0,34004	0,00587	0,047319	0,000718	0,878	2,6		291	18	297	4	298	4
STA-103-170323	233	11,2		14456	0,05262	0,00044	0,34008	0,00581	0,046871	0,000697	0,87	-5,7		313	18	297	4	295	4
STA-190516-MK-01	238	11,3		1756	0,05158	0,00054	0,32768	0,00699	0,046073	0,000855	0,870	9		267	24	288	5	290	5
STA-190516-MK-02	244	11,4		9258	0,05214	0,0005	0,32624	0,00697	0,045378	0,000865	0,892	-2		292	21	287	5	286	5
STA-190517-MK-01	239	10,6		3163	0,05188	0,00039	0,33986	0,00439	0,047512	0,0005	0,815	7		280	17	297	3	299	3
STA-091017-MK-01	218	11,6		5563	0,05236	0,00024	0,33449	0,0058	0,046331	0,000774	0,963	-3,1		301	10	293	4	292	5
STA-03-091017	158	7,1		2618	0,05223	0,00051	0,3309	0,01652	0,045951	0,002249	0,980	-2		295	22	290	13	290	14
STA-04-091017	165	7,3		2332	0,05222	0,00054	0,32925	0,01693	0,045732	0,002303	0,979	-2,3		295	24	289	13	288	14
STA-091017-MK-101	177	7,4		7012	0,05211	0,00038	0,324	0,0062	0,045091	0,000799	0,926	-2,2		290	16	285	5	284	5
STA-091017-MK-103	204	8,6		3363	0,05251	0,00036	0,33362	0,00613	0,046081	0,000786	0,928	-5,7		308	16	292	5	290	5
STA-091017-MK-104	189	7,5		4020	0,05269	0,00037	0,32371	0,00675	0,044556	0,000875	0,941	-11,2	-0,2	316	16	285	5	281	5
STA-091017-MK-105	182	7,3		3626	0,05197	0,00041	0,32068	0,00675	0,044749	0,000872	0,926	-0,7		284	19	282	5	282	5
STA-111017-MTO-03	240	11,3		5961	0,0517	0,00032	0,33107	0,00629	0,046442	0,000833	0,944	7,7		272	14	290	5	293	5
STA-111017-MTO-04	237	11		5764	0,05193	0,00036	0,32848	0,00619	0,045877	0,000804	0,93	2,5		282	15	288	5	289	5
STA-111017-MTO-01	230	11,4		9248	0,05228	0,00035	0,33459	0,0066	0,046419	0,00086	0,940	-1,7		298	14	293	5	293	5
STA-111017-MTO-02	229	11,4		4519	0,05192	0,00037	0,33291	0,00665	0,046507	0,000868	0,934	4,1		282	15	292	5	293	5
STA-111017-MK-101	253	13,6		2275	0,05198	0,0004	0,32302	0,00841	0,045071	0,00112	0,955	-0,1		285	17	284	6	284	7
STA-111017-MK-102	246	13,3		3607	0,0521	0,0004	0,32556	0,00857	0,045318	0,001141	0,957	-1,5		290	18	286	7	286	7
STA-111017-MTO-103	196	10,8		5820	0,05255	0,00046	0,33677	0,01118	0,046482	0,001489	0,964	-5,4		309	20	295	8	293	9
STA-111017-MTO-104	197	10,8		5016	0,0523	0,00047	0,3	0,0113	0,046265	0,001511	0,965	-2,4		299	20	292	9	292	9
STA-161117-MTO-01	252	10,8		6642	0,05267	0,00036	0,3221	0,00738	0,044354	0,000971	0,955	-11,3	-0,7	315	14	284	6	280	6

STA-161117-MTO-03 128 STA-161117-MTO-04 122 STA-161117-MTO-05 140 STA-161117-MTO-06 163 STA-161117-MTO-101 272 STA-161117-MTO-102 278 STA-161117-MTO-102 278 STA-161117-MTO-103 269 STA-161117-MTO-104 307 STA-161117-MTO-105 267 STA-161117-MTO-106 230 STA-161117-MTO-106 230 STA-161117-MTO-107 237 STA-161117-MTO-108 249 STA-161117-MTO-109 204 STA-161117-MTO-109 204 STA-161117-MTO-201 219 STA-161117-MTO-202 293 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-203 312 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-203 312 STA-161117-MTO-204 254 STA-161117-MTO-205 258 STA	5,4 4,9 5,7 6,6 14 14,4	· · ·	924 1295 2253 3735 3125	0,05246 0,05255 0,05273 0,05277	0,00045 0,00041 0,00047	0,33059 0,31592 0,3324	0,01064 0,00845	0,045702	0,001417	0.963	-5.9				200			
STA-161117-MTO-04 122 STA-161117-MTO-05 140 STA-161117-MTO-06 163 STA-161117-MTO-101 272 STA-161117-MTO-102 278 STA-161117-MTO-103 269 STA-161117-MTO-104 307 STA-161117-MTO-105 267 STA-161117-MTO-106 230 STA-161117-MTO-107 237 STA-161117-MTO-108 249 STA-161117-MTO-109 204 STA-161117-MTO-109 204 STA-161117-MTO-109 204 STA-161117-MTO-201 285 STA-161117-MTO-202 293 STA-161117-MTO-204 298 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-205 254 STA-161117-MTO-204 258 STA-161117-MTO-205 258 STA-171117-MTO-103 196 ST	4,9 5,7 6,6 14 14,4	· · ·	1295 2253 3735 3125	0,05255 0,05273 0,05277	0,00041 0,00047	0,31592	0,00845		/	-,	-5,9		306	19	290	8	288	9
STA-161117-MTO-05 140 STA-161117-MTO-06 163 STA-161117-MTO-101 272 STA-161117-MTO-102 278 STA-161117-MTO-103 269 STA-161117-MTO-104 307 STA-161117-MTO-105 267 STA-161117-MTO-106 230 STA-161117-MTO-106 230 STA-161117-MTO-107 237 STA-161117-MTO-108 249 STA-161117-MTO-109 204 STA-161117-MTO-109 204 STA-161117-MTO-109 204 STA-161117-MTO-201 219 STA-161117-MTO-202 293 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-204 298 STA-161117-MTO-205 263 STA-161117-MTO-206 254 STA-161117-MTO-203 312 STA-161117-MTO-204 267 STA-161117-MTO-205 263 STA-161117-MTO-204 258 STA-161117-MTO-203 312 STA-171117-MTO-103 196 STA-171117-MTO-104 213 S	5,7 6,6 14 14,4		2253 3735 3125	0,05273 0,05277	0,00047	0 3324		0,043604	0,001114	0,955	-11,3		309	18	279	7	275	7
STA-161117-MTO-06 163 STA-161117-MTO-101 272 STA-161117-MTO-102 278 1 STA-161117-MTO-103 269 1 STA-161117-MTO-104 307 1 STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-161117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-01 267 1 STA-161117-MTO-02 258 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-17	6,6 14 14,4		3735 3125	0,05277	0.00042	0,5521	0,00928	0,045723	0,001211	0,948	-9,3		317	20	291	7	288	7
STA-161117-MTO-101 272 STA-161117-MTO-102 278 1 STA-161117-MTO-103 269 1 STA-161117-MTO-104 307 1 STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-106 230 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-161117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-104 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1	14 14,4		3125		0,00043	0,33211	0,00934	0,045645	0,001228	0,956	-10		319	18	291	7	288	8
STA-161117-MTO-102 278 1 STA-161117-MTO-103 269 1 STA-161117-MTO-104 307 1 STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-161117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-01 267 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1	14,4			0,05145	0,00281	0,30181	0,04907	0,042541	0,006514	0,942	2,9		261	117	268	38	269	40
STA-161117-MTO-103 269 1 STA-161117-MTO-104 307 1 STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-103 312 1 STA-161117-MTO-104 213 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1			3464	0,05142	0,0028	0,30719	0,04954	0,04333	0,006578	0,941	5,4		260	120	272	38	273	41
STA-161117-MTO-104 307 1 STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-161117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-01 267 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	13,9		6495	0,0531	0,0028	0,35025	0,05233	0,04784	0,00669	0,936	-9,8		333	115	305	39	301	41
STA-161117-MTO-105 267 1 STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	15,7		4536	0,05325	0,0028	0,35007	0,05216	0,047681	0,006648	0,936	-11,8		339	115	305	39	300	41
STA-161117-MTO-106 230 1 STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 219 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-105 210 1	13,8		8661	0,05516	0,00284	0,40254	0,05696	0,052928	0,006978	0,932	-21,1		419	114	343	41	332	43
STA-161117-MTO-107 237 1 STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 204 1 STA-161117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-204 258 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	11,8		4175	0,05505	0,00283	0,40142	0,05686	0,052888	0,006982	0,932	-20,3		414	114	343	41	332	43
STA-161117-MTO-108 249 1 STA-161117-MTO-109 204 1 STA-161117-MTO-109 219 1 STA-161117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-16117-MTO-204 298 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-104 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	12,1	•	7432	0,05576	0,0028	0,46042	0,06255	0,059882	0,00756	0,929	-15,8		443	107	385	43	375	46
STA-161117-MTO-109 204 STA-161117-MTO-100 219 STA-16117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 267 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	12,9		4158	0,05435	0,00272	0,45331	0,06146	0,060497	0,007624	0,929	-1,8		385	108	380	43	379	46
STA-161117-MTO-110 219 STA-16117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-104 267 1 STA-171117-MTO-01 267 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	7,1		9120	0,04956	0,00244	0,29811	0,03988	0,043623	0,005425	0,930	59		175	108	265	31	275	34
STA-16117-MTO-201 285 1 STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	7,5		3408	0,04916	0,00243	0,2929	0,03926	0,043211	0,005385	0,930	76,9		156	108	261	31	273	33
STA-16117-MTO-202 293 1 STA-161117-MTO-204 298 1 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	12,2	•	3897	0,05302	0,00039	0,33082	0,00446	0,045257	0,000514	0,842	-13,7	-3,6	329	16	290	3	285	3
STA-161117-MTO-204 298 STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	12,5		5050	0,0531	0.00033	0.0000												
STA-161117-MTO-205 263 1 STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-161117-MTO-203 312 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	13				.,	0,32902	0,00412	0,044939	0,000491	0,872	-15,3	-7,1	333	13	289	3	283	3
STA-161117-MTO-206 254 1 STA-161117-MTO-203 312 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1			22589	0,05238	0,00031	0,32902 0,33319	0,00412 0,0043	0,044939 0,046135	0,000491 0,00053	0,872 0,89	-15,3 -3,8	-7,1	333 302	13 13	289 292	3 3	283 291	3 3
STA-161117-MTO-203 312 1 STA-171117-MTO-01 267 1 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	11,3		22589 5705	0,05238 0,05274	0,00031 0,00036	0,32902 0,33319 0,33228	0,00412 0,0043 0,00527	0,044939 0,046135 0,045696	0,000491 0,00053 0,000653	0,872 0,89 0,9	-15,3 -3,8 -9,5	-7,1	333302318	13 13 15	289 292 291	3 3 4	283 291 288	3 3 4
STA-171117-MTO-01 267 STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	11,3 10,9		22589 5705 2874	0,05238 0,05274 0,05268	0,00031 0,00036 0,00035	0,32902 0,33319 0,33228 0,3303	0,00412 0,0043 0,00527 0,0046	0,044939 0,046135 0,045696 0,045474	0,000491 0,00053 0,000653 0,000555	0,872 0,89 0,9 0,876	-15,3 -3,8 -9,5 -9,2	-7,1	333302318315	13 13 15 15	289 292 291 290	3 3 4 4	283 291 288 287	3 3 4 3
STA-171117-MTO-02 258 1 STA-171117-MTO-103 196 1 STA-171117-MTO-104 213 1 STA-171117-MTO-105 210 1 STA-171117-MTO-106 207 1	11,3 10,9 13,6	•	22589 5705 2874 5680	0,05238 0,05274 0,05268 0,05247	0,00031 0,00036 0,00035 0,00033	0,32902 0,33319 0,33228 0,3303 0,3322	0,00412 0,0043 0,00527 0,0046 0,00449	0,044939 0,046135 0,045696 0,045474 0,045923	0,000491 0,00053 0,000653 0,000555 0,000555	0,872 0,89 0,9 0,876 0,886	-15,3 -3,8 -9,5 -9,2 -5,5	-7,1	 333 302 318 315 306 	13 13 15 15 14	289 292 291 290 291	3 3 4 4 3	 283 291 288 287 289 	3 3 4 3 3
STA-171117-MTO-103 196 STA-171117-MTO-104 213 STA-171117-MTO-105 210 STA-171117-MTO-106 207	11,3 10,9 13,6 11		22589 5705 2874 5680 2880	0,05238 0,05274 0,05268 0,05247 0,0536	0,00031 0,00036 0,00035 0,00033 0,00099	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249	0,000491 0,00053 0,000653 0,000555 0,000555 0,001111	0,872 0,89 0,9 0,876 0,886 0,817	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8	-7,1	 333 302 318 315 306 354 	 13 13 15 15 14 40 	289 292 291 290 291 277	3 3 4 4 3 8	 283 291 288 287 289 268 	3 3 4 3 3 7
STA-171117-MTO-104 213 STA-171117-MTO-105 210 STA-171117-MTO-106 207	11,3 10,9 13,6 11 10,6		22589 5705 2874 5680 2880 5810	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555	0,000491 0,00053 0,000653 0,000555 0,000555 0,001111 0,001256	0,872 0,89 0,9 0,876 0,886 0,817 0,847	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4	-7,1	 333 302 318 315 306 354 349 	 13 13 15 15 14 40 40 	289 292 291 290 291 277 277	3 3 4 4 3 8 8	283 291 288 287 289 268 269	3 3 4 3 3 7 8
STA-171117-MTO-105 210 STA-171117-MTO-106 207	11,3 10,9 13,6 11 10,6 6,5	· · ·	22589 5705 2874 5680 2880 5810 4422	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737	0,000491 0,00053 0,000653 0,000555 0,00055 0,001111 0,001256 0,000843	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,897	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4	-7,1	 333 302 318 315 306 354 349 278 	 13 13 15 15 14 40 40 21 	289 292 291 290 291 277 277 287	3 3 4 4 3 8 8 8 5	283 291 288 287 289 268 268 269 288	3 4 3 3 7 8 5
STA-171117-MTO-106 207	11,3 10,9 13,6 11 10,6 6,5 7,1	•	22589 5705 2874 5680 2880 5810 4422 4654	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182 0,05166	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047 0,00046	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3 0,32815	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671 0,00684	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737 0,046069	0,000491 0,00053 0,000653 0,000555 0,00055 0,001111 0,001256 0,000843 0,000866	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,897 0,902	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4 7,5	-7,1	 333 302 318 315 306 354 349 278 270 	 13 13 15 15 14 40 40 21 20 	289 292 291 290 291 277 277 287 288	3 3 4 4 3 8 8 5 5 5	283 291 288 287 289 268 269 288 290	3 3 4 3 3 7 8 5 5 5
	11,3 10,9 13,6 11,6 10,6 6,5 7,1 7	· · ·	22589 5705 2874 5680 2880 5810 4422 4654 4680	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182 0,05166 0,05241	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047 0,00046 0,00049	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3 0,32815 0,32658	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671 0,00684 0,00743	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737 0,046069 0,045196	0,000491 0,00053 0,000653 0,000555 0,00055 0,001111 0,001256 0,000843 0,000866 0,00094	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,897 0,902 0,914	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4 7,5 -6,1	-7,1	 333 302 318 315 306 354 349 278 270 303 	 13 13 15 14 40 40 21 20 21 	289 292 291 290 291 277 277 287 288 288	3 3 4 4 3 8 8 5 5 5 6	283 291 288 287 289 268 269 288 290 285	3 3 4 3 3 7 8 5 5 6
STA-171117-MTO-107 171	11,3 10,9 13,6 11,6 10,6 6,5 7,1 7 6,9	· · · ·	22589 5705 2874 5680 2880 5810 4422 4654 4680 5049	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182 0,05166 0,05241 0,05246	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047 0,00046 0,00048	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3 0,32815 0,32658 0,32741	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671 0,00684 0,00743 0,00752	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737 0,046069 0,045196 0,045264	0,000491 0,00053 0,000653 0,000555 0,00055 0,001111 0,001256 0,000843 0,000866 0,00094 0,000953	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,897 0,902 0,914 0,916	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4 7,5 -6,1 -6,8	-7,1	 333 302 318 315 306 354 349 278 270 303 306 	 13 13 15 15 14 40 40 21 20 21 21 21 	289 292 291 290 291 277 277 287 288 288 287 288	3 3 4 4 3 8 8 5 5 6 6	283 291 288 287 289 268 269 288 290 285 285	3 3 4 3 3 7 8 5 5 6 6 6
STA-171117-MTO-108 154	11,3 10,9 13,6 11 10,6 6,5 7,1 7 6,9 6,2	· · · ·	22589 5705 2874 5680 2880 5810 4422 4654 4654 4680 5049 2604	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182 0,05166 0,05241 0,05246 0,05329	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047 0,00046 0,00049 0,00048 0,00039	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3 0,32815 0,32658 0,32741 0,32941	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671 0,00684 0,00743 0,00752 0,00811	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737 0,046069 0,045196 0,045264 0,04483	0,000491 0,00053 0,000653 0,000555 0,001111 0,001256 0,000843 0,000866 0,00094 0,000953 0,001053	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,847 0,897 0,902 0,914 0,916 0,954	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4 7,5 -6,1 -6,8 -17,6	-7,1	 333 302 318 315 306 354 349 278 270 303 306 341 	 13 13 15 14 40 40 21 20 21 21 21 21 17 	289 292 291 290 291 277 287 288 287 288 287 288	3 3 4 4 3 8 8 5 5 6 6 6 6	283 291 288 287 289 268 269 288 290 285 285 285 283	3 3 4 3 3 7 8 5 5 6 6 6 6
STA-171117-MTO-101 205	11,3 10,9 13,6 11 10,6 6,5 7,1 7 6,9 6,2 5,7	· · · ·	22589 5705 2874 5680 2880 5810 4422 4654 4680 5049 2604 4066	0,05238 0,05274 0,05268 0,05247 0,0536 0,05347 0,05182 0,05166 0,05241 0,05246 0,05329 0,05308	0,00031 0,00036 0,00035 0,00033 0,00099 0,00099 0,00047 0,00046 0,00048 0,00039 0,00041	0,32902 0,33319 0,33228 0,3303 0,3322 0,31402 0,31371 0,3 0,32815 0,32658 0,32741 0,32941 0,33973	0,00412 0,0043 0,00527 0,0046 0,00449 0,01005 0,01093 0,00671 0,00684 0,00743 0,00752 0,00811 0,01115	0,044939 0,046135 0,045696 0,045474 0,045923 0,04249 0,042555 0,045737 0,046069 0,045196 0,045264 0,04483 0,046419	0,000491 0,00053 0,000555 0,000555 0,001111 0,001256 0,000843 0,000866 0,00094 0,000953 0,001053 0,00148	0,872 0,89 0,9 0,876 0,886 0,817 0,847 0,897 0,902 0,914 0,916 0,954 0,972	-15,3 -3,8 -9,5 -9,2 -5,5 -24,8 -23,4 4 7,5 -6,1 -6,8 -17,6 -12,2	-7,1	 333 302 318 315 306 354 349 278 270 303 306 341 332 	 13 13 15 14 40 40 21 20 21 21 21 17 17 	289 292 291 290 291 277 277 287 288 287 288 289 297	3 3 4 4 3 8 8 5 5 6 6 6 6 8	283 291 288 287 289 268 269 288 290 285 285 285 285 283 292	3 3 4 3 7 8 5 5 6 6 6 9

STA-171117-MTO-102	215	7,1		4251	0,05186	0,00045	0,32884	0,00653	0,045987	0,000821	0,899	3,8		279	19	289	5	290	5
STA-171117-MTO-201	213	9,7		3894	0,05311	0,00047	0,33335	0,00684	0,045522	0,000841	0,901	-14,3	-1,7	334	19	292	5	287	5
STA-171117-MTO-202	206	9,5		2594	0,05245	0,00046	0,33434	0,00719	0,046228	0,000907	0,912	-4,7		305	19	293	5	291	6
STA-171117-MTO-203	161	7,5		2890	0,052	0,00052	0,32865	0,00672	0,045838	0,000815	0,87	1,2		285	22	289	5	289	5
STA-171117-MTO-204	175	8,2		5767	0,05247	0,00049	0,33351	0,00648	0,046096	0,000785	0,876	-5,2		306	20	292	5	291	5
STA-171117-MTO-205	182	8,6		3744	0,05216	0,00051	0,33303	0,00681	0,046308	0,000831	0,877	-0,2		292	22	292	5	292	5
STA-171117-MTO-206	175	8,5		8274	0,05194	0,00052	0,33973	0,00721	0,047442	0,000889	0,883	5,9		283	22	297	5	299	5
STA-241117-MTO-01	286	12,4		6856	0,05477	0,00108	0,34483	0,00885	0,045665	0,000755	0,644	-29,2	-6,6	403	43	301	7	288	5
STA-241117-MTO-02	304	13,2		6000	0,05448	0,00106	0,34406	0,00883	0,045807	0,000767	0,653	-26,7	-2,8	391	40	300	7	289	5
STA-241117-MTO-03	260	10,9		5035	0,05051	0,00098	0,31553	0,00846	0,045307	0,000841	0,692	31,4		218	43	278	7	286	5
STA-241117-MTO-04	217	8,7		8883	0,05011	0,00097	0,30238	0,00805	0,043762	0,000795	0,683	38,7	3,7	200	45	268	6	276	5
STA-241117-MTO-05	221	8,9		4623	0,05459	0,00112	0,34467	0,00947	0,045794	0,000834	0,662	-27,6	-2,7	395	44	301	7	289	5
STA-241117-MTO-06	227	9,1		5585	0,0547	0,00112	0,34442	0,00941	0,045664	0,000827	0,663	-28,7	-4,8	400	43	301	7	288	5
STA-241117-MTO-101	292	13,8		4149	0,05255	0,00029	0,34036	0,00405	0,046974	0,000497	0,889	-4,5		309	12	297	3	296	3
STA-241117-MTO-102	297	14,1		9345	0,05219	0,00029	0,33922	0,00407	0,047143	0,0005	0,885	1,2		294	12	297	3	297	3
STA-241117-MTO-103	279	13,4		7120	0,05243	0,00029	0,3456	0,00421	0,047811	0,00052	0,893	-1		304	12	301	3	301	3
STA-241117-MTO-104	292	14		12348	0,05247	0,00029	0,34589	0,00449	0,047809	0,000562	0,906	-1,7		306	12	302	3	301	3
STA-241117-MTO-106	272	12,7		4512	0,05253	0,00031	0,33733	0,00454	0,046576	0,000565	0,9	-5		308	13	295	3	293	3
STA-241117-MTO-105	238	11,3		5778	0,0533	0,00038	0,34895	0,00485	0,047479	0,000569	0,862	-12,8	-3,3	342	16	304	4	299	4
STA-241117-MTO-107	259	12		8060	0,05246	0,00031	0,3376	0,00467	0,046676	0,000584	0,906	-3,8		305	13	295	4	294	4
STA-241117-MTO-108	263	12,1		4570	0,05254	0,00032	0,33425	0,00448	0,046143	0,000552	0,893	-6		309	14	293	3	291	3
STA-241117-MTO-201	300	13,6		27954	0,0521	0,00033	0,34137	0,00335	0,04752	0,000354	0,760	3,3		290	14	298	3	299	2
STA-241117-MTO-202	286	13,1		6710	0,05193	0,00033	0,34551	0,00347	0,048251	0,000373	0,769	7,7		283	14	301	3	304	2
STA-241117-MTO-203	225	10,3		16349	0,052	0,00033	0,34324	0,00438	0,047873	0,000532	0,871	5,8		285	13	300	3	301	3
STA-241117-MTO-204	242	11		3391	0,05191	0,00034	0,34152	0,00429	0,047717	0,000509	0,849	6,9		281	14	298	3	300	3
STA-241117-MTO-205	242	10,8		3702	0,05306	0,00033	0,34021	0,00457	0,046504	0,000554	0,886	-11,8	-3,1	331	14	297	3	293	3
STA-241117-MTO-206	247	11,1		5313	0,05281	0,00037	0,33972	0,00391	0,046656	0,000427	0,795	-8,5		321	15	297	3	294	3
STA-241117-MTO-207	237	10,5		4258	0,0529	0,00036	0,33828	0,00541	0,046379	0,00067	0,903	-10,2		324	16	296	4	292	4
STA-241117-MTO-208	234	10,4		3315	0,0526	0,00038	0,33322	0,00421	0,04595	0,000476	0,819	-7,2		311	16	292	3	290	3
STA-240118-MK-01	223	9,8		2793	0,05301	0,00066	0,33179	0,00655	0,045392	0,000699	0,779	-13,4		329	26	291	5	286	4
STA-240118-МК-02 154	213	9,3	•	2923	0,0529	0,00066	0,32924	0,00674	0,045137	0,00073	0,790	-12,6		325	26	289	5	285	4

STA-240118-MTO-03	146	6,1		1877	0,05139	0,00069	0,32784	0,00729	0,046269	0,000817	0,794	13,2	•	258	31	288	6	292	5
STA-240118-MTO-04	118	4,9	•	1004	0,05266	0,00077	0,3341	0,00773	0,046017	0,000828	0,778	-7,8		314	32	293	6	290	5
STA-240118-MTO-101	152	6,8		2850	0,05156	0,00129	0,33279	0,00897	0,046816	0,000475	0,377	11,2		266	57	292	7	295	3
STA-240118-MTO-102	104	4,6		1421	0,05151	0,0013	0,3	0,009	0,046572	0,000478	0,377	11,6		264	54	290	7	293	3
STA-240118-MTO-103	158	7		2707	0,0528	0,00136	0,33358	0,00924	0,045818	0,000462	0,364	-10,1		320	57	292	7	289	3
STA-240118-MTO-104	207	9,2		2684	0,05197	0,00133	0,32989	0,00905	0,046039	0,000464	0,367	2,2		284	57	289	7	290	3
STA-240118-MTO-105	175	7,5		2199	0,05442	0,00142	0,33686	0,00949	0,044891	0,00048	0,379	-27,8		389	57	295	7	283	3
STA-240118-MTO-106	99	4,3		1705	0,0523	0,00136	0,32738	0,00919	0,0454	0,000476	0,373	-4,2		298	58	288	7	286	3
STA-230218-MK-01	136	8,7		1744	0,05353	0,00052	0,34634	0,0069	0,046921	0,000816	0,873	-16,3	-3,5	351	22	302	5	296	5
STA-230218-MK-02	149	9,4		1819	0,05299	0,00041	0,34303	0,00665	0,046952	0,000833	0,916	-10,1		328	18	299	5	296	5
STA-230218-MTO-03	182	10,5	•	202	0,05241	0,00047	0,33323	0,00642	0,046113	0,000785	0,883	-4,3		303	20	292	5	291	5
STA-230218-MTO-04	179	10,3		1634	0,05253	0,00047	0,33428	0,00641	0,046153	0,000781	0,883	-5,9		309	20	293	5	291	5
STA-230218-MTO-05	152	8,2		76	0,05305	0,00055	0,33881	0,00709	0,046318	0,000844	0,871	-12,1		331	22	296	5	292	5
STA-230218-MTO-06	138	7,7	•	1145	0,05294	0,00042	0,34693	0,0068	0,047527	0,00085	0,912	-8,5		326	17	302	5	299	5
STA-230218-MK-101	165	7,8	•	4042	0,05291	0,00041	0,34684	0,00717	0,047546	0,000909	0,925	-8		325	17	302	5	299	6
STA-230218-MK-102	147	6,9		2942	0,05295	0,00036	0,34561	0,007	0,047343	0,000905	0,943	-8,9		326	15	301	5	298	6
STA-230218-MTO-103	275	12,3	•	4773	0,05209	0,00037	0,33729	0,0067	0,046962	0,000872	0,935	2,3		289	16	295	5	296	5
STA-230218-MTO-104	288	12,8	•	3512	0,05281	0,00033	0,34069	0,0067	0,04679	0,000873	0,948	-8,2		321	14	298	5	295	5
STA-230218-MTO-105	166	7,2		1822	0,05312	0,00042	0,35187	0,00767	0,04804	0,000977	0,933	-9,7		334	18	306	6	302	6
STA-230218-MTO-106	258	11,2	•	241193	0,05284	0,00046	0,35032	0,0076	0,048082	0,000957	0,917	-6,1		322	19	305	6	303	6
STA-230218-MTO-107	159	9		16543	0,05222	0,00031	0,34514	0,00701	0,047935	0,00093	0,956	2,4		295	13	301	5	302	6
STA-230218-MTO-108	203	11,1		2533	0,05163	0,0003	0,32972	0,00663	0,046313	0,000891	0,956	8,6		269	13	289	5	292	5
STA-230218-MTO-109	188	10,3	•	139	0,0529	0,00038	0,341	0,00832	0,046749	0,00109	0,955	-9,5		325	15	298	6	295	7
STA-230218-MTO-110	209	11,7	•	5081	0,05241	0,00036	0,34456	0,00824	0,04768	0,001094	0,959	-1,1		303	15	301	6	300	7
STA-230218-MTO-111	144	8,2		123	0,05165	0,00043	0,34643	0,0097	0,048644	0,0013	0,955	13,7		270	19	302	7	306	8
STA-230218-MTO-112	142	8		2803	0,05217	0,00036	0,34874	0,01064	0,048479	0,001442	0,975	4,2		293	15	304	8	305	9
STA-130218-MK-01	122	5,1		2507	0,05342	0,00065	0,33455	0,00982	0,045421	0,001215	0,911	-17,8	-1,2	347	27	293	7	286	7
STA-130218-MK-02	211	8,7		13978	0,05291	0,00061	0,32489	0,00985	0,044535	0,001248	0,924	-13,8		325	25	286	8	281	8

U-Pb data brukt til Tera-Wasserburg plot

Tabell 20: U-Pb data brukt til T.W. plot for prøve ON281

	Tera-Wasserburg output for 3D regression					
Navn	²³⁸ U ^{/206} Pb	1s	²⁰⁷ Pb ^{/206} Pb	1s	²⁰⁴ Pb ^{/206} Pb	1s
ON281-01	6,63	0,145	0,60697	0,02247	0,044691	0,0004827
ON281-02	14,173	0,558	0,53134	0,02088	0,036299	0,0007986
ON281-03	24,311	0,546	0,05446	0,00046	0,000107	0,0000507
ON281-04	22,189	0,562	0,13454	0,00869	0,00307	0,0007573
ON281-05a	24,08	0,609	0,05257	0,00048	0,000047	0,0000244
ON281-6	24,552	1,251	0,05546	0,00083	0,00031	0,0000681
ON281-6b	24,479	0,77	0,06807	0,00092	0,00112	0,0000492
ON281-7	24,496	0,79	0,05552	0,00086	0,001056	0,0004374
ON281-8	4,724	0,228	0,69003	0,02942	0,049382	0,0006963
ON281-9	22,389	0,852	0,17545	0,0058	0,009459	0,0005448
ON281-10	22,104	0,827	0,10316	0,00246	0,002269	0,0006131
ON281-11	24,226	0,968	0,0598	0,00174	0,003726	0,0004259
ON281-12	23,432	0,95	0,07212	0,00212	0,000706	0,0001648
ON281-13	23,907	0,998	0,05304	0,00063	0,000128	0,0000118
ON281-14	18,709	0,806	0,31538	0,00764	0,020012	0,0002922
ON281-15	23,301	1,634	0,11062	0,00235	0,004502	0,0002026
ON281-16	36,539	2,82	0,33398	0,01457	0,021443	0,0007698
ON281-17	24,696	1,246	0,05472	0,00073	0,000018	0,0000165
ON281-18	23,089	1,192	0,10531	0,00267	0,003522	0,0002796
ON281-19	26,205	0,611	0,1178	0,00148	0,005463	0,0002185
ON281-20	22,273	0,286	0,19606	0,00224	0,011205	0,0001647
ON281-21	23,86	0,231	0,05966	0,00064	0,000575	0,0000662
ON281-22	23,422	0,291	0,083	0,00228	0,005558	0,0010816
ON281-24	23,206	0,234	0,11532	0,00194	0,004417	0,0001299
ON281-25	24,977	0,28	0,13219	0,00981	0,004206	0,0004206
ON281-26	13,958	0,219	0,60091	0,01019	0,040052	0,0011375
ON281-27	22,872	0,294	0,06329	0,00061	0,0008	0,000078
ON281-28	22,167	0,203	0,15689	0,00345	0,007569	0,0002634
ON281-29	24,108	0,254	0,05179	0,00027	0,000056	0,0000218
ON281-30	23,669	0,263	0,05602	0,00027	0,000292	0,0000456
ON281-31	23,899	0,287	0,06606	0,00072	0,001943	0,0004864
ON281-32	24,434	0,28	0,05629	0,0008	0,000277	0,0000584
ON281-33	24,774	0,321	0,0508	0,00055	0,000565	0,0002602
ON281-34	24,875	0,236	0,14141	0,00304	0,006591	0,0002169
ON281-35	24,928	0,254	0,11368	0,00417	0,004378	0,0003112
ON281-36	24,058	0,367	0,0539	0,00055	0,000167	0,0000319
ON281-37	24,165	0,226	0,16939	0,00107	0,009509	0,0001987
ON281-38	15,736	0,311	0,42988	0,00952	0,027969	0,000702
ON281-39	34,07	0,702	0,37873	0,00995	0,024544	0,0006455
ON281-40	24,088	0,465	0,05629	0,00071	0,000374	0,0000571

ON281-41	5,681	0,109	0,65617	0,01278	0,04464	0,0004553
ON281-42	24,678	0,432	0,05776	0,0003	0,000507	0,0000599
ON281-43	19,317	0,475	0,17996	0,01038	0,008767	0,000754
ON281-44	24,618	0,439	0,05348	0,00034	0,000102	0,0000508

Tabell 21: U-Pb data brukt i T.W. plot for prøve MTO-17-2

	Tera-wasserburg output for 5D regre	\$\$1011					
Navn	²³⁸ U ^{/206} Pb		1 s	²⁰⁷ Pb ^{/206} Pb	1s	²⁰⁴ Pb ^{/206} Pb	1s
MTO-17-2-01a		23,994	0,459	0,0514	0,00036	0,000296	0,0000462
MTO-17-2-01		24,032	0,456	0,06533	0,0005	0,001078	0,0000468
MTO-17-2-02		25,498	0,483	0,23016	0,00492	0,014222	0,0003371
MTO-17-2-03		22,274	0,421	0,1161	0,00307	0,004845	0,0003004
MTO-17-2-04		20,038	0,395	0,23526	0,00541	0,014519	0,0003746
MTO-17-2-05		14,185	0,29	0,39596	0,00841	0,02694	0,0009725
MTO-17-2-06		13,551	0,439	0,42369	0,01185	0,031551	0,0018394
MTO-17-2-07		18,348	0,375	0,23044	0,00617	0,01407	0,0004334
MTO-17-2-08		8,796	0,579	0,52382	0,02078	0,035733	0,0012614
MTO-17-2-09		21,139	0,394	0,19302	0,00267	0,012291	0,0004929
MTO-17-2-10		20,014	0,395	0,15234	0,00573	0,007672	0,0003966
MTO-17-2-11		20,198	0,551	0,19997	0,01097	0,009772	0,0007798
MTO-17-2-12		33,442	0,69	0,19052	0,00328	0,011069	0,0002192
MTO-17-2-13		20,498	0,411	0,05743	0,00039	0,000471	0,0000142
MTO-17-2-14		18,85	0,492	0,17889	0,00619	0,009342	0,0004465
MTO-17-2-15		22,971	0,434	0,12203	0,001	0,005308	0,0003371
MTO-17-2-16		18,655	0,426	0,23165	0,00334	0,014354	0,0001521
MTO-17-2-17		23,021	0,443	0,08021	0,00259	0,001621	0,0002319
MTO-17-2-18		21,415	0,553	0,16234	0,00839	0,006982	0,0004992
MTO-17-2-19		18,398	0,493	0,2344	0,00727	0,014421	0,0007384
MTO-17-2-20		16,241	0,363	0,31868	0,00675	0,02138	0,0005046
MTO-17-2-21		20,042	0,436	0,1486	0,00787	0,006697	0,0003945
MTO-17-2-22		22,637	0,471	0,06976	0,00063	0,00156	0,0000435
MTO-17-2-23 MTO-17-2-24		22,708 23,292	0,511 0,468	0,05337 0,08969	0,00034 0,00066	0,000098 0,002778	0,000012 0,0000878
MTO-17-2-25 MTO-17-2-26		23,628 22,168	0,483 0,686	0,05957 0,09237	0,00072 0,00141	0,000654 0,003111	0,0001302 0,0001201
MTO-17-2-27		15,879	0,331	0,32465	0,00543	0,019805	0,0010616

Tera-Wasserburg output for 3D regression

Vedlegg C – Lu-Hf data

Tabell 1: Lu-Hf data for prøve MTO-17-1

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(262)
MTO-17-1-02	0,282801	0,000016	0,00192407	0,00001	0,0988576	0,00066	6,061973972
MTO-17-1-03	0,282711	0,000014	0,00115805	0,000028	0,0591739	0,0012	3,010394838
MTO-17-1-04	0,282814	0,000015	0,00231748	0,00003	0,121813	0,00094	6,453697682
MTO-17-1-05	0,282728	0,000024	0,0017838	0,000022	0,0916424	0,0011	3,503339728
MTO-17-1-06	0,282772	0,000018	0,00178552	0,0000076	0,092955	0,0008	5,059900776
MTO-17-1-08	0,282765	0,000016	0,00198482	0,000026	0,100672	0,0011	4,777639601
MTO-17-1-09	0,282748	0,000022	0,00186401	0,000031	0,0938546	0,0017	4,197086514
MTO-17-1-10	0,282752	0,000019	0,00243175	0,0000037	0,12218	0,0003	4,240115059
MTO-17-1-11	0,282803	0,000022	0,00233224	0,000032	0,120683	0,0015	6,061921922
MTO-17-1-13	0,282786	0,000021	0,0028842	0,000052	0,147969	0,0022	5,364641766
MTO-17-1-14	0,282708	0,000019	0,00207911	0,0000074	0,107398	0,00034	2,7444394
MTO-17-1-15	0,28268	0,000014	0,00172349	0,000033	0,0887686	0,0019	1,815411495
MTO-17-1-18	0,282846	0,000018	0,00250298	0,000049	0,132242	0,0017	7,55377446
MTO-17-1-19	0,282782	0,000019	0,00183205	0,000017	0,0975287	0,0011	5,405659417

Tabell 2: Lu-Hf data for prøve MTO-17-3

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(262)
MTO-17-3-01	0,282699	0,00001	0,000381558	0,000014	0,0239423	0,0011	2,852876451
MTO-17-3-03	0,282794	0,000018	0,00525139	0,000016	0,357044	0,0025	5,34998657
MTO-17-3-06	0,28273	0,000013	0,00218466	0,00002	0,08643	0,00041	3,629740702
MTO-17-3-15	0,282753	0,000018	0,00324405	0,00005	0,218132	0,0025	4,255535648

Tabell 3: Lu-Hf data for prøve MTO-17-4

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(282)
MTO-17-4-02	0,28291	0,000017	0,00144185	0,00011	0,0961008	0,0	084 10,4299101
MTO-17-4-05	0,282897	0,00002	0,00278271	0,000064	0,176355	0,0	9,719449305
MTO-17-4-14	0,282964	0,000021	0,0062224	0,000012	0,388286	0,	001 11,44772823
MTO-17-4-17	0,283019	0,000019	0,00413863	0,0001	0,320063	0,0	13,78311652
MTO-17-4-18	0,283054	0,000018	0,00129772	0,0000072	0,106963	0,	001 15,55223592
MTO-17-4-30	0,282866	0,000019	0,00391346	0,00016	0,235854	C	,01 8,411309457

Tabell 4: Lu-Hf data for prøve MTO-17-5

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE		176Yb/177Hf	1SE		e Hf(264)
MTO-17-5-26	0,28272	0,000018	0,000960579		0,000023	0,0470802		0,00094	3,406455929
MTO-17-5-31	0,282765	0,000021	0,00231924		0,000033	0,117655		0,00083	4,761170045
MTO-17-5-32a	0,28276	0,000018	0,00158702		0,000042	0,080329		0,0026	4,712267928
MTO-17-5-32b	0,282754	0,000017	0,00254417		0,000013	0,130745		0,0012	4,332628775
MTO-17-5-35	0,282728	0,000022	0,00175301		0,000041	0,086351		0,0019	3,550981298

Tabell 5: Lu-Hf data for prøve MTO-17-6

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(265)
MTO-17-6-02	0,282757	0,000017	0,00257659	0,000068	0,130236	0,0036	4,453716411
MTO-17-6-10	0,282781	0,000019	0,00211105	0,00011	0,107333	0,0054	5,384618088
MTO-17-6-09	0,282742	0,000023	0,00179289	0,000024	0,0901911	0,0013	4,060500705
MTO-17-6-11	0,282707	0,000021	0,00324149	0,00021	0,166478	0,011	2,567859489
MTO-17-6-24	0,282688	0,000018	0,00293037	0,00004	0,149437	0,0028	1,950174753
MTO-17-6-25	0,282848	0,000046	0,0110957	0,001	0,683059	0,062	6,178545624
MTO-17-6-26	0,282719	0,000016	0,00358438	0,000073	0,187978	0,0042	2,932284905
MTO-17-6-27	0,282676	0,000017	0,00186878	0,000054	0,0950713	0,0031	1,711877559
MTO-17-6-28	0,282706	0,000025	0,0014495	0,0000099	0,0709449	0,00049	2,846961279
MTO-17-6-29	0,282754	0,000019	0,00334854	0,000091	0,170053	0,0046	4,212092864
MTO-17-6-35	0,282666	0,000019	0,00178787	0,000013	0,0899819	0,0007	1,372242789
MTO-17-6-36a	0,282714	0,000016	0,00207324	0,000036	0,105629	0,0015	3,020565311

Tabell 6: Lu-Hf data for prøve MTO-17-7

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(261)
MTO-17-7-01	0,282729	0,000014	0,00114339	0,00006	0,055183	0,0034	3,628281449
MTO-17-7-02	0,282735	0,000013	0,000990079	0,000029	0,046924	0,0016	3,867077956
MTO-17-7-03	0,282767	0,000015	0,000998187	0,000034	0,0486533	0,002	4,997935494
MTO-17-7-05	0,282712	0,000014	0,00126636	0,00002	0,0624241	0,0013	3,005515019
MTO-17-7-07a	0,282745	0,000015	0,00102998	0,000034	0,049991	0,002	4,214012457
MTO-17-7-08	0,282764	0,000015	0,00126376	0,000044	0,0618022	0,0026	4,845885124
MTO-17-7-09a	0,282765	0,000014	0,00132977	0,000044	0,0669346	0,0023	4,86985918
MTO-17-7-09b	0,282716	0,000014	0,00109863	0,00003	0,0545852	0,0018	3,176037495
MTO-17-7-10a	0,282747	0,000017	0,00114012	0,00011	0,0553477	0,0054	4,265742265
MTO-17-7-13	0,282707	0,000018	0,00100689	0,000012	0,0490621	0,00034	2,873445832

Tabell 7: Lu-Hf data for prøve MTO-17-8

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(259)
MTO-17-08-01	0,28273	0,000015	0,00110993	0,000024	0,0493868	0,00095	3,626296613
MTO-17-8-02	0,282751	0,000016	0,00109439	0,00001	0,0497238	0,00025	4,372003466
MTO-17-8-06	0,282791	0,000017	0,00123961	0,000054	0,05611	0,0026	5,762414168
MTO-17-8-08b	0,282791	0,000017	0,00150207	0,0000074	0,0671178	0,00048	5,717399767
MTO-17-8-12a	0,282725	0,000026	0,00123546	0,000022	0,0552717	0,00079	3,427852352
MTO-17-8-13	0,28277	0,000017	0,00133356	0,000035	0,060404	0,0018	5,00325925
MTO-17-8-14	0,282736	0,000013	0,00113036	0,000026	0,0511373	0,0015	3,835090271
MTO-17-8-20a	0,282726	0,000016	0,00129382	0,000034	0,0573909	0,002	3,453225986
MTO-17-8-24	0,282746	0,000015	0,000828184	0,000048	0,0365641	0,0024	4,240745677
MTO-17-8-25a	0,282741	0,000017	0,00125433	0,000017	0,0565131	0,00088	3,990742895
MTO-17-8-26	0,282756	0,000016	0,0010886	0,000066	0,0495302	0,0033	4,549911172
MTO-17-8-27a	0,282754	0,000018	0,000934196	0,000012	0,0430608	0,00089	4,505627069
MTO-17-8-27b	0,282753	0,000015	0,000877624	0,000039	0,0390061	0,002	4,479946776
MTO-17-8-28	0,282692	0,000022	0,00116644	0,000037	0,0522165	0,0017	2,272053152
MTO-17-8-30	0,282744	0,000012	0,00117836	0,000024	0,0530784	0,0015	4,109921276

Tabell 8: Lu-Hf data for prøve MTO-17-9

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(256)
MTO-17-9-05	0,282704	0,000014	0,000897211	0,000005	0,0412747	0,00033	2,67768313
MTO-17-9-06	0,282776	0,00002	0,00123276	0,000038	0,0563403	0,0021	5,168355975
MTO-17-9-07	0,282763	0,000017	0,00076016	0,0000049	0,0336279	0,00023	4,788494699
MTO-17-9-08	0,28274	0,000021	0,00132524	0,0000048	0,0617995	0,00064	3,878901968
MTO-17-9-09	0,282796	0,000014	0,00106055	0,0000084	0,0478922	0,00034	5,905202439
MTO-17-9-10	0,282754	0,000018	0,00119901	0,000022	0,0553765	0,0014	4,395657858
MTO-17-9-16a	0,282751	0,000016	0,00108654	0,000032	0,0494073	0,0013	4,308575356
MTO-17-9-16b	0,282756	0,000016	0,00101509	0,000041	0,0467232	0,0022	4,497600833
MTO-17-9-18b	0,282777	0,000025	0,000677508	0,000043	0,0288019	0,0029	5,297863373
MTO-17-9-20a	0,282784	0,000018	0,000931627	0,000012	0,0418087	0,00081	5,502464735
MTO-17-9-21a	0,28278	0,000017	0,00115684	0,000016	0,0528996	0,00098	5,322756498
MTO-17-9-21b	0,282739	0,000019	0,000753118	0,0000046	0,0330158	0,00023	3,940503727
MTO-17-9-23	0,282758	0,000014	0,000968892	0,000013	0,0448475	0,0011	4,576197576
MTO-17-9-24a	0,282761	0,000023	0,00108147	0,000037	0,0491267	0,0021	4,663261771
MTO-17-9-24b	0,282764	0,00002	0,00105739	0,000014	0,0469301	0,00053	4,773491831

Tabell 9: Lu-Hf data for prøve ON33

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(266)
ON33-01b	0,282764	0,000014	0,000929366	0,0000019	0,0445777	0,000072	4,730107899
ON33-02a	0,282791	0,00002	0,00142192	0,000016	0,069535	0,00072	5,602919325
ON33-03a	0,282735	0,000018	0,00105506	0,0000096	0,0507138	0,00068	3,682959716
ON33-03b	0,282801	0,000015	0,000833812	0,0000071	0,0403439	0,00019	6,055266562
ON33-05a	0,28275	0,000014	0,000648584	0,000012	0,030929	0,00059	4,281791397
ON33-06a	0,28272	0,000018	0,00134597	0,000032	0,0646948	0,002	3,1034882
ON33-09a	0,282739	0,000016	0,000816125	0,0000037	0,0386158	0,00019	3,864517079
ON33-12	0,282734	0,000014	0,0012572	0,00003	0,0597193	0,0012	3,613713805
ON33-13	0,282742	0,000018	0,000784061	0,000016	0,0380579	0,0012	3,976035971
ON33-15	0,282751	0,000013	0,00093868	0,0000048	0,0450371	0,00028	4,268575599
ON33-16a	0,282751	0,000013	0,00093868	0,0000048	0,0450371	0,00028	4,268575599
ON33-18c	0,282695	0,000016	0,000806418	0,0000078	0,0383822	0,00048	2,30931502
ON33-22b	0,282735	0,000017	0,00103076	0,000013	0,0479095	0,00043	3,687030567
ON33-16a	0,282753	0,000011	0,000894297	0,0000066	0,042679	0,00037	4,346775769

Tabell 10: Lu-Hf data for prøve GSW1

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(268)
GSW1-05	0,282844	0,000016	0,00107715	0,00001	0,0490621	0,00014	7,860045613
GSW1-07	0,282707	0,000026	0,0026915	0,00016	0,12172	0,0076	2,725958964
GSW1-13	0,28268	0,000015	0,0020195	0,000023	0,084289	0,0022	1,889872426
GSW1-14	0,282788	0,000027	0,00188439	0,000061	0,0819888	0,003	5,735286294
GSW1-15	0,282729	0,000024	0,00127854	0,000063	0,0597047	0,0034	3,755182347
GSW1-16	0,282702	0,000021	0,000965717	0,0000025	0,0410869	0,00045	2,855346257
GSW1-17	0,28272	0,000029	0,00245596	0,0001	0,1137	0,004	3,227751815
GSW1-18	0,282807	0,000025	0,00234993	0,00013	0,108011	0,0069	6,324947825
GSW1-19	0,282733	0,000024	0,00175544	0,000032	0,0788171	0,00079	3,812072966
GSW1-20	0,282719	0,00003	0,000728741	0,0000031	0,0326546	0,0003	3,498928555
GSW1-21	0,282801	0,00003	0,00141697	0,000015	0,064654	0,001	6,278235028
GSW1-22	0,282708	0,000032	0,00265097	0,000089	0,122529	0,0038	2,768536189
GSW1-23	0,282691	0,000029	0,000553084	0,000011	0,024599	0,00042	2,539363523
GSW1-24	0,282776	0,000028	0,00154115	0,0000048	0,0700014	0,00064	5,371603502
GSW1-25	0,282752	0,000017	0,00137297	0,000014	0,062783	0,00062	4,552245968
GSW1-26	0,282665	0,000024	0,00171161	0,0000077	0,0744905	0,00084	1,413764509
GSW1-27	0,282683	0,000028	0,00118405	0,000039	0,0527528	0,0022	2,144305579
GSW1-28	0,282749	0,000027	0,00155617	0,0000041	0,0693675	0,00029	4,413579264
GSW1-29	0,282763	0,000027	0,00115453	0,000013	0,051245	0,00064	4,98023649

Tabell 11: Lu-Hf data for prøve ON266

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(260)
ON266-01	0,282736	0,000024	0,00161387	0,000042	0,0754682	0,0017	3,45484051
ON266-02	0,282228	0,000045	0,00166713	0,000034	0,0800242	0,0017	-14,52776775
ON266-07	0,282771	0,000017	0,0039418	0,00041	0,160142	0,012	4,315585159
ON266-12	0,28274	0,000015	0,00150735	0,000037	0,0713703	0,0016	3,613646699
ON266-14	0,282741	0,000029	0,00437349	0,000097	0,229135	0,0058	3,184104794

Tabell 12: Lu-Hf data for prøve ON39

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	e Hf(260)
ON39-07	0,282754	0,000012	0,00290111	0,00005	0,145295	0,0026	3,903287902
ON39-08	0,282715	0,000014	0,00330962	0,00009	0,138981	0,0019	2,456856849

Tabell 13: Lu-Hf data for prøve L8

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(260)
L8-14	0,282728	0,000018	0,0034992	0,000046	0,161367	0,002	4,706217213
L8-15a	0,282715	0,000016	0,00264265	0,000011	0,121795	0,001	4,437480299
L8-15b	0,282742	0,000019	0,00350797	0,000036	0,160895	0,0024	5,19970564
L8-16	0,282712	0,000016	0,00373714	0,000045	0,170341	0,0026	4,086844789
L8-18a	0,282783	0,000018	0,00411199	0,00011	0,205152	0,0059	6,515742969
L8-19b	0,282783	0,000018	0,00411199	0,00011	0,205152	0,0059	6,515742969
L8-20a	0,282767	0,000018	0,00398138	0,00016	0,169407	0,0026	5,978690864
L8-20c	0,282715	0,000013	0,00320262	0,000022	0,148232	0,00041	4,312403895
L8-19b	0,282782	0,000018	0,0036944	0,000072	0,161207	0,0036	6,5736279

Tabell 14: Lu-Hf data for prøve GB14

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(260)
GB14-07a	0,282742	0,000037	0,0049348	0,00021	0,261114	0,014	3,432962028
GB14-08	0,282739	0,000013	0,00343464	0,0000077	0,176462	0,00038	3,586097362
GB14-10a	0,282722	0,000023	0,00105208	0,000076	0,0507993	0,004	3,396381648
GB14-10b	0,282678	0,000021	0,00539075	0,000089	0,284198	0,0041	1,08963874
GB14-12a	0,282716	0,000023	0,0048921	0,00005	0,258105	0,0041	2,520381846
GB14-12b	0,282697	0,000024	0,00373473	0,000054	0,191951	0,0044	2,048140599
GB14-15	0,282715	0,000026	0,00474937	0,00035	0,253539	0,019	2,509667919

Tabell 15: Lu-Hf data for prøve ON281

Prøve	176Hf/177Hf	1SE	176Lu/177Hf	1SE	176Yb/177Hf	1SE	<i>e</i>Hf(260)
ON281-05a	0,282751	0,000017	0,00256443	0,000037	0,123269	0,0015	4,140488421
ON281-29	0,282779	0,000021	0,00453837	0,000035	0,234426	0,0024	4,791352082
ON281-33	0,282744	0,000016	0,00145044	0,000012	0,090283	0,00088	4,084607186
ON154-09	0,282698	0,000018	0,00233289	0,000032	0,127801	0,0017	2,47115509
ON154-10	0,28267	0,000022	0,00264471	0,00029	0,143663	0,016	1,425068815