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Abstract Information integration and workflow technolo-

gies for data analysis have always been major fields of

investigation in bioinformatics. A range of popular work-

flow suites are available to support analyses in computa-

tional biology. Commercial providers tend to offer

prepared applications remote to their clients. However, for

most academic environments with local expertise, novel

data collection techniques or novel data analysis, it is

essential to have all the flexibility of open-source tools and

open-source workflow descriptions. Workflows in data-

driven science such as computational biology have con-

siderably gained in complexity. New tools or new releases

with additional features arrive at an enormous pace, and

new reference data or concepts for quality control are

emerging. A well-abstracted workflow and the exchange of

the same across work groups have an enormous impact on

the efficiency of research and the further development of

the field. High-throughput sequencing adds to the ava-

lanche of data available in the field; efficient computation

and, in particular, parallel execution motivate the transition

from traditional scripts and Makefiles to workflows. We

here review the extant software development and distri-

bution model with a focus on the role of integration testing

and discuss the effect of common workflow language on

distributions of open-source scientific software to swiftly

and reliably provide the tools demanded for the execution

of such formally described workflows. It is contended that,

alleviated from technical differences for the execution on

local machines, clusters or the cloud, communities also

gain the technical means to test workflow-driven interac-

tion across several software packages.

Keywords Continuous integration testing � Common

workflow language � Container � Software distribution �
Automated installation

1 Introduction

An enormous amount of data is available in public data-

bases, institutional data archives or generated locally. This

remote wealth is immediately downloadable, but its inter-

pretation is hampered by the variation of samples and their

& Steffen Möller

moeller@debian.org

1 Rostock University Medical Center, Institute for Biostatistics

and Informatics in Medicine and Ageing Research, Rostock,

Germany

2 Debian Project, https://www.debian.org

3 School of Chemical Engineering, UNSW, Sydney,

NSW 2052, Australia

4 QvarnLabs, Helsinki, Finland

5 University Center for Information Technology, University of

Oslo, Oslo, Norway

6 Harvard School of Public Health, Boston MA, USA

7 University Medical Center Utrecht, Utrecht, The Netherlands

8 eScience Lab, School of Computer Science, The University

of Manchester, Manchester, UK

9 Common Workflow Language Project,

http://www.commonwl.org

10 Apache Software Foundation, Forest Hill MD, USA

11 Max-Planck-Institute for Evolutionary Biology, Plön,

Germany

12 Department of Systems Biology and Bioinformatics,

University of Rostock, Rostock, Germany

13 Computational Biology Unit, Department of Informatics,

University of Bergen, Bergen, Norway

123

Data Sci. Eng.

DOI 10.1007/s41019-017-0050-4

http://orcid.org/0000-0002-7187-4683
http://orcid.org/0000-0001-5639-9688
http://orcid.org/0000-0002-3026-1856
http://orcid.org/0000-0002-8021-9162
http://orcid.org/0000-0001-9842-9718
http://orcid.org/0000-0002-9675-8056
http://orcid.org/0000-0002-1509-4981
http://orcid.org/0000-0002-2961-9670
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0050-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0050-4&amp;domain=pdf


biomedical condition, the technological preparation of the

sample and data formats. In general, all sciences are

challenged with data management, and particle physics,

astronomy, medicine and biology are particularly known

for data-driven research.

The influx of data further increases with more technical

advances and higher acceptance in the community. With

more data, the pressure raises on researchers and service

groups to perform analyses quickly. Local compute facil-

ities grow and have become extensible by public clouds,

which all need to be maintained and the scientific execu-

tion environment be prepared.

Software performing the analyses steadily gains func-

tionality, both for the core analyses and for quality control.

New protocols emerge that need to be integrated in existing

pipelines for researchers to keep up with the advances in

knowledge and technology. Small research groups with a

focus on biomedical research sensibly avoid the overhead

entailed in developing full solutions to the analysis problem

or becoming experts in all details of these long workflows,

instead concentrating on the development of a single soft-

ware tool for a single step in the process. Best practices

emerge, are evaluated in accompanying papers and are then

shared with the community in the most efficient way [37].

Over the past 5 years, with the avalanche of high-

throughput sequencing data in particular, the pressure on

research groups has risen drastically to establish routines in

non-trivial data processing. Companies like Illumina offer

hosted bioinformatics services (http://basespace.illumina.

com/) which developed into a platform in its own right.

This paper suggests workflow engines to take the position

of a core interface between the users and a series of

communities to facilitate the exchange, verification and

efficient execution of scientific workflows [32]. Prominent

examples of workflow and workbench applications are

Apache Taverna [38], with its seeds in the orchestration of

web interfaces; Galaxy [1, 11], which is popular for

allowing the end-users’ modulation of workflows in nucleic

acid sequencing analysis and other fields; the lightweight

highly compatible Nextflow [8]; and KNIME [5] which has

emerged from machine learning and cheminformatics

environments and is now also established for bioinfor-

matics routine sequence analyses [13].1

Should all these workflow frameworks bring the soft-

ware for the execution environment with them (Fig. 1) or

should they depend on system administrators to provide the

executables and data they need?

2 Methods

The foundations of functional workflows are sources for

readily usable software. The software tools of interest are

normally curated by maintainers into installable units that

we will generically call ‘‘packages’’. We reference the

following package managers that can be installed on one

single system and, together, represent all bioinformatics

open-source software packages in use today:

• Debian GNU/Linux (http://www.debian.org) is a soft-

ware distribution that encompasses the kernel (Linux)

plus a large body of other user software including

graphical desktop environments, server software and

specialist software for scientific data processing.

Debian and its derivatives share the deb package for-

mat with a long history of community support for

bioinformatics packages [26, 27].

• GNU Guix (https://www.gnu.org/software/guix/) is a

package manager of the GNU project that can be

installed on top of other Linux distributions and rep-

resents the most rigorous approach towards dependency

management. GNU Guix packages are uniquely iso-

lated by a hash value computed over all inputs,

including the source package, the configuration and all

dependencies. This means that it is possible to have

multiple versions of the same software and even dif-

ferent combinations of software, e.g. Apache with ssl

and without ssl compiled in on a single system.

• Conda (https://conda.io/docs/) is a package installation

tool that, while popularised by the Anaconda Python

distribution, can be used to manage software written in

any language. Coupled with Bioconda [7] (https://bio

conda.github.io/), its software catalogue provides

immediate access to many common bioinformatics

packages.

• Brew (https://brew.sh) is a package manager that dis-

tributes rules to compile source packages, originally

designed to work on macOS but capable of managing

software on Linux environments as well.

The common workflow language (CWL) [3] is a set of

open-community-made standards with a reference imple-

mentation for maintaining workflows with a particular

strength for the execution of command-line tools. CWL

will be adopted also by already established workflow suites

like Galaxy and Apache Taverna. It is also of interest as an

abstraction layer to reduce complexity in current hard-

coded pipelines. The CWL standards provide

• formalisms to derive command-line invocations to

software

• modular, executable descriptions of workflows with

auto-fulfillable specifications of run-time dependencies

1 For a growing list of alternative workflow engines and formalisms,

see https://github.com/common-workflow-language/common-work

flow-language/wiki/Existing-Workflow-systems and https://github.

com/pditommaso/awesome-pipeline. An overview of workbench

applications in bioinformatics is in [23, 36] and [18] pp. 35–39, http://

bora.uib.no/bitstream/handle/1956/10658/thesis.pdf#page=35.
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The community embracing the CWL standards provides

• tools to execute workflows in different technical

environments, i.e. local clusters and remote clouds2

• auto-installable run-time environments using light-

weight isolation from the underlying operating system

For isolation from an operating system (Fig. 1), it is now

popular to adopt software container technologies such as

Docker (https://www.docker.com/). Increasingly, high-

performance computing sites turn to the compatible Sin-

gularity [21] (http://singularity.lbl.gov/), which is consid-

ered to be well suited for research containerisation, as it is

also for non-privileged users. The Open Container Initia-

tive’s Open Container Format and Open Container Inter-

face configuration files (https://www.opencontainers.org/)

specify the contents of these containers (such as via

Dockerfiles), representing an interface to the bespoke

packages of the Bioconda community and the underpinning

base of a GNU/Linux distribution (such as that produced

by the Debian project). In high-performance compute

environments, the acceptance rate of Docker is relatively

low due to its technical overhead and demand for special

privileges (https://thehftguy.com/2016/11/01/docker-in-

production-an-history-of-failure). With the focus of this

article being on the provisioning of software, we use the

availability of auto-configured Docker images as an

example that has a low barrier to enter for new users; other

alternative configuration and software management engines

can also be used to create setups of the same packages, e.g.

Puppet, Chef or Ansible (https://docs.ansible.com/ansible/

intro_installation.html). Automated or programmable

deployment technologies are also enabling for collabora-

tive computational environments, for example, by sharing

folders at an Infrastructure-as-a-Service cloud provider

(e.g. [35] or https://aws.amazon.com/health/genomics/).

Incompatible versions of interacting tools would disrupt

the workflow as a whole. This motivated Dockstore to shift

from dynamic image creation with Ansible to ready-pre-

pared Docker images [30]. The exact specification of ver-

sions from snapshot.debian.org, Bioconda, or unspecified

versions of two tools together in the same release of a

distribution is expected to overcome this difficulty.

The Debian GNU/Linux distribution provides base

systems for the Docker images and has a rich repository of

scientific software with special interest groups for science

in general, and additional efforts, for example Astronomy,

Bioinformatics and Chemistry (https://blends.debian.org/

med/tasks/) [27]. The Bioconda community provides

additional packages homogeneously for all Linux distri-

butions and macOS. Differences between these communi-

ties and consequences for the specification of workflows

are described below.

3 Results and Discussion

The scientific method needs scientific software to be

inspectable, that is, it should be open source (https://www.

heise.de/tp/features/Open-Science-and-Open-Source-3443

973.html). Openness is increasingly a requirement from

funding agencies or the policy of institutes—either way, it

is good scientific practice. Bioinformatics is no exception,

which would not be noteworthy if there was not the vicinity

to the pharmaceutical industry and medical technology. It

is likely that the past dispute over the public accessibility

of the human genome has manifested the open-source

principles in this community ([19] and Ewan Birney, 2002

at http://archive.oreilly.com/pub/a/network/2002/01/28/bio

day1.html). Beyond inspectability, for the exchange and

collaborative development of workflows, software licences

must allow redistribution of the software. While well-

maintained, pre-compiled, non-inspectable, black-box tools

may also be redistributable, this is also potentially unde-

sirable for the technical reason that the pre-compiled binary

will not use the latest processor features and optimised

external libraries to their full potential. Targeted optimi-

sation is not achievable with any centralised distribution of

software since the end-users’ hardware is too diverse to

optimise for them all; however, only the most CPU-in-

tensive packages need to be optimised and this can be done

centrally for various common cloud platforms. With

Fig. 1 Workflow specifications

comprise formal references to a

range of packages to be installed

without specifying the

execution environment. The

separation between problem-

specific software, and the

packages a Linux distribution

provides, is fluid

2 http://www.commonwl.org/#Implementations.
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scientific software distributed as source code, local

recompilations are relatively easy and the automated

compilation recipes that are provided by Linux distribu-

tions facilitate that.

3.1 Distribution: Getting Software from Its

Developers to Its Users

A software distribution may be small. Common on tradi-

tional closed-source operating systems like macOS or

Windows, the developers themselves are likely to offer a

readily installable package to download. Binaries of the

executable and also binaries of the libraries the software

uses are bundled. The version of the self-developed soft-

ware is the latest, but the versions of the libraries are

whatever the author knows to be compatible with a par-

ticular release.

In the philosophy of Linux distributions, common

functions should be broken out into libraries, and libraries

should only be installed once with all tools depending on

one single installation. This philosophy developed, in part,

as a reaction to the problems that were experienced in

dealing with monolithic software systems where big,

expensive computers (mainframes, minicomputers)

required considerable effort from local system adminis-

trators to build software from source (from tape, possibly

from the vendor), or by installing binary versions directly

from vendors. Inflexibility of solutions and a ‘‘look but

don’t touch’’ policy from vendors made local tailoring and

improvement in software problematic in many instances. A

key step was the creation of pre-compiled, Internet-dis-

tributed Linux distributions which saved the local system

administrator from the tiresome task of compiling every-

thing by hand. An important stage in the development of

the distribution was the standardisation of which compiler

was used, the versions of libraries that would be included,

the file locations on disk and the removal of pointless

variations between software packages [37]. Such require-

ments are codified in documents such as the Filesystem

Hierarchy Standard (FHS, http://www.pathname.com/fhs/)

and Debian Policy (https://www.debian.org/doc/debian-

policy/).

Standardisation made shared libraries the norm. The

shared library model of maintenance only works when the

application programming interfaces (APIs) are stable or at

least not changing in backwards-incompatible ways on a

frequent basis. Such stability permits the use of the same

library across software both new and old. Difficulties due

to incompatibilities between versions are possible and need

to be fixed—in the library or the calling code—as part of

regular software maintenance, and the requisite changes are

communicated back to the respective authors of the soft-

ware. In mature and well-designed code bases,

incompatible changes are rare and for some languages such

as C, there is a formal way by which they can be tracked

and described in the shared object name and version

(soname and sover, https://www.gnu.org/software/libtool/

manual/html_node/Updating-version-info.html). Further,

peer pressure and code review help avoid incompatible

changes. In less mature software, in code bases that have

grown organically, without the benefit of team design,

refinement, regular code review, and with different pres-

sures on the development, keeping backwards compatibil-

ity during regular development and maintenance is harder

and breaking changes are an unwelcome companion.

Notably, much scientific software possesses these attri-

butes. Maintainers of software packages in Linux distri-

butions (the largest of which have more than 2000

contributors maintaining packages) use the distribution’s

infrastructure to notify difficulties, report them to the

developers of the software or prepare a respective fix

themselves.

Contributors to Linux distributions see a fluid transition

from the code written by the program’s authors to a per-

petual maintenance effort to keep the program working for

all its users within the distribution and with the current

versions of any dependent libraries, as illustrated in Fig. 2.

The shared library maintenance model avoids keeping

additional, redundant, separate copies of the same or only

slightly different versions of a particular library. All tools

in the same distribution benefit from the latest advance-

ments of that library, including security-related bug fixes.

Through wider testing, problems are found earlier and for a

larger fraction of routines in the library. Except for the

possibility of newly introduced problems, this increases

performance for everyone. With eyeballs concentrating on

the same latest version, this also helps the early detection

of new concerns.

There is a consensus that in an ideal world the authors of

many tools and libraries indeed collaborate closely to

ensure that shared library resources are performant, flexible

and suitable for all tools that use them. In Linux distribu-

tions, the shared library development model indeed works

well for the packages very close to the core of the distri-

bution, such as the ones required to get the machine to boot

and show the graphical user interface or based on suitably

mature APIs. However, use of the shared library mainte-

nance model comes at the cost of an increased time from

software being released by its author to the time that the

software is released in a stable release of a Linux

distribution.

New versions of a distribution are released periodically,

with different user groups seeking different release

cadences: desktop users might be happy with relatively

short cycles every 6 months (Ubuntu, Fedora), or perhaps

more stable cycles of 24 months (Debian, Ubuntu LTS),
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while infrastructure and large Linux installations (e.g. a

compute cluster) are likely to run older releases with even

longer release cycles (Red Hat family, 4–5 years). Com-

piling new software to older releases of the distribution

(‘‘backporting’’) is typically not automated and, due to the

extensive dependency trees of the shared library model, can

make this effort quite difficult.

For a scientist, there are competing forces for their

tooling. It is the science that they care about, not the finer

details of distribution maintenance, and so the convenience

and reproducibility of the analytical environment created

by the Linux distribution should not be underestimated. At

the same time, the prospect of a delay in obtaining for new

research tools is not acceptable as they will not benefit

from new optimisations, new features or, most importantly,

improved accuracy. From the perspective of the scientist,

the scientific software is special in its need to be up to date,

while the base system functionality (which may be just

sufficiently recent to provide compatible compilers and

core libraries) is a mere cumbersome consequence of the

computational demands. Through the lens of looking for

the latest tools to address a scientific problem, the Linux

distribution and the delays in process and QA it entails

become an unwelcome barrier to code delivery. Container-

based deployment of tools thus offers an alluring possi-

bility: a stable base distribution running on the hardware

with containers of bespoke tools deployed on top. Within

the container, a domain-specific (or language-specific)

package manager can be used to install and upgrade the

tooling.

With a focus on problem-tailored workflows that are

comprised of multiple tools, scientists have a desire for a

repository that contains recent releases. However, they still

want the benefits of a curated software library in which the

software is known to work. The fundamental dichotomy of

software management is that both ‘‘recent’’ and ‘‘well-

tested’’ are difficult to achieve at the same time. The

maintenance effort is better distributed across a commu-

nity, to avoid a perpetual investment of time for updates

that is unrewarding (both scientifically and in terms of

career advancement) for the individual scientist. Thus, to

allow for a focus on workflows with better reproducibility

across installations, one wants recent scientific software

nonetheless readily installable as packages.

The Gentoo Linux distribution popularised the concept

of storing readily executable commands for downloading

and installing packages in a public code repository (https://

wiki.gentoo.org/wiki/Project:Science/Overlay). The

approach of distributing compilation recipes rather than

compiled code found broad acceptance within the Home-

brew initiative for macOS (https://brew.sh) together with

its Linuxbrew companion (https://linuxbrew.sh). While

technically similar, for bioinformatics, the Bioconda ini-

tiative (https://bioconda.github.io/) propelled itself to the

heart of the community. Since command-line instructions

are mostly the same across Linux distributions, these build

instructions can be shared across different execution

environments. There is no lock-in to one particular com-

munity. Further, these build instructions are often easily

adapted to new versions of the software and are technically

easy to improve or extend for anyone familiar with soft-

ware code maintenance with git (http://git-scm.com). By

reducing the scope of the integration problem to a smaller

software domain, there is less of the overhead that delays

traditional Linux distributions. The software is readily

installable and suitable for automated installation into

pristine environments.

The downside is that a maintenance and installation

procedure that works nicely across distributions cannot be

deeply integrated with any distribution because the

Fig. 2 The software distribution process for packages in a Linux

distribution such as Debian (upper) and in a smaller immediate-

availability catalogue such as Conda/Bioconda (lower). The Conda

system renders packages immediately available across many releases

of many Linux distributions and the macOS. The arrival in Debian’s

‘‘unstable’’ distribution can be equally fast, then with build and QA

tests, grants users time to comment prior to the transition to testing. In

the Linux distribution, the new release will not be automatically made

available (‘‘backported’’) to the current stable release
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integration and QA work of the package maintainer has not

been performed; when the API changes in ways that break

compatibility, someone must do the integration work to

create the coherent software stack, and someone must be

prepared to apply the polish and ensure standards confor-

mance of the package. Yet again a forerunner is the Gentoo

distribution with the introduction of its Prefix concept

(https://wiki.gentoo.org/wiki/Project:Prefix) to allow for

user-defined installation at non-privileged locations [2].

The method of having an ‘‘alternative root’’ prefix with a

FHS-like file hierarchy, e.g. /alt/bin, /alt/lib, /alt/var, allows

software distribution tools like Brew to have binaries and

libraries installed side-by-side with the operating system’s

own libraries; in effect being a secondary software distri-

bution, bypassing library version incompatibility issues.

One can consider this approach to be pioneered by the

StoreAdm system [6] (http://storeadm.sf.net/), which used

a file hierarchy of symbolic links to individually captured

software installations, relying on the rpath mechanism

(https://en.wikipedia.org/wiki/Rpath) to modify the search

path for dynamic libraries.

Poor integration can manifest itself in a lack of docu-

mentation (manual pages are missing from Bioconda),

missing resources or unusual on-disk locations for the

included files. While documentation may be provided

instead by command-line help in modern tools, integration

problems are harder for the user to ameliorate. In Bio-

conda, Python modules are not installed in a system-ac-

cessible fashion but instead with every package in a

separate directory and not available to the Python inter-

preter without further action by the user. While this permits

co-installability of package versions, access to provided

libraries is less immediate and convenient as when the

package is centrally managed such as in Debian. Further,

the ability to install multiple versions of the same module

does not permit the one Python process to use these mul-

tiple versions, even if that might be required by the overall

software stack. The container has not removed the need for

integration tests and QA work on the stack, merely

attempted to reduce the size of the problem domain.

Simple, automated deployment of bespoke analysis tools

is synergistic with the wide deployment of container

technologies and the dynamic deployment of cloud

instances. Both provide almost immediate access to single

tools or complete workflows. For large projects, because of

the then increasing likelihood of a failure, deployment of

the same packages or containers shall be performed in an

environment that detects and reacts to such outages [34].

3.2 Shipping Confidence: A Workflow Perspective

The confidence in the correct execution of a workflow has

its foundation in the confidence in all its component tools

and their integration. The right workflow must have been

selected for the right kind of properly formatted data. A

new software installation needs to perform correctly and

that should be testable by the local user and also by the

package maintainer and integrator through QA tests.

Modern software ships with self-tests including unit

tests of functions, functional tests (for a fixed input, the

output should not change across installations), interfacing

tests (errors in the input should throw the expected error

messages) and integration tests with other parts of the

ecosystem. The Debian Project, in particular, invests a

considerable effort to test every new submission to its

distribution:

• Can it be built? (https://buildd.debian.org/)

• Can it be installed, upgraded and removed? (https://

piuparts.debian.org/)

• Does its test suite still pass? (https://ci.debian.net/)

• How does that new version differ? (https://snapshot.

debian.org)

Additionally, packages that depend on a newly uploaded

library are tested in the same way to prevent problems

cascading through the software stack. Packages with self-

tests conducted as part of the build process will have these

tests executed at build time by the build system, and after

the build the piuparts system will test if the package

installs, upgrades and removes as it should. The continuous

integration (CI) system will install the package and run the

defined self-tests to verify that the packages work as

expected when installed. Such testing is a key feature of the

distribution’s QA work and is important to verify that

newer dependencies than those the authors of the software

may have had available at the time the software was

released, work with the package as built.

A workflow also needs to be tested as a whole, since the

exact combination of tools that determines the input of a

tool cannot be foreseen by the individual authors. Build

dependencies for packages should also be minimal which

will constrain interface tests with other tools to static tex-

tual representations—an external tool’s update with a

change to its default file format will not have an immediate

effect. Like regular applications, workflow pipelines may

also ship with a test suite [12]. However, there is still a

need to develop ways to perform tests in a package-inde-

pendent manner. We may see a transition from testing for

technical completion of a workflow towards the finding of

regressions in the performance of the tool. The Genome in

the Bottle consortium provides a gold standard [39] for

sequencing and variant calling to support respective

benchmarking [22]. Others have independently evaluated

tools for molecular docking [15], and, generally, every new

competing method will have to prove its performance in

S. Möller et al.

123

https://wiki.gentoo.org/wiki/Project:Prefix
http://storeadm.sf.net/
https://en.wikipedia.org/wiki/Rpath
https://buildd.debian.org/
https://piuparts.debian.org/
https://piuparts.debian.org/
https://ci.debian.net/
https://snapshot.debian.org
https://snapshot.debian.org


some way. The local confirmation of such an evaluation

would yield the highest possible confidence in a workflow.

The common workflow language (CWL) project has

published a standard to describe command-line tools for

the integration in workflows. The CWL community pro-

vides its own workflow engine for reference and develop-

ment use. This reference executor can be used as an

interface from workflows to command-line tools, e.g. for

the Apache Taverna workflow engine, it may substitute an

earlier tool wrapper [20] and is also finding acceptance by

the Galaxy community. It could also be the means to

exchange ways to evaluate the performance of tools and

whole workflows independently of any distribution.

Successful transfer of experience from one community

to another needs a mapping of software packages across

distributions. Source package matching can be performed

based on the package name, which should be very similar if

not identical, and the home page at which the tool is pre-

sented. Each way is not without difficulty, both for very

young and very old tools. To the rescue come registries of

software like Bio.Tools [17], and the resource identification

initiative (https://scicrunch.org/resources) expands the

same concept well beyond software. For sharing whole

workflows, myExperiment (http://myexperiment.org/) is a

well-established repository used by multiple workflow

systems and research communities [10], complementing

more specific workflow repositories like CWL Viewer [33]

(https://view.commonwl.org/), Galaxy’s ToolShed (https://

galaxyproject.org/toolshed/workflow-sharing/), and Dock-

store [30].

3.3 How Distributions Meet

Recipes for the execution of data analysis tools and

workflows refer to a basic image of a Linux distribution

plus a series of additional packages to install. When

combined with lightweight containers such as Docker or

Singularity, the recipe becomes directly installable (Fig. 2)

[28]. It needs to be left to the users’ opinion where to draw

the line between traditional distribution-provided packages

that are already used to communicate with the kernel and

the end-user packages of the given scientific discipline,

which are often redundantly available from the Linux

distribution and a Linuxbrew/Bioconda community, or

other repositories like Bioconductor [9] (http://bio

conductor.org). There are advantages to each approach, as

shown in Table 1.

By way of example, Debian already provides many

packages for the R statistical analysis suite. The setup time

for the container could be much reduced by pre-installing

those into the container prior to cloning and use; the flex-

ibility to do so is left to the user’s discretion. On every

computer, local or remote, users have the choice to use

software that is directly retrieved from the developers, with

all its redundancies, or instead the coherent and curated

presentation via their Linux distribution. A Linux distri-

bution cannot and should not provide all possible software

for all user communities. However, the software engi-

neering lessons learned in maintaining large distributions

should be adopted as much as possible and the effort

towards minimal redundancy and maximal testing can be

shared within the community.

Software catalogues and registries have a key role in

facilitating cooperation and synchronisation of communi-

ties, in that these refer to workflows using a particular tool

and propose means to install the software, with all the user

feedback known from regular ‘‘app stores’’. Resource

identifiers (RRID) [4] offer to act as a common reference

point also for scientific software which further strengthens

cross-platform activities and reproducibility, albeit not

without semantic deficiencies: Sharing the same RRID is

both (1) a early version of the tool Bowtie that is still

maintained for aligning short reads and (2) a newer version

of Bowtie used for new technologies that provide longer

reads. (However, this situation is not a problem when the

tool identifier (like RRID) is combined with a desired

version.) The registries OMICtools [14] and Bio.Tools [17]

have begun to integrate Debian’s curated package

descriptions into their catalogues. With Debian, all control

over the packaging is with the individual package main-

tainers, but the scientific packages are commonly team-

maintained, which facilitates mass changes like the intro-

duction of references to catalogues from Debian in analogy

to references to publications that are already offered today.

Bulk retrieval of any such edited annotation is possible via

the Debian database and its API (https://udd.debian.org/) to

bidirectionally maintain links. Bio.Tools is also collabo-

rating with the community of SEQanswers.com [24], and it

can be reasonably predicted that further coordination will

develop. Once catalogues also serve workflows and best

practices with example data, pan-package testing can

become routine, which will be of interest to all users of any

of the tools involved.

Another aspect of such registries is their approach to

describe their collections of computational tools, and the

implications that such characterisations entail. While the

OMICtools registry leverages a tailor-made taxonomy that

tags each tool and enables researchers finding the most

pertinent tool for their data analysis task, the Bio.Tools

registry employs the EDAM ontology [16]. Terms from

EDAM (a collaboratively and openly maintained ontology)

can describe a tool in terms of its topic, operation, data, and

format, thus providing a multifaceted characterisation:

tools can be grouped by functionality, and compatible data

formats. Within the scope of sharing workflows, and

enhancing testing and reproducibility through workflow
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modularity, such features can make the difference between

enabling users to manually build their own computational

pipelines, and assisting users in recommending them per-

tinent tools to automate constructing them. A controlled

vocabulary of terms or a structured inference-ready ontol-

ogy can already provide ground for automated or semi-

automated decision-making system.

The CWL CommandLineTool standard describes tools

at a very syntactical level. While these CWL-based tools

descriptions may be optionally earmarked with EDAM

annotations, there is no generic direct transfer possible

from the command-line interface to any such semantic

annotation.

The Docker configuration shown in Table 2 illustrates

how a base system from a Linux distribution can be pre-

pared, and then further code can be deployed within the

container by adding-in external resources. The recipe

described by Table 2 demonstrates vividly that users may

not explicitly care about the particular version that is

installed, either of the operating system or the installed

library, with the only specification being that it should be

the ‘‘latest reliable’’. It is not uncommon to just refer to the

latest version released by a trusted maintainer, but this trust

can only be earned by solid testing against a good refer-

ence, and at best any such test environment is available

locally to confirm the installation. Tables 3 and 4 show a

readily usable implementation from the EBI Metagenomics

[25] workflow. It was initially prepared for Docker but was

adjusting to allow for a regular distributions package via

the SciCrunch Research Resource ID of the tool infernal

and the CWL’s SoftwareRequirement specification (https://

w3id.org/cwl/v1.0/CommandLineTool.

html#SoftwareRequirement). Debian packages reference

the same catalogues to support the matching.

The installation procedure of Bioconductor in Table 2 is

trusted, and the rest performs in an automated manner.

Version information can be retrieved at run-time. For the

user who desires to always have the latest released version

of a bespoke tool, the distribution providing backported

versions is a significant advantage. While technically and

socially difficult to undertake en masse, automated back-

porting of much scientific software is possible, and efforts

to provide such packages either officially within the dis-

tribution (http://backports.debian.org) or through external

repositories (http://neuro.debian.net/) will continue to grow

in importance.

A yet unresolved issue with Bioconductor and other

tools and frameworks that provide their own packages is

that they have their own release scheme of highly inter-

connected packages which do not synchronise with an

underlying Linux distribution. This issue is, albeit to a

lesser degree, shared with the rolling Conda and GNU Guix

distributions. GNU Guix does allow multi-versioning of

packages and their dependencies, but the main software

distribution typically only includes recent releases of

software. Currently, no software packaging system dis-

tributes the same software with many versions, e.g. com-

patibility with R version 3.4 and with a particular earlier

version of this established statistics environment as

requested for a Bioconductor release. The community has

not yet found an answer to this problem though Conda

channels can be used to achieve this. For GNU Guix a

similar ‘‘channels’’ system is being considered for sup-

porting older software packages.

Table 1 Features in Linux distributions and cross-distribution package providers

Linux distribution Brew/Conda

Common

Tests provided by software developers are executed at build time

Recent releases find early entry into the distribution

Positive

Strict adherence to UNIX file system standards Compatible across all Linux environments

Rich annotation of packages Immediate availability of the software

Building across several architectures (e.g. ARM and PowerPC64) Integration with GitHub

Test of effect of new library release on correctness of tools using that library Available also for macOS

All software is tested to build Acceptable to deploy a trusted binary directly

Offers popcon usage statistics

Negative

Difficult to install several versions of the same tool without using software containers man pages missing

Immediate availability of new software only if manually backported Redundancies wrt libraries

Redundant installation for multiple users

S. Möller et al.

123

https://w3id.org/cwl/v1.0/CommandLineTool.html#SoftwareRequirement
https://w3id.org/cwl/v1.0/CommandLineTool.html#SoftwareRequirement
https://w3id.org/cwl/v1.0/CommandLineTool.html#SoftwareRequirement
http://backports.debian.org
http://neuro.debian.net/


Table 2 Example for the configuration file for a Docker container. It combines an Ubuntu basic image with packages retrieved from Biocon-

ductor, Bioconda or a static web address. (https://github.com/h3abionet, https://hub.docker.com/r/continuumio/miniconda/)

FROM ubuntu:latest
MAINTAINER Parts by Eugene de Beste, Kamil Kwiek, Long Yee

Seed minimal system

RUN apt-get update -y && \
apt-get install --no-install-recommends r-base-core -y && \
apt-get install -y build-essential \

wget zlib1g-dev libblas-dev \
liblapack-dev gfortran libssl-dev

Additions the distribution provides

RUN printf "source(’https://bioconductor.org/biocLite.R’)" > script.R
RUN printf "biocLite(’crlmm’)" >> script.R
RUN Rscript script.R
RUN rm script.R

Additions from a community repository

RUN apt-get update && \
apt-get install -y wget bzip2 libxext6 libsm6 libxrender1 libglib2.0-0

# Based on https://hub.docker.com/r/continuumio/miniconda/~/dockerfile/
RUN echo ’export PATH=/opt/conda/bin:$PATH’ > /etc/profile.d/conda.sh && \

wget --quiet https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \
-O ~/miniconda.sh && \

/bin/bash ~/miniconda.sh -b -p /opt/conda && rm ~/miniconda.sh
ENV PATH /opt/conda/bin:$PATH

Installation of Conda

RUN /opt/conda/bin/conda create -y -n qiime1 python=2.7 \
qiime matplotlib=1.4.3 mock nose -c bioconda

RUN /opt/conda/bin/conda install psutil
ENV PATH /opt/conda/envs/qiime1/bin:$PATH

Installation of QIIME with Conda

RUN apt-get update && apt-get install -y unzip wget
RUN wget https://www.cog-genomics.org/static/bin/plink160816/plink_linux_x86_64.zip && \

unzip plink_linux_x86_64.zip -d /usr/bin/
RUN rm -rf plink_linux_x86_64.zip

Installation of a binary from the web as an alternative to the Debian package

RUN apt-get install -y curl grep sed dpkg && \
TINI_VERSION=‘curl https://github.com/krallin/tini/releases/latest | \

grep -o "/v.*\"" | sed ’s:^..\(.*\).$:\1:’‘ && \
curl -L "https://github.com/krallin/tini/releases/download/v${TINI_VERSION}%tini_${TINI_VERSION}.deb" \

> tini.deb && \
dpkg -i tini.deb && rm tini.deb && apt-get clean

Installation of a Debian package from the web
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4 Conclusion

We have discussed the many efforts at different levels that

are contributed by volunteers. User-installability in HPC

environments is provided by containers like Singularity or

the Prefix concept of Gentoo. Every distribution needs to

provide proofs for the reliability of their packages by

themselves. Conceptional differences remain in the degree

of manual curation. Via cross-distributional efforts like

AppStream, a good part of this curation may be shifting to

the upstream source tree, to be equally used by all

distributions. The EDAM annotations are a prime candi-

date to make this transition from Debian or software cat-

alogues into the source tree.

We have presented Conda-based packages as a cross-

distributional resource of readily usable software packages.

There is an ongoing need for a traditional Linux distribu-

tion underneath, of which the focus in this article lies on

the Debian distribution as a point of comparison with

Conda. Philosophical differences between these efforts

persist, especially towards the avoidance of redundancy

between packages. We did not explore here other package

managers such as GNU Guix and Brew. These four

package managers together represent the full range of free

and open-source software in use today and can be installed

on one system without interfering with each other, each

providing some level of convenience, robustness and

reproducibility.

By placing a high value on standardisation, policy

compliance (https://www.debian.org/doc/debian-policy/)

and quality assurance, it is understood that immediate

participation of newcomers in Debian maintainership is

rendered more difficult; contributions are undoubtedly

more difficult than a pull request on GitHub which the

Conda initiatives requests. The Debian community is

moving towards technologies with lower barriers to entry,

but its focus on using free software tools to develop a free

operating system [29, 31], and a strict adherence to cor-

rectness and policy will keep this barrier relatively high for

the foreseeable future.

With a focus on the exchange of workflows, we need to

find ways to eliminate hurdles for an exchange of experi-

ences between distributions of scientific software. For-

mally, this can be performed by an exchange of tests/

benchmarks of tools and complete workflows alike. This is

a likely challenge for upcoming informal meetings like a

Codefest [26].

Workflow testing and modularisation can highly benefit

from a more homogeneous characterisation of all available

software tools. The EDAM ontology provides such

descriptors, but its terms have to be associated manually,

and their precise attribution highly depends on the very

knowledge of the ontology itself. The lack of a protocol

formalising whether the developer or the package main-

tainer has to provide them brings, however, ground for both

communities to decide whether to channel their efforts

towards a better tool description enrichment.

We have experimented with packages of the Bioconda

software infrastructure for Debian to reduce the overhead

for users of Debian and derivative distributions, e.g.,

Ubuntu, to add Bioconda-provided packages to their

workflows. Conversely, it would be feasible to add a bit of

extra logic to the Conda infrastructure to install system

packages if those are available and the user has the

Table 3 Example CWL tool descriptions from EBI Metagenomics

workflow (https://github.com/ProteinsWebTeam/ebi-metagenomics-

cwl/) which the first provides the tool, and the second file lays out the

interface. The first file is no longer included by the tool description but

the software dependency is specified via an external catalogue [4]

File tools/infernal-docker.yml:

class: DockerRequirement
dockerImageId: infernal
dockerFile:
$include: infernal-Dockerfile

File tools/infernal-cmscan.cwl:

cwlVersion: v1.0
class: CommandLineTool
label: search sequence(s) against a covariance model database
doc: "http://eddylab.org/infernal/Userguide.pdf"
requirements:

ResourceRequirement:
coresMax: 1
ramMin: 1024 # just a default, could be lowered

hints:
SoftwareRequirement:

packages:
infernal:

specs: [ "https://identifiers.org/rrid/RRID:SCR_011809" ]
version: [ "1.1.2" ]

#- $import: infernal-docker.yml

inputs:
covariance_model_database:

type: File
inputBinding:

position: 1
secondaryFiles:
- .i1f
- .i1i
- .i1m
- .i1p

query_sequences:
type: File
streamable: true
inputBinding:

position: 1
format:

- edam:format_1929 # FASTA
...
$namespaces:
edam: http://edamontology.org/
s: http://schema.org/

$schemas:
- http://edamontology.org/EDAM_1.16.owl
- https://schema.org/docs/schema_org_rdfa.html

s:license: "https://www.apache.org/licenses/LICENSE-2.0"
s:copyrightHolder: "EMBL - European Bioinformatics Institute"
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permission to install to system directories. Similar points

can be made for GNU Guix and Brew. We also note that

containerisation technologies, such as Docker and Singu-

larity, allow for easy deployment of software tools with

their dependencies inside workflows. All mentioned soft-

ware packaging technologies play well with containers.

A bioinformatics pipeline can be expressed as a work-

flow plus data plus (containerized) software packages

which is a first step towards reproducible analysis. Once a

research project is completed and the results are published,

the analysis still needs to be reproducible, both for

researchers in the community and for oneself when going

back to past projects. Institutional data archives are now

commonplace, and researchers deposit data in them as part

of the publication process. What is needed to complete the

reproducibility is the analysis tooling. This holds for any

size of data, including local findings of a pre-clinical study

or remote big data such as from physics or astronomy.

Hence, researchers need well-established transitions

between arbitrary research environments that render our

research the most productive, and an environment that may

be reliably installed across many clinical environments.

This is a long-term goal that we had better all start working

towards now. We are approaching it with the CWL, and

seeing the CWL as an integral part of a Linux Distribution

with all the distributions’ established policies and infras-

tructure to assess correctness and reliability, will be ben-

eficial for all.
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Smith C, Sperotto MM, Stockinger H, Vařeková RS, Tosatto SC,
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