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Abstract 8 

We use numerical simulations to investigate the evolution of sheath folds around slip 9 

surfaces in simple shear dominated monoclinic shear zones. A variety of sheath fold shapes 10 

develops under general shear, including tubular folds with low aspect ratio eye patterns and 11 

tongue-like structures showing bivergent flanking structures in sections normal to the sheath 12 

elongation, which may potentially lead to confusing shear sense interpretations. Not all 13 

investigated monoclinic flow end-members lead to the development of sheath folds sensu 14 

stricto (folds with apical angle <90°). The aspect ratio of the eye patterns, Ryz, correlates with 15 

the ratio between the principal strain in the Y-direction and the smaller of the principal strains 16 

in the X-Z plane and thus it could be used in strain analysis. 17 

 18 

1. Introduction  19 

Sheath folds are a special kind of non-cylindrical folds, which are characterized by a 20 

sharp bend of the hinge line (e.g., Carreras, et al., 1977, Quinquis, et al., 1978). Ramsay and 21 

Huber (1987) defined sheath folds as folds with a minimum hinge angle (the apical angle) not 22 

exceeding 90° (Fig. 1 D). Sheath folds occur across a wide range of scales in various rock 23 
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types such as metamorphic rocks, soft sediments, glaciotectonic sediments, evaporites, or 24 

ignimbrites (Alsop, et al., 2007 and references therein). In the field, they are typically 25 

recognized based on distinctive elliptical eye patterns in cross-sections perpendicular to the 26 

sheath elongation. Sheath folds can develop in pure shear flow (e.g., Ghosh and Sengupta, 27 

1984), however, due to their common occurrence in high strain shear zones, their formation is 28 

often associated with simple shear dominated flow regimes (Cobbold and Quinquis, 1980). 29 

Passive amplification of the original layer perturbations (Cobbold and Quinquis, 1980, 30 

Holdsworth, 1990), and flow perturbation due to the presence of rigid inclusions (Marques 31 

and Cobbold, 1995), basement corrugations (Cobbold and Quinquis, 1980), or slip surfaces 32 

(Reber, et al., 2012) have been suggested among various mechanisms of sheath fold 33 

formation in simple shear.  34 

Several authors have indicated that simple shear alone cannot explain the great variety 35 

of sheath fold morphologies observed in nature (e.g., Alsop and Holdsworth, 2006, Jiang and 36 

Williams, 1999). Alsop and Holdsworth (2006) presented a detailed geometric analysis of 37 

sheath folds occurring in general shear zones. They analysed sheath folds developing in three 38 

shear regimes categorized based on the Flinn’s k-value of the strain ellipsoid, namely: 1) 39 

plane strain (k=1), 2) flattening strain (k<1), and 3) constrictional strain (k>1). The authors 40 

demonstrated that the ratio of the longest to shortest axis of the outermost elliptical contour 41 

(Ryz) (Fig. 1E) shows a decreasing trend with increasing k-value.  42 

The analysis of shear zones reveals that ideal simple shear conditions are rare and, 43 

general shear prevails instead (Simpson and Depaor, 1993). Two- and three-dimensional 44 

theoretical flow models have been developed to study structure development under general 45 

shear conditions (e.g., Passchier, 1998, Tikoff and Fossen, 1999). While most studies focus 46 

on monoclinic deformation, some authors suggest that triclinic shear may be more 47 

widespread than previously considered (Jiang and Williams, 1998). The development of 48 
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sheath folds due to amplifying layer perturbations in triclinic flows was examined 49 

theoretically by Jiang and Williams (1999), who showed that the fold evolution strongly 50 

depends on the flow type and the initial shape of the perturbation.  51 

We present a numerical study of sheath fold development in a layered, albeit 52 

homogeneous matrix around a slip surface subject to a monoclinic shear in the far field. We 53 

examine the evolution of sheath fold shapes for a range of coaxial to non-coaxial deformation 54 

rates and compare our results with the natural data presented by Alsop and Holdsworth 55 

(2006). The purpose of this study is to gain insight into sheath fold development in general 56 

shear and validate their potential use as the strain magnitude and regime indicator. 57 

2. Mechanical Model 58 

We study a three-dimensional mechanical model of sheath fold formation around a 59 

pre-existing, initially circular slip surface embedded in a homogeneous, isotropic, linear 60 

viscous matrix (Exner and Dabrowski, 2010, Reber, Dabrowski and Schmid, 2012). We 61 

obtain the velocity field using the external Eshelby solution (Eshelby, 1959), which is 62 

modified to the case of an incompressible viscous matrix and an elliptical and inviscid 63 

inclusion. The model is subject to an incompressible, monoclinic, non-spinning flow in the 64 

far field. We use a Cartesian reference frame XYZ (Fig. 1), which coincides with the 65 

principal directions of a superimposed coaxial flow component. The X-direction is the shear 66 

direction of the background simple shear and the vorticity vector is parallel to the Y-axis 67 

(Fig. 1A). For each model, we calculate the three orthogonal eigenvectors of the rate of 68 

deformation tensor, which are referred to as the instantaneous stretching axes (ISA1, ISA2, 69 

and ISA3). Due to a monoclinic character of the flow, ISA3 coincides with the Y-direction 70 

and the two others lay in the X-Z plane. We also find the three flow asymptotes (or fabric 71 

attractors) (AP), which are the eigenvectors of the velocity gradient tensor. The flow 72 

asymptotes AP give the directions of material lines irrotational with respect to ISA and also 73 
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uniquely describe the flow pattern in the model (Passchier, 1997). For the studied flows, there 74 

are two asymptotes coinciding with the X- and Y-directions and a third asymptote is lying in 75 

the X-Z plane at an angle θ to the X-direction. The asymptote inclination is a function of the 76 

kinematic vorticity number (Wk) (Bobyarchick, 1986), which is a measure of the relative 77 

contribution of the coaxial and non-coaxial flow components (Ghosh, 1987, Passchier, 1986).  78 

A circular slip surface with radius r0 is prescribed in the model centre perpendicular to 79 

ISA2, which corresponds to a mode I fracture. The slip surface behaves as a passive element, 80 

and, with strain, it synthetically rotates and stretches into an ellipse (Means, 1989).  81 

Following the approach of Tikoff and Fossen (1999), we distinguish 12 end-member 82 

models based on characteristics of the superposed coaxial component. In our naming 83 

convention, the shortening direction of the coaxial component is indicated after letter S and 84 

the extension direction after T, e.g., SX-TY. We recognize the same configuration between 85 

the crack and the flow asymptotes in the following model pairs 1) SX-TZ and SZ-TX, 2) 86 

SXY-TZ and SYZ-TX, 3) SY-TZ and SY-TX, 4) SZ-TXY and SX-TYZ, 5) SZ-TY and SX-87 

TY (Fig. 1C). Thus, there are only 7 unique end-member setups and we choose the ones, in 88 

which AP2 coincides with X-direction. In addition, we use the simple shear flow S0-R0 as a 89 

reference model (Fig. 1C). 90 

In our numerical simulations, a simple shear rate of 1   is used and the coaxial flow 91 

rate is set to 0.05,  0.075,  and 0.1  . The maximum stretch obtained after γ=30 due to 92 

coaxial deformation is ca. 4.5, 9.5, and 20.1, respectively. In the case of models with 93 

shortening or extension taking place simultaneously in two directions (e.g. SXY-TZ, SX-94 

TYZ), the rate is halved in these directions. The kinematic vorticity number is equal to 1 for 95 

S0-T0 and it is not less than 0.98 in the other models. Structure evolution is tracked using 96 

regularly spaced passive marker planes, which are initially parallel to the X-Y foliation plane. 97 

The deformation leads to the development of sheath folds, whose geometry is analysed for 98 



5 

 

shear strain 5,  10,  15,  25,  and 30  . The analysis of the aspect ratio (Ryz) is carried out in 99 

the sections normal to the X-direction at the locations, where the investigated interfaces form 100 

the outermost closed contour of the eye-structure. 101 

3. Results 102 

3.1. A detailed analysis of SY-TX, S0-T0, and SZ-TY models 103 

For detailed analysis, we select the SY-TX, S0-T0, and SZ-TY models that 104 

correspond to the constrictional, plane strain, and flattening strain regimes discussed by 105 

Alsop and Holdsworth (2006). Fig. 2A shows the fold shapes at γ=15, using 0.05    for 106 

SY-TX and SZ-TY. The central X-Z section showing flanking structures and Y-Z sections 107 

with eye patterns are presented in Fig. 2B and C, respectively. In the SY-TX model, a narrow 108 

tubular-shaped sheath fold develops, forming almost circular closed contours in the Y-Z 109 

sections. In the S0-T0 model, the sheath fold exhibits a tongue-like shape, with noticeably 110 

non-concentric, asymmetric ellipses developing in the Y-Z cross-section past the crack tip. 111 

The shape asymmetry is greater in the sections closer to the crack tip. In the SZ-TY model, 112 

the hinge line is gently curved, the fold is strongly flattened, and the eye-patterns are 113 

characterized by large aspect ratios. The interfaces around the eye structure form a double 114 

vergent structure (Alsop and Holdsworth, 2004), which is also referred to as an anvil shape 115 

(Mies, 1993) or an omega shape pattern (Reber, Dabrowski and Schmid, 2012). In the Y-Z 116 

sections intercepting the crack, the structure resembles bivergent flanking structures, which is 117 

also manifested in the contour depression developed above the crack.  118 

We analyse the impact of    on the sheath structure developing in a selected 119 

interface (z0/r0=0.82) for the SY-TX and SZ-TY models. In Fig. 3, we plot Ryz as a function 120 

of    for different γ. We use thick dashed lines to indicate the fold structure, in which the 121 

apical angle is smaller than 90°. Increasing    causes Ryz to decrease in SY-TX and to 122 
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increase in SZ-TY models. In both models, the slope is steeper for larger γ. In SY-TX, large 123 

   prevents sheath fold to develop, whereas, in SZ-TY, it significantly widens the apical 124 

angle and, thus, inhibits the development of sheath folds sensu stricto for most of the    125 

and γ value sets.  126 

3.2. Ryz scaling with strain 127 

In our results generated using three    for six γ in all the models, we observe Ryz 128 

values between 3∙10
-1

 and 6∙10
2
. For the plane strain models (k=1), Ryz is not below 4, it is 129 

not larger than 6 in the constrictional models (k>1), whereas, for flattening models (k<1), it is 130 

always above 3. In Fig. 4A, we use a log-log scale plot to show Ryz as a function of the 131 

Flinn’s k-value for different  and   . We consider data from all the sections with closed 132 

contours, irrespective of whether intercepted interfaces form sheath fold sensu stricto or not. 133 

We also plot the field data of Alsop and Holdsworth (2006) (their Fig. 8g). Both field and 134 

numerical data show a generally decreasing trend of Ryz with increasing k. For large k values, 135 

the trend is perturbed due to a switch of the direction between the intermediate and minor 136 

principal axis of the strain ellipsoid (Fossen and Tikoff, 1993). The diagram, which we 137 

selected to present the data, lumps various plane strain models (k=1), which show a scatter of 138 

Ryz. Field and numerical data show a satisfactory overlap, although, no natural data are 139 

available for very small and large k-values. 140 

A significantly better numerical data collapse is observed in Fig. 4B, which shows Ryz 141 

as a function of the ratio between the principal strain in the Y-direction and the smaller of the 142 

principal strains measured in the X-Z plane (
2 3

  ). A good correlation between Ryz and 143 

2 3
   occurs for 

2 3
3   , with a slope equal to 1 in the log-log plot. For 

2 3
3   , the 144 

slope varies between 1/2 and 1 depending on the model and the data collapse is slightly less 145 
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prominent. In both figures, we mark in grey a field of high (>30) and low (<1/30) values of 146 

Ryz, k, and 
2 3

  , for which obtaining natural data can be challenging.  147 

4. Discussion 148 

Our numerical simulations of sheath fold development around slip surfaces show that 149 

they can develop for a wide spectrum of monoclinic flows. The coaxial flow component 150 

significantly influences the fold shape, leading to the development of structures exhibiting 151 

shapes between narrow finger-like and wide tongue-like (Fig. 2). The unusual eye patterns 152 

observed for SZ-TY model, which appeared as bivergent flanking structures, may lead to 153 

incorrect shear sense determination, if only a part of the structure is visible. We note that the 154 

coaxial component of a large magnitude can suppress sheath fold development (Fig. 3).  155 

The complex geometry of the developing sheath folds hampers the direct adaptation 156 

of the approach presented by Adamuszek and Dabrowski (in press), in which the early fold 157 

shape is fitted with a horizontally oriented cone, and the Ryz evolution with strain can be 158 

approximated using an analytical expression. The observed correlation between Ryz and 159 

2 3
   is not unexpected, however, an explanation to why the slope varies between 1/2 and 1 160 

should be offered. In our view, it may result from a different dependence on the simple and 161 

pure shear deformation components. For simple shear, Adamuszek and Dabrowski (in press) 162 

showed that Ryz scales as   for large strain, which approximately gives a slope of 1/2 if Ryz 163 

is plot as a function of 
2 3

  , whereas for pure shear, the correlation between Ryz and 
2 3

   164 

is expected to be linear.  165 

We have compared the field data presented by Alsop and Holdsworth (2006) to our 166 

numerical results (Fig. 4A). The results generally support the findings of Alsop and 167 

Holdsworth (2006) on the correlation between Ryz and strain. However, Ryz values obtained 168 

in the numerical simulations cover a wider range than the available measurements of natural 169 
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sheath fold. High Ryz values can be difficult to measure in nature (Skjernaa, 1989) and, for 170 

the same reason, very small or large k-values might be systematically over- or 171 

underestimated. The observed deviations between the field and numerical data can also be 172 

related to simplified geometry and rheological behaviour used in our model, whereas rocks in 173 

shear zones are often heterogeneous, anisotropic, and nonlinear (Cook, et al., 2014, 174 

Dabrowski and Schmid, 2011, Schmalholz and Schmid, 2012). In our analysis, we have 175 

focused on sheath folds developing around slip surface, but we acknowledge that various 176 

other mechanisms may lead to the sheath fold formation. The good fit between the model 177 

results and field observations (Fig. 4A and B) supports the current model, but it also suggests 178 

that similar correlations may apply to sheath folds in general, irrespectively of their formation 179 

mechanism. 180 

Reber et al. (2013) showed that closed contours with Ryz<3 are difficult to generate in 181 

simple shear deformation, even if the initial orientation and aspect ratio of the slip surface is 182 

varied. Alsop and Holdsworth (2006) suggested that Ryz<3 is generally obtained in the 183 

constrictional deformation. The shortening component acting in the Y-direction clearly 184 

promotes small Ryz values (Fig. 4). However, Ryz<3 is achieved only in SY-TX and SY-TXZ, 185 

whereas in SYZ-TX it is above 3. Moreover, the overlap of the data from all the deformation 186 

groups for Ryz>3 indicates that Ryz cannot be used as a reliable discriminator of the bulk 187 

strain type in this range. On the other hand, a reasonable correlation of the Ryz data with 188 

2 3
   shows that the aspect ratios of the closed contours in sheath folds could be used in the 189 

strain analysis of shear zones to estimate the relative deformation in the out-of-plane Y-190 

direction. 191 
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5. Conclusions 192 

A variety of sheath fold shapes can be generated due to deformation around slip 193 

surfaces under general shear. The contribution of the coaxial component may lead to eye 194 

patterns with low aspect ratio. Complex structures resembling bivergent flanking structures 195 

may develop in Y-Z sections, potentially resulting in confusing shear sense determination. 196 

Not all flow conditions lead to the development of sheath folds sensu stricto. The aspect ratio 197 

(Ryz) of the closed contours observed in the sections normal to the shearing direction 198 

correlates with the ratio between the principal strain in the Y-direction (out-of-simple shear 199 

plane) and the smaller of the principal strains measured in the X-Z plane. The documented 200 

correlation between the two parameters over a few orders of magnitude, allows for strain 201 

estimation based on Ryz.  202 
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Figure captions 276 

Fig. 1. A) Schematic illustration of SZ-TX model showing the far-field flow 277 

conditions. ISA1 and ISA2, are the two instantaneous shortening axes and the two material 278 

line attractors are denoted AP1 and AP2. The ISA3 and AP3 axes and the vorticity vector are 279 

orthogonal to the X-Z plane (monoclinic flow). B) Numerical setup: a circular slip surface 280 

located in the model centre at an angle θ to the steady-state AP2-AP3 foliation plane. The 281 

crack is initially perpendicular to ISA2. C) Schematic illustration of simple shear (reference 282 

model S0-T0) and 7 end-member monoclinic flows used in the study (see text for details). D) 283 

Three-dimensional sketch illustrating the apical angle of a sheath. E) Diagram showing the 284 

aspect ratio of the outermost closed contour of the eye pattern. 285 

 286 

Fig. 2. A) 3D visualization of the sheath folds for SY-TX, S0-T0, and SZ-TY models 287 

after shear strain γ=15. We use 0.05    in SY-TX and SZ-RY. The same uppermost marker 288 

plane is used in all the models. a-a’, b-b’, and c-c’ show the locations of the Y-Z sections 289 

used in C. B) X-Z cross-sections showing flanking structures. C) Y-Z cross-sections showing 290 

eye patterns. Red lines show the intercepting slip surface. 291 

 292 

Fig. 3. Aspect ratio of the outermost closed contour (Ryz) as a function of the ratio 293 

between the rate of coaxial deformation to the shearing rate (   ) for A) SY-TX and B) SZ-294 

TY models. The markers at the end of the line indicate the largest    for a given γ, for 295 

which the closed contours are observed. Dashed lines are used for sheath structures, in which 296 

the apical angle is smaller than 90°. 297 

 298 

Fig. 4. A) Simulation results and field measurements (after Alsop and Holdsworth, 299 

2006) showing relation between the aspect ratio of the outermost closed contour (Ryz) and the 300 
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k-value. B) Numerical data showing Ryz as a function of the ratio between the principal strain 301 

along the Y-direction and the smaller of the principal strains measured in the X-Z plane (see 302 

text for details).  303 
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