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Density–wave-function mapping in degenerate current-density-functional theory
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We show that the particle density ρ(r) and the paramagnetic current density jp(r) are not sufficient to determine
the set of degenerate ground-state wave functions. This is a general feature of degenerate systems where the
degenerate states have different angular momenta. We provide a general strategy for constructing Hamiltonians
that share the same ground-state density pair yet differ in degree of degeneracy. We then provide a fully analytical
example for a noninteracting system subject to electrostatic potentials and uniform magnetic fields. Moreover,
we prove that when (ρ,jp) is ensemble (v,A)-representable by a mixed state formed from r degenerate ground
states, then any Hamiltonian H (v′,A′) that shares this ground-state density pair must have at least r degenerate
ground states in common with H (v,A). Thus, any set of Hamiltonians that shares a ground-state density pair
(ρ,jp) by necessity has to have at least one joint ground state.
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I. INTRODUCTION

A cornerstone of modern density-functional theory (DFT)
is the Hohenberg-Kohn theorem [1], which states that the
ground-state particle density of a quantum-mechanical system
determines up to an additive constant the one-body potential
v of the same system. The original argument was limited
to systems that have unique ground states. Although DFT
can be formulated without recourse to the Hohenberg-Kohn
theorem, using the constrained-search and Lieb’s convex
analysis formalisms [2,3], the result strengthens and adds
insight to the theory. First, the alternative DFT formulations
establish only that densities determine various contributions to
the total energy, in particular, the exchange-correlation energy
and properties given as functional derivatives of the energy
with respect to the scalar potential. The stronger statement
that the wave function and Hamiltonian, and consequently
all properties of a system, are determined still requires the
Hohenberg-Kohn theorem. Second, whereas alternatives are
known for ground-state DFT, the available formulation of time-
dependent DFT is most closely related to the Hohenberg-Kohn
formulation [4].

When the Hamiltonian contains a magnetic vector potential
in addition to the scalar potential, the particle density alone is
no longer sufficient for a rigorous formulation of DFT. The
most well established extension is current-density-functional
theory (CDFT), where it has been proven that the particle
density ρ and the paramagnetic current density jp determine
the nondegenerate ground state [5,6] [see Eqs. (2) and (3) for
the definition of ρ and jp, respectively]. We use the term weak
Hohenberg-Kohn theorem (cf. [7], Sec. III D) for this result
and, following Dreizler and Gross [8], denote the invertible
map from nondegenerate ground states to densities by D.
The reason for the term weak is that such a result would
be implied by the stronger but false statement that (ρ,jp)
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determines (v,A) [6,9,10]. Thus, the map, denoted C, from
(v,A) to nondegenerate ground states is not invertible. This
nonuniqueness of potentials was pointed out by Capelle and
Vignale [6]. A comparable nonuniqueness of potentials has
also been noted in spin-polarized DFT [11–13]. The situation
can be summarized as

(v,A)
C→ ψ

D
� (ρ,jp). (1)

The fact that the map C is not invertible does not preclude a
density-functional formulation in terms of ρ and jp. Indeed,
the existence of the map D−1 in nondegenerate paramagnetic
CDFT is enough to define a corresponding Hohenberg-Kohn
functional [5]. Furthermore, the Hohenberg-Kohn variational
principle holds for the density pair (ρ,jp) and a theory of
density functionals can be based on these variables [5,6]. For
further discussion on the choice of variables for current-density
functionals we refer to [9,10]; see also the mathematical
analyses in [14–16] and the related [7]. For the status of the
Hohenberg-Kohn theorem for physical current density instead
of the paramagnetic current density, we refer to previous work
showing that existing attempted proofs are flawed [9,10] and
the recent progress towards a positive result using the total
current density [17,18].

The aim of this work is to investigate a weak Hohenberg-
Kohn result in CDFT without the assumption of a unique
ground state. Hence, the work complements earlier work on
nonuniqueness of potentials [6] in that we now study the
nonuniqueness of ground-state degeneracies. Given an N -
electron wave function ψ , define the particle density and the
paramagnetic current density according to

ρψ (r1) = N

∫
|ψ |2 dr−1, (2)

jpψ (r1) = N Im
∫

ψ ∇1ψ dr−1, (3)

where
∫

dr−1 denotes integration over all space for all but
one particle and ψ denotes the complex conjugate of ψ .
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Furthermore, given a vector potential A we may compute the
total current density as the sum j = jp + ρA.

For vanishing A, the Hohenberg-Kohn theorem states that if
ρ1 = ρ2, then V1 = V2 + constant, where Vk = ∑

j vk(rj ) [1].
The proof of this result relies on the fact that if ψ is a ground
state of both systems, then (V1 − V2)ψ = constant × ψ . If ψ

does not vanish on a set of positive (Lebesgue) measure, we
have V1 = V2 + constant (almost everywhere). At any rate
V1 = V2 up to a constant holds on the complement of Nψ =
{ψ = 0}. Assuming that the measure ofNψ is zero (i.e., assum-
ing that the Schrödinger equation has the unique continuation
property from sets of positive measure), the proof can be com-
pleted by means of the variational principle as first suggested
in [1]. The restriction to nondegenerate ground states in the
original Hohenberg-Kohn theorem can be lifted [19,20]. [See
also the work of Lammert [21] for further analysis of the set
Nψ in connection with the Hohenberg-Kohn theorem in DFT.]

In the presence of a magnetic field, a ground state ψ does
not uniquely determine the Hamiltonian H [6,9,10]. This leads
to complications in the following way: We demonstrate that a
given pair ρ and jp may arise from two different pairs of v and
A that do not share the same set of ground states. This shows
that the conclusion of Theorem 9 in [10] does not hold in
general. Nonetheless, any set of ground-state density matrices
that have the same density pair (ρ,jp) are ground states of the
same set of Hamiltonians (see also [22] and the discussion that
comes before Theorem 9 in [10]). We furthermore prove that
(ρ,jp) at least determines one ground state, and under certain
assumptions, the full set. This constitutes a weak ensemble
Hohenberg-Kohn result in degenerate CDFT.

II. GROUND-STATE DEGENERACIES IN CDFT

In what follows, our point of departure is a quantum-
mechanical system of N (spinless) electrons subjected to both
a magnetic field and a scalar potential. The Hamiltonian is

H (v,A) = H0 +
N∑

j=1

(
1

2
{−i∇j ,A(rj )} + v(rj ) + 1

2
A(rj )2

)
,

where {·, · ·} denotes the anticommutator and H0 is the univer-
sal part of H , independent of the external potentials v and A.
We let

H0(λ) = 1

2

N∑
j=1

⎛
⎝−∇2

j + λ
∑
j �=k

r−1
jk

⎞
⎠, 0 � λ � 1,

where λ = 1 corresponds to fully interacting electrons and λ =
0 the noninteracting case.

We start by demonstrating that (ρ,jp) does not determine
the set of possibly degenerate ground states. The general idea
is that for systems with cylindrical symmetry about the z

axis, degeneration can either be introduced or lifted by the
application of an external magnetic field. For example, con-
sider a cylindrically symmetric Hamiltonian H (v + A2/2,0)
with a ground-state degeneracy, where the ground states are
distinguished by different eigenvalues of Lz. The Hamiltonian
H (v,A) shares the same eigenstates, but the eigenvalue degen-
eracies are now lifted by the orbital Zeeman effect. At least for
sufficiently weak magnetic fields along the z axis, the state with

minimal Lz is then the unique ground state. The idea can also be
applied in the other direction. That is, suppose a magnetic field
has been tuned so that H (v,A) has a ground-state degeneracy,
where the ground states are distinguished by different Lz

values. The degeneracy is then lifted in the spectrum of the
Hamiltonian H (v + A2/2,0).

In order to avoid relying on numerical results, we shall focus
on a two-dimensional noninteracting system of N electrons
subject to a magnetic field. Define rj = (xj ,yj ), v(r) = 1

2ω2r2,
and A = (B/2)(−y,x,0), where B � 0 is the strength of a
uniform magnetic field perpendicular to the plane, i.e., B =
Bez. Since {−i∇j ,A(rj )} = BLz;j , the system’s Hamiltonian
is given by

H = H0(λ) +
N∑

j=1

(
B

2
Lz;j +

[
B2

8
+ ω2

2

]
r2
j

)
. (4)

Let λ = 0 such that H0 = ∑N
j=1(−∇2

j /2). We write H =∑N
j=1 hj , where (dropping the index j ) the one-electron

operator h is given by

h = −1

2
∇2 + B

2
Lz +

[
B2

8
+ ω2

2

]
r2.

Let ω̃ =
√

(B/2)2 + ω2. The eigenfunctions of h in polar
coordinates fulfill (see, for instance, [23])

φn,m(r,ϕ) = Cr |m|eimϕL|m|
n (ω̃r2)e−ω̃r2/2,

where L
|m|
n are the associated Laguerre polynomials, n =

0,1, . . . and m = 0, ± 1, . . . The corresponding eigenvalues,
or orbital energies, are given by

εn,m = (2n + 1 + |m|) ω̃ + mB

2
. (5)

The first few εn,m are plotted in Fig. 1 for a fixed ω = ω0.
To prove our claim, Fig. 1 shows that it is enough to study a

system with N = 3 electrons (other particle numbers are also
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FIG. 1. Orbital energies εn,m [see Eq. (5)] for ω = 0.8 as a
function of the magnetic field strength B � 0. Orbital energies with
m = 0 are shown as dotted black curves, m = ±1 as dashed blue
curves, m = ±2 as solid red curves, m = ±3 as dashed dot magenta
curves, and m = ±4 as solid green curves.
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possible). Let |n,m〉 be the abstract state vector corresponding
to the single-particle wave function φn,m. Set ω = ω0, B =
B0 = ω0/

√
2, e0 = 15ω0/

√
8, and

ψ ′
0 = |0,0〉 ⊗ |0,−1〉 ⊗ |0,1〉,

ψ0 = |0,0〉 ⊗ |0,−1〉 ⊗ |0,−2〉,
where ⊗ denotes an antisymmetrized tensor product. Then by
direct computation, using B0 = ω0/

√
2,

Hψ ′
0 = (ε0,0 + ε0,−1 + ε0,1)ψ ′

0 = e0ψ
′
0,

Hψ0 = (ε0,0 + ε0,−1 + ε0,−2)ψ0 = e0ψ0,

and ψ ′
0 and ψ0 are both degenerate ground states of H ,

with energy e0. See also Fig. 1 where ε0,1 = ε0,−2 at the
point (B0,7B0/2) ≈ (0.57,1.98) for ω0 = 0.8. Furthermore,
Lzψ

′
0 = 0 whereas Lzψ0 �= 0.

Next, let H ′ be a Hamiltonian of the form (4) for a different
system of the same number of electrons, but with B = 0 and
ω =

√
(B0/2)2 + ω2

0. It then follows from (4) that

H = H ′ + B0

2
Lz.

Thus, ψ ′
0 is the unique ground state (up to a phase) of H ′,

with energy e0. Note that the given example can be adapted
to include spin. Adding the spin-Zeeman term g B · s/2 to the
one-electron operator h, as well as having each orbital instead
doubly occupied, gives a level crossing at a different B and
electron number N .

Now, if we compute ρ and jp from just ψ ′
0, the pair (ρ,jp)

is (v,A) representable from both H and H ′,

(v,A)
C→ {ψ0,ψ

′
0} → (ρ,jp) ← {ψ ′

0}
C← (v′,0).

The HamiltoniansH andH ′ do not share the same set of ground
states and consequently, we have proved: Knowledge of ρ and
jp is not enough to determine the set of ground states.

In order to obtain fully analytical results, we have focused on
a noninteracting model system, i.e., λ = 0. Another candidate
for analytical results is a two-electron quantum dot with fully
interacting (λ = 1) electrons—we refer to the work in [23],
see also [24]—although the fact that exact solutions are only
known for a discrete set of parameter values makes this case
harder. Furthermore, level crossings are ubiquitous in more
complicated systems as well. For example, quantum rings [25],
atomic systems [26,27], and molecular systems [27,28] all
feature level crossings of the type analyzed here. The existence
of level crossings does not depend on the presence or absence
of the spin-Zeeman term. In particular, the lithium atom in a
homogeneous magnetic field exhibits such a level crossing.
In [26] that includes the spin-Zeeman term (see Sec. IV A
and Fig. 1, Tables II and III); the ground state has Lz = 0
for field strengths up to a certain value, after which a level
crossing occurs and there are ground states with both Lz = 0
and Lz �= 0. Arguing as above, we can find a system without
a magnetic field that shares the ground state with Lz = 0 and
furthermore, for this system, the ground state is unique.

It is interesting to note that the above situation cannot
arise for the hydrogen atom in a uniform magnetic field. Let
H = 1

2 (−i∇ + A)2 − |r|−1 be the Hamiltonian that models a
hydrogen atom in a uniform magnetic field generated by the

vector potential A = B
2 r⊥, B > 0, and r⊥ = (−y,x,0). We

denote the ground-state energy e0 and let λm = infLz=m RH ,
where RH is the Rayleigh-Ritz quotient of H , i.e.,

λm = inf
Lz=m

〈ψ,Hψ〉
〈ψ,ψ〉 .

Theorem 4.6 in [29] states e0 = λ0, and furthermore, λ0 <

λ−1 < · · · since lim|r|→0+ v = 0. Thus, no level crossing
occurs in this system.

We now turn to a positive result. To obtain a weak ensemble
Hohenberg-Kohn result, denote 	H the set of ground states
belonging to H and let {ψk}mk=1 be an orthonormal basis of
	H . We here assume that m < +∞, i.e., the multiplicity of the
ground-state energy e0 is finite. For a basis {ψk}mk=1, 0 � λk �
1 and

∑m
k=1 λk = 1, let 
H (λ1, . . . ,λm) = ∑m

k=1 λk|ψk〉〈ψk|
be a density matrix of H . A ground-state particle density ρ

and paramagnetic current density jp of H are then given by
ρ = Tr 
H ρ̂ = ∑m

k=1 λkρψk
and jp = Tr 
H ĵp = ∑m

k=1 λkjpψk
.

Conversely, given a particle density ρ and a paramagnetic
current density jp we say that they are (v,A)-ensemble-
representable if there exists H with a 
H such that 
H �→
(ρ,jp). We use the standard shorthand 
H �→ (ρ,jp) to de-
note ρ = ∑m

k=1 λkρψk
and jp = ∑m

k=1 λkjpψk
. Here, of course,

{ψk}mk=1 is a basis for 	H .
We have: Consider two Hamiltonians, H1 and H2, with

different potentials (v1,A1) and (v2,A2), each of which giving
rise to degenerate ground states. Assume that one can construct
ground-state density matrices 
1 and 
2 associated with H1

and H2, respectively, which produce the same densities, 
i �→
(ρ,jp). Then 
1 is a ground-state density matrix for H2 and
vice versa.

We can prove this claim as follows. Writing H1 = H2 +
(H1 − H2), we have

Tr 
2H1 =e2 +
∫

jp · (A1 − A2)dr

+
∫

ρ
(
v1 − v2 + (

A2
1 − A2

2

)/
2
)
dr.

Interchanging the indices, the equality Tr 
1H2 + Tr 
2H1 =
e1 + e2 holds. Moreover, since e1 � Tr 
2H1 and e2 �
Tr 
1H2, it follows e1 = Tr 
2H1 and e2 = Tr 
1H2. Conse-
quently, 
2 is also a ground-state density matrix of H1 and
vice versa. The result is illustrated in Fig. 2. Note that the above
result does not assume that only two Hamiltonians share the
same ground-state density pair. If several Hamiltonians all pro-
duce the same ground-state density pair (ρ,jp), the theorem can
easily be generalized or applied to each pair of Hamiltonians.

There are some immediate consequences of the above fact.
In particular, we stress that a Hohenberg-Kohn functional can
still be constructed in the degenerate case, since FHK(ρ,jp) =
Tr 
H0 has a unique value independent of which ground-state
density matrix 
 �→ (ρ,jp) that is used. Furthermore, if the
ground states of H1 and H2 are nondegenerate, then ρ1 = ρ2

and jp1 = jp2 implies 	H1 = 	H2 . This is the result of Vignale
and Rasolt [5].

Returning to the degenerate case, as demonstrated in the
first part of this work 	H1 = 	H2 is not true in general, even
though 
i �→ (ρ,jp). We next introduce a definition. Given a
(v,A)-ensemble-representable density pair (ρ,jp), there exists
an H with ground state 
H such that ρ = Tr 
H ρ̂ and jp =
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FIG. 2. Two Hamiltonians have different sets of degenerate
ground states (indicated by ellipses). Suppose the density matrices 
1

and 
2 are ground-state density matrices of H (v1,A1) and H (v2,A2),
respectively. Assume further that they map to the same density,

1 �→ (ρ,jp) and 
2 �→ (ρ,jp). Then it follows that 
1 is also a
ground-state density matrix of H (v2,A2) and that 
2 is also a ground-
state density matrix of H (v1,A1). Thus, both 
1 and 
2 are located in
the intersection of the two ellipses.

Tr 
H ĵp. Let r(
H ) denote the rank of 
H , i.e., the number of
nonzero eigenvalues λk of 
H . We have the following weak
ensemble Hohenberg-Kohn result:

Assume that H1 and H2 have the sets of ground states
	H1 with (orthonormal) basis ψ1,ψ2, . . . ,ψm and 	H2 with
(orthonormal) basis φ1,φ2, . . . ,φn. Assume 
1 �→ (ρ1,j

p

1 ) and

2 �→ (ρ2,j

p

2 ), where 
i is a ground-state density matrix of
Hi . If ρ1 = ρ2 and jp1 = jp2 , it follows that 	H1 ∩ 	H2 �= ∅.
Moreover, with the notation ri = r(
i) then there are at least
max(r1,r2) linearly independent common ground states of the
two systems and

dim 	H1 ∩ 	H2 � max(r1,r2).

If in addition r1 = dim 	H1 and r2 = dim 	H2 , then 	H1 =
	H2 .

To prove the above, assume that ρ1 = ρ2 = ρ and jp1 = jp2 =
jp. For the first part, suppose 	H1 ∩ 	H2 = ∅ and let {λk}mk=1
satisfy 0 � λk � 1 and

∑
k λk = 1 such that ρ = ∑m

k=1 λkρψk

and jp = ∑m
k=1 λkjpψk

. We then have strict inequality

e2 <

m∑
k=1

λk〈ψk,H2ψk〉

= e1 −
∫

jp · (A2 − A1)dr

+
∫

ρ
(
v2 − v1 + (

A2
2 − A2

1

)/
2
)
dr. (6)

On the other hand, let {μl}nl=1 satisfy 0 � μl � 1 and∑n
l=1 μl = 1 such that ρ = ∑n

l=1 μlρφl
and jp = ∑n

l=1 μlj
p

φl
.

Again using 	H1 ∩ 	H2 = ∅, it holds that

e1 <

n∑
l=1

μl〈φl,H1φl〉

= e2 −
∫

jp · (A1 − A2)dr

+
∫

ρ
(
v1 − v2 + (

A2
1 − A2

2

)/
2
)
dr. (7)

Adding (6) and (7) gives e1 + e2 < e1 + e2, which is a contra-
diction and 	H1 ∩ 	H2 �= ∅.

For the second part, we use that 
i �→ (ρ,jp) implies
that 
1 is a ground-state density matrix of H2 (and vice
versa). To obtain a contradiction, assume dim 	H1 ∩ 	H2 <

r1. Without loss of generality, let ψ1,ψ2, . . . ,ψm′ ∈ 	H2 and
ψm′+1,ψm′+2, . . . ,ψm /∈ 	H2 , where m′ < r1 � m. This im-
plies

Tr 
1H2 =
(

m′∑
k=1

+
m∑

k=m′+1

)
λk〈ψk,H2ψk〉 > e2,

and 
1 is not a ground-state density matrix of H2. By the above,
this is a contradiction. Hence, there are at least r1 ground states
ψk ∈ 	H2 .

The proof that there are at least r2 ground states φl ∈ 	H1

is completely analogous, and we can conclude that there are
at least max(r1,r2) common ground states of two systems and
dim 	H1 ∩ 	H2 � max(r1,r2).

Lastly, with r1 = m and r2 = n, we obtain from the previous
step

min(m,n) � dim 	H1 ∩ 	H2 � max(m,n).

This can only hold whenm = n, and consequently	H1 = 	H2 .
This completes the proof.

III. DISCUSSION

To summarize, we have proved that a density pair (ρ,jp) in
general does not determine the full set of ground states. The
counterexample we have provided demonstrates that a given
(ρ,jp) may correspond to either a system with a unique ground
state or a system with degenerate ground states. All that is
known is that all systems that have (ρ,jp) as a ground-state
density pair must at least share one ground state. While a
fully analytical proof is tractable in special cases, such as
noninteracting systems, the counterexample only requires that
a level crossing can be tuned by a magnetic field. Hence, this
situation is common and can be established numerically in
many systems, such as the lithium atom. A direct consequence
is that a CDFT Kohn-Sham system does not generally repro-
duce the degree of ground-state degeneracy of the interacting
system. Formally, the Kohn-Sham system is constructed as a
universal functional of the densities (ρ,jp) of the interacting
system, which leaves the degeneracy underdetermined. This
has implications for the use of CDFT to reproduce thermosta-
tistical quantities. Moreover, we have proved a positive result.
When (ρ,jp) is ensemble (v,A)-representable by a mixed state
formed from r degenerate ground states, then any Hamiltonian
H (v′,A′) that shares this ground-state density pair must have
at least r degenerate ground states in common with H (v,A).
Finally, we emphasize that the complications in CDFT due
to degeneracy do not effect the generalized Hohenberg-Kohn
functional, since any ground-state density matrix 
 �→ (ρ,jp)
has the same expectation value Tr 
H0.
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