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Abstract 

ALICE is a general-purpose detector that is designed to study the physics of quark-gluon plasma.  

The Time Projection Chamber (TPC) is one of the major detectors of ALICE. The TPC electronics 

consists of 4356 Front-end cards (FECs), which are controlled by 216 Readout Control Units (RCU). 

Each RCU connects to between 18 and 25 FECs using a multi-drop bus. In LHC Run1, the Readout 

Control Unit 1 (RCU1) performed even better than specification. However, in Run2 the energy of 

colliding beams is increased from 8 TeV to 14 TeV (maximum value) and higher luminosity, which 

leads to larger event size and higher radiation load on the electronics. As a solution, the Readout 

Control Unit 2 (RCU2) is designed to provide faster readout speed and improved radiation tolerance 

with respect to the RCU1.  

 

The RCU2 is conceptually similar to the RCU1 and it reuses the existing infrastructure and readout 

architecture of the TPC electronics. However, the multi-drop bus is split into four branches from the 

two branches and the bandwidth of the Detector Data Link (DDL) is increased from 1.60 Gbps to 

3.125 Gbps. Correspondingly, the firmware is designed to utilize the improved parallelism. These 

actions ensure that the readout speed of the RCU2 can be improved by a factor of ~2 with respect 

to the RCU1. The flash-based Microsemi Smartfusion2 FPGA SOC is used as the main FPGA 

instead of the SRAM based Xilinx Virtex 2 Pro FPGA that was used on the RCU1. Because its 

configuration cells are immune to Single Event Effects, the radiation tolerance of the RCU2 was 

expected to be improved.  

 

The primary objective of this thesis has been to study the radiation tolerance of the RCU2. This is 

done through several irradiation tests, which are divided into two steps. To start with, the radiation 

sensitivity of the Smartfusion2 FPGA and all the hardware interface are characterized. Afterwards, 

a system-level irradiation test is performed. Actions have been taken against all the radiation related 

problems that were revealed during the irradiation tests. Running experience shows that radiation 

tolerance of the readout system based on RCU2 is about 10 times better as compared to the RCU1 

for p-Pb collisions at similar energy level. 

 

The second objective of this thesis was to develop the firmware modules that realizes the readout 

algorithms. Development of the firmware has gone through three versions, the first prototype, the 
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second prototype and the commissioning version, and important contributions were made to the first 

two versions.  

  

The integration and testing of the RCU2 is also an important task covered in this thesis. Functional 

tests were performed for the mass production, the irradiation tests at and the final installation at the 

TPC. Readout performance of the RCU2 has been characterized and the solutions aiming to further 

increase the readout speed have been proposed and verified.  
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1 Introduction 

The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is hosted by 

CERN1, the European Organization for Nuclear Research, which is located near Geneva on the 

border between Switzerland and France. The LHC lies about 100 meters beneath the ground in a 

tunnel with a circumference of 27 kilometers. Two particle beams accelerated close to the speed of 

light travel in opposite directions and collide at dedicated locations, where four major experiments, 

ALICE [1], ATLAS [2], CMS [3] and LHCb [4], are positioned, see Figure 1-1.  

 

Figure 1-1 The LHC with four experiments [5]  

 

Figure 1-2 Roadmap of LHC to its full potential (from [6] with the add-on of the Run1 scenario) 

As shown in Figure 1-2, the roadmap of the LHC to achieve its full design energy has been divided 

                                                        

1 CERN is the acronym of its French name Conseil Européen pour la Recherche Nucléaire 
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into several running periods and long shut-down periods. In the running periods, the LHC provides 

collisions for the experiments to take physics data. In the long shut-down periods, the LHC and the 

experiments are under maintenance and upgrade as a preparation for the next running period. During 

the first successful running period from November 2009 to February 2013 (Run1), the LHC ramped 

up its center-of-mass energy from the start-up 900 GeV to 7 ~ 8 TeV. In the second running period 

(Run2) which started in 2015 and will last until 2018, the center-of-mass energy of the collisions 

will reach up to 13 TeV for p-p collisions.  

This thesis is part of the upgrade activities for the readout electronics of the ALICE Time Projection 

Chamber (TPC) [7] during the long shut-down 1 (LS1). Hence, this chapter will introduce the 

ALICE experiment and the TPC readout electronics used during Run1. As already mentioned, Run2 

will introduce a higher energy in the collisions, and the practical implications of this will be 

discussed at the end of this chapter as part of the motivation for the upgrade. 

 

Figure 1-3 The ALICE detector [1]  

1.1 The ALICE Experiment 

ALICE is a general-purpose detector designed to study the physics of quark-gluon plasma. In normal 

condition, quarks are bound into hadrons by the force carrier of the strong force (gluons). A Pb-Pb 

collision in the LHC will create an extremely high temperature and energy density so that the 
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hadrons undergo a phase transition into quark-gluon plasma, where the quarks and gluons are not 

in a bound state. According to the theory of the Big Bang, the universe was in a state of quark-gluon 

plasma up to a few milliseconds after the Big Bang. As the temperature and the density dropped, 

the quarks and gluons were bound into different kinds of hadrons, which constitute the basic 

building block of matters. Since the life-time of quark-gluon plasma is rather short, it cannot be 

observed directly. Hence, the ALICE detector is comprised of several sub-detectors that are designed 

to observe the signatures that indicate the existence of quark-gluon plasma and to study its properties. 

Details on the physics and experimental observables of the ALICE experiment can be found in [1].  

1.1.1 ALICE sub-detectors 

A collision at the LHC is called an event, and it produces a large number of secondary particles. The 

ALICE experiment is optimized to study Pb-Pb events, but pp and Pb-p events are recorded as well 

to provide reference data [1]. For each event, the momentum of the charged particles and the energy 

of the neutral particles are measured and in addition the types of particles (hadrons, electrons, 

photons and muons) are identified. Figure 1-3 gives the schematic layout of the ALICE detector. 

The size is 26x16x16m3 with a weight of 10,000 tons. To accomplish the above-mentioned tasks, 

a set of sub-detectors are placed in different layers, in some distance away from the central collision 

point. These sub-detectors can be sorted into three categories: the central detectors, the forward sub-

detectors and the muon spectrometer. Details on these sub-detectors can be found in [1] and only a 

short summary is presented here.  

The central detectors can be sorted into the central tracking detectors, the particle identification 

detectors and the calorimeters. The central tracking detectors include the Inner Tracking System and 

the cylindrical TPC. The Inner Tracking System is designed to localize the primary vertex and 

reconstruct the secondary vertices. It comprises six layers of silicon detectors. The innermost two 

layers are the Silicon Pixel Detector, the middle two layers are the Silicon Drift Detectors, and the 

outermost two layers are the Silicon Strip Detector. The TPC is the main tracking detector in the 

ALICE experiment. Together with other central detectors, it is optimized to provide the charged 

particle momentum measurement, the particle identification and the vertex determination. The 

Transition Radiation Detector, the Time of Flight detector and the High-Momentum Particle 

Identification Detector are particle identification detectors. The Transition Radiation Detector is 

designed to identify electrons with the momenta above 1 GeV/c. The Time of Flight detector and 
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the High-Momentum Particle Identification Detector identify the charged particles (protons, kaons 

and muons) having intermediate and large momentum, respectively. Two calorimeter detectors, the 

Photon Spectrometer and the electromagnetic calorimeter (EMCal, since 2015 DCal) are designed 

to detect photons and measure particle jets, respectively.  

The forward sub-detectors include the Zero Degree Calorimeter, the Photon Multiplicity Detector, 

the Forward Multiplicity Detector, the Veto and the Time Zero. These forward sub-detectors 

measure the multiplicity and the spatial distortion of the non-interacting nucleons, which can be 

used to determine the geometry of the collision. In addition, the Veto and the Time Zero are also 

responsible for providing minimum biased triggers.   

The muon spectrometer detects muons after all the other particles have been stopped by the 

absorbers in the forward region and provides fast trigger decisions.  

 

Figure 1-4 Three-dimensional view of the TPC [8]  

1.1.2 The Time Projection Chamber (TPC) 

The TPC is the main tracking detector in the ALICE experiment. The layout of the TPC detector is 

shown in Figure 1-4. It is a cylindrical volume of 88 m3 that is divided in to two field cages by a 

high voltage electrode and filled with gas that can be ionized. The TPC has an inner radius of    

0.85 m and an outer radius of 2.8 m. It spreads over 5.1 m along the path of the colliding beams. 

Charged particles created in the collisions ionize the gas. In the presence of the electric field, the 
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electrons will drift toward the end-plates, where multi-wire proportional chambers are used to 

multiply the electrons from primary ionization.    

1.2 The TPC readout electronics in Run1 

In the TPC there are in total 557 568 detector pads divided equally between the two end-plates, each 

of which is mapped to an individual channel in the readout electronics. The TPC readout electronics 

consists of 4356 Front-End Cards (FECs) and 216 Readout Control Units (RCUs), which are 

distributed into 36 trapezoidal sectors (18 in each end-plate). As shown in Figure 1-5, each sector 

covers six readout partitions along the radial direction in the TPC barrel. Each readout partition 

consists of from 18 to 25 FECs, depending on the readout partitions, which are connected to one 

RCU with a parallel multi-drop bus – the ALICE TPC Readout (ALTRO) [9] bus.  

Figure 1-6 shows the signal path in the TPC readout electronics. The FEC processes the electric 

signals generated by the charges deposited on the detector pad and buffers the data. The RCU reads 

the data from the FECs, processes it and then transmits it to the Data Acquisition (DAQ) system 

[10]. 

 

Figure 1-5 Layout of the TPC readout electronics  
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Figure 1-6 Signal path in the TPC readout electronics 

1.2.1 The Front-end Card (FEC) 

As shown in Figure 1-6, each FEC contains 128 signal channels, which are realized by 8 

Preamplifier Shaper (PASA) [11] chips and 8 ALTRO chips. The PASA amplifies and shapes the 

electric signals from the detector pads. The ALTRO chip does analog to digital conversion, digital 

signal processing and buffering of the acquired data.  

In addition, the FEC holds one SRAM based FPGA, the Board Controller. The Board Controller 

does low level control system tasks like monitoring of current, voltages and temperatures on the 

FEC. In addition, it controls the direction of the ALTRO bus in the communication between the 

actual FEC and the RCU. 

1.2.2 The Readout Control Unit (RCU) 

A front view and schematic layout of the RCU used in LHC Run1 can be found in Figure 1-7 and 

Figure 1-8, respectively. From here on this RCU is named RCU1. It consists of a motherboard with 

two daughter boards: The Detector Control System (DCS) [12] board and the Source Interface Unit 

(SIU) card.  

The DCS board hosts a TTCrx [13] chip that processes the trigger information coming from the 

Trigger, Time and Control (TTC) [7] via an optical link and provides the 40 MHz clock. In addition, 

a minimalistic Linux platform is running on the ARM processor embedded in a SRAM-based Altera 

FPGA [14]. Dedicated software operating on this Linux platform propagates the monitoring values 

to the DCS through an Ethernet link, so that any potential hazardous situation can be detected. 

The SIU card ships the packaged data, coming from the motherboard, to the DAQ through an optical 
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link of 1.280 Gbps. The protocol of the Detector Data Link (DDL) [7] is implemented on a flash-

based FPGA on the SIU card. 

 

Figure 1-7 Front view of the RCU1  

 

Figure 1-8 Schematic layout of the RCU1 

The motherboard holds the RCU1 main FPGA (SRAM-based Virtex Pro2 [15]) and a supporting 

FPGA (flash-based Actel APA075 [16]). The main FPGA is in charge of the data readout algorithms. 

It moves the sampled data from the FECs to the RCU1, processes and packages the data, and then 

pushes the data to the SIU card. At the time when the choice of the main FPGA was made, no flash-

based FPGAs with enough resources were available to implement the readout algorithm, thus the 
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SRAM-based FPGA was selected [17]. Because the configuration memory of the main FPGA is 

proven to suffer Single Event Upsets (SEUs), the flash-based supporting FPGA has been added to 

detect the SEUs and reconfigure the main FPGA. 

1.3 TPC consolidation effort during LS1 

1.3.1 Motivation  

Due to the enlarged event size and the increased event rate, the RCU1 was expected to limit the 

readout rate for Run2 [18]. In addition, the radiation related issues are expected to be more critical 

in Run2 because of the higher radiation load [19]. The limitations on the RCU1 is discussed below. 

Data rate limitations  

All the FECs are connected to the RCU1 via the ALTRO bus, which is divided into two separate 

branches. The bandwidth of each branch is 1.60 Gbps and it serves from 9 to 13 FECs, depending 

on the readout partitions. The readout time of an event is defined as that of the slowest readout 

partition, which is the readout partition 1 with 25 FECs. In each branch, all the channels in all the 

FECs need to be read sequentially. Therefore, for high occupancy events like central Pb-Pb 

collisions, the readout through the ALTRO bus is the bottleneck of the readout system.  

According to the measurement for Pb-Pb events in 2010, the readout time of the TPC reached up to 

4 ms (250 Hz), depending on the number of tracks [20]. In Run2 a readout rate of 400 Hz is expected 

and the event size will increase by 25% [20]. To accomplish this performance, the readout speed of 

the RCU1 needs to be improved by a factor of at least 2. 

Radiation Tolerance 

One major challenge for the TPC electronics is the radiation created by the colliding beams in the 

LHC. There are two kinds of radiation effects that is of concern, the Single Event Effects (SEEs) 

and the Total Ionizing Dose (TID) effect. The SEE is a transient effect, which is induced by a single 

ionizing particle. The TID effect is cumulative effect which refers to the total dose received by the 

Front-End Electronics (FEE) during its life-time. Two quantities that are commonly used to describe 

the radiation environment are the flux and the dose. Details regarding the radiation environment of 

TPC and the radiation effects can be found in section 2.1 and section 2.2. 



 

 

9 

 

 

In general, the RCU1 was performing very well in Run1. However, it is not a radiation-tolerant 

system and the main reason is the SRAM-based main FPGA. The radiation effects, of which the 

dominant ones are the SEUs in the configuration cell of the main FPGA, leading to the readout 

getting stuck (busy) or corrupted event headers [21]. Consequently, these errors caused stops of the 

data-taking in Run1 [18]. The SEU sensitivity of the RCU1 FPGA design has been characterized in 

[19], and it was found that about 1% of the SEUs will lead to the abortion of a physics run. In 

addition, there is no radiation protection on the DCS board, whose main FPGA is also SRAM-based. 

In Run1, the DCS board has experienced frequent communication errors (DCS-RCU) and 

communication losses (Ethernet to the DCS) [18]. Although these scenarios are not critical for data-

taking, the loss of monitoring should be avoided. 

In Run1, the longest data-taking session in heavy-ion collisions is 8 hours and 4 mins (run 138275 

in the logbook [22]). In Run2, the duration of each data-taking session should be similar to that in 

Run1, so the RCU2 should be capable of reading data continuously for at least ~8 hours.  

As mentioned above, in Run2 the expected radiation load in terms of the flux of fast hadrons on the 

TPC electronics located in the innermost locations (worst-case) will increase to 3.0 kHz/cm2 from 

the 0.8 kHz/cm2 in Run1 [18]. With such a significant increase, radiation effects are therefore 

foreseen to occur more frequent on the RCU1 in Run 2(discussed in section 2.2). Considering the 

study of the SEU rate for heavy ion runs in 2011 and the luminosity for Run2, the data-taking is 

expected to stop around every single hour, if no actions are taken on the RCU1 [18].  

Conclusion 

Based on the information presented above, it was concluded that the readout rate needed to be 

increased by a factor of at least 2. In addition, the radiation tolerance should also be improved to 

withstand the higher radiation load in Run2.  

1.3.2 Solutions  

To consolidate the readout system and improve its performance, two upgrade options have been 

discussed. The first one is the Front-End Card Interface solution [23] and the second one is the 

Readout Control Unit 2.  
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The Front-End Card Interface solution  

In this solution, each FEC is connected to a Front-End Card Interface that translates the parallel 

ALTRO bus interface into a serial one, which could deal with the peak data rate of 1.60 Gbps [23]. 

Therefore, the readout speed of the upgraded system could be improved with a factor of 10 with 

respect to that of the RCU1 [23]. In addition, this solution is also relevant for the upgrades planned 

for Long Shutdown 2 (LS2) given the fact that it would use components and an infrastructure that 

would be reminiscent of the planned LS2 upgrade [18]. 

However, this solution was eventually dropped because a lot of new PCB boards and fibers needed 

to be produced and installed in the TPC, which was not suitable for the aggressive time scale of LS1. 

 

Figure 1-9 Sketch of the RCU2 design [18]  

The Readout Control Unit 2 (RCU2) 

The RCU2 was then proposed to give the needed performance. A sketch of the RCU2 is shown in 

Figure 1-9. The RCU2 is conceptually similar to the RCU1 and it reuses the existing infrastructure 

and architecture of the TPC electronics, such as the cables for TTC, DCS, DAQ and power. However, 

the ALTRO bus has been split from the current two branches into four branches. Correspondingly, 

the DDL protocol has been upgraded to the DDL2 protocol [24], which uses the same fiber but has 

a higher theoretical bandwidth of 4.25 Gbps. To utilize the improved parallelism, a new readout 

algorithm has also been implemented (discussed in section 3.3.1). The RCU2 could not improve the 

readout speed by a factor of 10 as the Front-End Card Interface solution. However, assuming there 

is no other bottleneck in the system, it could ensure at least a doubling of the readout speed, which 
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still fulfills the requirements for Run2.  

Before designing the RCU2, simulations were performed with a SystemC [25] model2 of the new 

readout architecture. Actual data recorded in the heavy ion collisions in 2010 was used and 

bandwidth of the DDL2 link was set to be 4.25 Gbps. The simulation showed that the readout time 

of the largest event is ~1.6 ms (in subplot (a) in Figure 1-10), which is 2.5 times faster than the 

current speed of 4.0 ms (in subplot (b) of Figure 1-10). Taking the 25% increase on the event size 

into consideration, the readout rate of the RCU2 will reach ~500 Hz (2 ms), which doubles the 

readout speed of the RCU1. 

 

Figure 1-10 Comparison of the readout time between RCU2 simulations [26] and the 

measurement of RCU1 in LHC Run1 [20]  

The flash-based Microsemi Smartfusion2 (SF2) FPGA SoC [27][28], whose configuration memory 

is immune to SEU, was chosen as the main FPGA for the RCU2. Consequently, most of the stability 

issues seen in Run1, which can be traced back to the SEUs in the configuration cells of the RCU1 

main FPGA [21], can be avoided in Run2. The PCB components of the RCU1 that has been proved 

functional in Run1 were considered to be reused. The components where no radiation tolerance 

related to the LHC environment was documented, including the SF2 FPGA, have been characterized 

and tested with several irradiation campaigns (discussed in Chapter 4).  

                                                        

2 Developed and simulated by Christian Lippmann (christian.lipmann@cern.ch) 
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1.4 Primary objective and main contribution 

The primary target of this Ph.D. project has been to study the radiation tolerance of the RCU2. This 

has involved irradiation testing of individual elements, work on improving the design, programming, 

connecting the elements and to run final tests. 

1.4.1 Radiation Tolerance 

Several irradiation campaigns have been performed to evaluate the radiation tolerance of the RCU2. 

In this thesis, these tests have been divided in two steps. In the first step, radiation sensitivity of 

different aspects in the SF2 FPGA has been characterized (section 4.2) and all the hardware 

interfaces (section 4.3) on the RCU2 have been tested. The tests revealed potential issues and 

appropriate actions were implemented afterwards.  

As a second step, a full system-level test of the RCU2 including the hardware, the firmware and the 

software was done under radiation in a situation close to normal operation. Stability issues regarding 

data readout and status control were observed. Actions to minimize the impact of these issues were 

later taken (section 4.4).  

Based on the results of these irradiation tests, the cross-sections for different failure types have been 

extracted. While taking all the 216 RCU2 plus 4356 FECs into consideration, Mean Time Between 

Failure (MTBF) numbers for those failure types have been estimated for Run2. 

1.4.2 Design, Integration and Test of the RCU2 

Firmware design. Originally, firmware modules that realize the readout algorithms (Readout 

Module) were planned to be inherited from the RCU1 FPGA design. Nevertheless, several 

engineering drawbacks were encountered while porting the firmware from the Xilinx FPGA to the 

SF2 FPGA (discussed in section 3.3.1). Therefore, the author of this thesis developed the first 

version of the Readout Module (section 3.3.2) for the RCU2. It is a new design but it inherits most 

of the concepts used in the RCU1 FPGA design. This module has been used in the system-level 

irradiation tests (section 4.4). 
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System integration and test. The integration and testing of the RCU2 is also an important task 

covered by this thesis. This task has been performed in two steps. Firstly, the functionality of the 

hardware interfaces has been verified (section 5.1). Secondly, all the firmware modules together 

with the Linux system have be integrated on the SF2 FPGA SoC. Then, the stability of the system 

has been tested and a benchmark of the readout speed has been performed (section 5.3). Two 

versions of the RCU2 system have been used in the tests: the second prototype (section 3.3.2) which 

has been used in the system-level irradiation test and the commissioning version3 (section 3.3.3) 

that has been commissioned at the TPC. In addition, several designs for dedicated tests have also 

been developed by the author of this thesis (Chapter 5).  

1.5 Outline of the thesis 

This thesis is structured into six chapters including this introduction chapter.  

Chapter 2 describes the radiation environment of the TPC detector in Run2, the radiation effects on 

the RCU2 and the basics of the irradiation tests (selection of facility, dose calculation and SEU rate 

prediction).  

Chapter 3 describes the RCU2 design. To start with, the hardware design is introduced. This includes 

the choice of the RCU2 main FPGA, the hardware interfaces, the Radiation Monitor and the ALTRO 

bus backplane. Furthermore, the firmware development on the RCU2 main FPGA has been 

discussed. This thesis focuses on the development of the modules that realizes the readout 

algorithms. In addition, functionality and structure of the other modules have been briefly discussed. 

And finally, the software design is presented.  

Chapter 4 discusses the irradiation tests of the RCU2, which is the main contribution of this thesis. 

First of all, the test facilities are introduced and compared. Furthermore, characterization of the SF2 

FPGA and test of the hardware interfaces are discussed. Finally, system-level irradiation tests of the 

RCU2, including the hardware, firmware and software, are presented. According to the test results, 

the expected error rate of various failures in the radiation environment of LHC Run2 is estimated 

and corresponded mitigation actions have been proposed. In addition, an evaluation of the Radiation 

                                                        

3 Author of this thesis was not involved in the development of this version of firmware but performed the integration 

and test of the whole system (section 5.3). 
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Monitor is also presented. The chapter ends with a discussion on the radiation mitigation techniques 

in the FPGA fabric SRAMs and registers. 

Chapter 5 discusses integration, validation and commission of the RCU2. Firstly, tests performed 

on the RCU2 prototype are discussed. This includes the stress tests on the RCU2 hardware prototype 

before mass production and validation on the RCU2 with second prototype of firmware before the 

system irradiation campaign. Secondly, integration and verification of the final RCU2 design and 

preparation of the mass installation are presented. A special focus has been put on the stability and 

the readout rate. Finally, commission of the RCU2 is discussed.  

Chapter 6 concludes the thesis and describes the ongoing and planned work.  
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2 Radiation effects on the RCU2 

Electronics which are exposed to a radiation environment (e.g. space, LHC) will potentially be 

affected by radiation effects. This also applies to the RCU2 which is exposed to the environment of 

the TPC. Therefore, it is of significant importance to know how these radiation effects are induced, 

how they affect the RCU2, and how to predict the rate of the radiation induced errors for LHC Run2.  

2.1 Interaction of particle with matters4 

In ALICE, heavy (Pb-Pb) and lower mass (e.g. pp) particles are collided to produce primary particles 

in high density. These particles can be divided into two categories: charged particles and neutral 

particles. Many of these particles interact with the absorbers and structural elements of the 

experiment, which produce hadronic and electromagnetic showers. The cascade of secondaries 

poses a radiation load on the electronic devices and consequently causes potential damages.  

2.1.1 Charged particles 

Driven by the Coulomb force, which is the attraction or repulsion among particles due to the electric 

charge, charged particles interact with the atoms while passing through the material. In these 

interactions, the charged particles lose and transfer energy to the atoms through several processes: 

elastic or inelastic scattering with atomic electrons, elastic or inelastic scattering with nuclei, 

Bremsstrahlung, Cherenkov radiation, etc. Which of these processes dominate the energy loss 

depends on the energy, velocity, mass and charge of the particle as well as the properties of the 

material it collides with. For example, most of the energy loss in the interactions of heavy charged 

particles is through the non-elastic collisions with the atomic electrons in the material [29]. This 

process of energy loss is also called stopping power.  

Stopping Power5: The stopping power (S) for a charged particle is defined as the differential energy 

loss (−𝑑𝐸) for this particle within the material divided by the corresponding differential length (𝑑𝑥) 

                                                        

4 This section is based on reference [29] and [30] if not otherwise stated.  

5 The unit of stopping power is keV/um or MeV/cm. 
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of the path:  

𝑆 = −
𝑑𝐸

𝑑𝑥
  (2.1) 

The stopping power is also called the rate of energy loss for a particle. It depends on the energy and 

type of the radiation as well as the property of the materials. The classical expression that describes 

the stopping power is the Bethe-Bloch Formula and is written as  

−
𝑑𝐸

𝑑𝑥
=  

4𝜋𝑒4𝑧2

𝑚0𝑣2 𝑁𝐵  (2.2) 

where 

𝐵 ≡ 𝑍 [𝑙𝑛
2𝑚0𝑣2

𝐼
− 𝑙𝑛 (1 −

𝑣2

𝑐2) −
𝑣2

𝑐2]  (2.3) 

with the following definitions: 

𝑣 = velocity of the charged particle 

𝑧 = charge of the particle in unit of 𝑒 

𝑁 = number density of absorber atoms 

𝑍 = atomic number of absorber atoms 

𝑚 = electron rest mass 

𝑒 = electron charge 

𝐼 = effective excitation and ionization potential of the absorber  

𝐵 = stopping number (atomic number scaled for stopping)     

The Bethe-Bloch Formula is valid for all types of charged particles provided their velocity remains 

large with respect to the velocity of the orbital electrons. Only the first item in the stopping number 

(𝐵) is sufficient for the non-relativistic charged particles (𝑣 ≪ 𝑐). The stopping number (𝐵) varies 

slowly with particle energy and is proportional to the atomic number (𝑍) of the absorber. Thus, the 

general behavior of stopping power can be inferred from the residual multiplicative factor. For a 

given non-relativistic particle, − 𝑑𝐸 𝑑𝑥⁄  varies as 1/𝑣2, or inversely with particle energy.  

The stopping power consists of two components, the mass collisional stopping power and the mass 

radiative stopping power. The former is resulted from the interactions of particles with orbital 

electron (i.e. atomic ionizations and excitations) and the latter is resulted from the interactions of 

particles with nucleus (i.e. bremsstrahlung production).  
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Linear Energy Transfer (LET)6 is defined as the average energy (𝑑𝐸) locally deposited into the 

material by a charged particle of specific energy traversing a distance of 𝑑𝑥 and it is written as 

𝑑𝐸/𝑑𝑥. LET is closely related to stopping power except that it does not include radiative loss of 

energy (bremsstrahlung) and delta rays. For heavy charged particles, stopping power and LET are 

nearly equal; for beta particles, the delta-rays and the bremsstrahlung are not included in LET. 

2.1.2 Neutral particles 

Neutral particles are uncharged and therefore do not interact with matters by means of the Coulomb 

force. Neutrons and photons (gamma and X-rays) are typical neutral particles and the processes in 

their interactions are different.  

Neutrons: Neutrons do not interact with atomic electrons, but interact with the nuclei of the atoms. 

Since the size of the nuclei is quite small compared to the whole atom, the probability of neutron 

interaction is rather low. Hence, neutrons could penetrate a long distance in the absorbing material 

before any interaction takes place. Processes in the nuclear interactions of neutrons highly depend 

on the available energy level. For example, the interactions of high energy neutrons will produce 

secondary radiation products (charged particles, neutrons, fission fragments, etc.), most of which 

transfer energy to the material through ionizing.  

Photons: Photons are electromagnetic radiation with no rest mass, no charge, and travels at the 

speed of light. Energy of photon is in linear proportion to frequency (𝑓) with the Plank’s constant 

(ℎ), and it is written as 𝐸 = ℎ𝑓. All of the photon interactions lead to a partial or total transfer of 

the photon energy to the electron energy. There are three main processes in the energy transfer, 

which are photoelectric effects, Compton scattering and pair production. 

                                                        

6 LET is strictly defined in terms of energy divided by distance, e.g., MeV/cm. However, since the energy lost is 

directly proportional to the density of the material traversed, it is useful to divide the LET by the density of the 

material. Therefore, the units of LET are also typically expressed as MeV· cm2/mg.  
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2.2 Radiation Effects related to the RCU27  

Electronic devices which are exposed to a radiation environment are expected to experience two 

categories of radiation effects: SEEs and cumulative effects. The cumulative effects include TID 

effect and Displacement Damage.  

Single Event Effects (SEEs): SEEs originate from the energy deposited by single particle through 

ionization in a given sensitive volum, occurring in a short time. It is a transient effect and occurs 

stochastically. For the LHC environment, the charged hadrons8 and the neutrons cannot deposit 

enough energy through direct ionization to induce a SEE. Instead, they generate a SEE through 

nuclear interaction with the material of the devices (section 2.1). Due to their statistical nature, SEEs 

are characterized with their probability of occurrence, which depends on the specifics of the 

radiation environment and the properties of the devices.   

Total Ionizing Dose (TID) effect: TID is the progressive build-up of charges due to trapped holes 

in the insulating layers of MOSFET and BJT devices. Through ionization, electron-hole pairs are 

generated in the material along the particle track. Due to the high mobility, electrons can escape the 

oxide easily. In contrast, holes have a lower mobility, and can gradually be trapped in the dielectric. 

The TID effect may lead to parametric degradation (e.g. threshold voltage shift in MOSFET, current 

gain decreases in BJT) and eventually cause functional failure of the devices. TID is characterized 

by the maximum dose that a device can absorb before it no longer behaves within a given expected 

specification.  

Displacement damage: Displacement damage is a non-ionizing effect and refers to the atomic 

displacement in the crystal lattice. If an incident particle can transfer enough energy to an atom in 

the crystal lattice by an elastic or inelastic collision, the atom can be knocked free from its lattice 

site and onto interstitial site. Displacement damage can change the electrical characteristics of 

certain components, e.g. reduced gain of bipolar transistors.  

                                                        

7 The basic principle of the radiation environment and the radiation effects on electronics is based on [31][32] and 

[33], if not otherwise stated. 

8 In particle physics, a hadron is a composite particle made of quarks held together by the strong force in a similar 

way as molecules are held together by the electromagnetic force. 
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2.2.1 Radiation environment of the RCU2 

Two quantities that are commonly used to describe a radiation environment are fluence rate and 

absorbed dose. Fluence rate9, also named flux, is defined as particles incident on a unit sphere or 

cross-sectional area per unit time. The time integrated flux is called fluence. Absorbed dose10 , 

abbreviating as dose, is the mean energy imparted to per mass material minus the energy leaving 

the mass, either directly or through nuclear transformation. For a given number of particles, fluence 

and dose are correlated but not equivalent. In addition, another quantity named 1 MeV neutron-

equivalent fluence11 is normally used to express displacement damage.  

Monte Carlo particle transport calculations shows that the radiation load in terms of the flux of fast 

hadrons on the TPC electronics locating in the innermost positions (worst-case) is estimated to be 

0.8 kHz/cm2, for the interaction rate of 8 kHz during Run1 [36]. Scaling the interaction rate to 30 

kHz of Run2, the expected radiation load for Run2 will be 3.0 kHz/cm2 [18]. This number is similar 

to what a satellite would encounter while traveling through the South Atlantic Anomaly [37] and ~ 

0.6 million times of the radiation flux in ground level [38]. With such a significant number, SEEs 

are therefore expected to occur on the RCU2. For the 3 years running period of Run2, the total dose 

and the 1 MeV neutron-equivalent fluence are estimated to be less than a few krad and in the order 

of 1010 cm-2, respectively [18]. These number are not significant as the onset for the typical failures 

occur when the dose is over 10 krad and the 1 MeV neutron-equivalent fluence is above 1011 cm-2 

[39], so neither TID effect nor displacement damage is a big concern for the RCU2. However, TID 

effect on the SF2 FPGA still need to be considered, since it has previously been observed to lose its 

programmability at a low total dose level [40]. 

In the radiation environment of TPC, it is the high energy protons, neutron and pions          

(Energy > 10 to 20 MeV) that dominates the origin of the SEEs [36]. These high energy hadrons 

can be considered to be equally effective in their capability of producing SEEs [17]. In addition to 

these hadrons, there is also a considerable number of other particles (e.g. photons and electrons) that 

                                                        

9 Unit of flux is particles/cm2/s or a shorten version p/cm2/s [41].  

10 Unit of dose is Gray and rad, where 1 rad = 0.01 Gray [41]. 

11 Unit of 1 MeV neutron-equivalent fluence is cm-2 [41]. 
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contributes to the TID effects [36].  

2.2.2 Single Event Effects (SEEs) 

The family of SEEs is quite wide. The main members of SEEs that may occur on the SF2 and the 

hardware interfaces of the RCU2 are discussed in the following sub-sections.  

Single Event Upset (SEU) 

A SEU refers to a single bit-flip in the content stored in memory elements, which is induced by a 

single energetic particle strike [33]. A SEU will be provoked in the sensitive node if the energy 

deposited by single particle exceeds the critical charge of a storage element. SEUs are stochastic 

errors, which can happen in electronic devices at any time during their operation in radiation 

environment. SEUs are non-destructive and can be corrected by re-writing the memory elements.  

The main FPGA of the RCU2 is the Microsemi SF2, which integrates a FPGA fabric, a 

Microcontroller Subsystem (MSS) [42] and several lanes of high speed serializer/deserializer 

(SERDES) interfaces [43]. Details regarding the SF2 are presented in section 3.1.1. The FPGA 

fabric of the SF2 is flash-based and its configuration cells are considered immune to SEU [28]. 

However, SEUs are still expected to occur in the SRAMs and in the flip-flops [44]. In addition, 

SEUs may also occur in the MSS of the SF2 and the hardware interfaces of the RCU2. If SEUs 

occur in critical bits, they may lead to Single Event Functional Interrupt, which will be discussed 

later in this section. 

Multiple-Bits Upsets (MBU) 

MBU refer to two or more bits in the same data word being flipped due to single radiation event. 

Because each bit-flip is actually a SEU, a MBU can be for simplicity treated as a set of SEUs.  

In the SRAMs of the SF2, occurrence of MBUs is expected to be low for two reasons. Firstly, there 

is a physical distance between adjacent bits in the 65 nm manufacturing technology used for SF2 

[45]. Secondly, as illustrated in Figure 2-1, logically adjacent data bits are physically separated in 

the memories. As a result, MBUs on physically adjacent bits can be divided into SEUs in several 

logical data words [45]. This dramatically reduces the probability of that an MBU will result in 

uncorrectable errors. In the irradiation tests performed by Microsemi in late 2014, the SF2 chips 
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were exposed to heavy ions at LET levels up to 90.3 MeV-cm2/mg and no MBUs were observed in 

the Large SRAMs, Micro SRAMs and flip-flops [45]. Therefore, no specific tests regarding MBUs 

will be discussed in this thesis.    

 

Figure 2-1 Mitigation of MBUs in memory cells in SF2 [45]. 

Single Event Transient (SET) 

If a single energetic particle hits the combinatorial logic in an integrated circuit, the deposited energy 

will give origin of a momentary pulse, which is defined as a SET [33]. In some cases, the transient 

pulse could propagate along the logic path until it is latched by some memory elements (e.g. SRAMs, 

flip-flop, latch), resulting in the changes on their output. As the clock frequency increases, the 

probability that SET will cause an upset in combinational logic increases. The ability of the SET to 

propagate and their probability of being captured by memory elements increases as well [34][35]. 

In this thesis, SET on the SF2 has been studied in terms of its probability of occurrence, varying the 

complexity of the combinatorial logics and the operating frequency of sequential logics (discussed 

in section 4.2.4).  

Single Event Latch-up (SEL) 

A spurious current pulse induced by a single highly energetic particle passing through the sensitive 

regions of electronic components could bias the parasitic PNPN structure in the CMOS transistors 

and create a short between the power lines. In the JEDEC standard, this abnormal high-current state 

is defined as SEL [33]. SEL is potentially destructive and may cause permanent damage to electronic 

devices. If the device is not permanently damaged, a power cycle is required to the recover it back 

to normal operational situation. Several tests dedicated for SEL on the SF2 have therefore been 
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performed in this thesis (section 4.2.1). In the hardware interfaces of the RCU2, non-destructive 

SEL could induce Single Event Functional Interrupt and destructive SEL will lead to permanent 

damage.  

Single Event Gate Rupture (SEGR)  

Transient gate leakage current induced by a single particle strike can lead to a high electric field. In 

the presence of this electric field, a subsequent conducting path through the gate oxide of a MOSFET 

can be built. This phenomenon is defined as SEGR [33], to which the power MOSFET in OFF state 

is susceptible. The SEGR is a destructive effect and can cause permanent damage on the devices. 

SEGR is expected to occur in MOSFETs operating with supply voltage higher than 100 V [46]. 

Therefore, it is not expected to take place during the normal operation of the RCU2, whose supply 

voltage is only 4.3 V and 3.3 V.  

Single Event Functional Interrupt (SEFI) 

Soft errors are non-destructive errors induced by a single energetic particle strike, which includes 

SEU, MBU, SET (if latched) and non-destructive SEL [33]. SEFI is defined as the reset, the lock-

up, or the detectable malfunctions caused by a soft error on electronic components [33]. In case a 

SEFI occurs, the component will usually restore its operability automatically. Notably, a SEFI is 

usually related to the SEUs in the control elements of the components, and the underlying reasons 

for a SEFI can be difficult to find due to the complexity of the devices involved.   

On the SF2, the components that have been tested in this thesis are the phase-locked loop (PLL) [49] 

and the MSS. For the PLL, lock signal was used as the monitor. For the MSS, SEFI was identified 

through observing the operating status of the software running on it. The tests for SEFI in the PLLs 

and the MSS are discussed in section 4.2.5 and section 4.4.2, respectively.   

As discussed in the above sub-sections, hardware interfaces of the RCU2 are also expected to suffer 

SEFIs. Therefore, corresponding tests have been performed (section 4.3) in this thesis. In these tests, 

SEFIs were identified through observing the functionalities of these interfaces.  
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2.2.3 Total Ionizing Dose (TID) effect 

All the electronic components in a radiation environment are expected to absorb a dose during their 

life-time. Any device that is sensitive to TID effect is expected to fail if it has been exposed to the 

maximum limitation. As a flash-based FPGA, the SF2 is potentially sensitive to TID effects [40] 

[47] , which may appear in two parts: 

 

Figure 2-2 Structure of floating gate transistor in flash-based FPGA [47]  

In the floating gate: Charge loss in the floating gate will lead to the shift of the threshold voltage 

and then the flips of stored bits [50]. Figure 2-2 demonstrates a typical flash structure, in which the 

bit value is stored as a charge on the floating gate. Electron-hole pairs are initiated while highly 

ionized particles passing through the transistors. There are three factors that reduces the threshold 

voltage of the floating gate [50] [51]: (1) injection of holes into the floating gate, (2) trapping of 

holes into the tunnel oxide and (3) emission of electrons over the poly-silicon/oxide barriers.  

In the CMOS transistors: In the CMOS transistors, charges are progressively built up in the bulk 

of the oxides and the Si-SiO2 interfaces due to the trapping of holes. Screening or enhancing of the 

charges in the gate electric field of the transistors lead to the shift of threshold voltage and the 

increase of leakage current. In the recent technology with thin oxide where transistors are isolated 

from each other, the trapped holes can invert the interface at the edges of the transistors, then create 

open leakage paths between the drain and the source or between adjacent devices [47]. Radiation 

sensitivity of the CMOS transistors is in positive proportion to the thickness of the oxide due the 

capability of trapping holes.  
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In flash-based FPGAs, the charge pump, which provides a higher programming voltage, is the block 

that is most vulnerable to TID effect, because it has high operation-voltage and uses the transistors 

with thick oxide [48]. Therefore, in this thesis TID effect on the SF2 has been characterized in terms 

of functionality and programmability (section 4.2.6).  

TID effects of the hardware interfaces is not a concern, since the commercial CMOS components 

could stand a dose in the order of 10 krad [39], which is higher than the total dose (a few krads) that 

the RCU2 is expected to absorb in Run2.  

2.2.4 Summary 

Both the SF2 and the hardware interfaces on the RCU2 are expected to suffer radiation effects in 

the TPC. For the SF2, the following radiation effects should be considered: (1) SEU in the SRAMs 

and the flip-flops, (2) SEFI in the MSS and the PLLs, (3) SEL of the FPGA and (4) TID effects of 

the whole SF2 chip. For the hardware interfaces, the sensitivity of SEFI should be investigated.  

2.3 Irradiation tests 

The radiation tolerance of the RCU2 is evaluated through a set of irradiation tests. Selecting a proper 

test facility is the prerequisite to ensure the reliability of these tests. For SEEs, the rates of 

occurrence extracted from the tests are used to predict the corresponding error rate in Run2. For 

TID effects, the SF2 is exposed to a certain amount of dose and then checked in terms of 

functionality and re-programmability. This section discusses how to select the test facilities, how to 

calculate the dose and how to estimate the rate of SEE induced errors.  

2.3.1 Selection of test facilities12  

Different kinds of radiation effects should be tested with different radiation sources. For the SEEs 

testing, mono-energetic proton beams with energy over 60 MeV can be used. While testing for SEL, 

mono-energetic proton beams with the energy higher than 200 MeV is recommended. The proton 

                                                        

12 Most of the recommendations regarding how to select test facility are from [54]. 
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beams are good candidates because they are widely provided by many facilities. The reason for 

preferring mono-energetic beams is that the cross-section can be measured at a precise value of 

energy. For testing the TID effects, a 60𝐶𝑂 source is commonly used. Due to the limited number of 

test devices and time-slots, in our campaigns, the SEEs, the SEL and the TID effects need to be 

tested simultaneously. In this case, mono-energetic proton beams of 60 to 200 MeV can be used as 

the radiation source. 

All the major tests were performed at the Svedberg Laboratory in Uppsala [52], with a mono-

energetic proton beam of 180 MeV. In addition, several preliminary tests were carried out at the 

Oslo Cyclotron [53], with a mono-energetic proton beam of 25 MeV. The tests at the Oslo Cyclotron 

were intended to make a first screening of the candidate components. In addition, one supplementary 

test was performed at Nuclear Physics Institute [55] in Prague, with a mono-energetic proton beam 

of 35 MeV. The results of these test are discussed in detail. 

 

Figure 2-3 Test facility of the Oslo Cyclotron. (a) Layout of the Oslo Cyclotron [53]. (b) Test setup 

and positioned beam center. 

The Oslo Cyclotron  

The Oslo Cyclotron is operated by the Department of Physics, University of Oslo. It is an accelerator 

in Norway that provides ionized particles for basic research. The Oslo Cyclotron can accelerate 

protons to the range from 2 MeV to 35 MeV. In our tests, a proton beam of ~25 MeV was used to 

irradiate the devices. Subfigure (a) of Figure 2-3 shows the layout of the Oslo Cyclotron, which 

includes the inner hall, where the MC-35 cyclotron is located, the outer hall, where the electronics 

are tested. Before performing the tests, the central position of the beam needs to be found in two 
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steps. Firstly, radiation films are exposed so that spread of the beam can be seen according to the 

area turned black. Afterwards, a radiation monitor13  connecting to a X-Y positioning system is 

moved within the area of the beam spot to find the position (beam center) where highest number of 

SEUs is produced (referred to the counts on the scintillator14 locating at fixed position). Subfigure 

(b) of Figure 2-3 demonstrates an example setup at the Oslo Cyclotron, in which the beam center is 

pointed by a laser on the reflection of the devices in a mirror. 

 

Figure 2-4 Test facility of the Svedberg Laboratory. (a) Layout of the test area [52]. (b) Setup of 

our test.   

The Svedberg Laboratory 

The Svedberg Laboratory is operated by the Uppsala University in Sweden. With the Gustaf Werner 

cyclotron, it provides a proton beam ranging from 20 MeV to 180 MeV, with a beam spot diameter 

from 0.4 cm to 20 cm. The beam from the cyclotron is controlled to exit into the blue hall where the 

electronics are tested. The devices were exposed to the proton beam of ~180 MeV in our test. In 

contrast to the Oslo Cyclotron, beam dosimetry service, including calibration of the beam, is 

provided by the Svedberg Laboratory. Subfigure (a) of Figure 2-4 shows the layout of the test area. 

Subfigure (b) of Figure 2-4 shows the setup of the system level irradiation tests (discussed in  

section 4.4). 

                                                        

13 Details regarding the radiation monitor can be found in [56].  

14 Details regarding scintillation counts can be found in [57]. 

http://www.tsl.uu.se/
http://www.tsl.uu.se/
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2.3.2 Dose calculation 

LET (𝑑𝐸/𝑑𝑥) is used to calculate the dose received by the tested devices. While passing through 

the devices, the proton beam transfers part of its energy to the material. The energy transfer (𝛥𝐸𝑏𝑒𝑎𝑚) 

can be calculated with equation 2.4, where 𝜌𝑠𝑖𝑙𝑖𝑐𝑜𝑛 is the density of the silicon, 𝑑𝐸/𝑑𝑥_𝑠𝑖𝑙𝑖𝑐𝑜𝑛 is 

the LET of proton in silicon and 𝑑𝑥_𝑠𝑖𝑙𝑖𝑐𝑜𝑛 is length of particle path in the silicon.  

𝛥𝐸𝑏𝑒𝑎𝑚 =  (𝜌𝑠𝑖𝑙𝑖𝑐𝑜𝑛 ∗
𝑑𝐸

𝑑𝑥_𝑠𝑖𝑙𝑖𝑐𝑜𝑛
(𝐸𝑏𝑒𝑎𝑚) ∗ 𝑑𝑥_𝑠𝑖𝑙𝑖𝑐𝑜𝑛) [MeV]  (2.4) 

Because the beam continuously loses energy along its path, the LET of the beam keeps increasing. 

However, for a short path as in the devices, these changes on the LET can be neglected. Therefore, 

equation 2.4 gives an approximation that is close enough to the real value. 

As mentioned above, dose is defined as the total energy deposited on per unit mass of the device. 

Since fluence stands for the total number of particles hit per unit area of the device, the total energy 

transferred by the protons can be calculated as 𝛥𝐸𝑏𝑒𝑎𝑚 multiplies the fluence; multiplies the area of 

the device (𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒). Therefore, dose can be simply calculated with equation 2.5, where numerator 

is the total energy deposited by the beam, and denominator is the mass of the device. Assuming that 

all the protons pass through the device vertically, length of the path can be treated the same as the 

thickness of the silicon.  

𝐷𝑜𝑠𝑒 (𝑆𝑖) =  
𝑑𝐸

𝑑𝑥
(𝐸𝑏𝑒𝑎𝑚)∗ 𝜌𝑠𝑖𝑙𝑖𝑐𝑜𝑛∗𝑑𝑥∗𝑓𝑙𝑢𝑒𝑛𝑐𝑒∗𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒∗𝑑𝑡ℎ𝑖𝑐𝑘∗𝜌𝑠𝑖𝑙𝑖𝑐𝑜𝑛
 ≈  

𝑑𝐸

𝑑𝑥𝑠𝑖𝑙𝑖𝑐𝑜𝑛
(𝐸𝑏𝑒𝑎𝑚) ∗ 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 [

𝑀𝑒𝑉

𝑚𝑔
] (2.5) 

The SI-unit of dose is Gray (Gy) [41], which is 1 Joule of energy absorbed in a kilogram of matter 

(J/kg). When it comes to radiation of electronics, another unit that is often used is radiation absorbed 

dose (rad) [41]. The relation between Gy and rad can be seen in equation 2.6 [41]. 

1 𝐺𝑦 =  1
𝐽

𝑘𝑔
 = 100 rad  (2.6) 

1 
𝑀𝑒𝑉

𝑚𝑔
 =  

1.602𝐸−13 𝐽

1𝐸−6 𝑘𝑔
= 1.602𝐸 − 7 Gy = 1.602𝐸 − 5 rad  (2.7) 

Equation 2.7 presents the conversion from 
𝑀𝑒𝑉

𝑚𝑔
 to rad. Hence, equation 2.5 can be transformed into 
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equation 2.8, which is used to calculate dose in this thesis. 

𝐷𝑜𝑠𝑒(𝑆𝑖) =  1.602 ∗ 10−5 ∗
𝑑𝐸

𝑑𝑥𝑠𝑖𝑙𝑖𝑐𝑜𝑛
(𝐸𝑏𝑒𝑎𝑚) ∗ 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 [𝑟𝑎𝑑]   (2.8) 

2.3.3 Predicating the rate of SEEs induced errors 

In the irradiation campaigns, the tested device is exposed to a certain fluence and the number of 

experienced SEE induced errors (NSEE) are counted. Device sensitivity to SEEs is characterized as 

cross-section (CS), which is the probability that a particle strike will induce SEE. The cross-section 

is calculated by dividing NSEE with fluence, as given by equation 2.9 [33],  

CSdevice =
NSEE

fluence 
=  

NSEE

flux∗time 
 [cm2/ device]   (2.9) 

where the fluence can be simplified to time multiplied by flux for a stable radiation environment 

(e.g. TPC and test facility). 

The uncertainty of the cross-section (σCS) is dependent on uncertainty of the NSEE (σNSEE
) and the 

fluence (σfluence) . Since the SEEs are random in time and linearly depends on the number of 

incoming particles, σNSEE
 can be given by Poisson distribution (1/√NSEE). The σfluence depends 

on the method of fluence calculation that is used in each irradiation campaign (Appendix C). Hence, 

the σCS can be calculated with equation 2.10 [29]. 

σCS = √(
1

√NSEE
)2 + σ2

fluence   (2.10) 

To characterize and evaluate the radiation tolerance of the tested devices, the MTBF in Run2 of 

different types of errors need to be calculated. This can be done with equation 2.11, which is derived 

from equation 2.10 by setting the NSEE to be 1, applying the radiation flux in Run2 and using the 

cross-section for certain kind of error (failures). 

MTBF =  
1

fluxRun2∗CSdevice
 (2.11) 
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3 The RCU2 

The RCU2 design consists of three layers: hardware, firmware and software. The firmware has gone 

through three versions: the first prototype, the second prototype and the commissioning version. 

The author has contributed to all these versions. For the first prototype, the author studied the 

feasibility of porting the RCU1 design into the RCU2. For the second prototype, the author was the 

main contributor to the Readout Module as well as the responsible for the system integration. For 

the commissioning version, the author tested the firmware in hardware. The author also proposed 

the optimizations to improve readout speed. 

This chapter starts with an overview of the RCU2, in which the hardware design, including the main 

FPGA that host the firmware, and the software design are described. Afterwards, the overview of 

the firmware design is given, where the Readout Module is discussed in more detail.  

3.1 RCU2 overview 

The development of the RCU2 was initiated in April 2013, and 216 RCU2s with new backplanes 

were supposed to be installed at the end of 2014, just before the start of LHC Run215. The restricted 

time-frame implied that the existing TPC readout electronics needed to be reused as much as 

possible. All the cabling for the hardware interfaces and power supply should remain as it was for 

the RCU1. Besides, the RCU2 still uses the ALTRO bus to communicate with the FECs, as changing 

this was considered to be too ambitious imposing a high risk given the available time to finish the 

project. Although being similar in appearance, the RCU2 has the following major improvements 

with respect to the RCU116:  

(1) The ALTRO bus is split into four branches instead of the two branches for the RCU1, which 

ensures at least a doubling of the readout speed.  

(2) In the RCU1, the functionalities are distributed on the three PCBs: the RCU motherboard, the 

SIU card, and the DCS card. The RCU2 is one single PCB which improves the operational 

                                                        

15 Eventually the RCU2 was installed at the beginning of 2016 due to delays in the project. 

16 The details of RCU1 can be found in [8] and [20]. 
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robustness. 

(3) The flash-based Microsemi SF2 FPGA SoC [27][28] replaces the SRAM-based main FPGA in 

RCU1. Since the configuration cells of the SF2 are immune to SEU, radiation tolerance of the 

RCU2 is expected to be improved.  

(4) Bandwidth of the DDL link is increased from 1.280 Gbps to 3.125 Gbps. This is generally done 

by implementing a new DDL protocol and using the SERDES interface on the SF2. 

Figure 3-1 shows the overview of the RCU2, which is generally divided into the readout path and 

the control path. The readout path starts with the TTC interface, which splits the TTC signal coming 

from the local trigger unit into the TTC clock and the TTC data. The firmware implemented in the 

SF2 decodes the TTC data, reads the event data from the FECs via the ALTRO Bus backplane and 

processes the captured event data. The DAQ interface ships the processed data to the ALICE DAQ.  

 

Figure 3-1 Overview of the RCU2  

The control path is centralized with the ARM processor in the SF2 and three off-chip DDR3 

memories (discussed in section 3.1.7). The ARM processor has access to various PCB components 
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on the RCU2 as well as the firmware in the SF2. The TTCrx chip (in the TTC interface), the Small 

Form-factor Pluggable (SFP) transceiver (in the DAQ interface), the on-board ADCs (voltage, 

current and temperature) and the Hardware ID EEPROM17 are connected to the SF2 through the 

I²C® bus [58]. The Radiation Monitor (RadMon) and the SPI Flash Memory [59] are connected to 

the SF2 through the SPI interface. The former monitors the radiation environment of the RCU2. The 

SPI Flash Memory [59] hosts the Linux embedded system and is used in In-System Programming 

[60]. The DCS interface, functioning as a bridge, interfaces the software to the ALICE DCS. 

The front and the back of the RCU2 are shown in Figure 3-2 and Figure 3-3, respectively. Here the 

most important building blocks are highlighted. All these parts are commercial devices and they are 

not specially designed to be used in a radiation environment. This justifies the need for irradiation 

testing of these components. To better understand the impact and results of these tests (Chapter 4), 

these building blocks are discussed in detail in this section.  

  

Figure 3-2 RCU2 Board (front side) 

Clocking and reset scheme is essential for all digital designs, also for the RCU2. There are five clock 

sources on the RCU2: three on-board oscillators of 100 MHz, 156 MHz and 125 MHz, the     

25/50 MHz oscillator in the SF2 [61] and the 40 MHz TTC clock. Both the 25/50 MHz oscillator 

                                                        

17 Each RCU2 has a unique serial number, which is stored in the Hardware ID EEPROM (Electrically Erasable 

Programmable Read-only Memory). 
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and the 40 MHz clock are used by the firmware in the SF2. The flash-based FPGA (ProASIC3 [62]) 

in the RadMon (refer to Figure 3-1) uses the 100 MHz clock as its system clock. The 156 MHz 

clock and the 125 MHz clock are dedicated for the DAQ interface and the DCS interface, 

respectively. At power-up, the power-on reset device gives a global reset to the SF2, where dedicated 

reset signals are generated for various PCB components and the firmware modules in the SF2. The 

clocking and reset scheme of the major building blocks is discussed in detail in their corresponding 

sub-sections.  

 

Figure 3-3 RCU2 Board (back side) 

3.1.1 The RCU2 main FPGA18 

To withstand the significant radiation load for Run2, the flash-based Microsemi SF2 FPGA SoC has 

been chosen as the main FPGA of the RCU2. Schematic of the SF2 is shown in Figure 3-4. Besides 

its SEU immune configuration cells, the reason for preferring the SF2 is that it integrates a FPGA 

fabric, a microcontroller with various peripherals (the MSS) and several lanes of high speed 

SERDES interfaces.  

The FPGA fabric of the SF2 is utilized to implement the RCU2 firmware. Due to the similar 

                                                        

18 Information about the SF2 is from reference [27] and [28] if not otherwise stated. 
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functionalities, the RCU2 firmware is estimated to use the same order of FPGA resources as the 

RCU1 firmware. According to Table 3-1, the SF2 on the RCU2, which is M2S050-FG896, should 

be able to provide enough design resources for the RCU2 firmware. The final resources count might 

end up differently since the logical resource maybe implemented and utilized differently for the SF2 

and the Virtex2 Pro. Table 3-1 still gives a reasonable estimation on the feasibility of implementing 

the RCU2 firmware in the SF2.  

 

Figure 3-4 Schematic layout of the SF2 FPGA SoC[63]  

 Logic cells19 

 

RAMs User IOs 

RCU1- Virtex-II Pro XC2VP7 11,088 792 Kb 396 

RCU2- M2S050-FG896 56,340 1314 Kb 377 

RCU1 firmware 8,719 595 Kb 248 

Table 3-1 Resources comparison between the RCU1 main FPGA, the RCU2 main FPGA and the 

RCU1 firmware [15] [20] 

The MSS hosts the Linux system that replaces the functionalities of the DCS board on the RCU1. 

This ensures that the RCU2 can be backward compatible with regards to the layered structure, 

                                                        

19 Each logic cell contains 4 LTUs (look-up table) and 1 DFF (D flip-flop) 
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services and protocols used in the existing DCS. The Linux system runs on three off-chip DDR3 

SRAMs, utilizing the hardcore DDR2/3 controllers of the MSS. The SERDES interfaces are used 

by the DAQ and the DCS interface, which are discussed in section 3.1.3 and section 3.1.4, 

respectively.  

When the RCU2 project was initialized, the SF2 was available as engineering samples only and it 

was very promising on paper. Hence, there were lots of interest for this device at CERN, including 

for the RCU2 project. However, no available information existed on its radiation tolerance in the 

radiation environment of CERN. This made the irradiation testing of this device important beyond 

the scope of the RCU2 project. These irradiation tests are discussed in detail in section 4.2. 

3.1.2 TTC Interface  

The TTC signal contains two channels of TTC data, Channel A and Channel B, and the TTC clock. 

Channel A carries the L0 and the L1 triggers. Channel B conveys the serialized commands and 

trigger information. More information on the TTC signal can be found in [8]. 

The TTC interface receives and recovers the BiPhase Mark encoded TTC signal transmitted from 

the local trigger unit. The preferable device to recover the clock and the data was the TTCrx chip 

[13]. It implements the Clock and Data Recovery (CDR) algorithms for the TTC interface and is 

specially designed for the radiation environment of the LHC. In addition, the TTCrx chip has been 

tested in many irradiation campaigns [64] and, more importantly, it has been proved to be stable on 

the RCU1 in Run1. However, the TTCrx was out of production and just a limited amount was 

available, so it was important to consider alternative solutions. Two solutions were proposed and 

tested for the RCU2: (1) A commercial CDR IC - ADN2814 [65], and (2) a customized CDR module 

[66] that is implemented inside the FPGA fabric of the SF2. Both the TTCrx solution and the two 

alternative solutions have been tested in the irradiation campaigns. These tests are discussed in detail 

in section 4.3.1.  

3.1.3 DCS Interface  

The RCU2 communicates with the ALICE DCS through Ethernet. Due to the magnetic field in 

ALICE, transformers in the Ethernet Interface will not operate correctly. The design for the analog 
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part is adopted from the DCS board in the RCU1, because it contains no magnetic components and 

has been proved to be quite reliable in Run1. The digital part of the DCS interface is shown in Figure 

3-5. It is constituted of the Marvell 88E1111 Ethernet PHY [68] and the Ethernet Module in the SF2. 

Data transmission between the Marvell PHY and the Ethernet Module is through a Serial Gigabit 

Media Independent Interface (SGMII), which aims at reducing the usage of the I/O pins of the SF2. 

The reasons why the Marvell PHY was chosen are that it supports SGMII protocol and uses only a 

few IOs on the SF2. 

 

Figure 3-5 Digital part of the DCS Interface  

The Ethernet Module comprises the MSS MAC Ethernet [69] and the SERDES Interface. The MAC 

Ethernet is a hardware peripheral provided by the MSS in SF2. The SERDES interface is a high-

speed serial interface, which is used to serialize and de-serialize the data for high-speed serial 

transmission. It includes a serialize-deserializer and some peripheral modules to supports different 

communication protocols [43]. In the Ethernet Module, the SERDES interface is configured to 

interact with the MSS MAC Ethernet via ten-bit interface through Extra-long Physical Coding Sub-

layer (EPCS) interface. As the only block that is driven by the external 125 MHz oscillator, the 

SERDES interface controls the clock distribution in the DCS interface. It provides the reference 

clock of the PLL that generates clocks for the MSS MAC Ethernet and the Marvell PHY. 

Additionally, the lock signal of this PLL is used as the reset of the PHY.  
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3.1.4 DAQ Interface  

Data transmission between the RCU2 and the ALICE DAQ is through the DDL2 link, whose 

terminal on the RCU2 is named DAQ interface. As demonstrated in Figure 3-6, the DAQ interface 

is constituted of the SFP optical transceiver and the SERDES interface in the SF2 FPGA. The 

Readout Module communicates with the SERDES core via the custom VHDL modules that realize 

the DDL2 protocol and the EPCS interface. Firmware implementation of the DDL2 protocol is 

presented in section 3.2.4. The DDL2 link operates with a bandwidth of 3.125 Gbps, which meets 

the requirements of the upgrade proposal.  

 

Figure 3-6 The DAQ Interface 

3.1.5 Radiation Monitor (RadMon) 

On the RCU1, the SEUs in the configuration memory of the SRAM-based main FPGA are 

continuously detected and corrected by the reconfiguration network during normal operation. This 

provided an intrinsic possibility for online monitoring of the SEUs. On the RCU2, the main FPGA 

is the flash-based SF2 FPGA and no SEUs are expected to occur in its configuration cells. Thus, a 

new radiation monitoring solution was needed to still provide this service. 
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The RadMon on the RCU2 consists of a flash-based FPGA (ProASIC3) and four 8 Mb Cypress 

SRAMs. The RadMon is based on the design from [56] and [72]. The FPGA writes a known pattern 

into each SRAM, reads it back, compares it and counts the number of differences, which are sent to 

the MSS through SPI interface, and then to the online monitoring system. The four SRAMs lead to 

some advantages compared to the solution of radiation monitoring on the RCU1. To start with, the 

sensitivity of the RadMon is expected to be increased by a factor of ~50. This is because: (1) the 

number of sensitive bits is increased about 10 times from the 3 Mbits in RCU1 to the 32 Mbits in 

RCU2 and (2) the SEU cross-section of the sensitive bits of the RCU2 RadMon is about 5 times 

higher than that on the RCU1. Furthermore, variation among devices on each RCU2 can to some 

extent be evened out. 

The new RadMon has been characterized at the Svedberg Laboratory in Uppsala (section 4.5), and 

it has behaved as expected. Details about its upgrade and the analysis of SEUs measurements in 

LHC Run1 can be found in [70] and [71]. 

3.1.6 ALTRO bus backplane20  

For RCU2, the backplane used for the RCU1 is electrically split from two branches into four 

branches. The two connectors for the RCU121 were decided to be kept in the same position on the 

RCU2, which made the tests during the development easier. While considering the positions of the 

two new connectors (Branch AO and Branch BO), which need to fit to all the six readout partitions 

in each TPC sector, two solutions were proposed and prototyped (see Figure 3-7): (a) the all-in-one 

solution and (b) the adapter card solution.  

The all-in-one solution was quite attractive because it is mechanically similar to the backplane used 

for the RCU1 and is easier to install on the detector. However, it was impossible to match the 

termination for both the outer branch and the inner branch, because the routing trace of the outer 

branch passes the termination of the inner branch. As the only working solution, the adapter solution 

was eventually selected, even if it required one extra board that made the assembling at the TPC 

                                                        

20 The backplane was designed under the supervision of Anders Oskarson at University of Lund. 

21 Branch AI and Branch BI on the RCU2. 
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slightly more challenging.  

 

Figure 3-7 ALTRO bus backplane: (a) all-in-one solution, (b) adapter card solution [74] 

3.1.7 Software design22  

Figure 3.20 shows the architecture of the RCU2 software design, which comprises the Linux system 

and the booting code (the bootstrap application and the Uboot). The booting code is stored in the 

embedded nonvolatile memory, while the Linux system in addition to the configuration bit-stream 

of the SF2 FPGA used for In-System Programming are stored in the external SPI flash memory. 

Linux system 

The 32-bit Linux system is running on the ARM Processor in the MSS and is uploaded from the 

flash memory to the three 16-bit DDR3 memories at power-on. Two of these DDR3 memories 

separately store the upper half and lower half or the 32-bit words of the Linux. The third one 

provides the parity bits for Single Error Correction and Double Error Detection (SECDED) 

mechanism [75], aiming at improving the radiation tolerance. With several software programs 

running on it, the Linux platform bridges the hardware and the firmware to the ALICE DCS. The 

software program can be sorted into two logical entities, the FEE Server and the device drivers.  

                                                        

22 Taku Gunji (Taku.Gunji@cern.ch) is the main contributor to the software design on the RCU2. 

mailto:Taku.Gunji@cern.ch
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Figure 3-8 Architecture of RCU2 Software Design 

The FEE Server is a DIM23 server implementation that runs on the RCU2. It provides the status of 

the RCU2 and FECs, such as the voltage, the current, the temperature and the number of SEUs. 

Additionally, it also receives commands to configure and control the FEE. The FEE Server 

comprises the FEE Server core and the Control Engine [76]. The FEE Server core is responsible for 

publishing services and receiving commands. This core itself is device-independent and it uses 

threads for device-dependent functions. It controls the executions of these threads. The FEE server 

was ported from the version running on the DCS board on the RCU1. The Control Engine is 

responsible for the device-dependent functions. It accesses the hardware through a set of Linux 

device drivers.  

Device drives are running on the Linux platform to control and access the RCU2 hardware. Some 

of the drivers (e.g. SPI, I²C®) are provided by the Linux kernel and some are specially designed for 

the RCU2, including the ADC driver, the RCU2 Bus master and the RadMon driver. Particularly, 

                                                        

23  DIM [73] is a client/server based inter-process communication system used in the ALICE DCS. The servers 

publish services, which are normally a set of data. The clients subscribe to these services and send commands to the 

serves. Once being subscribed, the services are subsequently updated by the servers at a fixed time interval or 

whenever the condition changes. 
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the Ethernet driver is customized from the driver provided by the Linux system. 

Booting code 

The booting code includes the Bootstrap application and the Uboot, and is stored in the embedded 

nonvolatile memory of the SF2 MSS. The booting process of the RCU2 software is shown in Figure 

3-9. The Bootstrap application runs directly after power-on. It accomplishes the initialization of the 

SPI flash, the clocks, the DDR3 memories24, the Ethernet, etc. The Uboot runs after the Bootstrap 

application. It reads the environment parameters (speed of the DDL2 link, configuration of the 

Linux, etc.) from the SPI flash memory and boots up the Linux system. Additionally, it is in charge 

of the In-System Programming of the SF2 FPGA.  

 

Figure 3-9 Flowchart of the software booting process  

In-System Programming (ISP)  

ISP is needed since the RCU2 cannot be accessed during normal operation. As recommended in 

[60] , ISP of the SF2 can be performed in three ways: (1) through JTAG, (2) through SPI port in 

slave mode and (3) through SPI port in master mode. Programming via JTAG was not considered 

since it was impractical given the physical location of the RCU2 in the ALICE cavern. Programming 

                                                        

24 The Linux system is uploaded to the three DDR3 memories. 
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via the SPI port in slave mode needs an external device, usually a micro-controller, to act as a SPI 

Master. This was neither elegant nor practical on the RCU2.  

Therefore, the ISP of the SF2 was decided to be implemented using the SPI port in master mode. 

As shown in Figure 3-9, the ISP of the SF2 are accomplished in the following steps: 

(1) The Uboot reads the bit-stream from the SPI flash memory 

(2) The Uboot calls the service in the system controller [77] to authenticate the bit-stream.  

(3) The Uboot calls the services in the system controller to program the device with the 

authenticated bit-steam.  

(4) The Uboot calls the services in the system controller to verify the device. 

Noticeably, the prerequisite of executing ISP is that the firmware programmed to the SF2 is different 

from the bit-stream in the SPI flash memory.  

3.2 Smartfusion2 (SF2) firmware overview 

The top-level architecture of the FPGA design in the SF2 is shown in Figure 3-10. The firmware 

modules can be divided into the Readout Node and the DCS Node. In the Readout Node, the Trigger 

Receiver receives, decodes and processes the trigger sequence from the TTCrx chip. Afterwards, it 

generates triggers to the Readout Module and FECs. After receiving the triggers, the FECs starts to 

buffer the event data. Then the Readout Module reads data from the four branches of FECs in 

parallel, checks its integrity, processes and packages it. At the final stage, the packaged data is 

shipped to the DDL2 Module and then to the SFP transceiver.  

The DCS Node includes the Monitoring and Safety Module and the Ethernet Module. The 

Monitoring and Safety Module is responsible for monitoring the status of the FECs through the 

Front-end bus (customized I²C® bus) [78]. It reads values when the FEE server orders it to. The 

Ethernet Module enables a communication up to the higher logical levels of the ALICE DCS. It is 

constituted of the IP cores of the SF2 and has already been described in section 3.1.3.  

The firmware has been developed in stages and gone through several versions. In this section, a 

short overview of the FPGA fabric design is given, highlighting the main differences between the 

different versions. Then all the modules except the Readout Module are briefly discussed. The 
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Readout Module will be discussed in more details in section 3.3. 

 

Figure 3-10 Overview of the RCU2 firmware 

3.2.1 Clocking and reset scheme 

As shown in Figure 3-10, there are four clock domains in the firmware: the 40 MHz TTC clock, the 

80 MHz system clock, the 125 MHz clock and the 156 MHz clock. The 80 MHz system clock is 

generated by the system PLL (the MSS PLL in Figure 3-10) using the 25/50 MHz oscillator in the 

SF2. Processing data at 80 MHz, instead of 40 MHz as in RCU1, is done to utilize the doubled 

number of branches and the increased bandwidth of the DDL link. The reasons for a local clock 

instead of the 40 MHz global TTC clock to generate the 80 MHz system clock are as follow: First 

of all, the event readout in all the 216 readout partitions do not need to be synchronized, because 

the data from different readout partitions can be sorted offline. Furthermore, the local trigger unit 

performs a clock switchover at the beginning of each physics fill in LHC and the TTC clock is very 

unstable during this period. Even though no effects induced by the unstable clock has been seen on 

the RCU1, it cannot be disregarded as a potential pitfall. Using a local clock can avoid the potential 

problems caused by the clock switchover. In addition, the TTC clock is not always guaranteed 

during maintenance or development in the lab, so a local clock is anyhow needed.  
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In the Trigger Module, the sub-modules for decoding the TTC data work at 40 MHz and other 

modules for providing CDH words to the Readout Module work at 80 MHz. The 40 MHz TTC 

clock is synchronous with the bunch crossing (40 MHz) in the LHC and delivered to all the 216 

RCU2s. By using this TTC clock to decode the TTC data and generate the sampling clock25, the 

data sampling on the FECs can be done with equal reference to the time of interaction for all RCU2s 

in the TPC.  

The clocking scheme of the Ethernet Module is presented in Figure 3-5. In the DDL2 Module, the 

sub-modules of the DDL2 protocol (section 3.2.4) work at 80 MHz, and the clocking scheme of the 

other parts is shown in Figure 3-6. All the other firmware modules, including the Readout Module, 

work at 80 MHz. The Readout Module uses the 80 MHz clock to generate the 40 MHz readout clock 

for the FECs.   

In the second prototype of firmware, the lock signal of the system PLL is used as a reset to all the 

firmware modules, as shown in Figure 3-10. In the commissioning version of the firmware, a Reset 

Controller, as shown in Figure 3-13, is implemented. This is because the system PLL was observed 

to lose lock in the irradiation tests (discussed in section 4.4.1). In the Reset Controller, the PLL lock 

is used as a global reset only at power boot-up. Afterwards, the reset to dedicated modules can be 

given from DCS.  

3.2.2 Firmware versions  

The firmware has been developed through two prototype versions and then into the commissioning 

version used during the installation of the RCU2 in the TPC. The installed commissioning version 

has later been upgraded several times. 

First prototype26: The firmware was originally proposed to be ported from the RCU1 with some 

customized changes for the RCU2. However, porting this code from a Xilinx platform to a 

Microsemi platform soon proved to be far more challenging than what could be foreseen (discussed 

in section 3.3.1). Hence, it was decided to design a second prototype based on the ideas from the 

                                                        

25 The sampling clock is used by the FECs to sample the event data. It can be configured to 2.5 MHz, 5 MHz, 10 

MHz and 20 MHz. In this thesis, the sampling clock is 10 MHz if not otherwise stated. 

26 The author studied the feasibility of porting the firmware from a Xilinx platform into a Microsemi platform.  
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RCU1 FPGA design. The first prototype will be briefly discussed in 3.3.1. Before designing the 

second prototype, a simple ALTRO bus master was designed to test the basic write and read 

functions from the RCU2 to the FECs (discussed in section 5.1.1).   

Second prototype27: The second prototype of the RCU2 firmware was released for the system-level 

irradiation test at the Svedberg Laboratory in April 2015. The main change between the second 

prototype and the first prototype is the Readout Module, which performs essential readout functions. 

It handles trigger sequence from the Trigger Module, reads event data from the FECs and ships the 

formatted data packages to the DDL2 Module. All other modules have been developed according to 

the original plan for the first prototype. As of the irradiation campaign, the Trigger Module, the 

Ethernet Module and the Monitoring and Safety Module were fully functional. The DDL2 Module 

was realized with a data-rate of 2.215 Gbps. The author is the main contributor of the Readout 

Module, which is the largest part of the FPGA design. Therefore, the Readout Module in this version 

will be discussed in depth in section 3.3.2. 

Commissioning version28 : The commissioning version of the RCU2 firmware was used in the 

system-level verification (discussed in section 5.3.3). It has been running in a stable manner since 

January 2016, only with minor bug fixes and some feature updates (discussed in section E.5). 

This version of the Readout Module has been developed by team members at CERN after the 

system-level irradiation tests, since the focus of my work is mainly related to radiation testing and 

characterization of the RCU2. This Readout Module will be discussed in section 3.3.3, focusing on 

its difference and improvements with respect to the second prototype.  

All other modules were inherited and upgraded from the second prototype. One major improvement 

is that the DDL2 Module is running at the speed of 3.125 Gbps. 

                                                        

27 The author contributes to the development of the Readout Module and the system integration of the firmware. 

Responsibilities of the other team member: Torsten Alt (Goethe-Universität) - Readout Module. Attiq Ur Rehman 

(University of Bergen) - Readout Module. Ernö David (Cerntech, Budapest Hungry) - Ethernet Module. Fillipo 

Costa (CERN, Switzerland) - DDL2 Module. Johan Alme (University of Bergen) - Trigger Module and Monitoring 

and Safety Module. 

28 The author participated in the verification and optimization of the firmware. Responsibilities of the other team 

member: Alt Torsten (Goethe-Universität) - Readout Module and system integration. Ernö David (Cerntech, 

Budapest Hungry) - Ethernet Module. Fillipo Costa (CERN, Switzerland) - DDL2 Module. Johan Alme (University 

of Bergen) - Trigger Module, Monitoring and Safety Module and SIU Interface. Stefan Kirsch (Goethe-Universität) 

– Readout Module and system integration.  
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3.2.3 Trigger Module 

The Trigger Module is generally ported from the RCU1 design. Its detailed functionalities can be 

found in [20] and [79] and a summary is given below.  

It receives, processes and validates the two channels (Channel A and Channel B) of TTC data 

decoded by the TTC interface. Any trigger sequence is accepted only if the L1 trigger, the L1 

message and the L2 trigger arrives within a certain timing region after the L0 trigger. In this case, a 

local L1 accept trigger and a local L2 accept trigger are issued to the FECs. The L1 accept trigger 

starts the data acquisition of an event in the ALTRO chips and the L2 accept trigger locks the 

sampled data in the multi-event buffers [9] in each ALTRO channel. If any trigger in the sequence 

violates the timing requirements, the data acquisition will be aborted.  

The Trigger Module also generates the Common Data Header (CDH) words and passes them to the 

Readout Module. Some fields of the CDH words where the information should be filled by the 

Readout Module are padded with zeros.  

Another important feature of the Trigger Module is to provide the 10 MHz sampling clock for the 

FECs. This sampling clock is used for the data acquisition in the ALTRO chips. As mentioned above, 

the sampling clock is derived from the 40 MHz TTC clock, which is synchronous with the LHC 

bunch crossing. This ensures the data sampling can be done with equal reference regarding the time 

of interaction for all the 216 RCU2s.  

3.2.4 DDL2 Module 

As shown in Figure 3-6, the DDL2 Module includes the SERDES interface in the SF2 MSS and the 

firmware modules of the DDL2 protocol29. The SERDES has been discussed in section 3.1.4. This 

section focuses on how the DDL2 protocol is implemented. 

As illustrated in Figure 3-11, the DDL2 protocol transmits data between the Readout Module and 

the SERDES Interface in both directions. The data path from the Readout Module to the SERDES 

                                                        

29 Most of the information is based on [24]. 
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interface starts with the FEE interface that admits 32-bit data words. Following which, the Data 

Classifier generates 2-bit code for each 32-bit word to indicate its type. At last, the Framing Module 

splits each 32-bit word into two 16-bit words, under the regulation of the 2-bit type code, because 

the SERDES Interface provides data bus up to only 20 bits. In the reverse direction, commands and 

data coming from the SERDES Interface are received by the Data Receiver and the Command 

Receiver, respectively. In the meanwhile, a Cyclic Redundancy Check block verifies the received 

information to detect potential errors. After that, data declared to be valid is pushed into a FIFO and 

then shipped to the Readout Module by the FEE interface.  

 

Figure 3-11 DDL2 protocol blocks 

The TLK_2051 emulators that stand in-between the SIU block and the SERDES interface are 

implemented to realize the functionalities of the TLK2051 transceivers [80] from Texas Instruments, 

which recover the DDL link and keep the DDL link aligned. These transceivers were employed on 

the RCU1 and they are replaced by the emulators on the RCU2. 

3.2.5 Monitoring and Safety Module 

The Monitoring and Safety Module is shown in Figure 3-12. It is designed to monitor the physical 

parameters of all the FECs in a readout partition. Each FEC contains a 10-bit, 5-channel ADC with 

an on-chip temperature sensor and an I²C® interface. One channel provides the data of the 

temperature sensor, while the other four provide the values of the analogue and digital voltages and 

currents measured at the input of the FEC [81]. The Board Controller can be configured to 
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continuously read the ADC and store the values in its register bank. 

The Linux system controls the Monitoring and Safety Module to read or write to the Board 

Controller by setting a command register and read the result register. The Monitoring and Safety 

Module accesses the Board Controller via the front-end control bus. The front-end control bus 

interface is divided into four blocks, each of which communicates with its corresponded branch.   

 

Figure 3-12  Monitoring and Safety module sub-modules 

3.2.6 RCU2 Bus 

The SF2 MSS and the DAQ Interface communicates with the fabric modules through the RCU2 

Bus system. As presented in Figure 3-13, the RCU2 Bus system comprises one Bus Master, one Bus 

Arbiter and several Bus Slaves. The RCU2 Bus Master is a slave hooked on the Advanced Peripheral 

Bus (APB). It splits its assigned address span into several segments and allocates each of these 

segments to an individual RCU2 Bus Slaves. The Bus Arbiter is used to select whether the data goes 

into the slaves is from the RCU2 Bus Master or the Message Handler. The messages from the DAQ 

interface is used to configure the RCU2 or the FECs.  

In addition, the RCU2 Bus master contains the RCU2 Commander and the Reset Controller. The 

RCU2 Commander is a simplified version of the Instruction Sequencer [20] in RCU1. It stores and 

executes a set of ALTRO commands and RCU1 commands. The DCS can control the Reset 
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Controller to provide reset to the whole firmware or dedicated module(s). As mentioned in section 

3.2.1, the lock signal of the system PLL was used as a global reset in the second prototype of 

firmware. However, the PLL was found to be not reliable in radiation (discussed in section 4.4.1,). 

Thus, this Reset Controller has been designed.    

 

Figure 3-13 RCU2 bus structure topology  

3.3 Readout Module 

The Readout Module is the largest firmware module. The basic design requirements are as follow: 

 The Readout Module needs to receive the L1 and L2 triggers from the Trigger Module and 

issue respective L1 and L2 triggers to the FECs. Additionally, it has to make the sampling 

clock from the Trigger Module differential and send it to the FECs.  

 The Readout Module must read event data from all the four branches concurrently. The 

readout in each branch is done in dedicated order from ALTRO channel to ALTRO channel. 

There are two options for performing the readout: full readout and sparse readout. These 

two readout modes have been discussed in detail in [20]. In full readout, all the ALTRO 

channels are read. In sparse readout, only the channels that contain event data are read. The 

second prototype supports both these two readout modes. In the commissioning version, 

the sparse readout was not implemented at first but included later after the readout speed 

was benchmarked. This is discussed later in section 5.3.3. Additionally, the Readout 
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Module is also responsible for providing the readout clock for the FECs. 

 The Readout Modules is required to encapsulate the data into packages in a dedicated 

format (see Appendix D) and send the packages to the DDL2 Module. It is beneficial for 

the efficiency of the data analysis that the data from one RCU is shipped sequentially pad 

by pad for each padrow, and that a complete padrow of data is received prior to shipping 

any data from the next padrow. The 128 channels of each FEC are not ordered by pads and 

padrow, but to match the physical constraints given by the electrical cable connection from 

the pad-plane to the FEC. However, it is always such that branches match areas of pads on 

the pad-plane from branch BO (leftmost) to branch AO (rightmost), and that no pads are 

ever connected in an interleaving mode between the branches. The chunk based readout 

algorithm makes use of this fact, and defines a chunk of data as the data ordered by pads 

for one padrow in one branch. To implement this scheme, one would need to control the 

order of which the channels are read out per branch, and to store these data in a FIFO 

including start and end markers for individual chunks. The next step is to ship the data to 

the DAQ system, which can be solved quite elegantly by reading a full chunk from the 

FIFOs in a round robin scheme one branch at the time. 

As early mentioned, the development of the firmware has gone through three versions: the first 

prototype, the second prototype and the commissioning version. In this section, the important 

features of each version are discussed.  

3.3.1 First prototype 

Given the success of the RCU1 in Run1, the Readout Module was originally proposed to be ported 

directly from the RCU1, with some relatively small modifications to match the RCU2 hardware: (1) 

it needs to be expanded to four branches, (2) Xilinx IPs need to be replaced with Microsemi IPs and 

(3) the chunk-based readout algorithm should be implemented. However, porting the design from 

the RCU1 to the RCU2 was terminated by several engineering challenges. Firstly, the RCU1 design 

was dependent on Xilinx core components, which were not completely compatible with Microsemi 

core components. Furthermore, with the RCU1, it was the first time when a complete full-scale 

readout system and data acquisition system was integrated for ALICE TPC. The RCU1 was used to 

debug and verify many system level issues which unavoidably lead to an extensive patch work. 

Modularity and interfaces between sub-modules in firmware were affected adversely. Reuse and 
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cleanup of the VHDL code required more effort as compared to rewriting it from scratch with new 

Microsemi based core components. In addition, the ported Readout Module was verified in 

functional simulation but it never behaved as intended on the RCU2 hardware.  

All the lab-tests with the first firmware prototype were performed on the first PCB prototype of the 

RCU2. Hence, it could not be excluded that the failures in these tests were caused by hardware 

issues. A single, simple ALTRO bus master was therefore designed from scratch to verify this 

(discussed in section 5.1.1). The results were that this bus master could both write and read to the 

registers in the ALTRO, and it was concluded that the hardware was behaving as intended.  

Due to the reasons mentioned above, it was decided that the Readout Module should be fully 

redesigned while keeping the conceptual design structure of the RCU1. 

3.3.2 Second prototype  

The second prototype of the Readout Module was designed and released for the system-level 

irradiation test (section 4.4) at the Svedberg Laboratory in Uppsala in April 2015. It is similar to the 

commissioning version, both conceptually and on structural level, thus it could be used to evaluate 

the radiation tolerance of the final system. Different designs may have different radiation tolerance 

but at least the tests of the second prototype provided a good evaluation of our concept. As shown 

in Figure 3-14, the Readout Module consists of the ALTRO Interface Module, the Event Readout 

Manager and the Event Assembler. The Event Manager receives triggers from the Trigger Module 

and controls the readout, the ALTRO Interface Module interacts with FECs and reads the event data 

from the ALTRO channels, and the Data Assembler sorts the captured data and sends it to the DDL2 

Module. In this prototype, the data transmission is done from channel to channel, but not from chunk 

to chunk as intended for RCU2. This is because there was no time available before the system-level 

irradiation campaign for implementing the chunk-based readout algorithm. 

• ALTRO Interface Module 

The ALTRO Interface Module communicates with the FECs and performs the readout of event data. 

Communication between the ALTRO Interface Module and the FECs includes write and read 

transactions to the FECs which are realized through a set of specified instructions. To accomplish 

the event readout process, channel readout (CHRDO) transaction and readout pointer increment 
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(RPINC) transaction need to be performed. In CHRDO transaction, the ALTRO Interface Module 

fetches data from each individual channel. In RPINC transaction, the readout pointer of the data 

buffers inside the ALTROs, where the event data is stored, is incremented.  

 

Figure 3-14 Second prototype of Readout Module 

As shown in Figure 3-14, the ALTRO Interface Module is split into four branches, each of which 

consists of an ALTRO Bus Interface, a Branch Readout Unit, a Memory Controller and two data 

memories. In addition, it also involves an Event Readout Manager, which acts as an abstraction 

layer between the Event Manager and the four Branch Readout Units. Further in this section, the 

functionality of each individual block is discussed in detail.   



 

 

52 

 

 

ALTRO Bus Interface: The ALTRO Bus Interface implements the protocol for the transactions on 

the ALTRO bus. Contrary to the RCU1 where three modules interact with the ALTRO bus, the 

ALTRO Bus Interface is the only module in the RCU2 FPGA design that does this. This improves 

the structure of the FPGA design. As shown in Figure 3-15, the ALTRO Bus Interface includes the 

ALTRO Interface Controller, the ALTRO Clock Generator, the ALTRO Data Synchronizer and the 

Trigger Generator. 

A set of instructions are supported by the ALTRO chip and the Board Controller on the FECs. With 

these instructions, the RCU2 can (1) write to a register in a single FEC (normal mode) or the same 

registers on all the FECs (broadcast mode), (2) read from a single register in a single channel, and 

(3) control the execution of dedicated activities on the FECs. The instructions used in (3) are also 

called commands. The RCU2 sends these instructions to the FECs through the ALTRO bus, 

following the ALTRO bus protocol as described in [9]. The instructions are delivered by either the 

Branch Readout Unit (during normal operation) or the DCS via the RCU2 bus (during debug or 

configuration procedure). The task of the ALTRO Interface Controller is to handle the handshake 

protocol and deal with the potential erroneous situation during handshaking. 

 

Figure 3-15 ALTRO Bus Interface sub-module 

Detailed information regarding the instructions and the handshake protocols can be found in [9]. 

Only the handshake process of the CHRDO command, which will be repetitively used in this thesis, 

is mentioned below. The CHRDO command is used to read event data from a single channel in the 

ALTRO chip. It is the same as any Write command and only the address differs. As shown in Figure 
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3-16, the execution of a CHRDO command includes the execution of a regular Write command and 

a data dumping process. An ALTRO Write command is done by setting the appropriate word in the 

data and address field in the command, while the Command Strobe (CSTB) and the Write Enable 

(WRITE) line is pulled low. The ALTRO acknowledges by pulling the Acknowledge (ACK) line 

low. In the data dumping process, direction of the ALTRO bus is turned around and the data is 

transmitted from the FECs to the ALTRO Bus Interface. The assertion of Transfer Strobe (TRFS) 

indicates the start of the data dumping process and each 40-bit data word is valid on the falling edge 

of the Data Strobe (DSTB), which is synchronous with the readout clock (40 MHz).  

 

Figure 3-16  Chronogram of the CHRDO command 

The ALTRO Clock Generator is the source of the sampling clock and the readout clock for the FECs. 

It receives the 10 MHz sampling clock from the Trigger Module, and feeds it through a differential 

buffer to the output pins. It also divides the 80 MHz system clock to generate the 40 MHz readout 

clock.  

The ALTRO Data Synchronizer is designed to capture the 40-bit data words from the FECs. Two 

options were proposed: (1) using a small dual clock FIFO, which are clocked by the 80 MHz system 

clock and the DSTB signal, (2) sampling the DSTB signal and the data word with the 80 MHz 

system clock. The option (1) was used on the RCU1. There is a concern regarding the quality of the 

DSTB signal since it is not a regular clock. The second option is potentially more stable but its 

prerequisite is that the timing of the DSTB signal is the same for all the FECs. Subfigure (a) of 
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Figure 3-17 shows the DSTB signals measured on the FECs locating at the far-end side in each 

branch. There are small variations in the range of 1 to 2 ns, which are the routing delay on the PCB 

backplane. Subfigure (b) of Figure 3-17 shows that the delay between the readout clock and the 

DSTB signal30 is fixed to be around 21 to 22 ns. Depending on these values, the DSTB signal and 

the data words can be sampled at the falling edge of the readout clock. Considering that the second 

method is more reliable, this concept was used to implement the ALTRO Data Synchronizer. This 

sampling method has been verified to be stable through stress tests, which are discussed in section 

5.1.2. 

 

Figure 3-17 Screenshot of CHRDO operations. (a) DSTB signals measured on the FECs located 

at the far-end side of each branch31. (b) Timing of the Readout clock and the DSTB signal 

The ALTRO Trigger Generator issues triggers to the FECs. Two schemes can be used in trigger 

generation: (1) bypassing the local triggers from the Event Manager and (2) generating L1 and L2 

triggers whose parameters (length, delay, etc.) can be manually configured. The first scheme is 

default and applied in normal event readout procedure. The second one is designed for the purpose 

of system test.  

Branch Readout Unit32: Each Branch Readout Unit implements the event readout algorithm of its 

associated branch. It handles the orders from the Event Readout Manager and controls the ALTRO 

                                                        

30 Both the readout clock and the DSTB signal are measured on the RCU2, so the delay of the complete signal 

looping path (RCU2-> backplane -> FECs -> backplane -> RCU2) is considered.  

31 The screenshot was taken in persistent mode. The DSTB was asserted periodically and the signal line was high if 

the DSTB signal is not asserted. 

32 All the instructions motioned in this sub-section are presented in detail in [9]. 
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Bus Interface to read the event data from the FECs. Figure 3-18 shows the sub-modules of the 

Branch Readout Unit.  

Subfigure (a) and Subfigure (b) of Figure 3-19 show the two procedures that operate in parallel in 

the Branch Readout Unit during a readout process: Data Readout and Address Scanning. In the 

procedure of Data Readout, the Branch Readout Controller is the main building block. It receives 

the orders from the Event Readout Manager to start the readout. Each readout process includes the 

several CHRDO transactions and one RPINC transaction. In each CHRDO, the Branch Readout 

Controller reads one channel address from the Channel Address FIFO and request the Command 

Encoder to send a CHRDO command to the ALTRO Bus Interface. Meanwhile, the Branch Readout 

Controller also request the ALTRO Bus Interface to perform the ALTRO Bus protocol.  

 

Figure 3-18  Branch Readout Unit sub-module  

After the CHRDO transactions of all the channels that should be read are completed, the Event 

Readout Manager requests the Branch Readout Unit to perform RPINC transaction. Empty channels 

are skipped in sparse readout mode. This will be discussed later in this section. 

In the procedure of Address Scanning, two modes of readout are supported: full readout and sparse 
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readout. In full readout, all the channel addresses listed in the Readout List Memory (ROLM) are 

sequentially pushed into the Channel Address FIFO and then used in the CHRDO.  

In sparse readout, only the channels that contain event data are read. Each bit in the Hit List Memory 

(HLM) indicates whether the corresponding ALTRO channel contains event data or not. These bits 

are set before each readout process by executing two dedicated command to the Board Controller: 

Scan Event Length (SCEVL) and Event Length Readout (EVLRDO). Execution of SCEVL and 

EVLRDO introduces an overhead of ~91.3 μs, so sparse readout is only beneficial if more than ~140 

empty channels are skipped33. During the readout process, the Address Sequencer reads a channel 

address from the ROLM and uses it as the index to access the HLM. If the channel is not empty, the 

address is pushed the Channel Address FIFO. Otherwise, the channel address is discarded.  

 

Figure 3-19  Flow chart of the Branch Readout Unit. (a) Data Readout Procedure. (b) Address 

Scanning Procedure. 

Different to the memories in Xilinx FPGA on RCU1, the memories in the SF2 do not support an 

asynchronous read operation. Thus, it takes two clock cycles to check whether a channel is empty, 

                                                        

33 The readout time of each empty channel is measured to be ~650 ns.  
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which in total leads to an extra time of ~22 μs34 for reading a single event. Considering that it takes 

only ~106 μs to read an empty event (refer to section 3.3.3), this extra time is significant. To solve 

this problem, the Address Sequencer continuously reads channel addresses from the ROLM, check 

the corresponding bit in the HLM, and fill the addresses of the channels that are not empty to the 

Channel Address FIFO. Because this FIFO has asynchronous output, it can provide channel 

addresses to the Branch Readout Controller without any delay.  

This firmware prototype supports sparse readout, since it uses the concept of the RCU1 FPGA 

design. Later in the commissioning version, the sparse readout was first removed and later included 

again. The reason for these decisions will be discussed in detail in section 5.3.3. 

Event Readout Manager: The Event Readout Manager controls and monitors the event readout 

procedure. After being ordered the by the Event Manager, it controls all the four Branch Readout 

Units to start the readout in parallel and wait for their completion. Afterwards, it controls all the 

Branch Readout Units to execute RPINC and then reports to the Event Manager after the RPINC is 

finished in all the branches.   

Data Buffering: In this prototype, the data transmission is not in chunk-based mode but in linear 

mode, that is, data from a single channel is transferred round-robin from the four branches, i.e. one 

channel from Branch AI, then one channel from Branch AO, etc. Thus, data FIFOs are not 

implemented and two data memories are instead used to buffer the data. Each memory stores the 

event data that is read from a single ALTRO channel. Being controlled by the Memory Controller, 

the two memories work in ping-pong scheme. This avoids the ALTRO But Interface from being in 

idle state, and thereby increases the readout speed.  

• Event Manager 

The Event Manager consists of the Trigger Handler and the ALTRO Readout Controller. If the 

Trigger Handler receives a trigger sequence from the Trigger Receiver, it will issue L1 and L2 pulses 

to the FECs and increment the counter that records the number of pending events by one. 

If pending event exits, the ALTRO Readout Controller initiate an event readout by commanding the 

                                                        

34 22.4 μs = 12.5 ns (clock cycle) * 2 * 128 (channels in each FEC) * 7 (number of FECs in the largest branch) 
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Event Readout Manager and the Data Assembler. Afterwards, it will inform the Trigger Handler to 

decrease the counter.  

• Data Assembler 

The Data Assembler reads event data from the data memories in the four branches in a round-robin 

fashion, converts the 40-bit words into 32-bit words35, encapsulates them into packages, and then 

ships the packages to the DDL2 Module. Details regarding the RCU2 data format is shown in 

Appendix C and it is summarized in Figure 3-20.  

 

Figure 3-20 RCU2 Data package structure 

Each data package contains 12 CDH words, several segments of payload words, and 8 Trailer words. 

Each segment is the data from single channel. It contains the Channel Header and the Channel 

Payload. Correspondingly, the Data Assembler is partitioned in to the CDH constructor, the Payload 

constructor and the Trailer constructor, all of which are controlled by the Data Assembler Controller. 

The CDH constructor receives the CDH words from the Trigger Module and fill in the bits that 

stores the status of the readout. The Payload constructor reads data from the data memories in the 

four branches and then performs the 40-bit to 32-bit conversion. The Trailer constructor 

isimplemented to generate the trailer words. 

                                                        

35 The data words read from the ALTRO channels are 40-bit and the DDL2 protocol requires the data words to be 

32-bit.  
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• Discussion 

Compared to that in RCU1, this Readout Module has significant advantages on arranging the control 

flow of the event readout and modularity. Since the code was written from scratch, all the various 

patches are removed and the RCU2 design is closer to how the RCU1 design was envisaged 

originally. The following two features still need to be implemented to finalize the Readout Module: 

(1) The chunked-based readout algorithm, which is required by the data analyzing algorithms on 

the receiver side. 

(2) Improvement of the handling of the XOFF signal from the DDL2 link. Assertion of the XOFF 

signal means that the DDL2 link is saturated and the RCU2 must pause the data transmission 

immediately. In this version of Readout Module, the conversion and transmission are done in 

frames36 , each of which contains three sequential 40-bit words. The XOFF signal can be 

asserted at any given time, but the data conversion and transmission can only be suspended after 

a complete frame has been processed. Hence, there is a probability that the data is still being 

pushed into the DDL2 module even if the DDL2 link is saturated, and this will lead to the loss 

of data.  

3.3.3 Commissioning version 

Figure 3-21 shows the Readout Module in the commissioning version of the firmware. The design 

of this Readout Module is based on the second prototype, where many of the modules are similar. 

However, some parts are also completely redesigned by the design team in charge. At the time of 

writing, the design has been operating stably for several months on the TPC, even though a few 

features are still to be completed. This section discusses the commissioning version of the Readout 

Module highlighting on the following two major changes:  

(1) The chunk-based readout scheme has been implemented. The channel addresses in the ROLM 

are listed in dedicated order and a marker is inserted after the address of the last channel in each 

chunk. A data FIFO is instantiated in each branch to store the chunks of data and the Data 

Assembler has been modified to read to the four FIFOs in chunk-based round robin. In addition, 

                                                        

36 The least common multiple of 40 and 30 is 120, so each frame contains 120 bits (3 x 40-bit words). 
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a Channel Formatter has been implemented in each branch to validate the event data that is read 

from the ALTRO channels, convert the data from 40-bit words into 32-bit words, and push the 

data into the data FIFO.  

(2) XOFF signal from the DDL2 link is handled in a proper manner.   

 

Figure 3-21 Commissioning version of Readout Module 

• Channel Formatter 

As shown in Figure 3-22, the Channel Formatter is constituted of the Channel Trailer Checker, the 

Data Memory and the Channel Encoder. 
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The Channel Trailer Checker decodes the trailer word37 of each data package from the ALTRO 

channels to fetch the signatures (e.g. number of data words, channel address, etc.), which are then 

checked against the same type of signatures recorded by the ALTRO Bus Interface. If these 

signatures are matched, the data is then pushed into the Data Memory and shipped to the Channel 

Encoder. In the Channel Encoder, the 40-bit words are converted into 32-bit words and then pushed 

into the data FIFO. For the empty channels that contain no event data, solely the trailer words are 

processed. 

In the second prototype, data words are transmitted to the DDL2 module immediately after they are 

converted from 40-bit into 32-bit (30-bit data plus 2-bit symbol). As discussed in section 3.3.2, this 

scheme leads to the loss of data because the XOFF signal is not handled properly. In the 

commissioning version, the data conversion is done in the Channel Formatter and the data 

transmission is done in the Data Assembler. The Channel Formatter pushes the data into the dual-

port FIFO. Data transmission from the dual-port FIFO to the Data Assembler can be suspended 

immediately if the XOFF signal is asserted.  

 

Figure 3-22 Sub-module topology of the Channel Formatter 

                                                        

37 Details can be found in reference [9]. 
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• Data Assembler 

As shown in Figure 3-21, a new module called Channel Data Conditioner has been implemented in 

the Data Assembler. It reads data from the four data FIFOs in chunk-based round-robin. Additionally, 

it stops reading data immediately if the XOFF signal is asserted.   

• Branch Readout Unit 

Figure 3-23 shows the Branch Readout Unit, which consists of the Readout Sequencer, the Branch 

Readout Controller and the Transaction Handler. The Readout Sequencer provides the addresses of 

the ALTRO channels to the Readout Controller, which controls the event readout process in a single 

branch. The Transaction Handler delivers instructions to the ALTRO Bus Interface and collects the 

above-mentioned signatures in each CHRDO process.  

 

Figure 3-23 Sub-module topology of the Branch Readout Unit 

The sparse readout functionality was not implemented at first, since it was assumed that the splitting 

of the backplanes would make it obsolete. The sparse readout is dedicated for the events that contain 

large number of empty channels, and the discussion below considers the extreme situation, that is, 

the empty events.  
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Readout time of a single event in full readout mode and sparse readout mode can be calculated with 

equation 3.1 and 3.2, respectively, where 𝑁𝐹𝐸𝐶𝑠  means the maximum number of FECs in each 

branch. 

𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝐹𝑢𝑙𝑙 = 𝑁𝐹𝐸𝐶𝑠 ∗ 128 ∗ 𝑇𝐶𝐻𝑅𝐷𝑂 + 𝑇𝑅𝑃𝐼𝑁𝐶  (3.1) 

𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝑆𝑝𝑎𝑟𝑠𝑒 = 𝑇𝑆𝐶𝐸𝑉𝐿  + 𝑁𝐹𝐸𝐶𝑠 ∗ 𝑇𝐸𝑉𝐿𝑅𝐷𝑂 + 𝑇𝑅𝑃𝐼𝑁𝐶 + 𝑇𝑅𝑂𝐿𝑀 𝑠𝑐𝑎𝑛   (3.2) 

 SCEVL EVLRDO CHRDO RPINC ROLM Scan 

Time  ~90.6 μs ~0.775 μs ~450 ns + 25 ns * 𝑁𝑤𝑜𝑟𝑑𝑠 ~0.475 μs 𝑁𝐹𝐸𝐶𝑠* 128 * 12.5 ns 

Table 3-2 Execution time of each transaction for RCU1 [20]  

In the RCU1, the 𝑁𝐹𝐸𝐶𝑠 equals 13. The 𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝐹𝑢𝑙𝑙 and the 𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝑆𝑝𝑎𝑟𝑠𝑒 for an empty 

event (𝑁𝑤𝑜𝑟𝑑𝑠 = 0) are ~750 μs and ~146 μs, respectively. Because the fixed busy time of the TPC 

in Run1 was 300 μs38, all the readout time that are shorter than this will still be counted as 300 μs. 

Still, the full readout consumes a significant time of ~450 μs more than the sparse readout. In the 

RCU2, the 𝑁𝐹𝐸𝐶𝑠 is decreased to 7. The 𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝐹𝑢𝑙𝑙 and the 𝑅𝐷𝑂 𝑇𝑖𝑚𝑒𝑆𝑝𝑎𝑟𝑠𝑒 for an empty 

event drops to ~403 μs and ~106 μs, respectively. Both these two values are smaller than the fixed 

busy time of the TPC in Run2, which is 500 μs. Therefore, it was concluded that the sparse readout 

would not be beneficial for the readout speed of the RCU2.  

What needs to be emphasized is that the above calculations were based on the RCU1 firmware. 

However, for the RCU2, a more robust version of ALTRO bus protocol was implemented at the 

expenses of the time of each transaction. This has a direct implication on the readout speed, as is 

discussed in section 5.3.3. Thus, both the sparse readout and the ALTRO bus protocol with the same 

timing values as for RCU1 have later been implemented for the RCU2.   

3.4 Summary  

In this chapter, the RCU2 has been introduced and the hardware, software and firmware have been 

                                                        

38 Values of busy time in TPC are from the TPC Run Coordinator Chilo Garabatos Cuadrado 

(chilo.garabatos.cuadrado@cern.ch). 

mailto:chilo.garabatos.cuadrado@cern.ch
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discussed, where the main focus is on firmware. It has gone through two proper versions, the second 

prototype and the commissioning version. The commissioning version is the final firmware that has 

been installed and commissioned at TPC. However, the second prototype was the firmware used in 

the system level irradiation tests (discussed in section 4.4). Since the system-level irradiation test 

was very important for the development and enhancement of the commissioning version, both 

firmware versions are discussed in depth in this chapter.  
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4 Radiation Tolerance of the RCU2 

The increased radiation level in LHC Run2 with respect to LHC Run1 requires an improved 

radiation tolerance of the TPC readout electronics. A flash-based Microsemi SF2 FPGA SoC was 

therefore chosen as the main FPGA of the RCU2. The SF2 can provide strong radiation tolerance 

mainly due to its SEU immune configuration cells. Nevertheless, SEUs or SEFIs may still occur in 

the SRAMs, the registers, the clocking elements (e.g. PLLs), the MSS as well as in the hardware 

interface of the RCU2. In addition, SEL and TID effects should also be considered. Therefore, 

irradiation campaigns were needed to investigate the radiation tolerance of the RCU2. 

In total seven irradiation campaigns were performed between November 2013 and May 2015. The 

overview of each irradiation test is presented in Table 4-1. Campaign No.1 and No.2 were performed 

at the Oslo Cyclotron. Campaign No.3, No.4, No.6 and No.7 were performed at the Svedberg 

Laboratory. Campaign No.6 were performed at the Nuclear Physics Institute in Prague. Energy of 

the proton beams was 25 MeV, 180 MeV and 35 MeV, respectively. The RCU2 was tested in three 

stages. First, the PCB components, such as power regulators, bus transceivers and buffers were 

tested. Next, the SF2 FPGA, the hardware interfaces and the RadMon were tested separately. At last, 

a full system test of the RCU2 including the backplanes and FECs were performed. 

The PCB level components were mainly tested for TID effects at the Oslo Cyclotron and no major 

problems were detected. These tests will not be discussed in this thesis but an overview can be found 

in [83]. This chapter focuses on the irradiation tests of the SF2 FPGA, the hardware interfaces, the 

RadMon and the RCU2 system test.  

To characterize and evaluate the radiation tolerance of the tested devices, the MTBF in Run2 of the 

different types of errors has been calculated with the cross-section39 extracted from the tests. The 

MTBF in Run2 presented is the worst-case estimation, that is, the radiation load in terms of the flux 

of fast hadrons on the RCU2s that populate in the innermost locations (3.0 kHz/cm2) has been used 

and all the 216 RCU2s plus 4356 Front-end Cards (FECs) have been counted in. In Run2, the RCU2 

is expected to perform no worse than the RCU1 in Run1, in which the longest data-taking session 

                                                        

39  If not otherwise stated, the uncertainty of the fluence and the number of SEE (NSEE ) is 15% and 
1

√NSEE
 , 

respectively (discussed in section 2.3.3). The uncertainty of cross-section is calculated with equation 2.7. 

http://www.tsl.uu.se/
http://www.tsl.uu.se/
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in heavy-ion run lasted for ~8 hours. Hence, the MTBF in Run2 of all the RCU2s is compared with 

this number of 8 hours to compare with the radiation tolerance with the RCU1. 

Campaign 

ID 

Time Test Devices Test Objectives 

No.1  Nov.2013 PCB components  Mainly for TID 

No.2 April 2014 PCB components; Mainly for TID 

ES-FG896  SRAM and TID 

No.3 May 2014 FG484 x 2  SEL, flip-flop, SRAM, PLL and TID 

ES-FG896  TID of SF2 

RCU2 (FG896-v1) TTC Interface with custom CDR;  

SEL and TID of SF2; 

RCU2 (ES-FG896) DAQ interface  

TID of SF2 

No.4 June 2014 RCU2 (FG896-v1) TTC Interface with ADN2814 CDR;  

Signal quality of optical receivers  

No.5 Sep. 2014 RCU2 (ES-FG896) TTC Interface with TTCrx chip;  

No.6 Nov. 2014 RCU2 (FG896-v2)  SEL, PLL and TID of SF2; 

TTC Interface with TTCrx chip 

RCU2 (FG896-v1) x 2  DCS Interface; 

TID of SF2 

Radiation Monitor SEU sensitivity 

No.7 April 2015 RCU2(FG896-v2) x2  System-level Test;  

TID of SF2 

Radiation Monitor SEU sensitivity 

Table 4-1 Overview of the irradiation campaigns (time-wise) 

4.1 Tested devices 

Four versions of SF2 chips were tested and all these chips are from the series of M2S050 [63]. As 
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listed in Table 4-1, they are shortened as their packages: the FG896-v1, the FG896-v240, the FG484 

and the ES-FG896. FG896-v2 is the version that is used on the final RCU2 design. It is the version 

with SEL enhanced silicon. FG484 is the same as FG896 but with less IOs [63]. ES-FG896 is the 

engineering sample version of FG896. The FG484 and the ES-FG896 were available one year in 

advance to FG896, so they were good candidates to characterize the SF2 in the initial phase of the 

RCU2 project.  

 

Figure 4-1 Emcraft SF2 Starter-Kit [84] 

The SF2 chips were tested either on the Emcraft SF2 Starter-Kit [84] or the RCU2 board. The 

Starter-Kit is shown in Figure 4-1. It was small, user-friendly and with the correct FPGA (either 

FG484 or ES-FG896). It was used as the device under test in campaign No.2 and No.3. The Starter-

Kits could be ordered and tested a year in advance of the first prototype of the RCU2, which enabled 

important irradiation tests to be performed prior to moving to hardware production. In addition, 

these Starter-Kits were also very easy to set up with Board Support Packages and Linux packages 

that could be downloaded from Emcraft. This meant that it was easy to utilize them as part of the 

test equipment as well, where they were set up to monitor the current consumption, read out test 

                                                        

40 The subversions of FG896, i.e. FG896-v1 and FG896-v2 are defined by the author. It is used only in this thesis 

to identify the chips with SEL enhanced silicon. 
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data, etc. 

The TTC interface, the DAQ interface, the DCS interface, the Radiation Monitor and the whole 

system were tested on the RCU2 board, which has been described in detail in Chapter 3.  

4.2 Characterization of the Smartfusion2 (SF2) 

Because the SF2 FPGA may suffer SEEs and TID effects in the radiation environment of LHC Run2, 

corresponding irradiation tests were therefore performed to characterize its vulnerability to these 

radiation effects. This section discusses the test procedure and gives an analysis of the test results. 

First of all, the tests for SEL are discussed. Furthermore, the tests for SEU in the fabric SRAMs, the 

embedded SRAMs and the flip-flops are discussed. At last, the tests for TID effects are discussed. 

Stability of the MSS, which was also predicted to be affected by SEEs, was tested as part of the 

system-level irradiation campaign, which will be discussed in section 4.4.  

4.2.1 Single Event Latch-up (SEL) test  

A sudden and large increase in the current consumption from the power supply of the SF2 FPGA 

can be interpreted as the occurrence of SEL. As discussed in section 2.2.2, SEL may occur on the 

SF2 and cause destructive damage. Therefore, irradiation tests for SEL were performed at the 

Svedberg Laboratory. The first SEL test was performed with the FG896-v1 in campaign No.3. After 

we got the FG896-v2 (with SEL enhanced silicon), the SEL test was performed again in campaign 

No.6. The setup and procedure of these two tests are the same.  

 

Figure 4-2 SEL test setup  
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• Test setup and procedure 

Figure 4-2 shows the setup for testing SEL. The power supply of the SF2 FPGA (1.2 V), the charge 

pump in the programming logic (2.5 V) and the DDR bank (0.5 V) are monitored in terms of voltage 

level and current consumption. These measurements are performed with three INA226 devices [82] 

on a monitoring board. The INA226 device is a current and power monitor with I²C® compatible 

interface from Texas Instruments. All the INA226 devices connect to the same I²C® bus and 

communicate with a SF2 Starter-Kit [84] through a I²C® Master Module. The Starter-Kit is set up 

with a Linux Platform and is controlled by the monitoring PC over an Ethernet link. 

 

Figure 4-3 Current consumption of the SF2 FPGA in first SEL test 

• First SEL test  

The first SEL test was performed in campaign No.3, on a RCU2 prototype with FG896-v1. Current 

jumps were observed on the power supply of the SF2 FPGA. Figure 4-3 shows an example of the 

monitored current and the voltage level. To study how the SEL rate is effected by the supply voltage 

of the SF2, three voltage levels, 1.0 V, 1.1 V and 1.2 V, were used in the test. Figure 4-4 shows the 

cross-section of the current jumps with different amplitude. It was found that both the probability 

and amplitude of the current jumps can be reduced by lowering the supply voltage. As discussed in 

section 2.2.2, SEL is triggered by the formation of parasitic bipolar transistors in a CMOS circuit. 

At lower bias voltage, the gain of the parasitic transistors and the amount of charge collected from 

an impinging particle both decrease. These factors lead to the observed decrease in the susceptibility 
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of SEL. However, if the supply voltage is lower than 1.14 V41, the FPGA operates outside the timing 

models provided by the Libero SoC software [85] and the timing closure cannot be guaranteed. The 

measured SEL events were all non-destructive. A power cycle could always recover the SF2 back 

to normal operation. However, an SEL might cause errors in the PLL (section 4.2.5) and the 

hardware interfaces (section 3.1.3). Therefore, further study on the SEL was needed to confirm 

whether the SF2 was suitable for the RCU2. 

 

Figure 4-4 Cross-section of current jumps vs. supply voltage in the first SEL test  

• Second SEL test  

By November 2014, Microsemi released the FG896-v2 with SEL enhanced silicon. The SEL test 

was performed again on one RCU2 with a FG896-v2 in campaign No.6. In the test, the SF2 chip 

was exposed to a fluence of 6.63 x 109 p/cm2. As shown in Figure 4-5, the current consumption of 

the SF2 FPGA was stable, which means that no SEL was observed. The small variations on the 

current comes from normal operation of the firmware. Later in [44] , Microsemi characterized that 

the SEL LET threshold of SF2 for maximum operating voltages at 100°C is determined to be higher 

than 22.5 MeV·cm2/mg. Devices having threshold LETs larger than 12 MeV·cm2/mg are often 

                                                        

41 The minimum requirement in the datasheet [27]. 
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assumed to be immune to protons[87]. I.e. SEL in the SF2 was no longer a concern in the radiation 

environment of LHC Run2.  

 

Figure 4-5 Current consumption of the SF2 FPGA in second SEL test 

4.2.2 Fabric SRAM test 

In the FPGA fabric of each SF2 there are 69 Large SRAMs (LSRAM) and 72 micro SRAMs 

(uSRAMs). Each LSRAM contains 1024 x 18 bits and each uSRAM contains 64 x 18 bits. The 

purpose of testing SRAM is to find the SEU cross-section. Measurements of SEUs in these fabric 

SRAMs were performed on one ES-FG896 chip in campaign No.2 at the Oslo Cyclotron and on 

two FG484 chips in campaign No.3 at the Svedberg Laboratory. The procedure of these two tests is 

the same. 

• Test setup and procedure 

The test setup is shown in Figure 4-6. It includes a SF2 Starter-Kit in radiation and a monitoring PC 

in the shielded area. On the tested Starter-Kit, all the 69 LSRAMs and 72 uSRAMs are configured 

to be 18-bit width. The SEU Monitor, which contains a Finite State Machine (FSM) and several 

registers, detects and counts the SEUs in the SRAMs and sends the numbers to the MSS, from where 

they are periodically transmitted to the Monitoring PC via an UART link. 
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Figure 4-6 SRAM irradiation test setup 

Before the test, the FSM in the SEU Monitor fills the RAM blocks with a dedicated pattern of data. 

In the test, the FSM reads one 18-bit word at one time and all the locations in each RAM block and 

every block on the chip are read sequentially. If any upset is detected, the FSM records the time 

stamp, increases the corresponding counters, and then re-fills the location to correct the error. In 

case any SEU occurs in the state register of this FSM, it will be forced back to the state of detecting 

SEUs. This ensures that the test can continue. For each kind of the SRAMs, there is one address 

register, which stores the address to be checked, and two status registers, one counts the number of 

SEUs and the other one records the time stamp when the latest SEU is detected. Triple Modular 

Redundancy is used to protect these registers against SEUs.  

 

Figure 4-7 SEUs and fluence for the SRAM test in campaign No.3 
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• Test results  

In campaign No.2, the ES-FG896 chip was irradiated up to a fluence of 1.04 x 1011 p/cm2. In total 

2402 SEUs were detected in the LSRAMs and 72 SEUs were detected in the uSRAMs. In campaign 

No.3, the two FG484 chips were exposed to the fluence of 1.66 x 1011 p/cm2 and 1.75 x 1011 p/cm2, 

respectively. On the first FG484, 3362 SEUs were detected in the LSRAMs and 148 SEUs were 

detected in the uSRAMs. On the second FG484, 3779 SEUs were detected in the LSRAMs and 159 

SEUs were detected in the uSRAMs.  

The SEUs and the fluence of the first FG484 in campaign No.3 are plotted as a function of time in 

Figure 4-7. There is a linear dependence between the number of SEUs and the fluence. This is 

expected and proves the reliability of the test procedure. The plots for the second FG484 at campaign 

No.3 and the ES-FG896 at the campaign No.2 are shown in Appendix E.1, in which the linear 

dependency between fluence and the SEU counts also can be seen.  

Memory  

(bits) 

Campaign ID 

 

 package 

 

Fluence  

(p/cm2) 

SEUs cross-section  

(cm2/bit) 

LSRAM  

(1271808) 

No.2 ES-FG896 1.04E+11 2402 1.8E-14 ± 0.3E-14 

No.3  FG484 No.1 1.66E+11 3362 1.6E-14 ± 0.2E-14 

FG484 No.2 1.75E+11  3779 1.7E-14 ± 0.3E-14 

Microsemi [44] FG896 1.38E+11 4421 2.5E-14 

uSRAM 

(82944) 

No.2 ES-FG896 1.04E+11 72 8.4E-15 ± 1.6E-15 

No.3 FG484 No.1 1.66E+11 148 1.1E-14 ± 0.2E-14 

FG484 No.2 1.75E+11  159 1.1E-14 ± 0.2E-14 

Microsemi [44] FG896 1.38E+11 95 1.3E-14 

eSRAM 

(524288) 

No.7 FG896-v2 4.99E+10 352 1.4E-14 ± 0.2E-14 

Table 4-2 SRAM test results42 

The results of both these tests are presented in Table 4-2. For the same kind of SRAM, the cross-

section extracted from each test is similar. Later in August 2015, Microsemi published its test results 

of the FG896 in [44]. The cross-section of LSRAM and uSRAM reported by Microsemi is at the 

                                                        

42 Campaign Microsemi means the results are from Microsemi Inc. These are highlighted with an italic font. 
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same level as the one extracted from our tests. While estimating the reliability of the SRAMs on the 

RCU2 (discussed in section 5.3.4), the average cross-section extracted from our tests is used, that 

is, (1.7 ± 0.2) x 10-14 cm2/bit for the LSRAM and (1.0 ± 0.2) x 10-14 cm2/bit for the uSRAM. 

4.2.3 Embedded SRAM test 

Each SF2 also has two embedded SRAMs (eSRAMs) in the MSS, which can be protected by 

SECDED. The size of each SRAM is 64 KBytes (80 KBytes if SECDED is disabled). On the RCU2, 

the bootloader and the Uboot of the Linux system are uploaded in one of the eSRAMs on power-

up. Thus, the cross-section for SEU in the eSRAM was characterized with one FG896-v2 chip (SEL 

enhanced silicon) in campaign No.7. The following procedure was used in the test43: 

(1) Enable the SECDED protection on the eSRAM. The SECDED mechanism counts the SEUs 

and store the number into an internal error counter. 

(2) Write a dedicated pattern to all the addresses of the eSRAM. 

(3) Irradiate the SF2 and read the error counter periodically through a serial link (UART).  

 

Figure 4-8 SEUs and fluence for the eSRAM test at campaign No.7 

The eSRAM was exposed to a fluence of 4.99 x 1010 p/cm2 and 352 SEUs were detected. As shown 

                                                        

43 The test program was written by Torsten Alt (torsten.alt@cern.ch) but the tests were performed by the author. 

mailto:torsten.alt@cern.ch
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in Figure 4-8, the increase of the SEUs is linear proportional to the accumulated fluence. This proves 

the reliability of the test. As presented in Table 4-2, the cross-section for SEU in eSRAM is     (1.4 

± 0.2) x 10-14 cm2/bit, which is similar to the fabric SRAMs.  

4.2.4 Flip-flop test 

The purpose of the flip-flop test is to estimate the cross-section of SET and SEU. The test was 

performed on a Starter-Kit with FG484 in campaign No.3 at the Svedberg Laboratory. 

• Test setup and procedure 

 

Figure 4-9 Flip-flop test setup   

The test setup is shown in Figure 4-9. A SF2 Starter-Kit is positioned in the radiation area for testing. 

Another Starter-Kit and a PC are in the shielded area for monitoring. On the tested SF2, four chains 

of shift registers are instantiated. The input stream of each chain is alternating ‘0’ and ‘1’. A window 

of 4 flip-flops is placed at the end of each chain to monitor the SEU and the burst errors44. The 

                                                        

44 Burst error refers to more than one bit get flipped, which is normally caused by an error on the clock. The idea 

of having an output window is from reference [86]. 
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monitoring Starter-Kit reads the output window via 4 dedicated pins and counts the bit-flips.  

To increase the sensitivity for SET, some tests include four inverters between subsequent flip-flops. 

It is expected that more bit-flips can be seen by adding combinational logic and increasing the clock 

frequency of the register chain [34][35]. 

• Test results  

In the test, the length of each register chain was set to be 2500. The design was operated at 40 MHz, 

80 MHz and 160 MHz. In addition, inverters were placed in the register chain in every second test 

of the same frequency45. Several SEUs but no burst errors were observed. The test results are listed 

in Table 4-3. The results show no significant difference between the different test designs and 

operation frequencies. This could be due to low statistics combined with that the design does not 

sufficiently enhance the SET sensitivity, e.g. too few inverters. The cross-section extracted from all 

the tests is in the same level and similar to the number published by Microsemi. Since the RCU2 

firmware operates at 80 MHz, the cross-section of the flip-flops on the RCU2 should be comparable 

to that of the test design with inverters operated at 80 MHz, that is, (2.6 ± 0.7) x 10-14 cm2.  

Campaign ID  

(SF2 version) 

flip-flops  Frequency 

(MHz) 

Inverters Fluence 

(p/cm2) 

Flips cross-section  

(cm2/flip-flop) 

No.3 

(FG484) 

4 x 2500 40  0 6.21E+10 19 3.1E-14 ± 0.7E-14 

4 x 2500 40  4 1.42E+11 51 3.6E-14 ± 0.5E-14 

4 x 2500 80  0 7.22E+10 30 4.2E-14 ± 0.7E-14 

4 x 2500 80  4 9.91E+10 26 2.6E-14 ± 0.7E-14 

4 x 2500 160  0 1.61E+11 32 2.0E-14 ± 0.4E-14 

Microsemi [44] 

(FG896) 

4 x 2000 10 0 1.38E+11 20 1.8E-14 

Table 4-3 Flip-flop test results46 

                                                        

45 The SF2 chip failed to be reprogrammed when we want to test the design with inverters at 160 MHz. 

46 Campaign Microsemi means the results are from Microsemi Inc. These are highlighted with an italic font. 
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4.2.5 PLL test 

The use of PLLs is unavoidable in a modern digital design. Therefore, the radiation tolerance of the 

PLLs in the SF2 is critical and must be carefully evaluated. The PLLs were tested twice at the 

Svedberg Laboratory (campaign No.3 and No.6).  

• First PLL test  

The setup of the first PLL test is shown in Figure 4-10. One SF2 Starter-Kit is put into the radiation 

area. Another Starter-Kit and a monitoring PC are put in the shielded area. The lock signals of three 

fabric PLLs and one MSS PLL on the tested Starter-Kit are fed into the shielded Starter-Kit (Monitor 

Board) via General-purpose input/output. The Monitor Board counts the losses of the lock signal 

and sends the number to a monitoring PC through serial link. To study the stability of the output 

clock when a PLL loses its lock, the output clock of the PLL1 is used as the input clock of the PLL2. 

If the lock of PLL2 is lost every time when the lock of PLL1 is lost, it would be a clear indication 

of instabilities on the output clock of the PLL1.  

 

Figure 4-10 First PLL test setup in campaign No.3  

In this test, two SF2 Starter-Kits with FG484 were irradiated one by one. The first observation was 

that as long as the PLL1 lost its lock, the PLL2 lost its lock as well. This shows that the output clock 

of the PLL in SF2 is not reliable when it loses its lock. In the SF2, each PLL can be configured to 

three modes [49] :  

(1) It holds the output in reset (output low) until it is locked. After which, the output is released and 

synchronized with the reference clock. 
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(2) It generates clock before being locked and resynchronizes with the reference clock after it is 

locked. 

(3) It generates clock before it is locked and do not resynchronize with the reference clock after it 

is locked. 

 

Figure 4-11 Output clock of PLL with different configuration when it loses lock. 

As shown in Figure 4-11, no matter which mode the PLL is configured to, it cannot generate reliable 

clock output if it loses lock. If the PLL is configured to mode (1), the output will be low. If the PLL 

is configured to mode (2) or mode (3), the output clock will be unstable for a few clock cycles. The 

clocks must be stable a configurable amount of cycles before the lock is retained.  

The two Starter-Kits were exposed to a total fluence of 5.38 x 1011 p/cm2. In total 381 losses were 

observed on the fabric PLLs and 143 losses were observed on the MSS PLLs. The losses of PLL2 

lock caused by the PLL1 error has been excluded from the counts. As listed in Table 4-4, the cross-

section of all the tested PLLs is similar. The worst cross-section of the fabric PLL and the MSS PLL 



 

 

79 

 

 

is (2.6 ± 0.5) x 10-10 cm2/PLL and (2.7 ± 0.5) x 10-10 cm2/PLL, respectively. These cross-section 

numbers are about 100 times higher than the ones later reported by Microsemi. Since some SELs 

occurred in the test (section 4.2.1), it was considered that some of the observed PLL errors were 

induced by the SEL in the SF2.  

Campaign 

ID 

SF2 Version PLL ID Errors  Fluence 

(p/cm2) 

Cross-section  

(cm2/PLL) 

No.3 

 

FG484 No.1 

(SEL detected) 

Fabric PLL1 52 2.42E+11 2.2E-10 ± 0.4E-10 

Fabric PLL2 62 2.42E+11 2.6E-10 ± 0.5E-10 

Fabric PLL3 60 2.42E+11 2.5E-10 ± 0.5E-10 

MSS PLL 65 2.42E+11 2.7E-10 ± 0.5E-10 

FG484 No.2 

(SEL detected) 

Fabric PLL1 65 2.96E+11 2.2E-10 ± 0.4E-10 

Fabric PLL2 73 2.96E+11 2.5E-10 ± 0.5E-10 

Fabric PLL3 69 2.96E+11 2.3E-10 ± 0.5E-10 

MSS PLL 78 2.96E+11 2.6E-10 ± 0.5E-10 

No.6 FG896-v2  

(SEL not detected) 

Fabric PLL1 4 7.28E+11 5.5E-12 ± 2.9E-12 

Fabric PLL2 5 7.28E+11 6.9E-12 ± 3.4E-12 

Fabric PLL3 4 7.28E+11 5.5E-12 ± 2.9E-12 

MSS PLL 2 7.28E+11 2.8E-12 ± 2.0E-12 

Microsemi [44]  M2S090 Fabric PLL 1 1.37E+11 7.3E-12  

Table 4-4 PLL test results47 

• Second PLL test  

After Microsemi corrected the SEL issue, the PLL test was performed again in campaign No.6 on a 

FG896-v2. The test setup is shown in Figure 4-10. A RCU2 prototype was put in the radiation area 

for testing. A Starter-Kit and a PC was placed in the shielded area for monitoring. The RCU2 

communicates with the Starter-Kit through an SPI interface. Because the VHDL modules for 

detecting and counting the loss of the PLL lock signal is also in the radiation area, Triple Modular 

Redundancy are implemented to protect them against SEUs. The lock signals of three fabric PLLs 

plus one MSS PLL are monitored. No cascade of PLLs was implemented in the test design, since 

the aim of the test was to observe the lock signal of each PLL directly.  

                                                        

47 Campaign Microsemi means the results are from Microsemi Inc. 
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The test card was exposed to a fluence of 7.28 x 1011 p/cm2 and in total 15 losses were detected. 

During the test, no SEL was observed on the SF2. The test results are presented in Table 4-4. The 

average cross-section of the fabric PLL is (6.0 ± 3.8) x 10-12 cm2/PLL and the cross-section of the 

MSS PLL is (2.8 ± 2.0) x 10-12 cm2/PLL. These numbers are similar to the cross-section of the fabric 

PLL published by Microsemi. This implies that a considerable proportion of the PLL errors in the 

first test may be induced by the SEL.  

 

Figure 4-12 Second PLL test setup in campaign No.6 

4.2.6 Total Ionizing Dose (TID) effects test  

As discussed in section 2.2.3, the SF2 FPGA, especially its charge pump, may be sensitive to TID 

effects [40][47]. During all the irradiation tests, in total 11 SF2 chips were exposed to different dose 

levels. Due to limited test time and available devices, the tests for TID effects were not very 

systematic. The programmability and functionality of each SF2 chip was checked immediately after 

being irradiated.  

All the chips were still fully functional after being exposed to a dose from ~0.7 krad to ~48 krad. 

The observations on programmability are listed in Figure 4-13, in which No.1 to No.5 are ES-FG896 

chips, No.6 to No.9 are FG896 chips, and No.10 and No.11 are FG484 chips. The chips that were 

exposed to more than ~2.5 krad could not be reprogrammed. The chips that received a dose less 

than ~2.4 krad could be programmed immediately after the tests. Interestingly, one FG896 (No.8 in 
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Figure 4-13) that was exposed to ~5.5 krad failed to be reprogrammed right after the test but 

retrieved its programmability after two weeks (room temperature). This indicates a possible 

annealing effect on the SF2. One of the ES-FG896 chips (No.5 in Figure 4-13) was dedicated to 

TID testing and was irradiated in steps of ~0.5 krad. It failed to be reprogrammed after receiving 

only 2.5 krad.  

 

Figure 4-13 TID effect on the SF2 chip  

For 10 years’ operation in ALICE experiment, the TPC electronics located in the innermost 

partitions are estimated to receive a total dose of ~1.6 krad, this calculation is based on the radiation 

load in Run1 [1]. In Run2, the radiation load is about 3.75 times higher and the operation period is 

planned to be 3 years. Based on these numbers, the RCU2 is estimated to receive less than ~1.8 krad. 

Considering also the possible annealing effect, the TID effects should not be a concern for the SF2. 

4.3 Hardware Interface tests 

As discussed in section 2.2, the TTC interface, the DAQ interface, and the DCS interface on the 

RCU2 may experience SEFIs in the radiation environment of the TPC. Therefore, irradiation tests 

were performed to evaluate their radiation tolerance.  
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4.3.1 TTC interface test 

The TTC interface includes an optical receiver and a CDR module. As discussed in section 3.1.2, 

the TTCrx chip, which was used as the CDR on the RCU1 and had been proven stable in Run1, was 

out of production and only a limited number was available when the RCU2 was designed. Therefore, 

a custom CDR design [66] in the SF2 FPGA and a commercial CDR - ADN2814 [65] were proposed 

as alternatives. The radiation tolerance of these new CDR solutions needed to be evaluated. In 

addition, an optical receiver whose radiation tolerance could satisfy the requirement of RCU2 was 

also missing.   

 

Figure 4-14 Setup of the TTC interface test 

Figure 4-14 shows the setup for testing the TTC interface. A local trigger unit feeds clock and 

triggers with a BiPhase Mark Encoded signal to the TTC interface. The triggers are issued at a 

configurable rate of 1 Hz, 10 Hz or 1 kHz. The TTC clock recovered by the CDR module serves as 

the reference clock of two PLLs (PLL1 and PLL2). The output clock of PLL1 drives the Trigger 

Decoder, which decodes the TTC data and records the errors in the data. The lock signals of both 

PLLs are monitored by a module using an independent clock. If only a single PLL loses lock, it 

should be caused by an error in the PLL itself. If both PLLs lose lock at the same time, the reason 

is most likely related to problems with the recovered TTC clock. A Linux system that operates in 

the MSS reads all the test results via an APB bus and passes the numbers to a monitoring PC via an 

UART interface.  
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The custom CDR and the ADN2814 CDR were tested in campaign No.3 and No.6, respectively. 

The optical receiver on the tested RCU2 is the Avago HFBR-2316TZ [88] , which was chosen based 

on irradiation tests originally performed by the TTC group at CERN in 2003 [64]. 

In the test, the following three types of error were expected and monitored: (1) hamming errors in 

TTC data signal recovered by the CDR, (2) errors related to the decoding of the TTC data signal in 

the Trigger Decoder and (3) errors in the recovered TTC clock signal.  

The number of error type (1) and type (2) were found to be highly dependent on the frequency of   

type (3) errors and on the rate of the input trigger. There was a fairy low number of hamming or 

decoding errors when the clock was stable. It is obvious that the increase of the trigger rate will 

enlarge the volume of the data received by the TTC interface, and consequently induce more errors. 

Therefore, focus of the test was put on observing the stability of the recovered TTC clock signal, 

i.e. the lock signals of the two PLLs.  

Campaign ID  

(CDR solution) 

Irradiated Device Fluence  

(p/cm2) 

Cross-section  

(cm2) 

MTBF in Run2 

(hours) 

No.3 

(Custom CDR) 

SF2 chip 1.92E+11 1.0E-10 ± 0.2E-10  

(20 errors48) 

4.12 ± 0.64  

Avago HFBR-2316TZ 1.00E+11 6.1E-9 ± 0.9E-9  

(607 errors) 

0.07 ± 0.01  

No.4 

(ADN2814 CDR) 

ADN2814 2.43E+10 3.7E-10 ± 0.6E-10  

(9 errors) 

1.16 ± 0.18 

Avago HFBR-2316TZ 2.53E+10 2.4E-9 ± 0.4E-9  

(60 errors) 

0.17 ± 0.12  

both ADN2814 and 

Avago HFBR-2316TZ 

1.66E+11 3.2E-9 ± 0.5E-9  

(538 errors) 

0.18 ± 0.03 

No.5 

(TTCrx) 

both TTCrx and  

PLD-2317TM 

5.54E+10 < 1.8E-11 

(0 errors) 

> 23.7 

No.6 

(TTCrx) 

both TTCrx and  

PLD-2317TM 

4.49E+11 < 2.23E-12 

(0 errors) 

> 192 

Table 4-5 TTC interface test results (PLL lose lock) 

                                                        

48 In total 42 losses were detected. But 22 of them were observed when current jumps (SEL) occurred and a power 

cycled was needed to remove these errors. Hence, they are removed from the statistics.  
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In the test, the optical receiver and the CDR were irradiated either separately or together. The test 

results are listed in Table 4-5. In general, the error rate is higher when the optical receiver was 

irradiated than when the SF2 chip was irradiated. Assuming only the optical receiver is in radiation, 

the MTBF in Run2 of ADN2814 CDR solution and custom CDR solution is only ~0.17 hours and 

~0.07 hours, respectively. Noticeably, the cross-section of the Avago HFBR-2316TZ extracted from 

the campaign No.3 and No.4 is different but still in the same order. This might be caused by the 

variations from device to device. To figure out the reason for these unacceptable error rates, several 

possible optical receivers for the RCU2 (Avago HFBR-2316TZ, Truelight TRR-1B43-000, Ficer 

FTPDA-R155-ST and PD/LD PLD-2317TM) were tested in campaign No.4. The low-voltage 

differential signaling output of each optical receiver was monitored with an oscilloscope. As can be 

seen in Figure 4-15, radiation effects in the optical receiver could cause glitches on its output. The 

TTCrx chip can compensate these glitches and ensures that the clock is recovered with a known and 

adjustable phase. However, neither the ADN2814 CDR nor the custom CDR can handle these 

glitches in a proper and stable manner.  

After the test in campaign No.3, the TTC interface was redesigned with an existing batch of TTCrx 

chips with the PD/LD PLD-2317TM optical receivers, whose output showed the lowest rate of 

glitches in irradiation. The new TTC interface was tested both in campaign No.5 and No.6. No error 

was detected after the TTC interface has been irradiated up to a fluence of 5.54 x 1010 p/cm2 and     

4.49 x 1011 p/cm2, respectively. This confirms the earlier irradiation tests results of the TTCrx chip 

in [64] and the experience from Run1.  

 

Figure 4-15 Example of radiation effect in an optical receiver 
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4.3.2 DAQ interface test 

The DAQ interface includes a SFP transceiver and a SERDES interface in the SF2. It transmits data 

from the RCU2 to the ALICE DAQ, so its radiation tolerance is critical to the whole readout system. 

The irradiation test of the DAQ interface was performed in campaign No.3 49 . Figure 4-16 

demonstrates the test setup. One RCU2 prototype with ES-FG896 is put in the radiation area. In the 

shielded area, the Xilinx Virtex6 [89] generates 7-bit Pseudo Random Binary Sequence (PRBS) 

with its IBERT core [90] and sends the PRBS to the RCU2 at the speed of 2.125 Gbps. On the RCU2 

side, the received PRBS stream is looped from the SF2 back to the Virtex6. The Virtex6 then 

compares the PRBS sent to and received from the RCU2, and counts the number of differences in 

the bit-stream. Before the irradiation campaign, this setup was verified in the lab (room temperature). 

No error was observed while ~100 TB of data was looped.  

Irradiated 

Device 

Total fluence 

(p/cm2) 

Error type Cross-section (cm2) 

Errors 

MTBF in Run2 

(hours) 

SF2 chip 3.2E+11  bit-errors 9.4E-12 ± 5.6E-12 

(3 errors) 

45.7 ± 27.3 

link down  6.5E-12 ± 4.5E-12 

(2 power cycle) 

68.6 ± 49.6 

AVAGO SFP 3.6E+11  bit-errors 1.1E-11 ± 0.6E-11 

(4 errors) 

38.6 ± 20.1 

link down 

 

8.3E-12 ± 5.0E-12 

(1 self-recover; 2 power cycle) 

51.4 ± 30.7 

Table 4-6 DAQ interface test results 

The SFP transceiver on the tested RCU2 is AVAGO AFBR-57D7APZ [91]. It was chosen because 

it shows the best radiation hardness among all the possible transceivers in the earlier test, which is 

presented in [92]. The SF2 FPGA and the SFP transceiver were irradiated separately. They were 

exposed to a fluence of 3.2 x 1011 p/cm2 and 3.6 x 1011 p/cm2, respectively. Some bit-errors were 

detected and the data transmission link was observed to go down a few times. In most cases, a power 

                                                        

49 The test was made by Fillipo Costa (fillipo.costa@cern.ch). The results were analyzed by the author. 

mailto:fillipo.costa@cern.ch
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cycle was needed to re-establish the transmission link. At one time when the SFP transceiver was 

irradiated, the link recovered by itself in ~2 to 5 seconds. No errors that can be interpreted as the 

consequence of the SEL in the SF2 FPGA were observed in the test.  

 

Figure 4-16 Setup of the DAQ interface irradiation test 

The test results are shown in Table 4-6. For bit-errors, the MTBF in Run2 of the SF2 chip and the 

SFP transceiver is ~46 hours and ~39 hours, respectively. For the problems of transmission link, the 

MTBF in Run2 of the SF2 chip and the SFP transceiver is ~69 hours and ~51 hours, respectively. 

All these numbers are much larger than the duration of the longest data-taking session in Run1, 

which is ~8 hours. 

 

Figure 4-17 Test setup of DCS Interface 
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4.3.3 DCS interface test 

The major components of the DCS interface are the Marvell PHY and the SERDES interface in the 

SF2. The DCS interface is not critical for data-taking, still the probability of losing control to the 

RCU2 should be minimized. 

Radiation tolerance of the DCS interface was tested in campaign No.6. Figure 4-17 shows a sketch 

of the test setup, which includes a RCU2 in the radiation area, a PC (PC1) located in the shielded 

area and another PC (PC2) standing in the control room. PC1 controls the RCU2 and PC2 monitors 

the status of the Ethernet link. PC2 exchanged data packages with the RCU2 at a rate of 1000 

packages per second. Before the irradiation campaign, this setup was verified in the lab (room 

temperature). The Ethernet link was working in a stable manner in the test period of 48 hours and 

no package was lost50.  

In the irradiation campaign, the PHY and the SF2 chip were irradiated separately. The PHY was 

irradiated to a fluence of 1.78 x 1011 p/cm2. The Ethernet link went down twice. When the Ethernet 

was working, no package was lost. As listed in Table 4-7, the estimated MTBF in Run2 of the 

Ethernet error is ~38 hours, which is quite promising for the RCU2.  

However, when the SF2 FPGA was irradiated, the Ethernet link failed quite frequently. The SF2 

was irradiated up to a fluence of 2.72 x 1011 p/cm2 and the Ethernet link went down 18 times. The 

cross-section is ~60 times higher than when the PHY was irradiated. Nevertheless, current jumps 

on the supply voltage of the SF2 was observed in 16 of all these 18 failures. Thus, most likely these 

16 failures were caused by SEL. By removing these 16 errors, the cross-section of the decreases to 

the same order as when the PHY was irradiated.  

To further investigate the reason for the high frequency of failures, about 6.9 million data packages 

were looped inside the MAC of the MSS when only the SF2 was irradiated. In the test, current 

jumps on the supply voltage of the SF2 FPGA were observed to lead to the crash of the Ethernet 

link, which confirms our previous assumption.  

                                                        

50 The test was designed by Ernö David and Tivadar Kiss. The test was conducted and analyzed by the author. 
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Irradiated 

Device 

Total fluence 

(p/cm2) 

Ethernet down  

(times) 

Cross-section (cm2) 

Ethernet down  

MTBF in Run2 

(hours) 

Marvel PHY  1.78E+11 2 1.1E-11 ± 0.8E-11 38.2 ± 27.6 

SF2 chip  2.72E+10  18 0.6E-10 ± 0.2E-10 0.53 ± 0.14 

2  

(removed SEL errors) 

7.4E-11 ± 5.3E-11 5.38 ± 4.21 

Table 4-7 DCS interface irradiation test results 

After the test, SECDED protection51 has been enabled on the corresponding eSRAMs in the MAC. 

In addition, Microsemi corrected the problem regarding the SELs. As a result, it is estimated that no 

more than one or two Ethernet errors will appear in a data-taking session of 8 hours in the heavy-

ion runs in Run2. As a comparison, the requirement for the RCU1 was that no more than one or two 

errors should occur in a data-taking session of ~4 hours in the heavy-ion runs in Run1 [94].  

 

Figure 4-18 Setup of system level irradiation test  

                                                        

51 The SECDED is provided by Microsemi and can be enabled/disabled by the user. 
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4.4 System level irradiation test 

To evaluate the radiation tolerance of the whole RCU2 system, a system-level irradiation test was 

performed at the Svedberg Laboratory in April 2015 (campaign No.7). Figure 3-10 shows the 

architecture of the RCU2 design used in the test, which includes the Readout Node and the DCS 

Node. The second prototype of firmware, which contains no radiation mitigations, was used for the 

test. The Readout Node and the DCS Node have been discussed in detail in Chapter 3.  

As shown in Figure 4-18, the test setup consists of three parts:  

(1) In the radiation area, the RCU2 for testing is connected to four FECs. Besides, a SF2      

Starter-Kit is used to monitor the current consumption of the SF2 FPGA on the RCU2. Note 

that the Stater-Kit is partially shielded.  

(2) In the shielded area, the trigger crate, the DAQ computer with a CRORC [24] and the 

monitoring PC are located. The trigger crate sends trigger sequences to the RCU2. The DAQ 

computer receives the data from the RCU2. The monitoring PC provides a serial link to the 

RCU2 to monitor the status of the Linux system.  

(3) In the control room, all the devices mentioned above are controlled and monitored by the three 

PCs via LAN.  

 

Figure 4-19 Setup of the system-level irradiation test (without collimator) 
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Figure 4-20 Setup of the system-level irradiation test (with collimator) 

In this test, the RCU2 was exposed to a proton beam of 84 mm x 72 mm (38 mm x 38 mm if the 

collimator is used) at a flux of ~5.82 x 106 Hz/cm2, which is ~190 times higher than the worst-case 

radiation load in Run2. The RCU2 was receiving and processing triggers, moving data from the 

FECs to the RCU2 and sending the packaged data to the DAQ computer. At the same time, all 

available registers in the RCU2 were read back periodically over the DCS interface. Bit-flips in the 

event data was unfortunately not checked, since there was no time available for implementing the 

related tools. 

4.4.1 Readout stability 

Data-taking of the RCU2 was monitored with the trigger rate set to be 10 Hz and two test cases were 

performed: 

(1) Irradiating both the whole RCU2 and all the four FECs (see Figure 4-19). 

(2) Irradiating only the SF2 chip on the RCU2. This was realized by shielding the other parts of the 

RCU2 board with a collimator (see Figure 4-20). In this case, the FECs were still irradiated but 

not completely shielded by the collimator. 

The second case was used to observe potential problems internally in the SF2 FPGA and provide a 

reference to the first case.  

The test results are presented in Table 4-8. During the tests, the readout was observed to stop a few 

times due to three categories of errors: 
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(1) The PLL that provides system clock to the FPGA design loses its lock. At the time of testing, 

the lock signal of the system PLL was directly used as the reset signal of the FPGA design. In 

case the PLL loses its lock, the whole FPGA design was in reset and the readout stopped. 

(2) The Board Controller on the FEC, which control the driver of the ALTRO bus, is implemented 

in a commercial SRAM-based FPGA. No radiation mitigation has been implemented at design 

level, and SEUs occur in the configuration cells can cause the ALTRO bus on the FEC to be in 

erroneous state and will therefore lead to the stop of the readout. 

(3) The data transmission link goes down and a power cycle is needed to recover the link. 

When the whole RCU2 was irradiated, the readout stopped 6 times in total. As presented in    Table 

4-8, 3 times were due to RCU2 failures and the other 3 times were caused by FEC errors. As to the 

RCU2 failures, the MTBF in Run2 is estimated to be 7.61 ± 4.53 hours. Since we are considering 

the worst-case scenario, the actual reliability of the RCU2 should be better than our estimation. Still, 

this is comparable to the performance of the RCU1 in Run1. Performance of the data transmission 

link is acceptable. However, cross-section of the PLL error is about 10 times higher than one from 

the previous PLL test (discussed in section 4.2.5). This observation was confirmed in the case when 

only the SF2 chip was irradiated.  

The difference between the cross-section of PLL in this test and the previous test may be due to the 

uncertainty caused by low statistics, but it emphasizes the risk of using PLL. As discussed in section 

4.2.5, the output clock of a PLL is not to be trusted when it loses lock. Hence, the 100 MHz on-

board oscillator was proposed to provide system clock directly to the RCU2 FPGA design.   

Irradiated 

Device 

 

Fluence 

(p/cm2) 

Error type 

 

Errors Cross-section 

(cm2/device) 

 

MTBF in Run2 

(hours) 

RCU2  

 

5.32E+10   PLL error  2 3.8E-11 ± 2.7E-11 11.4 ± 8.24 

Transmission link 1 1.9E-11 ± 1.9E-11 22.8 ± 22.8 

FEC error 3 1.4E-11 ± 0.8E-11 1.13 ± 0.66 

SF2  

 

2.24E+10 PLL error  1 4.5E-11 ± 4.5E-11 9.61 ± 9.61 

FEC error  2 2.2E-11 ± 1.6E-11 0.95 ± 0.68 

Table 4-8 Readout stability observations 

Due to the large number (4356) of FECs in the TPC, in Run2 the FEC errors are estimated to cause 

readout error about every hour. The problems of FEC errors existed in Run1 as well. Hence, a 
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procedure called Pause and Recover52 has been implemented in ALICE since Run1 to reconfigure 

a complete single readout partition without terminating the data-taking session. In addition, the 

Pause and Recover scheme is also used for fixing the problems of the data transmission link. All the 

detectors support this Pause and Recover scheme and the following procedure is what the TPC does 

in a Pause and Recover: 

(1) If the readout is stuck due to FEC errors, the RCU2 will request the central DCS to pause 

the trigger.  

(2) When trigger is paused, the whole readout partition where the error occurs will be 

reconfigured. 

(3) Afterwards, the trigger is resumed and the data-taking session could continue without being 

terminated.  

To detect the erroneous situations of the FECs in early stage, the following actions have been 

implemented in the RCU2. Firstly, the front-end control bus, indicating the status of the FECs, is 

continuously monitored. Secondly, the handshake procedure between the RCU2 and FECs is 

monitored. At last, the trailer word of each data package that contains the channel address, the length 

of the data, etc. is decoded and checked.  

The Trigger Reception was working stable, that is, no error was observed on recovered TTC data 

and clock. This is consistent with the previous test in campaign No.5 and No.6. No stop of readout 

can be interpreted as being caused by the SEUs in the firmware. There was only limited time for 

preparing the test design, so the data error was not able to be checked. Anyway, according to the 

discussion in section 5.3.4, the data errors should not be a big concern for the RCU2. 

4.4.2 DCS stability 

The Linux system is the most important component for the DCS stability. As above-mentioned, the 

Linux system runs on the ARM processor of the SF2 MSS and three off-chip DDR3 SDRAMs.  

Two test cases were carried out: irradiating the whole RCU2 board and irradiating solely the SF2 

                                                        

52 More detailed information about Pause and Recover can be found in section 5.2.7.2 of reference [20]. 
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chip. Two kinds of errors were observed: sometimes the CPU rebooted and sometimes it was frozen. 

In both cases, the communication to the CPU was lost.  

Irradiated 

Device 

Total fluence 

(p/cm2) 

Error type Errors Cross-section  

(cm2) 

MTBF in Run2 

(hours) 

RCU2   4.22E+10  CPU reboot  20 4.7E-10 ± 1.3E-10 0.91 ± 0.24 

CPU freeze 5 1.2E-10 ± 0.6E-10 3.62 ± 1.71 

SF2  2.69E+10 CPU reboot 7 2.7E-10 ± 1.1E-10 1.60 ± 0.65 

CPU freeze 3 1.2E-10 ± 0.7E-10 3.74 ± 2.23 

Table 4-9 DCS stability observation 

The test results are presented in Table 4-9. When the whole RCU2 is in radiation, the MTBF in Run2 

of Linux reboot and Linux freeze is ~0.91 hours and ~3.62 hours, respectively. When only the SF2 

is irradiated, the stability of the Linux system seems to be a little better because the DDR3 memories 

were shielded. However, it is hard to draw any conclusion due to the low statistics.  

When CPU was frozen, the data taking could continue, but the control to the RCU2 and the FECs 

was lost. When CPU rebooted, the SERDES in the DAQ was re-initialized during the booting 

process. Hence, the readout was suspended until the re-initialization was completed.  

The reason of these CPU-system errors is most likely related to MBUs in the DDR3 memories. Bit-

flips in some places, most likely caused by MBUs, may lead to complete malfunction of the Linux 

System. In this case, the Linux is rebooted due to kernel panic53. Bit-flips occurring in the other 

places may lead to the freezes or have no effects on the system until they are accessed. 

Considering the high rate of CPU errors, one improvement has been implemented after the test54, 

which separates the readout logic from the CPU. A stand-alone module for initializing the SERDES 

in the DAQ interface has been designed to replace the default initializing scheme, so that the 

SERDES will not be reconfigured in case the Linux reboots.  

                                                        

53 A kernel panic occurs as a result of a hardware failure or a software bug in the operating system. The system is in 

an unstable state and rather than risking security breaches and data corruption, the operating system stops to prevent 

further damage and facilitate diagnosis of the error and, in usual cases, restart. 

54 Implemented by Fillipo Costa (fillipo.costa@cern.ch) 

https://en.wikipedia.org/wiki/Software_bug
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In addition, it is being investigated whether it is possible to have a Real-Time Operation System 

(RTOS) and all the needed software in the internal eSRAM of the MSS. A minimum RTOS uses 

fewer memory bits (~5 to 10 KBytes) than the Linux system (~4 MBytes) and MBUs are highly 

unlikely in the eSRAM (discussed in section 2.2.2). Therefore, the RTOS is expected to be less 

sensitive to radiation than the Linux system.  

The DCS interface and the Monitoring and Safety Module were both irradiated up to the fluence of 

5.32 x 1010 p/cm2. The Ethernet link was observed to go down and recover by itself twice, during 

which the readout was not stopped. MTBF in Run2 of the DCS interface is estimated to be ~11.4 

hours, which shows that its stability has been improved to an acceptable level. The Monitoring and 

Safety Module was also working stable, that is, no errors occurred on the RCU2 side. 

4.5 Radiation Monitor test 

The Radiation Monitor (RadMon) on the RCU2 was tested twice at the Svedberg Laboratory 

(campaign No.6 and No.7) to characterize the sensitivity for latch-ups and the cross-section of the 

SEUs in the SRAMs. These tests are discussed in detail in [93] and a summary is given below. 

 

Figure 4-21 Setup of the RadMon test  

Figure 4-21 shows the test setup, which includes a RCU2 board and a monitoring PC. In the RadMon, 

there are two SRAM interfaces, one ADC interface and one SRAM power control interface. Each 

of the two SRAM interfaces is connected to two SRAM ICs. It uploads a checkboard pattern to all 
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the addresses in the SRAMs, reads them back and compares them with the expected patterns. The 

ADC interface monitors the current, voltage and temperature of all the SRAM ICs. The SRAM 

power control interface controls the power regulators of the SRAMs. All these interfaces are 

accessed by the Register & Control Module in the RadMon FPGA. Dedicated software on the Linux 

system in the MSS of the RCU2 main FPGA reads the monitored values from the Control & Register 

Module via the SPI interface and sends these values to the monitoring PC periodically via a UART 

interface. 

 

Figure 4-22 SEU counts as a function of fluence of the RadMon test: (a) in campaign No.6, (b) in 

campaign No.7 [93]. 

In the first campaign, two runs were made with only the RadMon irradiated. In these two runs, the 

RadMon was irradiated up to the fluence of 9.0 x 109 p/cm2 and 1.2 x 1010 p/cm2, respectively. The 

second irradiation campaign was carried out as part of the system-level test discussed in section 4.4. 

In this test, the whole RCU2 board was irradiated by a wide beam and the RadMon was exposed to 

a fluence of 1.5 x 1010 p/cm2. 

During all these tests, current consumption of the SRAMs was monitored by the RadMon FPGA. 

In the first campaign, the average current consumption was 9.4 mA and the peak value was     12.2 

mA. In the second campaign, the average current consumption was 12.7 mA and the highest value 

was 14.6 mA. The variations in each test are due to that the SRAMs went into sleeping mode when 

they were not activated. The differences between the two tests can be explained by different RCU2 

prototypes used. No current jumps were observed and the current level measured in these tests was 

in accordance with the one measured in the lab, implying that no latch-up was detected.  
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Both the SEU and MBU are counted by the RadMon. The RadMon treats a MBU as a set of SEUs. 

When MBU occurs, the SEU counter is increased as well. To distinguish different kinds of errors 

and compare with the values in [95], two kinds of counts were analyzed: (1) The raw SEU counts, 

including both MBUs and SEUs, (2) the pure SEU counts, including only the SEUs. These two 

counts are plotted as a function of fluence in Figure 4-22, in which the linear dependence proves the 

stability of the RadMon. Actually, most of the MBUs are contributed by the burst errors in the 

interface logic of the SRAMs while the chip select was toggled [93]. Since the chip selects of the 

SRAMs are continuously toggled in the RadMon, these burst errors must be considered while 

analyzing the data.  

Taking all the 8 tested SRAM into account, the cross-section for raw SEU counts is            (2.6 

± 0.5) x 10-13 cm2/bit and for pure SEU counts is (1.3 ± 0.3) x 10-13 cm2/bit, which corresponds well 

to the numbers in [95].  

4.6 Summary and Conclusion  

In total seven irradiation campaigns were performed for the RCU2, in which the PCB components, 

the SF2 FPGA, the hardware interfaces, the RadMon and the whole RCU2 system were tested.  

No major problems were observed on all the tested PCB components (e.g. the power regulator, the 

bus transceiver and the buffers, etc.). 

In the first few tests, the SF2 showed some unexpected limitations: (1) SELs were experienced, (2) 

the PLL lost its lock at an unacceptable rate and (3) the FPGA failed to be reprogrammed at a 

surprisingly low dose. However, new SF2 chips were produced with SEL enhanced silicon, and the 

SELs are significantly reduced and even removed for the relevant radiation environment in the TPC. 

The stability of the PLL has also been improved at least by a factor of ~10 as a result of removing 

the SELs. However, special considerations still should be taken while using the PLLs. The problem 

of reprogramming still exists. However, since the onset for the reprogramming failures is higher 

than the expected radiation dose in Run2, it should not be a concern for the RCU2. 

The test of the TTC interface revealed that both the custom CDR in SF2 FPGA and the commercial 

ADN2814 CDR are not suitable for use in the radiation environment of TPC. Therefore, the TTC 

interface has been redesigned with the already proven TTCrx.  
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The DAQ interface was observed to go down a few times and data errors were seen in the test. In 

general, the stability of the DAQ interface is acceptable. 

The DCS interface went down at a high rate when the SF2 chip was irradiated. It was the SEL in 

the FPGA and the SEUs inside the eSRAMs of the MSS MAC that caused this problem. After 

solving these problems, the DCS interface has been proven to work in a stable manner in radiation. 

In the tests for the Radiation Monitor, no latch-up was observed and the cross-section of the SRAM 

ICs was found to be in line with the previous characterized number in [95]. This proves that the 

Radiation Monitor can be used to monitor the radiation in the TPC. 

The system-level irradiation test revealed some stability issues, especially regarding the readout and 

the DCS. All these radiation related problems have been dealt with or the mitigation actions for 

them have been planned.  

Table 4-10 summarizes the MTBF in Run2 of the RCU2, including the hardware interfaces, the 

Monitoring and Safety Module, the readout stability and the DCS stability. In the test, the hardware 

version is the same as the ones that have been commissioned at the TPC (section 5.3.3), the firmware 

is the second prototype (section 3.3.2) and the software is as of April 2015 (section 3.1.7). The 

MTBF in Run2 of the readout stability is comparable with the duration of the longest data-taking 

session in heavy-ion runs in Run1 (~8 hours). The DCS stability also fulfills the requirement for the 

RCU1, that is, no more than one or two errors should occur in a data-taking session of ~4 hours in 

the heavy-ion runs in Run1 [94]. Therefore, the RCU2 is foreseen to work in a stable manner with 

the radiation load in Run2. 

Components 

 

TTC  

Interface 

DAQ Interface DCS Interface       MSM DCS 

Stability 

Readout  

Stability 

MTBF in Run2 

(hours) 

>192 29.3 ± 4.5 11.4 ± 8.2 >22.8 3.6 ± 1.7 7.6 ± 4.5 

Table 4-10 Summary of the MTBF in Run2 of the RCU255 

                                                        

55 MSM stands for Monitoring and Safety Module. 
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5 Testing and integration 

The test and integration work of the RCU2 was divided into three phases56. The first phase dealt 

with the validation of the RCU2 hardware prototype for mass production. During the second phase, 

the main focus is the validation of the second prototype firmware. This is the preparation of the 

system-level irradiation test (section 4.4). The third phase refers to the tests performed with the 

commissioning version of the firmware, this is the prerequisite for the installation and commission. 

At the time of writing, all the 216 RCU2s have been installed and have been operational for about 

a year. 

5.1 Validation of the ALTRO Interface  

The functionality of the RCU2 hardware prototype needed to be verified before mass production. 

This section focuses on the validation of the ALTRO interface. Reading data without any error from 

the FECs through the ALTRO interface is the basis of developing the Readout Module in the 

firmware. The test procedure for the other hardware interfaces and the Radiation Monitor is the 

same as in the irradiation campaigns (discussed in chapter 4). These components were validated to 

be fully functional while developing the firmware and therefore not discussed further in this thesis.  

5.1.1 Test with simple ALTRO bus master 

As discussed in section 3.3.1, the Readout Module in the RCU2 firmware was planned to be ported 

from the RCU1, but this was not successful as discussed in section 3.3.1. Since all the lab-tests were 

performed on the first PCB prototype of the RCU2, it could not be excluded that the failures of 

communicating with FECs were caused by hardware issues. Therefore, a simple ALTRO bus master 

for a single branch was designed to verify the write and read transactions to the FECs.   

Figure 5-1 shows the test design in the SF2, which includes the ALTRO bus master and some 

modules ported from the RCU1: the RCU decoder, the Instruction Sequencer and the Result Unit. 

The RCU Decoder receives and processes the orders to perform write and read transactions from 

                                                        

56 All the tests were performed in room temperature if not otherwise stated.  
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the SF2 MSS. The Instruction Sequencer stores these orders and executes them to drive the ALTRO 

Bus master. The results of executing these orders are stored in the Result Unit. The tests are 

controlled by the shell script running on a PC.   

 

Figure 5-1 Test design with the simple ALTRO bus master 

 

Figure 5-2  Observation of the write and read transaction 

The waveforms of a write transaction and a read transaction are shown in Figure 5-2, in which all 

the control signals and the readout clock are in good shape. In total, more than 5000 write and read 

transactions were tested. In these tests, the ALTRO bus was driven to the maximum load by 

changing the data pattern consecutively from all ‘0’s to all ‘1’s. No error was detected in the tests. 

This eliminated the concern of the hardware issues and laid the basis for the further development of 
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the firmware.     

5.1.2 Test with ALTRO Bus Interface Module 

After the ALTRO Bus Interface Module (discussed in 3.3.2) written in VHDL was implemented, 

stress tests were performed on the ALTRO Bus Interface. These tests focused on the signal integrity 

of the data and control signals while the RCU2 is reading data from the FECs. Fixed pattern of data 

was filled into the on-board memories of the FECs and then read back by the RCU2. Each 40-bit 

data word was directly captured on the falling edge of the DSTB signal. 

 

Figure 5-3 Test design with the ALTRO Bus Interface 

Figure 5-3 shows the test design, which includes one Test Controller and four branches of modules 

for the readout. Each branch consists of one ALTRO Bus Interface Module, one data memory, one 

ALTRO encoder and one comparator. The ALTRO Bus Interface Module performs CHRDO 

operations and stores the captured data words into the data memory, of which the DSTB signal and 

the Transfer Strobe signal are directly used as the clock and the write enable signal, respectively. 

The ALTRO encoder generates the same data stream as what is filled into the FECs. The comparator 

compares the data words from the FECs with ones generated by the ALTRO encoder, and counts 

the number of differences. The test controller receives orders from the SF2 MSS and controls the 

activities in all the four branches.  



 

 

102 

 

 

 

Figure 5-4 Screenshot of CHRDO transaction. (a) Handshake procedure. (b) DSTB on the four 

branches 

Trigger rate  

(KHz) 

Number of samples Data pattern Duration 

(hours) 

Number of transaction 

(billion) 

Error 

10  10 Ramp ~2 ~4 0 

10 10 Zero - One ~2 ~4 0 

10  100 Ramp ~4 ~15 0 

10 100 Zero - One ~4 ~15 0 

1 1000 Ramp ~4 ~14.5 0 

1 1000 Zero - One ~4 ~14.5 0 

10 1000 Ramp ~8 ~289 0 

10 1000 Zero - One ~8 ~289  0 

Table 5-1 Stress test of the ALTRO interface 

Two data patterns were used in the test: the consecutive all ‘0’s following all ‘1’s and the decimal 

ramp number from 0 to 1000. With the first pattern, the ALTRO bus can be driven to the maximum 

load. With the second pattern, errors in specific bits can be identified. The RCU2 was reading data 

from four channels (one in each FEC) concurrently. Various data patterns, trigger rates and number 

of samples (10-bit word) in each ALTRO channel were used. Subfigure (a) of Figure 5-4 shows the 

measurement of a CHRDO transaction, in which all the signals show good signal integrity and 

according to the ALTRO bus specification [9]. Subfigure (b) of Figure 5-4 shows the DSTB signals 

measured in persistent mode while the data-taking was performed at 10 kHz with the number of 

samples in each ALTRO channel set to 1000. More screenshots of the ALTRO bus signals are 

presented in Figure E.2-1. The complete test results are listed in Table 5-1. No error was observed 
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in a total of ~645 billion transactions. From this it was concluded that both the RCU2 and the new 

backplanes were working according to specification. 

Considering the promising test results of the RCU2 hardware prototype in both room condition and 

irradiation campaigns (discussed in Chapter 4), a green light was given for the mass production at 

the beginning of 2015. 

5.2 Test with the second prototype of firmware  

As part of the preparation for the system-level irradiation campaign (discussed in section 4.4), the 

complete RCU2 system was validated in the lab. The test design and test setup were the same as in 

the irradiation campaign (see Figure 3-10 and Figure 4-18). In general, the test was performed with 

the second prototype of firmware on one RCU2 connecting to four FECs on separate branches. The 

DDL2 link was operating at 2.125 Gbps. A fixed pattern of data was filled into the on-board 

memories of the FECs, read back by the RCU2 and then sent to the DAQ computer, where the data 

errors in the data-stream were checked by the DAQ software. 

 

Figure 5-5 Test procedure for the RCU2 with the second prototype of firmware  

The test was divided into two steps. To begin with, the compatibility between the RCU2 and all the 

other devices (trigger crate, FECs and data computer) in the readout system was tested. Secondly, 

the stability of the data-taking and the errors in the data was checked. The test procedure shown in 

Figure 5-5 was used for both steps.  

In the first step, the test procedure was executed for more than 100 times and it was observed that 

the data-taking could always start and stop in a stable manner. This implies that the RCU2 is 
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compatible with all the other devices. The data-taking in each test was running just for a short period 

(few seconds) to reduce the time it takes to perform the test. 

In the second step, the test procedure was repeated a few times and the data-taking in each test lasted 

up to a few hours to check the stability of the readout and detect the data errors. At the time of 

testing, the DAQ software could not identify the exact position of the errors in each event. However, 

the number of the error words in each event can be counted. 

No. of channels  

(AO/AI/BI/BO) 

No. of samples 

(AO/AI/BI/BO) 

Trigger Rate 

(Hz) 

Event Rate 

(Hz) 

Duration  

(hour) 

Readout 

Stop 

Data 

Error 

128/128/128/128 998/998/998/998 10 10 2 No No 

128/128/128/128 998/998/998/998 100 100 2 No No 

128/128/128/128 998/998/998/998 500  300 2 No Yes 

128/128/128/128 998/998/998/998 1000 300 2 No Yes 

128/128/128/128 782/842/684/184 100 100 2 No No 

128/128/128/128 782/842/684/184 1000 370 2 No Yes 

55/80/75/50 483/483/483/483 500 500 1 No No 

55/80/75/50 483/483/483/483 1000 968 1 No Yes 

55/80/75/50 100/150/140/110 500 500 1 No No 

55/80/75/50 100/150/140/110 1000 1000 1 No No 

55/80/75/50 100/150/140/110 2000 1154 1 No Yes 

Table 5-2 System level validation of the RCU2 (second prototype of firmware) 

The test scenarios and test results are listed in Table 5-2. The number of channels in each FEC, the 

number of samples in each ALTRO channel and the trigger rate were varied. The trigger crate was 

sending triggers with fixed time spacing57. No stop of data-taking was observed in any of the test 

cycles, which indicates that the data-taking was working correctly. However, data errors were 

observed when the DDL2 link was saturated. After analyzing the recorded data, it was found that 

these errors were led by the flaws on handling the XOFF signal from the DDL2 link. This problem 

has been discussed in detail in section 3.3.2 and it has been solved in the commissioning version of 

firmware.  

                                                        

57 The trigger crate can be configured to send triggers with fixed time spacing or random spacing. In this thesis, 

the triggers are always sent in fixed time spacing if not otherwise stated.  
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Ideally, this should have been corrected before the irradiation campaign, but due to time limitation 

it was not. However, the error was understood, and the rate of the error was known for given 

circumstances that was controllable. Hence, the second prototype could be used in the irradiation 

campaign.  

5.3 Tests with the commissioning version of firmware  

The commissioning version of the firmware can be divided into subversions, defined by the speed 

of the DDL2 link. To start with, the DDL2 link was working at 2.125 Gbps, which was the same as 

for the second prototype of firmware. Moreover, attempts were done to bring the speed of the DDL2 

link to 4.25 Gbps but this failed. The reason was never fully understood. Finally, the speed of the 

DDL2 link was set to 3.125 Gbps, still within the requirements. With this speed, the readout was 

verified to be stable both in the lab and in the TPC. In this section, the tests that were performed on 

these subversions are discussed. 

5.3.1 DDL2 link at 2.125 Gbps  

Two setups were used to test the commissioning version of firmware with the DDL2 link at the 

speed of 2.125 Gbps. The first setup is the one used for testing the second prototype of the firmware, 

that is, 1 RCU2 connecting to 1 FEC in each branch. This setup is located at University of Bergen 

in Norway, from here on referred to as the Bergen setup. The second setup is located at CERN in 

Switzerland, from here on referred to as the CERN setup. It contains 1 RCU2 and 25 FECs58, of 

which Branch AO contains 7 and each of the other three branches contains 6. A sketch of both setups 

is shown in Figure 4-18. Pictures of these two setups are shown in Figure 4-19 and Figure 5-6, 

respectively. Other than the number of FECs, all the devices in these two setups, including the 

hardware, the firmware, the software, etc., are the same. The reason for using two setups is to 

perform cross-checks to ensure that the tests are not corrupted by hardware issues. Noticeably, the 

busybox59 was included in both the setups.  

                                                        

58 This refers to readout partition 1, which is the partition with largest number of FECs.  

59 The busybox is discussed in detail in [96]. The purpose of busybox is to let the Central Trigger Processor [97] 

know when the data buffers on the FEE are full by asserting a busy signal which prevents further issuing of triggers. 
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Figure 5-6 The CERN setup - 1 RCU2 connects to 25 FECs  

Hardware testing of the readout system 

  

Figure 5-7 Test procedure for the RCU2 with the production of firmware 

As discussed in section 5.2, these tests were sorted into two categories: (1) compatibility between 

the RCU2 and the other devices in the readout system and (2) stability of the data-taking and the 

errors in the data-stream.  

Figure 5-7 presents the test procedure, which is similar to the one for the second prototype of the 

firmware, except for two major differences. First of all, the busybox is involved in the system, and 

it needs to be reset before data-taking. Furthermore, in some cases the whole RCU2 is power cycled 

(option (a)) and in the other cases only the Linux is rebooted (option (b)). Option (b) is added to 

verify that the data-taking is not dependent on the rebooting of the Linux OS. 
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To start with, the test procedure was executed 100 times with option (a) and 100 times with option 

(b). In the tests, it was observed that the data-taking could always start and stop in a stable manner. 

This proves that the RCU2 is compatible with the other devices in the readout system. In addition, 

when the RCU2 was tested with option (b), the data-taking was not stopped while Linux was 

rebooting. This proves that the standalone initializing scheme of the SERDES in DDL2 Module 

works as intended.  

No. of channels  

(AO/AI/BI/BO) 

No. of samples  

 

Trigger Rate  

(Hz) 

Duration  

(hours) 

DDL2 link saturation 

128/128/128/128 1000 100  4 No 

128/128/128/128 1000 1000  4 Yes 

128/128/128/128 100 100  4 No 

128/128/128/128 100 5000  4 Yes 

896/768/768/768 1000 10  8 No 

896/768/768/768 1000 30  8 No 

896/768/768/768 1000 100  8 Yes 

896/768/768/768 10 10  4 No 

896/768/768/768 10 1000  4 No 

896/768/768/768 10 5000  4 Yes 

Table 5-3 System level validation of the RCU2 (commissioning version of the firmware wth DDL2 

bandwidth of 2.125 Gbps) 

Afterwards, all the tests of the second prototype of firmware (listed in Table 5-3) were repeated on 

the Bergen setup60. No data error or stop of data-taking was observed. This proves that the XOFF 

signal (discussed in section 5.2) is now properly handled.   

After the functional tests were done, stress tests with long period of data-taking were performed on 

both setups. In these tests, all the available ALTRO channels in each setup were used and configured 

with the same number of samples. The trigger rate was intentionally varied. As listed in Table 5-3, 

the test scenarios cover various combinations of the number of samples in each ALTRO channel 

and the trigger rate, e.g. high number of samples (1000) with low trigger rate (10 Hz), high number 

of samples (1000) with high trigger rate (5000 Hz), etc. In these tests, the data-taking was stable 

                                                        

60 Busybox was not included in these tests. 
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and no data errors are detected. The results of these tests, especially the ones in which the DDL2 

link was saturated, proves that the commissioning version of firmware could take data at 2.125 Gbps 

in a stable manner. 

Readout speed of the RCU2 

The readout speed of the TPC is counted as that of the slowest partition, which is the one with 

maximum number of FECs. This is readout partition 1 with 25 FECs. Therefore, the readout 

performance of the RCU2 was benchmarked on the CERN setup, which is a readout partition 1. The 

readout time of each event is measured on the RCU2 from when the L2 trigger is issued to the FECs 

until the data transmission over the DDL2 link is completed. In the test, the number of samples in 

each ALTRO channel was varied from 10 to 1000.  

 

Figure 5-8 Benchmarking on the RCU2 with DDL2 at 2.125 Gbps 

The subplot (a) of the Figure 5-8 compares the readout time61 of the RCU2 with that of the RCU1. 

The improvement factor is calculated as the ratio between the readout speed of the RCU2 and the 

RCU1 for the event with the same number of samples in each channel. For small events, the readout 

speed has been improved by a factor from 1.5 to 1.7. For large events, the improved factor decreases 

gradually to ~1.25. As expected, the readout performance does not realize the planned improved 

factor of 2. According to the subplot (b) of the Figure 5-8, the DDL2 link starts to get saturated after 

the number of samples reaches ~30 to 40 and ~33% of the readout time was caused by this saturation. 

                                                        

61 In this thesis, the readout speed is measured in full readout mode if not otherwise stated. Readout speed equals 

readout time divides event size. 
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Therefore, it is concluded that the DDL2 link needs to work at a faster speed.  

5.3.2 DDL2 link at 4.25 Gbps  

The bandwidth of the DDL2 link was then increased to the intended value of 4.25 Gbps. This was 

accomplished by changing some configuration parameters of the SERDES interface in the firmware. 

Afterwards, the RCU2 was verified on the CERN setup. Unexpectedly, lots of errors were detected 

in the data, of which the data from Branch BI has the highest number. 

 

Figure 5-9 Benchmark on the RCU2 with DDL2 at 4.25 Gbps 

Theoretically, the bandwidth of the Readout Module is ~305 MBytes/s62 and that of the DDL2 link 

is ~425 MBytes/s63. Hence, these data errors should not be caused by the saturation on the DDL2 

link. The RCU2 was benchmarked on the CERN setup with 6 FECs in each branch. The number of 

samples per ALTRO channel was varied from 10 to 1000. Subplot (a) of the Figure 5-9 shows that 

the maximum throughput, i.e. the bandwidth, of the RCU2 is ~305 MBytes/s, which equals to the 

estimated value. Subplot (b) of the Figure 5-9 shows that the DDL2 link never was saturated. These 

observations confirm that these errors are not related to the saturation of the DDL2 link. 

In order to figure out the origins of these data errors, the following three kinds of readout tests were 

performed on the CERN setup with 25 FECs. All the ALTRO channels in the setup were used and 

                                                        

62 305 MBytes/s equals to 80 MHz multiplies 32-bit, where 80 MHz is working frequency of the Readout Module 

and 32-bit is the size of the data interface from the Readout Module to the DDL2 Module (link). 

63 4.25 Gbps equals to 531 MBytes/s. In addition, the 10-bit to 8-bit conversion is performed on the DDL2 link. 

Hence, the DDL2 link should have a theoretical bandwidth of ~425 MBytes/s. 
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the number of samples in each channel was varied from 10 to 1000.  

In the first test, the normal ALTRO readout was performed, i.e. the RCU2 reads data from the FECs, 

processes it and transmits it to the DAQ computer. If all the four branches were active, data errors 

started to occur when the number of samples became larger than ~20. If the Branch BI was turned 

off, data errors started to appear only when the number of samples was larger than ~600. 

In the second test, the RCU2 was configured to not read data from the FECs. A Data Generator 

written in VHDL was used to generate a ramp pattern of data, which was then transmitted to the 

data computer. In this case, no data error was seen during the transmission of several TB of data.  

In the last test, the RCU2 was configured to read data from the FECs but discard it. The data that 

was transmitted to the DAQ computer was generated by the Pattern Generator. In this case, the 

observations on the data errors were in line with that in the first tests. With all the four branches 

being active, data errors started to appear if the number of samples becomes larger than ~20 to 30. 

If the Branch BI was turned off, the onset of the number of samples for data errors was ~600 to 650. 

The reason for these errors were never fully understood, but the most likely reason is that the 

switching noise of the ALTRO bus was disturbing the input clock to the SERDES used for the DDL2 

link. Due to time constraints of the project, it was decided to rather go for a data rate of 3.125 Gbps, 

that was anyway within the specification.  

5.3.3 DDL2 link at 3.125 Gbps 

To bring the DDL2 link working at 3.125 Gbps, the on-board oscillator for the DAQ interface was 

changed from 106.25 MHz to 156 MHz. Correspondingly, the DDL2 module in the firmware was 

adapted to the new oscillator. On the first two modified RCU2s, the test procedure shown in   

Figure 5-7 was executed 100 times both with option (a) and option (b). No error was detected and 

this proved the functionality of the new design. 

Stress test before installation  

In total 240 RCU2s (216 for installation at TPC and 24 for backup) needed to be verified prior to 

installation. Due to the limited time available for the tests, 6 RCU2s were chosen as samples, each 

of which was tested for a long period of a tens of hours. Each of the other 234 RCU2s was tested 
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for a shorter period of ~2 hours. All these tests were performed on the CERN setup with 25 FECs. 

In addition, an attenuator was connected to the output of the DAQ interface to emulate the situation 

in TPC64. 

The tests performed on the 6 sample RCU2s are listed in Table 5-4. The number of samples in each 

ALTRO channel was varied between 10, 100 and 1000, which covers a wide range of data volume. 

Because these tests focused on the data errors, in each test the data rate was driven to be highest 

possible value so that the ALTRO bus was driven with maximum load. 

Board  

number 

Number of samples  

in each channel 

Number of events 

(million) 

Throughput 

(MByts/s) 

Duration 

(hours) 

Data volume 

(TB) 

1 10 ~77.7  78 17.8 4.98 

1 100 ~10.6 260 5.1 4.74 

1 1000 ~2.6  283 11.0 11.25 

2 10 ~127.0  78 29.0 8.14 

2 100 ~4.5  260 6.9 6.42 

2 1000 ~18.2  283 16.0 16.39 

3 1000 ~5.0  283 21.0 21.44 

4 1000 ~5.2  283 21.9 22.33 

5 1000 ~4.6  283 19.4 19.93 

6 1000 ~5.1 283 21.5 21.70 

Table 5-4 Test results of 6 sample RCU2s 

To start with, the normal ALTRO readout was performed on these 6 boards. The RCU2 read the pre-

filled data from the FECs, processed it and transmitted to the DAQ computer, where the data was 

checked to detect errors. No data error or stop of readout was observed while reading ~110 TB of 

data over ~170 hours. In addition, the throughput and data rate of different RCU2s were the same 

as long as the number of samples was set to be the same. This proves the stability of the readout. 

Afterwards, the other 234 RCU2s were tested for ~2 hours65. The number of samples was set to be 

                                                        

64 In TPC, the data signal needs to transmit a long distance before it reaches the DAQ computer and the strength of 

the data signal will decrease along the path. In the lab, the transmitting path is short so that an attenuator was used 

to weaken the signal. 

65 These tests were performed by manpower from CERN, Goethe-Universität (Germany), Lund University (Sweden), 

University of Oslo (Norway), University of Bergen (Norway), Vestfold University College (Norway) and Bergen 

University College (Norway). Torsten Alt (Torsten.Alt@cern.ch) and the author where in charge of the test group. 

mailto:Torsten.Alt@cern.ch
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1000 and the data rate was driven to be the highest possible value (~66 Hz). These tests lasted over 

490 hours and no data error was seen in a total of ~500 TB of data.  

All 240 RCU2s with the DDL2 link at 3.125 Gbps passed all the tests and were thereby ready for 

installation.    

Discussion on Readout Speed66 

The bandwidth of the DDL2 link was measured with 6 FECs in each branch. As shown in subplot 

(a) of the Figure 5-10, the throughput of readout partition 1 reaches its peak value of ~295 Mbytes/s 

when the number of samples is ~110 and then decreases gradually to ~280 Mbytes/s with the 

increase in the number of samples.  

 

Figure 5-10 Benchmarking of the RCU2 with DDL2 at 3.125 Gbps. 

Subplot (b) of Figure 5-6 compares the readout speed of the RCU2 with that of the RCU1. For large 

events, the readout speed is increased with a factor of ~1.9, which is slightly smaller than the design 

requirement of 2. For small events, the readout speed does not live up to requirements. The RCU2 

needs ~670 μs to read an empty event. Together with the round-trip time from the busybox to the 

local trigger unit of ~130 μs, at least ~800 μs is needed for reading an empty event. This is only ~1.6 

times faster than the RCU1 and introduces ~300 μs to the fixed busy time of the TPC at 500 μs. 

                                                        

66 The benchmark and optimization were performed by the author on the commissioning version as of January 

2016. 
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There are three factors that affect the readout performance. Firstly, the Branch AO contains 1 FEC 

more than other branches. At the end of each readout, this FEC is the only one that provides data to 

the RCU2, at the maximum data rate of ~195 MBytes/s67, which is far smaller than the bandwidth 

of the DDL2 link. Its impact on the readout speed becomes more significant with the increase in the 

data volume from a single FEC, i.e. the number of samples in each ALTRO channel. However, this 

issue is an intrinsic factor of the TPC structure and cannot be avoided. 

Secondly, the firmware under test contained only one data buffer for each branch. Therefore, the 

next ALTRO channel cannot be read until the data from the previous channel has been processed. 

This single buffering structure affects the events with different sizes68 to different extent. While 

reading small events, the DDL2 link is not saturated and always available for receiving data. So the 

processing time is therefore directly counted into the readout time. While reading large events, the 

DDL2 is saturated and it is the main factor that slows down the readout speed. However, while 

reading the channels in the last FEC in Branch AO, the DDL2 link is not saturated, so the data 

processing time is also directly counted into the readout time. The larger the volume of data in each 

ALTRO channel is, the larger this processing time is. This explains why the peak throughput appears 

at ~110 samples when the DDL2 link is just about to be saturated, and then decreases with the 

increase of the number of samples in each channel. 

In addition to the single buffering, another issue that affects the readout speed, especially for the 

small events, is the execution time of the ALTRO protocol implementation. As discussed in 5.3.2, 

data errors were induced by the switching noise of the FPGA pins and the ALTRO bus pins when 

DDL2 link was working at 4.25 Gbps. A conservative scheme was therefore used to switch the 

direction of the ALTRO bus in the handshake protocol. Figure 5-11 compares the non-conservative 

switching scheme with the conservative switching scheme for reading a single word. Figure E.2-1 

and Figure E.2-2 in appendix E.3 compares the situation of reading an empty channel and a channel 

with 10 samples, respectively. It is observed that 100 ns more is needed by the conservative scheme 

to performed a CHRDO transaction.  

According to the previous discussions, three actions were proposed to improve the readout speed. 

Firstly, replacing the conservative bus switching scheme with the non-conservative switching 

                                                        

67 195 MBytes/s equals to 40 MHz (readout clock) multiplied by 40 bits (width of ALTRO data bus). 

68 The event size is defined as the number of samples in each ALTRO channel.  
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scheme. This can reduce the overhead of reading each ALTRO channel by at least 100 ns. Secondly, 

implementing the double buffering to compensate the data processing time. The efficiency of double 

buffering depends on the volume of the data in each ALTRO channel. At last, implementing the 

sparse readout to skip empty channels. As discussed in 3.3.2, in sparse readout an overhead of ~106 

μs is needed to build the “hit list”. This overhead can be compensated by skipping 157 empty 

channels (675 ns per channel), which occupy ~17.5% of all the 896 channels in the largest branch.   

 

Figure 5-11 Measurement of reading single word from one channel. (a) RCU2 with non-

conservative ALTRO bus switching. (b) RCU2 with conservative ALTRO bus switching. 

The first two actions were implemented in an optimized firmware to study their efficiency. 

Throughput of the optimized design is shown in the subplot (a) of Figure 5-10. It is clear that the 

throughput of reading all the events, especially the small events, has been increased. With respect 

to that of the current RCU2, the time of reading an empty event and a full event has been increased 

by 9.2% and 3.4%, respectively. As shown in the subplot (b) of Figure 5-10, the readout speed has 

been improved by a factor of at least ~1.95 (in most cases above 2) with respect to that of the RCU1. 

All of the proposed optimization has later been included in the commissioning version of the 

firmware. 

5.3.4 Discussion on Radiation Mitigation 

When the RCU2 is in the radiation environment of Run2, the SEEs in the SRAMs, flip-flops and 

PLLs of the firmware may lead to two kinds of errors: reliability errors and data errors.  

The reliability error is the most critical consequence of the SEEs. It will cause the TPC readout 



 

 

115 

 

 

system to stop and could lead to an unplanned termination of a data-taking session. As to the 

firmware, the reliability errors can be caused by the following two reasons:  

(1) There are ~1000 flip-flops in the critical path of the RCU2 firmware. SEUs in these flip-

flops can cause a functional interrupt.  

(2) If the PLL that provides the system clock is hit, it will have fatal consequences for the 

firmware. 

As discussed in section 4.2.4 and 4.2.5, the cross-section of SEE for each individual flip-flop and 

PLL is (2.6 ± 0.7) x 10-14 cm2 and (2.8 ± 2.0) x 10-12 cm2, respectively. Taking all the 216 RCU2s 

into account, the MTBF in Run2 of critical flip-flops and PLLs is calculated to be 16.3 ± 4.0 hours 

and 156 ± 113 hours, respectively. By multiplying the reliability of the flip-flops and the PLLs, the 

MTBF of reliability errors in Run2 is estimated to be 14.8 ± 4.3 hours, which is longer than the 

longest data taking session in heavy ion collisions in Run1 (~8 hours). However, considering also 

the failure rate of the TTC interface and the DAQ interface, the reliability of the whole RCU2 will 

be worse than this estimation. Failure rates of the components that can lead to an unplanned 

termination of a data-taking session have been calculated in the previous sections and they are listed 

in Table 5-5. By multiplying the reliability of these components, MTBF in Run2 of the RCU2 is 

estimated to be 9.4 ± 3.1 hours, which is comparable with the number estimated based on the system-

level irradiation test in section 4.4.1 (7.6 ± 4.5 hours). This is also comparable with the longest data 

taking session in the heavy-ion collisions in Run1 (~8 hours). This implies that the reliability of the 

RCU2 in Run2 is expected to be in the same level as the RCU1 in Run1. Still, since only about 25% 

of the logic cells in the SF2 has been utilized by the firmware, some radiation mitigations can be 

implemented to protect the critical registers. As recommended by Microsemi in [99], state machine 

registers can be protected with hamming encoding and the other registers can be protected with local 

Triple Modular Redundancy. 

Data errors are mainly caused by the SEUs that occur in the ROLM and data memories, both of 

which are instantiated with LSRAMs. SEUs in the ROLM cause bit-flips in the channel addresses. 

In case this happens, the RCU2 will read data from wrong channels and not from the correct 

channels. The channel addresses are static, so the SEUs in the ROLM are accumulated run-time. In 

total, there are 557568 channels spreading over 216 readout partitions. The address of each channel 

is 12 bits. It can be estimated that one channel address will turn wrong about every 0.84 hours in a 

data-taking session in Run2. At the end of a session that lasts ~8 hours, in each event the data of 
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~10 channels will be wrong. The erroneous channels occupy only 0.00179% of all the channels, so 

they have limited effects on the data quality.  

Components TTC Interface 

 

SERDES 

 (DAQ Interface) 

AVAGO SFP 

 (DAQ Interface) 

Firmware 

 

MTBF in Run2 (hours) 192 ± 192 68.6 ± 49.6 51.4 ± 30.7 14.8 ± 4.3 

Table 5-5 Reliability estimation of the complete RCU269 

Since the event data is buffered in the data memories before it is sent to the DAQ, the SEUs in the 

data memories will directly cause bit-flips in the event data. The cross-section of the bit-flips in the 

event data should be the same as the cross-section of the SEU in the LSRAMs, which is        

(1.7 ± 0.2) x 10-14 cm2/bit. For the LSRAMs with the total size of 81 MBytes, which is the same as 

the size of the estimated largest event in Run2 [26], the mean time between SEUs is estimated to be 

~29.4 seconds. Given the event rate in Run2 is expected to be 400 Hz (discussed in section 1.3), 

one bit-flip is expected to occur during the readout of about every 11760 events, which corresponds 

to an error rate of ~8.5 x 10-5 bits/event. 

Despite that the rate of data errors is low, it still has some effects on data quality and can be reduced 

by protecting the ROLM and the data memories with SECDED mechanism (hamming-3 encoding). 

In the mitigation scheme, parity bits are added to the channels addresses before they are written in 

to the ROLM. If SEU occurs in a channel address, it can be detected and corrected when the channel 

address is accessed. The corrected address is used in the readout and written back to the ROLM. All 

the event data words are encoded before they are pushed in the data memories. To keep the 

consistence in each data package, the CDH words that are stored in 4 uSRAMs need to be encoded 

as well. The decoding and correction are done on the RCU2 before the data is sending to the DAQ. 

If the decoding is performed on the DAQ side, the size of each event will be increased by ~20% due 

to the extra parity bit, which limits the bandwidth of the RCU2.  

The mitigation techniques that are discussed above have been implemented in the commissioning 

version of the firmware. The state registers of the FSMs, the Readout List Memory and the data 

                                                        

69 No failure of the TTC Interface was observed in the irradiation test, so the upper MTBF in Run2 is calculated 

based on 1 failure. 
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memories are hamming-3 protected. The other registers are protected with local Triple Modular 

Redundancy. While implementing these mitigation techniques, no timing issues were reported by 

the Libero SoC software. Afterwards, the firmware with these SEU mitigation techniques was 

verified on three RCU2 boards in the lab.  

Board 

Number 

Samples 

 

Duration 

(hours) 

Events 

(Million) 

Data Volume 

(TB) 

Data error Readout stop 

1 100 4 ~8.45 ~3.8 0 0 

1 1000 4 ~0.95 ~4.1 0 0 

2 100 4 ~8.45 ~3.8 0 0 

2 1000 4  ~0.95 ~4.1 0 0 

3 100 6 ~12.7 ~5.7 0 0 

3 1000 6 ~1.43 ~6.1 0 0 

Table 5-6 verification of firmware with mitigation actions 

The test procedure is discussed in detail in section 5.2 and it is summarized below. Dedicated pattern 

of data is written into the memories on the FECs. The RCU2 reads the data from the FECs and sends 

it to a data computer through the DDL2 link. The data computer checks the received data to find 

errors. In each test, the trigger rate was driven to highest possible value. The number of samples in 

each ALTRO channel was set to be either a small value of 100 or a large value of 1000. The test 

results are presented in Table 5-6. No data error or stop of readout was observed while in total   

~28 TB data was read during ~28 hours. This proves that the firmware with the proposed mitigation 

actions could perform data-taking in a stable manner. Unfortunately, it was not possible to test this 

version in radiation within the timeframe of this PhD thesis.  

5.4 Summary  

The commissioning of the RCU2 were carried out into two stages. In 2015, 6 RCU2s with the DDL2 

link at 2.125 Gbps were commissioned in one of the 36 TPC sectors. In January 2016, all the 216 

RCU2s with the DDL2 link at the speed of 3.125 Gbps were installed at the TPC. Several TB of 

data was looped on each sector and no data error or stop of readout was observed. At the time of 

writing (November 2016), the RCU2s have been taking data for about one year. Figure 5-12 shows 

the reconstructed data taken by the TPC in the first stable p-Pb collision of 2016.  
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Figure 5-12 Reconstructed data taken by TPC in the first p-Pb collision in Run270 

  

                                                        

70 This picture is from Robert Helmut Munzer (robert.muenzer@cern.ch) 
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6 Summary and conclusion  

In LHC Run1, the Readout Control Unit 1 (RCU1) performed even better than specification [20]. 

However, in Run2 the energy of colliding beams is increased from 8 TeV to up 13 TeV, so both the 

event size and the radiation levels are increased. Therefore, the RCU2 is designed to provide a faster 

readout speed and improved radiation tolerance compared to the RCU1.  

The RCU2 has four major advantages over the RCU1 in hardware: (1) it has four branches instead 

of two branches, (2) the bandwidth of the DDL link is increased from 1.60 Gbps to 3.125 Gbps, (3) 

it uses a single PCB design that integrates all the functionalities of the three PCB board in the RCU1, 

and (4) the flash-based Microsemi SF2 FPGA SoC is used as the main FPGA instead of the SRAM 

based Xilinx Virtex 2 Pro FPGA that was used on the RCU1. 

6.1 Main Contribution  

Radiation tolerance of the RCU2 has been studied through several irradiation campaigns. Two kinds 

of radiation effects are the focus of these tests, SEEs and TID effects. To begin with, the SF2 chip, 

the TTC interface, the DCS interface and the DAQ interface were characterized in several irradiation 

campaigns. Afterwards, the whole RCU2 system was tested in a system-level irradiation campaign, 

in which the RCU2 was working similarly as in the TPC. Cross-sections for various kinds of failures 

(errors) were extracted and the corresponding MTBF in Run2 was calculated. The following actions 

have been taken or proposed to improve the readout stability: (1) The SF2 has been confirmed to be 

immune to SEL in the radiation environment of LHC. (2) For the TTC interface, the ideas of using 

alternative solutions other than the TTCrx chips have been confirmed to be infeasible. (2) Triple 

Modular Redundancy or hamming protection on vital modules of the firmware have been proposed. 

(3) The readout logic has been separated from the CPU with a stand-alone module for initializing 

the SERDES in the DAQ interface. Regarding the DCS stability, the following two actions have 

been taken or proposed: (1) SECDED protection on the eSRAMs in the SERDES of the DCS 

interface have been enabled. (2) Investigation of having a RTOS and all the needed software in the 

internal eSRAM of the MSS has been proposed. In general, actions have been taken against all the 

radiation related problems that were revealed during the irradiation tests. In conclusion, despite the 

fact that the radiation level in Run2 is estimated to be ~3.75 times higher than that in Run1, the 

RCU2 is still expected to work as satisfactory as the RCU1 in Run1.  
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Development of the firmware has gone through three versions, the first prototype, the second 

prototype and the commissioning version. Many tests have been performed for the RCU2 and they 

are the prerequisite of the mass production of the hardware, the irradiation tests in different stages 

and the final installation. Readout performance of the RCU2 has been studied, based on which the 

solutions to further improve the readout speed have been proposed. Eventually, all 240 produced 

RCU2s have been verified to work in a stable manner with the DDL2 link at 3.125 Gbps. 

6.2 Running experience  

At the time of writing, the RCU2 has been recording data in p-p and p-Pb collisions without any 

major issues. The RCU2 has met its performance requirements; the current data acquisition system 

of the ALICE TPC is measured to record data at factor two higher rates than the readout rates during 

Run1.  

System Period Beam  Energy (TeV) Total EoR EoR by TPC  Ratio (%) 

RCU1 2010 p-p 7  754 31 ~4.1  

RCU2 2016 p-p 13 1246 36 ~2.8 

RCU1 2013 p-Pb 8  230 23 10.0 

RCU2 2016 p-Pb 8  303 4 ~1 

Table 6-1 Overview of End of Run (EoR) reasons for the ALICE experiment71 

Regarding the radiation tolerance of the RCU2, a qualitative measure is made in Table 6-1 by 

comparing End of Run (EoR) reasons for the ALICE experiment. An EoR is referred to as the reason 

which has caused to end a data-taking session during LHC operation. EoRs are mainly due to 

operational procedures and conditions of the LHC and the beam itself. Ideally, any detector of the 

ALICE experiment should not cause such a situation which can lead to end a data-taking session 

during normal operation of the LHC. An EoR reason caused by a detector may have been due to 

errors induced by radiation effects on readout electronics or malfunction of any other subsystem in 

the data acquisition system. 

Table 6-1 shows that EoR reasons due to TPC readout electronics for p-p collisions at factor of two 

                                                        

71 Statistics are from the ALICE logbook. 
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higher beam energy has been reduced to half as compared to Run1. It is evident that radiation 

tolerance and stability of the system based on RCU2 has contributed significantly to detector uptime 

by reducing EoR reasons caused due to TPC readout electronics by approximately factor 10 as 

compared to the RCU1 for p-Pb collisions during Run1 at similar energy levels.  

6.3 Outlook 

The RCU2 will work at the TPC until the end of Run2. In 2018, it will process event data in Pb-Pb 

collisions. In Run3, the TPC will include a new ASIC chip, the SAMPA, for a new faster readout 

[98]. The Microsemi SF2 or IGLOO2 [100] is currently under consideration for several other 

projects at CERN, for instance the Beam Halo Monitor at CMS [101], the Muon Frontend control 

system at LHCb [102] and the TOF readout electronics at ALICE [103]. The experience gained from 

the RCU2 project is therefore valuable for the whole community and not only for the ALICE TPC 

detector.  
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Appendix B. List of Abbreviations  

ADC   Analogue to Digital Converter  

ALICE   A Large Ion Collider Experiment  

AHB   Advanced High-performance Bus 

ALTRO   ALICE TPC Readout  

APB   Advanced Peripheral Bus 

ASIC   Application Specific Integrated Circuit  

ATLAS   A Toroidal LHC ApparatuS  

CDH   Common Data Header 

CDR  Clock and Data Recovery 

CHRDO  Channel Readout 

CERN   Conseil Européen pour la Recherche Nucléaire  

CMS   Compact Muon Solenoid 

CMOS  Complementary Metal-Oxide-Semiconductor 

DAQ   Data Acquisition   

DCS   Detector Control System  

DDL  Detector Data Link 

DDR       Double Data Rate 

DSTB  Data Strobe 

EEPROM  Electrically Erasable Programmable Read-only Memory 

EPCS  Extra-long Physical Coding Sub-layer 

EVLRDO Event Length Readout 

FEC   Front-end Card  

FEE   Front-end electronics  
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FIFO   First In First Out  

FPGA   Field Programmable Gate Array  

FSM  Finite State Machine 

GPIO        General Purpose Input Output 

HLM   Hit List Memory 

I²C    Inter-Integrated Circuit   

ISP   In-System Programming 

JTAG   Joint Test Action Group   

LAN  Local Area Network 

LHC   Large Hadron Collider  

LHCb   LHC beauty  

MBU  Multiple-Bits Upsets 

MOSFET  metal–oxide–semiconductor field-effect transistor 

MSS  Microcontroller Subsystem  

MTBF   mean time between failure  

PC    Personal Computer 

PHY   Physical Layer 

PRBS  Pseudo Random Binary Sequence 

PLL   Phase-locked loop 

ROLM  Readout List Memory 

RCU   Readout Control Unit  

RPINC  Readout Pointer Increment 

SCEVL  Scan Event Length 

SECDED  Single Error Correction and Double Error Detection 

SEE   Single Event Effect 
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SEGR       Single Event Gate Rupture 

SEL   Single Event Latch-up  

SERDES     Serializer/deserializer 

SET   Single Event Transient 

SEU   Single Event Upset  

SFP   Small Form-factor Pluggable 

SIGMII    Gigabit Media Independent Interface 

SIU   Source Interface Unit  

SoC      System on Chip 

SPI    Serial Peripheral Interface Bus 

SRAM   Static Random-Access Memory  

TID   Total Ionizing Dose 

TPC   Time Projection Chamber  

TTC   Trigger, Timing and Control  

UART   Universal Asynchronous Receiver/Transmitter   

VHDL   VHSIC (Very High Speed Integrated Circuit) Hardware Description Language   
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Appendix C. Fluence calculation  

At the Oslo Cyclotron, the correlating factor (fco) between the scintillator counts (Nscint) and the 

number of the SEUs on the radiation monitor (NSEU) were calculated during the calibration tests. 

Therefore, NSEU  in real tests can be estimated by multiplying this correlating factor with the 

scintillator counts. Cross-section of the radiation monitor (CSrad_mon) is known as 1.14 x 10-6 cm2/ 

device [56]. So the fluence can be calculated with the equation C.1.  

𝐹𝑙𝑢𝑒𝑛𝑐𝑒 =
NSEU

CSrad_mon
=  

Nscint∗fco

CSrad_mon
   (C.1) 

The uncertainty of the fluence can be calculated with  

σCS = √σ2
lin + σ2

fco + σ2
p  (C.2) 

where σlin is the uncertainty introduced due to the nonlinear response of the scintillator to the 

intensity of the beam; σfco is the uncertainty resulting from finding the correlating factor between 

the number of scintillator counts and the number of SEUs in radiation monitor; σp  is the 

uncertainty of positioning of the device from the exit of the beam. According to [56], these three 

uncertainties are 10%, 10% and 5%, respectively. Thus, the uncertainty of the fluence at the Oslo 

Cyclotron is calculated to be 15%. 

At the Svedberg Laboratory, the exposure on a monitor in the control room was followed and total 

fluence can be calculated by using a conversion factor provided by the Svedberg Laboratory. 

According to the information from the Svedberg Laboratory, the uncertainty of the fluence is 15%. 
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Appendix D. RCU2 Data Format  

 

Figure D-1 CDH words of RCU2 

 

Figure D-2 RCU2 payload words 
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Figure D-3 RCU2 Trailer words  
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Appendix E. Screenshots and test results  

E.1 SEU counts of SRAM tests 

 

Figure E.1-1 SEUs and fluence for the SRAM test in campaign No.2 

 

Figure E.1-2 SEUs and fluence for the SRAM test in campaign No.3 
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E.2 Screenshots of tests  

 

 

Figure E.2-1 Measurement of RCU2 signals. (a) Sampling clock and readout clock. (b) Quality of 

data lines. (c) L1 and L2 triggers. (d) Broadcast command  

 

Figure E.2-2 Measurement of CHRDO for an empty channel. (a) Non-conservative bus switching 

(same as RUC1). (b) Conservative bus switching.  
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Figure E.2-3 Measurement of CHRDO for the number of samples as 10. (a) Non-conservative bus 

switching (same as RUC1). (b) Conservative bus switching.  

E.3 Readout speed benchmark 

Table E.3-1 Readout speed of single event (partition 1) 

Number of samples  RCU1             RCU2 

2.125 Gbps  

(conservative) 

RCU2 

4.25 Gbps 

(conservative) 

RCU2 

3.125 Gbps 

(conservative) 

RCU2 

3.125 Gbps 

(optimized) 

10 1.1199 0.6727 0.6727 0.6727 0.5832 

20 1.2399 0.8071 0.8071 0.8071 0.6504 

30 1.4000 0.8743 0.8743 0.8743 0.6953 

40 1.7199 0.9862 0.9863 0.9863 0.7625 

50 1.9599 1.1822 1.0535 1.0535 0.8074 

60 2.2799 1.3703 1.1655 1.1655 0.9216 

70 2.4400 1.5583 1.2327 1.2327 1.0418 

80 2.8398 1.8063 1.3671 1.3671 1.2017 

90 3.0000 1.9935 1.4343 1.4343 1.3234 

100 3.3200 2.1783 1.5463 1.5463 1.4484 

110 3.5599 2.4251 1.6135 1.6135 1.6134 

120 3.8798 2.5948 1.7255 1.7354 1.7385 

130 4.0399 2.7799 1.8431 1.8604 1.8619 
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140 4.4397 3.0262 2.0176 2.0391 2.0286 

150 4.5999 3.2116 2.1471 2.1737 2.1538 

160 4.9198 3.3962 2.2782 2.3097 2.2790 

170 5.1600 3.6490 2.4479 2.4828 2.4421 

180 5.4796 3.8364 2.5784 2.6182 2.5702 

190 5.6398 4.0269 2.7079 2.7494 2.6998 

200 6.0397 4.2850 2.8802 2.9285 2.8710 

250 7.2397 5.3021 3.5632 3.6314 3.5478 

300 8.6796 6.3868 4.2904 4.3821 4.2725 

350 9.9596 7.4706 5.0126 5.1243 4.9887 

400 11.3192 8.4919 5.6981 5.8335 5.6691 

450 12.5995 9.5698 6.4201 6.5749 6.3870 

500 14.0392 10.6505 7.1421 7.3210 7.1045 

550 15.2397 11.6597 7.8188 8.0177 7.7771 

600 16.6794 12.7409 8.5434 8.7655 8.5026 

650 17.9592 13.8172 9.2638 9.5069 9.2201 

700 19.3193 14.8340 9.9472 10.2139 9.8964 

750 20.5989 15.9127 10.6646 10.9543 10.6104 

800 22.0386 16.9898 11.3880 11.6981 11.3252 

850 23.2387 18.0074 12.0651 12.3887 12.0130 

900 24.6793 19.0937 12.7898 13.1411 12.7234 

950 25.9590 20.15659 13.5094 13.8845 13.4374 

1000 27.3193 21.1931 14.1900 14.5921 14.1165 

E.4 Procedure of test prior to mass production  

Step 1. Make sure the oscillator is present 

Do a visual inspection of the board to make sure the oscillator is actually present, and that it is 

soldered (red circle). The card number is indicated in the yellow rectangle below. 
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Figure E.4-1 Inspection of oscillator 

Step 2. Update and configure the RCU2 

(1) Update Linux with the follow steps: 

Login the RCU2 -> Upload bootloader -> Update Uboot -> Update Linux -> reboot the RCU2. 

(2)  Configure the RCU2 and the FECs with the following steps: 

Login the RCU2 -> configure RCU2 and FEC -> Initialize DDL to 3.125Gbps -> Check DDL status.  

Step 3. Test the readout 

Initialize Trigger Crate -> Start data checker -> start data-taking for a few hours -> stop data checker 

-> stop trigger -> stop data-taking.   

If the number of samples is set to 1000, the sub-event rate and the Byte recorded rate should be ~66 

Hz and 283 MB/s, as shown in Figure E.4-2.  
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Figure E.4-2 Screenshot of data-taking status 

E.5 Commissioning of the RCU2  

From January to June in 2015, 6 RCU2s with DDL2 link at 2.125 Gbps were commissioned in one 

of the 36 TPC sectors. The appearance of these installed RCU2s is shown in the subplot (b) of the 

Figure E.5-1.  

Readout was tested without the presence of magnetic field. Fixed pattern of data was written into 

the on-board memories of the FECs and read back by the RCU2. Several TB of data was looped and 

no error of the data or stop of the readout was detected.  

The trigger reception, the Monitoring and Safety Module, the Ethernet link and the DDL2 link were 

working stable. The ISP programming was generally operational. It exited prematurely with a 

probability of ~10% to 15%, but a retry always worked.  

The Linux system was observed in radiation. No reboots or freezes were seen on these RCU2s. It is 

hard to draw any conclusion on the stability of the Linux due to the low statistics. As a reference, 

about 10 reboots were observed on the other 210 RCU1s during the same running period of    ~6 

months.   



 

 

142 

 

 

As shown in the subplot (a) of the Figure E.5-1, operational temperature of the RCU2 with cooling 

system was around the normal range of 20 degrees. 

 

Figure E.5-1 The first 6 installed RCU272. (a) Temperature of the installed RCU2. (b) Appearance 

of the installed RCU2.  

In early 2016, 6 RCU2s with DDL2 link at 3.125 Gbps were commissioned in one of the 36 TPC 

sectors73. Fixed pattern of data was filled into the on-board memories of the FECs and then read 

back by the RCU2. ~19 TB of data was looped in the presence of magnetic field and ~954 PB of 

data was looped without the presence of magnetic field. No stop of readout was observed during the 

data-taking. ~10% of the captured data was checked. No error was detected in the data taken without 

radiation. Nevertheless, two errors were found in the data taken in radiation. Given that the max 

event size in Run2 is ~81 MBytes, this refers to an error rate of ~8.1 x 10-5 bits/event.  

Afterwards, all the 216 RCU2s were installed at TPC. Several TB of data was looped on each sector 

without the presence of magnetic field (refer to Figure E.5-2). The TTC and DAQ interface worked 

in a stable manner, and no data error or stop of readout was observed. The DCS interface (Figure 

E.5-4), the Monitoring and Safety Module (Figure E.5-5), the RadMon (Figure E.5-3), and the 

power supply system (Figure E.5-6) were working stably. The ISP programming still failed in some 

cases but a retry always worked. At the time of writing (November 2016), the RCU2s are taking 

data in a stable manner in p-Pb collisions.  

                                                        

72 Pictures from Christian Lippmann (Christian.Lippmann@cern.ch) 

73 These commissioning action were mainly done by Christian Lippmann (Christian.Lippmann@cern.ch) 
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Figure E.5-2 Data loop in sector (six readout partitions) 

 

 

Figure E.5-3 Radiation Monitor of the RCU2 
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Figure E.5-4 Check the DCS of installed partitions (colored blue) 

 

Figure E.5-5 Check the Status of FECs (Monitoring and Safety Module) 
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Figure E.5-6 Check the power of installed partitions (colored purple) 

 

 

 

 

 


