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Abstract. The mathematical foundation of the so-called extended coupled-cluster method for
the solution of the many-fermion Schrödinger equation is here developed. We prove an existence
and uniqueness result, both in the full infinite-dimensional amplitude space as well as for discretized
versions of it. The extended coupled-cluster method is formulated as a critical point of an energy
function using a generalization of the Rayleigh–Ritz principle: the bivariational principle. This gives
a quadratic bound for the energy error in the discretized case. The existence and uniqueness results
are proved using a type of monotonicity property for the flipped gradient of the energy function. A
comparison to the analysis of the standard coupled-cluster method is made, and it is argued that
the bivariational principle is a useful tool, both for studying coupled-cluster type methods and for
developing new computational schemes in general.
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1. Introduction. The coupled-cluster (CC) method is today the de facto stan-
dard wavefunction-based method for electronic-structure calculations and has a com-
plex and interesting history [14, 11, 4, 2]. To cut a long story short, it was invented by
Coester and Kümmel in the 1950s as a method for dealing with the strong correlations
inside an atomic nucleus [5, 6]. From nuclear physics, the idea migrated to the field
of quantum chemistry in the 1960s due to the seminal work of researchers such as
Sinanoğlu, Č́ıžek, Paldus, and Shavitt [19, 3, 15]. An interesting turn of events is that
the method returned to nuclear physics in the 1990s, when Dean and Hjorth-Jensen
applied the now mature methodology to nuclear structure calculations [7].

The main feature of the CC method is the use of an exponential parametrization
of the wavefunction. This ensures proper scaling of the computed energy with system
size (number of particles), i.e., the method is size extensive. At the same time, the
CC method is only polynomially scaling with respect to system size. These factors
have led to the popularity of the method.

However, the theory does not satisfy the (Rayleigh–Ritz) variational principle,
i.e., the computed CC energy is not guaranteed to be an upper bound to the exact
energy. This has traditionally been the main criticism of CC calculations, as an error
estimate is not readily available. Furthermore, in the original formulation it was not
variational in the sense that the solution was not formulated as a stationary point of
some function(al).
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ANALYSIS OF THE ECC METHOD IN QUANTUM CHEMISTRY 661

Helgaker and Jørgensen later formulated the CC method in terms of a Lagrangian
[9, 10], viewing the solution of the CC amplitude equations as a constrained optimiza-
tion of the energy, the set of cluster amplitude equations becoming constraints. This
is today the standard formulation of the CC method.

Already in 1983, Arponen [1] had derived the so-called extended CC (ECC)
method from a generalization of the Rayleigh–Ritz variational principle, the bivari-
ational principle. This principle formally relaxes the condition of the Hamiltonian
being symmetric and thus introduces the left eigenvector as a variable as well as the
right eigenvector. Arponen noted that the standard CC method can be viewed as an
approximation to the ECC method and continued to write down the standard CC
Lagrangian. In the bivariational interpretation, Helgaker and Jørgensen’s Lagrange
multipliers are actually wavefunction parameters on equal footing with the cluster
amplitudes. No distinction is being made.

Both Helgaker and Jørgensen’s CC Lagrangian and Arponen’s bivariational for-
mulation cast CC theory in a variational (stationary point) setting. However, only the
bivariational point of view allows, at least formally, systematic improvement by adding
other degrees of freedom than the cluster amplitudes to the ansatz. The bivariational
principle is therefore of potential great use when developing novel wavefunction-based
methods; see, for example, [12], where the single-particle functions are introduced
as (bi)variational parameters in a time-dependent setting. However, while the bi-
variational principle is rigorous, it is not known how to introduce approximations
by parameterizations of the wavefunctions, such that one can obtain existence and
uniqueness results as well as error estimates.

In this article, we will provide a rigorous analysis of a version of the ECC method.
The idea is, starting from the bivariational quotient, to choose a function F (see (7))
that is (locally and strongly) monotone and where F = 0 is equivalent to a critical
point of the bivariational quotient. Until now, the ECC method has not been turned
into a practical tool in chemistry due to its complexity. On the other hand, the
analysis herein is a step toward obtaining a rigorous foundation for the application
of the bivariational principle. We believe that the approach taken, by showing the
monotonicity of the flipped gradient F , is an approach that may allow existence and
uniqueness results in much more general settings.

We build our analysis on articles by Rohwedder and Schneider, who fairly recently
put the standard CC method on sound mathematical ground [18, 16, 17]. They proved,
among other important results, a uniqueness and existence result of the solution of the
CC amplitude equations. The result rests on a certain monotonicity property of the
CC equations. Moreover, in [16] the boundedness of cluster operators (as operators
on a Hilbert space that guarantees finite kinetic energy) was established, which turns
out to be a rather subtle matter. They also provided error estimates for the energy
using the stationarity condition of the Lagrangian.

This article is structured as follows. In section 2 we discuss the solution of the
Schrödinger equation (SE) by employing an exponential ansatz. We here present
relevant results needed for this work. In particular Lemma 8 is the motivation for
our choice of ECC variables and links the ECC energy function to the bivariational
principle. Theorem 9 formulates the continuous ECC equations and equates the
solution of these equations with the solution of the SE.

In section 3 we analyze the flipped gradient of the ECC energy function and prove
strong and local monotonicity for this entity. This is achieved for two complementary
situations. Theorem 16 proves this property under assumptions on the structure of the
solution, whereas Theorem 17 proves it under assumptions on the Hamiltonian. Along
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662 ANDRE LAESTADIUS AND SIMEN KVAAL

the lines of the analysis of Rohwedder and Schneider for the CC theory, we prove exis-
tence and uniqueness for the solution of the (continuous) ECC equation and truncated
(discrete) versions of it; see Theorem 19. This theorem also guarantees convergence
toward the full solution as the truncated amplitude spaces tend to the continuous ones.
Theorem 22 formulates a sufficient condition for the truncated amplitude spaces to
grant a unique solution of the discrete ECC equation. Again the monotonicity is
used for the flipped gradient. Last, in Theorem 24 we obtain error estimates for
the truncated ECC energy. The energy estimates are obtained without the use of a
Lagrangian and are instead based on the bivariational formulation of the theory.

2. Solving the Schrödinger equation using the exponential ansatz.

2.1. Traditional CC theory in a rigorous manner. In this section we con-
sider the exponential parametrization for the N -electron ground-state wavefunction
ψ∗ satisfying the N -electron SE

Hψ∗ = E∗ψ∗.

Here, E∗ is the ground-state energy and H is the Hamiltonian of a molecule in
the Born–Oppenheimer approximation. We assume that ψ∗ exists and that it is
non-degenerate, and we denote by γ∗ > 0 the spectral gap (for a definition see
section 3.2).

The set of admissible wavefunctions is a Hilbert space H ⊂ L2
N of finite kinetic

energy wavefunctions, with norm ‖ψ‖2H = ‖ψ‖2 + ‖∇ψ‖2. Here, L2
N is the space of

totally antisymmetric square-integrable functions ψ : (R3 ×{↑, ↓})N → R, with norm
‖ · ‖ and inner product 〈·, ·〉. In this work, we restrict our attention to the real space
L2
N and thus real Hamiltonians.

We will furthermore assume that the ground-state wavefunction ψ∗ is non-
orthogonal to a (fixed) reference determinantal wavefunction φ0 ∈ H, and thus, using
intermediate normalization, we have ψ∗ = φ0 + ψ⊥, where 〈φ0, ψ⊥〉 = 0.

The molecular Hamiltonian has a set of useful properties that make the SE well-
posed [20]. The operator H : H → H′ is a bounded (continuous) operator into the
dual H′, i.e., there exists a constant C ≥ 0 such that for all ψ,ψ′ ∈ H,

(1a) | 〈ψ′, Hψ〉 | ≤ C‖ψ′‖H‖ψ‖H.

Moreover, H is below bounded by a constant e ∈ R such that H + e is H-coercive,
i.e., there exists a constant c > 0 such that for all ψ ∈ H,

(1b) 〈ψ, (H + e)ψ〉 ≥ c‖ψ‖2H.

The latter inequality is often referred to as a G̊arding estimate and it is immediate
that e > −E∗. Finally, H is symmetric,

(1c) 〈ψ,Hψ′〉 = 〈ψ′, Hψ〉 .

Equations (1a)–(1c) form assumptions on H that will be used frequently.
In a standard fashion, we introduce a basis for H of determinantal wavefunctions

built from the N “occupied” functions χi (forming φ0) as well as “virtual” functions
χa, a = N + 1, N + 2, . . . Assuming that {χp : p = 1, 2, . . .} is an L2

1-orthonormal
basis, the corresponding determinantal basis {φµ} is L2

N -orthonormal. Additionally,
we must require ‖∇χp‖ < +∞.
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Each φµ can be written on the form φµ = Xµφ0, where Xµ is an operator that
creates up to N particle-hole pairs, i.e., {Xµ}µ6=0 are excitation operators, and for an
arbitrary ψ ∈ H with 〈φ0, ψ〉 = 1 we have

ψ = φ0 +
∑
µ6=0

cµφµ = (I + C)φ0

with C =
∑
µ 6=0 cµXµ being a cluster operator. The sequence c = {cµ}µ6=0 consists of

the corresponding cluster amplitudes. One says that φ0 spans the “reference space”
P := span{φ0}, while {φµ}µ6=0 forms a basis for Q = P⊥, the “excluded space.” It is
clear that P ⊕ Q = H. (Here P⊥ denotes the L2

N orthogonal complement of P, i.e.,
with respect to the inner product 〈·, ·〉.)

We introduce the convention that to each cluster amplitude sequence c = {cµ}µ6=0,
t = {tµ}µ6=0, etc., the corresponding cluster operator is denoted by the capital letter,
i.e., C =

∑
µ cµXµ, T =

∑
µ tµXµ, etc. Cluster operators by definition excludes

µ = 0, so unless otherwise specified, in what follows, all sums over µ run over excited
determinants only. Moreover, we group the excitations according to the number of
“particle-hole pairs” they create, i.e., T = T1 + T2 + · · ·+ TN , etc.

We follow [17] and introduce a Banach space of cluster amplitudes (in fact it is
a Hilbert space). We say that t ∈ V if and only if ‖t‖V := ‖Tφ0‖H < +∞. Thus,
t ∈ V if and only if {tµ} are the amplitudes of a wavefunction of finite kinetic energy
in the excluded space, i.e., Tφ0 ∈ Q. We remark that the space of cluster operators
corresponding to amplitudes from V only depends on the choice of the reference φ0

(i.e., the space P) and not on the choice of the virtual orbitals {χa}, as long as {φµ}
is an orthonormal basis of Q.

If the Hilbert space was finite dimensional, every linear operator would be bound-
ed, and the exponential map T 7→ eT would always be well-defined. A cornerstone of
formal CC theory is therefore the well-definedness of the exponential map for general
Hilbert spaces and cluster operators (see Lemma 2.3 in [17]).

Theorem 1 (Rohwedder and Schneider, the exponential mapping). T and T † are
bounded operators on H if and only if t ∈ V. Moreover, the exponential map T 7→ eT

is a (Fréchet) C∞ isomorphism between C := {T : t ∈ V} and C0 := {I + T : t ∈ V}.
For ψ ∈ H such that 〈φ0, ψ〉 = 1 there exists a unique t ∈ V such that ψ = eTφ0,
depending smoothly on ψ. In particular the exponential map and its inverse are locally
Lipschitz, i.e., for s, t ∈ V inside some ball, there exist constants D,D′ such that

(2) ‖s− t‖V ≤ D‖eSφ0 − eTφ0‖H ≤ D′‖s− t‖V .
Remark 2. Note that the above theorem does not hold for a general subspace

(truncation) Vd ⊂ V. To see this, let {χp} be an orthonormal set but not necessarily
a (complete) basis and consider a subset Vd corresponding to only single excitations
(T = T1, S = S1, etc.) and assume N > 1. Then the relation eT = I + S implies
T1 + T 2

1 /2 + · · ·+ TN1 /N ! = S1. Thus, we can choose T1 6= 0 such that eT1 6= I + S1

for any single excitation S1.

The CC ansatz uses that the exponential is a bijection between the sets C and
C0 such that ψ∗ = eT∗φ0 for some T∗ satisfying eT∗ = I + C∗. We then have (see
Theorem 5.3 in [16]) the following.

Theorem 3 (Rohwedder and Schneider, continuous CC formulation). Under
the assumptions on H stated in (1a) and (1b), ψ∗ = eT∗φ0 solves Hψ∗ = E∗ψ∗ if and
only if

f(t∗) = 0 and ECC(t∗) = E∗,(3)
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664 ANDRE LAESTADIUS AND SIMEN KVAAL

where f : V → V ′ is given by

fµ(t) := 〈φµ, e−THeTφ0〉,

and where ECC : V → R is given by

ECC(t) := 〈φ0, e
−THeTφ0〉.

Remark 4. (i) Equation (3) is the usual untruncated amplitude and energy equa-
tions of CC theory, formulated in the infinite-dimensional case, with f : V → V ′. This
formulation was derived and named the continuous CC method in [16], being a math-
ematically rigorous formulation of the electronic SE using the exponential ansatz.
Continuous here means that the excluded space Q is not discretized.

(ii) A remark on a frequently used notation in this article is in place. Since f(t)
is an element of the dual space of V, f(t) ∈ V ′, the pairing with any s ∈ V is contin-
uous in s and given by the infinite series 〈f(t), s〉 =

∑
µ sµfµ(t). It should be clear

from context whether 〈·, ·〉 refers to the L2
N inner product or the just stated infinite

series.

Even if Theorem 3 reformulates the SE, it is not clear that truncations of T , with
respect to either basis set or excitation level (or both), will give discretizations that
yield existence and uniqueness of solutions as well as error estimates. The main tool
here is the concept of local strong monotonicity of f : V → V ′. The following theorem
is basically a local application of a classical theorem by Zarantonello [21]; see also
Theorem 4.1 in [17] and Theorem 25.B and Corollary 25.7 in [22]. We will have great
use of this result when studying the ECC method of Arponen. Let X be a Hilbert
space and define for a subspace Y ⊂ X and x ∈ X the distance d(Y, x) between Y
and x by

d(Y, x) := inf
y∈Y
‖y − x‖X .

We recall that if Y is closed, then there exists a minimizer ym, i.e., d(Y, x) = ‖ym −
x‖X . This minimizer is the orthogonal projection of x onto Y . We now state without
proof the following theorem.

Theorem 5 (local version of Zarantonello’s theorem). Let f : X → X ′ be a
map between a Hilbert space X and its dual X ′, and let x∗ ∈ Bδ be a root, f(x∗) = 0,
where Bδ is an open ball of radius δ around x∗.

Assume that f is Lipschitz continuous in Bδ, i.e., that for all x1, x2 ∈ Bδ,

‖f(x1)− f(x2)‖X′ ≤ L‖x1 − x2‖X ,

for a constant L. Second, assume that f is locally strongly monotone in Bδ, i.e., that

〈f(x1)− f(x2), x1 − x2〉 ≥ γ‖x1 − x2‖2X for all x1, x2 ∈ Bδ,

for some constant γ > 0.
Then, the following holds:
(1) The root x∗ is unique in Bδ. Indeed, there is a ball Cε ⊂ X ′ with 0 ∈ Cε

such that the solution map f−1 : Cε → X exists and is Lipschitz continuous,
implying that the equation

f(x∗ + ∆x) = y

has a unique solution ∆x = f−1(y) − x∗, depending continuously on y, with
norm ‖∆x‖X ≤ δ.
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(2) Moreover, let Xd ⊂ X be a closed subspace such that x∗ can be approximated
sufficiently well, i.e., the distance d(x∗, Xd) is small. Then, the projected
problem fd(xd) = 0 has a unique solution xd ∈ Xd ∩Bδ, and

‖x∗ − xd‖X ≤
L

γ
d(x∗, Xd).

Rohwedder and Schneider proved under certain assumptions (see Theorems 3.4
and 3.7 and Assumptions A and B in [17]) that the amplitude equations f : V → V ′
are indeed locally strongly monotone. (Lipschitz continuity follows from the differen-
tiability of f .) Thus, the second part of Theorem 5 then guarantees that the truncated
CC equations have a unique solution and that the error tends to zero as we increase
the basis size and the truncation level of T , if the amplitude equation map f is locally
strongly monotone and Lipschitz continuous.

Before addressing the ECC method we follow Helgaker and Jørgensen [9] and
remark that one can view the CC method as minimization of ECC(t) over V under
the constraint f(t) = 0. The Lagrangian in this case becomes

L(t, s) := 〈φ0, e
−THeTφ0〉+

∑
µ

sµ〈φµ, e−THeTφ0〉

= 〈φ0, (I + S†)e−THeTφ0〉 ,
(4)

where s = (sµ)µ 6=0 ∈ V is the multiplier, which can be gathered into an excitation
operator S =

∑
µ sµXµ. Note that DsµL = fµ since L(t, s) = ECC(t) + 〈f(t), s〉.

We shall in the next section see that the Lagrangian formulation is contained in the
bivariational formulation of CC theory.

2.2. The extended coupled-cluster method. To link the forthcoming dis-
cussion to the previous section, we note that Arponen [1] derived the CC Lagrangian
starting from the bivariational Rayleigh–Ritz quotient Ebivar : H×H → R,

Ebivar(ψ,ψ
′) :=

〈ψ′, Hψ〉
〈ψ′, ψ〉

.

Vis-á-vis the usual Rayleigh–Ritz quotient, ψ and ψ′ are here truly independent vari-
ables (not only treated as such in a formal manner). (See also the discussion following
equation (24) in [13].) The stationary condition DEbivar = 0 yields the left (and right)
eigenvector(s) of H with eigenvalue E∗; in fact, by straightforward differentiation we
obtain the following result.

Theorem 6 (bivariational principle). Let H : H → H′ be a bounded operator.
Then, Ebivar is an infinitely differentiable function at all points where 〈ψ′, ψ〉 6= 0, and
DψEbivar = Dψ′Ebivar = 0 if and only if the left and right SE are satisfied,

Hψ = Eψ, H†ψ′ = Eψ′, 〈ψ′, ψ〉 6= 0.

Here, H† : H → H′ is defined by 〈H†ψ′, ψ〉 := 〈ψ′, Hψ〉.
Remark 7. If we assume that H satisfies all the requirements (1a)–(1c), in partic-

ular that H is symmetric, and the left and right eigenvalue problems become identical,
being the weak formulation of the eigenvalue problem of a unique self-adjoint Ĥ over
L2
N . Suppose that Ĥ is close to self-adjoint, e.g., self-adjoint up to an L2

N -bounded
perturbation. It is then reasonable that the left and right eigenvalue problems can

D
ow

nl
oa

de
d 

05
/2

3/
18

 to
 1

93
.1

57
.2

38
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

666 ANDRE LAESTADIUS AND SIMEN KVAAL

be simultaneously solved (but with ψ′ 6= ψ). Thus, the bivariational principle can
be thought of as a generalization of Rayleigh–Ritz to at least certain nonsymmetric
problems.

We now introduce an exponential ansatz also for the wavefunction ψ̃. Following
Arponen [1], we eliminate the denominator by changing the normalization of ψ′, i.e.,
we set ψ̃ = ψ′/ 〈ψ′, ψ〉. The two scalar constraints lead to a smooth submanifold
M⊂ H×H of codimension 2,

(5) M :=
{

(ψ, ψ̃) ∈ H ×H | 〈φ0, ψ〉 = 〈ψ̃, ψ〉 = 1
}
.

The next lemma shows that this manifold M can be parameterized using cluster
amplitudes.

Lemma 8 (extended CC parameterization). Suppose (ψ, ψ̃) satisfies 〈φ0, ψ〉 =
〈ψ̃, ψ〉 = 1. Then, there exists unique (t, λ) ∈ V×V depending smoothly on (ψ, ψ̃) ∈M
such that

ψ = eTφ0 and ψ̃ = e−T
†
eΛφ0,

which is a smooth map. In other words, the map Φ : V × V → M, Φ(t, λ) :=
(ψ(t), ψ̃(t, λ)) is a smooth map with a smooth inverse.

Proof. By Theorem 1, t exists and is unique, depending smoothly on ψ and vice

versa. Consider ω = eT
†(ψ)ψ̃, which depends smoothly on (ψ, ψ̃). We have 〈φ0, ω〉 = 1,

so by Theorem 1 there exists a unique λ depending smoothly on ω, and hence (ψ, ψ̃),

such that ω = eΛφ0. Now ψ̃ = e−T
†
eΛφ0, a smooth map of (t, λ).

We define the ECC energy functional E : V × V → R by E = Ebivar ◦ Φ, viz.,

(6) E(t, λ) = 〈φ0, e
Λ†e−THeTφ0〉 .

Equation (6) defines Arponen’s ECC energy functional in a continuous, infinite-
dimensional formulation.

Theorem 9 (continuous ECC equations). Let the Hamiltonian H : H → H′ be
as before. Then,

Hψ∗ = E∗ψ∗ and Hψ̃∗ = E∗ψ̃∗

with normalization 〈φ0, ψ∗〉 = 〈ψ̃∗, ψ∗〉 = 1 if and only if DE(t∗, λ∗) = 0, i.e.,

DtE(t∗, λ∗) = 0 and DλE(t∗, λ∗) = 0,

where

DtµE(t, λ) = 〈φ0, e
Λ† [e−THeT , Xµ]φ0〉 ,(7a)

DλµE(t, λ) = 〈φµ, eΛ†e−THeTφ0〉 ,(7b)

and where (ψ∗, ψ̃∗) = Φ(t∗, λ∗).

Proof. Φ is differentiable with a differentiable inverse on M, which is precisely
the set of function pairs satisfying the normalization constraints. Thus DE(t∗, λ∗) =
D[Ebivar ◦ Φ](t∗, λ∗) = 0 if and only if DEbivar(ψ∗, ψ̃∗) = 0 with the side condition
〈ψ̃∗, ψ∗〉 = 〈φ0, ψ∗〉 = 1. Moreover, E(t∗, λ∗) = Ebivar(ψ∗, ψ̃∗) = E∗. The formulas for
the partial derivatives of E follow by elementary differentiation strategies.
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As in the case of standard CC theory, the continuous ECC equations do not imply
that truncations of the amplitudes or the basis set give a well-behaved approximate
method. To achieve this is the goal of the next section.

Remark 10. (i) We note that both ψ and ψ′ are parameterized in an explicit
multiplicatively separable manner when the system is decomposed into noninteracting
subsystems. This is the main advantage of the ECC parameterization. We observe
that the CC Lagrangian (given by (4)) is obtained by a further change of variables

S† := eΛ† − 1, which destroys this property of ψ′. Alternatively, one can view the CC
Lagrangian as a first-order approximation to the ECC functional in terms of λ.

(ii) Arponen defined a further change of variables through t′µ = 〈φ0, e
Λ†X†µTφ0〉

and where the inverse t = t(t′, λ) is explicitly given by tµ = 〈φ0, e
−Λ†X†µT

′φ0〉; see
(5.6) and (5.7) in [1]. The variables (t′, λ) turn out to be canonical in the sense of clas-
sical Hamiltonian mechanics, i.e., the time-dependent SE is equivalent to Hamilton’s
equations of motion,

iṫ′µ = DλµE ′,

iλ̇µ = −Dt′µ
E ′,

where E ′(t′, λ) := E(t(t′, λ), λ) and ṫ (and λ̇) denotes the time derivative of the am-
plitudes t (and λ). The canonical variables have a computational advantage over the
earlier defined noncanonical variables. As it turns out, they introduce cancellations
in the (linked) diagram series for E∗ compared to when using the noncanonical (t, λ).
We shall not use the variables (t′, λ) here, as the analysis becomes considerably more
complicated, and instead relegate their study to future work.

3. Analysis of ECC from monotonicity.

3.1. The flipped gradient F . We will discuss the stationary point of E cor-
responding to the ground-state energy E∗ in terms of a map F : V × V → V ′ × V ′
defined by flipping the components of the (Fréchet) derivative DE = (DtE , DλE), i.e.,

F := (DtE , DλE)

(
0 1
1 0

)
= (DλE , DtE).

The components of the derivative are given in (7).
For the forthcoming discussion, letBδ(t, λ) denote the ball of radius δ > 0 centered

at (t, λ) ∈ V×V. Here the norm is ‖(·, ·)‖2V×V := ‖·‖2V+‖·‖2V . Let (t∗, λ∗) ∈ V×V be

the optimal amplitudes corresponding to the ground-state pair (ψ∗, ψ̃∗), in particular
F(t∗, λ∗) = 0. For the ECC function F we now want to establish the following:

(i) F is locally Lipschitz, i.e., let (t, λ) ∈ V×V, then there exists δ > 0 such that
(ti, λi) ∈ Bδ(t, λ) implies

‖F(t1, λ1)−F(t2, λ2)‖V′×V′ ≤ L‖(t1, λ1)− (t2, λ2)‖V×V

for some (Lipschitz) constant L > 0, possibly depending only on (t, λ) and δ.
(ii) F is locally and strongly monotone at (t∗, λ∗) ∈ V × V, i.e., there exists

δ, γ > 0 such that

〈F(t1, λ1)−F(t2, λ2), (t1, λ1)− (t2, λ2)〉 ≥ γ(‖t1 − t2‖2V + ‖λ1 − λ2‖2V)

holds for all (t1, λ1), (t2, λ2) ∈ Bδ(t∗, λ∗).
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668 ANDRE LAESTADIUS AND SIMEN KVAAL

Item (i) above is readily established using the fact that F is the flipped gradient of a
smooth function. For (ii), we shall formulate two sets of assumptions (Assumptions 1
and 2 below) that each is enough to give strong monotonicity for F locally at (t∗, λ∗).
Having proved (i) and (ii), we can apply Theorem 5 to obtain existence and uniqueness
results, also for truncated schemes.

The definition of local strong monotonicity of the map F reduces to the existence
of a γ > 0 such that for (ti, λi) close to t∗, λ∗, the quantity

∆1(t1, λ1, t2, λ2) + ∆2(t1, λ1, t2, λ2) := 〈DλE(t1, λ1)−DλE(t2, λ2), t1 − t2〉
+ 〈DtE(t1, λ1)−DtE(t2, λ2), λ1 − λ2〉

(8)

satisfies

(9) ∆1(t1, λ1, t2, λ2) + ∆2(t1, λ1, t2, λ2) ≥ γ(‖t1 − t2‖2V + ‖λ1 − λ2‖2V).

The choice of the map F can be motivated as follows: It is clear that DE cannot be
locally strongly monotone, as, just like Ebivar, all the critical points of E are intuitively
saddle points (we will not prove this claim). On the other hand, in [17], the map f(t)
from Theorem 3 was considered and demonstrated to be locally strongly monotone
under suitable assumptions. We observe that f = DsL, a partial derivative of the
Lagrangian, which is linear in s, so that f is only a function of t. In [17] it was
demonstrated that (locally at t∗)

(10) ∆(t1, t2) = 〈[DsL](t1)− [DsL](t2), t1 − t2〉 ≥ γ‖t1 − t2‖2V

for some constant γ > 0. Thus, (10) is “half” of the inequality (9). In the ECC
theory, the functional E is nonlinear in λ, indicating that we should include λ in the
monotonicity argument.

3.2. Assumptions and preparation. The analysis of Arponen’s ECC method
conducted here will be based on two complementary assumptions, Assumptions 1
and 2. The former deals with the accuracy of the ansatz, i.e., the accuracy of the ref-
erence φ0, while the latter considers a splitting of the Hamiltonian, e.g., the smallness
of the fluctuation potential when a Hartree–Fock reference is used. We thus obtain two
complementary monotonicity results applicable in different situations. However, both
assumptions rest on conditions on spectral gaps. Recall the P denotes the reference
space and moreover set P∗ := span{ψ∗}. Let P and P∗ denote the L2

N -orthogonal
projections on P and P∗, respectively. Essential for the analysis, we then have to
assume that either there exists γ∗ > 0 such that (Assumption 1)

(11) 〈(I − P∗)ψ, (H − E∗)(I − P∗)ψ〉 ≥ γ∗‖(I − P∗)ψ‖2

or there exists γ0 > 0 such that (Assumption 2)

(12) 〈(I − P )ψ, (F − e0)(I − P )ψ〉 ≥ γ0‖(I − P )ψ‖2

for all ψ ∈ H. Here F is a one-body operator that has φ0 as ground state with
ground-state energy e0. A Hamiltonian splitting is then given by H = F + (H − F )
and will be dealt with below in connection with Assumption 2. We note that (11)
expresses the fact that E∗ is the leftmost eigenvalue of H, that this eigenvalue exists,
and that it has multiplicity 1.

We iterate that throughout the analysis we assume that the system Hamiltonian
is bounded as quadratic form and additionally satisfying a G̊arding estimate; see the
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discussion in section 2.1, and in particular (1a)–(1c). We first state a slight upgrade
of Lemma 3.5 in [17]. Note that for ψ ∈ H, (I − P )ψ ∈ Q. Also recall that in our
notation ‖ · ‖ is the L2

N norm.

Lemma 11. With ψ∗ = φ0 + ψ⊥, where ψ⊥ ∈ Q is the correction to φ0, we have
the following:

(i) Assume that (11) holds with γ∗ > 0 and that ‖ψ⊥‖H < ε. Then there exists
a γε ∈ (0, γ∗] such that, for all ψ ∈ Q,

(13) 〈ψ, (H − E∗)ψ〉 ≥
γε

γε + e+ E∗
c‖ψ‖2H,

where γε → γ∗ as ε→ 0+.
(ii) Assume Fφ0 = e0φ0 and that (12) holds with γ0 > 0 and that F satisfies the

G̊arding estimate given in (1b) (with constants eF and cF ). Then

(14) 〈ψ, (F − e0)ψ〉 ≥ γ0

γ0 + eF + e0
cF ‖ψ‖2H

for all ψ ∈ Q.

Proof. (i) Let ψ ∈ Q. We first show that for γε > 0 (and where γε → γ∗ as
ε→ 0+) there holds

(15) 〈ψ, (H − E∗)ψ〉 ≥ γε‖ψ‖2.

Following the argument in the proof of Lemma 2.4 in [17], we then have with 0 < q :=
γε/(γε + e+ E∗) < 1 (recall that e+ E∗ > 0 by necessity of the G̊arding estimate)

〈ψ, (H − E∗)ψ〉 = q〈ψ, (H − E∗)ψ〉+ (1− q)〈ψ, (H − E∗)ψ〉
≥ qc‖ψ‖2H + (γε − q(γε + e+ E∗))‖ψ‖2.

Thus, if (15) holds we are done.
Let P and P∗ be as above. We use that

‖P − P∗‖B(L2
N ) ≤ 2‖φ0 − ψ′∗‖,

where ψ′∗ = ψ∗/‖ψ∗‖. Since ψ∗ = φ0 + ψ⊥, with α := ‖ψ⊥‖ we have

‖P − P∗‖B(L2
N ) ≤ 2

(
2− 2(1 + α2)−1/2

)1/2
=: j(α).

Note that j(α) is an increasing function for α > 0 and j(α) = 2α+O(α2).
Since (H − E∗)P∗ψ = 0 (and H is symmetric), the left-hand side of (15) equals

〈(I − P∗)ψ, (H − E∗)(I − P∗)ψ〉,

which by (11) is bounded from below by γ∗‖(I−P∗)ψ‖2. Thus for α sufficiently small

〈ψ, (H − E∗)ψ〉 ≥ γ∗(‖(I − P )ψ‖ − ‖(P − P∗)ψ‖)2

≥ γ∗(1− j(α))2‖ψ‖2.

Since ε > ‖ψ⊥‖H ≥ α, we have that (15) holds with γε := γ∗(1 − j(ε))2. It is clear
that γε → γ∗ as ε tends to zero from above because j(ε)→ 0.

(ii) With qF := γ0/(γ0 + eF + e0) we have 0 < qF < 1 since eF > −e0 (equivalent
to e > −E∗). Thus we can repeat the above scheme with q = qF to complete the
proof.
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670 ANDRE LAESTADIUS AND SIMEN KVAAL

Because the relation ψ⊥ = (eT∗ − I)φ0 holds, it is immediate that ‖ψ⊥‖H is small if
and only if ‖t∗‖V is. It is a fact that the operator norm ‖T‖B(H) is equivalent to the
norm ‖t‖V ; see [17]. We now state the first assumption, where the constants e, c, and
C are as in (1a)–(1b):

Assumption 1. Let ηε := γεc/(γε + e+ E∗). We assume the following:
(a) Equation (11) holds with a strictly positive spectral gap γ∗ > 0.
(b) The optimal amplitudes t∗ and λ∗ are sufficiently small in ‖ · ‖V norm. With

C∗ := C + |E∗| we then assume ‖ψ⊥‖H < ε, where ε > 0 is chosen such that

b∗(t∗, λ∗) := ‖e−T
†
∗ eΛ∗ − I‖B(H) + ‖e−T

†
∗ eΛ∗‖B(H)‖eT∗ − I‖B(H)

+K‖φ0‖H‖e−T
†
∗ ‖B(H)‖eT∗‖B(H)‖eΛ∗ − I‖B(H) <

ηε
C∗
.

(16)

Here, K is a constant such that ‖T‖B(H) ≤ K‖t‖V , which exists since the
norms are equivalent.

Remark 12. It is in fact possible to choose ε > 0 such that (16) holds. Indeed,
ε = 0 is equivalent to t∗ = λ∗ = 0, and b∗(t∗, λ∗) = b(ε), a smooth function of ε.
Since, b(ε) → 0+ as ε → 0+ and γε tends to the spectral gap γ∗, there exists a ε0

such that b∗ < ηε/C∗ for ε ≤ ε0. Furthermore, at ε = 0 we have ψ∗ = φ0, such that
γ∗ = γ0 and P∗ = P.

We next define the similarity transformed Hamiltonian Ht and the doubly simi-
larity transformed Hamiltonian Ht,λ as given by

Ht := e−THeT , Ht,λ := eΛ†Hte
−Λ† .

Note that (Ht)λ 6= Ht,λ. Since eT∗φ0 solves the SE with eigenvalue E∗, φ0 is an

eigenfunction of Ht∗ with the same eigenvalue. This fact and eΛ†∗φ0 = e−Λ†∗φ0 = φ0

make it easy to verify (i) in the following.

Lemma 13. Let f(t∗) = F(t∗, λ∗) = 0 and E∗ = E(t∗, λ∗). Then
(i) Ht∗φ0 = E∗φ0 and Ht∗,λ∗φ0 = E∗φ0,

(ii) H†t∗,λ∗φ0 = E∗φ0.

Proof. It remains to prove (ii). We know that (by definition of the left eigenfunc-
tion of H)

H†e−T
†
∗ eΛ∗φ0 = E∗e

−T †∗ eΛ∗φ0.

Thus H†t∗e
Λ∗φ0 equals E∗e

Λ†∗φ0.

Remark 14. Note that Lemma 13 is valid for any critical point (tc, λc) with cor-
responding eigenvalue Ec, not only the ground state ((t∗, λ∗) and E∗). Furthermore,
as stated in Lemma 13, the double similarity transform makes φ0 both the left and
right eigenvectors of Ht∗,λ∗ with the same eigenvalue.

We now move on to Assumption 2, which corresponds to an assumption made in
[17], but suitable for the ECC method. Roughly speaking, instead of assuming that
the reference φ0 is sufficiently accurate, in Assumption 2 we assume that we have a
splitting H = F + W , where F is a one-body operator, and where W is sufficiently
small in some appropriate sense. For example, F can be the Fock operator and
W the fluctuation potential of a molecule in the Born–Oppenheimer approximation.
Moreover, we assume that Fφ0 = e0φ0 and that (12) holds, where γ0 is the so-called
HOMO-LUMO gap.
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It can be remarked that due to the structure of H, the Baker–Campbell–Haus-
dorff (BCH) expansion for Ht terminates identically after four nested commutators
in the case of a two-body interaction operator, i.e., Ht is actually a polynomial of low
order, independently of the number of particles.

The expansion for the outer similarity transform in Ht,λ also truncates, albeit at
a higher order. Thus, we have a finite sum

Ht,λ =
∑
m,n

1

n!m!
[[H,T ](n),−Λ†](m).

Here [A,B](n) denotes A n-fold commutated with B and [A,B](0) := A. For (t, λ) ∈
V × V, we define the operator O(t, λ) through the relation

(17) Ht,λ = H + [F, T ] + [Λ†, F ] +O(t, λ).

The significance of O(t, λ) is that (17) implies

(18) E(t, λ)− 〈φ0, Hφ0〉 = 〈φ0, O(t, λ)φ0〉 ,

i.e., O(t, λ) gives all nontrivial contributions to E . In the Hartree–Fock case, the
right-hand side of (18) is the correlation energy functional, since the Hartree–Fock
energy is given by EHF = 〈φ0, Hφ0〉.

The idea is that if the reference φ0 is sufficiently good, the mapping (t, λ) 7→
O(t, λ) will be well-behaved. In fact, since O(t, λ) is a (Fréchet-)smooth map, it
is locally Lipschitz: Given (t, λ) ∈ V × V, there exist δ, L > 0 such that for all
(ti, λi) ∈ Bδ(t, λ),

‖O(t1, λ1)−O(t2, λ2)‖B(H,H′) ≤ L‖(t1 − t2, λ1 − λ2)‖V×V .

In our case, we assume that L is sufficiently small at (t∗, λ∗). This, in a sense, measures
the smallness of W .

Assumption 2. Let H = F + W and η0 := γ0cF /(γ0 + eF + e0). We assume the
following:

(a) F : H → H′ is a one-body operator that satisfies the same conditions as
H, i.e., it is symmetric and bounded and satisfies a G̊arding estimate (with
constants eF , cF ), as in (1a)–(1c). The constant that bounds F is denoted
CF and we set C0 := CF + |e0|.

(b) Fφ0 = e0φ0, where e0 is the smallest eigenvalue of F . Equation (12) holds
with a γ0 > 0, i.e., there is a strictly positive HOMO-LUMO gap. In partic-
ular, Lemma 11 gives that (14) holds for all ψ ∈ Q.

(c) The Lipschitz constant L at (t∗, λ∗) and ‖λ∗‖V are not too large, so that the
following inequality holds:

0 < γ := η0 −
1

2
L‖φ0‖H

(
3 +K‖(eΛ∗ − 1)φ0‖H + ‖eΛ∗φ0‖H/‖φ0‖H

+ 2‖eΛ∗‖B(H)

)
− C0‖eΛ∗ − 1‖B(H).

(19)

Here, K is a constant such that ‖T‖B(H) ≤ K‖t‖V , which exists since the
norms are equivalent.

Remark 15. Assumption 2(c) does not assume that λ∗ is small compared to
λ1 − λ2. However, λ∗ (and L) cannot be too large, since then γ eventually be-
comes negative. If we do assume that ‖λ∗‖V < δ, we obtain some simplifications; see
Corollary 18 below.
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3.3. Proof of monotonicity. We set ∆ := ∆1 + ∆2, the left-hand side of (8).
We then wish to prove

(20) ∆ ≥ γ
(
‖t1 − t2‖2V + ‖λ1 − λ2‖2V

)
,

where (ti, λi) ∈ Bδ(t∗, λ∗) and γ, δ > 0. To simplify notation we define T̄ = (T1+T2)/2
and δT = T1 − T2, and similarly Λ̄ = (Λ1 + Λ2)/2 and δΛ = Λ1 − Λ2. Consequently,
we write ‖δt‖V and ‖δλ‖V for ‖t1 − t2‖V and ‖λ1 − λ2‖V , respectively.

Theorem 16. Assume that Assumption 1 holds. Then F is strongly monotone
locally at (t∗, λ∗), F(t∗, λ∗) = 0, belonging to the ground-state energy E∗ = E(t∗, λ∗).

Proof. Using the formulas (7) for the partial derivatives, we obtain for the two
terms in (8),

∆1 = 〈δTφ0,
(
eΛ†1Ht1 − eΛ†2Ht2

)
φ0〉,

∆2 = 〈φ0,
(
eΛ†1 [Ht1 , δΛ]− eΛ†2 [Ht2 , δΛ]

)
φ0〉.

Moreover, we make use of the notation gi := ti − t∗, ki := λi − λ∗ and define the
excitation operators Gi :=

∑
µ(gi)µXµ and Ki :=

∑
µ(ki)µXµ. Also we write δG and

δK as for T and Λ, where of course δG = δT and δK = δΛ. As in [17], we note that
the similarity transformed Hamiltonians Hti can be expanded in terms of Ht∗ as

(21) Hti = Ht∗ + [Ht∗ , Gi] +O(‖gi‖2V).

Let ∆̃ be the second-order Taylor expansion of ∆ around (t∗, λ∗), i.e., ∆ = ∆̃ +
O(‖(δt, δλ)‖3V×V). We will demonstrate the claim by first showing that ∆̃ satisfies (20)
for some γ̃ > 0, using Assumption 1. Now by (21) and Λi = Ki + Λ∗, we see that

∆1 = 〈δTφ0,
(
eK
†
1 eΛ†∗(Ht∗ + [Ht∗ , G1] +O(‖g1‖2V))

− eK
†
2 eΛ†∗(Ht∗ + [Ht∗ , G2] +O(‖g2‖2V))

)
φ0〉.

With the aid of Lemma 13 and since eK
†
i φ0 = φ0, it holds that

∆1 = 〈δTφ0,
(
eK
†
1 eΛ†∗ [Ht∗ , G1]− eK

†
2 eΛ†∗ [Ht∗ , G2] +O(‖g1‖2V) +O(‖g2‖2V)

)
φ0〉.

As a next step we truncate eK
†
i = I +O(‖ki‖V) and there holds

∆1 = 〈δTφ0, e
Λ†∗ [Ht∗ , δT ]φ0〉+

3∑
k=0

O(‖gi‖kV‖ki‖3−kV )

= 〈δTφ0, e
Λ†∗(Ht∗ − E∗)δTφ0〉+

3∑
k=0

O(‖gi‖kV‖ki‖3−kV ).

Again we have made use of Lemma 13. Equation (13) from Lemma 11 and (1a) give
two useful bounds,

〈ψ′, (H − E∗)ψ〉 ≥ ηε‖ψ‖2H − C∗‖ψ′ − ψ‖H‖ψ‖H, ψ′ ∈ H, ψ ∈ Q,(22)

〈ψ′, (H − E∗)ψ〉 ≥ −C∗‖ψ′‖H‖ψ‖H, ψ′, ψ ∈ H.(23)
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Using these,

∆̃1 = 〈δTφ0, e
Λ†∗(Ht∗ − E∗)δTφ0〉

= 〈e−T
†
∗ eΛ∗δTφ0, (H − E∗)δTφ0〉+ 〈e−T

†
∗ eΛ∗δTφ0, (H − E∗)(eT∗ − I)δTφ0〉

≥ ηε‖δTφ0‖2H − C∗‖e−T
†
∗ eΛ∗ − I‖B(H)‖δTφ0‖2H

− C∗‖e−T
†
∗ eΛ∗‖B(H)‖eT∗ − I‖B(H)‖δTφ0‖2H

= ‖δt‖2V
(
ηε − C∗(‖e−T

†
∗ eΛ∗ − I‖B(H) + ‖e−T

†
∗ eΛ∗‖B(H)‖eT∗ − I‖B(H))

)
.

Next, we look at ∆2. Proceeding in similar a fashion, we compute

∆2 = 〈φ0, (I +K†1 +O(‖k1‖2V))eΛ†∗ [Ht∗ + [Ht∗ , G1] +O(‖g1‖2V), δΛ]φ0〉

− 〈φ0, (I +K†2 +O(‖k2‖2V))eΛ†∗ [Ht∗ + [Ht∗ , G2] +O(‖g2‖2V), δΛ]φ0〉

= 〈φ0, δΛ
†eΛ†∗(Ht∗ − E∗)δΛφ0〉+ 〈φ0, e

Λ†∗
[
[Ht∗ , δT ], δΛ

]
φ0〉

+

3∑
k=0

O(‖gi‖kV‖ki‖3−kV )

=: ∆̃2,1 + ∆̃2,2 +

3∑
k=0

O(‖gi‖kV‖ki‖3−kV ),

(24)

where the last equality defines ∆̃2,1 and ∆̃2,2. For ∆̃2,1 in (24), we again employ (22)
and (23) to obtain

∆̃2,1 = 〈φ0, δΛ
†eΛ†∗(Ht∗ − E∗)δΛφ0〉

= 〈e−T
†
∗ eΛ∗δΛφ0, (H − E∗)δΛφ0〉+ 〈e−T

†
∗ eΛ∗δΛφ0, (H − E∗)(eT∗ − I)δΛφ0〉

≥ ηε‖δΛφ0‖2H − C∗‖e−T
†
∗ eΛ∗ − I‖B(H)‖δΛφ0‖2H

− C∗‖e−T
†
∗ eΛ∗‖B(H)‖eT∗ − I‖B(H)‖δΛφ0‖2H

= ‖δλ‖2V
(
ηε − C∗(‖e−T

†
∗ eΛ∗ − I‖B(H) + ‖e−T

†
∗ eΛ∗‖B(H)‖eT∗ − I‖B(H))

)
.

Turning to ∆̃2,2 in (24), we have by Lemma 13

∆̃2,2 = 〈φ0, e
Λ†∗
[
[Ht∗ , δT ], δΛ

]
φ0〉

= 〈eΛ∗φ0,
(
(Ht∗δT − δTHt∗)δΛ− δΛ(Ht∗δT − δTHt∗)

)
φ0〉

= 〈eΛ∗φ0,
(
δT (E∗ −Ht∗)δΛ− δΛ(Ht∗ − E∗)δT

)
φ0〉.

Since (
δT (E∗ −Ht∗)δΛ− δΛ(Ht∗ − E∗)δT

)
φ0 ∈ Q,

we only need to keep that part of eΛ∗φ0 that belongs to Q. Using (23), it holds that

∆̃2,2 = 〈e−T
†
∗ δT †(eΛ∗ − I)φ0, (E∗ −H)eT∗δΛφ0〉

+ 〈e−T
†
∗ δΛ†(eΛ∗ − I)φ0, (E∗ −H)eT∗δTφ0〉

≥ −2C∗K‖φ0‖H‖e−T
†
∗ ‖B(H)‖eT∗‖B(H)‖eΛ∗ − I‖B(H)‖δt‖V‖δλ‖V

≥ −C∗K‖φ0‖H‖e−T
†
∗ ‖B(H)‖eT∗‖B(H)‖eΛ∗ − I‖B(H)

(
‖δλ‖2V + ‖δt‖2V

)
.
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To summarize, collecting the lower bounds for ∆̃1 and ∆̃2,i we can now conclude
by means of the definition given by (16)

∆̃ ≥ (ηε − C∗b∗(t∗, λ∗))
(
‖δt‖2V + ‖δλ‖2V

)
.

By Assumption 1, γ̃ := ηε − C∗b∗(t∗, λ∗) > 0 such that

∆̃ ≥ γ̃
(
‖δt‖2V + ‖δλ‖2V

)
, γ̃ > 0,(25)

holds. To conclude the proof, we just have to note that by (25)

∆ ≥ γ̃
(
‖δt‖2V + ‖δλ‖2V

)
+O(‖(δt, δλ)‖3V×V)

and by choosing δ sufficiently small there holds for some γ ∈ (0, γ̃]

∆ ≥ γ
(
‖δt‖2V + ‖δλ‖2V

)
for (ti, λi) ∈ Bδ(t∗, λ∗).

Theorem 17. Assume that Assumption 2 holds. Then F is strongly monotone
locally at (t∗, λ∗), F(t∗, λ∗) = 0, belonging to the ground-state energy E∗ = E(t∗, λ∗).

Proof. As in the proof of Theorem 16, we study ∆1 and ∆2 separately before
adding them together. We begin by noting that

∆1 = 〈δTφ0, (e
Λ†1Ht1 − eΛ†2Ht2)φ0〉 = 〈δTφ0, (Ht1,λ1

−Ht2,λ2
)φ0〉 ,

because any deexcitation of the reference φ0 gives zero identically. Now, using As-
sumption 2 and the definition (17) of the operator O(t, λ) we immediately obtain the
following lower bound for ∆1:

∆1 = 〈δTφ0, (Ht1,λ1 −Ht2,λ2)φ0〉
= 〈δTφ0,

(
[F, δT ] + [δΛ†, F ] +O(t1, λ1)−O(t2, λ2)

)
φ0〉

= 〈δTφ0, (F − e0)δTφ0〉+ 〈δTφ0, (O(t1, λ1)−O(t2, λ2))φ0〉
≥ η0‖δTφ0‖2H − L‖δTφ0‖H‖(δt, δλ)‖V×V‖φ0‖H
= η0‖δt‖2V − L‖φ0‖H‖δt‖V(‖δt‖2V + ‖δλ‖2V)1/2

≥ η0‖δt‖2V − L‖φ0‖H‖δt‖V(‖δt‖V + ‖δλ‖V).

We next turn to ∆2. It holds that

(26) eΛ1 − eΛ2 = eΛ̄δΛ +O(‖δλ‖2V).

We compute

∆2 = 〈φ0,
(
eΛ†1 [Ht1 , δΛ]− eΛ†2 [Ht2δΛ]

)
φ0〉

= 〈φ0,
(
(eΛ†1 − eΛ†2)[Ht1 , δΛ] + eΛ†2 [Ht1 −Ht2 , δΛ]

)
φ0〉

= 〈φ0,
(
eΛ̄†δΛ†[F +W +O(t1, 0), δΛ]− eΛ̄† [O(t1, 0)−O(t2, 0), δΛ]

)
φ0〉

+O(‖δλ‖3V) +O(‖δλ‖V‖δt‖2V) +O(‖δλ‖2V‖δt‖V).

(27)

In the last equality, we exploited that the second-order nested commutator of F with
two excitation operators vanishes. This is so since for µ 6= 0 we have that [F,Xµ]
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is an excitation operator and consequently [[F, T ], T ′] = 0. Moreover, we used that
O(t1, 0)−O(t2, 0) = O(‖δt‖), allowing us to replace Λ2 with Λ̄ = Λ2 +δΛ/2, a change
which affects only the higher-order terms.

Define ∆̃2 as the leading second-order term of ∆2, i.e., the first term in the
last line of (27), neglecting the third-order remainders (note that these are in total
O(‖(δt, δλ)‖3V×V)). We will start by finding γ̃ > 0 such that

∆1 + ∆̃2 ≥ γ̃(‖δt‖2V + ‖δλ‖2V).

We split ∆̃2 into two contributions, ∆̃2,i, i = 1, 2.
Since O(t, 0) +W = e−TWeT , the BCH formula gives

O(t+ δλ, 0)−O(t, 0) = [O(t, 0) +W, δΛ] +O(‖δλ‖2).

This gives us the directional derivative of O(·, 0) in the direction δλ,

DO(t, 0)(δλ) = [O(t, 0) +W, δΛ].

On the other hand, O is Lipschitz, so that

‖[O(t1, 0) +W, δΛ]‖B(H,H′) ≤ ‖DO(t1, 0)‖B(V,B(H,H′))‖δλ‖V ≤ (L+K ′δ)‖δλ‖V

for some constant K ′.
A useful bound is obtained from (14) from Lemma 11,

(28) 〈ψ′, (F − e0)ψ〉 ≥ η0‖ψ‖2H − C0‖ψ′ − ψ‖H‖ψ‖H.

The first contribution becomes

∆̃2,1 = 〈φ0, e
Λ̄†δΛ†[F, δΛ]φ0〉+ 〈φ0, e

Λ̄†δΛ†[O(t1, 0) +W, δΛ]φ0〉

= 〈eΛ̄δΛφ0, (F − e0)δΛφ0〉+ 〈δΛeΛ̄φ0, [O(t1, 0) +W, δΛ]φ0〉

≥ η0‖δΛφ0‖2H − C0‖(eΛ̄ − 1)δΛφ0‖H‖δΛφ0‖H
− ‖eΛ̄δΛφ0‖H(L+K ′δ)‖δλ‖V‖φ0‖H

≥
(
η0 − C0‖eΛ̄ − 1‖B(H) − (L+K ′δ)‖φ0‖H‖eΛ̄‖B(H)

)
‖δλ‖2V .

The second contribution is

∆̃2,2 = 〈φ0, e
Λ̄† [O(t1, 0)−O(t2, 0), δΛ]φ0〉

= 〈eΛ̄φ0, (O(t1, 0)−O(t2, 0))δΛφ0〉 − 〈eΛ̄φ0, δΛ(O(t1, 0)−O(t2, 0))φ0〉

≥ −L‖eΛ̄φ0‖H‖δλ‖V‖δt‖V − L‖δΛ†(eΛ̄ − 1)φ0‖H‖φ0‖H‖δt‖V
≥ −L‖eΛ̄φ0‖H‖δλ‖V‖δt‖V − LK‖(eΛ̄ − 1)φ0‖H‖φ0‖H‖δλ‖V‖δt‖V
= −L(K‖(eΛ̄ − 1)φ0‖H + ‖eΛ̄φ0‖H/‖φ0‖H)‖φ0‖H‖δλ‖V‖δt‖V .

We gather and obtain,

∆1 + ∆̃2 ≥ η0‖δt‖2V − L‖φ0‖H‖δt‖V(‖δt‖V + ‖δλ‖V)

+
(
η0 − ‖F − e0‖B(H,H′)‖eΛ̄ − 1‖B(H) − (L+K ′δ)‖φ0‖H‖eΛ̄‖B(H)

)
‖δλ‖2V

− L(K‖(eΛ̄ − 1)φ0‖H + ‖eΛ̄φ0‖H/‖φ0‖H)‖φ0‖H‖δλ‖V‖δt‖V
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≥
(
η0 −

1

2
L‖φ0‖H

(
3 +K‖(eΛ̄ − 1)φ0‖H + ‖eΛ̄φ0‖H/‖φ0‖H + 2‖eΛ̄‖B(H)

)
− ‖F − e0‖B(H,H′)‖eΛ̄ − 1‖B(H)

)
‖(δt, δλ)‖2V×V

−K ′δ‖φ0‖H‖eΛ̄‖B(H)‖(δt, δλ)‖2V×V
=: γ̃(t̄, λ̄)‖(δt, δλ)‖2V×V .

We now note that, by Taylor’s theorem, γ̃(t̄, λ̄) = γ+ε(t̄, λ̄)−K ′δ, with γ = γ̃(t∗, λ∗) >
0 by (19) in Assumption 2, and |ε| ≤ Cδ for some C ≥ 0. Thus,

∆1 + ∆̃2 ≥ (γ − (C +K ′)δ)‖(δt, δλ)‖2V×V .
Finally,

∆1 + ∆2 ≥ (γ − (C +K ′)δ)‖(δt, δλ)‖2V×V +O(‖(δt, δλ)‖3V×V).

Since the third-order term cannot beat the second-order term, by shrinking δ, we get

∆1 + ∆2 ≥ (γ − (C +K ′)δ′)‖(t1 − t2, λ1 − λ2)‖2V×V
whenever (ti, λi) ∈ Bδ′(t∗, λ∗).

Corollary 18. Assume Assumption 2(a)–(b) holds and additionally that we
have ‖λ∗‖V < δ. Also, assume that

(29) 0 < η0 − 3L‖φ0‖H.
Then F is locally strongly monotone at the root (t∗, λ∗) belonging to the ground-state
energy.

Proof. It is enough to observe that we need to Taylor expand γ = γ̃(t∗, λ∗) to
zeroth order, i.e., setting λ∗ = 0 in (19). The reader can readily verify that this
gives (29).

3.4. Existence, uniqueness, truncations, and error estimates. Having
obtained sufficient conditions for F to be locally strongly monotone at (t∗, λ∗), we
can now apply the local version of Zarantonello’s theorem, Theorem 5, to obtain
existence and local uniqueness of solutions, also for truncated versions of the ECC
method.

In our setting, a (family of) truncated amplitude spaces Vd×Vd is such that if we
let the dimension d → +∞, we can approximate (t∗, λ∗) arbitrarily well. Of course,
the usual truncation scheme defined by all excitations up to a given excitation level
and additionally the restriction to a finite set of virtual orbitals conforms with this.
In what follows it will be assumed that Vd is closed in V.

The truncated ECC functional is the restriction Ed : Vd×Vd → R of E , giving the
critical point problem DEd = 0, i.e.,

find (td, λd) ∈ Vd × Vd such that
∂E(td, λd)

∂tµ
=
∂E(td, λd)

∂λµ
= 0,

where tµ (λµ) are the components of t ∈ Vd (λ ∈ Vd) in some arbitrary orthonormal
basis. Since the flipping map in (3.1) commutes with projection onto Vd × Vd, the
truncated ECC equations can be written Fd(td, λd) = 0.

While stated as a theorem, our main result is really a corollary of Theorems 16
and 17 and an elementary application of Theorem 5. The only point to check is that
F is locally Lipschitz. However, F is (in fact infinitely) continuously differentiable in
the Fréchet sense. Such functions are always locally Lipschitz.
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Theorem 19. Assume that Assumption 1 or 2 holds such that F is locally strong-
ly monotone (with constant γ) on Bδ(t∗, λ∗) for some δ > 0. Here, (t∗, λ∗) is the root
of F belonging to the ground-state energy. Furthermore, let L be the local Lipschitz
constant of F at (t∗, λ∗).

(i) The solution (t∗, λ∗) of the continuous ECC equation DE(t, λ) = 0 on V × V
is locally unique.

(ii) For sufficiently large d, the projected ECC problem DEd(t, λ) = 0 has a unique
solution (td, λd) in the neighborhood Bδ(t∗, λ∗) ∩ (Vd × Vd). The truncated
solution (td, λd) satisfies the estimate

‖(td, λd)− (t∗, λ∗)‖V×V ≤
L

γ
d(Vd × Vd, (t∗, λ∗)).(30)

Remark 20. (i) The local uniqueness is also a direct consequence of the assump-
tion that the ground state is nondegenerate and Lemma 8.

(ii) By the definition of the norm on V × V, (30) implies

(31) ‖td − t∗‖2V + ‖λd − λ∗‖2V ≤
L2

γ2

(
d(Vd, t∗)2 + d(Vd, λ∗)2

)
and furthermore that (td, λd)→ (t∗, λ∗) as d→ +∞.

Theorem 19 guarantees that for sufficiently large discrete amplitude spaces Vd,
the ECC equations actually have locally unique solutions that approximate the exact
solution. However, we do not yet know what “sufficiently large” means.

By slightly adapting the proof of Theorem 4.1 in [17], we can obtain a sufficient
condition on Vd. This argument rests on Brouwer’s fixed point theorem: any contin-
uous function of a closed ball in Rn into itself has a fixed point. Here, we employ a
version of this result [8].

Lemma 21. Equip Rn with any norm ‖·‖n, and let BR be the closed ball of radius
R centered at ~x = 0. Let h : BR → Rn be continuous and assume that on the boundary
of BR, 〈h(~x), ~x〉 = h(~x) · ~x ≥ 0. Then h(~x) = 0 for some ~x ∈ BR.

Proof. Assume that h 6= 0 everywhere. Then f(~x) := −Rh(~x)/‖h(~x)‖n is contin-
uous, mapping the ball into itself (in fact, onto its boundary). Therefore, f has a fixed
point, say, ~x0, i.e., ~x0 = −Rh(~x0)/‖h(~x0)‖n. However, this gives the contradiction
0 < ~x0 · ~x0 = −R 〈h(~x0), ~x0〉 /‖~x0‖n ≤ 0.

Following [17], the idea is now to choose hd such that Fd = 0 is equivalent to
hd = 0 and use the above argument.

Theorem 22. Let Vd be a finite-dimensional subspace of V and set

(32) κd := min
(t,λ)∈Vd×Vd

‖(t, λ)− (t∗, λ∗)‖V×V = ‖(tm, λm)− (t∗, λ∗)‖V×V .

Assume that κd satisfies

(33) κd ≤
δγ

γ + L
,

where γ and L are the monotonicity and Lipschitz constants, respectively, that hold
on Bδ(t∗, λ∗). Then the projected ECC problem Fd(t, λ) = 0 has a unique solution
(td, λd) in the neighborhood Bδ(t∗, λ∗) ∩ (Vd × Vd).
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Proof. Let d := dimVd and {bj}dj=1 be an orthonormal basis of Vd. Define the

continuous vector-valued function hd : R2d → R2d by hd(~x) = hd(~v, ~w) = (~y, ~z), where

yj = 〈DλE(tm + v, λm + w), bj〉, zj = 〈DtE(tm + v, λm + w), bj〉,

and v =
∑d
j=1 vjbj , ~v = (v1, . . . , vd), w =

∑d
j=1 wjbj , ~w = (w1, . . . , wd). Let

‖(~v, ~w)‖2d := ‖(v, w)‖V×V , a norm on R2d (a fact that can be easily checked). By
definition, hd = 0 is equivalent to Fd = 0.

We now choose R := δ−κd ≥ δL/(γ+L) > 0 and note that (~v, ~w) ∈ BR(tm, λm)
implies (v, w) ∈ Bδ(t∗, λ∗). For ~x that satisfies ‖~x‖2d = R, we have using monotonicity
and the Lipschitz continuity of F ,

〈hd(~x), ~x〉 =

d∑
j=1

(yjvj + zjwj) = 〈F(tm + v, λm + w), (v, w)〉

= 〈F(tm + v, λm + w)−F(tm, λm), (v, w)〉
+ 〈F(tm, λm)−F(t∗, λ∗), (v, w)〉+ 〈F(t∗, λ∗), (v, w)〉
≥ γ‖(v, w)‖2V×V − Lκd‖(v, w)‖V×V .

Since γR−Lκd = γδ−κd(γ+L) ≥ 0, we can conclude 〈hd(~x), ~x〉 = R(γR−Lκd) ≥ 0.
Lemma 21 now establishes that hd(~x∗) = 0 for some ~x∗ with ‖~x‖2d = ‖(v∗, w∗)‖V×V ≤
R, which is equivalent to that (td, λd) := (tm + v∗, λm + w∗) solves the projected
problem Fd = 0. The uniqueness follows from Theorem 19 applied to Fd.

We will next show the power of the bivariational principle as far as the ECC
method is concerned. The standard variational formulation of CC theory introduces
a Lagrangian. Error estimates for the CC energy then require that the dual problem
has a solution. (See [17], where this nontrivial step has been done by means of the Lax–
Milgram theorem.) However, the ECC method is based on the bivariational principle
and the energy itself is stationary in this formulation, i.e., the solution (t∗, λ∗) is a
critical point of the bivariational energy. When (td, λd) is close to the exact solution,
we are guaranteed a quadratic error estimate for free. As our last order of business
we will discuss this further.

Under the assumption that H supports a ground state with ground-state energy
E∗, the Rayleigh–Ritz variational principle states that

E∗ ≤ Evar(ψ) :=
〈ψ,Hψ〉
〈ψ,ψ〉

for any ψ ∈ H. Minimizing Evar over trial wavefunctions (say, considering Happr ⊂ H)
yields an approximate energy Eappr that also provides an upper bound to E∗, i.e.,
Eappr ≥ E∗. Furthermore, since DψEvar(ψ∗) = 0, we obtain a second-order error
estimate of the energy (see, for instance, (1.4) in [17] and the reference given in
connection for more refined estimates)

0 ≤ Eappr − E∗ ≤ C‖ψappr − ψ∗‖2H ≤ C ′d(Happr, ψ∗)
2.

In a similar fashion, the critical point condition DEbivar(ψ∗, ψ
′
∗) = 0 of the bivaria-

tional quotient will give us a second-order error estimate of the ECC energy.
As far as truncations of the double wavefunction spaceM⊂ H×H is concerned

(see (5)), where the bivariational pair (ψ, ψ̃) is an element, we will use

Md := {(ψ, ψ̃) : ψ = eTφ0, ψ̃ = e−T
†
eΛφ0, t, λ ∈ Vd}.
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Since Md is closed (we assume that Vd is closed; see the next lemma), we define the
distance

d(Md, (ψ∗, ψ̃∗)) := min
(ψ,ψ̃)∈Md

‖(ψ, ψ̃)− (ψ∗, ψ̃∗)‖H×H,

where ‖(·, ··)‖2H×H := ‖ · ‖2H + ‖ · ·‖2H.

Lemma 23. Assume that Vd is closed. Then Md is closed. Moreover, it holds
that

(34) d(Vd, t∗)2 + d(Vd, λ∗)2 ≤ C d(Md, (ψ∗, ψ̃∗))
2

for some constant C.

Proof. By Lemma 8, the map Φ : (t, λ) 7→ (eTφ0, e
−T †eΛφ0) and its inverse are

smooth and Md = Φ(Vd × Vd) is closed since Vd is.
For (34), we first note that

d(Md, (ψ∗, ψ̃∗))
2 = min

t,λ∈Vd

(
‖eTφ0 − eT∗φ0‖2H

+ ‖e−T
†
eΛφ0 − e−T

†
∗ eΛ∗φ0‖2H

)
.

This gives (where we let C be a constant that is redefined and reused at leisure)

d(Vd, λ∗)2 ≤ C min
λ∈Vd

‖eΛφ0 − eΛ∗φ0‖2H

≤ C
(

min
t,λ∈Vd

‖eT
†
∗ ‖2B(H)

(
‖e−T

†
eΛφ0 − e−T

†
∗ eΛ∗φ0‖2H

+ ‖e−T
†
− e−T

†
∗ ‖B(H)‖eΛ‖2B(H)

))
≤ C

(
min
t,λ∈Vd

‖e−T
†
eΛφ0 − e−T

†
∗ eΛ∗φ0‖2H + min

t∈Vd
‖eTφ0 − eT∗φ0‖2H

)
≤ C d((H×H)d, (ψ⊥, ψ̃⊥))2.

The desired inequality then follows from

d(Vd, t∗) ≤ D min
t∈Vd
||eTφ0 − eT∗φ0||H ≤ Dd(Md, (ψ∗, ψ̃∗)).

Theorem 24. Let δ > 0 be such that F is strongly monotone (with constant γ)
and Lipschitz continuous (with constant L) for (t, λ) ∈ Bδ(t∗, δ∗) and assume that
Vd is a sufficiently good approximation of V. If (td, λd) ∈ Vd × Vd is the solution of
Fd = 0 and (t∗, λ∗) ∈ V ×V is the (exact) solution of F = 0, then the following hold:

(i) With Ed := E(td, λd) there exist constants d1, d2 such that

(35) |Ed − E∗| ≤ d1‖td − t∗‖2V + d2‖td − t∗‖V‖λd − λ∗‖V
and with C∗ as before there holds

|Ed − E∗| ≤ (C∗ +O(‖t∗‖V) +O(‖λ∗‖V))
L2

2γ2

(
d(Vd, t∗)2 + d(Vd, λ∗)2

)
+O

(
max(d(Vd, t∗), d(Vd, λ∗))3

)
.

(36)

(ii) Letting ψ∗ = eT∗φ0, ψd = eTdφ0, ψ̃∗ = e−T
†
∗ eΛ∗φ0 and ψ̃d = e−T

†
d eΛdφ0, there

exist d̃1, d̃2 such that

(37) |Ed − E∗| ≤ d̃1‖ψd − ψ∗‖2H + d̃2‖ψd − ψ∗‖H‖ψ̃d − ψ̃∗‖H.
Furthermore, there exists a constant C̃ such that

(38) |Ed − E∗| ≤ C̃ d(Md, (ψ∗, ψ̃∗))
2 +O

(
d(Md, (ψ∗, ψ̃∗))

3
)
.
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Proof. (i) Taylor expanding E(t, λ) at (t∗, λ∗) and using the notation gd := td− t∗
and kd := λd − λ∗, we obtain (by Taylor’s theorem)

Ed − E∗ =
1

2
D2E(t∗, λ∗)((gd, kd)

2)

+
1

2

∫ 1

0

(1− r)2D3E((t∗, λ∗) + r(gd, kd))((gd, kd)
3)dr.

From this it is clear that

(39) 2|Ed − E∗| ≤ |D2E(t∗, λ∗)((gd, kd)
2)|+O

(
max(d(Vd, t∗), d(Vd, λ∗))3

)
.

By straightforward differentiation with respect to the amplitudes tµ and λµ,

(D2E(t, λ))µ,ν =

[
〈φ0, e

Λ† [[Ht, Xµ], Xν ]φ0〉 〈φν , eΛ† [Ht, Xµ]φ0〉
〈φµ, eΛ† [Ht, Xν ]φ0〉 〈XµXνφ0, e

Λ†Htφ0〉

]
.

We next note that

1

2
D2E(t∗, λ∗)((gd, kd)

2)

=
1

2

(
〈φ0, e

Λ†∗ [[Ht∗ , Gd], Gd]φ0〉+ 2〈Kdφ0, e
Λ†∗ [Ht∗ , Gd]φ0〉+ 〈K2

dφ0, e
Λ†∗Ht∗φ0〉

)
=

1

2

(
〈eΛ∗φ0,

(
Ht∗G

2
d − 2GdHt∗Gd +G2

dHt∗

)
φ0〉+ 2〈eΛ∗Kdφ0, [Ht∗ , Gd]φ0〉

+ 〈eΛ∗K2
dφ0, Ht∗φ0〉

)
.

Using Lemma 13, specifically Ht∗φ0 = E∗φ0 and H†t∗e
Λ∗φ0 = E∗e

Λ∗φ0, the following
equality holds:

1

2
D2E(t∗, λ∗)((gd, kd)

2)

=
1

2

(
2〈eΛ∗φ0, Gd(E∗ −Ht∗)Gdφ0〉+ 2〈eΛ∗Kdφ0, (Ht∗ − E∗)Gdφ0〉

)
.

Furthermore, since eΛ∗ and Kd commute, we obtain

1

2
|D2E(t∗, λ∗)((gd, kd)

2)|

= |〈G†de
Λ∗φ0, (E∗ −Ht∗)Gdφ0〉+ 〈eΛ∗Kdφ0, (Ht∗ − E∗)Gdφ0〉|

= |〈e−T
†
∗
(
G†d(e

Λ∗ − I)− eΛ∗Kd

)
φ0, (E∗ −H)eT∗Gdφ0〉|

≤ C∗‖e−T
†
∗
(
G†d(e

Λ∗ − I)− eΛ∗Kd

)
φ0‖H‖eT∗Gdφ0‖H

≤ C∗‖e−T
†
∗ ‖B(H)

(
‖G†d‖B(H)‖eΛ∗ − I‖B(H)‖φ0‖H

+ ‖eΛ∗‖B(H)‖Kdφ0‖H
)
‖eT∗‖B(H)‖Gdφ0‖H

≤ C∗‖e−T
†
∗ ‖B(H)‖eT∗‖B(H)

(
c‖φ0‖H‖eΛ∗ − I‖B(H)‖td − t∗‖2V

+ ‖eΛ∗‖B(H)‖td − t∗‖V‖λd − λ∗‖V
)

=: D1‖td − t∗‖2V +D2‖td − t∗‖V‖λd − λ∗‖V ,

(40)

where in the last step we defined the constants D1 := D1(t∗, λ∗, φ0) and D2 :=
D2(t∗, λ∗). Thus, by (39) we can choose d1 and d2, under the assumption that
max(d(Vd, t∗), d(Vd, λ∗)) is sufficiently small, such that (35) holds.
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To obtain (36), we see that (40) gives

1

2
|D2E(t∗, λ∗)((gd, kd)

2)|

≤ C∗‖e−T
†
∗ ‖B(H)‖eT∗‖B(H)

(
c‖φ0‖H‖eΛ∗ − I‖B(H) +

1

2
‖eΛ∗‖B(H)

)
×
(
‖td − t∗‖2V + ‖λd − λ∗‖2V

)
≤ (C∗ +O(‖t∗‖V) +O(‖λ∗‖V))

L2

2γ2

(
d(Vd, t∗)2 + d(Vd, λ∗)2

)
,

where we used (31).
(ii) Next, using Theorem 1 (equation (2)), (40) gives

1

2
|D2E(t∗, λ∗)((gd, kd)

2)| ≤ D̃1‖ψd − ψ∗‖2H + D̃2‖ψd − ψ∗‖H‖(eΛd − eΛ∗)φ0‖H.(41)

Furthermore, we use

eΛd − eΛ∗ = eT
†
∗ e−T

†
∗ (eΛd − eΛ∗)

= eT
†
∗
(
e−T

†
d eΛd − e−T

†
∗ eΛ∗ − (e−T

†
d − e−T

†
∗ )eΛd

)
,

and we obtain

‖(eΛd − eΛ∗)φ0‖H ≤ ‖eT
†
∗ ‖B(H)

(
‖ψ̃d − ψ̃∗‖H + ‖eΛd‖B(H)‖(e−T

†
d − e−T

†
∗ )φ0‖H

)
≤ D̃‖ψ̃d − ψ̃∗‖H + D̃′‖ψd − ψ∗‖H.

(42)

Inserting (42) into (41) gives

1

2
|D2E(t∗, λ∗)((gd, kd)

2)| ≤ D̃′1‖ψd − ψ∗‖2H + D̃′2‖ψd − ψ∗‖H‖ψ̃d − ψ̃∗‖H.

Repeating the argument made in (i) for (35), we can find constants d̃1, d̃2 such that
(37) holds.

To finish the proof, we use (34) in Lemma 23 that together with the proof of (i)
gives (38).

4. Conclusions. In this article we have put the formalism of Arponen’s ECC
method on firm mathematical ground. This has been achieved by generalizing the
continuous (infinite-dimensional) formulation of standard CC theory in [16, 17] to the
ECC formalism. The bivariational principle plays an important role in our analysis.
With the bivariational energy E(t, λ) (and its derivatives) as the main object of study,
we have derived existence and uniqueness results for the ECC equation F = 0 (the
flipped gradient) and its discretizations Fd = 0. The key aspect of the analysis is
the establishment of locally strong monotonicity of F at the exact solution (t∗, λ∗).
This has been achieved either by assuming that the reference φ0 is sufficiently good
an approximation of the exact solution ψ∗ or by considering certain splittings of the
Hamiltonian H.

We have formulated and proved quadratic error estimates in terms of the quality
of the truncated amplitude space Vd. The energy error has been bound in terms of
d(Vd, t∗) and d(Vd, λ∗), or equivalently d(Md, (ψ∗, ψ̃∗)), where (ψ∗, ψ̃∗) is the exact
wavefunction pair and Md the truncation of H×H.
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It is interesting to note, as ECC is variational by construction, i.e., the solution
(t∗, λ∗) is a critical point of the smooth map E , that the error estimate is obtained
basically for free. Indeed, the CC Lagrangian L can be thought of as a linearized
formulation of ECC where the second set of amplitudes {λµ} are the Lagrange multi-
pliers {zµ}. The dual problem of CC is, as it were, already built into the ECC theory.
This again illustrates the benefit of applying the bivariational point of view.

Here, ECC has been formulated in a set of cluster amplitude coordinates that
are not usually employed. A next step in the study of the ECC method would be to
repeat the analysis of the monotonicity of F and to obtain error estimates using the
so-called canonical cluster amplitudes; cf. Remark 10.

Even if ECC is currently not a practical tool in computational chemistry due to its
complexity, our analysis demonstrates an important fact: The bivariational principle
can be utilized to devise computational schemes that are not obtainable from the stan-
dard Rayleigh–Ritz principle but still have a quadratic error estimate. Such schemes
include both the traditional CC method and the ECC method. Indeed, not being
variational in the Rayleigh–Ritz sense has been the single most important critique of
the CC method, precisely due to the lack of a quadratic error estimate. Moreover, we
believe that the approach taken in this article, by showing the monotonicity of the
flipped gradient F , is an approach that may allow existence and uniqueness results in
much more general settings.
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