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Francesco Aquilante,† Mickaël G. Delcey,‡,¶ Thomas Bondo Pedersen,§

Ignacio Fdez. Galván,‖,⊥ and Roland Lindh∗,‖,⊥

†Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2,
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Abstract

The density fitting technique for approximating electron repulsion integrals

relies on the quality of auxiliary basis sets. These are commonly obtained through

data fitting, an approach that presents some shortcomings. On the other hand, it

is possible to derive auxiliary basis sets by removing elements from the product
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space of both contracted and primitive orbitals by means of a particular form of

inner projection technique that has come to be known as Cholesky decomposi-

tion (CD). This procedure allows for on-the-fly construction of auxiliary basis sets

that may be used in conjunction with any quantum chemical method, i.e., unbi-

ased auxiliary basis sets. One key feature of these sets is that they represent the

electron repulsion integral matrix in atomic orbital basis with an accuracy that

can be systematically improved by lowering the threshold for approximate linear

dependences – in the sense of a Coulomb metric (“1/r12”). Another key feature is

represented by the fact that locality of fitting coefficients is obtained even with the

long-ranged Coulomb metric, as result of integral accuracy.

Here we report on recent advances in the development of the CD-based DF

technology. In particular, the implementation of analytical gradients algorithms is

reviewed and the present status of local formulations – potentially linear scaling

– is analyzed in great details.

1 Introduction

Per-Olof Löwdin left a monumental legacy for the advance of understanding in quan-

tum chemistry. Among its contributions, the study of inner projections of positive-

definite operators spans over several of his publications and has lead to important

results especially in the context of perturbation theory. At the same time, one possible

use of inner projections in quantum chemistry that seems to have escaped Löwdin’s

attention1 was instead brought to light by one of his former students. Jan Linder-

berg, in collaboration with Nelson H. F. Beebe, published in 1977 a paper2 entitled

“Simplifications in the Generation and Transformation of Two-Electron Integrals in

Molecular Calculations” that would go almost unnoticed for the next two decades or

more. The paper showed how inner projection of the Coulomb operator could be used

in order to reduce the number of electron repulsion integral (ERIs) that need to be

calculated. The idea exploits the presence of numerical linear dependencies among

the columns of the ERI matrix and results in an algorithm that is in all respects a
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form of incomplete Cholesky decomposition of the ERI matrix. Despite sporadic at-

tempts3–5 to further develop the idea of Beebe and Linderberg, what is now known as

Cholesky decomposition (CD) approximation to the two-electron integrals seemed to

be destined to stay a forgotten method at the bottom of the quantum chemistry tool-

box. The breakthrough arrived in 2003 with a paper by Koch et al. presenting the first

fully fledged implementation of the CD approximation within Hartree–Fock (HF) and

second-order Møller–Plesset perturbation theory (MP2).6

Since this first general implementation the CD approximation has been used in

many computational chemistry studies,7–24 and it is now available within several

quantum chemistry packages for a wide range of electronic structure methods, in-

cluding density-functional theory (DFT) and HF,6,25,26 multiconfigurational second-

order perturbation theory (CASSCF/CASPT2),27–29 multireference configuration in-

teraction,30–33 Møller–Plesset perturbation theory,6,34–36 Coupled Cluster (CC) the-

ory,37–40 electron propagator methods,41 symmetry-adapted perturbation theory,42

fragment molecular orbital theory,43 and quantum Monte Carlo.44

The use of CD-based algorithms has made possible nowadays calculations at the

correlated level with thousands of basis functions,45 and for systems with up to hun-

dreds of atoms through the use of the Local Exchange (LK) screening algorithm25

and the localized Cholesky orbitals basis.46 Moreover, the cost of correlation methods

can be reduced even further by invoking the frozen natural orbital (FNO) approxi-

mation.47–50 In the context of the FNO approximation we have employed CD of the

molecular orbital (MO) ERIs to effectively compute a correlated density matrix from

which a spectral decomposition is used to reduce the size of the secondary orbital

space with no significant loss of accuracy.51,52

In this wave of revived interest for the pivotal idea of Beebe and Linderberg, a

major shortcoming of the original formulation of the CD method has been eliminated

that allows for the formulation of analytical gradients. For many years the CD ap-

proximation was in fact thought as a purely numerical technique to represent the

integral matrix through a tensor product. When computing energy gradients, O’Neal
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and Simons4 attempted to perform a CD of the supermatrix that includes derivative

integrals in addition to the ERIs, hence remaining in the framework of a numerical

apporach to the problem. Fortunately, a truly analytical gradient formulation became

possible after it was recognized that CD approximation is a particular type of density

fitting (DF) approximation to the ERIs in which the auxiliary basis set is generated

from the set of atomic orbital (AO) product densities.53 Presently, analytical gradients

are available for a variety of ab initio wave function and DFT methods, showing similar

speed-ups as for the energy calculation, while hardly affecting the computed equilib-

rium structures. These latest developments have been of particular impact in photo-

chemistry, where CD-based multiconfigurational wave function methods can now be

used to optimize excited-state structures and photochemical reaction paths thanks to

the availability of energy gradients and non-adiabatic coupling vectors.

The standard DF technique for approximating ERIs relies on the quality of auxil-

iary basis sets that are obtained through data fitting and are usually biased towards

specific types of quantum chemistry methods and problems—thermodynamic energy

differences, valence or core excited states, etc. With the proof of the equivalence be-

tween the DF and the CD paradigms for ERI approximation, not only became possible

to complement the CD approximation with analytical properties, but at the same time

the DF idea was freed from the need to use pre-optimized auxiliary basis sets. In fact,

the removal of linear dependence in the product space of both contracted and primi-

tive orbitals allows for on-the-fly construction of auxiliary basis sets that may be used

in conjunction with any quantum chemical method, i.e., unbiased auxiliary basis sets.

The use of such “Cholesky basis” effectively defines an ab initio DF approximation

with nearly complete error control as well as intrisic locality that can be exploited

towards the formulation of linear-scaling algorithms.
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2 Inner projection of the Coulomb operator

Given a positive definite operator V and a projector P onto a subspace in the domain

of V , the following mathematical properties hold

V = V 1/2V 1/2 � V 1/2P V 1/2 � 0 , (1)

where V 1/2 denotes the positive square root of V and the inequalities are to be under-

stood in the expectation value sense of Löwdin.1 A new operator Ṽ = V 1/2P V 1/2 – the

inner projection of V with respect to P – can then be defined that provides a lower

bound to the initial operator V .

For the purpose of using the inner projection of eq. (1) in the context of ERIs ap-

proximation, we start by mapping the product densities χµχν , where χ are atomic

basis functions, onto a set of one-index functions hK . A new set of functions h̃J can be

obtained by the following Gram–Schmidt orthogonalization:

h̃J = hJ −
J−1∑
K=1

h̃K
〈h̃K |V |hJ〉

〈h̃K |V |h̃K〉
1/2

(J = 1, . . . ,M) . (2)

The above set of functions constitutes a basis for a projector operator defined as

P = V 1/2 |h̃〉〈h̃|V |h̃〉−1 〈h̃|V 1/2 , (3)

onto which to form the inner projection of V as follows:

Ṽ = V |h̃〉〈h̃|V |h̃〉−1 〈h̃|V . (4)

The matrix elements of Ṽ are then obtained from (4) as

〈hI |Ṽ |hK〉 =
M∑
J=1

〈hI |V |h̃J〉

〈h̃J |V |h̃J〉
1/2

〈h̃J |V |hK〉

〈h̃J |V |h̃J〉
1/2

=
M∑
J=1

LJIL
J
K . (5)

The orthogonalization (2) is continued until the subtraction produces negligibly small
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diagonal elements 〈hI |Ṽ |hI〉, which arises if the functions h are nearly linearly depen-

dent, hence the number M of functions h̃ is always smaller than the total number

N (N + 1)/2 of unique product densities h in an AO basis composed of N functions. In

typical cases, the resulting value for M is in the range 3N to 5N and scales linearly

with the number of AO basis functions N , as shown in the example of fig. 1. More-

over, eq. (5) is equivalent to the corresponding Cholesky decomposition of the matrix

V continued until M so-called Cholesky vectors L have been generated.13,53 Finally,

due to the inner product nature of the approximation, the matrix regenerated by the

Cholesky vectors is actually the matrix representation of Ṽ , which means that expec-

tation values computed from these two-electron integrals will be lower bounds to the

results obtained using the original matrix elements.
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Figure 1: Carbon atom. Number of linearly-independent functions h̃ at different CD
thresholds (τ). The total number of product densities h in each aug-cc-pVXZ basis is
reported for comparison.
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3 The “density fitting/resolution of identity” point of

view

The idea behind DF is to approximate the AO product densities with a linear expan-

sion on a set of auxiliary basis functions χK = |K〉:

χµχν = |µν〉 ≈ |µ̃ν〉 =
∑
K

|K〉CKµν . (6)

To this aim, one starts by defining a suitable error function for the approximation, of

the type

∆µν =

χµχν −∑
K

CKµνχK

∣∣∣∣∣∣∣ĝ
∣∣∣∣∣∣∣χµχν −∑K CKµνχK

 , (7)

which is in fact a measure of the “distance” (in Hilbert space) between the fitted and

the target product densities, defined through a given positive definite metric ĝ. Min-

imization of the above function leads to the set of linear equations for the expansion

coefficients: ∑
I

GIKC
I
µν = 〈µν|K〉g , (8)

where GIK = 〈I |K〉g and 〈·|·〉g = (·|ĝ |·). The Coulomb metric, ĝ = r−1
12 , gives the most

accurate representation of the ERIs54,55 and it is therefore the most common choice

for the metric. In this case, ERIs can be expressed in a form that is reminiscent of a

resolution of the identity (RI), namely

(µν|λσ ) ≈ ˜(µν|λσ ) =
∑
IK

CIµν(I |K)CKλσ =
∑
IK

(µν|I)(I |K)−1(K |λσ ) , (9)

from which comes the name “RI approximation” often employed for the DF approx-

imation to the ERIs. (Note that we have used the common but somewhat misleading

short-hand notation (I |K)−1 which is intended to mean (W −1)IK withWIK = (I |K).) Still

within the choice of the Coulomb metric, the solution of eq. (8) leads to a well-defined
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measure of the error introduced by the DF/RI approximation:

∆
min
µν = (µν|µν)−

∑
IK

CIµν(I |K)CKµν . (10)

The quantity ∆
min
µν measures the error in representing the diagonal element of the ERI

matrix, indicating that an externally defined auxiliary basis set will in general not lead

to the global minimum for the DF variational condition, eq. (7). As ∆µν is nonnegative,

the global minimum is zero and is reached only when the auxiliary basis set spans the

same space as the product densities χµχν . The ERI matrix is then represented exactly

by the DF approach.

Standard auxiliary basis sets are chosen to be Gaussian functions centered on the

nuclei. The number of auxiliary basis functions scales therefore linearly with system

size and the computed electronic energy is a continuous function of the nuclear posi-

tions. These auxiliary basis sets have been optimized to reproduce, within an allowed

error span, some specific quantities (e.g., Coulomb energy, MP2 correlation energy

correction, etc.) for each valence basis set by minimization of the energy errors in a

set of atomic calculations.56–59 Since such optimization is performed without any di-

rect constraint regarding the representation of the integral diagonals, as measured by

eq. (10), the resulting basis set cannot be used to approximate the ERI matrix without

major concerns. This is an important issue but is often overlooked as, for instance, is

the problem of the intrinsic higher difficulty in fitting exchange or MP2 energy com-

pared to the Coulomb energy. We can view this problem in terms of the matrices that

need to be accurately represented when approximating the different energy contri-

butions in a spin-compensated formulation. For MP2, it is the occupied-virtual block

(ia|jb) of the ERI matrix in MO basis. For Coulomb (EC) and exhcange (EX) energies

we have, respectively :

EC = 2
∑
ij

(ii|jj) EX = −
∑
ij

(ij |ij) , (11)

where the orbital indices belong to the occupied space only. It is immediate to rec-
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ognize that the Coulomb matrix is exactly representable by at most O auxiliary func-

tions (Cholesky vectors) in MO basis, where O is the number of occupied orbitals.

Already for the K matrix, this limit is instead O2 and becomes OV for the integrals

needed in MP2, with V being the number of virtual orbitals. The success in reproduc-

ing Coulomb energies by externally optimized auxiliary basis does not imply a similar

fate for these other quantities. In particular, there is a fundamental inconsistency in

trying to fit directly the (ij |kl) and (ai|bj) quantities using atom-centered auxiliary

functions: the number of significant product densities in (canonical) MO basis, |ij〉 or

|ai〉, scales quadratically with the size of the molecule while the auxiliary basis by defi-

nition will scale only linearly! This inconsistency is not present in fitting the Coulomb

energy since the number of |ii〉 scales linearly too. The only way to ensure a consistent

fit of these quantities by atom-centered auxiliary functions is indeed by producing an

accurate fit of the AO ERI matrix. Once this condition is fulfilled, any quantity in MO

basis will be reproduced with the same accuracy since it is derived through algebraic

manipulations from the corresponding one in AO basis. Since in AO basis the number

of significant product densities χµχν does scale linearly with the size of the system,

the inconsistency disappears.

On the other hand, if we consider an isolated atom, the CD of its ERI matrix2

provides an upper bound for the value of ∆min
µν , eq. (10),

∆
min
µν = (µν|µν)−

∑
J

(
LJµν

)2
≤ τ , (12)

where LJµν are the Cholesky vectors and τ is the decomposition threshold. From eq. (2)

we identify the “Cholesky basis” hK ’s through atomic CDs (aCDs) for atom A,B, . . ..

Hence, we obtain an auxiliary basis set for DF approximation to the molecular ERI

matrix, but one for which there is strict error control on the one-center and two-center

“Coulomb” ERIs, namely the integrals of the type (AA|AA) and (AA|BB), respectively.

This can be understood by considering the fact that the DF approximation is an inner
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projection and therefore the following Cauchy–Schwarz inequality holds:

∣∣∣∆min
µν,λσ

∣∣∣ =

∣∣∣∣∣∣∣(µν|λσ )−
∑
IK

CIµν(I |K)CKλσ

∣∣∣∣∣∣∣ ≤ ∆
1/2
µν ∆

1/2
λσ . (13)

From eqs. (12) and (13), we can see that the errors in the DF approximation to the ERIs

of the type (AA|AA) and (AA|BB) are bound by the aCD threshold τ , whereas those of

the type (AB| ∗∗) may be affected by larger errors. In fig. 2 it is clearly shown how these

errors are nonetheless much smaller than those arising from standard auxiliary basis

sets56–59 tailored specifically for Coulomb contributions (RI-J)60 and MP2 contribu-

tions (RI-C)58 to the energy. The robustness of the aCD-based DF approximation has

been further established in a number of benchmark studies.61–63

aCD-4 aCD-3 RI-C RI-J
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Figure 2: Benzene molecule, cc-pVTZ basis set: average and maximum error in the
approximation of the AO diagonal ERIs with various types of DF approximations. The
notation aCD-n is used to indicate an auxiliary basis set generated by CD of atomic
ERIs with a threshold τ = 10−nEh. Auxiliary basis “RI-J” as in Eichkorn et al.60 and
“RI-C” as in Weigend et al.58

The quality of such aCD auxiliary basis set is controlled by the aCD threshold, thus

defining a hierarchy of sets by varying the threshold. This also implies that contrary to

standard auxiliary basis sets the aCD sets are generated on-the-fly rather than stored

in a standard basis set library format. Consequently, aCDs are by way of construction

available for any atom type and AO basis set. Finally, as they are derived ab initio by

ensuring upper bounds on the DF error function of eq. (10), the unbiased nature of the

resulting DF approximation is guaranteed.28,63 From a practical point of view, a raw
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aCD auxiliary basis set does not have the structure of complete shells and therefore

they are not spherically balanced. This is somewhat incompatible with standard inte-

gral code implementations. This problem is circumvented by adding auxiliary func-

tions to get a complete shell structure at the price of slightly increased computational

costs associated with the subsequent use of the DF representation. Another drawback

of the aCDs compared to standard auxiliary basis sets is the large number of primi-

tive functions. This problem is eliminated by exploiting the linear dependence in an

atomic ERI matrix constructed in the primitive basis. This is a natural extension of the

principle underlying the aCD auxiliary basis sets, and defines the atomic compact CD

(acCD) class of auxiliary basis sets.64 The acCD sets achieve virtually the same level

of accuracy as the corresponding aCD sets, but require only a fraction of the prim-

itive space needed by the latter. This is particularly important for regular basis sets

constructed as contractions of large primitive sets, such as the atomic natural orbitals

(ANO) class of regular basis sets.

4 Local fitting with Cholesky decomposition

Solving the linear equations (8) requires an effort that scales cubically with system

size. However, a very low prefactor is achieved by Cholesky decomposition rather than

explicit inversion of the symmetric positive definite metric matrix G and other com-

putational tasks dominate for all but the very largest systems. Among such tasks, one

of the most challenging is the evaluation of the exact-exchange matrix in single- as

well as multireference calculations. The exact-exchange matrix is given by

Kµν =
∑
λσ

(µλ|νσ )Dλσ , (14)

where D is a one-electron density matrix. With D dense, exact-exchange evaluation

scales quadratically with system size. If the number of non-zero elements in D scales

linearly, as is the case for wide-gap insulators, the exact-exchange matrix can be eval-

uated in linear time,65,66 albeit with a computational prefactor and an onset to linear
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scaling that both grow rapidly with basis set quality (i.e., basis set size per atom).

While the prefactor can be reduced with the RI technique,59 it becomes impossi-

ble to achieve linear scaling with system size when the most accurate Coulomb met-

ric is used. Even if density-matrix sparsity is exploited the best possible scaling is

quadratic.25 The reason for this behavior is the expansion of all local AO product den-

sities in a delocalized auxiliary basis, making the expansion coefficients determined by

the linear equations (8) decay slowly in general, even as slowly as the Coulomb oper-

ator itself.55,67 Consequently, different approaches have been proposed to reduce the

scaling. These approaches fall in two overall but not disjoint categories: local metric

fitting and local domain fitting. Local metric fitting forces the expansion coefficients

to decay more rapidly through the use of a short-ranged metric,55,67,68 while local do-

main fitting achieves the same by restricting the expansion to auxiliary functions in

a chosen vicinity of each local AO product density.69–73 Combinations of local metric

fitting and local domain fitting have been proposed, too.74,75

Since neither of the two categories of local fitting can be recast as a proper inner

projection of the Coulomb operator, strict integral-error control is lost in general. It

is possible to restore, at least partially, error control by using Dunlap’s robust fitting

formula in place of eq. (9),76

˜(µν|λσ ) = (µ̃ν|λσ ) + (µν|λ̃σ )− (µ̃ν|λ̃σ ) . (15)

This ensures that the integral error is bilinear in the fitting error

(µν|λσ )− ˜(µν|λσ ) = (µν − µ̃ν|λσ − λ̃σ ) , (16)

and, in the Coulomb metric, provides us with an upper bound to the integral error

∣∣∣(µν − µ̃ν|λσ − λ̃σ )
∣∣∣ ≤ ∆

1/2
µν ∆

1/2
λσ , (17)

since each “distance” ∆µν is then minimized for a given auxiliary basis. Strict error
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control is only guaranteed if the auxiliary functions spans the same space as the AO

product densities to within a small tolerance τ ≥ 0 such that ∆µν ≤ τ for all µν.

Robust fitting suffers from one major drawback: Eq. (15) is not unconditionally

positive semidefinite, occasionally resulting in spurious attractive interactions among

the electrons, which causes convergence problems in self-consistent field solvers or

even convergence to an unphysical solution.77 In actual calculations the lack of pos-

itive semidefiniteness reveals itself in much too low, often negative, two-electron en-

ergies. This can be understood in the following manner. With a given density matrix

or, equivalently, a given space of occupied orbitals, the difference between the direct

Coulomb energy calculated with exact and approximate integrals is strictly nonnega-

tive,78

EC − ẼC = 2
∑
ij

(ii − ĩi|jj − j̃j) ≥ 0 . (18)

While EC = 2
∑
ij(ii|jj) ≥ 0, ẼC may be negative due to negative eigenvalues of the

approximate integral matrix (̃ii|jj) without violating the inequality above. Variational

calculations aim to minimize the energy and thus may lead to a formally valid density

matrix with associated negative two-electron energy. The exchange energy behaves

differently; the difference between the exchange energy calculated with exact and ap-

proximate integrals is strictly nonpositive,79

EX − ẼX = −
∑
ij

(ij − ĩj |ij − ĩj) ≤ 0 . (19)

Hence, ẼX ≥ EX for any given density matrix, and variational instabilities do not oc-

cur due to this contribution. In conclusion, Dunlap’s robust fitting should only be

used with great care for Coulomb contributions but may be used with impunity for

exchange contributions.

We now return to the problem of slow decay of the expansion coefficients obtained

from eq. (8) in the Coulomb metric. To appreciate the underlying problem, we first

study a generalized example. Suppose that we have expanded a set of functions |f 〉,

known to be (near-) linearly dependent in a positive definite metric ĝ, in a linearly
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independent set |A〉, i.e.

|f 〉 ≈ |f̃ (0)〉 = |A〉C(0)
A , (20)

where the coefficients are determined from eq. (8) as

C
(0)
A = 〈A|ĝ |A〉−1〈A|ĝ |f 〉 . (21)

Next, suppose we extend the auxiliary basis to include another set |B〉 such that

|f 〉 ≈ |f̃ 〉 = |A〉CA + |B〉CB . (22)

In this case, the fitting equations (8) yield the coefficients

CA = C
(0)
A − 〈A|ĝ |A〉

−1〈A|ĝ |B〉CB , (23)

CB =
[
〈B|ĝ |B〉 − 〈B|ĝ |A〉〈A|ĝ |A〉−1〈A|ĝ |B〉

]−1
〈B|ĝ |f − f̃ 0〉 . (24)

Evidently, CB , 0 in general. In the context of RI, this result implies that auxiliary

basis functions far away from the AO product density will contribute significantly to

the fit, even if the original local expansion (20) is sufficiently accurate for all practical

purposes. The exact decay of the coefficients generally depends in a complicated man-

ner both on the metric and on the dimensionality of the auxiliary basis and is hard to

predict in real-life applications.67 However, eq. (24) directly verifies the obvious solu-

tion: if the auxiliary set |A〉 is locally complete, i.e. spans the same space as the target

functions |f 〉, then |f − f̃ 0〉 = 0 so that no extension of the auxiliary basis will change

the fit: CB = 0 and CA = C
(0)
A regardless of distance. As discussed previously, Cholesky

decomposition provides a route to locally complete auxiliary sets by removing linear

dependence among the target functions in a given metric and may thus be viewed as

inherently local.13,64,77 In fig. 3, we see an example of such “locality from completeness”

of the aCD auxiliary basis sets: at variance with standard RI-C and similar basis sets,

contaminants in Cholesky-based approximations can be smoothly eliminated by low-

ering the decomposition threshold, independently of the geometry of the system and
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the nature of the metric chosen.
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Figure 3: He C6H6 system. Decay of the largest contaminant of the fitting coefficients
on He atom as function of the point-plane distance r between He atom and benzene
molecule. Logarithmic scale is employed for the vertical axis. The AO basis set used
for He is cc-pVTZ whereas a cc-pVDZ basis set is used for the atoms of the benzene
molecule. Auxiliary basis “RI-C” as in Weigend et al.58

We shall now examine the most local form of RI, known as the pair-atomic resolution-

of-the-identity (PARI) method.77 Let {µAνB} denote the set of AO product densities

where the AOs are centered on atoms A and B as indicated by the subscripts. The

number of such sets scales linearly with system size, since µAνB → 0 exponentially

as the distance between atoms A and B increases. For each overlapping atom pair AB

we can now fit the AO product densities in a Cholesky basis obtained by incomplete

Cholesky decomposition of the ERI pair-atomic diagonal block (AB|AB) with threshold

τ ,

|µAνB) ≈ |µ̃AνB) =
∑
I∈AB
|I)CIµAνB . (25)

By construction of the auxiliary basis, the integral error is bounded from above ac-

cording to ∣∣∣∣(µAνB|λAσB)− (µ̃AνB|λ̃AσB)
∣∣∣∣ ≤ τ , (26)

for each atom pair AB. Strict integral-error control is achieved through the robust

15



integral formula (15), i.e.

∣∣∣∣(µAνB − µ̃AνB|λCσD − λ̃CσD)
∣∣∣∣ ≤ τ , (27)

and the problems associated with negative eigenvalues disappear with small enough

τ ,77 since

τ −→ 0 =⇒ (µ̃AνB|λCσD) + (µAνB|λ̃CσD)− (µ̃AνB|λ̃CσD) −→ (µ̃AνB|λ̃CσD) , (28)

which is a positive semidefinite matrix by construction. The PARI method thus be-

comes exact with the Cholesky basis as τ→ 0.

There are, however, substantial problems associated with this approach. The Cho-

lesky basis is composed of products of AOs centered on different atoms and thus be-

comes a function of atomic positions. First of all, this feature may result in potential-

energy-surface discontinuities, although these must become insignificant as the thresh-

old is decreased (continuity is, of course, fully restored at τ = 0). Second, using AO

products as auxiliary functions implies that expensive four-center ERIs must be evalu-

ated, thus annihilating one of the main computational advantages of the RI approach.

For these reasons, the PARI approach is normally formulated as an expansion in atom-

centered auxiliary functions77

|µAνB) ≈ |µ̃AνB) =
∑
I∈A∪B

|I)CIµAνB , (29)

where the summation restriction is meant to imply that |I) is centered on either atom

A or atom B. The atom-centered auxiliary functions may be chosen freely, although

the choice decisively impacts both accuracy and precision of the results. Choosing the

aCD or acCD auxiliary sets obtained with a given threshold τ , this formulation guar-

antees the accuracy of integral blocks of the types (AA|AA) and, provided the robust

integral formula (15) is used, (AA|BB)—all other integral blocks typically have errors

significantly greater than τ and, more importantly, these errors can not be reduced by
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decreasing τ . It is still possible to restore strict integral-error control by adding to the

auxiliary basis, for each atom pair individually, those linearly independent AO prod-

ucts that are not spanned (to within a specified target accuracy) by the atom-centered

auxiliary functions. Even this approach turns out to require too many four-center ERIs

to be of general practical interest, however.

The accuracy and computational performance of the robust PARI method has been

rather well tested over the past few years.77,79–82 Although these investigations all

employ standard auxiliary basis sets rather than aCD and acCD, we note that using

the latter is unlikely to alter the conclusions dramatically. The tests include total and

relative energy errors obtained within HF, hybrid DFT, and range-separated hybrid

DFT methods. The earlier tests use the PARI approach for both the Coulomb and ex-

change contributions,77,80 whereas the most recent tests use the PARI method only for

the exchange contribution to circumvent convergence issues due to the loss of posi-

tive semidefiniteness.79,81,82 Convergence issues are rare, occuring in about 1% of the

cases where the PARI method is applied to the Coulomb contribution,77,80 and oc-

currences can be further reduced, but not completely removed, using larger auxiliary

basis sets in conjunction with the semi-exact PARI modification of Hollman et al.80 in

which all diagonal blocks of the ERI matrix are treated exactly. It is worth noting that

the semi-exact PARI approach yield total energy errors well below those observed with

the (full) RI approach. Although total-energy errors are somewhat greater and more

spread with robust PARI than with RI and other well-established approximations, sat-

isfactory results are obtained for energy differences such as atomization energies and

reaction energies.

It is also clear, however, that while the robust PARI method is faster than the RI

method, it does not accelerate the calculation of the exchange contribution sufficiently

to be comparable with the Coulomb contribution computed using RI.82 The main bot-

tleneck is the calculation of terms involving the three-center ERIs of the robust for-

mula. (15) Considering also the loss of positive semidefiniteness, it becomes attractive

to use the nonrobust formula (9) within the PARI method. This, however, requires
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auxiliary basis sets that are close to locally complete to be successful. The nonrobust

PARI approximation, though not thoroughly investigated with Gaussian basis sets,

has been proven useful with numerical basis set.83 To achieve the flexibility required

in the auxiliary basis set to make the nonrobust PARI method usable, whilst insisting

on atom-centered functions, Ihrig et al.83 employ a philosophy reminiscent of the aCD

and acCD sets. For the sole purpose of generating an atom-centered auxiliary basis set,

they first add an additional set of functions, including high angular momenta func-

tions, to the regular basis set, followed by removal of linearly dependent functions

in the set of AO products obtained from the extended regular basis on the atom in

question. This maintains the accuracy of atomic integral blocks and significantly im-

proves the accurary of atom pair blocks, which implies accuracy improvements in all

ERI blocks. It should be possible to apply this idea to Gaussian basis sets too—work

along these lines is in progress in our labs.

5 Analytical gradients in Cholesky decomposition-based

quantum chemistry

The usefulness and appeal of any quantum chemistry technique increases significantly

if a practical way to compute analytical derivatives with respect to nuclear displace-

ments is available. This opens the door to using the tool for an efficient exploration

of potential energy surfaces: geometry optimization of minima and transition states,

molecular dynamics, etc.

The initial formulations of the Cholesky decomposition technique were a purely

numerical approximation to the ERI matrix, which made defining analytical deriva-

tives a difficult task. O’Neal and Simons4 proposed applying the CD to an extended

positive semidefinite matrix that includes undifferentiated and differentiated inte-

grals. Since most of the first derivative atomic orbital product functions belong to

the space spanned by the undifferentiated products, the number of Cholesky vectors

is not much larger than in the standard undifferentiated decomposition. But when the
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connection between CD and DF was identified, it became possible to directly calculate

the exact analytical derivatives of the approximate integrals, instead of an approxima-

tion to the exact integral derivatives.

With the two-electron integrals approximated as in eq. (9), there are several depen-

dences on the nuclear coordinates to consider. First there is an explicit dependence of

the auxiliary basis functions, coming from the fact that the primitive functions they

are built on are typically centered on the atomic nuclei. Second, the fitting coefficients

CKµν are also dependent on the geometry. And finally, the number and type of auxil-

iary functions included in the summation are subject to change with the molecular

structure too.

The second dependence is only apparent, as the two-electron integrals can be ex-

pressed only in terms of two- and three-center integrals involving auxiliary functions

(eq. (9)), and thus the derivatives of the fitting coefficients are not required. Moreover,

when an externally defined auxiliary basis set is used, the third dependence disap-

pears, since the auxiliary functions are fixed. But if an on-the-fly auxiliary basis set is

generated through Cholesky decomposition, it is problematic to treat rigorously and

can in fact lead to discontinuities in potential energy surfaces. Although the difficulty

can be reduced by allowing only one-center product functions in the Cholesky basis

and with a small enough decomposition threshold,53 it can be strictly removed by us-

ing one of the atomic variants of the Cholesky decomposition, aCD or acCD. Indeed,

in these variants the auxiliary basis functions are derived exclusively from the atomic

blocks of the ERI matrix and are therefore independent of the molecular geometry,

leaving only the explicit dependence of the integrals to take care of.

Thus, with fixed one-center auxiliary functions (external or CD), the first derivative

of the density-fitted ERIs can be evaluated analytically:

˜(µν|λσ )
(1)

=
∑
K

CKµν(K |λσ )(1) +
∑
K

CKλσ (K |µν)(1) −
∑
KL

CKµν(K |L)(1)CLλσ , (30)

involving only the derivatives of two- and three-center integrals and the fixed coef-
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ficients CKµν . But simply using eq. (30) to evaluate two-electron integral derivatives

would provide little gain, if any, over an integral-direct scheme where integral deriva-

tives (µν|λσ )(1) are computed on the fly as needed. The actual improvement is mani-

fested when the expression is carried over to the two-electron contribution to the total

molecular gradient. This contribution can in general be expressed as:

E
(1)
2 =

∑
µνλσ

deff
µνλσ (µν|λσ )(1) , (31)

where deff is an effective two-particle density matrix whose exact definition depends

on the method used to calculate the energy. Substituting eq. (30) into eq. (31) gives:

E
(1)
2 = 2

∑
Kµν

P Kµν(K |µν)(1) −
∑
KL

PKL(K |L)(1) , (32)

where PKL and P Kµν are elements of the effective two- and three-index density matrices,

respectively, given by:

PKL =
∑
µνλσ

deff
µνλσC

K
µνC

L
λσ (33)

P Kµν =
∑
λσ

deff
µνλσC

K
λσ . (34)

For a Hartree–Fock wave function, the two-particle density matrix can be defined

in terms of the one-particle density matrix D, readily giving Coulomb and exchange

contributions:

deff
µνλσ = dµνλσ =DµνDλσ − 1

2DµσDνλ . (35)

As is the case for the energy evaluation, computing the Coulomb contribution is straight-

forward, but for the exchange additional manipulations are needed to avoid four-

index summations.84 The resulting algorithm has a still unfavorable scaling, and a

technique based on the LK (local exchange) screening devised for the exchange contri-

bution to the Fock matrix53 can be used to identify the pairs of orbitals that contribute
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significantly to the energy gradient and skip all other (negligible) contributions. In this

way, by taking advantage of the sparsity of the density matrix for sufficiently large sys-

tems, a quadratic scaling (instead of quartic) can be achieved.84

In the case of a state-average complete active space self-consistent field (SA-CASSCF)

wave function, the calculation of analytic energy gradients is based on solving a set

of linear equations to obtain the Lagrange multipliers, which are then used to com-

pute the effective one- and two-particle density matrices, Deff and deff.85,86 The two-

particle density matrix cannot be expressed as compactly as eq. (35), but it can still be

decomposed as:87

dµνλσ = dA
µνλσ +DD

µνD
B
λσ +DB

µνD
D
λσ − 1

2

(
DD
µσD

B
νλ +DB

µσD
D
νλ

)
, (36)

where dA is the two-particle density matrix involving only the active orbitals; DD is a

one-particle density matrix constructed, in MO basis, with 2 in the inactive diagonal

and zero elsewhere; DB is obtained subtracting half the inactive part (DI) from the to-

tal one-particle density matrix: (DB = D− 1
2D

I). The distinction between DD and DI be-

comes important when computing nonadiabatic coupling vectors instead of gradients,

since in this case the density matrices to use are transition density matrices, where the

inactive part is zero, but the definition of DD still holds. As for Hartree–Fock, Coulomb

and exchange contributions can be identified, plus an active-only contribution. This

latter contribution does not benefit from LK screening, but due to the usually small

size of the active space it normally does not represent a significant overhead.86,88

In systems of medium-large size, the manipulation of the density matrices, espe-

cially for the exchange and active contributions, can become the most expensive part

of computing molecular gradients, a situation any local fitting scheme would resolve.

This is shown for a very simple test (series of linear alkanes CnH2n+2 at random confor-

mations, HF/ANO-RCC-VDZP energies and gradients) in fig. 4. For both conventional

integrals and acCD integrals the figure shows the total CPU time spent on a full gradi-

ent calculation (including undifferentiated integrals, HF energy and gradient), as well

as the two main tasks in the gradient proper: density matrix manipulation and inte-
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gral derivatives. The total time is about one order of magnitude lower with acCD. The

reduction of time spent in integral derivatives is even larger. Although the work on

the density matrix manipulation increases substantially, the combined performance is

still beneficial for the acCD calculations.
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Figure 4: Timings for gradient calculations at HF/ANO-RCC-VDZP level of a linear
alkane series, CnH2n+2. Calculations with acCD and conventional (“conv.”) integrals.
In the total CPU time, the energy evaluation and undifferentiated integrals genera-
tion are included. The other lines refer to the density matrix manipulation and the
computation of the integral derivatives.

6 Conclusions and outlook

Cholesky decomposition (CD) of the ERIs is a form of inner projection à la Löwdin that

seeks a tensor-decomposition of the ERIs by eliminating linear dependences in the

atomic orbital product space. Here, we have reviewed some of the quantum chemistry

technology that can arise from the development of the CD idea. In particular, we have

pointed out the possibilities for state of the art applications due to recent advances in

the implementation of CD-based analytical gradients as well as local formulations.

However, the generality of the method would suggest that the same technique

applied to other contexts than the ERI matrix could provide comparable computa-
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tional advantages, for instance as means to recognize and eliminate redundancies in

the number of parameters used to describe the N -electron wave function. If this is

the case, a consistent reduction in the computational costs of any correlated method

could be achieved by simply recasting the working equations in a reduced space of

parameters. Work in this direction is currently carried out by the present authors.

Finally, further development along the lines of local fitting has to be explored to

utilize the full potential of the inner projection method on efficient handling of two-

electron integrals.
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(47) Löwdin, P.-O. Phys. Rev. 1955, 97, 1474–1489.

(48) Taube, A. G.; Bartlett, R. J. Collect. Czech. Chem. Commun. 2005, 70, 837–850.

(49) Taube, A. G.; Bartlett, R. J. J. Chem. Phys. 2008, 128, 164101.

(50) Landau, A.; Khistyaev, K.; Dolgikh, S.; Krylov, A. I. J. Chem. Phys. 2010, 132,

014109.

(51) Aquilante, F.; Todorova, T. K.; Pedersen, T. B.; Gagliardi, L.; Roos, B. O. J. Chem.

Phys. 2009, 131, 034113.

(52) Segarra-Martı́, J.; Garavelli, M.; Aquilante, F. J. Chem. Theory Comput. 2015, 11,

3772.

(53) Aquilante, F.; Lindh, R.; Pedersen, T. B. J. Chem. Phys. 2008, 129, 034106.
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